Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 *  linux/arch/arm/kernel/ptrace.c
  3 *
  4 *  By Ross Biro 1/23/92
  5 * edited by Linus Torvalds
  6 * ARM modifications Copyright (C) 2000 Russell King
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 
 14#include <linux/mm.h>
 15#include <linux/elf.h>
 16#include <linux/smp.h>
 17#include <linux/ptrace.h>
 18#include <linux/user.h>
 19#include <linux/security.h>
 20#include <linux/init.h>
 21#include <linux/signal.h>
 22#include <linux/uaccess.h>
 23#include <linux/perf_event.h>
 24#include <linux/hw_breakpoint.h>
 25#include <linux/regset.h>
 26#include <linux/audit.h>
 27#include <linux/tracehook.h>
 28
 29#include <asm/pgtable.h>
 30#include <asm/traps.h>
 31
 
 
 
 32#define REG_PC	15
 33#define REG_PSR	16
 34/*
 35 * does not yet catch signals sent when the child dies.
 36 * in exit.c or in signal.c.
 37 */
 38
 39#if 0
 40/*
 41 * Breakpoint SWI instruction: SWI &9F0001
 42 */
 43#define BREAKINST_ARM	0xef9f0001
 44#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 45#else
 46/*
 47 * New breakpoints - use an undefined instruction.  The ARM architecture
 48 * reference manual guarantees that the following instruction space
 49 * will produce an undefined instruction exception on all CPUs:
 50 *
 51 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 52 *  Thumb: 1101 1110 xxxx xxxx
 53 */
 54#define BREAKINST_ARM	0xe7f001f0
 55#define BREAKINST_THUMB	0xde01
 56#endif
 57
 58struct pt_regs_offset {
 59	const char *name;
 60	int offset;
 61};
 62
 63#define REG_OFFSET_NAME(r) \
 64	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 65#define REG_OFFSET_END {.name = NULL, .offset = 0}
 66
 67static const struct pt_regs_offset regoffset_table[] = {
 68	REG_OFFSET_NAME(r0),
 69	REG_OFFSET_NAME(r1),
 70	REG_OFFSET_NAME(r2),
 71	REG_OFFSET_NAME(r3),
 72	REG_OFFSET_NAME(r4),
 73	REG_OFFSET_NAME(r5),
 74	REG_OFFSET_NAME(r6),
 75	REG_OFFSET_NAME(r7),
 76	REG_OFFSET_NAME(r8),
 77	REG_OFFSET_NAME(r9),
 78	REG_OFFSET_NAME(r10),
 79	REG_OFFSET_NAME(fp),
 80	REG_OFFSET_NAME(ip),
 81	REG_OFFSET_NAME(sp),
 82	REG_OFFSET_NAME(lr),
 83	REG_OFFSET_NAME(pc),
 84	REG_OFFSET_NAME(cpsr),
 85	REG_OFFSET_NAME(ORIG_r0),
 86	REG_OFFSET_END,
 87};
 88
 89/**
 90 * regs_query_register_offset() - query register offset from its name
 91 * @name:	the name of a register
 92 *
 93 * regs_query_register_offset() returns the offset of a register in struct
 94 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 95 */
 96int regs_query_register_offset(const char *name)
 97{
 98	const struct pt_regs_offset *roff;
 99	for (roff = regoffset_table; roff->name != NULL; roff++)
100		if (!strcmp(roff->name, name))
101			return roff->offset;
102	return -EINVAL;
103}
104
105/**
106 * regs_query_register_name() - query register name from its offset
107 * @offset:	the offset of a register in struct pt_regs.
108 *
109 * regs_query_register_name() returns the name of a register from its
110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111 */
112const char *regs_query_register_name(unsigned int offset)
113{
114	const struct pt_regs_offset *roff;
115	for (roff = regoffset_table; roff->name != NULL; roff++)
116		if (roff->offset == offset)
117			return roff->name;
118	return NULL;
119}
120
121/**
122 * regs_within_kernel_stack() - check the address in the stack
123 * @regs:      pt_regs which contains kernel stack pointer.
124 * @addr:      address which is checked.
125 *
126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127 * If @addr is within the kernel stack, it returns true. If not, returns false.
128 */
129bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130{
131	return ((addr & ~(THREAD_SIZE - 1))  ==
132		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133}
134
135/**
136 * regs_get_kernel_stack_nth() - get Nth entry of the stack
137 * @regs:	pt_regs which contains kernel stack pointer.
138 * @n:		stack entry number.
139 *
140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142 * this returns 0.
143 */
144unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145{
146	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147	addr += n;
148	if (regs_within_kernel_stack(regs, (unsigned long)addr))
149		return *addr;
150	else
151		return 0;
152}
153
154/*
155 * this routine will get a word off of the processes privileged stack.
156 * the offset is how far from the base addr as stored in the THREAD.
157 * this routine assumes that all the privileged stacks are in our
158 * data space.
159 */
160static inline long get_user_reg(struct task_struct *task, int offset)
161{
162	return task_pt_regs(task)->uregs[offset];
163}
164
165/*
166 * this routine will put a word on the processes privileged stack.
167 * the offset is how far from the base addr as stored in the THREAD.
168 * this routine assumes that all the privileged stacks are in our
169 * data space.
170 */
171static inline int
172put_user_reg(struct task_struct *task, int offset, long data)
173{
174	struct pt_regs newregs, *regs = task_pt_regs(task);
175	int ret = -EINVAL;
176
177	newregs = *regs;
178	newregs.uregs[offset] = data;
179
180	if (valid_user_regs(&newregs)) {
181		regs->uregs[offset] = data;
182		ret = 0;
183	}
184
185	return ret;
186}
187
188/*
189 * Called by kernel/ptrace.c when detaching..
190 */
191void ptrace_disable(struct task_struct *child)
192{
193	/* Nothing to do. */
194}
195
196/*
197 * Handle hitting a breakpoint.
198 */
199void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200{
201	siginfo_t info;
202
203	info.si_signo = SIGTRAP;
204	info.si_errno = 0;
205	info.si_code  = TRAP_BRKPT;
206	info.si_addr  = (void __user *)instruction_pointer(regs);
207
208	force_sig_info(SIGTRAP, &info, tsk);
209}
210
211static int break_trap(struct pt_regs *regs, unsigned int instr)
212{
213	ptrace_break(current, regs);
214	return 0;
215}
216
217static struct undef_hook arm_break_hook = {
218	.instr_mask	= 0x0fffffff,
219	.instr_val	= 0x07f001f0,
220	.cpsr_mask	= PSR_T_BIT,
221	.cpsr_val	= 0,
222	.fn		= break_trap,
223};
224
225static struct undef_hook thumb_break_hook = {
226	.instr_mask	= 0xffff,
227	.instr_val	= 0xde01,
228	.cpsr_mask	= PSR_T_BIT,
229	.cpsr_val	= PSR_T_BIT,
230	.fn		= break_trap,
231};
232
233static struct undef_hook thumb2_break_hook = {
234	.instr_mask	= 0xffffffff,
235	.instr_val	= 0xf7f0a000,
236	.cpsr_mask	= PSR_T_BIT,
237	.cpsr_val	= PSR_T_BIT,
238	.fn		= break_trap,
239};
240
241static int __init ptrace_break_init(void)
242{
243	register_undef_hook(&arm_break_hook);
244	register_undef_hook(&thumb_break_hook);
245	register_undef_hook(&thumb2_break_hook);
246	return 0;
247}
248
249core_initcall(ptrace_break_init);
250
251/*
252 * Read the word at offset "off" into the "struct user".  We
253 * actually access the pt_regs stored on the kernel stack.
254 */
255static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256			    unsigned long __user *ret)
257{
258	unsigned long tmp;
259
260	if (off & 3)
261		return -EIO;
262
263	tmp = 0;
264	if (off == PT_TEXT_ADDR)
265		tmp = tsk->mm->start_code;
266	else if (off == PT_DATA_ADDR)
267		tmp = tsk->mm->start_data;
268	else if (off == PT_TEXT_END_ADDR)
269		tmp = tsk->mm->end_code;
270	else if (off < sizeof(struct pt_regs))
271		tmp = get_user_reg(tsk, off >> 2);
272	else if (off >= sizeof(struct user))
273		return -EIO;
274
275	return put_user(tmp, ret);
276}
277
278/*
279 * Write the word at offset "off" into "struct user".  We
280 * actually access the pt_regs stored on the kernel stack.
281 */
282static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
283			     unsigned long val)
284{
285	if (off & 3 || off >= sizeof(struct user))
286		return -EIO;
287
288	if (off >= sizeof(struct pt_regs))
289		return 0;
290
291	return put_user_reg(tsk, off >> 2, val);
292}
293
294#ifdef CONFIG_IWMMXT
295
296/*
297 * Get the child iWMMXt state.
298 */
299static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
300{
301	struct thread_info *thread = task_thread_info(tsk);
302
303	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
304		return -ENODATA;
305	iwmmxt_task_disable(thread);  /* force it to ram */
306	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
307		? -EFAULT : 0;
308}
309
310/*
311 * Set the child iWMMXt state.
312 */
313static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
314{
315	struct thread_info *thread = task_thread_info(tsk);
316
317	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
318		return -EACCES;
319	iwmmxt_task_release(thread);  /* force a reload */
320	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
321		? -EFAULT : 0;
322}
323
324#endif
325
326#ifdef CONFIG_CRUNCH
327/*
328 * Get the child Crunch state.
329 */
330static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
331{
332	struct thread_info *thread = task_thread_info(tsk);
333
334	crunch_task_disable(thread);  /* force it to ram */
335	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
336		? -EFAULT : 0;
337}
338
339/*
340 * Set the child Crunch state.
341 */
342static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
343{
344	struct thread_info *thread = task_thread_info(tsk);
345
346	crunch_task_release(thread);  /* force a reload */
347	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
348		? -EFAULT : 0;
349}
350#endif
351
352#ifdef CONFIG_HAVE_HW_BREAKPOINT
353/*
354 * Convert a virtual register number into an index for a thread_info
355 * breakpoint array. Breakpoints are identified using positive numbers
356 * whilst watchpoints are negative. The registers are laid out as pairs
357 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
358 * Register 0 is reserved for describing resource information.
359 */
360static int ptrace_hbp_num_to_idx(long num)
361{
362	if (num < 0)
363		num = (ARM_MAX_BRP << 1) - num;
364	return (num - 1) >> 1;
365}
366
367/*
368 * Returns the virtual register number for the address of the
369 * breakpoint at index idx.
370 */
371static long ptrace_hbp_idx_to_num(int idx)
372{
373	long mid = ARM_MAX_BRP << 1;
374	long num = (idx << 1) + 1;
375	return num > mid ? mid - num : num;
376}
377
378/*
379 * Handle hitting a HW-breakpoint.
380 */
381static void ptrace_hbptriggered(struct perf_event *bp,
382				     struct perf_sample_data *data,
383				     struct pt_regs *regs)
384{
385	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
386	long num;
387	int i;
388	siginfo_t info;
389
390	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
391		if (current->thread.debug.hbp[i] == bp)
392			break;
393
394	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
395
396	info.si_signo	= SIGTRAP;
397	info.si_errno	= (int)num;
398	info.si_code	= TRAP_HWBKPT;
399	info.si_addr	= (void __user *)(bkpt->trigger);
400
401	force_sig_info(SIGTRAP, &info, current);
402}
403
404/*
405 * Set ptrace breakpoint pointers to zero for this task.
406 * This is required in order to prevent child processes from unregistering
407 * breakpoints held by their parent.
408 */
409void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
410{
411	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
412}
413
414/*
415 * Unregister breakpoints from this task and reset the pointers in
416 * the thread_struct.
417 */
418void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
419{
420	int i;
421	struct thread_struct *t = &tsk->thread;
422
423	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
424		if (t->debug.hbp[i]) {
425			unregister_hw_breakpoint(t->debug.hbp[i]);
426			t->debug.hbp[i] = NULL;
427		}
428	}
429}
430
431static u32 ptrace_get_hbp_resource_info(void)
432{
433	u8 num_brps, num_wrps, debug_arch, wp_len;
434	u32 reg = 0;
435
436	num_brps	= hw_breakpoint_slots(TYPE_INST);
437	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
438	debug_arch	= arch_get_debug_arch();
439	wp_len		= arch_get_max_wp_len();
440
441	reg		|= debug_arch;
442	reg		<<= 8;
443	reg		|= wp_len;
444	reg		<<= 8;
445	reg		|= num_wrps;
446	reg		<<= 8;
447	reg		|= num_brps;
448
449	return reg;
450}
451
452static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
453{
454	struct perf_event_attr attr;
455
456	ptrace_breakpoint_init(&attr);
457
458	/* Initialise fields to sane defaults. */
459	attr.bp_addr	= 0;
460	attr.bp_len	= HW_BREAKPOINT_LEN_4;
461	attr.bp_type	= type;
462	attr.disabled	= 1;
463
464	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
465					   tsk);
466}
467
468static int ptrace_gethbpregs(struct task_struct *tsk, long num,
469			     unsigned long  __user *data)
470{
471	u32 reg;
472	int idx, ret = 0;
473	struct perf_event *bp;
474	struct arch_hw_breakpoint_ctrl arch_ctrl;
475
476	if (num == 0) {
477		reg = ptrace_get_hbp_resource_info();
478	} else {
479		idx = ptrace_hbp_num_to_idx(num);
480		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
481			ret = -EINVAL;
482			goto out;
483		}
484
485		bp = tsk->thread.debug.hbp[idx];
486		if (!bp) {
487			reg = 0;
488			goto put;
489		}
490
491		arch_ctrl = counter_arch_bp(bp)->ctrl;
492
493		/*
494		 * Fix up the len because we may have adjusted it
495		 * to compensate for an unaligned address.
496		 */
497		while (!(arch_ctrl.len & 0x1))
498			arch_ctrl.len >>= 1;
499
500		if (num & 0x1)
501			reg = bp->attr.bp_addr;
502		else
503			reg = encode_ctrl_reg(arch_ctrl);
504	}
505
506put:
507	if (put_user(reg, data))
508		ret = -EFAULT;
509
510out:
511	return ret;
512}
513
514static int ptrace_sethbpregs(struct task_struct *tsk, long num,
515			     unsigned long __user *data)
516{
517	int idx, gen_len, gen_type, implied_type, ret = 0;
518	u32 user_val;
519	struct perf_event *bp;
520	struct arch_hw_breakpoint_ctrl ctrl;
521	struct perf_event_attr attr;
522
523	if (num == 0)
524		goto out;
525	else if (num < 0)
526		implied_type = HW_BREAKPOINT_RW;
527	else
528		implied_type = HW_BREAKPOINT_X;
529
530	idx = ptrace_hbp_num_to_idx(num);
531	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
532		ret = -EINVAL;
533		goto out;
534	}
535
536	if (get_user(user_val, data)) {
537		ret = -EFAULT;
538		goto out;
539	}
540
541	bp = tsk->thread.debug.hbp[idx];
542	if (!bp) {
543		bp = ptrace_hbp_create(tsk, implied_type);
544		if (IS_ERR(bp)) {
545			ret = PTR_ERR(bp);
546			goto out;
547		}
548		tsk->thread.debug.hbp[idx] = bp;
549	}
550
551	attr = bp->attr;
552
553	if (num & 0x1) {
554		/* Address */
555		attr.bp_addr	= user_val;
556	} else {
557		/* Control */
558		decode_ctrl_reg(user_val, &ctrl);
559		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
560		if (ret)
561			goto out;
562
563		if ((gen_type & implied_type) != gen_type) {
564			ret = -EINVAL;
565			goto out;
566		}
567
568		attr.bp_len	= gen_len;
569		attr.bp_type	= gen_type;
570		attr.disabled	= !ctrl.enabled;
571	}
572
573	ret = modify_user_hw_breakpoint(bp, &attr);
574out:
575	return ret;
576}
577#endif
578
579/* regset get/set implementations */
580
581static int gpr_get(struct task_struct *target,
582		   const struct user_regset *regset,
583		   unsigned int pos, unsigned int count,
584		   void *kbuf, void __user *ubuf)
585{
586	struct pt_regs *regs = task_pt_regs(target);
587
588	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
589				   regs,
590				   0, sizeof(*regs));
591}
592
593static int gpr_set(struct task_struct *target,
594		   const struct user_regset *regset,
595		   unsigned int pos, unsigned int count,
596		   const void *kbuf, const void __user *ubuf)
597{
598	int ret;
599	struct pt_regs newregs;
600
601	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
602				 &newregs,
603				 0, sizeof(newregs));
604	if (ret)
605		return ret;
606
607	if (!valid_user_regs(&newregs))
608		return -EINVAL;
609
610	*task_pt_regs(target) = newregs;
611	return 0;
612}
613
614static int fpa_get(struct task_struct *target,
615		   const struct user_regset *regset,
616		   unsigned int pos, unsigned int count,
617		   void *kbuf, void __user *ubuf)
618{
619	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
620				   &task_thread_info(target)->fpstate,
621				   0, sizeof(struct user_fp));
622}
623
624static int fpa_set(struct task_struct *target,
625		   const struct user_regset *regset,
626		   unsigned int pos, unsigned int count,
627		   const void *kbuf, const void __user *ubuf)
628{
629	struct thread_info *thread = task_thread_info(target);
630
631	thread->used_cp[1] = thread->used_cp[2] = 1;
632
633	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
634		&thread->fpstate,
635		0, sizeof(struct user_fp));
636}
637
638#ifdef CONFIG_VFP
639/*
640 * VFP register get/set implementations.
641 *
642 * With respect to the kernel, struct user_fp is divided into three chunks:
643 * 16 or 32 real VFP registers (d0-d15 or d0-31)
644 *	These are transferred to/from the real registers in the task's
645 *	vfp_hard_struct.  The number of registers depends on the kernel
646 *	configuration.
647 *
648 * 16 or 0 fake VFP registers (d16-d31 or empty)
649 *	i.e., the user_vfp structure has space for 32 registers even if
650 *	the kernel doesn't have them all.
651 *
652 *	vfp_get() reads this chunk as zero where applicable
653 *	vfp_set() ignores this chunk
654 *
655 * 1 word for the FPSCR
656 *
657 * The bounds-checking logic built into user_regset_copyout and friends
658 * means that we can make a simple sequence of calls to map the relevant data
659 * to/from the specified slice of the user regset structure.
660 */
661static int vfp_get(struct task_struct *target,
662		   const struct user_regset *regset,
663		   unsigned int pos, unsigned int count,
664		   void *kbuf, void __user *ubuf)
665{
666	int ret;
667	struct thread_info *thread = task_thread_info(target);
668	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
669	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
670	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
671
672	vfp_sync_hwstate(thread);
673
674	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
675				  &vfp->fpregs,
676				  user_fpregs_offset,
677				  user_fpregs_offset + sizeof(vfp->fpregs));
678	if (ret)
679		return ret;
680
681	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
682				       user_fpregs_offset + sizeof(vfp->fpregs),
683				       user_fpscr_offset);
684	if (ret)
685		return ret;
686
687	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
688				   &vfp->fpscr,
689				   user_fpscr_offset,
690				   user_fpscr_offset + sizeof(vfp->fpscr));
691}
692
693/*
694 * For vfp_set() a read-modify-write is done on the VFP registers,
695 * in order to avoid writing back a half-modified set of registers on
696 * failure.
697 */
698static int vfp_set(struct task_struct *target,
699			  const struct user_regset *regset,
700			  unsigned int pos, unsigned int count,
701			  const void *kbuf, const void __user *ubuf)
702{
703	int ret;
704	struct thread_info *thread = task_thread_info(target);
705	struct vfp_hard_struct new_vfp;
706	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
707	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
708
709	vfp_sync_hwstate(thread);
710	new_vfp = thread->vfpstate.hard;
711
712	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
713				  &new_vfp.fpregs,
714				  user_fpregs_offset,
715				  user_fpregs_offset + sizeof(new_vfp.fpregs));
716	if (ret)
717		return ret;
718
719	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
720				user_fpregs_offset + sizeof(new_vfp.fpregs),
721				user_fpscr_offset);
722	if (ret)
723		return ret;
724
725	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
726				 &new_vfp.fpscr,
727				 user_fpscr_offset,
728				 user_fpscr_offset + sizeof(new_vfp.fpscr));
729	if (ret)
730		return ret;
731
732	vfp_flush_hwstate(thread);
733	thread->vfpstate.hard = new_vfp;
 
734
735	return 0;
736}
737#endif /* CONFIG_VFP */
738
739enum arm_regset {
740	REGSET_GPR,
741	REGSET_FPR,
742#ifdef CONFIG_VFP
743	REGSET_VFP,
744#endif
745};
746
747static const struct user_regset arm_regsets[] = {
748	[REGSET_GPR] = {
749		.core_note_type = NT_PRSTATUS,
750		.n = ELF_NGREG,
751		.size = sizeof(u32),
752		.align = sizeof(u32),
753		.get = gpr_get,
754		.set = gpr_set
755	},
756	[REGSET_FPR] = {
757		/*
758		 * For the FPA regs in fpstate, the real fields are a mixture
759		 * of sizes, so pretend that the registers are word-sized:
760		 */
761		.core_note_type = NT_PRFPREG,
762		.n = sizeof(struct user_fp) / sizeof(u32),
763		.size = sizeof(u32),
764		.align = sizeof(u32),
765		.get = fpa_get,
766		.set = fpa_set
767	},
768#ifdef CONFIG_VFP
769	[REGSET_VFP] = {
770		/*
771		 * Pretend that the VFP regs are word-sized, since the FPSCR is
772		 * a single word dangling at the end of struct user_vfp:
773		 */
774		.core_note_type = NT_ARM_VFP,
775		.n = ARM_VFPREGS_SIZE / sizeof(u32),
776		.size = sizeof(u32),
777		.align = sizeof(u32),
778		.get = vfp_get,
779		.set = vfp_set
780	},
781#endif /* CONFIG_VFP */
782};
783
784static const struct user_regset_view user_arm_view = {
785	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
786	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
787};
788
789const struct user_regset_view *task_user_regset_view(struct task_struct *task)
790{
791	return &user_arm_view;
792}
793
794long arch_ptrace(struct task_struct *child, long request,
795		 unsigned long addr, unsigned long data)
796{
797	int ret;
798	unsigned long __user *datap = (unsigned long __user *) data;
799
800	switch (request) {
801		case PTRACE_PEEKUSR:
802			ret = ptrace_read_user(child, addr, datap);
803			break;
804
805		case PTRACE_POKEUSR:
806			ret = ptrace_write_user(child, addr, data);
807			break;
808
809		case PTRACE_GETREGS:
810			ret = copy_regset_to_user(child,
811						  &user_arm_view, REGSET_GPR,
812						  0, sizeof(struct pt_regs),
813						  datap);
814			break;
815
816		case PTRACE_SETREGS:
817			ret = copy_regset_from_user(child,
818						    &user_arm_view, REGSET_GPR,
819						    0, sizeof(struct pt_regs),
820						    datap);
821			break;
822
823		case PTRACE_GETFPREGS:
824			ret = copy_regset_to_user(child,
825						  &user_arm_view, REGSET_FPR,
826						  0, sizeof(union fp_state),
827						  datap);
828			break;
829
830		case PTRACE_SETFPREGS:
831			ret = copy_regset_from_user(child,
832						    &user_arm_view, REGSET_FPR,
833						    0, sizeof(union fp_state),
834						    datap);
835			break;
836
837#ifdef CONFIG_IWMMXT
838		case PTRACE_GETWMMXREGS:
839			ret = ptrace_getwmmxregs(child, datap);
840			break;
841
842		case PTRACE_SETWMMXREGS:
843			ret = ptrace_setwmmxregs(child, datap);
844			break;
845#endif
846
847		case PTRACE_GET_THREAD_AREA:
848			ret = put_user(task_thread_info(child)->tp_value,
849				       datap);
850			break;
851
852		case PTRACE_SET_SYSCALL:
853			task_thread_info(child)->syscall = data;
 
854			ret = 0;
855			break;
856
857#ifdef CONFIG_CRUNCH
858		case PTRACE_GETCRUNCHREGS:
859			ret = ptrace_getcrunchregs(child, datap);
860			break;
861
862		case PTRACE_SETCRUNCHREGS:
863			ret = ptrace_setcrunchregs(child, datap);
864			break;
865#endif
866
867#ifdef CONFIG_VFP
868		case PTRACE_GETVFPREGS:
869			ret = copy_regset_to_user(child,
870						  &user_arm_view, REGSET_VFP,
871						  0, ARM_VFPREGS_SIZE,
872						  datap);
873			break;
874
875		case PTRACE_SETVFPREGS:
876			ret = copy_regset_from_user(child,
877						    &user_arm_view, REGSET_VFP,
878						    0, ARM_VFPREGS_SIZE,
879						    datap);
880			break;
881#endif
882
883#ifdef CONFIG_HAVE_HW_BREAKPOINT
884		case PTRACE_GETHBPREGS:
885			if (ptrace_get_breakpoints(child) < 0)
886				return -ESRCH;
887
888			ret = ptrace_gethbpregs(child, addr,
889						(unsigned long __user *)data);
890			ptrace_put_breakpoints(child);
891			break;
892		case PTRACE_SETHBPREGS:
893			if (ptrace_get_breakpoints(child) < 0)
894				return -ESRCH;
895
896			ret = ptrace_sethbpregs(child, addr,
897						(unsigned long __user *)data);
898			ptrace_put_breakpoints(child);
899			break;
900#endif
901
902		default:
903			ret = ptrace_request(child, request, addr, data);
904			break;
905	}
906
907	return ret;
908}
909
910asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
 
 
 
 
 
911{
912	unsigned long ip;
913
914	if (why)
915		audit_syscall_exit(regs);
916	else
917		audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
918				    regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
919
920	if (!test_thread_flag(TIF_SYSCALL_TRACE))
921		return scno;
922
923	current_thread_info()->syscall = scno;
924
925	/*
926	 * IP is used to denote syscall entry/exit:
927	 * IP = 0 -> entry, =1 -> exit
928	 */
929	ip = regs->ARM_ip;
930	regs->ARM_ip = why;
931
932	if (why)
933		tracehook_report_syscall_exit(regs, 0);
934	else if (tracehook_report_syscall_entry(regs))
935		current_thread_info()->syscall = -1;
936
937	regs->ARM_ip = ip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938
939	return current_thread_info()->syscall;
 
940}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/ptrace.c
  4 *
  5 *  By Ross Biro 1/23/92
  6 * edited by Linus Torvalds
  7 * ARM modifications Copyright (C) 2000 Russell King
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/mm.h>
 13#include <linux/elf.h>
 14#include <linux/smp.h>
 15#include <linux/ptrace.h>
 16#include <linux/user.h>
 17#include <linux/security.h>
 18#include <linux/init.h>
 19#include <linux/signal.h>
 20#include <linux/uaccess.h>
 21#include <linux/perf_event.h>
 22#include <linux/hw_breakpoint.h>
 23#include <linux/regset.h>
 24#include <linux/audit.h>
 25#include <linux/unistd.h>
 26
 27#include <asm/syscall.h>
 28#include <asm/traps.h>
 29
 30#define CREATE_TRACE_POINTS
 31#include <trace/events/syscalls.h>
 32
 33#define REG_PC	15
 34#define REG_PSR	16
 35/*
 36 * does not yet catch signals sent when the child dies.
 37 * in exit.c or in signal.c.
 38 */
 39
 40#if 0
 41/*
 42 * Breakpoint SWI instruction: SWI &9F0001
 43 */
 44#define BREAKINST_ARM	0xef9f0001
 45#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 46#else
 47/*
 48 * New breakpoints - use an undefined instruction.  The ARM architecture
 49 * reference manual guarantees that the following instruction space
 50 * will produce an undefined instruction exception on all CPUs:
 51 *
 52 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 53 *  Thumb: 1101 1110 xxxx xxxx
 54 */
 55#define BREAKINST_ARM	0xe7f001f0
 56#define BREAKINST_THUMB	0xde01
 57#endif
 58
 59struct pt_regs_offset {
 60	const char *name;
 61	int offset;
 62};
 63
 64#define REG_OFFSET_NAME(r) \
 65	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 66#define REG_OFFSET_END {.name = NULL, .offset = 0}
 67
 68static const struct pt_regs_offset regoffset_table[] = {
 69	REG_OFFSET_NAME(r0),
 70	REG_OFFSET_NAME(r1),
 71	REG_OFFSET_NAME(r2),
 72	REG_OFFSET_NAME(r3),
 73	REG_OFFSET_NAME(r4),
 74	REG_OFFSET_NAME(r5),
 75	REG_OFFSET_NAME(r6),
 76	REG_OFFSET_NAME(r7),
 77	REG_OFFSET_NAME(r8),
 78	REG_OFFSET_NAME(r9),
 79	REG_OFFSET_NAME(r10),
 80	REG_OFFSET_NAME(fp),
 81	REG_OFFSET_NAME(ip),
 82	REG_OFFSET_NAME(sp),
 83	REG_OFFSET_NAME(lr),
 84	REG_OFFSET_NAME(pc),
 85	REG_OFFSET_NAME(cpsr),
 86	REG_OFFSET_NAME(ORIG_r0),
 87	REG_OFFSET_END,
 88};
 89
 90/**
 91 * regs_query_register_offset() - query register offset from its name
 92 * @name:	the name of a register
 93 *
 94 * regs_query_register_offset() returns the offset of a register in struct
 95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 96 */
 97int regs_query_register_offset(const char *name)
 98{
 99	const struct pt_regs_offset *roff;
100	for (roff = regoffset_table; roff->name != NULL; roff++)
101		if (!strcmp(roff->name, name))
102			return roff->offset;
103	return -EINVAL;
104}
105
106/**
107 * regs_query_register_name() - query register name from its offset
108 * @offset:	the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
113const char *regs_query_register_name(unsigned int offset)
114{
115	const struct pt_regs_offset *roff;
116	for (roff = regoffset_table; roff->name != NULL; roff++)
117		if (roff->offset == offset)
118			return roff->name;
119	return NULL;
120}
121
122/**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs:      pt_regs which contains kernel stack pointer.
125 * @addr:      address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131{
132	return ((addr & ~(THREAD_SIZE - 1))  ==
133		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134}
135
136/**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs:	pt_regs which contains kernel stack pointer.
139 * @n:		stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146{
147	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148	addr += n;
149	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150		return *addr;
151	else
152		return 0;
153}
154
155/*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
161static inline long get_user_reg(struct task_struct *task, int offset)
162{
163	return task_pt_regs(task)->uregs[offset];
164}
165
166/*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172static inline int
173put_user_reg(struct task_struct *task, int offset, long data)
174{
175	struct pt_regs newregs, *regs = task_pt_regs(task);
176	int ret = -EINVAL;
177
178	newregs = *regs;
179	newregs.uregs[offset] = data;
180
181	if (valid_user_regs(&newregs)) {
182		regs->uregs[offset] = data;
183		ret = 0;
184	}
185
186	return ret;
187}
188
189/*
190 * Called by kernel/ptrace.c when detaching..
191 */
192void ptrace_disable(struct task_struct *child)
193{
194	/* Nothing to do. */
195}
196
197/*
198 * Handle hitting a breakpoint.
199 */
200void ptrace_break(struct pt_regs *regs)
201{
202	force_sig_fault(SIGTRAP, TRAP_BRKPT,
203			(void __user *)instruction_pointer(regs));
 
 
 
 
 
 
204}
205
206static int break_trap(struct pt_regs *regs, unsigned int instr)
207{
208	ptrace_break(regs);
209	return 0;
210}
211
212static struct undef_hook arm_break_hook = {
213	.instr_mask	= 0x0fffffff,
214	.instr_val	= 0x07f001f0,
215	.cpsr_mask	= PSR_T_BIT,
216	.cpsr_val	= 0,
217	.fn		= break_trap,
218};
219
220static struct undef_hook thumb_break_hook = {
221	.instr_mask	= 0xffffffff,
222	.instr_val	= 0x0000de01,
223	.cpsr_mask	= PSR_T_BIT,
224	.cpsr_val	= PSR_T_BIT,
225	.fn		= break_trap,
226};
227
228static struct undef_hook thumb2_break_hook = {
229	.instr_mask	= 0xffffffff,
230	.instr_val	= 0xf7f0a000,
231	.cpsr_mask	= PSR_T_BIT,
232	.cpsr_val	= PSR_T_BIT,
233	.fn		= break_trap,
234};
235
236static int __init ptrace_break_init(void)
237{
238	register_undef_hook(&arm_break_hook);
239	register_undef_hook(&thumb_break_hook);
240	register_undef_hook(&thumb2_break_hook);
241	return 0;
242}
243
244core_initcall(ptrace_break_init);
245
246/*
247 * Read the word at offset "off" into the "struct user".  We
248 * actually access the pt_regs stored on the kernel stack.
249 */
250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251			    unsigned long __user *ret)
252{
253	unsigned long tmp;
254
255	if (off & 3)
256		return -EIO;
257
258	tmp = 0;
259	if (off == PT_TEXT_ADDR)
260		tmp = tsk->mm->start_code;
261	else if (off == PT_DATA_ADDR)
262		tmp = tsk->mm->start_data;
263	else if (off == PT_TEXT_END_ADDR)
264		tmp = tsk->mm->end_code;
265	else if (off < sizeof(struct pt_regs))
266		tmp = get_user_reg(tsk, off >> 2);
267	else if (off >= sizeof(struct user))
268		return -EIO;
269
270	return put_user(tmp, ret);
271}
272
273/*
274 * Write the word at offset "off" into "struct user".  We
275 * actually access the pt_regs stored on the kernel stack.
276 */
277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278			     unsigned long val)
279{
280	if (off & 3 || off >= sizeof(struct user))
281		return -EIO;
282
283	if (off >= sizeof(struct pt_regs))
284		return 0;
285
286	return put_user_reg(tsk, off >> 2, val);
287}
288
289#ifdef CONFIG_IWMMXT
290
291/*
292 * Get the child iWMMXt state.
293 */
294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295{
296	struct thread_info *thread = task_thread_info(tsk);
297
298	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299		return -ENODATA;
300	iwmmxt_task_disable(thread);  /* force it to ram */
301	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302		? -EFAULT : 0;
303}
304
305/*
306 * Set the child iWMMXt state.
307 */
308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309{
310	struct thread_info *thread = task_thread_info(tsk);
311
312	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313		return -EACCES;
314	iwmmxt_task_release(thread);  /* force a reload */
315	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316		? -EFAULT : 0;
317}
318
319#endif
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321#ifdef CONFIG_HAVE_HW_BREAKPOINT
322/*
323 * Convert a virtual register number into an index for a thread_info
324 * breakpoint array. Breakpoints are identified using positive numbers
325 * whilst watchpoints are negative. The registers are laid out as pairs
326 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
327 * Register 0 is reserved for describing resource information.
328 */
329static int ptrace_hbp_num_to_idx(long num)
330{
331	if (num < 0)
332		num = (ARM_MAX_BRP << 1) - num;
333	return (num - 1) >> 1;
334}
335
336/*
337 * Returns the virtual register number for the address of the
338 * breakpoint at index idx.
339 */
340static long ptrace_hbp_idx_to_num(int idx)
341{
342	long mid = ARM_MAX_BRP << 1;
343	long num = (idx << 1) + 1;
344	return num > mid ? mid - num : num;
345}
346
347/*
348 * Handle hitting a HW-breakpoint.
349 */
350static void ptrace_hbptriggered(struct perf_event *bp,
351				     struct perf_sample_data *data,
352				     struct pt_regs *regs)
353{
354	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
355	long num;
356	int i;
 
357
358	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
359		if (current->thread.debug.hbp[i] == bp)
360			break;
361
362	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
363
364	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
 
 
 
 
 
365}
366
367/*
368 * Set ptrace breakpoint pointers to zero for this task.
369 * This is required in order to prevent child processes from unregistering
370 * breakpoints held by their parent.
371 */
372void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
373{
374	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
375}
376
377/*
378 * Unregister breakpoints from this task and reset the pointers in
379 * the thread_struct.
380 */
381void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
382{
383	int i;
384	struct thread_struct *t = &tsk->thread;
385
386	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
387		if (t->debug.hbp[i]) {
388			unregister_hw_breakpoint(t->debug.hbp[i]);
389			t->debug.hbp[i] = NULL;
390		}
391	}
392}
393
394static u32 ptrace_get_hbp_resource_info(void)
395{
396	u8 num_brps, num_wrps, debug_arch, wp_len;
397	u32 reg = 0;
398
399	num_brps	= hw_breakpoint_slots(TYPE_INST);
400	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
401	debug_arch	= arch_get_debug_arch();
402	wp_len		= arch_get_max_wp_len();
403
404	reg		|= debug_arch;
405	reg		<<= 8;
406	reg		|= wp_len;
407	reg		<<= 8;
408	reg		|= num_wrps;
409	reg		<<= 8;
410	reg		|= num_brps;
411
412	return reg;
413}
414
415static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
416{
417	struct perf_event_attr attr;
418
419	ptrace_breakpoint_init(&attr);
420
421	/* Initialise fields to sane defaults. */
422	attr.bp_addr	= 0;
423	attr.bp_len	= HW_BREAKPOINT_LEN_4;
424	attr.bp_type	= type;
425	attr.disabled	= 1;
426
427	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
428					   tsk);
429}
430
431static int ptrace_gethbpregs(struct task_struct *tsk, long num,
432			     unsigned long  __user *data)
433{
434	u32 reg;
435	int idx, ret = 0;
436	struct perf_event *bp;
437	struct arch_hw_breakpoint_ctrl arch_ctrl;
438
439	if (num == 0) {
440		reg = ptrace_get_hbp_resource_info();
441	} else {
442		idx = ptrace_hbp_num_to_idx(num);
443		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
444			ret = -EINVAL;
445			goto out;
446		}
447
448		bp = tsk->thread.debug.hbp[idx];
449		if (!bp) {
450			reg = 0;
451			goto put;
452		}
453
454		arch_ctrl = counter_arch_bp(bp)->ctrl;
455
456		/*
457		 * Fix up the len because we may have adjusted it
458		 * to compensate for an unaligned address.
459		 */
460		while (!(arch_ctrl.len & 0x1))
461			arch_ctrl.len >>= 1;
462
463		if (num & 0x1)
464			reg = bp->attr.bp_addr;
465		else
466			reg = encode_ctrl_reg(arch_ctrl);
467	}
468
469put:
470	if (put_user(reg, data))
471		ret = -EFAULT;
472
473out:
474	return ret;
475}
476
477static int ptrace_sethbpregs(struct task_struct *tsk, long num,
478			     unsigned long __user *data)
479{
480	int idx, gen_len, gen_type, implied_type, ret = 0;
481	u32 user_val;
482	struct perf_event *bp;
483	struct arch_hw_breakpoint_ctrl ctrl;
484	struct perf_event_attr attr;
485
486	if (num == 0)
487		goto out;
488	else if (num < 0)
489		implied_type = HW_BREAKPOINT_RW;
490	else
491		implied_type = HW_BREAKPOINT_X;
492
493	idx = ptrace_hbp_num_to_idx(num);
494	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
495		ret = -EINVAL;
496		goto out;
497	}
498
499	if (get_user(user_val, data)) {
500		ret = -EFAULT;
501		goto out;
502	}
503
504	bp = tsk->thread.debug.hbp[idx];
505	if (!bp) {
506		bp = ptrace_hbp_create(tsk, implied_type);
507		if (IS_ERR(bp)) {
508			ret = PTR_ERR(bp);
509			goto out;
510		}
511		tsk->thread.debug.hbp[idx] = bp;
512	}
513
514	attr = bp->attr;
515
516	if (num & 0x1) {
517		/* Address */
518		attr.bp_addr	= user_val;
519	} else {
520		/* Control */
521		decode_ctrl_reg(user_val, &ctrl);
522		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
523		if (ret)
524			goto out;
525
526		if ((gen_type & implied_type) != gen_type) {
527			ret = -EINVAL;
528			goto out;
529		}
530
531		attr.bp_len	= gen_len;
532		attr.bp_type	= gen_type;
533		attr.disabled	= !ctrl.enabled;
534	}
535
536	ret = modify_user_hw_breakpoint(bp, &attr);
537out:
538	return ret;
539}
540#endif
541
542/* regset get/set implementations */
543
544static int gpr_get(struct task_struct *target,
545		   const struct user_regset *regset,
546		   struct membuf to)
 
547{
548	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
 
 
 
 
549}
550
551static int gpr_set(struct task_struct *target,
552		   const struct user_regset *regset,
553		   unsigned int pos, unsigned int count,
554		   const void *kbuf, const void __user *ubuf)
555{
556	int ret;
557	struct pt_regs newregs = *task_pt_regs(target);
558
559	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560				 &newregs,
561				 0, sizeof(newregs));
562	if (ret)
563		return ret;
564
565	if (!valid_user_regs(&newregs))
566		return -EINVAL;
567
568	*task_pt_regs(target) = newregs;
569	return 0;
570}
571
572static int fpa_get(struct task_struct *target,
573		   const struct user_regset *regset,
574		   struct membuf to)
 
575{
576	return membuf_write(&to, &task_thread_info(target)->fpstate,
577				 sizeof(struct user_fp));
 
578}
579
580static int fpa_set(struct task_struct *target,
581		   const struct user_regset *regset,
582		   unsigned int pos, unsigned int count,
583		   const void *kbuf, const void __user *ubuf)
584{
585	struct thread_info *thread = task_thread_info(target);
586
587	thread->used_cp[1] = thread->used_cp[2] = 1;
588
589	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
590		&thread->fpstate,
591		0, sizeof(struct user_fp));
592}
593
594#ifdef CONFIG_VFP
595/*
596 * VFP register get/set implementations.
597 *
598 * With respect to the kernel, struct user_fp is divided into three chunks:
599 * 16 or 32 real VFP registers (d0-d15 or d0-31)
600 *	These are transferred to/from the real registers in the task's
601 *	vfp_hard_struct.  The number of registers depends on the kernel
602 *	configuration.
603 *
604 * 16 or 0 fake VFP registers (d16-d31 or empty)
605 *	i.e., the user_vfp structure has space for 32 registers even if
606 *	the kernel doesn't have them all.
607 *
608 *	vfp_get() reads this chunk as zero where applicable
609 *	vfp_set() ignores this chunk
610 *
611 * 1 word for the FPSCR
 
 
 
 
612 */
613static int vfp_get(struct task_struct *target,
614		   const struct user_regset *regset,
615		   struct membuf to)
 
616{
 
617	struct thread_info *thread = task_thread_info(target);
618	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
 
619	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
620
621	vfp_sync_hwstate(thread);
622
623	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
624	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
625	return membuf_store(&to, vfp->fpscr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626}
627
628/*
629 * For vfp_set() a read-modify-write is done on the VFP registers,
630 * in order to avoid writing back a half-modified set of registers on
631 * failure.
632 */
633static int vfp_set(struct task_struct *target,
634			  const struct user_regset *regset,
635			  unsigned int pos, unsigned int count,
636			  const void *kbuf, const void __user *ubuf)
637{
638	int ret;
639	struct thread_info *thread = task_thread_info(target);
640	struct vfp_hard_struct new_vfp;
641	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
642	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
643
644	vfp_sync_hwstate(thread);
645	new_vfp = thread->vfpstate.hard;
646
647	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
648				  &new_vfp.fpregs,
649				  user_fpregs_offset,
650				  user_fpregs_offset + sizeof(new_vfp.fpregs));
651	if (ret)
652		return ret;
653
654	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
655				  user_fpregs_offset + sizeof(new_vfp.fpregs),
656				  user_fpscr_offset);
 
 
657
658	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
659				 &new_vfp.fpscr,
660				 user_fpscr_offset,
661				 user_fpscr_offset + sizeof(new_vfp.fpscr));
662	if (ret)
663		return ret;
664
 
665	thread->vfpstate.hard = new_vfp;
666	vfp_flush_hwstate(thread);
667
668	return 0;
669}
670#endif /* CONFIG_VFP */
671
672enum arm_regset {
673	REGSET_GPR,
674	REGSET_FPR,
675#ifdef CONFIG_VFP
676	REGSET_VFP,
677#endif
678};
679
680static const struct user_regset arm_regsets[] = {
681	[REGSET_GPR] = {
682		.core_note_type = NT_PRSTATUS,
683		.n = ELF_NGREG,
684		.size = sizeof(u32),
685		.align = sizeof(u32),
686		.regset_get = gpr_get,
687		.set = gpr_set
688	},
689	[REGSET_FPR] = {
690		/*
691		 * For the FPA regs in fpstate, the real fields are a mixture
692		 * of sizes, so pretend that the registers are word-sized:
693		 */
694		.core_note_type = NT_PRFPREG,
695		.n = sizeof(struct user_fp) / sizeof(u32),
696		.size = sizeof(u32),
697		.align = sizeof(u32),
698		.regset_get = fpa_get,
699		.set = fpa_set
700	},
701#ifdef CONFIG_VFP
702	[REGSET_VFP] = {
703		/*
704		 * Pretend that the VFP regs are word-sized, since the FPSCR is
705		 * a single word dangling at the end of struct user_vfp:
706		 */
707		.core_note_type = NT_ARM_VFP,
708		.n = ARM_VFPREGS_SIZE / sizeof(u32),
709		.size = sizeof(u32),
710		.align = sizeof(u32),
711		.regset_get = vfp_get,
712		.set = vfp_set
713	},
714#endif /* CONFIG_VFP */
715};
716
717static const struct user_regset_view user_arm_view = {
718	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
719	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
720};
721
722const struct user_regset_view *task_user_regset_view(struct task_struct *task)
723{
724	return &user_arm_view;
725}
726
727long arch_ptrace(struct task_struct *child, long request,
728		 unsigned long addr, unsigned long data)
729{
730	int ret;
731	unsigned long __user *datap = (unsigned long __user *) data;
732
733	switch (request) {
734		case PTRACE_PEEKUSR:
735			ret = ptrace_read_user(child, addr, datap);
736			break;
737
738		case PTRACE_POKEUSR:
739			ret = ptrace_write_user(child, addr, data);
740			break;
741
742		case PTRACE_GETREGS:
743			ret = copy_regset_to_user(child,
744						  &user_arm_view, REGSET_GPR,
745						  0, sizeof(struct pt_regs),
746						  datap);
747			break;
748
749		case PTRACE_SETREGS:
750			ret = copy_regset_from_user(child,
751						    &user_arm_view, REGSET_GPR,
752						    0, sizeof(struct pt_regs),
753						    datap);
754			break;
755
756		case PTRACE_GETFPREGS:
757			ret = copy_regset_to_user(child,
758						  &user_arm_view, REGSET_FPR,
759						  0, sizeof(union fp_state),
760						  datap);
761			break;
762
763		case PTRACE_SETFPREGS:
764			ret = copy_regset_from_user(child,
765						    &user_arm_view, REGSET_FPR,
766						    0, sizeof(union fp_state),
767						    datap);
768			break;
769
770#ifdef CONFIG_IWMMXT
771		case PTRACE_GETWMMXREGS:
772			ret = ptrace_getwmmxregs(child, datap);
773			break;
774
775		case PTRACE_SETWMMXREGS:
776			ret = ptrace_setwmmxregs(child, datap);
777			break;
778#endif
779
780		case PTRACE_GET_THREAD_AREA:
781			ret = put_user(task_thread_info(child)->tp_value[0],
782				       datap);
783			break;
784
785		case PTRACE_SET_SYSCALL:
786			task_thread_info(child)->abi_syscall = data &
787							__NR_SYSCALL_MASK;
788			ret = 0;
789			break;
790
 
 
 
 
 
 
 
 
 
 
791#ifdef CONFIG_VFP
792		case PTRACE_GETVFPREGS:
793			ret = copy_regset_to_user(child,
794						  &user_arm_view, REGSET_VFP,
795						  0, ARM_VFPREGS_SIZE,
796						  datap);
797			break;
798
799		case PTRACE_SETVFPREGS:
800			ret = copy_regset_from_user(child,
801						    &user_arm_view, REGSET_VFP,
802						    0, ARM_VFPREGS_SIZE,
803						    datap);
804			break;
805#endif
806
807#ifdef CONFIG_HAVE_HW_BREAKPOINT
808		case PTRACE_GETHBPREGS:
 
 
 
809			ret = ptrace_gethbpregs(child, addr,
810						(unsigned long __user *)data);
 
811			break;
812		case PTRACE_SETHBPREGS:
 
 
 
813			ret = ptrace_sethbpregs(child, addr,
814						(unsigned long __user *)data);
 
815			break;
816#endif
817
818		default:
819			ret = ptrace_request(child, request, addr, data);
820			break;
821	}
822
823	return ret;
824}
825
826enum ptrace_syscall_dir {
827	PTRACE_SYSCALL_ENTER = 0,
828	PTRACE_SYSCALL_EXIT,
829};
830
831static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
832{
833	unsigned long ip;
834
 
 
 
 
 
 
 
 
 
 
 
835	/*
836	 * IP is used to denote syscall entry/exit:
837	 * IP = 0 -> entry, =1 -> exit
838	 */
839	ip = regs->ARM_ip;
840	regs->ARM_ip = dir;
841
842	if (dir == PTRACE_SYSCALL_EXIT)
843		ptrace_report_syscall_exit(regs, 0);
844	else if (ptrace_report_syscall_entry(regs))
845		current_thread_info()->abi_syscall = -1;
846
847	regs->ARM_ip = ip;
848}
849
850asmlinkage int syscall_trace_enter(struct pt_regs *regs)
851{
852	int scno;
853
854	if (test_thread_flag(TIF_SYSCALL_TRACE))
855		report_syscall(regs, PTRACE_SYSCALL_ENTER);
856
857	/* Do seccomp after ptrace; syscall may have changed. */
858#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
859	if (secure_computing() == -1)
860		return -1;
861#else
862	/* XXX: remove this once OABI gets fixed */
863	secure_computing_strict(syscall_get_nr(current, regs));
864#endif
865
866	/* Tracer or seccomp may have changed syscall. */
867	scno = syscall_get_nr(current, regs);
868
869	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
870		trace_sys_enter(regs, scno);
871
872	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
873			    regs->ARM_r3);
874
875	return scno;
876}
877
878asmlinkage void syscall_trace_exit(struct pt_regs *regs)
879{
880	/*
881	 * Audit the syscall before anything else, as a debugger may
882	 * come in and change the current registers.
883	 */
884	audit_syscall_exit(regs);
885
886	/*
887	 * Note that we haven't updated the ->syscall field for the
888	 * current thread. This isn't a problem because it will have
889	 * been set on syscall entry and there hasn't been an opportunity
890	 * for a PTRACE_SET_SYSCALL since then.
891	 */
892	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
893		trace_sys_exit(regs, regs_return_value(regs));
894
895	if (test_thread_flag(TIF_SYSCALL_TRACE))
896		report_syscall(regs, PTRACE_SYSCALL_EXIT);
897}