Loading...
1/*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
38#include <linux/slab.h>
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
42#include <linux/pm_runtime.h>
43
44/*
45 * This macro is used to define some register default values.
46 * reg is masked with mask, the OR:ed with an (again masked)
47 * val shifted sb steps to the left.
48 */
49#define SSP_WRITE_BITS(reg, val, mask, sb) \
50 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
51
52/*
53 * This macro is also used to define some default values.
54 * It will just shift val by sb steps to the left and mask
55 * the result with mask.
56 */
57#define GEN_MASK_BITS(val, mask, sb) \
58 (((val)<<(sb)) & (mask))
59
60#define DRIVE_TX 0
61#define DO_NOT_DRIVE_TX 1
62
63#define DO_NOT_QUEUE_DMA 0
64#define QUEUE_DMA 1
65
66#define RX_TRANSFER 1
67#define TX_TRANSFER 2
68
69/*
70 * Macros to access SSP Registers with their offsets
71 */
72#define SSP_CR0(r) (r + 0x000)
73#define SSP_CR1(r) (r + 0x004)
74#define SSP_DR(r) (r + 0x008)
75#define SSP_SR(r) (r + 0x00C)
76#define SSP_CPSR(r) (r + 0x010)
77#define SSP_IMSC(r) (r + 0x014)
78#define SSP_RIS(r) (r + 0x018)
79#define SSP_MIS(r) (r + 0x01C)
80#define SSP_ICR(r) (r + 0x020)
81#define SSP_DMACR(r) (r + 0x024)
82#define SSP_ITCR(r) (r + 0x080)
83#define SSP_ITIP(r) (r + 0x084)
84#define SSP_ITOP(r) (r + 0x088)
85#define SSP_TDR(r) (r + 0x08C)
86
87#define SSP_PID0(r) (r + 0xFE0)
88#define SSP_PID1(r) (r + 0xFE4)
89#define SSP_PID2(r) (r + 0xFE8)
90#define SSP_PID3(r) (r + 0xFEC)
91
92#define SSP_CID0(r) (r + 0xFF0)
93#define SSP_CID1(r) (r + 0xFF4)
94#define SSP_CID2(r) (r + 0xFF8)
95#define SSP_CID3(r) (r + 0xFFC)
96
97/*
98 * SSP Control Register 0 - SSP_CR0
99 */
100#define SSP_CR0_MASK_DSS (0x0FUL << 0)
101#define SSP_CR0_MASK_FRF (0x3UL << 4)
102#define SSP_CR0_MASK_SPO (0x1UL << 6)
103#define SSP_CR0_MASK_SPH (0x1UL << 7)
104#define SSP_CR0_MASK_SCR (0xFFUL << 8)
105
106/*
107 * The ST version of this block moves som bits
108 * in SSP_CR0 and extends it to 32 bits
109 */
110#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
111#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
112#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
113#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
114
115/*
116 * SSP Control Register 0 - SSP_CR1
117 */
118#define SSP_CR1_MASK_LBM (0x1UL << 0)
119#define SSP_CR1_MASK_SSE (0x1UL << 1)
120#define SSP_CR1_MASK_MS (0x1UL << 2)
121#define SSP_CR1_MASK_SOD (0x1UL << 3)
122
123/*
124 * The ST version of this block adds some bits
125 * in SSP_CR1
126 */
127#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
128#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
129#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
130#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
131#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132/* This one is only in the PL023 variant */
133#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
134
135/*
136 * SSP Status Register - SSP_SR
137 */
138#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
139#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
140#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
141#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
142#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
143
144/*
145 * SSP Clock Prescale Register - SSP_CPSR
146 */
147#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
148
149/*
150 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
151 */
152#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
153#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
154#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
155#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
156
157/*
158 * SSP Raw Interrupt Status Register - SSP_RIS
159 */
160/* Receive Overrun Raw Interrupt status */
161#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
162/* Receive Timeout Raw Interrupt status */
163#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
164/* Receive FIFO Raw Interrupt status */
165#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
166/* Transmit FIFO Raw Interrupt status */
167#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
168
169/*
170 * SSP Masked Interrupt Status Register - SSP_MIS
171 */
172/* Receive Overrun Masked Interrupt status */
173#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
174/* Receive Timeout Masked Interrupt status */
175#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
176/* Receive FIFO Masked Interrupt status */
177#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
178/* Transmit FIFO Masked Interrupt status */
179#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
180
181/*
182 * SSP Interrupt Clear Register - SSP_ICR
183 */
184/* Receive Overrun Raw Clear Interrupt bit */
185#define SSP_ICR_MASK_RORIC (0x1UL << 0)
186/* Receive Timeout Clear Interrupt bit */
187#define SSP_ICR_MASK_RTIC (0x1UL << 1)
188
189/*
190 * SSP DMA Control Register - SSP_DMACR
191 */
192/* Receive DMA Enable bit */
193#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
194/* Transmit DMA Enable bit */
195#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209#define ITIP_MASK_RXDMAC (0x1UL << 3)
210#define ITIP_MASK_TXDMAC (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219#define ITOP_MASK_SSPOEn (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221#define ITOP_MASK_RORINTR (0x1UL << 5)
222#define ITOP_MASK_RTINTR (0x1UL << 6)
223#define ITOP_MASK_RXINTR (0x1UL << 7)
224#define ITOP_MASK_TXINTR (0x1UL << 8)
225#define ITOP_MASK_INTR (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA (0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START ((void *) 0)
243#define STATE_RUNNING ((void *) 1)
244#define STATE_DONE ((void *) 2)
245#define STATE_ERROR ((void *) -1)
246
247/*
248 * SSP State - Whether Enabled or Disabled
249 */
250#define SSP_DISABLED (0)
251#define SSP_ENABLED (1)
252
253/*
254 * SSP DMA State - Whether DMA Enabled or Disabled
255 */
256#define SSP_DMA_DISABLED (0)
257#define SSP_DMA_ENABLED (1)
258
259/*
260 * SSP Clock Defaults
261 */
262#define SSP_DEFAULT_CLKRATE 0x2
263#define SSP_DEFAULT_PRESCALE 0x40
264
265/*
266 * SSP Clock Parameter ranges
267 */
268#define CPSDVR_MIN 0x02
269#define CPSDVR_MAX 0xFE
270#define SCR_MIN 0x00
271#define SCR_MAX 0xFF
272
273/*
274 * SSP Interrupt related Macros
275 */
276#define DEFAULT_SSP_REG_IMSC 0x0UL
277#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
279
280#define CLEAR_ALL_INTERRUPTS 0x3
281
282#define SPI_POLLING_TIMEOUT 1000
283
284/*
285 * The type of reading going on on this chip
286 */
287enum ssp_reading {
288 READING_NULL,
289 READING_U8,
290 READING_U16,
291 READING_U32
292};
293
294/**
295 * The type of writing going on on this chip
296 */
297enum ssp_writing {
298 WRITING_NULL,
299 WRITING_U8,
300 WRITING_U16,
301 WRITING_U32
302};
303
304/**
305 * struct vendor_data - vendor-specific config parameters
306 * for PL022 derivates
307 * @fifodepth: depth of FIFOs (both)
308 * @max_bpw: maximum number of bits per word
309 * @unidir: supports unidirection transfers
310 * @extended_cr: 32 bit wide control register 0 with extra
311 * features and extra features in CR1 as found in the ST variants
312 * @pl023: supports a subset of the ST extensions called "PL023"
313 */
314struct vendor_data {
315 int fifodepth;
316 int max_bpw;
317 bool unidir;
318 bool extended_cr;
319 bool pl023;
320 bool loopback;
321};
322
323/**
324 * struct pl022 - This is the private SSP driver data structure
325 * @adev: AMBA device model hookup
326 * @vendor: vendor data for the IP block
327 * @phybase: the physical memory where the SSP device resides
328 * @virtbase: the virtual memory where the SSP is mapped
329 * @clk: outgoing clock "SPICLK" for the SPI bus
330 * @master: SPI framework hookup
331 * @master_info: controller-specific data from machine setup
332 * @kworker: thread struct for message pump
333 * @kworker_task: pointer to task for message pump kworker thread
334 * @pump_messages: work struct for scheduling work to the message pump
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
337 * @busy: message pump is busy
338 * @running: message pump is running
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @next_msg_cs_active: the next message in the queue has been examined
344 * and it was found that it uses the same chip select as the previous
345 * message, so we left it active after the previous transfer, and it's
346 * active already.
347 * @tx: current position in TX buffer to be read
348 * @tx_end: end position in TX buffer to be read
349 * @rx: current position in RX buffer to be written
350 * @rx_end: end position in RX buffer to be written
351 * @read: the type of read currently going on
352 * @write: the type of write currently going on
353 * @exp_fifo_level: expected FIFO level
354 * @dma_rx_channel: optional channel for RX DMA
355 * @dma_tx_channel: optional channel for TX DMA
356 * @sgt_rx: scattertable for the RX transfer
357 * @sgt_tx: scattertable for the TX transfer
358 * @dummypage: a dummy page used for driving data on the bus with DMA
359 */
360struct pl022 {
361 struct amba_device *adev;
362 struct vendor_data *vendor;
363 resource_size_t phybase;
364 void __iomem *virtbase;
365 struct clk *clk;
366 struct spi_master *master;
367 struct pl022_ssp_controller *master_info;
368 /* Message per-transfer pump */
369 struct tasklet_struct pump_transfers;
370 struct spi_message *cur_msg;
371 struct spi_transfer *cur_transfer;
372 struct chip_data *cur_chip;
373 bool next_msg_cs_active;
374 void *tx;
375 void *tx_end;
376 void *rx;
377 void *rx_end;
378 enum ssp_reading read;
379 enum ssp_writing write;
380 u32 exp_fifo_level;
381 enum ssp_rx_level_trig rx_lev_trig;
382 enum ssp_tx_level_trig tx_lev_trig;
383 /* DMA settings */
384#ifdef CONFIG_DMA_ENGINE
385 struct dma_chan *dma_rx_channel;
386 struct dma_chan *dma_tx_channel;
387 struct sg_table sgt_rx;
388 struct sg_table sgt_tx;
389 char *dummypage;
390 bool dma_running;
391#endif
392};
393
394/**
395 * struct chip_data - To maintain runtime state of SSP for each client chip
396 * @cr0: Value of control register CR0 of SSP - on later ST variants this
397 * register is 32 bits wide rather than just 16
398 * @cr1: Value of control register CR1 of SSP
399 * @dmacr: Value of DMA control Register of SSP
400 * @cpsr: Value of Clock prescale register
401 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402 * @enable_dma: Whether to enable DMA or not
403 * @read: function ptr to be used to read when doing xfer for this chip
404 * @write: function ptr to be used to write when doing xfer for this chip
405 * @cs_control: chip select callback provided by chip
406 * @xfer_type: polling/interrupt/DMA
407 *
408 * Runtime state of the SSP controller, maintained per chip,
409 * This would be set according to the current message that would be served
410 */
411struct chip_data {
412 u32 cr0;
413 u16 cr1;
414 u16 dmacr;
415 u16 cpsr;
416 u8 n_bytes;
417 bool enable_dma;
418 enum ssp_reading read;
419 enum ssp_writing write;
420 void (*cs_control) (u32 command);
421 int xfer_type;
422};
423
424/**
425 * null_cs_control - Dummy chip select function
426 * @command: select/delect the chip
427 *
428 * If no chip select function is provided by client this is used as dummy
429 * chip select
430 */
431static void null_cs_control(u32 command)
432{
433 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
434}
435
436/**
437 * giveback - current spi_message is over, schedule next message and call
438 * callback of this message. Assumes that caller already
439 * set message->status; dma and pio irqs are blocked
440 * @pl022: SSP driver private data structure
441 */
442static void giveback(struct pl022 *pl022)
443{
444 struct spi_transfer *last_transfer;
445 pl022->next_msg_cs_active = false;
446
447 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
448 struct spi_transfer,
449 transfer_list);
450
451 /* Delay if requested before any change in chip select */
452 if (last_transfer->delay_usecs)
453 /*
454 * FIXME: This runs in interrupt context.
455 * Is this really smart?
456 */
457 udelay(last_transfer->delay_usecs);
458
459 if (!last_transfer->cs_change) {
460 struct spi_message *next_msg;
461
462 /*
463 * cs_change was not set. We can keep the chip select
464 * enabled if there is message in the queue and it is
465 * for the same spi device.
466 *
467 * We cannot postpone this until pump_messages, because
468 * after calling msg->complete (below) the driver that
469 * sent the current message could be unloaded, which
470 * could invalidate the cs_control() callback...
471 */
472 /* get a pointer to the next message, if any */
473 next_msg = spi_get_next_queued_message(pl022->master);
474
475 /*
476 * see if the next and current messages point
477 * to the same spi device.
478 */
479 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
480 next_msg = NULL;
481 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
482 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
483 else
484 pl022->next_msg_cs_active = true;
485
486 }
487
488 pl022->cur_msg = NULL;
489 pl022->cur_transfer = NULL;
490 pl022->cur_chip = NULL;
491 spi_finalize_current_message(pl022->master);
492
493 /* disable the SPI/SSP operation */
494 writew((readw(SSP_CR1(pl022->virtbase)) &
495 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
496
497}
498
499/**
500 * flush - flush the FIFO to reach a clean state
501 * @pl022: SSP driver private data structure
502 */
503static int flush(struct pl022 *pl022)
504{
505 unsigned long limit = loops_per_jiffy << 1;
506
507 dev_dbg(&pl022->adev->dev, "flush\n");
508 do {
509 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
510 readw(SSP_DR(pl022->virtbase));
511 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
512
513 pl022->exp_fifo_level = 0;
514
515 return limit;
516}
517
518/**
519 * restore_state - Load configuration of current chip
520 * @pl022: SSP driver private data structure
521 */
522static void restore_state(struct pl022 *pl022)
523{
524 struct chip_data *chip = pl022->cur_chip;
525
526 if (pl022->vendor->extended_cr)
527 writel(chip->cr0, SSP_CR0(pl022->virtbase));
528 else
529 writew(chip->cr0, SSP_CR0(pl022->virtbase));
530 writew(chip->cr1, SSP_CR1(pl022->virtbase));
531 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
532 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
533 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
534 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
535}
536
537/*
538 * Default SSP Register Values
539 */
540#define DEFAULT_SSP_REG_CR0 ( \
541 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
542 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
543 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
544 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
545 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
546)
547
548/* ST versions have slightly different bit layout */
549#define DEFAULT_SSP_REG_CR0_ST ( \
550 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
551 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
552 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
553 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
554 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
555 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
556 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
557)
558
559/* The PL023 version is slightly different again */
560#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
561 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
562 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
565)
566
567#define DEFAULT_SSP_REG_CR1 ( \
568 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
569 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
570 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
571 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
572)
573
574/* ST versions extend this register to use all 16 bits */
575#define DEFAULT_SSP_REG_CR1_ST ( \
576 DEFAULT_SSP_REG_CR1 | \
577 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
578 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
579 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
580 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
581 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
582)
583
584/*
585 * The PL023 variant has further differences: no loopback mode, no microwire
586 * support, and a new clock feedback delay setting.
587 */
588#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
589 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
590 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
591 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
592 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
596 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
597)
598
599#define DEFAULT_SSP_REG_CPSR ( \
600 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
601)
602
603#define DEFAULT_SSP_REG_DMACR (\
604 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
605 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
606)
607
608/**
609 * load_ssp_default_config - Load default configuration for SSP
610 * @pl022: SSP driver private data structure
611 */
612static void load_ssp_default_config(struct pl022 *pl022)
613{
614 if (pl022->vendor->pl023) {
615 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
616 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
617 } else if (pl022->vendor->extended_cr) {
618 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
619 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
620 } else {
621 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
622 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
623 }
624 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
625 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
626 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
627 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
628}
629
630/**
631 * This will write to TX and read from RX according to the parameters
632 * set in pl022.
633 */
634static void readwriter(struct pl022 *pl022)
635{
636
637 /*
638 * The FIFO depth is different between primecell variants.
639 * I believe filling in too much in the FIFO might cause
640 * errons in 8bit wide transfers on ARM variants (just 8 words
641 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
642 *
643 * To prevent this issue, the TX FIFO is only filled to the
644 * unused RX FIFO fill length, regardless of what the TX
645 * FIFO status flag indicates.
646 */
647 dev_dbg(&pl022->adev->dev,
648 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
649 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
650
651 /* Read as much as you can */
652 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
653 && (pl022->rx < pl022->rx_end)) {
654 switch (pl022->read) {
655 case READING_NULL:
656 readw(SSP_DR(pl022->virtbase));
657 break;
658 case READING_U8:
659 *(u8 *) (pl022->rx) =
660 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
661 break;
662 case READING_U16:
663 *(u16 *) (pl022->rx) =
664 (u16) readw(SSP_DR(pl022->virtbase));
665 break;
666 case READING_U32:
667 *(u32 *) (pl022->rx) =
668 readl(SSP_DR(pl022->virtbase));
669 break;
670 }
671 pl022->rx += (pl022->cur_chip->n_bytes);
672 pl022->exp_fifo_level--;
673 }
674 /*
675 * Write as much as possible up to the RX FIFO size
676 */
677 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
678 && (pl022->tx < pl022->tx_end)) {
679 switch (pl022->write) {
680 case WRITING_NULL:
681 writew(0x0, SSP_DR(pl022->virtbase));
682 break;
683 case WRITING_U8:
684 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
685 break;
686 case WRITING_U16:
687 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
688 break;
689 case WRITING_U32:
690 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
691 break;
692 }
693 pl022->tx += (pl022->cur_chip->n_bytes);
694 pl022->exp_fifo_level++;
695 /*
696 * This inner reader takes care of things appearing in the RX
697 * FIFO as we're transmitting. This will happen a lot since the
698 * clock starts running when you put things into the TX FIFO,
699 * and then things are continuously clocked into the RX FIFO.
700 */
701 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
702 && (pl022->rx < pl022->rx_end)) {
703 switch (pl022->read) {
704 case READING_NULL:
705 readw(SSP_DR(pl022->virtbase));
706 break;
707 case READING_U8:
708 *(u8 *) (pl022->rx) =
709 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
710 break;
711 case READING_U16:
712 *(u16 *) (pl022->rx) =
713 (u16) readw(SSP_DR(pl022->virtbase));
714 break;
715 case READING_U32:
716 *(u32 *) (pl022->rx) =
717 readl(SSP_DR(pl022->virtbase));
718 break;
719 }
720 pl022->rx += (pl022->cur_chip->n_bytes);
721 pl022->exp_fifo_level--;
722 }
723 }
724 /*
725 * When we exit here the TX FIFO should be full and the RX FIFO
726 * should be empty
727 */
728}
729
730/**
731 * next_transfer - Move to the Next transfer in the current spi message
732 * @pl022: SSP driver private data structure
733 *
734 * This function moves though the linked list of spi transfers in the
735 * current spi message and returns with the state of current spi
736 * message i.e whether its last transfer is done(STATE_DONE) or
737 * Next transfer is ready(STATE_RUNNING)
738 */
739static void *next_transfer(struct pl022 *pl022)
740{
741 struct spi_message *msg = pl022->cur_msg;
742 struct spi_transfer *trans = pl022->cur_transfer;
743
744 /* Move to next transfer */
745 if (trans->transfer_list.next != &msg->transfers) {
746 pl022->cur_transfer =
747 list_entry(trans->transfer_list.next,
748 struct spi_transfer, transfer_list);
749 return STATE_RUNNING;
750 }
751 return STATE_DONE;
752}
753
754/*
755 * This DMA functionality is only compiled in if we have
756 * access to the generic DMA devices/DMA engine.
757 */
758#ifdef CONFIG_DMA_ENGINE
759static void unmap_free_dma_scatter(struct pl022 *pl022)
760{
761 /* Unmap and free the SG tables */
762 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
763 pl022->sgt_tx.nents, DMA_TO_DEVICE);
764 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
765 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
766 sg_free_table(&pl022->sgt_rx);
767 sg_free_table(&pl022->sgt_tx);
768}
769
770static void dma_callback(void *data)
771{
772 struct pl022 *pl022 = data;
773 struct spi_message *msg = pl022->cur_msg;
774
775 BUG_ON(!pl022->sgt_rx.sgl);
776
777#ifdef VERBOSE_DEBUG
778 /*
779 * Optionally dump out buffers to inspect contents, this is
780 * good if you want to convince yourself that the loopback
781 * read/write contents are the same, when adopting to a new
782 * DMA engine.
783 */
784 {
785 struct scatterlist *sg;
786 unsigned int i;
787
788 dma_sync_sg_for_cpu(&pl022->adev->dev,
789 pl022->sgt_rx.sgl,
790 pl022->sgt_rx.nents,
791 DMA_FROM_DEVICE);
792
793 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
794 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
795 print_hex_dump(KERN_ERR, "SPI RX: ",
796 DUMP_PREFIX_OFFSET,
797 16,
798 1,
799 sg_virt(sg),
800 sg_dma_len(sg),
801 1);
802 }
803 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
804 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
805 print_hex_dump(KERN_ERR, "SPI TX: ",
806 DUMP_PREFIX_OFFSET,
807 16,
808 1,
809 sg_virt(sg),
810 sg_dma_len(sg),
811 1);
812 }
813 }
814#endif
815
816 unmap_free_dma_scatter(pl022);
817
818 /* Update total bytes transferred */
819 msg->actual_length += pl022->cur_transfer->len;
820 if (pl022->cur_transfer->cs_change)
821 pl022->cur_chip->
822 cs_control(SSP_CHIP_DESELECT);
823
824 /* Move to next transfer */
825 msg->state = next_transfer(pl022);
826 tasklet_schedule(&pl022->pump_transfers);
827}
828
829static void setup_dma_scatter(struct pl022 *pl022,
830 void *buffer,
831 unsigned int length,
832 struct sg_table *sgtab)
833{
834 struct scatterlist *sg;
835 int bytesleft = length;
836 void *bufp = buffer;
837 int mapbytes;
838 int i;
839
840 if (buffer) {
841 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
842 /*
843 * If there are less bytes left than what fits
844 * in the current page (plus page alignment offset)
845 * we just feed in this, else we stuff in as much
846 * as we can.
847 */
848 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
849 mapbytes = bytesleft;
850 else
851 mapbytes = PAGE_SIZE - offset_in_page(bufp);
852 sg_set_page(sg, virt_to_page(bufp),
853 mapbytes, offset_in_page(bufp));
854 bufp += mapbytes;
855 bytesleft -= mapbytes;
856 dev_dbg(&pl022->adev->dev,
857 "set RX/TX target page @ %p, %d bytes, %d left\n",
858 bufp, mapbytes, bytesleft);
859 }
860 } else {
861 /* Map the dummy buffer on every page */
862 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
863 if (bytesleft < PAGE_SIZE)
864 mapbytes = bytesleft;
865 else
866 mapbytes = PAGE_SIZE;
867 sg_set_page(sg, virt_to_page(pl022->dummypage),
868 mapbytes, 0);
869 bytesleft -= mapbytes;
870 dev_dbg(&pl022->adev->dev,
871 "set RX/TX to dummy page %d bytes, %d left\n",
872 mapbytes, bytesleft);
873
874 }
875 }
876 BUG_ON(bytesleft);
877}
878
879/**
880 * configure_dma - configures the channels for the next transfer
881 * @pl022: SSP driver's private data structure
882 */
883static int configure_dma(struct pl022 *pl022)
884{
885 struct dma_slave_config rx_conf = {
886 .src_addr = SSP_DR(pl022->phybase),
887 .direction = DMA_DEV_TO_MEM,
888 .device_fc = false,
889 };
890 struct dma_slave_config tx_conf = {
891 .dst_addr = SSP_DR(pl022->phybase),
892 .direction = DMA_MEM_TO_DEV,
893 .device_fc = false,
894 };
895 unsigned int pages;
896 int ret;
897 int rx_sglen, tx_sglen;
898 struct dma_chan *rxchan = pl022->dma_rx_channel;
899 struct dma_chan *txchan = pl022->dma_tx_channel;
900 struct dma_async_tx_descriptor *rxdesc;
901 struct dma_async_tx_descriptor *txdesc;
902
903 /* Check that the channels are available */
904 if (!rxchan || !txchan)
905 return -ENODEV;
906
907 /*
908 * If supplied, the DMA burstsize should equal the FIFO trigger level.
909 * Notice that the DMA engine uses one-to-one mapping. Since we can
910 * not trigger on 2 elements this needs explicit mapping rather than
911 * calculation.
912 */
913 switch (pl022->rx_lev_trig) {
914 case SSP_RX_1_OR_MORE_ELEM:
915 rx_conf.src_maxburst = 1;
916 break;
917 case SSP_RX_4_OR_MORE_ELEM:
918 rx_conf.src_maxburst = 4;
919 break;
920 case SSP_RX_8_OR_MORE_ELEM:
921 rx_conf.src_maxburst = 8;
922 break;
923 case SSP_RX_16_OR_MORE_ELEM:
924 rx_conf.src_maxburst = 16;
925 break;
926 case SSP_RX_32_OR_MORE_ELEM:
927 rx_conf.src_maxburst = 32;
928 break;
929 default:
930 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
931 break;
932 }
933
934 switch (pl022->tx_lev_trig) {
935 case SSP_TX_1_OR_MORE_EMPTY_LOC:
936 tx_conf.dst_maxburst = 1;
937 break;
938 case SSP_TX_4_OR_MORE_EMPTY_LOC:
939 tx_conf.dst_maxburst = 4;
940 break;
941 case SSP_TX_8_OR_MORE_EMPTY_LOC:
942 tx_conf.dst_maxburst = 8;
943 break;
944 case SSP_TX_16_OR_MORE_EMPTY_LOC:
945 tx_conf.dst_maxburst = 16;
946 break;
947 case SSP_TX_32_OR_MORE_EMPTY_LOC:
948 tx_conf.dst_maxburst = 32;
949 break;
950 default:
951 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
952 break;
953 }
954
955 switch (pl022->read) {
956 case READING_NULL:
957 /* Use the same as for writing */
958 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
959 break;
960 case READING_U8:
961 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
962 break;
963 case READING_U16:
964 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
965 break;
966 case READING_U32:
967 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
968 break;
969 }
970
971 switch (pl022->write) {
972 case WRITING_NULL:
973 /* Use the same as for reading */
974 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
975 break;
976 case WRITING_U8:
977 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
978 break;
979 case WRITING_U16:
980 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
981 break;
982 case WRITING_U32:
983 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
984 break;
985 }
986
987 /* SPI pecularity: we need to read and write the same width */
988 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
989 rx_conf.src_addr_width = tx_conf.dst_addr_width;
990 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
991 tx_conf.dst_addr_width = rx_conf.src_addr_width;
992 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
993
994 dmaengine_slave_config(rxchan, &rx_conf);
995 dmaengine_slave_config(txchan, &tx_conf);
996
997 /* Create sglists for the transfers */
998 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
999 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1000
1001 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1002 if (ret)
1003 goto err_alloc_rx_sg;
1004
1005 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1006 if (ret)
1007 goto err_alloc_tx_sg;
1008
1009 /* Fill in the scatterlists for the RX+TX buffers */
1010 setup_dma_scatter(pl022, pl022->rx,
1011 pl022->cur_transfer->len, &pl022->sgt_rx);
1012 setup_dma_scatter(pl022, pl022->tx,
1013 pl022->cur_transfer->len, &pl022->sgt_tx);
1014
1015 /* Map DMA buffers */
1016 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1017 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1018 if (!rx_sglen)
1019 goto err_rx_sgmap;
1020
1021 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1022 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1023 if (!tx_sglen)
1024 goto err_tx_sgmap;
1025
1026 /* Send both scatterlists */
1027 rxdesc = dmaengine_prep_slave_sg(rxchan,
1028 pl022->sgt_rx.sgl,
1029 rx_sglen,
1030 DMA_DEV_TO_MEM,
1031 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1032 if (!rxdesc)
1033 goto err_rxdesc;
1034
1035 txdesc = dmaengine_prep_slave_sg(txchan,
1036 pl022->sgt_tx.sgl,
1037 tx_sglen,
1038 DMA_MEM_TO_DEV,
1039 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040 if (!txdesc)
1041 goto err_txdesc;
1042
1043 /* Put the callback on the RX transfer only, that should finish last */
1044 rxdesc->callback = dma_callback;
1045 rxdesc->callback_param = pl022;
1046
1047 /* Submit and fire RX and TX with TX last so we're ready to read! */
1048 dmaengine_submit(rxdesc);
1049 dmaengine_submit(txdesc);
1050 dma_async_issue_pending(rxchan);
1051 dma_async_issue_pending(txchan);
1052 pl022->dma_running = true;
1053
1054 return 0;
1055
1056err_txdesc:
1057 dmaengine_terminate_all(txchan);
1058err_rxdesc:
1059 dmaengine_terminate_all(rxchan);
1060 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1061 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1062err_tx_sgmap:
1063 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1064 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1065err_rx_sgmap:
1066 sg_free_table(&pl022->sgt_tx);
1067err_alloc_tx_sg:
1068 sg_free_table(&pl022->sgt_rx);
1069err_alloc_rx_sg:
1070 return -ENOMEM;
1071}
1072
1073static int __devinit pl022_dma_probe(struct pl022 *pl022)
1074{
1075 dma_cap_mask_t mask;
1076
1077 /* Try to acquire a generic DMA engine slave channel */
1078 dma_cap_zero(mask);
1079 dma_cap_set(DMA_SLAVE, mask);
1080 /*
1081 * We need both RX and TX channels to do DMA, else do none
1082 * of them.
1083 */
1084 pl022->dma_rx_channel = dma_request_channel(mask,
1085 pl022->master_info->dma_filter,
1086 pl022->master_info->dma_rx_param);
1087 if (!pl022->dma_rx_channel) {
1088 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1089 goto err_no_rxchan;
1090 }
1091
1092 pl022->dma_tx_channel = dma_request_channel(mask,
1093 pl022->master_info->dma_filter,
1094 pl022->master_info->dma_tx_param);
1095 if (!pl022->dma_tx_channel) {
1096 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1097 goto err_no_txchan;
1098 }
1099
1100 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1101 if (!pl022->dummypage) {
1102 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1103 goto err_no_dummypage;
1104 }
1105
1106 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1107 dma_chan_name(pl022->dma_rx_channel),
1108 dma_chan_name(pl022->dma_tx_channel));
1109
1110 return 0;
1111
1112err_no_dummypage:
1113 dma_release_channel(pl022->dma_tx_channel);
1114err_no_txchan:
1115 dma_release_channel(pl022->dma_rx_channel);
1116 pl022->dma_rx_channel = NULL;
1117err_no_rxchan:
1118 dev_err(&pl022->adev->dev,
1119 "Failed to work in dma mode, work without dma!\n");
1120 return -ENODEV;
1121}
1122
1123static void terminate_dma(struct pl022 *pl022)
1124{
1125 struct dma_chan *rxchan = pl022->dma_rx_channel;
1126 struct dma_chan *txchan = pl022->dma_tx_channel;
1127
1128 dmaengine_terminate_all(rxchan);
1129 dmaengine_terminate_all(txchan);
1130 unmap_free_dma_scatter(pl022);
1131 pl022->dma_running = false;
1132}
1133
1134static void pl022_dma_remove(struct pl022 *pl022)
1135{
1136 if (pl022->dma_running)
1137 terminate_dma(pl022);
1138 if (pl022->dma_tx_channel)
1139 dma_release_channel(pl022->dma_tx_channel);
1140 if (pl022->dma_rx_channel)
1141 dma_release_channel(pl022->dma_rx_channel);
1142 kfree(pl022->dummypage);
1143}
1144
1145#else
1146static inline int configure_dma(struct pl022 *pl022)
1147{
1148 return -ENODEV;
1149}
1150
1151static inline int pl022_dma_probe(struct pl022 *pl022)
1152{
1153 return 0;
1154}
1155
1156static inline void pl022_dma_remove(struct pl022 *pl022)
1157{
1158}
1159#endif
1160
1161/**
1162 * pl022_interrupt_handler - Interrupt handler for SSP controller
1163 *
1164 * This function handles interrupts generated for an interrupt based transfer.
1165 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1166 * current message's state as STATE_ERROR and schedule the tasklet
1167 * pump_transfers which will do the postprocessing of the current message by
1168 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1169 * more data, and writes data in TX FIFO till it is not full. If we complete
1170 * the transfer we move to the next transfer and schedule the tasklet.
1171 */
1172static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1173{
1174 struct pl022 *pl022 = dev_id;
1175 struct spi_message *msg = pl022->cur_msg;
1176 u16 irq_status = 0;
1177 u16 flag = 0;
1178
1179 if (unlikely(!msg)) {
1180 dev_err(&pl022->adev->dev,
1181 "bad message state in interrupt handler");
1182 /* Never fail */
1183 return IRQ_HANDLED;
1184 }
1185
1186 /* Read the Interrupt Status Register */
1187 irq_status = readw(SSP_MIS(pl022->virtbase));
1188
1189 if (unlikely(!irq_status))
1190 return IRQ_NONE;
1191
1192 /*
1193 * This handles the FIFO interrupts, the timeout
1194 * interrupts are flatly ignored, they cannot be
1195 * trusted.
1196 */
1197 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1198 /*
1199 * Overrun interrupt - bail out since our Data has been
1200 * corrupted
1201 */
1202 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1203 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1204 dev_err(&pl022->adev->dev,
1205 "RXFIFO is full\n");
1206 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1207 dev_err(&pl022->adev->dev,
1208 "TXFIFO is full\n");
1209
1210 /*
1211 * Disable and clear interrupts, disable SSP,
1212 * mark message with bad status so it can be
1213 * retried.
1214 */
1215 writew(DISABLE_ALL_INTERRUPTS,
1216 SSP_IMSC(pl022->virtbase));
1217 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218 writew((readw(SSP_CR1(pl022->virtbase)) &
1219 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1220 msg->state = STATE_ERROR;
1221
1222 /* Schedule message queue handler */
1223 tasklet_schedule(&pl022->pump_transfers);
1224 return IRQ_HANDLED;
1225 }
1226
1227 readwriter(pl022);
1228
1229 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1230 flag = 1;
1231 /* Disable Transmit interrupt, enable receive interrupt */
1232 writew((readw(SSP_IMSC(pl022->virtbase)) &
1233 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1234 SSP_IMSC(pl022->virtbase));
1235 }
1236
1237 /*
1238 * Since all transactions must write as much as shall be read,
1239 * we can conclude the entire transaction once RX is complete.
1240 * At this point, all TX will always be finished.
1241 */
1242 if (pl022->rx >= pl022->rx_end) {
1243 writew(DISABLE_ALL_INTERRUPTS,
1244 SSP_IMSC(pl022->virtbase));
1245 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1246 if (unlikely(pl022->rx > pl022->rx_end)) {
1247 dev_warn(&pl022->adev->dev, "read %u surplus "
1248 "bytes (did you request an odd "
1249 "number of bytes on a 16bit bus?)\n",
1250 (u32) (pl022->rx - pl022->rx_end));
1251 }
1252 /* Update total bytes transferred */
1253 msg->actual_length += pl022->cur_transfer->len;
1254 if (pl022->cur_transfer->cs_change)
1255 pl022->cur_chip->
1256 cs_control(SSP_CHIP_DESELECT);
1257 /* Move to next transfer */
1258 msg->state = next_transfer(pl022);
1259 tasklet_schedule(&pl022->pump_transfers);
1260 return IRQ_HANDLED;
1261 }
1262
1263 return IRQ_HANDLED;
1264}
1265
1266/**
1267 * This sets up the pointers to memory for the next message to
1268 * send out on the SPI bus.
1269 */
1270static int set_up_next_transfer(struct pl022 *pl022,
1271 struct spi_transfer *transfer)
1272{
1273 int residue;
1274
1275 /* Sanity check the message for this bus width */
1276 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1277 if (unlikely(residue != 0)) {
1278 dev_err(&pl022->adev->dev,
1279 "message of %u bytes to transmit but the current "
1280 "chip bus has a data width of %u bytes!\n",
1281 pl022->cur_transfer->len,
1282 pl022->cur_chip->n_bytes);
1283 dev_err(&pl022->adev->dev, "skipping this message\n");
1284 return -EIO;
1285 }
1286 pl022->tx = (void *)transfer->tx_buf;
1287 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1288 pl022->rx = (void *)transfer->rx_buf;
1289 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1290 pl022->write =
1291 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1292 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1293 return 0;
1294}
1295
1296/**
1297 * pump_transfers - Tasklet function which schedules next transfer
1298 * when running in interrupt or DMA transfer mode.
1299 * @data: SSP driver private data structure
1300 *
1301 */
1302static void pump_transfers(unsigned long data)
1303{
1304 struct pl022 *pl022 = (struct pl022 *) data;
1305 struct spi_message *message = NULL;
1306 struct spi_transfer *transfer = NULL;
1307 struct spi_transfer *previous = NULL;
1308
1309 /* Get current state information */
1310 message = pl022->cur_msg;
1311 transfer = pl022->cur_transfer;
1312
1313 /* Handle for abort */
1314 if (message->state == STATE_ERROR) {
1315 message->status = -EIO;
1316 giveback(pl022);
1317 return;
1318 }
1319
1320 /* Handle end of message */
1321 if (message->state == STATE_DONE) {
1322 message->status = 0;
1323 giveback(pl022);
1324 return;
1325 }
1326
1327 /* Delay if requested at end of transfer before CS change */
1328 if (message->state == STATE_RUNNING) {
1329 previous = list_entry(transfer->transfer_list.prev,
1330 struct spi_transfer,
1331 transfer_list);
1332 if (previous->delay_usecs)
1333 /*
1334 * FIXME: This runs in interrupt context.
1335 * Is this really smart?
1336 */
1337 udelay(previous->delay_usecs);
1338
1339 /* Reselect chip select only if cs_change was requested */
1340 if (previous->cs_change)
1341 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1342 } else {
1343 /* STATE_START */
1344 message->state = STATE_RUNNING;
1345 }
1346
1347 if (set_up_next_transfer(pl022, transfer)) {
1348 message->state = STATE_ERROR;
1349 message->status = -EIO;
1350 giveback(pl022);
1351 return;
1352 }
1353 /* Flush the FIFOs and let's go! */
1354 flush(pl022);
1355
1356 if (pl022->cur_chip->enable_dma) {
1357 if (configure_dma(pl022)) {
1358 dev_dbg(&pl022->adev->dev,
1359 "configuration of DMA failed, fall back to interrupt mode\n");
1360 goto err_config_dma;
1361 }
1362 return;
1363 }
1364
1365err_config_dma:
1366 /* enable all interrupts except RX */
1367 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1368}
1369
1370static void do_interrupt_dma_transfer(struct pl022 *pl022)
1371{
1372 /*
1373 * Default is to enable all interrupts except RX -
1374 * this will be enabled once TX is complete
1375 */
1376 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1377
1378 /* Enable target chip, if not already active */
1379 if (!pl022->next_msg_cs_active)
1380 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1381
1382 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1383 /* Error path */
1384 pl022->cur_msg->state = STATE_ERROR;
1385 pl022->cur_msg->status = -EIO;
1386 giveback(pl022);
1387 return;
1388 }
1389 /* If we're using DMA, set up DMA here */
1390 if (pl022->cur_chip->enable_dma) {
1391 /* Configure DMA transfer */
1392 if (configure_dma(pl022)) {
1393 dev_dbg(&pl022->adev->dev,
1394 "configuration of DMA failed, fall back to interrupt mode\n");
1395 goto err_config_dma;
1396 }
1397 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1398 irqflags = DISABLE_ALL_INTERRUPTS;
1399 }
1400err_config_dma:
1401 /* Enable SSP, turn on interrupts */
1402 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1403 SSP_CR1(pl022->virtbase));
1404 writew(irqflags, SSP_IMSC(pl022->virtbase));
1405}
1406
1407static void do_polling_transfer(struct pl022 *pl022)
1408{
1409 struct spi_message *message = NULL;
1410 struct spi_transfer *transfer = NULL;
1411 struct spi_transfer *previous = NULL;
1412 struct chip_data *chip;
1413 unsigned long time, timeout;
1414
1415 chip = pl022->cur_chip;
1416 message = pl022->cur_msg;
1417
1418 while (message->state != STATE_DONE) {
1419 /* Handle for abort */
1420 if (message->state == STATE_ERROR)
1421 break;
1422 transfer = pl022->cur_transfer;
1423
1424 /* Delay if requested at end of transfer */
1425 if (message->state == STATE_RUNNING) {
1426 previous =
1427 list_entry(transfer->transfer_list.prev,
1428 struct spi_transfer, transfer_list);
1429 if (previous->delay_usecs)
1430 udelay(previous->delay_usecs);
1431 if (previous->cs_change)
1432 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1433 } else {
1434 /* STATE_START */
1435 message->state = STATE_RUNNING;
1436 if (!pl022->next_msg_cs_active)
1437 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1438 }
1439
1440 /* Configuration Changing Per Transfer */
1441 if (set_up_next_transfer(pl022, transfer)) {
1442 /* Error path */
1443 message->state = STATE_ERROR;
1444 break;
1445 }
1446 /* Flush FIFOs and enable SSP */
1447 flush(pl022);
1448 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1449 SSP_CR1(pl022->virtbase));
1450
1451 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1452
1453 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1454 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1455 time = jiffies;
1456 readwriter(pl022);
1457 if (time_after(time, timeout)) {
1458 dev_warn(&pl022->adev->dev,
1459 "%s: timeout!\n", __func__);
1460 message->state = STATE_ERROR;
1461 goto out;
1462 }
1463 cpu_relax();
1464 }
1465
1466 /* Update total byte transferred */
1467 message->actual_length += pl022->cur_transfer->len;
1468 if (pl022->cur_transfer->cs_change)
1469 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1470 /* Move to next transfer */
1471 message->state = next_transfer(pl022);
1472 }
1473out:
1474 /* Handle end of message */
1475 if (message->state == STATE_DONE)
1476 message->status = 0;
1477 else
1478 message->status = -EIO;
1479
1480 giveback(pl022);
1481 return;
1482}
1483
1484static int pl022_transfer_one_message(struct spi_master *master,
1485 struct spi_message *msg)
1486{
1487 struct pl022 *pl022 = spi_master_get_devdata(master);
1488
1489 /* Initial message state */
1490 pl022->cur_msg = msg;
1491 msg->state = STATE_START;
1492
1493 pl022->cur_transfer = list_entry(msg->transfers.next,
1494 struct spi_transfer, transfer_list);
1495
1496 /* Setup the SPI using the per chip configuration */
1497 pl022->cur_chip = spi_get_ctldata(msg->spi);
1498
1499 restore_state(pl022);
1500 flush(pl022);
1501
1502 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1503 do_polling_transfer(pl022);
1504 else
1505 do_interrupt_dma_transfer(pl022);
1506
1507 return 0;
1508}
1509
1510static int pl022_prepare_transfer_hardware(struct spi_master *master)
1511{
1512 struct pl022 *pl022 = spi_master_get_devdata(master);
1513
1514 /*
1515 * Just make sure we have all we need to run the transfer by syncing
1516 * with the runtime PM framework.
1517 */
1518 pm_runtime_get_sync(&pl022->adev->dev);
1519 return 0;
1520}
1521
1522static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1523{
1524 struct pl022 *pl022 = spi_master_get_devdata(master);
1525
1526 /* nothing more to do - disable spi/ssp and power off */
1527 writew((readw(SSP_CR1(pl022->virtbase)) &
1528 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1529
1530 if (pl022->master_info->autosuspend_delay > 0) {
1531 pm_runtime_mark_last_busy(&pl022->adev->dev);
1532 pm_runtime_put_autosuspend(&pl022->adev->dev);
1533 } else {
1534 pm_runtime_put(&pl022->adev->dev);
1535 }
1536
1537 return 0;
1538}
1539
1540static int verify_controller_parameters(struct pl022 *pl022,
1541 struct pl022_config_chip const *chip_info)
1542{
1543 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1544 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1545 dev_err(&pl022->adev->dev,
1546 "interface is configured incorrectly\n");
1547 return -EINVAL;
1548 }
1549 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1550 (!pl022->vendor->unidir)) {
1551 dev_err(&pl022->adev->dev,
1552 "unidirectional mode not supported in this "
1553 "hardware version\n");
1554 return -EINVAL;
1555 }
1556 if ((chip_info->hierarchy != SSP_MASTER)
1557 && (chip_info->hierarchy != SSP_SLAVE)) {
1558 dev_err(&pl022->adev->dev,
1559 "hierarchy is configured incorrectly\n");
1560 return -EINVAL;
1561 }
1562 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1563 && (chip_info->com_mode != DMA_TRANSFER)
1564 && (chip_info->com_mode != POLLING_TRANSFER)) {
1565 dev_err(&pl022->adev->dev,
1566 "Communication mode is configured incorrectly\n");
1567 return -EINVAL;
1568 }
1569 switch (chip_info->rx_lev_trig) {
1570 case SSP_RX_1_OR_MORE_ELEM:
1571 case SSP_RX_4_OR_MORE_ELEM:
1572 case SSP_RX_8_OR_MORE_ELEM:
1573 /* These are always OK, all variants can handle this */
1574 break;
1575 case SSP_RX_16_OR_MORE_ELEM:
1576 if (pl022->vendor->fifodepth < 16) {
1577 dev_err(&pl022->adev->dev,
1578 "RX FIFO Trigger Level is configured incorrectly\n");
1579 return -EINVAL;
1580 }
1581 break;
1582 case SSP_RX_32_OR_MORE_ELEM:
1583 if (pl022->vendor->fifodepth < 32) {
1584 dev_err(&pl022->adev->dev,
1585 "RX FIFO Trigger Level is configured incorrectly\n");
1586 return -EINVAL;
1587 }
1588 break;
1589 default:
1590 dev_err(&pl022->adev->dev,
1591 "RX FIFO Trigger Level is configured incorrectly\n");
1592 return -EINVAL;
1593 break;
1594 }
1595 switch (chip_info->tx_lev_trig) {
1596 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1597 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1598 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1599 /* These are always OK, all variants can handle this */
1600 break;
1601 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1602 if (pl022->vendor->fifodepth < 16) {
1603 dev_err(&pl022->adev->dev,
1604 "TX FIFO Trigger Level is configured incorrectly\n");
1605 return -EINVAL;
1606 }
1607 break;
1608 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1609 if (pl022->vendor->fifodepth < 32) {
1610 dev_err(&pl022->adev->dev,
1611 "TX FIFO Trigger Level is configured incorrectly\n");
1612 return -EINVAL;
1613 }
1614 break;
1615 default:
1616 dev_err(&pl022->adev->dev,
1617 "TX FIFO Trigger Level is configured incorrectly\n");
1618 return -EINVAL;
1619 break;
1620 }
1621 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1622 if ((chip_info->ctrl_len < SSP_BITS_4)
1623 || (chip_info->ctrl_len > SSP_BITS_32)) {
1624 dev_err(&pl022->adev->dev,
1625 "CTRL LEN is configured incorrectly\n");
1626 return -EINVAL;
1627 }
1628 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1629 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1630 dev_err(&pl022->adev->dev,
1631 "Wait State is configured incorrectly\n");
1632 return -EINVAL;
1633 }
1634 /* Half duplex is only available in the ST Micro version */
1635 if (pl022->vendor->extended_cr) {
1636 if ((chip_info->duplex !=
1637 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1638 && (chip_info->duplex !=
1639 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1640 dev_err(&pl022->adev->dev,
1641 "Microwire duplex mode is configured incorrectly\n");
1642 return -EINVAL;
1643 }
1644 } else {
1645 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1646 dev_err(&pl022->adev->dev,
1647 "Microwire half duplex mode requested,"
1648 " but this is only available in the"
1649 " ST version of PL022\n");
1650 return -EINVAL;
1651 }
1652 }
1653 return 0;
1654}
1655
1656static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1657{
1658 return rate / (cpsdvsr * (1 + scr));
1659}
1660
1661static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1662 ssp_clock_params * clk_freq)
1663{
1664 /* Lets calculate the frequency parameters */
1665 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1666 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1667 best_scr = 0, tmp, found = 0;
1668
1669 rate = clk_get_rate(pl022->clk);
1670 /* cpsdvscr = 2 & scr 0 */
1671 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1672 /* cpsdvsr = 254 & scr = 255 */
1673 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1674
1675 if (freq > max_tclk)
1676 dev_warn(&pl022->adev->dev,
1677 "Max speed that can be programmed is %d Hz, you requested %d\n",
1678 max_tclk, freq);
1679
1680 if (freq < min_tclk) {
1681 dev_err(&pl022->adev->dev,
1682 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1683 freq, min_tclk);
1684 return -EINVAL;
1685 }
1686
1687 /*
1688 * best_freq will give closest possible available rate (<= requested
1689 * freq) for all values of scr & cpsdvsr.
1690 */
1691 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1692 while (scr <= SCR_MAX) {
1693 tmp = spi_rate(rate, cpsdvsr, scr);
1694
1695 if (tmp > freq) {
1696 /* we need lower freq */
1697 scr++;
1698 continue;
1699 }
1700
1701 /*
1702 * If found exact value, mark found and break.
1703 * If found more closer value, update and break.
1704 */
1705 if (tmp > best_freq) {
1706 best_freq = tmp;
1707 best_cpsdvsr = cpsdvsr;
1708 best_scr = scr;
1709
1710 if (tmp == freq)
1711 found = 1;
1712 }
1713 /*
1714 * increased scr will give lower rates, which are not
1715 * required
1716 */
1717 break;
1718 }
1719 cpsdvsr += 2;
1720 scr = SCR_MIN;
1721 }
1722
1723 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1724 freq);
1725
1726 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1727 clk_freq->scr = (u8) (best_scr & 0xFF);
1728 dev_dbg(&pl022->adev->dev,
1729 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1730 freq, best_freq);
1731 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1732 clk_freq->cpsdvsr, clk_freq->scr);
1733
1734 return 0;
1735}
1736
1737/*
1738 * A piece of default chip info unless the platform
1739 * supplies it.
1740 */
1741static const struct pl022_config_chip pl022_default_chip_info = {
1742 .com_mode = POLLING_TRANSFER,
1743 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1744 .hierarchy = SSP_SLAVE,
1745 .slave_tx_disable = DO_NOT_DRIVE_TX,
1746 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1747 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1748 .ctrl_len = SSP_BITS_8,
1749 .wait_state = SSP_MWIRE_WAIT_ZERO,
1750 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1751 .cs_control = null_cs_control,
1752};
1753
1754/**
1755 * pl022_setup - setup function registered to SPI master framework
1756 * @spi: spi device which is requesting setup
1757 *
1758 * This function is registered to the SPI framework for this SPI master
1759 * controller. If it is the first time when setup is called by this device,
1760 * this function will initialize the runtime state for this chip and save
1761 * the same in the device structure. Else it will update the runtime info
1762 * with the updated chip info. Nothing is really being written to the
1763 * controller hardware here, that is not done until the actual transfer
1764 * commence.
1765 */
1766static int pl022_setup(struct spi_device *spi)
1767{
1768 struct pl022_config_chip const *chip_info;
1769 struct chip_data *chip;
1770 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1771 int status = 0;
1772 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1773 unsigned int bits = spi->bits_per_word;
1774 u32 tmp;
1775
1776 if (!spi->max_speed_hz)
1777 return -EINVAL;
1778
1779 /* Get controller_state if one is supplied */
1780 chip = spi_get_ctldata(spi);
1781
1782 if (chip == NULL) {
1783 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1784 if (!chip) {
1785 dev_err(&spi->dev,
1786 "cannot allocate controller state\n");
1787 return -ENOMEM;
1788 }
1789 dev_dbg(&spi->dev,
1790 "allocated memory for controller's runtime state\n");
1791 }
1792
1793 /* Get controller data if one is supplied */
1794 chip_info = spi->controller_data;
1795
1796 if (chip_info == NULL) {
1797 chip_info = &pl022_default_chip_info;
1798 /* spi_board_info.controller_data not is supplied */
1799 dev_dbg(&spi->dev,
1800 "using default controller_data settings\n");
1801 } else
1802 dev_dbg(&spi->dev,
1803 "using user supplied controller_data settings\n");
1804
1805 /*
1806 * We can override with custom divisors, else we use the board
1807 * frequency setting
1808 */
1809 if ((0 == chip_info->clk_freq.cpsdvsr)
1810 && (0 == chip_info->clk_freq.scr)) {
1811 status = calculate_effective_freq(pl022,
1812 spi->max_speed_hz,
1813 &clk_freq);
1814 if (status < 0)
1815 goto err_config_params;
1816 } else {
1817 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1818 if ((clk_freq.cpsdvsr % 2) != 0)
1819 clk_freq.cpsdvsr =
1820 clk_freq.cpsdvsr - 1;
1821 }
1822 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1823 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1824 status = -EINVAL;
1825 dev_err(&spi->dev,
1826 "cpsdvsr is configured incorrectly\n");
1827 goto err_config_params;
1828 }
1829
1830 status = verify_controller_parameters(pl022, chip_info);
1831 if (status) {
1832 dev_err(&spi->dev, "controller data is incorrect");
1833 goto err_config_params;
1834 }
1835
1836 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1837 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1838
1839 /* Now set controller state based on controller data */
1840 chip->xfer_type = chip_info->com_mode;
1841 if (!chip_info->cs_control) {
1842 chip->cs_control = null_cs_control;
1843 dev_warn(&spi->dev,
1844 "chip select function is NULL for this chip\n");
1845 } else
1846 chip->cs_control = chip_info->cs_control;
1847
1848 /* Check bits per word with vendor specific range */
1849 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1850 status = -ENOTSUPP;
1851 dev_err(&spi->dev, "illegal data size for this controller!\n");
1852 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1853 pl022->vendor->max_bpw);
1854 goto err_config_params;
1855 } else if (bits <= 8) {
1856 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1857 chip->n_bytes = 1;
1858 chip->read = READING_U8;
1859 chip->write = WRITING_U8;
1860 } else if (bits <= 16) {
1861 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1862 chip->n_bytes = 2;
1863 chip->read = READING_U16;
1864 chip->write = WRITING_U16;
1865 } else {
1866 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1867 chip->n_bytes = 4;
1868 chip->read = READING_U32;
1869 chip->write = WRITING_U32;
1870 }
1871
1872 /* Now Initialize all register settings required for this chip */
1873 chip->cr0 = 0;
1874 chip->cr1 = 0;
1875 chip->dmacr = 0;
1876 chip->cpsr = 0;
1877 if ((chip_info->com_mode == DMA_TRANSFER)
1878 && ((pl022->master_info)->enable_dma)) {
1879 chip->enable_dma = true;
1880 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1881 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1882 SSP_DMACR_MASK_RXDMAE, 0);
1883 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1884 SSP_DMACR_MASK_TXDMAE, 1);
1885 } else {
1886 chip->enable_dma = false;
1887 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1888 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1889 SSP_DMACR_MASK_RXDMAE, 0);
1890 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1891 SSP_DMACR_MASK_TXDMAE, 1);
1892 }
1893
1894 chip->cpsr = clk_freq.cpsdvsr;
1895
1896 /* Special setup for the ST micro extended control registers */
1897 if (pl022->vendor->extended_cr) {
1898 u32 etx;
1899
1900 if (pl022->vendor->pl023) {
1901 /* These bits are only in the PL023 */
1902 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1903 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1904 } else {
1905 /* These bits are in the PL022 but not PL023 */
1906 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1907 SSP_CR0_MASK_HALFDUP_ST, 5);
1908 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1909 SSP_CR0_MASK_CSS_ST, 16);
1910 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1911 SSP_CR0_MASK_FRF_ST, 21);
1912 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1913 SSP_CR1_MASK_MWAIT_ST, 6);
1914 }
1915 SSP_WRITE_BITS(chip->cr0, bits - 1,
1916 SSP_CR0_MASK_DSS_ST, 0);
1917
1918 if (spi->mode & SPI_LSB_FIRST) {
1919 tmp = SSP_RX_LSB;
1920 etx = SSP_TX_LSB;
1921 } else {
1922 tmp = SSP_RX_MSB;
1923 etx = SSP_TX_MSB;
1924 }
1925 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1926 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1927 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1928 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1929 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1930 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1931 } else {
1932 SSP_WRITE_BITS(chip->cr0, bits - 1,
1933 SSP_CR0_MASK_DSS, 0);
1934 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1935 SSP_CR0_MASK_FRF, 4);
1936 }
1937
1938 /* Stuff that is common for all versions */
1939 if (spi->mode & SPI_CPOL)
1940 tmp = SSP_CLK_POL_IDLE_HIGH;
1941 else
1942 tmp = SSP_CLK_POL_IDLE_LOW;
1943 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1944
1945 if (spi->mode & SPI_CPHA)
1946 tmp = SSP_CLK_SECOND_EDGE;
1947 else
1948 tmp = SSP_CLK_FIRST_EDGE;
1949 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1950
1951 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1952 /* Loopback is available on all versions except PL023 */
1953 if (pl022->vendor->loopback) {
1954 if (spi->mode & SPI_LOOP)
1955 tmp = LOOPBACK_ENABLED;
1956 else
1957 tmp = LOOPBACK_DISABLED;
1958 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1959 }
1960 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1961 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1962 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1963 3);
1964
1965 /* Save controller_state */
1966 spi_set_ctldata(spi, chip);
1967 return status;
1968 err_config_params:
1969 spi_set_ctldata(spi, NULL);
1970 kfree(chip);
1971 return status;
1972}
1973
1974/**
1975 * pl022_cleanup - cleanup function registered to SPI master framework
1976 * @spi: spi device which is requesting cleanup
1977 *
1978 * This function is registered to the SPI framework for this SPI master
1979 * controller. It will free the runtime state of chip.
1980 */
1981static void pl022_cleanup(struct spi_device *spi)
1982{
1983 struct chip_data *chip = spi_get_ctldata(spi);
1984
1985 spi_set_ctldata(spi, NULL);
1986 kfree(chip);
1987}
1988
1989static int __devinit
1990pl022_probe(struct amba_device *adev, const struct amba_id *id)
1991{
1992 struct device *dev = &adev->dev;
1993 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
1994 struct spi_master *master;
1995 struct pl022 *pl022 = NULL; /*Data for this driver */
1996 int status = 0;
1997
1998 dev_info(&adev->dev,
1999 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2000 if (platform_info == NULL) {
2001 dev_err(&adev->dev, "probe - no platform data supplied\n");
2002 status = -ENODEV;
2003 goto err_no_pdata;
2004 }
2005
2006 /* Allocate master with space for data */
2007 master = spi_alloc_master(dev, sizeof(struct pl022));
2008 if (master == NULL) {
2009 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2010 status = -ENOMEM;
2011 goto err_no_master;
2012 }
2013
2014 pl022 = spi_master_get_devdata(master);
2015 pl022->master = master;
2016 pl022->master_info = platform_info;
2017 pl022->adev = adev;
2018 pl022->vendor = id->data;
2019
2020 /*
2021 * Bus Number Which has been Assigned to this SSP controller
2022 * on this board
2023 */
2024 master->bus_num = platform_info->bus_id;
2025 master->num_chipselect = platform_info->num_chipselect;
2026 master->cleanup = pl022_cleanup;
2027 master->setup = pl022_setup;
2028 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2029 master->transfer_one_message = pl022_transfer_one_message;
2030 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2031 master->rt = platform_info->rt;
2032
2033 /*
2034 * Supports mode 0-3, loopback, and active low CS. Transfers are
2035 * always MS bit first on the original pl022.
2036 */
2037 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2038 if (pl022->vendor->extended_cr)
2039 master->mode_bits |= SPI_LSB_FIRST;
2040
2041 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2042
2043 status = amba_request_regions(adev, NULL);
2044 if (status)
2045 goto err_no_ioregion;
2046
2047 pl022->phybase = adev->res.start;
2048 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2049 if (pl022->virtbase == NULL) {
2050 status = -ENOMEM;
2051 goto err_no_ioremap;
2052 }
2053 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2054 adev->res.start, pl022->virtbase);
2055
2056 pl022->clk = clk_get(&adev->dev, NULL);
2057 if (IS_ERR(pl022->clk)) {
2058 status = PTR_ERR(pl022->clk);
2059 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2060 goto err_no_clk;
2061 }
2062
2063 status = clk_prepare(pl022->clk);
2064 if (status) {
2065 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2066 goto err_clk_prep;
2067 }
2068
2069 status = clk_enable(pl022->clk);
2070 if (status) {
2071 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2072 goto err_no_clk_en;
2073 }
2074
2075 /* Initialize transfer pump */
2076 tasklet_init(&pl022->pump_transfers, pump_transfers,
2077 (unsigned long)pl022);
2078
2079 /* Disable SSP */
2080 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2081 SSP_CR1(pl022->virtbase));
2082 load_ssp_default_config(pl022);
2083
2084 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2085 pl022);
2086 if (status < 0) {
2087 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2088 goto err_no_irq;
2089 }
2090
2091 /* Get DMA channels */
2092 if (platform_info->enable_dma) {
2093 status = pl022_dma_probe(pl022);
2094 if (status != 0)
2095 platform_info->enable_dma = 0;
2096 }
2097
2098 /* Register with the SPI framework */
2099 amba_set_drvdata(adev, pl022);
2100 status = spi_register_master(master);
2101 if (status != 0) {
2102 dev_err(&adev->dev,
2103 "probe - problem registering spi master\n");
2104 goto err_spi_register;
2105 }
2106 dev_dbg(dev, "probe succeeded\n");
2107
2108 /* let runtime pm put suspend */
2109 if (platform_info->autosuspend_delay > 0) {
2110 dev_info(&adev->dev,
2111 "will use autosuspend for runtime pm, delay %dms\n",
2112 platform_info->autosuspend_delay);
2113 pm_runtime_set_autosuspend_delay(dev,
2114 platform_info->autosuspend_delay);
2115 pm_runtime_use_autosuspend(dev);
2116 pm_runtime_put_autosuspend(dev);
2117 } else {
2118 pm_runtime_put(dev);
2119 }
2120 return 0;
2121
2122 err_spi_register:
2123 if (platform_info->enable_dma)
2124 pl022_dma_remove(pl022);
2125
2126 free_irq(adev->irq[0], pl022);
2127 err_no_irq:
2128 clk_disable(pl022->clk);
2129 err_no_clk_en:
2130 clk_unprepare(pl022->clk);
2131 err_clk_prep:
2132 clk_put(pl022->clk);
2133 err_no_clk:
2134 iounmap(pl022->virtbase);
2135 err_no_ioremap:
2136 amba_release_regions(adev);
2137 err_no_ioregion:
2138 spi_master_put(master);
2139 err_no_master:
2140 err_no_pdata:
2141 return status;
2142}
2143
2144static int __devexit
2145pl022_remove(struct amba_device *adev)
2146{
2147 struct pl022 *pl022 = amba_get_drvdata(adev);
2148
2149 if (!pl022)
2150 return 0;
2151
2152 /*
2153 * undo pm_runtime_put() in probe. I assume that we're not
2154 * accessing the primecell here.
2155 */
2156 pm_runtime_get_noresume(&adev->dev);
2157
2158 load_ssp_default_config(pl022);
2159 if (pl022->master_info->enable_dma)
2160 pl022_dma_remove(pl022);
2161
2162 free_irq(adev->irq[0], pl022);
2163 clk_disable(pl022->clk);
2164 clk_unprepare(pl022->clk);
2165 clk_put(pl022->clk);
2166 iounmap(pl022->virtbase);
2167 amba_release_regions(adev);
2168 tasklet_disable(&pl022->pump_transfers);
2169 spi_unregister_master(pl022->master);
2170 spi_master_put(pl022->master);
2171 amba_set_drvdata(adev, NULL);
2172 return 0;
2173}
2174
2175#ifdef CONFIG_SUSPEND
2176static int pl022_suspend(struct device *dev)
2177{
2178 struct pl022 *pl022 = dev_get_drvdata(dev);
2179 int ret;
2180
2181 ret = spi_master_suspend(pl022->master);
2182 if (ret) {
2183 dev_warn(dev, "cannot suspend master\n");
2184 return ret;
2185 }
2186
2187 dev_dbg(dev, "suspended\n");
2188 return 0;
2189}
2190
2191static int pl022_resume(struct device *dev)
2192{
2193 struct pl022 *pl022 = dev_get_drvdata(dev);
2194 int ret;
2195
2196 /* Start the queue running */
2197 ret = spi_master_resume(pl022->master);
2198 if (ret)
2199 dev_err(dev, "problem starting queue (%d)\n", ret);
2200 else
2201 dev_dbg(dev, "resumed\n");
2202
2203 return ret;
2204}
2205#endif /* CONFIG_PM */
2206
2207#ifdef CONFIG_PM_RUNTIME
2208static int pl022_runtime_suspend(struct device *dev)
2209{
2210 struct pl022 *pl022 = dev_get_drvdata(dev);
2211
2212 clk_disable(pl022->clk);
2213
2214 return 0;
2215}
2216
2217static int pl022_runtime_resume(struct device *dev)
2218{
2219 struct pl022 *pl022 = dev_get_drvdata(dev);
2220
2221 clk_enable(pl022->clk);
2222
2223 return 0;
2224}
2225#endif
2226
2227static const struct dev_pm_ops pl022_dev_pm_ops = {
2228 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2229 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2230};
2231
2232static struct vendor_data vendor_arm = {
2233 .fifodepth = 8,
2234 .max_bpw = 16,
2235 .unidir = false,
2236 .extended_cr = false,
2237 .pl023 = false,
2238 .loopback = true,
2239};
2240
2241static struct vendor_data vendor_st = {
2242 .fifodepth = 32,
2243 .max_bpw = 32,
2244 .unidir = false,
2245 .extended_cr = true,
2246 .pl023 = false,
2247 .loopback = true,
2248};
2249
2250static struct vendor_data vendor_st_pl023 = {
2251 .fifodepth = 32,
2252 .max_bpw = 32,
2253 .unidir = false,
2254 .extended_cr = true,
2255 .pl023 = true,
2256 .loopback = false,
2257};
2258
2259static struct vendor_data vendor_db5500_pl023 = {
2260 .fifodepth = 32,
2261 .max_bpw = 32,
2262 .unidir = false,
2263 .extended_cr = true,
2264 .pl023 = true,
2265 .loopback = true,
2266};
2267
2268static struct amba_id pl022_ids[] = {
2269 {
2270 /*
2271 * ARM PL022 variant, this has a 16bit wide
2272 * and 8 locations deep TX/RX FIFO
2273 */
2274 .id = 0x00041022,
2275 .mask = 0x000fffff,
2276 .data = &vendor_arm,
2277 },
2278 {
2279 /*
2280 * ST Micro derivative, this has 32bit wide
2281 * and 32 locations deep TX/RX FIFO
2282 */
2283 .id = 0x01080022,
2284 .mask = 0xffffffff,
2285 .data = &vendor_st,
2286 },
2287 {
2288 /*
2289 * ST-Ericsson derivative "PL023" (this is not
2290 * an official ARM number), this is a PL022 SSP block
2291 * stripped to SPI mode only, it has 32bit wide
2292 * and 32 locations deep TX/RX FIFO but no extended
2293 * CR0/CR1 register
2294 */
2295 .id = 0x00080023,
2296 .mask = 0xffffffff,
2297 .data = &vendor_st_pl023,
2298 },
2299 {
2300 .id = 0x10080023,
2301 .mask = 0xffffffff,
2302 .data = &vendor_db5500_pl023,
2303 },
2304 { 0, 0 },
2305};
2306
2307MODULE_DEVICE_TABLE(amba, pl022_ids);
2308
2309static struct amba_driver pl022_driver = {
2310 .drv = {
2311 .name = "ssp-pl022",
2312 .pm = &pl022_dev_pm_ops,
2313 },
2314 .id_table = pl022_ids,
2315 .probe = pl022_probe,
2316 .remove = __devexit_p(pl022_remove),
2317};
2318
2319static int __init pl022_init(void)
2320{
2321 return amba_driver_register(&pl022_driver);
2322}
2323subsys_initcall(pl022_init);
2324
2325static void __exit pl022_exit(void)
2326{
2327 amba_driver_unregister(&pl022_driver);
2328}
2329module_exit(pl022_exit);
2330
2331MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2332MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2333MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/of.h>
35#include <linux/pinctrl/consumer.h>
36
37/*
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
41 */
42#define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44
45/*
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
49 */
50#define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
52
53#define DRIVE_TX 0
54#define DO_NOT_DRIVE_TX 1
55
56#define DO_NOT_QUEUE_DMA 0
57#define QUEUE_DMA 1
58
59#define RX_TRANSFER 1
60#define TX_TRANSFER 2
61
62/*
63 * Macros to access SSP Registers with their offsets
64 */
65#define SSP_CR0(r) (r + 0x000)
66#define SSP_CR1(r) (r + 0x004)
67#define SSP_DR(r) (r + 0x008)
68#define SSP_SR(r) (r + 0x00C)
69#define SSP_CPSR(r) (r + 0x010)
70#define SSP_IMSC(r) (r + 0x014)
71#define SSP_RIS(r) (r + 0x018)
72#define SSP_MIS(r) (r + 0x01C)
73#define SSP_ICR(r) (r + 0x020)
74#define SSP_DMACR(r) (r + 0x024)
75#define SSP_CSR(r) (r + 0x030) /* vendor extension */
76#define SSP_ITCR(r) (r + 0x080)
77#define SSP_ITIP(r) (r + 0x084)
78#define SSP_ITOP(r) (r + 0x088)
79#define SSP_TDR(r) (r + 0x08C)
80
81#define SSP_PID0(r) (r + 0xFE0)
82#define SSP_PID1(r) (r + 0xFE4)
83#define SSP_PID2(r) (r + 0xFE8)
84#define SSP_PID3(r) (r + 0xFEC)
85
86#define SSP_CID0(r) (r + 0xFF0)
87#define SSP_CID1(r) (r + 0xFF4)
88#define SSP_CID2(r) (r + 0xFF8)
89#define SSP_CID3(r) (r + 0xFFC)
90
91/*
92 * SSP Control Register 0 - SSP_CR0
93 */
94#define SSP_CR0_MASK_DSS (0x0FUL << 0)
95#define SSP_CR0_MASK_FRF (0x3UL << 4)
96#define SSP_CR0_MASK_SPO (0x1UL << 6)
97#define SSP_CR0_MASK_SPH (0x1UL << 7)
98#define SSP_CR0_MASK_SCR (0xFFUL << 8)
99
100/*
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
103 */
104#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
105#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
106#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
107#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
108
109/*
110 * SSP Control Register 0 - SSP_CR1
111 */
112#define SSP_CR1_MASK_LBM (0x1UL << 0)
113#define SSP_CR1_MASK_SSE (0x1UL << 1)
114#define SSP_CR1_MASK_MS (0x1UL << 2)
115#define SSP_CR1_MASK_SOD (0x1UL << 3)
116
117/*
118 * The ST version of this block adds some bits
119 * in SSP_CR1
120 */
121#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
122#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
123#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126/* This one is only in the PL023 variant */
127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128
129/*
130 * SSP Status Register - SSP_SR
131 */
132#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
133#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
134#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
135#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
136#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
137
138/*
139 * SSP Clock Prescale Register - SSP_CPSR
140 */
141#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
142
143/*
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145 */
146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
148#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
149#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150
151/*
152 * SSP Raw Interrupt Status Register - SSP_RIS
153 */
154/* Receive Overrun Raw Interrupt status */
155#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
156/* Receive Timeout Raw Interrupt status */
157#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
158/* Receive FIFO Raw Interrupt status */
159#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
160/* Transmit FIFO Raw Interrupt status */
161#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
162
163/*
164 * SSP Masked Interrupt Status Register - SSP_MIS
165 */
166/* Receive Overrun Masked Interrupt status */
167#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
168/* Receive Timeout Masked Interrupt status */
169#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
170/* Receive FIFO Masked Interrupt status */
171#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
172/* Transmit FIFO Masked Interrupt status */
173#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
174
175/*
176 * SSP Interrupt Clear Register - SSP_ICR
177 */
178/* Receive Overrun Raw Clear Interrupt bit */
179#define SSP_ICR_MASK_RORIC (0x1UL << 0)
180/* Receive Timeout Clear Interrupt bit */
181#define SSP_ICR_MASK_RTIC (0x1UL << 1)
182
183/*
184 * SSP DMA Control Register - SSP_DMACR
185 */
186/* Receive DMA Enable bit */
187#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
188/* Transmit DMA Enable bit */
189#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
190
191/*
192 * SSP Chip Select Control Register - SSP_CSR
193 * (vendor extension)
194 */
195#define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209#define ITIP_MASK_RXDMAC (0x1UL << 3)
210#define ITIP_MASK_TXDMAC (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219#define ITOP_MASK_SSPOEn (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221#define ITOP_MASK_RORINTR (0x1UL << 5)
222#define ITOP_MASK_RTINTR (0x1UL << 6)
223#define ITOP_MASK_RXINTR (0x1UL << 7)
224#define ITOP_MASK_TXINTR (0x1UL << 8)
225#define ITOP_MASK_INTR (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA (0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START ((void *) 0)
243#define STATE_RUNNING ((void *) 1)
244#define STATE_DONE ((void *) 2)
245#define STATE_ERROR ((void *) -1)
246#define STATE_TIMEOUT ((void *) -2)
247
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
259
260/*
261 * SSP Clock Defaults
262 */
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS ( \
280 SSP_IMSC_MASK_RORIM | \
281 SSP_IMSC_MASK_RTIM | \
282 SSP_IMSC_MASK_RXIM | \
283 SSP_IMSC_MASK_TXIM \
284)
285
286#define CLEAR_ALL_INTERRUPTS 0x3
287
288#define SPI_POLLING_TIMEOUT 1000
289
290/*
291 * The type of reading going on this chip
292 */
293enum ssp_reading {
294 READING_NULL,
295 READING_U8,
296 READING_U16,
297 READING_U32
298};
299
300/*
301 * The type of writing going on this chip
302 */
303enum ssp_writing {
304 WRITING_NULL,
305 WRITING_U8,
306 WRITING_U16,
307 WRITING_U32
308};
309
310/**
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
321 */
322struct vendor_data {
323 int fifodepth;
324 int max_bpw;
325 bool unidir;
326 bool extended_cr;
327 bool pl023;
328 bool loopback;
329 bool internal_cs_ctrl;
330};
331
332/**
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @master: SPI framework hookup
340 * @master_info: controller-specific data from machine setup
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @next_msg_cs_active: the next message in the queue has been examined
346 * and it was found that it uses the same chip select as the previous
347 * message, so we left it active after the previous transfer, and it's
348 * active already.
349 * @tx: current position in TX buffer to be read
350 * @tx_end: end position in TX buffer to be read
351 * @rx: current position in RX buffer to be written
352 * @rx_end: end position in RX buffer to be written
353 * @read: the type of read currently going on
354 * @write: the type of write currently going on
355 * @exp_fifo_level: expected FIFO level
356 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
357 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
358 * @dma_rx_channel: optional channel for RX DMA
359 * @dma_tx_channel: optional channel for TX DMA
360 * @sgt_rx: scattertable for the RX transfer
361 * @sgt_tx: scattertable for the TX transfer
362 * @dummypage: a dummy page used for driving data on the bus with DMA
363 * @dma_running: indicates whether DMA is in operation
364 * @cur_cs: current chip select index
365 * @cur_gpiod: current chip select GPIO descriptor
366 */
367struct pl022 {
368 struct amba_device *adev;
369 struct vendor_data *vendor;
370 resource_size_t phybase;
371 void __iomem *virtbase;
372 struct clk *clk;
373 struct spi_master *master;
374 struct pl022_ssp_controller *master_info;
375 /* Message per-transfer pump */
376 struct tasklet_struct pump_transfers;
377 struct spi_message *cur_msg;
378 struct spi_transfer *cur_transfer;
379 struct chip_data *cur_chip;
380 bool next_msg_cs_active;
381 void *tx;
382 void *tx_end;
383 void *rx;
384 void *rx_end;
385 enum ssp_reading read;
386 enum ssp_writing write;
387 u32 exp_fifo_level;
388 enum ssp_rx_level_trig rx_lev_trig;
389 enum ssp_tx_level_trig tx_lev_trig;
390 /* DMA settings */
391#ifdef CONFIG_DMA_ENGINE
392 struct dma_chan *dma_rx_channel;
393 struct dma_chan *dma_tx_channel;
394 struct sg_table sgt_rx;
395 struct sg_table sgt_tx;
396 char *dummypage;
397 bool dma_running;
398#endif
399 int cur_cs;
400 struct gpio_desc *cur_gpiod;
401};
402
403/**
404 * struct chip_data - To maintain runtime state of SSP for each client chip
405 * @cr0: Value of control register CR0 of SSP - on later ST variants this
406 * register is 32 bits wide rather than just 16
407 * @cr1: Value of control register CR1 of SSP
408 * @dmacr: Value of DMA control Register of SSP
409 * @cpsr: Value of Clock prescale register
410 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
411 * @enable_dma: Whether to enable DMA or not
412 * @read: function ptr to be used to read when doing xfer for this chip
413 * @write: function ptr to be used to write when doing xfer for this chip
414 * @xfer_type: polling/interrupt/DMA
415 *
416 * Runtime state of the SSP controller, maintained per chip,
417 * This would be set according to the current message that would be served
418 */
419struct chip_data {
420 u32 cr0;
421 u16 cr1;
422 u16 dmacr;
423 u16 cpsr;
424 u8 n_bytes;
425 bool enable_dma;
426 enum ssp_reading read;
427 enum ssp_writing write;
428 int xfer_type;
429};
430
431/**
432 * internal_cs_control - Control chip select signals via SSP_CSR.
433 * @pl022: SSP driver private data structure
434 * @command: select/delect the chip
435 *
436 * Used on controller with internal chip select control via SSP_CSR register
437 * (vendor extension). Each of the 5 LSB in the register controls one chip
438 * select signal.
439 */
440static void internal_cs_control(struct pl022 *pl022, u32 command)
441{
442 u32 tmp;
443
444 tmp = readw(SSP_CSR(pl022->virtbase));
445 if (command == SSP_CHIP_SELECT)
446 tmp &= ~BIT(pl022->cur_cs);
447 else
448 tmp |= BIT(pl022->cur_cs);
449 writew(tmp, SSP_CSR(pl022->virtbase));
450}
451
452static void pl022_cs_control(struct pl022 *pl022, u32 command)
453{
454 if (pl022->vendor->internal_cs_ctrl)
455 internal_cs_control(pl022, command);
456 else if (pl022->cur_gpiod)
457 /*
458 * This needs to be inverted since with GPIOLIB in
459 * control, the inversion will be handled by
460 * GPIOLIB's active low handling. The "command"
461 * passed into this function will be SSP_CHIP_SELECT
462 * which is enum:ed to 0, so we need the inverse
463 * (1) to activate chip select.
464 */
465 gpiod_set_value(pl022->cur_gpiod, !command);
466}
467
468/**
469 * giveback - current spi_message is over, schedule next message and call
470 * callback of this message. Assumes that caller already
471 * set message->status; dma and pio irqs are blocked
472 * @pl022: SSP driver private data structure
473 */
474static void giveback(struct pl022 *pl022)
475{
476 struct spi_transfer *last_transfer;
477 pl022->next_msg_cs_active = false;
478
479 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
480 struct spi_transfer, transfer_list);
481
482 /* Delay if requested before any change in chip select */
483 /*
484 * FIXME: This runs in interrupt context.
485 * Is this really smart?
486 */
487 spi_transfer_delay_exec(last_transfer);
488
489 if (!last_transfer->cs_change) {
490 struct spi_message *next_msg;
491
492 /*
493 * cs_change was not set. We can keep the chip select
494 * enabled if there is message in the queue and it is
495 * for the same spi device.
496 *
497 * We cannot postpone this until pump_messages, because
498 * after calling msg->complete (below) the driver that
499 * sent the current message could be unloaded, which
500 * could invalidate the cs_control() callback...
501 */
502 /* get a pointer to the next message, if any */
503 next_msg = spi_get_next_queued_message(pl022->master);
504
505 /*
506 * see if the next and current messages point
507 * to the same spi device.
508 */
509 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
510 next_msg = NULL;
511 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
512 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
513 else
514 pl022->next_msg_cs_active = true;
515
516 }
517
518 pl022->cur_msg = NULL;
519 pl022->cur_transfer = NULL;
520 pl022->cur_chip = NULL;
521
522 /* disable the SPI/SSP operation */
523 writew((readw(SSP_CR1(pl022->virtbase)) &
524 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
525
526 spi_finalize_current_message(pl022->master);
527}
528
529/**
530 * flush - flush the FIFO to reach a clean state
531 * @pl022: SSP driver private data structure
532 */
533static int flush(struct pl022 *pl022)
534{
535 unsigned long limit = loops_per_jiffy << 1;
536
537 dev_dbg(&pl022->adev->dev, "flush\n");
538 do {
539 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
540 readw(SSP_DR(pl022->virtbase));
541 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
542
543 pl022->exp_fifo_level = 0;
544
545 return limit;
546}
547
548/**
549 * restore_state - Load configuration of current chip
550 * @pl022: SSP driver private data structure
551 */
552static void restore_state(struct pl022 *pl022)
553{
554 struct chip_data *chip = pl022->cur_chip;
555
556 if (pl022->vendor->extended_cr)
557 writel(chip->cr0, SSP_CR0(pl022->virtbase));
558 else
559 writew(chip->cr0, SSP_CR0(pl022->virtbase));
560 writew(chip->cr1, SSP_CR1(pl022->virtbase));
561 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
562 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
563 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
564 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
565}
566
567/*
568 * Default SSP Register Values
569 */
570#define DEFAULT_SSP_REG_CR0 ( \
571 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
572 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
573 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
574 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
575 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
576)
577
578/* ST versions have slightly different bit layout */
579#define DEFAULT_SSP_REG_CR0_ST ( \
580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
581 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
585 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
586 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
587)
588
589/* The PL023 version is slightly different again */
590#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
591 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
592 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
593 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
594 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
595)
596
597#define DEFAULT_SSP_REG_CR1 ( \
598 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
599 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
600 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
601 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
602)
603
604/* ST versions extend this register to use all 16 bits */
605#define DEFAULT_SSP_REG_CR1_ST ( \
606 DEFAULT_SSP_REG_CR1 | \
607 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
610 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
611 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
612)
613
614/*
615 * The PL023 variant has further differences: no loopback mode, no microwire
616 * support, and a new clock feedback delay setting.
617 */
618#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
619 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
620 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
621 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
622 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
623 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
624 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
626 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
627)
628
629#define DEFAULT_SSP_REG_CPSR ( \
630 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
631)
632
633#define DEFAULT_SSP_REG_DMACR (\
634 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
635 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
636)
637
638/**
639 * load_ssp_default_config - Load default configuration for SSP
640 * @pl022: SSP driver private data structure
641 */
642static void load_ssp_default_config(struct pl022 *pl022)
643{
644 if (pl022->vendor->pl023) {
645 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
646 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
647 } else if (pl022->vendor->extended_cr) {
648 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
649 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
650 } else {
651 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
652 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
653 }
654 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
655 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
656 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
657 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
658}
659
660/*
661 * This will write to TX and read from RX according to the parameters
662 * set in pl022.
663 */
664static void readwriter(struct pl022 *pl022)
665{
666
667 /*
668 * The FIFO depth is different between primecell variants.
669 * I believe filling in too much in the FIFO might cause
670 * errons in 8bit wide transfers on ARM variants (just 8 words
671 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
672 *
673 * To prevent this issue, the TX FIFO is only filled to the
674 * unused RX FIFO fill length, regardless of what the TX
675 * FIFO status flag indicates.
676 */
677 dev_dbg(&pl022->adev->dev,
678 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
679 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
680
681 /* Read as much as you can */
682 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
683 && (pl022->rx < pl022->rx_end)) {
684 switch (pl022->read) {
685 case READING_NULL:
686 readw(SSP_DR(pl022->virtbase));
687 break;
688 case READING_U8:
689 *(u8 *) (pl022->rx) =
690 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
691 break;
692 case READING_U16:
693 *(u16 *) (pl022->rx) =
694 (u16) readw(SSP_DR(pl022->virtbase));
695 break;
696 case READING_U32:
697 *(u32 *) (pl022->rx) =
698 readl(SSP_DR(pl022->virtbase));
699 break;
700 }
701 pl022->rx += (pl022->cur_chip->n_bytes);
702 pl022->exp_fifo_level--;
703 }
704 /*
705 * Write as much as possible up to the RX FIFO size
706 */
707 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
708 && (pl022->tx < pl022->tx_end)) {
709 switch (pl022->write) {
710 case WRITING_NULL:
711 writew(0x0, SSP_DR(pl022->virtbase));
712 break;
713 case WRITING_U8:
714 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
715 break;
716 case WRITING_U16:
717 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
718 break;
719 case WRITING_U32:
720 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
721 break;
722 }
723 pl022->tx += (pl022->cur_chip->n_bytes);
724 pl022->exp_fifo_level++;
725 /*
726 * This inner reader takes care of things appearing in the RX
727 * FIFO as we're transmitting. This will happen a lot since the
728 * clock starts running when you put things into the TX FIFO,
729 * and then things are continuously clocked into the RX FIFO.
730 */
731 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
732 && (pl022->rx < pl022->rx_end)) {
733 switch (pl022->read) {
734 case READING_NULL:
735 readw(SSP_DR(pl022->virtbase));
736 break;
737 case READING_U8:
738 *(u8 *) (pl022->rx) =
739 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
740 break;
741 case READING_U16:
742 *(u16 *) (pl022->rx) =
743 (u16) readw(SSP_DR(pl022->virtbase));
744 break;
745 case READING_U32:
746 *(u32 *) (pl022->rx) =
747 readl(SSP_DR(pl022->virtbase));
748 break;
749 }
750 pl022->rx += (pl022->cur_chip->n_bytes);
751 pl022->exp_fifo_level--;
752 }
753 }
754 /*
755 * When we exit here the TX FIFO should be full and the RX FIFO
756 * should be empty
757 */
758}
759
760/**
761 * next_transfer - Move to the Next transfer in the current spi message
762 * @pl022: SSP driver private data structure
763 *
764 * This function moves though the linked list of spi transfers in the
765 * current spi message and returns with the state of current spi
766 * message i.e whether its last transfer is done(STATE_DONE) or
767 * Next transfer is ready(STATE_RUNNING)
768 */
769static void *next_transfer(struct pl022 *pl022)
770{
771 struct spi_message *msg = pl022->cur_msg;
772 struct spi_transfer *trans = pl022->cur_transfer;
773
774 /* Move to next transfer */
775 if (trans->transfer_list.next != &msg->transfers) {
776 pl022->cur_transfer =
777 list_entry(trans->transfer_list.next,
778 struct spi_transfer, transfer_list);
779 return STATE_RUNNING;
780 }
781 return STATE_DONE;
782}
783
784/*
785 * This DMA functionality is only compiled in if we have
786 * access to the generic DMA devices/DMA engine.
787 */
788#ifdef CONFIG_DMA_ENGINE
789static void unmap_free_dma_scatter(struct pl022 *pl022)
790{
791 /* Unmap and free the SG tables */
792 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
793 pl022->sgt_tx.nents, DMA_TO_DEVICE);
794 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
795 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
796 sg_free_table(&pl022->sgt_rx);
797 sg_free_table(&pl022->sgt_tx);
798}
799
800static void dma_callback(void *data)
801{
802 struct pl022 *pl022 = data;
803 struct spi_message *msg = pl022->cur_msg;
804
805 BUG_ON(!pl022->sgt_rx.sgl);
806
807#ifdef VERBOSE_DEBUG
808 /*
809 * Optionally dump out buffers to inspect contents, this is
810 * good if you want to convince yourself that the loopback
811 * read/write contents are the same, when adopting to a new
812 * DMA engine.
813 */
814 {
815 struct scatterlist *sg;
816 unsigned int i;
817
818 dma_sync_sg_for_cpu(&pl022->adev->dev,
819 pl022->sgt_rx.sgl,
820 pl022->sgt_rx.nents,
821 DMA_FROM_DEVICE);
822
823 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
824 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
825 print_hex_dump(KERN_ERR, "SPI RX: ",
826 DUMP_PREFIX_OFFSET,
827 16,
828 1,
829 sg_virt(sg),
830 sg_dma_len(sg),
831 1);
832 }
833 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
834 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
835 print_hex_dump(KERN_ERR, "SPI TX: ",
836 DUMP_PREFIX_OFFSET,
837 16,
838 1,
839 sg_virt(sg),
840 sg_dma_len(sg),
841 1);
842 }
843 }
844#endif
845
846 unmap_free_dma_scatter(pl022);
847
848 /* Update total bytes transferred */
849 msg->actual_length += pl022->cur_transfer->len;
850 /* Move to next transfer */
851 msg->state = next_transfer(pl022);
852 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
853 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
854 tasklet_schedule(&pl022->pump_transfers);
855}
856
857static void setup_dma_scatter(struct pl022 *pl022,
858 void *buffer,
859 unsigned int length,
860 struct sg_table *sgtab)
861{
862 struct scatterlist *sg;
863 int bytesleft = length;
864 void *bufp = buffer;
865 int mapbytes;
866 int i;
867
868 if (buffer) {
869 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
870 /*
871 * If there are less bytes left than what fits
872 * in the current page (plus page alignment offset)
873 * we just feed in this, else we stuff in as much
874 * as we can.
875 */
876 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
877 mapbytes = bytesleft;
878 else
879 mapbytes = PAGE_SIZE - offset_in_page(bufp);
880 sg_set_page(sg, virt_to_page(bufp),
881 mapbytes, offset_in_page(bufp));
882 bufp += mapbytes;
883 bytesleft -= mapbytes;
884 dev_dbg(&pl022->adev->dev,
885 "set RX/TX target page @ %p, %d bytes, %d left\n",
886 bufp, mapbytes, bytesleft);
887 }
888 } else {
889 /* Map the dummy buffer on every page */
890 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
891 if (bytesleft < PAGE_SIZE)
892 mapbytes = bytesleft;
893 else
894 mapbytes = PAGE_SIZE;
895 sg_set_page(sg, virt_to_page(pl022->dummypage),
896 mapbytes, 0);
897 bytesleft -= mapbytes;
898 dev_dbg(&pl022->adev->dev,
899 "set RX/TX to dummy page %d bytes, %d left\n",
900 mapbytes, bytesleft);
901
902 }
903 }
904 BUG_ON(bytesleft);
905}
906
907/**
908 * configure_dma - configures the channels for the next transfer
909 * @pl022: SSP driver's private data structure
910 */
911static int configure_dma(struct pl022 *pl022)
912{
913 struct dma_slave_config rx_conf = {
914 .src_addr = SSP_DR(pl022->phybase),
915 .direction = DMA_DEV_TO_MEM,
916 .device_fc = false,
917 };
918 struct dma_slave_config tx_conf = {
919 .dst_addr = SSP_DR(pl022->phybase),
920 .direction = DMA_MEM_TO_DEV,
921 .device_fc = false,
922 };
923 unsigned int pages;
924 int ret;
925 int rx_sglen, tx_sglen;
926 struct dma_chan *rxchan = pl022->dma_rx_channel;
927 struct dma_chan *txchan = pl022->dma_tx_channel;
928 struct dma_async_tx_descriptor *rxdesc;
929 struct dma_async_tx_descriptor *txdesc;
930
931 /* Check that the channels are available */
932 if (!rxchan || !txchan)
933 return -ENODEV;
934
935 /*
936 * If supplied, the DMA burstsize should equal the FIFO trigger level.
937 * Notice that the DMA engine uses one-to-one mapping. Since we can
938 * not trigger on 2 elements this needs explicit mapping rather than
939 * calculation.
940 */
941 switch (pl022->rx_lev_trig) {
942 case SSP_RX_1_OR_MORE_ELEM:
943 rx_conf.src_maxburst = 1;
944 break;
945 case SSP_RX_4_OR_MORE_ELEM:
946 rx_conf.src_maxburst = 4;
947 break;
948 case SSP_RX_8_OR_MORE_ELEM:
949 rx_conf.src_maxburst = 8;
950 break;
951 case SSP_RX_16_OR_MORE_ELEM:
952 rx_conf.src_maxburst = 16;
953 break;
954 case SSP_RX_32_OR_MORE_ELEM:
955 rx_conf.src_maxburst = 32;
956 break;
957 default:
958 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
959 break;
960 }
961
962 switch (pl022->tx_lev_trig) {
963 case SSP_TX_1_OR_MORE_EMPTY_LOC:
964 tx_conf.dst_maxburst = 1;
965 break;
966 case SSP_TX_4_OR_MORE_EMPTY_LOC:
967 tx_conf.dst_maxburst = 4;
968 break;
969 case SSP_TX_8_OR_MORE_EMPTY_LOC:
970 tx_conf.dst_maxburst = 8;
971 break;
972 case SSP_TX_16_OR_MORE_EMPTY_LOC:
973 tx_conf.dst_maxburst = 16;
974 break;
975 case SSP_TX_32_OR_MORE_EMPTY_LOC:
976 tx_conf.dst_maxburst = 32;
977 break;
978 default:
979 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
980 break;
981 }
982
983 switch (pl022->read) {
984 case READING_NULL:
985 /* Use the same as for writing */
986 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
987 break;
988 case READING_U8:
989 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
990 break;
991 case READING_U16:
992 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
993 break;
994 case READING_U32:
995 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
996 break;
997 }
998
999 switch (pl022->write) {
1000 case WRITING_NULL:
1001 /* Use the same as for reading */
1002 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003 break;
1004 case WRITING_U8:
1005 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1006 break;
1007 case WRITING_U16:
1008 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1009 break;
1010 case WRITING_U32:
1011 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1012 break;
1013 }
1014
1015 /* SPI pecularity: we need to read and write the same width */
1016 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1017 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1018 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1019 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1020 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1021
1022 dmaengine_slave_config(rxchan, &rx_conf);
1023 dmaengine_slave_config(txchan, &tx_conf);
1024
1025 /* Create sglists for the transfers */
1026 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1027 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1028
1029 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1030 if (ret)
1031 goto err_alloc_rx_sg;
1032
1033 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1034 if (ret)
1035 goto err_alloc_tx_sg;
1036
1037 /* Fill in the scatterlists for the RX+TX buffers */
1038 setup_dma_scatter(pl022, pl022->rx,
1039 pl022->cur_transfer->len, &pl022->sgt_rx);
1040 setup_dma_scatter(pl022, pl022->tx,
1041 pl022->cur_transfer->len, &pl022->sgt_tx);
1042
1043 /* Map DMA buffers */
1044 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1045 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1046 if (!rx_sglen)
1047 goto err_rx_sgmap;
1048
1049 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1050 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1051 if (!tx_sglen)
1052 goto err_tx_sgmap;
1053
1054 /* Send both scatterlists */
1055 rxdesc = dmaengine_prep_slave_sg(rxchan,
1056 pl022->sgt_rx.sgl,
1057 rx_sglen,
1058 DMA_DEV_TO_MEM,
1059 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060 if (!rxdesc)
1061 goto err_rxdesc;
1062
1063 txdesc = dmaengine_prep_slave_sg(txchan,
1064 pl022->sgt_tx.sgl,
1065 tx_sglen,
1066 DMA_MEM_TO_DEV,
1067 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1068 if (!txdesc)
1069 goto err_txdesc;
1070
1071 /* Put the callback on the RX transfer only, that should finish last */
1072 rxdesc->callback = dma_callback;
1073 rxdesc->callback_param = pl022;
1074
1075 /* Submit and fire RX and TX with TX last so we're ready to read! */
1076 dmaengine_submit(rxdesc);
1077 dmaengine_submit(txdesc);
1078 dma_async_issue_pending(rxchan);
1079 dma_async_issue_pending(txchan);
1080 pl022->dma_running = true;
1081
1082 return 0;
1083
1084err_txdesc:
1085 dmaengine_terminate_all(txchan);
1086err_rxdesc:
1087 dmaengine_terminate_all(rxchan);
1088 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1089 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1090err_tx_sgmap:
1091 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1092 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1093err_rx_sgmap:
1094 sg_free_table(&pl022->sgt_tx);
1095err_alloc_tx_sg:
1096 sg_free_table(&pl022->sgt_rx);
1097err_alloc_rx_sg:
1098 return -ENOMEM;
1099}
1100
1101static int pl022_dma_probe(struct pl022 *pl022)
1102{
1103 dma_cap_mask_t mask;
1104
1105 /* Try to acquire a generic DMA engine slave channel */
1106 dma_cap_zero(mask);
1107 dma_cap_set(DMA_SLAVE, mask);
1108 /*
1109 * We need both RX and TX channels to do DMA, else do none
1110 * of them.
1111 */
1112 pl022->dma_rx_channel = dma_request_channel(mask,
1113 pl022->master_info->dma_filter,
1114 pl022->master_info->dma_rx_param);
1115 if (!pl022->dma_rx_channel) {
1116 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1117 goto err_no_rxchan;
1118 }
1119
1120 pl022->dma_tx_channel = dma_request_channel(mask,
1121 pl022->master_info->dma_filter,
1122 pl022->master_info->dma_tx_param);
1123 if (!pl022->dma_tx_channel) {
1124 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1125 goto err_no_txchan;
1126 }
1127
1128 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129 if (!pl022->dummypage)
1130 goto err_no_dummypage;
1131
1132 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1133 dma_chan_name(pl022->dma_rx_channel),
1134 dma_chan_name(pl022->dma_tx_channel));
1135
1136 return 0;
1137
1138err_no_dummypage:
1139 dma_release_channel(pl022->dma_tx_channel);
1140err_no_txchan:
1141 dma_release_channel(pl022->dma_rx_channel);
1142 pl022->dma_rx_channel = NULL;
1143err_no_rxchan:
1144 dev_err(&pl022->adev->dev,
1145 "Failed to work in dma mode, work without dma!\n");
1146 return -ENODEV;
1147}
1148
1149static int pl022_dma_autoprobe(struct pl022 *pl022)
1150{
1151 struct device *dev = &pl022->adev->dev;
1152 struct dma_chan *chan;
1153 int err;
1154
1155 /* automatically configure DMA channels from platform, normally using DT */
1156 chan = dma_request_chan(dev, "rx");
1157 if (IS_ERR(chan)) {
1158 err = PTR_ERR(chan);
1159 goto err_no_rxchan;
1160 }
1161
1162 pl022->dma_rx_channel = chan;
1163
1164 chan = dma_request_chan(dev, "tx");
1165 if (IS_ERR(chan)) {
1166 err = PTR_ERR(chan);
1167 goto err_no_txchan;
1168 }
1169
1170 pl022->dma_tx_channel = chan;
1171
1172 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1173 if (!pl022->dummypage) {
1174 err = -ENOMEM;
1175 goto err_no_dummypage;
1176 }
1177
1178 return 0;
1179
1180err_no_dummypage:
1181 dma_release_channel(pl022->dma_tx_channel);
1182 pl022->dma_tx_channel = NULL;
1183err_no_txchan:
1184 dma_release_channel(pl022->dma_rx_channel);
1185 pl022->dma_rx_channel = NULL;
1186err_no_rxchan:
1187 return err;
1188}
1189
1190static void terminate_dma(struct pl022 *pl022)
1191{
1192 struct dma_chan *rxchan = pl022->dma_rx_channel;
1193 struct dma_chan *txchan = pl022->dma_tx_channel;
1194
1195 dmaengine_terminate_all(rxchan);
1196 dmaengine_terminate_all(txchan);
1197 unmap_free_dma_scatter(pl022);
1198 pl022->dma_running = false;
1199}
1200
1201static void pl022_dma_remove(struct pl022 *pl022)
1202{
1203 if (pl022->dma_running)
1204 terminate_dma(pl022);
1205 if (pl022->dma_tx_channel)
1206 dma_release_channel(pl022->dma_tx_channel);
1207 if (pl022->dma_rx_channel)
1208 dma_release_channel(pl022->dma_rx_channel);
1209 kfree(pl022->dummypage);
1210}
1211
1212#else
1213static inline int configure_dma(struct pl022 *pl022)
1214{
1215 return -ENODEV;
1216}
1217
1218static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1219{
1220 return 0;
1221}
1222
1223static inline int pl022_dma_probe(struct pl022 *pl022)
1224{
1225 return 0;
1226}
1227
1228static inline void pl022_dma_remove(struct pl022 *pl022)
1229{
1230}
1231#endif
1232
1233/**
1234 * pl022_interrupt_handler - Interrupt handler for SSP controller
1235 * @irq: IRQ number
1236 * @dev_id: Local device data
1237 *
1238 * This function handles interrupts generated for an interrupt based transfer.
1239 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1240 * current message's state as STATE_ERROR and schedule the tasklet
1241 * pump_transfers which will do the postprocessing of the current message by
1242 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1243 * more data, and writes data in TX FIFO till it is not full. If we complete
1244 * the transfer we move to the next transfer and schedule the tasklet.
1245 */
1246static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1247{
1248 struct pl022 *pl022 = dev_id;
1249 struct spi_message *msg = pl022->cur_msg;
1250 u16 irq_status = 0;
1251
1252 if (unlikely(!msg)) {
1253 dev_err(&pl022->adev->dev,
1254 "bad message state in interrupt handler");
1255 /* Never fail */
1256 return IRQ_HANDLED;
1257 }
1258
1259 /* Read the Interrupt Status Register */
1260 irq_status = readw(SSP_MIS(pl022->virtbase));
1261
1262 if (unlikely(!irq_status))
1263 return IRQ_NONE;
1264
1265 /*
1266 * This handles the FIFO interrupts, the timeout
1267 * interrupts are flatly ignored, they cannot be
1268 * trusted.
1269 */
1270 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1271 /*
1272 * Overrun interrupt - bail out since our Data has been
1273 * corrupted
1274 */
1275 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1276 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1277 dev_err(&pl022->adev->dev,
1278 "RXFIFO is full\n");
1279
1280 /*
1281 * Disable and clear interrupts, disable SSP,
1282 * mark message with bad status so it can be
1283 * retried.
1284 */
1285 writew(DISABLE_ALL_INTERRUPTS,
1286 SSP_IMSC(pl022->virtbase));
1287 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1288 writew((readw(SSP_CR1(pl022->virtbase)) &
1289 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1290 msg->state = STATE_ERROR;
1291
1292 /* Schedule message queue handler */
1293 tasklet_schedule(&pl022->pump_transfers);
1294 return IRQ_HANDLED;
1295 }
1296
1297 readwriter(pl022);
1298
1299 if (pl022->tx == pl022->tx_end) {
1300 /* Disable Transmit interrupt, enable receive interrupt */
1301 writew((readw(SSP_IMSC(pl022->virtbase)) &
1302 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1303 SSP_IMSC(pl022->virtbase));
1304 }
1305
1306 /*
1307 * Since all transactions must write as much as shall be read,
1308 * we can conclude the entire transaction once RX is complete.
1309 * At this point, all TX will always be finished.
1310 */
1311 if (pl022->rx >= pl022->rx_end) {
1312 writew(DISABLE_ALL_INTERRUPTS,
1313 SSP_IMSC(pl022->virtbase));
1314 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1315 if (unlikely(pl022->rx > pl022->rx_end)) {
1316 dev_warn(&pl022->adev->dev, "read %u surplus "
1317 "bytes (did you request an odd "
1318 "number of bytes on a 16bit bus?)\n",
1319 (u32) (pl022->rx - pl022->rx_end));
1320 }
1321 /* Update total bytes transferred */
1322 msg->actual_length += pl022->cur_transfer->len;
1323 /* Move to next transfer */
1324 msg->state = next_transfer(pl022);
1325 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1326 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1327 tasklet_schedule(&pl022->pump_transfers);
1328 return IRQ_HANDLED;
1329 }
1330
1331 return IRQ_HANDLED;
1332}
1333
1334/*
1335 * This sets up the pointers to memory for the next message to
1336 * send out on the SPI bus.
1337 */
1338static int set_up_next_transfer(struct pl022 *pl022,
1339 struct spi_transfer *transfer)
1340{
1341 int residue;
1342
1343 /* Sanity check the message for this bus width */
1344 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1345 if (unlikely(residue != 0)) {
1346 dev_err(&pl022->adev->dev,
1347 "message of %u bytes to transmit but the current "
1348 "chip bus has a data width of %u bytes!\n",
1349 pl022->cur_transfer->len,
1350 pl022->cur_chip->n_bytes);
1351 dev_err(&pl022->adev->dev, "skipping this message\n");
1352 return -EIO;
1353 }
1354 pl022->tx = (void *)transfer->tx_buf;
1355 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1356 pl022->rx = (void *)transfer->rx_buf;
1357 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1358 pl022->write =
1359 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1360 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1361 return 0;
1362}
1363
1364/**
1365 * pump_transfers - Tasklet function which schedules next transfer
1366 * when running in interrupt or DMA transfer mode.
1367 * @data: SSP driver private data structure
1368 *
1369 */
1370static void pump_transfers(unsigned long data)
1371{
1372 struct pl022 *pl022 = (struct pl022 *) data;
1373 struct spi_message *message = NULL;
1374 struct spi_transfer *transfer = NULL;
1375 struct spi_transfer *previous = NULL;
1376
1377 /* Get current state information */
1378 message = pl022->cur_msg;
1379 transfer = pl022->cur_transfer;
1380
1381 /* Handle for abort */
1382 if (message->state == STATE_ERROR) {
1383 message->status = -EIO;
1384 giveback(pl022);
1385 return;
1386 }
1387
1388 /* Handle end of message */
1389 if (message->state == STATE_DONE) {
1390 message->status = 0;
1391 giveback(pl022);
1392 return;
1393 }
1394
1395 /* Delay if requested at end of transfer before CS change */
1396 if (message->state == STATE_RUNNING) {
1397 previous = list_entry(transfer->transfer_list.prev,
1398 struct spi_transfer,
1399 transfer_list);
1400 /*
1401 * FIXME: This runs in interrupt context.
1402 * Is this really smart?
1403 */
1404 spi_transfer_delay_exec(previous);
1405
1406 /* Reselect chip select only if cs_change was requested */
1407 if (previous->cs_change)
1408 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1409 } else {
1410 /* STATE_START */
1411 message->state = STATE_RUNNING;
1412 }
1413
1414 if (set_up_next_transfer(pl022, transfer)) {
1415 message->state = STATE_ERROR;
1416 message->status = -EIO;
1417 giveback(pl022);
1418 return;
1419 }
1420 /* Flush the FIFOs and let's go! */
1421 flush(pl022);
1422
1423 if (pl022->cur_chip->enable_dma) {
1424 if (configure_dma(pl022)) {
1425 dev_dbg(&pl022->adev->dev,
1426 "configuration of DMA failed, fall back to interrupt mode\n");
1427 goto err_config_dma;
1428 }
1429 return;
1430 }
1431
1432err_config_dma:
1433 /* enable all interrupts except RX */
1434 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1435}
1436
1437static void do_interrupt_dma_transfer(struct pl022 *pl022)
1438{
1439 /*
1440 * Default is to enable all interrupts except RX -
1441 * this will be enabled once TX is complete
1442 */
1443 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1444
1445 /* Enable target chip, if not already active */
1446 if (!pl022->next_msg_cs_active)
1447 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1448
1449 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1450 /* Error path */
1451 pl022->cur_msg->state = STATE_ERROR;
1452 pl022->cur_msg->status = -EIO;
1453 giveback(pl022);
1454 return;
1455 }
1456 /* If we're using DMA, set up DMA here */
1457 if (pl022->cur_chip->enable_dma) {
1458 /* Configure DMA transfer */
1459 if (configure_dma(pl022)) {
1460 dev_dbg(&pl022->adev->dev,
1461 "configuration of DMA failed, fall back to interrupt mode\n");
1462 goto err_config_dma;
1463 }
1464 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1465 irqflags = DISABLE_ALL_INTERRUPTS;
1466 }
1467err_config_dma:
1468 /* Enable SSP, turn on interrupts */
1469 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1470 SSP_CR1(pl022->virtbase));
1471 writew(irqflags, SSP_IMSC(pl022->virtbase));
1472}
1473
1474static void print_current_status(struct pl022 *pl022)
1475{
1476 u32 read_cr0;
1477 u16 read_cr1, read_dmacr, read_sr;
1478
1479 if (pl022->vendor->extended_cr)
1480 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1481 else
1482 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1483 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1484 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1485 read_sr = readw(SSP_SR(pl022->virtbase));
1486
1487 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1488 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1489 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1490 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1491 dev_warn(&pl022->adev->dev,
1492 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1493 pl022->exp_fifo_level,
1494 pl022->vendor->fifodepth);
1495
1496}
1497
1498static void do_polling_transfer(struct pl022 *pl022)
1499{
1500 struct spi_message *message = NULL;
1501 struct spi_transfer *transfer = NULL;
1502 struct spi_transfer *previous = NULL;
1503 unsigned long time, timeout;
1504
1505 message = pl022->cur_msg;
1506
1507 while (message->state != STATE_DONE) {
1508 /* Handle for abort */
1509 if (message->state == STATE_ERROR)
1510 break;
1511 transfer = pl022->cur_transfer;
1512
1513 /* Delay if requested at end of transfer */
1514 if (message->state == STATE_RUNNING) {
1515 previous =
1516 list_entry(transfer->transfer_list.prev,
1517 struct spi_transfer, transfer_list);
1518 spi_transfer_delay_exec(previous);
1519 if (previous->cs_change)
1520 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521 } else {
1522 /* STATE_START */
1523 message->state = STATE_RUNNING;
1524 if (!pl022->next_msg_cs_active)
1525 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526 }
1527
1528 /* Configuration Changing Per Transfer */
1529 if (set_up_next_transfer(pl022, transfer)) {
1530 /* Error path */
1531 message->state = STATE_ERROR;
1532 break;
1533 }
1534 /* Flush FIFOs and enable SSP */
1535 flush(pl022);
1536 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537 SSP_CR1(pl022->virtbase));
1538
1539 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540
1541 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543 time = jiffies;
1544 readwriter(pl022);
1545 if (time_after(time, timeout)) {
1546 dev_warn(&pl022->adev->dev,
1547 "%s: timeout!\n", __func__);
1548 message->state = STATE_TIMEOUT;
1549 print_current_status(pl022);
1550 goto out;
1551 }
1552 cpu_relax();
1553 }
1554
1555 /* Update total byte transferred */
1556 message->actual_length += pl022->cur_transfer->len;
1557 /* Move to next transfer */
1558 message->state = next_transfer(pl022);
1559 if (message->state != STATE_DONE
1560 && pl022->cur_transfer->cs_change)
1561 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1562 }
1563out:
1564 /* Handle end of message */
1565 if (message->state == STATE_DONE)
1566 message->status = 0;
1567 else if (message->state == STATE_TIMEOUT)
1568 message->status = -EAGAIN;
1569 else
1570 message->status = -EIO;
1571
1572 giveback(pl022);
1573 return;
1574}
1575
1576static int pl022_transfer_one_message(struct spi_master *master,
1577 struct spi_message *msg)
1578{
1579 struct pl022 *pl022 = spi_master_get_devdata(master);
1580
1581 /* Initial message state */
1582 pl022->cur_msg = msg;
1583 msg->state = STATE_START;
1584
1585 pl022->cur_transfer = list_entry(msg->transfers.next,
1586 struct spi_transfer, transfer_list);
1587
1588 /* Setup the SPI using the per chip configuration */
1589 pl022->cur_chip = spi_get_ctldata(msg->spi);
1590 pl022->cur_cs = msg->spi->chip_select;
1591 /* This is always available but may be set to -ENOENT */
1592 pl022->cur_gpiod = msg->spi->cs_gpiod;
1593
1594 restore_state(pl022);
1595 flush(pl022);
1596
1597 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1598 do_polling_transfer(pl022);
1599 else
1600 do_interrupt_dma_transfer(pl022);
1601
1602 return 0;
1603}
1604
1605static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1606{
1607 struct pl022 *pl022 = spi_master_get_devdata(master);
1608
1609 /* nothing more to do - disable spi/ssp and power off */
1610 writew((readw(SSP_CR1(pl022->virtbase)) &
1611 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1612
1613 return 0;
1614}
1615
1616static int verify_controller_parameters(struct pl022 *pl022,
1617 struct pl022_config_chip const *chip_info)
1618{
1619 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1620 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1621 dev_err(&pl022->adev->dev,
1622 "interface is configured incorrectly\n");
1623 return -EINVAL;
1624 }
1625 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1626 (!pl022->vendor->unidir)) {
1627 dev_err(&pl022->adev->dev,
1628 "unidirectional mode not supported in this "
1629 "hardware version\n");
1630 return -EINVAL;
1631 }
1632 if ((chip_info->hierarchy != SSP_MASTER)
1633 && (chip_info->hierarchy != SSP_SLAVE)) {
1634 dev_err(&pl022->adev->dev,
1635 "hierarchy is configured incorrectly\n");
1636 return -EINVAL;
1637 }
1638 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1639 && (chip_info->com_mode != DMA_TRANSFER)
1640 && (chip_info->com_mode != POLLING_TRANSFER)) {
1641 dev_err(&pl022->adev->dev,
1642 "Communication mode is configured incorrectly\n");
1643 return -EINVAL;
1644 }
1645 switch (chip_info->rx_lev_trig) {
1646 case SSP_RX_1_OR_MORE_ELEM:
1647 case SSP_RX_4_OR_MORE_ELEM:
1648 case SSP_RX_8_OR_MORE_ELEM:
1649 /* These are always OK, all variants can handle this */
1650 break;
1651 case SSP_RX_16_OR_MORE_ELEM:
1652 if (pl022->vendor->fifodepth < 16) {
1653 dev_err(&pl022->adev->dev,
1654 "RX FIFO Trigger Level is configured incorrectly\n");
1655 return -EINVAL;
1656 }
1657 break;
1658 case SSP_RX_32_OR_MORE_ELEM:
1659 if (pl022->vendor->fifodepth < 32) {
1660 dev_err(&pl022->adev->dev,
1661 "RX FIFO Trigger Level is configured incorrectly\n");
1662 return -EINVAL;
1663 }
1664 break;
1665 default:
1666 dev_err(&pl022->adev->dev,
1667 "RX FIFO Trigger Level is configured incorrectly\n");
1668 return -EINVAL;
1669 }
1670 switch (chip_info->tx_lev_trig) {
1671 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1672 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1673 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1674 /* These are always OK, all variants can handle this */
1675 break;
1676 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1677 if (pl022->vendor->fifodepth < 16) {
1678 dev_err(&pl022->adev->dev,
1679 "TX FIFO Trigger Level is configured incorrectly\n");
1680 return -EINVAL;
1681 }
1682 break;
1683 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1684 if (pl022->vendor->fifodepth < 32) {
1685 dev_err(&pl022->adev->dev,
1686 "TX FIFO Trigger Level is configured incorrectly\n");
1687 return -EINVAL;
1688 }
1689 break;
1690 default:
1691 dev_err(&pl022->adev->dev,
1692 "TX FIFO Trigger Level is configured incorrectly\n");
1693 return -EINVAL;
1694 }
1695 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1696 if ((chip_info->ctrl_len < SSP_BITS_4)
1697 || (chip_info->ctrl_len > SSP_BITS_32)) {
1698 dev_err(&pl022->adev->dev,
1699 "CTRL LEN is configured incorrectly\n");
1700 return -EINVAL;
1701 }
1702 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1703 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1704 dev_err(&pl022->adev->dev,
1705 "Wait State is configured incorrectly\n");
1706 return -EINVAL;
1707 }
1708 /* Half duplex is only available in the ST Micro version */
1709 if (pl022->vendor->extended_cr) {
1710 if ((chip_info->duplex !=
1711 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1712 && (chip_info->duplex !=
1713 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1714 dev_err(&pl022->adev->dev,
1715 "Microwire duplex mode is configured incorrectly\n");
1716 return -EINVAL;
1717 }
1718 } else {
1719 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1720 dev_err(&pl022->adev->dev,
1721 "Microwire half duplex mode requested,"
1722 " but this is only available in the"
1723 " ST version of PL022\n");
1724 return -EINVAL;
1725 }
1726 }
1727 }
1728 return 0;
1729}
1730
1731static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732{
1733 return rate / (cpsdvsr * (1 + scr));
1734}
1735
1736static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737 ssp_clock_params * clk_freq)
1738{
1739 /* Lets calculate the frequency parameters */
1740 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742 best_scr = 0, tmp, found = 0;
1743
1744 rate = clk_get_rate(pl022->clk);
1745 /* cpsdvscr = 2 & scr 0 */
1746 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747 /* cpsdvsr = 254 & scr = 255 */
1748 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749
1750 if (freq > max_tclk)
1751 dev_warn(&pl022->adev->dev,
1752 "Max speed that can be programmed is %d Hz, you requested %d\n",
1753 max_tclk, freq);
1754
1755 if (freq < min_tclk) {
1756 dev_err(&pl022->adev->dev,
1757 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758 freq, min_tclk);
1759 return -EINVAL;
1760 }
1761
1762 /*
1763 * best_freq will give closest possible available rate (<= requested
1764 * freq) for all values of scr & cpsdvsr.
1765 */
1766 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767 while (scr <= SCR_MAX) {
1768 tmp = spi_rate(rate, cpsdvsr, scr);
1769
1770 if (tmp > freq) {
1771 /* we need lower freq */
1772 scr++;
1773 continue;
1774 }
1775
1776 /*
1777 * If found exact value, mark found and break.
1778 * If found more closer value, update and break.
1779 */
1780 if (tmp > best_freq) {
1781 best_freq = tmp;
1782 best_cpsdvsr = cpsdvsr;
1783 best_scr = scr;
1784
1785 if (tmp == freq)
1786 found = 1;
1787 }
1788 /*
1789 * increased scr will give lower rates, which are not
1790 * required
1791 */
1792 break;
1793 }
1794 cpsdvsr += 2;
1795 scr = SCR_MIN;
1796 }
1797
1798 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799 freq);
1800
1801 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802 clk_freq->scr = (u8) (best_scr & 0xFF);
1803 dev_dbg(&pl022->adev->dev,
1804 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805 freq, best_freq);
1806 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807 clk_freq->cpsdvsr, clk_freq->scr);
1808
1809 return 0;
1810}
1811
1812/*
1813 * A piece of default chip info unless the platform
1814 * supplies it.
1815 */
1816static const struct pl022_config_chip pl022_default_chip_info = {
1817 .com_mode = INTERRUPT_TRANSFER,
1818 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1819 .hierarchy = SSP_MASTER,
1820 .slave_tx_disable = DO_NOT_DRIVE_TX,
1821 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823 .ctrl_len = SSP_BITS_8,
1824 .wait_state = SSP_MWIRE_WAIT_ZERO,
1825 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826};
1827
1828/**
1829 * pl022_setup - setup function registered to SPI master framework
1830 * @spi: spi device which is requesting setup
1831 *
1832 * This function is registered to the SPI framework for this SPI master
1833 * controller. If it is the first time when setup is called by this device,
1834 * this function will initialize the runtime state for this chip and save
1835 * the same in the device structure. Else it will update the runtime info
1836 * with the updated chip info. Nothing is really being written to the
1837 * controller hardware here, that is not done until the actual transfer
1838 * commence.
1839 */
1840static int pl022_setup(struct spi_device *spi)
1841{
1842 struct pl022_config_chip const *chip_info;
1843 struct pl022_config_chip chip_info_dt;
1844 struct chip_data *chip;
1845 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1846 int status = 0;
1847 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1848 unsigned int bits = spi->bits_per_word;
1849 u32 tmp;
1850 struct device_node *np = spi->dev.of_node;
1851
1852 if (!spi->max_speed_hz)
1853 return -EINVAL;
1854
1855 /* Get controller_state if one is supplied */
1856 chip = spi_get_ctldata(spi);
1857
1858 if (chip == NULL) {
1859 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1860 if (!chip)
1861 return -ENOMEM;
1862 dev_dbg(&spi->dev,
1863 "allocated memory for controller's runtime state\n");
1864 }
1865
1866 /* Get controller data if one is supplied */
1867 chip_info = spi->controller_data;
1868
1869 if (chip_info == NULL) {
1870 if (np) {
1871 chip_info_dt = pl022_default_chip_info;
1872
1873 chip_info_dt.hierarchy = SSP_MASTER;
1874 of_property_read_u32(np, "pl022,interface",
1875 &chip_info_dt.iface);
1876 of_property_read_u32(np, "pl022,com-mode",
1877 &chip_info_dt.com_mode);
1878 of_property_read_u32(np, "pl022,rx-level-trig",
1879 &chip_info_dt.rx_lev_trig);
1880 of_property_read_u32(np, "pl022,tx-level-trig",
1881 &chip_info_dt.tx_lev_trig);
1882 of_property_read_u32(np, "pl022,ctrl-len",
1883 &chip_info_dt.ctrl_len);
1884 of_property_read_u32(np, "pl022,wait-state",
1885 &chip_info_dt.wait_state);
1886 of_property_read_u32(np, "pl022,duplex",
1887 &chip_info_dt.duplex);
1888
1889 chip_info = &chip_info_dt;
1890 } else {
1891 chip_info = &pl022_default_chip_info;
1892 /* spi_board_info.controller_data not is supplied */
1893 dev_dbg(&spi->dev,
1894 "using default controller_data settings\n");
1895 }
1896 } else
1897 dev_dbg(&spi->dev,
1898 "using user supplied controller_data settings\n");
1899
1900 /*
1901 * We can override with custom divisors, else we use the board
1902 * frequency setting
1903 */
1904 if ((0 == chip_info->clk_freq.cpsdvsr)
1905 && (0 == chip_info->clk_freq.scr)) {
1906 status = calculate_effective_freq(pl022,
1907 spi->max_speed_hz,
1908 &clk_freq);
1909 if (status < 0)
1910 goto err_config_params;
1911 } else {
1912 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1913 if ((clk_freq.cpsdvsr % 2) != 0)
1914 clk_freq.cpsdvsr =
1915 clk_freq.cpsdvsr - 1;
1916 }
1917 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1918 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1919 status = -EINVAL;
1920 dev_err(&spi->dev,
1921 "cpsdvsr is configured incorrectly\n");
1922 goto err_config_params;
1923 }
1924
1925 status = verify_controller_parameters(pl022, chip_info);
1926 if (status) {
1927 dev_err(&spi->dev, "controller data is incorrect");
1928 goto err_config_params;
1929 }
1930
1931 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1932 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1933
1934 /* Now set controller state based on controller data */
1935 chip->xfer_type = chip_info->com_mode;
1936
1937 /* Check bits per word with vendor specific range */
1938 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1939 status = -ENOTSUPP;
1940 dev_err(&spi->dev, "illegal data size for this controller!\n");
1941 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1942 pl022->vendor->max_bpw);
1943 goto err_config_params;
1944 } else if (bits <= 8) {
1945 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1946 chip->n_bytes = 1;
1947 chip->read = READING_U8;
1948 chip->write = WRITING_U8;
1949 } else if (bits <= 16) {
1950 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1951 chip->n_bytes = 2;
1952 chip->read = READING_U16;
1953 chip->write = WRITING_U16;
1954 } else {
1955 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1956 chip->n_bytes = 4;
1957 chip->read = READING_U32;
1958 chip->write = WRITING_U32;
1959 }
1960
1961 /* Now Initialize all register settings required for this chip */
1962 chip->cr0 = 0;
1963 chip->cr1 = 0;
1964 chip->dmacr = 0;
1965 chip->cpsr = 0;
1966 if ((chip_info->com_mode == DMA_TRANSFER)
1967 && ((pl022->master_info)->enable_dma)) {
1968 chip->enable_dma = true;
1969 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1970 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1971 SSP_DMACR_MASK_RXDMAE, 0);
1972 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1973 SSP_DMACR_MASK_TXDMAE, 1);
1974 } else {
1975 chip->enable_dma = false;
1976 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1977 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1978 SSP_DMACR_MASK_RXDMAE, 0);
1979 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1980 SSP_DMACR_MASK_TXDMAE, 1);
1981 }
1982
1983 chip->cpsr = clk_freq.cpsdvsr;
1984
1985 /* Special setup for the ST micro extended control registers */
1986 if (pl022->vendor->extended_cr) {
1987 u32 etx;
1988
1989 if (pl022->vendor->pl023) {
1990 /* These bits are only in the PL023 */
1991 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1992 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1993 } else {
1994 /* These bits are in the PL022 but not PL023 */
1995 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1996 SSP_CR0_MASK_HALFDUP_ST, 5);
1997 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1998 SSP_CR0_MASK_CSS_ST, 16);
1999 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2000 SSP_CR0_MASK_FRF_ST, 21);
2001 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2002 SSP_CR1_MASK_MWAIT_ST, 6);
2003 }
2004 SSP_WRITE_BITS(chip->cr0, bits - 1,
2005 SSP_CR0_MASK_DSS_ST, 0);
2006
2007 if (spi->mode & SPI_LSB_FIRST) {
2008 tmp = SSP_RX_LSB;
2009 etx = SSP_TX_LSB;
2010 } else {
2011 tmp = SSP_RX_MSB;
2012 etx = SSP_TX_MSB;
2013 }
2014 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2015 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2016 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2017 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2018 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2019 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2020 } else {
2021 SSP_WRITE_BITS(chip->cr0, bits - 1,
2022 SSP_CR0_MASK_DSS, 0);
2023 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2024 SSP_CR0_MASK_FRF, 4);
2025 }
2026
2027 /* Stuff that is common for all versions */
2028 if (spi->mode & SPI_CPOL)
2029 tmp = SSP_CLK_POL_IDLE_HIGH;
2030 else
2031 tmp = SSP_CLK_POL_IDLE_LOW;
2032 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2033
2034 if (spi->mode & SPI_CPHA)
2035 tmp = SSP_CLK_SECOND_EDGE;
2036 else
2037 tmp = SSP_CLK_FIRST_EDGE;
2038 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2039
2040 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2041 /* Loopback is available on all versions except PL023 */
2042 if (pl022->vendor->loopback) {
2043 if (spi->mode & SPI_LOOP)
2044 tmp = LOOPBACK_ENABLED;
2045 else
2046 tmp = LOOPBACK_DISABLED;
2047 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2048 }
2049 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2050 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2051 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2052 3);
2053
2054 /* Save controller_state */
2055 spi_set_ctldata(spi, chip);
2056 return status;
2057 err_config_params:
2058 spi_set_ctldata(spi, NULL);
2059 kfree(chip);
2060 return status;
2061}
2062
2063/**
2064 * pl022_cleanup - cleanup function registered to SPI master framework
2065 * @spi: spi device which is requesting cleanup
2066 *
2067 * This function is registered to the SPI framework for this SPI master
2068 * controller. It will free the runtime state of chip.
2069 */
2070static void pl022_cleanup(struct spi_device *spi)
2071{
2072 struct chip_data *chip = spi_get_ctldata(spi);
2073
2074 spi_set_ctldata(spi, NULL);
2075 kfree(chip);
2076}
2077
2078static struct pl022_ssp_controller *
2079pl022_platform_data_dt_get(struct device *dev)
2080{
2081 struct device_node *np = dev->of_node;
2082 struct pl022_ssp_controller *pd;
2083
2084 if (!np) {
2085 dev_err(dev, "no dt node defined\n");
2086 return NULL;
2087 }
2088
2089 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2090 if (!pd)
2091 return NULL;
2092
2093 pd->bus_id = -1;
2094 pd->enable_dma = 1;
2095 of_property_read_u32(np, "pl022,autosuspend-delay",
2096 &pd->autosuspend_delay);
2097 pd->rt = of_property_read_bool(np, "pl022,rt");
2098
2099 return pd;
2100}
2101
2102static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2103{
2104 struct device *dev = &adev->dev;
2105 struct pl022_ssp_controller *platform_info =
2106 dev_get_platdata(&adev->dev);
2107 struct spi_master *master;
2108 struct pl022 *pl022 = NULL; /*Data for this driver */
2109 int status = 0;
2110
2111 dev_info(&adev->dev,
2112 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2113 if (!platform_info && IS_ENABLED(CONFIG_OF))
2114 platform_info = pl022_platform_data_dt_get(dev);
2115
2116 if (!platform_info) {
2117 dev_err(dev, "probe: no platform data defined\n");
2118 return -ENODEV;
2119 }
2120
2121 /* Allocate master with space for data */
2122 master = spi_alloc_master(dev, sizeof(struct pl022));
2123 if (master == NULL) {
2124 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2125 return -ENOMEM;
2126 }
2127
2128 pl022 = spi_master_get_devdata(master);
2129 pl022->master = master;
2130 pl022->master_info = platform_info;
2131 pl022->adev = adev;
2132 pl022->vendor = id->data;
2133
2134 /*
2135 * Bus Number Which has been Assigned to this SSP controller
2136 * on this board
2137 */
2138 master->bus_num = platform_info->bus_id;
2139 master->cleanup = pl022_cleanup;
2140 master->setup = pl022_setup;
2141 master->auto_runtime_pm = true;
2142 master->transfer_one_message = pl022_transfer_one_message;
2143 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2144 master->rt = platform_info->rt;
2145 master->dev.of_node = dev->of_node;
2146 master->use_gpio_descriptors = true;
2147
2148 /*
2149 * Supports mode 0-3, loopback, and active low CS. Transfers are
2150 * always MS bit first on the original pl022.
2151 */
2152 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2153 if (pl022->vendor->extended_cr)
2154 master->mode_bits |= SPI_LSB_FIRST;
2155
2156 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2157
2158 status = amba_request_regions(adev, NULL);
2159 if (status)
2160 goto err_no_ioregion;
2161
2162 pl022->phybase = adev->res.start;
2163 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2164 resource_size(&adev->res));
2165 if (pl022->virtbase == NULL) {
2166 status = -ENOMEM;
2167 goto err_no_ioremap;
2168 }
2169 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2170 &adev->res.start, pl022->virtbase);
2171
2172 pl022->clk = devm_clk_get(&adev->dev, NULL);
2173 if (IS_ERR(pl022->clk)) {
2174 status = PTR_ERR(pl022->clk);
2175 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2176 goto err_no_clk;
2177 }
2178
2179 status = clk_prepare_enable(pl022->clk);
2180 if (status) {
2181 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2182 goto err_no_clk_en;
2183 }
2184
2185 /* Initialize transfer pump */
2186 tasklet_init(&pl022->pump_transfers, pump_transfers,
2187 (unsigned long)pl022);
2188
2189 /* Disable SSP */
2190 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2191 SSP_CR1(pl022->virtbase));
2192 load_ssp_default_config(pl022);
2193
2194 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2195 0, "pl022", pl022);
2196 if (status < 0) {
2197 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2198 goto err_no_irq;
2199 }
2200
2201 /* Get DMA channels, try autoconfiguration first */
2202 status = pl022_dma_autoprobe(pl022);
2203 if (status == -EPROBE_DEFER) {
2204 dev_dbg(dev, "deferring probe to get DMA channel\n");
2205 goto err_no_irq;
2206 }
2207
2208 /* If that failed, use channels from platform_info */
2209 if (status == 0)
2210 platform_info->enable_dma = 1;
2211 else if (platform_info->enable_dma) {
2212 status = pl022_dma_probe(pl022);
2213 if (status != 0)
2214 platform_info->enable_dma = 0;
2215 }
2216
2217 /* Register with the SPI framework */
2218 amba_set_drvdata(adev, pl022);
2219 status = devm_spi_register_master(&adev->dev, master);
2220 if (status != 0) {
2221 dev_err(&adev->dev,
2222 "probe - problem registering spi master\n");
2223 goto err_spi_register;
2224 }
2225 dev_dbg(dev, "probe succeeded\n");
2226
2227 /* let runtime pm put suspend */
2228 if (platform_info->autosuspend_delay > 0) {
2229 dev_info(&adev->dev,
2230 "will use autosuspend for runtime pm, delay %dms\n",
2231 platform_info->autosuspend_delay);
2232 pm_runtime_set_autosuspend_delay(dev,
2233 platform_info->autosuspend_delay);
2234 pm_runtime_use_autosuspend(dev);
2235 }
2236 pm_runtime_put(dev);
2237
2238 return 0;
2239
2240 err_spi_register:
2241 if (platform_info->enable_dma)
2242 pl022_dma_remove(pl022);
2243 err_no_irq:
2244 clk_disable_unprepare(pl022->clk);
2245 err_no_clk_en:
2246 err_no_clk:
2247 err_no_ioremap:
2248 amba_release_regions(adev);
2249 err_no_ioregion:
2250 spi_master_put(master);
2251 return status;
2252}
2253
2254static void
2255pl022_remove(struct amba_device *adev)
2256{
2257 struct pl022 *pl022 = amba_get_drvdata(adev);
2258
2259 if (!pl022)
2260 return;
2261
2262 /*
2263 * undo pm_runtime_put() in probe. I assume that we're not
2264 * accessing the primecell here.
2265 */
2266 pm_runtime_get_noresume(&adev->dev);
2267
2268 load_ssp_default_config(pl022);
2269 if (pl022->master_info->enable_dma)
2270 pl022_dma_remove(pl022);
2271
2272 clk_disable_unprepare(pl022->clk);
2273 amba_release_regions(adev);
2274 tasklet_disable(&pl022->pump_transfers);
2275}
2276
2277#ifdef CONFIG_PM_SLEEP
2278static int pl022_suspend(struct device *dev)
2279{
2280 struct pl022 *pl022 = dev_get_drvdata(dev);
2281 int ret;
2282
2283 ret = spi_master_suspend(pl022->master);
2284 if (ret)
2285 return ret;
2286
2287 ret = pm_runtime_force_suspend(dev);
2288 if (ret) {
2289 spi_master_resume(pl022->master);
2290 return ret;
2291 }
2292
2293 pinctrl_pm_select_sleep_state(dev);
2294
2295 dev_dbg(dev, "suspended\n");
2296 return 0;
2297}
2298
2299static int pl022_resume(struct device *dev)
2300{
2301 struct pl022 *pl022 = dev_get_drvdata(dev);
2302 int ret;
2303
2304 ret = pm_runtime_force_resume(dev);
2305 if (ret)
2306 dev_err(dev, "problem resuming\n");
2307
2308 /* Start the queue running */
2309 ret = spi_master_resume(pl022->master);
2310 if (!ret)
2311 dev_dbg(dev, "resumed\n");
2312
2313 return ret;
2314}
2315#endif
2316
2317#ifdef CONFIG_PM
2318static int pl022_runtime_suspend(struct device *dev)
2319{
2320 struct pl022 *pl022 = dev_get_drvdata(dev);
2321
2322 clk_disable_unprepare(pl022->clk);
2323 pinctrl_pm_select_idle_state(dev);
2324
2325 return 0;
2326}
2327
2328static int pl022_runtime_resume(struct device *dev)
2329{
2330 struct pl022 *pl022 = dev_get_drvdata(dev);
2331
2332 pinctrl_pm_select_default_state(dev);
2333 clk_prepare_enable(pl022->clk);
2334
2335 return 0;
2336}
2337#endif
2338
2339static const struct dev_pm_ops pl022_dev_pm_ops = {
2340 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2341 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2342};
2343
2344static struct vendor_data vendor_arm = {
2345 .fifodepth = 8,
2346 .max_bpw = 16,
2347 .unidir = false,
2348 .extended_cr = false,
2349 .pl023 = false,
2350 .loopback = true,
2351 .internal_cs_ctrl = false,
2352};
2353
2354static struct vendor_data vendor_st = {
2355 .fifodepth = 32,
2356 .max_bpw = 32,
2357 .unidir = false,
2358 .extended_cr = true,
2359 .pl023 = false,
2360 .loopback = true,
2361 .internal_cs_ctrl = false,
2362};
2363
2364static struct vendor_data vendor_st_pl023 = {
2365 .fifodepth = 32,
2366 .max_bpw = 32,
2367 .unidir = false,
2368 .extended_cr = true,
2369 .pl023 = true,
2370 .loopback = false,
2371 .internal_cs_ctrl = false,
2372};
2373
2374static struct vendor_data vendor_lsi = {
2375 .fifodepth = 8,
2376 .max_bpw = 16,
2377 .unidir = false,
2378 .extended_cr = false,
2379 .pl023 = false,
2380 .loopback = true,
2381 .internal_cs_ctrl = true,
2382};
2383
2384static const struct amba_id pl022_ids[] = {
2385 {
2386 /*
2387 * ARM PL022 variant, this has a 16bit wide
2388 * and 8 locations deep TX/RX FIFO
2389 */
2390 .id = 0x00041022,
2391 .mask = 0x000fffff,
2392 .data = &vendor_arm,
2393 },
2394 {
2395 /*
2396 * ST Micro derivative, this has 32bit wide
2397 * and 32 locations deep TX/RX FIFO
2398 */
2399 .id = 0x01080022,
2400 .mask = 0xffffffff,
2401 .data = &vendor_st,
2402 },
2403 {
2404 /*
2405 * ST-Ericsson derivative "PL023" (this is not
2406 * an official ARM number), this is a PL022 SSP block
2407 * stripped to SPI mode only, it has 32bit wide
2408 * and 32 locations deep TX/RX FIFO but no extended
2409 * CR0/CR1 register
2410 */
2411 .id = 0x00080023,
2412 .mask = 0xffffffff,
2413 .data = &vendor_st_pl023,
2414 },
2415 {
2416 /*
2417 * PL022 variant that has a chip select control register whih
2418 * allows control of 5 output signals nCS[0:4].
2419 */
2420 .id = 0x000b6022,
2421 .mask = 0x000fffff,
2422 .data = &vendor_lsi,
2423 },
2424 { 0, 0 },
2425};
2426
2427MODULE_DEVICE_TABLE(amba, pl022_ids);
2428
2429static struct amba_driver pl022_driver = {
2430 .drv = {
2431 .name = "ssp-pl022",
2432 .pm = &pl022_dev_pm_ops,
2433 },
2434 .id_table = pl022_ids,
2435 .probe = pl022_probe,
2436 .remove = pl022_remove,
2437};
2438
2439static int __init pl022_init(void)
2440{
2441 return amba_driver_register(&pl022_driver);
2442}
2443subsys_initcall(pl022_init);
2444
2445static void __exit pl022_exit(void)
2446{
2447 amba_driver_unregister(&pl022_driver);
2448}
2449module_exit(pl022_exit);
2450
2451MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2452MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2453MODULE_LICENSE("GPL");