Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   3 *
   4 * Copyright (C) 2008-2009 ST-Ericsson AB
   5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   6 *
   7 * Author: Linus Walleij <linus.walleij@stericsson.com>
   8 *
   9 * Initial version inspired by:
  10 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11 * Initial adoption to PL022 by:
  12 *      Sachin Verma <sachin.verma@st.com>
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/device.h>
  28#include <linux/ioport.h>
  29#include <linux/errno.h>
  30#include <linux/interrupt.h>
  31#include <linux/spi/spi.h>
  32#include <linux/delay.h>
  33#include <linux/clk.h>
  34#include <linux/err.h>
  35#include <linux/amba/bus.h>
  36#include <linux/amba/pl022.h>
  37#include <linux/io.h>
  38#include <linux/slab.h>
  39#include <linux/dmaengine.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/scatterlist.h>
  42#include <linux/pm_runtime.h>
 
 
  43
  44/*
  45 * This macro is used to define some register default values.
  46 * reg is masked with mask, the OR:ed with an (again masked)
  47 * val shifted sb steps to the left.
  48 */
  49#define SSP_WRITE_BITS(reg, val, mask, sb) \
  50 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  51
  52/*
  53 * This macro is also used to define some default values.
  54 * It will just shift val by sb steps to the left and mask
  55 * the result with mask.
  56 */
  57#define GEN_MASK_BITS(val, mask, sb) \
  58 (((val)<<(sb)) & (mask))
  59
  60#define DRIVE_TX		0
  61#define DO_NOT_DRIVE_TX		1
  62
  63#define DO_NOT_QUEUE_DMA	0
  64#define QUEUE_DMA		1
  65
  66#define RX_TRANSFER		1
  67#define TX_TRANSFER		2
  68
  69/*
  70 * Macros to access SSP Registers with their offsets
  71 */
  72#define SSP_CR0(r)	(r + 0x000)
  73#define SSP_CR1(r)	(r + 0x004)
  74#define SSP_DR(r)	(r + 0x008)
  75#define SSP_SR(r)	(r + 0x00C)
  76#define SSP_CPSR(r)	(r + 0x010)
  77#define SSP_IMSC(r)	(r + 0x014)
  78#define SSP_RIS(r)	(r + 0x018)
  79#define SSP_MIS(r)	(r + 0x01C)
  80#define SSP_ICR(r)	(r + 0x020)
  81#define SSP_DMACR(r)	(r + 0x024)
 
  82#define SSP_ITCR(r)	(r + 0x080)
  83#define SSP_ITIP(r)	(r + 0x084)
  84#define SSP_ITOP(r)	(r + 0x088)
  85#define SSP_TDR(r)	(r + 0x08C)
  86
  87#define SSP_PID0(r)	(r + 0xFE0)
  88#define SSP_PID1(r)	(r + 0xFE4)
  89#define SSP_PID2(r)	(r + 0xFE8)
  90#define SSP_PID3(r)	(r + 0xFEC)
  91
  92#define SSP_CID0(r)	(r + 0xFF0)
  93#define SSP_CID1(r)	(r + 0xFF4)
  94#define SSP_CID2(r)	(r + 0xFF8)
  95#define SSP_CID3(r)	(r + 0xFFC)
  96
  97/*
  98 * SSP Control Register 0  - SSP_CR0
  99 */
 100#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
 101#define SSP_CR0_MASK_FRF	(0x3UL << 4)
 102#define SSP_CR0_MASK_SPO	(0x1UL << 6)
 103#define SSP_CR0_MASK_SPH	(0x1UL << 7)
 104#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
 105
 106/*
 107 * The ST version of this block moves som bits
 108 * in SSP_CR0 and extends it to 32 bits
 109 */
 110#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 111#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 112#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 113#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 114
 115/*
 116 * SSP Control Register 0  - SSP_CR1
 117 */
 118#define SSP_CR1_MASK_LBM	(0x1UL << 0)
 119#define SSP_CR1_MASK_SSE	(0x1UL << 1)
 120#define SSP_CR1_MASK_MS		(0x1UL << 2)
 121#define SSP_CR1_MASK_SOD	(0x1UL << 3)
 122
 123/*
 124 * The ST version of this block adds some bits
 125 * in SSP_CR1
 126 */
 127#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 128#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 129#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 130#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 131#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 132/* This one is only in the PL023 variant */
 133#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 134
 135/*
 136 * SSP Status Register - SSP_SR
 137 */
 138#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 139#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 140#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 141#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 142#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 143
 144/*
 145 * SSP Clock Prescale Register  - SSP_CPSR
 146 */
 147#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 148
 149/*
 150 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 151 */
 152#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 153#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 154#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 155#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 156
 157/*
 158 * SSP Raw Interrupt Status Register - SSP_RIS
 159 */
 160/* Receive Overrun Raw Interrupt status */
 161#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 162/* Receive Timeout Raw Interrupt status */
 163#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 164/* Receive FIFO Raw Interrupt status */
 165#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 166/* Transmit FIFO Raw Interrupt status */
 167#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 168
 169/*
 170 * SSP Masked Interrupt Status Register - SSP_MIS
 171 */
 172/* Receive Overrun Masked Interrupt status */
 173#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 174/* Receive Timeout Masked Interrupt status */
 175#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 176/* Receive FIFO Masked Interrupt status */
 177#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 178/* Transmit FIFO Masked Interrupt status */
 179#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 180
 181/*
 182 * SSP Interrupt Clear Register - SSP_ICR
 183 */
 184/* Receive Overrun Raw Clear Interrupt bit */
 185#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 186/* Receive Timeout Clear Interrupt bit */
 187#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 188
 189/*
 190 * SSP DMA Control Register - SSP_DMACR
 191 */
 192/* Receive DMA Enable bit */
 193#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 194/* Transmit DMA Enable bit */
 195#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 196
 197/*
 
 
 
 
 
 
 198 * SSP Integration Test control Register - SSP_ITCR
 199 */
 200#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 201#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 202
 203/*
 204 * SSP Integration Test Input Register - SSP_ITIP
 205 */
 206#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 207#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 208#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 209#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 210#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 211#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 212
 213/*
 214 * SSP Integration Test output Register - SSP_ITOP
 215 */
 216#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 217#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 218#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 219#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 220#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 221#define ITOP_MASK_RORINTR		 (0x1UL << 5)
 222#define ITOP_MASK_RTINTR		 (0x1UL << 6)
 223#define ITOP_MASK_RXINTR		 (0x1UL << 7)
 224#define ITOP_MASK_TXINTR		 (0x1UL << 8)
 225#define ITOP_MASK_INTR			 (0x1UL << 9)
 226#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 227#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 228#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 229#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 230
 231/*
 232 * SSP Test Data Register - SSP_TDR
 233 */
 234#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 235
 236/*
 237 * Message State
 238 * we use the spi_message.state (void *) pointer to
 239 * hold a single state value, that's why all this
 240 * (void *) casting is done here.
 241 */
 242#define STATE_START			((void *) 0)
 243#define STATE_RUNNING			((void *) 1)
 244#define STATE_DONE			((void *) 2)
 245#define STATE_ERROR			((void *) -1)
 
 246
 247/*
 248 * SSP State - Whether Enabled or Disabled
 249 */
 250#define SSP_DISABLED			(0)
 251#define SSP_ENABLED			(1)
 252
 253/*
 254 * SSP DMA State - Whether DMA Enabled or Disabled
 255 */
 256#define SSP_DMA_DISABLED		(0)
 257#define SSP_DMA_ENABLED			(1)
 258
 259/*
 260 * SSP Clock Defaults
 261 */
 262#define SSP_DEFAULT_CLKRATE 0x2
 263#define SSP_DEFAULT_PRESCALE 0x40
 264
 265/*
 266 * SSP Clock Parameter ranges
 267 */
 268#define CPSDVR_MIN 0x02
 269#define CPSDVR_MAX 0xFE
 270#define SCR_MIN 0x00
 271#define SCR_MAX 0xFF
 272
 273/*
 274 * SSP Interrupt related Macros
 275 */
 276#define DEFAULT_SSP_REG_IMSC  0x0UL
 277#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 278#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
 
 
 
 
 
 279
 280#define CLEAR_ALL_INTERRUPTS  0x3
 281
 282#define SPI_POLLING_TIMEOUT 1000
 283
 284/*
 285 * The type of reading going on on this chip
 286 */
 287enum ssp_reading {
 288	READING_NULL,
 289	READING_U8,
 290	READING_U16,
 291	READING_U32
 292};
 293
 294/**
 295 * The type of writing going on on this chip
 296 */
 297enum ssp_writing {
 298	WRITING_NULL,
 299	WRITING_U8,
 300	WRITING_U16,
 301	WRITING_U32
 302};
 303
 304/**
 305 * struct vendor_data - vendor-specific config parameters
 306 * for PL022 derivates
 307 * @fifodepth: depth of FIFOs (both)
 308 * @max_bpw: maximum number of bits per word
 309 * @unidir: supports unidirection transfers
 310 * @extended_cr: 32 bit wide control register 0 with extra
 311 * features and extra features in CR1 as found in the ST variants
 312 * @pl023: supports a subset of the ST extensions called "PL023"
 
 
 313 */
 314struct vendor_data {
 315	int fifodepth;
 316	int max_bpw;
 317	bool unidir;
 318	bool extended_cr;
 319	bool pl023;
 320	bool loopback;
 
 321};
 322
 323/**
 324 * struct pl022 - This is the private SSP driver data structure
 325 * @adev: AMBA device model hookup
 326 * @vendor: vendor data for the IP block
 327 * @phybase: the physical memory where the SSP device resides
 328 * @virtbase: the virtual memory where the SSP is mapped
 329 * @clk: outgoing clock "SPICLK" for the SPI bus
 330 * @master: SPI framework hookup
 331 * @master_info: controller-specific data from machine setup
 332 * @kworker: thread struct for message pump
 333 * @kworker_task: pointer to task for message pump kworker thread
 334 * @pump_messages: work struct for scheduling work to the message pump
 335 * @queue_lock: spinlock to syncronise access to message queue
 336 * @queue: message queue
 337 * @busy: message pump is busy
 338 * @running: message pump is running
 339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 340 * @cur_msg: Pointer to current spi_message being processed
 341 * @cur_transfer: Pointer to current spi_transfer
 342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 343 * @next_msg_cs_active: the next message in the queue has been examined
 344 *  and it was found that it uses the same chip select as the previous
 345 *  message, so we left it active after the previous transfer, and it's
 346 *  active already.
 347 * @tx: current position in TX buffer to be read
 348 * @tx_end: end position in TX buffer to be read
 349 * @rx: current position in RX buffer to be written
 350 * @rx_end: end position in RX buffer to be written
 351 * @read: the type of read currently going on
 352 * @write: the type of write currently going on
 353 * @exp_fifo_level: expected FIFO level
 
 
 354 * @dma_rx_channel: optional channel for RX DMA
 355 * @dma_tx_channel: optional channel for TX DMA
 356 * @sgt_rx: scattertable for the RX transfer
 357 * @sgt_tx: scattertable for the TX transfer
 358 * @dummypage: a dummy page used for driving data on the bus with DMA
 
 
 
 359 */
 360struct pl022 {
 361	struct amba_device		*adev;
 362	struct vendor_data		*vendor;
 363	resource_size_t			phybase;
 364	void __iomem			*virtbase;
 365	struct clk			*clk;
 366	struct spi_master		*master;
 367	struct pl022_ssp_controller	*master_info;
 368	/* Message per-transfer pump */
 369	struct tasklet_struct		pump_transfers;
 370	struct spi_message		*cur_msg;
 371	struct spi_transfer		*cur_transfer;
 372	struct chip_data		*cur_chip;
 373	bool				next_msg_cs_active;
 374	void				*tx;
 375	void				*tx_end;
 376	void				*rx;
 377	void				*rx_end;
 378	enum ssp_reading		read;
 379	enum ssp_writing		write;
 380	u32				exp_fifo_level;
 381	enum ssp_rx_level_trig		rx_lev_trig;
 382	enum ssp_tx_level_trig		tx_lev_trig;
 383	/* DMA settings */
 384#ifdef CONFIG_DMA_ENGINE
 385	struct dma_chan			*dma_rx_channel;
 386	struct dma_chan			*dma_tx_channel;
 387	struct sg_table			sgt_rx;
 388	struct sg_table			sgt_tx;
 389	char				*dummypage;
 390	bool				dma_running;
 391#endif
 
 
 392};
 393
 394/**
 395 * struct chip_data - To maintain runtime state of SSP for each client chip
 396 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 397 *       register is 32 bits wide rather than just 16
 398 * @cr1: Value of control register CR1 of SSP
 399 * @dmacr: Value of DMA control Register of SSP
 400 * @cpsr: Value of Clock prescale register
 401 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 402 * @enable_dma: Whether to enable DMA or not
 403 * @read: function ptr to be used to read when doing xfer for this chip
 404 * @write: function ptr to be used to write when doing xfer for this chip
 405 * @cs_control: chip select callback provided by chip
 406 * @xfer_type: polling/interrupt/DMA
 407 *
 408 * Runtime state of the SSP controller, maintained per chip,
 409 * This would be set according to the current message that would be served
 410 */
 411struct chip_data {
 412	u32 cr0;
 413	u16 cr1;
 414	u16 dmacr;
 415	u16 cpsr;
 416	u8 n_bytes;
 417	bool enable_dma;
 418	enum ssp_reading read;
 419	enum ssp_writing write;
 420	void (*cs_control) (u32 command);
 421	int xfer_type;
 422};
 423
 424/**
 425 * null_cs_control - Dummy chip select function
 
 426 * @command: select/delect the chip
 427 *
 428 * If no chip select function is provided by client this is used as dummy
 429 * chip select
 
 430 */
 431static void null_cs_control(u32 command)
 432{
 433	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434}
 435
 436/**
 437 * giveback - current spi_message is over, schedule next message and call
 438 * callback of this message. Assumes that caller already
 439 * set message->status; dma and pio irqs are blocked
 440 * @pl022: SSP driver private data structure
 441 */
 442static void giveback(struct pl022 *pl022)
 443{
 444	struct spi_transfer *last_transfer;
 445	pl022->next_msg_cs_active = false;
 446
 447	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
 448					struct spi_transfer,
 449					transfer_list);
 450
 451	/* Delay if requested before any change in chip select */
 452	if (last_transfer->delay_usecs)
 453		/*
 454		 * FIXME: This runs in interrupt context.
 455		 * Is this really smart?
 456		 */
 457		udelay(last_transfer->delay_usecs);
 458
 459	if (!last_transfer->cs_change) {
 460		struct spi_message *next_msg;
 461
 462		/*
 463		 * cs_change was not set. We can keep the chip select
 464		 * enabled if there is message in the queue and it is
 465		 * for the same spi device.
 466		 *
 467		 * We cannot postpone this until pump_messages, because
 468		 * after calling msg->complete (below) the driver that
 469		 * sent the current message could be unloaded, which
 470		 * could invalidate the cs_control() callback...
 471		 */
 472		/* get a pointer to the next message, if any */
 473		next_msg = spi_get_next_queued_message(pl022->master);
 474
 475		/*
 476		 * see if the next and current messages point
 477		 * to the same spi device.
 478		 */
 479		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 480			next_msg = NULL;
 481		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 482			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
 483		else
 484			pl022->next_msg_cs_active = true;
 485
 486	}
 487
 488	pl022->cur_msg = NULL;
 489	pl022->cur_transfer = NULL;
 490	pl022->cur_chip = NULL;
 491	spi_finalize_current_message(pl022->master);
 492
 493	/* disable the SPI/SSP operation */
 494	writew((readw(SSP_CR1(pl022->virtbase)) &
 495		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 496
 
 497}
 498
 499/**
 500 * flush - flush the FIFO to reach a clean state
 501 * @pl022: SSP driver private data structure
 502 */
 503static int flush(struct pl022 *pl022)
 504{
 505	unsigned long limit = loops_per_jiffy << 1;
 506
 507	dev_dbg(&pl022->adev->dev, "flush\n");
 508	do {
 509		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 510			readw(SSP_DR(pl022->virtbase));
 511	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 512
 513	pl022->exp_fifo_level = 0;
 514
 515	return limit;
 516}
 517
 518/**
 519 * restore_state - Load configuration of current chip
 520 * @pl022: SSP driver private data structure
 521 */
 522static void restore_state(struct pl022 *pl022)
 523{
 524	struct chip_data *chip = pl022->cur_chip;
 525
 526	if (pl022->vendor->extended_cr)
 527		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 528	else
 529		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 530	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 531	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 532	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 533	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 534	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 535}
 536
 537/*
 538 * Default SSP Register Values
 539 */
 540#define DEFAULT_SSP_REG_CR0 ( \
 541	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 542	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 543	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 544	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 545	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 546)
 547
 548/* ST versions have slightly different bit layout */
 549#define DEFAULT_SSP_REG_CR0_ST ( \
 550	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 551	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 552	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 553	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 554	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 555	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 556	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 557)
 558
 559/* The PL023 version is slightly different again */
 560#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 561	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 562	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 563	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 564	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 565)
 566
 567#define DEFAULT_SSP_REG_CR1 ( \
 568	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 569	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 570	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 571	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 572)
 573
 574/* ST versions extend this register to use all 16 bits */
 575#define DEFAULT_SSP_REG_CR1_ST ( \
 576	DEFAULT_SSP_REG_CR1 | \
 577	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 578	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 579	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 580	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 581	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 582)
 583
 584/*
 585 * The PL023 variant has further differences: no loopback mode, no microwire
 586 * support, and a new clock feedback delay setting.
 587 */
 588#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 589	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 590	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 591	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 592	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 593	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 594	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 595	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 596	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 597)
 598
 599#define DEFAULT_SSP_REG_CPSR ( \
 600	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 601)
 602
 603#define DEFAULT_SSP_REG_DMACR (\
 604	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 605	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 606)
 607
 608/**
 609 * load_ssp_default_config - Load default configuration for SSP
 610 * @pl022: SSP driver private data structure
 611 */
 612static void load_ssp_default_config(struct pl022 *pl022)
 613{
 614	if (pl022->vendor->pl023) {
 615		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 616		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 617	} else if (pl022->vendor->extended_cr) {
 618		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 619		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 620	} else {
 621		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 622		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 623	}
 624	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 625	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 626	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 627	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 628}
 629
 630/**
 631 * This will write to TX and read from RX according to the parameters
 632 * set in pl022.
 633 */
 634static void readwriter(struct pl022 *pl022)
 635{
 636
 637	/*
 638	 * The FIFO depth is different between primecell variants.
 639	 * I believe filling in too much in the FIFO might cause
 640	 * errons in 8bit wide transfers on ARM variants (just 8 words
 641	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 642	 *
 643	 * To prevent this issue, the TX FIFO is only filled to the
 644	 * unused RX FIFO fill length, regardless of what the TX
 645	 * FIFO status flag indicates.
 646	 */
 647	dev_dbg(&pl022->adev->dev,
 648		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 649		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 650
 651	/* Read as much as you can */
 652	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 653	       && (pl022->rx < pl022->rx_end)) {
 654		switch (pl022->read) {
 655		case READING_NULL:
 656			readw(SSP_DR(pl022->virtbase));
 657			break;
 658		case READING_U8:
 659			*(u8 *) (pl022->rx) =
 660				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 661			break;
 662		case READING_U16:
 663			*(u16 *) (pl022->rx) =
 664				(u16) readw(SSP_DR(pl022->virtbase));
 665			break;
 666		case READING_U32:
 667			*(u32 *) (pl022->rx) =
 668				readl(SSP_DR(pl022->virtbase));
 669			break;
 670		}
 671		pl022->rx += (pl022->cur_chip->n_bytes);
 672		pl022->exp_fifo_level--;
 673	}
 674	/*
 675	 * Write as much as possible up to the RX FIFO size
 676	 */
 677	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 678	       && (pl022->tx < pl022->tx_end)) {
 679		switch (pl022->write) {
 680		case WRITING_NULL:
 681			writew(0x0, SSP_DR(pl022->virtbase));
 682			break;
 683		case WRITING_U8:
 684			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 685			break;
 686		case WRITING_U16:
 687			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 688			break;
 689		case WRITING_U32:
 690			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 691			break;
 692		}
 693		pl022->tx += (pl022->cur_chip->n_bytes);
 694		pl022->exp_fifo_level++;
 695		/*
 696		 * This inner reader takes care of things appearing in the RX
 697		 * FIFO as we're transmitting. This will happen a lot since the
 698		 * clock starts running when you put things into the TX FIFO,
 699		 * and then things are continuously clocked into the RX FIFO.
 700		 */
 701		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 702		       && (pl022->rx < pl022->rx_end)) {
 703			switch (pl022->read) {
 704			case READING_NULL:
 705				readw(SSP_DR(pl022->virtbase));
 706				break;
 707			case READING_U8:
 708				*(u8 *) (pl022->rx) =
 709					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 710				break;
 711			case READING_U16:
 712				*(u16 *) (pl022->rx) =
 713					(u16) readw(SSP_DR(pl022->virtbase));
 714				break;
 715			case READING_U32:
 716				*(u32 *) (pl022->rx) =
 717					readl(SSP_DR(pl022->virtbase));
 718				break;
 719			}
 720			pl022->rx += (pl022->cur_chip->n_bytes);
 721			pl022->exp_fifo_level--;
 722		}
 723	}
 724	/*
 725	 * When we exit here the TX FIFO should be full and the RX FIFO
 726	 * should be empty
 727	 */
 728}
 729
 730/**
 731 * next_transfer - Move to the Next transfer in the current spi message
 732 * @pl022: SSP driver private data structure
 733 *
 734 * This function moves though the linked list of spi transfers in the
 735 * current spi message and returns with the state of current spi
 736 * message i.e whether its last transfer is done(STATE_DONE) or
 737 * Next transfer is ready(STATE_RUNNING)
 738 */
 739static void *next_transfer(struct pl022 *pl022)
 740{
 741	struct spi_message *msg = pl022->cur_msg;
 742	struct spi_transfer *trans = pl022->cur_transfer;
 743
 744	/* Move to next transfer */
 745	if (trans->transfer_list.next != &msg->transfers) {
 746		pl022->cur_transfer =
 747		    list_entry(trans->transfer_list.next,
 748			       struct spi_transfer, transfer_list);
 749		return STATE_RUNNING;
 750	}
 751	return STATE_DONE;
 752}
 753
 754/*
 755 * This DMA functionality is only compiled in if we have
 756 * access to the generic DMA devices/DMA engine.
 757 */
 758#ifdef CONFIG_DMA_ENGINE
 759static void unmap_free_dma_scatter(struct pl022 *pl022)
 760{
 761	/* Unmap and free the SG tables */
 762	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 763		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 764	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 765		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 766	sg_free_table(&pl022->sgt_rx);
 767	sg_free_table(&pl022->sgt_tx);
 768}
 769
 770static void dma_callback(void *data)
 771{
 772	struct pl022 *pl022 = data;
 773	struct spi_message *msg = pl022->cur_msg;
 774
 775	BUG_ON(!pl022->sgt_rx.sgl);
 776
 777#ifdef VERBOSE_DEBUG
 778	/*
 779	 * Optionally dump out buffers to inspect contents, this is
 780	 * good if you want to convince yourself that the loopback
 781	 * read/write contents are the same, when adopting to a new
 782	 * DMA engine.
 783	 */
 784	{
 785		struct scatterlist *sg;
 786		unsigned int i;
 787
 788		dma_sync_sg_for_cpu(&pl022->adev->dev,
 789				    pl022->sgt_rx.sgl,
 790				    pl022->sgt_rx.nents,
 791				    DMA_FROM_DEVICE);
 792
 793		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 794			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 795			print_hex_dump(KERN_ERR, "SPI RX: ",
 796				       DUMP_PREFIX_OFFSET,
 797				       16,
 798				       1,
 799				       sg_virt(sg),
 800				       sg_dma_len(sg),
 801				       1);
 802		}
 803		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 804			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 805			print_hex_dump(KERN_ERR, "SPI TX: ",
 806				       DUMP_PREFIX_OFFSET,
 807				       16,
 808				       1,
 809				       sg_virt(sg),
 810				       sg_dma_len(sg),
 811				       1);
 812		}
 813	}
 814#endif
 815
 816	unmap_free_dma_scatter(pl022);
 817
 818	/* Update total bytes transferred */
 819	msg->actual_length += pl022->cur_transfer->len;
 820	if (pl022->cur_transfer->cs_change)
 821		pl022->cur_chip->
 822			cs_control(SSP_CHIP_DESELECT);
 823
 824	/* Move to next transfer */
 825	msg->state = next_transfer(pl022);
 
 
 826	tasklet_schedule(&pl022->pump_transfers);
 827}
 828
 829static void setup_dma_scatter(struct pl022 *pl022,
 830			      void *buffer,
 831			      unsigned int length,
 832			      struct sg_table *sgtab)
 833{
 834	struct scatterlist *sg;
 835	int bytesleft = length;
 836	void *bufp = buffer;
 837	int mapbytes;
 838	int i;
 839
 840	if (buffer) {
 841		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 842			/*
 843			 * If there are less bytes left than what fits
 844			 * in the current page (plus page alignment offset)
 845			 * we just feed in this, else we stuff in as much
 846			 * as we can.
 847			 */
 848			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 849				mapbytes = bytesleft;
 850			else
 851				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 852			sg_set_page(sg, virt_to_page(bufp),
 853				    mapbytes, offset_in_page(bufp));
 854			bufp += mapbytes;
 855			bytesleft -= mapbytes;
 856			dev_dbg(&pl022->adev->dev,
 857				"set RX/TX target page @ %p, %d bytes, %d left\n",
 858				bufp, mapbytes, bytesleft);
 859		}
 860	} else {
 861		/* Map the dummy buffer on every page */
 862		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 863			if (bytesleft < PAGE_SIZE)
 864				mapbytes = bytesleft;
 865			else
 866				mapbytes = PAGE_SIZE;
 867			sg_set_page(sg, virt_to_page(pl022->dummypage),
 868				    mapbytes, 0);
 869			bytesleft -= mapbytes;
 870			dev_dbg(&pl022->adev->dev,
 871				"set RX/TX to dummy page %d bytes, %d left\n",
 872				mapbytes, bytesleft);
 873
 874		}
 875	}
 876	BUG_ON(bytesleft);
 877}
 878
 879/**
 880 * configure_dma - configures the channels for the next transfer
 881 * @pl022: SSP driver's private data structure
 882 */
 883static int configure_dma(struct pl022 *pl022)
 884{
 885	struct dma_slave_config rx_conf = {
 886		.src_addr = SSP_DR(pl022->phybase),
 887		.direction = DMA_DEV_TO_MEM,
 888		.device_fc = false,
 889	};
 890	struct dma_slave_config tx_conf = {
 891		.dst_addr = SSP_DR(pl022->phybase),
 892		.direction = DMA_MEM_TO_DEV,
 893		.device_fc = false,
 894	};
 895	unsigned int pages;
 896	int ret;
 897	int rx_sglen, tx_sglen;
 898	struct dma_chan *rxchan = pl022->dma_rx_channel;
 899	struct dma_chan *txchan = pl022->dma_tx_channel;
 900	struct dma_async_tx_descriptor *rxdesc;
 901	struct dma_async_tx_descriptor *txdesc;
 902
 903	/* Check that the channels are available */
 904	if (!rxchan || !txchan)
 905		return -ENODEV;
 906
 907	/*
 908	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 909	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 910	 * not trigger on 2 elements this needs explicit mapping rather than
 911	 * calculation.
 912	 */
 913	switch (pl022->rx_lev_trig) {
 914	case SSP_RX_1_OR_MORE_ELEM:
 915		rx_conf.src_maxburst = 1;
 916		break;
 917	case SSP_RX_4_OR_MORE_ELEM:
 918		rx_conf.src_maxburst = 4;
 919		break;
 920	case SSP_RX_8_OR_MORE_ELEM:
 921		rx_conf.src_maxburst = 8;
 922		break;
 923	case SSP_RX_16_OR_MORE_ELEM:
 924		rx_conf.src_maxburst = 16;
 925		break;
 926	case SSP_RX_32_OR_MORE_ELEM:
 927		rx_conf.src_maxburst = 32;
 928		break;
 929	default:
 930		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 931		break;
 932	}
 933
 934	switch (pl022->tx_lev_trig) {
 935	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 936		tx_conf.dst_maxburst = 1;
 937		break;
 938	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 939		tx_conf.dst_maxburst = 4;
 940		break;
 941	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 942		tx_conf.dst_maxburst = 8;
 943		break;
 944	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 945		tx_conf.dst_maxburst = 16;
 946		break;
 947	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 948		tx_conf.dst_maxburst = 32;
 949		break;
 950	default:
 951		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 952		break;
 953	}
 954
 955	switch (pl022->read) {
 956	case READING_NULL:
 957		/* Use the same as for writing */
 958		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 959		break;
 960	case READING_U8:
 961		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 962		break;
 963	case READING_U16:
 964		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 965		break;
 966	case READING_U32:
 967		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 968		break;
 969	}
 970
 971	switch (pl022->write) {
 972	case WRITING_NULL:
 973		/* Use the same as for reading */
 974		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 975		break;
 976	case WRITING_U8:
 977		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 978		break;
 979	case WRITING_U16:
 980		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 981		break;
 982	case WRITING_U32:
 983		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 984		break;
 985	}
 986
 987	/* SPI pecularity: we need to read and write the same width */
 988	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 989		rx_conf.src_addr_width = tx_conf.dst_addr_width;
 990	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 991		tx_conf.dst_addr_width = rx_conf.src_addr_width;
 992	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
 993
 994	dmaengine_slave_config(rxchan, &rx_conf);
 995	dmaengine_slave_config(txchan, &tx_conf);
 996
 997	/* Create sglists for the transfers */
 998	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
 999	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1000
1001	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1002	if (ret)
1003		goto err_alloc_rx_sg;
1004
1005	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1006	if (ret)
1007		goto err_alloc_tx_sg;
1008
1009	/* Fill in the scatterlists for the RX+TX buffers */
1010	setup_dma_scatter(pl022, pl022->rx,
1011			  pl022->cur_transfer->len, &pl022->sgt_rx);
1012	setup_dma_scatter(pl022, pl022->tx,
1013			  pl022->cur_transfer->len, &pl022->sgt_tx);
1014
1015	/* Map DMA buffers */
1016	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1017			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1018	if (!rx_sglen)
1019		goto err_rx_sgmap;
1020
1021	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1022			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1023	if (!tx_sglen)
1024		goto err_tx_sgmap;
1025
1026	/* Send both scatterlists */
1027	rxdesc = dmaengine_prep_slave_sg(rxchan,
1028				      pl022->sgt_rx.sgl,
1029				      rx_sglen,
1030				      DMA_DEV_TO_MEM,
1031				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1032	if (!rxdesc)
1033		goto err_rxdesc;
1034
1035	txdesc = dmaengine_prep_slave_sg(txchan,
1036				      pl022->sgt_tx.sgl,
1037				      tx_sglen,
1038				      DMA_MEM_TO_DEV,
1039				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040	if (!txdesc)
1041		goto err_txdesc;
1042
1043	/* Put the callback on the RX transfer only, that should finish last */
1044	rxdesc->callback = dma_callback;
1045	rxdesc->callback_param = pl022;
1046
1047	/* Submit and fire RX and TX with TX last so we're ready to read! */
1048	dmaengine_submit(rxdesc);
1049	dmaengine_submit(txdesc);
1050	dma_async_issue_pending(rxchan);
1051	dma_async_issue_pending(txchan);
1052	pl022->dma_running = true;
1053
1054	return 0;
1055
1056err_txdesc:
1057	dmaengine_terminate_all(txchan);
1058err_rxdesc:
1059	dmaengine_terminate_all(rxchan);
1060	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1061		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1062err_tx_sgmap:
1063	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1064		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1065err_rx_sgmap:
1066	sg_free_table(&pl022->sgt_tx);
1067err_alloc_tx_sg:
1068	sg_free_table(&pl022->sgt_rx);
1069err_alloc_rx_sg:
1070	return -ENOMEM;
1071}
1072
1073static int __devinit pl022_dma_probe(struct pl022 *pl022)
1074{
1075	dma_cap_mask_t mask;
1076
1077	/* Try to acquire a generic DMA engine slave channel */
1078	dma_cap_zero(mask);
1079	dma_cap_set(DMA_SLAVE, mask);
1080	/*
1081	 * We need both RX and TX channels to do DMA, else do none
1082	 * of them.
1083	 */
1084	pl022->dma_rx_channel = dma_request_channel(mask,
1085					    pl022->master_info->dma_filter,
1086					    pl022->master_info->dma_rx_param);
1087	if (!pl022->dma_rx_channel) {
1088		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1089		goto err_no_rxchan;
1090	}
1091
1092	pl022->dma_tx_channel = dma_request_channel(mask,
1093					    pl022->master_info->dma_filter,
1094					    pl022->master_info->dma_tx_param);
1095	if (!pl022->dma_tx_channel) {
1096		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1097		goto err_no_txchan;
1098	}
1099
1100	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1101	if (!pl022->dummypage) {
1102		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1103		goto err_no_dummypage;
1104	}
1105
1106	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1107		 dma_chan_name(pl022->dma_rx_channel),
1108		 dma_chan_name(pl022->dma_tx_channel));
1109
1110	return 0;
1111
1112err_no_dummypage:
1113	dma_release_channel(pl022->dma_tx_channel);
1114err_no_txchan:
1115	dma_release_channel(pl022->dma_rx_channel);
1116	pl022->dma_rx_channel = NULL;
1117err_no_rxchan:
1118	dev_err(&pl022->adev->dev,
1119			"Failed to work in dma mode, work without dma!\n");
1120	return -ENODEV;
1121}
1122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123static void terminate_dma(struct pl022 *pl022)
1124{
1125	struct dma_chan *rxchan = pl022->dma_rx_channel;
1126	struct dma_chan *txchan = pl022->dma_tx_channel;
1127
1128	dmaengine_terminate_all(rxchan);
1129	dmaengine_terminate_all(txchan);
1130	unmap_free_dma_scatter(pl022);
1131	pl022->dma_running = false;
1132}
1133
1134static void pl022_dma_remove(struct pl022 *pl022)
1135{
1136	if (pl022->dma_running)
1137		terminate_dma(pl022);
1138	if (pl022->dma_tx_channel)
1139		dma_release_channel(pl022->dma_tx_channel);
1140	if (pl022->dma_rx_channel)
1141		dma_release_channel(pl022->dma_rx_channel);
1142	kfree(pl022->dummypage);
1143}
1144
1145#else
1146static inline int configure_dma(struct pl022 *pl022)
1147{
1148	return -ENODEV;
1149}
1150
 
 
 
 
 
1151static inline int pl022_dma_probe(struct pl022 *pl022)
1152{
1153	return 0;
1154}
1155
1156static inline void pl022_dma_remove(struct pl022 *pl022)
1157{
1158}
1159#endif
1160
1161/**
1162 * pl022_interrupt_handler - Interrupt handler for SSP controller
 
 
1163 *
1164 * This function handles interrupts generated for an interrupt based transfer.
1165 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1166 * current message's state as STATE_ERROR and schedule the tasklet
1167 * pump_transfers which will do the postprocessing of the current message by
1168 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1169 * more data, and writes data in TX FIFO till it is not full. If we complete
1170 * the transfer we move to the next transfer and schedule the tasklet.
1171 */
1172static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1173{
1174	struct pl022 *pl022 = dev_id;
1175	struct spi_message *msg = pl022->cur_msg;
1176	u16 irq_status = 0;
1177	u16 flag = 0;
1178
1179	if (unlikely(!msg)) {
1180		dev_err(&pl022->adev->dev,
1181			"bad message state in interrupt handler");
1182		/* Never fail */
1183		return IRQ_HANDLED;
1184	}
1185
1186	/* Read the Interrupt Status Register */
1187	irq_status = readw(SSP_MIS(pl022->virtbase));
1188
1189	if (unlikely(!irq_status))
1190		return IRQ_NONE;
1191
1192	/*
1193	 * This handles the FIFO interrupts, the timeout
1194	 * interrupts are flatly ignored, they cannot be
1195	 * trusted.
1196	 */
1197	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1198		/*
1199		 * Overrun interrupt - bail out since our Data has been
1200		 * corrupted
1201		 */
1202		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1203		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1204			dev_err(&pl022->adev->dev,
1205				"RXFIFO is full\n");
1206		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1207			dev_err(&pl022->adev->dev,
1208				"TXFIFO is full\n");
1209
1210		/*
1211		 * Disable and clear interrupts, disable SSP,
1212		 * mark message with bad status so it can be
1213		 * retried.
1214		 */
1215		writew(DISABLE_ALL_INTERRUPTS,
1216		       SSP_IMSC(pl022->virtbase));
1217		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218		writew((readw(SSP_CR1(pl022->virtbase)) &
1219			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1220		msg->state = STATE_ERROR;
1221
1222		/* Schedule message queue handler */
1223		tasklet_schedule(&pl022->pump_transfers);
1224		return IRQ_HANDLED;
1225	}
1226
1227	readwriter(pl022);
1228
1229	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1230		flag = 1;
1231		/* Disable Transmit interrupt, enable receive interrupt */
1232		writew((readw(SSP_IMSC(pl022->virtbase)) &
1233		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1234		       SSP_IMSC(pl022->virtbase));
1235	}
1236
1237	/*
1238	 * Since all transactions must write as much as shall be read,
1239	 * we can conclude the entire transaction once RX is complete.
1240	 * At this point, all TX will always be finished.
1241	 */
1242	if (pl022->rx >= pl022->rx_end) {
1243		writew(DISABLE_ALL_INTERRUPTS,
1244		       SSP_IMSC(pl022->virtbase));
1245		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1246		if (unlikely(pl022->rx > pl022->rx_end)) {
1247			dev_warn(&pl022->adev->dev, "read %u surplus "
1248				 "bytes (did you request an odd "
1249				 "number of bytes on a 16bit bus?)\n",
1250				 (u32) (pl022->rx - pl022->rx_end));
1251		}
1252		/* Update total bytes transferred */
1253		msg->actual_length += pl022->cur_transfer->len;
1254		if (pl022->cur_transfer->cs_change)
1255			pl022->cur_chip->
1256				cs_control(SSP_CHIP_DESELECT);
1257		/* Move to next transfer */
1258		msg->state = next_transfer(pl022);
 
 
1259		tasklet_schedule(&pl022->pump_transfers);
1260		return IRQ_HANDLED;
1261	}
1262
1263	return IRQ_HANDLED;
1264}
1265
1266/**
1267 * This sets up the pointers to memory for the next message to
1268 * send out on the SPI bus.
1269 */
1270static int set_up_next_transfer(struct pl022 *pl022,
1271				struct spi_transfer *transfer)
1272{
1273	int residue;
1274
1275	/* Sanity check the message for this bus width */
1276	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1277	if (unlikely(residue != 0)) {
1278		dev_err(&pl022->adev->dev,
1279			"message of %u bytes to transmit but the current "
1280			"chip bus has a data width of %u bytes!\n",
1281			pl022->cur_transfer->len,
1282			pl022->cur_chip->n_bytes);
1283		dev_err(&pl022->adev->dev, "skipping this message\n");
1284		return -EIO;
1285	}
1286	pl022->tx = (void *)transfer->tx_buf;
1287	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1288	pl022->rx = (void *)transfer->rx_buf;
1289	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1290	pl022->write =
1291	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1292	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1293	return 0;
1294}
1295
1296/**
1297 * pump_transfers - Tasklet function which schedules next transfer
1298 * when running in interrupt or DMA transfer mode.
1299 * @data: SSP driver private data structure
1300 *
1301 */
1302static void pump_transfers(unsigned long data)
1303{
1304	struct pl022 *pl022 = (struct pl022 *) data;
1305	struct spi_message *message = NULL;
1306	struct spi_transfer *transfer = NULL;
1307	struct spi_transfer *previous = NULL;
1308
1309	/* Get current state information */
1310	message = pl022->cur_msg;
1311	transfer = pl022->cur_transfer;
1312
1313	/* Handle for abort */
1314	if (message->state == STATE_ERROR) {
1315		message->status = -EIO;
1316		giveback(pl022);
1317		return;
1318	}
1319
1320	/* Handle end of message */
1321	if (message->state == STATE_DONE) {
1322		message->status = 0;
1323		giveback(pl022);
1324		return;
1325	}
1326
1327	/* Delay if requested at end of transfer before CS change */
1328	if (message->state == STATE_RUNNING) {
1329		previous = list_entry(transfer->transfer_list.prev,
1330					struct spi_transfer,
1331					transfer_list);
1332		if (previous->delay_usecs)
1333			/*
1334			 * FIXME: This runs in interrupt context.
1335			 * Is this really smart?
1336			 */
1337			udelay(previous->delay_usecs);
1338
1339		/* Reselect chip select only if cs_change was requested */
1340		if (previous->cs_change)
1341			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1342	} else {
1343		/* STATE_START */
1344		message->state = STATE_RUNNING;
1345	}
1346
1347	if (set_up_next_transfer(pl022, transfer)) {
1348		message->state = STATE_ERROR;
1349		message->status = -EIO;
1350		giveback(pl022);
1351		return;
1352	}
1353	/* Flush the FIFOs and let's go! */
1354	flush(pl022);
1355
1356	if (pl022->cur_chip->enable_dma) {
1357		if (configure_dma(pl022)) {
1358			dev_dbg(&pl022->adev->dev,
1359				"configuration of DMA failed, fall back to interrupt mode\n");
1360			goto err_config_dma;
1361		}
1362		return;
1363	}
1364
1365err_config_dma:
1366	/* enable all interrupts except RX */
1367	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1368}
1369
1370static void do_interrupt_dma_transfer(struct pl022 *pl022)
1371{
1372	/*
1373	 * Default is to enable all interrupts except RX -
1374	 * this will be enabled once TX is complete
1375	 */
1376	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1377
1378	/* Enable target chip, if not already active */
1379	if (!pl022->next_msg_cs_active)
1380		pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1381
1382	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1383		/* Error path */
1384		pl022->cur_msg->state = STATE_ERROR;
1385		pl022->cur_msg->status = -EIO;
1386		giveback(pl022);
1387		return;
1388	}
1389	/* If we're using DMA, set up DMA here */
1390	if (pl022->cur_chip->enable_dma) {
1391		/* Configure DMA transfer */
1392		if (configure_dma(pl022)) {
1393			dev_dbg(&pl022->adev->dev,
1394				"configuration of DMA failed, fall back to interrupt mode\n");
1395			goto err_config_dma;
1396		}
1397		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1398		irqflags = DISABLE_ALL_INTERRUPTS;
1399	}
1400err_config_dma:
1401	/* Enable SSP, turn on interrupts */
1402	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1403	       SSP_CR1(pl022->virtbase));
1404	writew(irqflags, SSP_IMSC(pl022->virtbase));
1405}
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407static void do_polling_transfer(struct pl022 *pl022)
1408{
1409	struct spi_message *message = NULL;
1410	struct spi_transfer *transfer = NULL;
1411	struct spi_transfer *previous = NULL;
1412	struct chip_data *chip;
1413	unsigned long time, timeout;
1414
1415	chip = pl022->cur_chip;
1416	message = pl022->cur_msg;
1417
1418	while (message->state != STATE_DONE) {
1419		/* Handle for abort */
1420		if (message->state == STATE_ERROR)
1421			break;
1422		transfer = pl022->cur_transfer;
1423
1424		/* Delay if requested at end of transfer */
1425		if (message->state == STATE_RUNNING) {
1426			previous =
1427			    list_entry(transfer->transfer_list.prev,
1428				       struct spi_transfer, transfer_list);
1429			if (previous->delay_usecs)
1430				udelay(previous->delay_usecs);
1431			if (previous->cs_change)
1432				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1433		} else {
1434			/* STATE_START */
1435			message->state = STATE_RUNNING;
1436			if (!pl022->next_msg_cs_active)
1437				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1438		}
1439
1440		/* Configuration Changing Per Transfer */
1441		if (set_up_next_transfer(pl022, transfer)) {
1442			/* Error path */
1443			message->state = STATE_ERROR;
1444			break;
1445		}
1446		/* Flush FIFOs and enable SSP */
1447		flush(pl022);
1448		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1449		       SSP_CR1(pl022->virtbase));
1450
1451		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1452
1453		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1454		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1455			time = jiffies;
1456			readwriter(pl022);
1457			if (time_after(time, timeout)) {
1458				dev_warn(&pl022->adev->dev,
1459				"%s: timeout!\n", __func__);
1460				message->state = STATE_ERROR;
 
1461				goto out;
1462			}
1463			cpu_relax();
1464		}
1465
1466		/* Update total byte transferred */
1467		message->actual_length += pl022->cur_transfer->len;
1468		if (pl022->cur_transfer->cs_change)
1469			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1470		/* Move to next transfer */
1471		message->state = next_transfer(pl022);
 
 
 
1472	}
1473out:
1474	/* Handle end of message */
1475	if (message->state == STATE_DONE)
1476		message->status = 0;
 
 
1477	else
1478		message->status = -EIO;
1479
1480	giveback(pl022);
1481	return;
1482}
1483
1484static int pl022_transfer_one_message(struct spi_master *master,
1485				      struct spi_message *msg)
1486{
1487	struct pl022 *pl022 = spi_master_get_devdata(master);
1488
1489	/* Initial message state */
1490	pl022->cur_msg = msg;
1491	msg->state = STATE_START;
1492
1493	pl022->cur_transfer = list_entry(msg->transfers.next,
1494					 struct spi_transfer, transfer_list);
1495
1496	/* Setup the SPI using the per chip configuration */
1497	pl022->cur_chip = spi_get_ctldata(msg->spi);
 
 
 
1498
1499	restore_state(pl022);
1500	flush(pl022);
1501
1502	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1503		do_polling_transfer(pl022);
1504	else
1505		do_interrupt_dma_transfer(pl022);
1506
1507	return 0;
1508}
1509
1510static int pl022_prepare_transfer_hardware(struct spi_master *master)
1511{
1512	struct pl022 *pl022 = spi_master_get_devdata(master);
1513
1514	/*
1515	 * Just make sure we have all we need to run the transfer by syncing
1516	 * with the runtime PM framework.
1517	 */
1518	pm_runtime_get_sync(&pl022->adev->dev);
1519	return 0;
1520}
1521
1522static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1523{
1524	struct pl022 *pl022 = spi_master_get_devdata(master);
1525
1526	/* nothing more to do - disable spi/ssp and power off */
1527	writew((readw(SSP_CR1(pl022->virtbase)) &
1528		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1529
1530	if (pl022->master_info->autosuspend_delay > 0) {
1531		pm_runtime_mark_last_busy(&pl022->adev->dev);
1532		pm_runtime_put_autosuspend(&pl022->adev->dev);
1533	} else {
1534		pm_runtime_put(&pl022->adev->dev);
1535	}
1536
1537	return 0;
1538}
1539
1540static int verify_controller_parameters(struct pl022 *pl022,
1541				struct pl022_config_chip const *chip_info)
1542{
1543	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1544	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1545		dev_err(&pl022->adev->dev,
1546			"interface is configured incorrectly\n");
1547		return -EINVAL;
1548	}
1549	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1550	    (!pl022->vendor->unidir)) {
1551		dev_err(&pl022->adev->dev,
1552			"unidirectional mode not supported in this "
1553			"hardware version\n");
1554		return -EINVAL;
1555	}
1556	if ((chip_info->hierarchy != SSP_MASTER)
1557	    && (chip_info->hierarchy != SSP_SLAVE)) {
1558		dev_err(&pl022->adev->dev,
1559			"hierarchy is configured incorrectly\n");
1560		return -EINVAL;
1561	}
1562	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1563	    && (chip_info->com_mode != DMA_TRANSFER)
1564	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1565		dev_err(&pl022->adev->dev,
1566			"Communication mode is configured incorrectly\n");
1567		return -EINVAL;
1568	}
1569	switch (chip_info->rx_lev_trig) {
1570	case SSP_RX_1_OR_MORE_ELEM:
1571	case SSP_RX_4_OR_MORE_ELEM:
1572	case SSP_RX_8_OR_MORE_ELEM:
1573		/* These are always OK, all variants can handle this */
1574		break;
1575	case SSP_RX_16_OR_MORE_ELEM:
1576		if (pl022->vendor->fifodepth < 16) {
1577			dev_err(&pl022->adev->dev,
1578			"RX FIFO Trigger Level is configured incorrectly\n");
1579			return -EINVAL;
1580		}
1581		break;
1582	case SSP_RX_32_OR_MORE_ELEM:
1583		if (pl022->vendor->fifodepth < 32) {
1584			dev_err(&pl022->adev->dev,
1585			"RX FIFO Trigger Level is configured incorrectly\n");
1586			return -EINVAL;
1587		}
1588		break;
1589	default:
1590		dev_err(&pl022->adev->dev,
1591			"RX FIFO Trigger Level is configured incorrectly\n");
1592		return -EINVAL;
1593		break;
1594	}
1595	switch (chip_info->tx_lev_trig) {
1596	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1597	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1598	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1599		/* These are always OK, all variants can handle this */
1600		break;
1601	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1602		if (pl022->vendor->fifodepth < 16) {
1603			dev_err(&pl022->adev->dev,
1604			"TX FIFO Trigger Level is configured incorrectly\n");
1605			return -EINVAL;
1606		}
1607		break;
1608	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1609		if (pl022->vendor->fifodepth < 32) {
1610			dev_err(&pl022->adev->dev,
1611			"TX FIFO Trigger Level is configured incorrectly\n");
1612			return -EINVAL;
1613		}
1614		break;
1615	default:
1616		dev_err(&pl022->adev->dev,
1617			"TX FIFO Trigger Level is configured incorrectly\n");
1618		return -EINVAL;
1619		break;
1620	}
1621	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1622		if ((chip_info->ctrl_len < SSP_BITS_4)
1623		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1624			dev_err(&pl022->adev->dev,
1625				"CTRL LEN is configured incorrectly\n");
1626			return -EINVAL;
1627		}
1628		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1629		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1630			dev_err(&pl022->adev->dev,
1631				"Wait State is configured incorrectly\n");
1632			return -EINVAL;
1633		}
1634		/* Half duplex is only available in the ST Micro version */
1635		if (pl022->vendor->extended_cr) {
1636			if ((chip_info->duplex !=
1637			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1638			    && (chip_info->duplex !=
1639				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1640				dev_err(&pl022->adev->dev,
1641					"Microwire duplex mode is configured incorrectly\n");
1642				return -EINVAL;
1643			}
1644		} else {
1645			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1646				dev_err(&pl022->adev->dev,
1647					"Microwire half duplex mode requested,"
1648					" but this is only available in the"
1649					" ST version of PL022\n");
1650			return -EINVAL;
 
1651		}
1652	}
1653	return 0;
1654}
1655
1656static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1657{
1658	return rate / (cpsdvsr * (1 + scr));
1659}
1660
1661static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1662				    ssp_clock_params * clk_freq)
1663{
1664	/* Lets calculate the frequency parameters */
1665	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1666	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1667		best_scr = 0, tmp, found = 0;
1668
1669	rate = clk_get_rate(pl022->clk);
1670	/* cpsdvscr = 2 & scr 0 */
1671	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1672	/* cpsdvsr = 254 & scr = 255 */
1673	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1674
1675	if (freq > max_tclk)
1676		dev_warn(&pl022->adev->dev,
1677			"Max speed that can be programmed is %d Hz, you requested %d\n",
1678			max_tclk, freq);
1679
1680	if (freq < min_tclk) {
1681		dev_err(&pl022->adev->dev,
1682			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1683			freq, min_tclk);
1684		return -EINVAL;
1685	}
1686
1687	/*
1688	 * best_freq will give closest possible available rate (<= requested
1689	 * freq) for all values of scr & cpsdvsr.
1690	 */
1691	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1692		while (scr <= SCR_MAX) {
1693			tmp = spi_rate(rate, cpsdvsr, scr);
1694
1695			if (tmp > freq) {
1696				/* we need lower freq */
1697				scr++;
1698				continue;
1699			}
1700
1701			/*
1702			 * If found exact value, mark found and break.
1703			 * If found more closer value, update and break.
1704			 */
1705			if (tmp > best_freq) {
1706				best_freq = tmp;
1707				best_cpsdvsr = cpsdvsr;
1708				best_scr = scr;
1709
1710				if (tmp == freq)
1711					found = 1;
1712			}
1713			/*
1714			 * increased scr will give lower rates, which are not
1715			 * required
1716			 */
1717			break;
1718		}
1719		cpsdvsr += 2;
1720		scr = SCR_MIN;
1721	}
1722
1723	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1724			freq);
1725
1726	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1727	clk_freq->scr = (u8) (best_scr & 0xFF);
1728	dev_dbg(&pl022->adev->dev,
1729		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1730		freq, best_freq);
1731	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1732		clk_freq->cpsdvsr, clk_freq->scr);
1733
1734	return 0;
1735}
1736
1737/*
1738 * A piece of default chip info unless the platform
1739 * supplies it.
1740 */
1741static const struct pl022_config_chip pl022_default_chip_info = {
1742	.com_mode = POLLING_TRANSFER,
1743	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1744	.hierarchy = SSP_SLAVE,
1745	.slave_tx_disable = DO_NOT_DRIVE_TX,
1746	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1747	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1748	.ctrl_len = SSP_BITS_8,
1749	.wait_state = SSP_MWIRE_WAIT_ZERO,
1750	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1751	.cs_control = null_cs_control,
1752};
1753
1754/**
1755 * pl022_setup - setup function registered to SPI master framework
1756 * @spi: spi device which is requesting setup
1757 *
1758 * This function is registered to the SPI framework for this SPI master
1759 * controller. If it is the first time when setup is called by this device,
1760 * this function will initialize the runtime state for this chip and save
1761 * the same in the device structure. Else it will update the runtime info
1762 * with the updated chip info. Nothing is really being written to the
1763 * controller hardware here, that is not done until the actual transfer
1764 * commence.
1765 */
1766static int pl022_setup(struct spi_device *spi)
1767{
1768	struct pl022_config_chip const *chip_info;
 
1769	struct chip_data *chip;
1770	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1771	int status = 0;
1772	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1773	unsigned int bits = spi->bits_per_word;
1774	u32 tmp;
 
1775
1776	if (!spi->max_speed_hz)
1777		return -EINVAL;
1778
1779	/* Get controller_state if one is supplied */
1780	chip = spi_get_ctldata(spi);
1781
1782	if (chip == NULL) {
1783		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1784		if (!chip) {
1785			dev_err(&spi->dev,
1786				"cannot allocate controller state\n");
1787			return -ENOMEM;
1788		}
1789		dev_dbg(&spi->dev,
1790			"allocated memory for controller's runtime state\n");
1791	}
1792
1793	/* Get controller data if one is supplied */
1794	chip_info = spi->controller_data;
1795
1796	if (chip_info == NULL) {
1797		chip_info = &pl022_default_chip_info;
1798		/* spi_board_info.controller_data not is supplied */
1799		dev_dbg(&spi->dev,
1800			"using default controller_data settings\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801	} else
1802		dev_dbg(&spi->dev,
1803			"using user supplied controller_data settings\n");
1804
1805	/*
1806	 * We can override with custom divisors, else we use the board
1807	 * frequency setting
1808	 */
1809	if ((0 == chip_info->clk_freq.cpsdvsr)
1810	    && (0 == chip_info->clk_freq.scr)) {
1811		status = calculate_effective_freq(pl022,
1812						  spi->max_speed_hz,
1813						  &clk_freq);
1814		if (status < 0)
1815			goto err_config_params;
1816	} else {
1817		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1818		if ((clk_freq.cpsdvsr % 2) != 0)
1819			clk_freq.cpsdvsr =
1820				clk_freq.cpsdvsr - 1;
1821	}
1822	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1823	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1824		status = -EINVAL;
1825		dev_err(&spi->dev,
1826			"cpsdvsr is configured incorrectly\n");
1827		goto err_config_params;
1828	}
1829
1830	status = verify_controller_parameters(pl022, chip_info);
1831	if (status) {
1832		dev_err(&spi->dev, "controller data is incorrect");
1833		goto err_config_params;
1834	}
1835
1836	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1837	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1838
1839	/* Now set controller state based on controller data */
1840	chip->xfer_type = chip_info->com_mode;
1841	if (!chip_info->cs_control) {
1842		chip->cs_control = null_cs_control;
1843		dev_warn(&spi->dev,
1844			 "chip select function is NULL for this chip\n");
1845	} else
1846		chip->cs_control = chip_info->cs_control;
1847
1848	/* Check bits per word with vendor specific range */
1849	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1850		status = -ENOTSUPP;
1851		dev_err(&spi->dev, "illegal data size for this controller!\n");
1852		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1853				pl022->vendor->max_bpw);
1854		goto err_config_params;
1855	} else if (bits <= 8) {
1856		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1857		chip->n_bytes = 1;
1858		chip->read = READING_U8;
1859		chip->write = WRITING_U8;
1860	} else if (bits <= 16) {
1861		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1862		chip->n_bytes = 2;
1863		chip->read = READING_U16;
1864		chip->write = WRITING_U16;
1865	} else {
1866		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1867		chip->n_bytes = 4;
1868		chip->read = READING_U32;
1869		chip->write = WRITING_U32;
1870	}
1871
1872	/* Now Initialize all register settings required for this chip */
1873	chip->cr0 = 0;
1874	chip->cr1 = 0;
1875	chip->dmacr = 0;
1876	chip->cpsr = 0;
1877	if ((chip_info->com_mode == DMA_TRANSFER)
1878	    && ((pl022->master_info)->enable_dma)) {
1879		chip->enable_dma = true;
1880		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1881		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1882			       SSP_DMACR_MASK_RXDMAE, 0);
1883		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1884			       SSP_DMACR_MASK_TXDMAE, 1);
1885	} else {
1886		chip->enable_dma = false;
1887		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1888		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1889			       SSP_DMACR_MASK_RXDMAE, 0);
1890		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1891			       SSP_DMACR_MASK_TXDMAE, 1);
1892	}
1893
1894	chip->cpsr = clk_freq.cpsdvsr;
1895
1896	/* Special setup for the ST micro extended control registers */
1897	if (pl022->vendor->extended_cr) {
1898		u32 etx;
1899
1900		if (pl022->vendor->pl023) {
1901			/* These bits are only in the PL023 */
1902			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1903				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1904		} else {
1905			/* These bits are in the PL022 but not PL023 */
1906			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1907				       SSP_CR0_MASK_HALFDUP_ST, 5);
1908			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1909				       SSP_CR0_MASK_CSS_ST, 16);
1910			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1911				       SSP_CR0_MASK_FRF_ST, 21);
1912			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1913				       SSP_CR1_MASK_MWAIT_ST, 6);
1914		}
1915		SSP_WRITE_BITS(chip->cr0, bits - 1,
1916			       SSP_CR0_MASK_DSS_ST, 0);
1917
1918		if (spi->mode & SPI_LSB_FIRST) {
1919			tmp = SSP_RX_LSB;
1920			etx = SSP_TX_LSB;
1921		} else {
1922			tmp = SSP_RX_MSB;
1923			etx = SSP_TX_MSB;
1924		}
1925		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1926		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1927		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1928			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1929		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1930			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1931	} else {
1932		SSP_WRITE_BITS(chip->cr0, bits - 1,
1933			       SSP_CR0_MASK_DSS, 0);
1934		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1935			       SSP_CR0_MASK_FRF, 4);
1936	}
1937
1938	/* Stuff that is common for all versions */
1939	if (spi->mode & SPI_CPOL)
1940		tmp = SSP_CLK_POL_IDLE_HIGH;
1941	else
1942		tmp = SSP_CLK_POL_IDLE_LOW;
1943	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1944
1945	if (spi->mode & SPI_CPHA)
1946		tmp = SSP_CLK_SECOND_EDGE;
1947	else
1948		tmp = SSP_CLK_FIRST_EDGE;
1949	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1950
1951	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1952	/* Loopback is available on all versions except PL023 */
1953	if (pl022->vendor->loopback) {
1954		if (spi->mode & SPI_LOOP)
1955			tmp = LOOPBACK_ENABLED;
1956		else
1957			tmp = LOOPBACK_DISABLED;
1958		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1959	}
1960	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1961	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1962	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1963		3);
1964
1965	/* Save controller_state */
1966	spi_set_ctldata(spi, chip);
1967	return status;
1968 err_config_params:
1969	spi_set_ctldata(spi, NULL);
1970	kfree(chip);
1971	return status;
1972}
1973
1974/**
1975 * pl022_cleanup - cleanup function registered to SPI master framework
1976 * @spi: spi device which is requesting cleanup
1977 *
1978 * This function is registered to the SPI framework for this SPI master
1979 * controller. It will free the runtime state of chip.
1980 */
1981static void pl022_cleanup(struct spi_device *spi)
1982{
1983	struct chip_data *chip = spi_get_ctldata(spi);
1984
1985	spi_set_ctldata(spi, NULL);
1986	kfree(chip);
1987}
1988
1989static int __devinit
1990pl022_probe(struct amba_device *adev, const struct amba_id *id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991{
1992	struct device *dev = &adev->dev;
1993	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
 
1994	struct spi_master *master;
1995	struct pl022 *pl022 = NULL;	/*Data for this driver */
1996	int status = 0;
1997
1998	dev_info(&adev->dev,
1999		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2000	if (platform_info == NULL) {
2001		dev_err(&adev->dev, "probe - no platform data supplied\n");
2002		status = -ENODEV;
2003		goto err_no_pdata;
 
 
2004	}
2005
2006	/* Allocate master with space for data */
2007	master = spi_alloc_master(dev, sizeof(struct pl022));
2008	if (master == NULL) {
2009		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2010		status = -ENOMEM;
2011		goto err_no_master;
2012	}
2013
2014	pl022 = spi_master_get_devdata(master);
2015	pl022->master = master;
2016	pl022->master_info = platform_info;
2017	pl022->adev = adev;
2018	pl022->vendor = id->data;
2019
2020	/*
2021	 * Bus Number Which has been Assigned to this SSP controller
2022	 * on this board
2023	 */
2024	master->bus_num = platform_info->bus_id;
2025	master->num_chipselect = platform_info->num_chipselect;
2026	master->cleanup = pl022_cleanup;
2027	master->setup = pl022_setup;
2028	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2029	master->transfer_one_message = pl022_transfer_one_message;
2030	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2031	master->rt = platform_info->rt;
 
 
2032
2033	/*
2034	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2035	 * always MS bit first on the original pl022.
2036	 */
2037	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2038	if (pl022->vendor->extended_cr)
2039		master->mode_bits |= SPI_LSB_FIRST;
2040
2041	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2042
2043	status = amba_request_regions(adev, NULL);
2044	if (status)
2045		goto err_no_ioregion;
2046
2047	pl022->phybase = adev->res.start;
2048	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
 
2049	if (pl022->virtbase == NULL) {
2050		status = -ENOMEM;
2051		goto err_no_ioremap;
2052	}
2053	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2054	       adev->res.start, pl022->virtbase);
2055
2056	pl022->clk = clk_get(&adev->dev, NULL);
2057	if (IS_ERR(pl022->clk)) {
2058		status = PTR_ERR(pl022->clk);
2059		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2060		goto err_no_clk;
2061	}
2062
2063	status = clk_prepare(pl022->clk);
2064	if (status) {
2065		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2066		goto  err_clk_prep;
2067	}
2068
2069	status = clk_enable(pl022->clk);
2070	if (status) {
2071		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2072		goto err_no_clk_en;
2073	}
2074
2075	/* Initialize transfer pump */
2076	tasklet_init(&pl022->pump_transfers, pump_transfers,
2077		     (unsigned long)pl022);
2078
2079	/* Disable SSP */
2080	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2081	       SSP_CR1(pl022->virtbase));
2082	load_ssp_default_config(pl022);
2083
2084	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2085			     pl022);
2086	if (status < 0) {
2087		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2088		goto err_no_irq;
2089	}
2090
2091	/* Get DMA channels */
2092	if (platform_info->enable_dma) {
 
 
 
 
 
 
 
 
 
2093		status = pl022_dma_probe(pl022);
2094		if (status != 0)
2095			platform_info->enable_dma = 0;
2096	}
2097
2098	/* Register with the SPI framework */
2099	amba_set_drvdata(adev, pl022);
2100	status = spi_register_master(master);
2101	if (status != 0) {
2102		dev_err(&adev->dev,
2103			"probe - problem registering spi master\n");
2104		goto err_spi_register;
2105	}
2106	dev_dbg(dev, "probe succeeded\n");
2107
2108	/* let runtime pm put suspend */
2109	if (platform_info->autosuspend_delay > 0) {
2110		dev_info(&adev->dev,
2111			"will use autosuspend for runtime pm, delay %dms\n",
2112			platform_info->autosuspend_delay);
2113		pm_runtime_set_autosuspend_delay(dev,
2114			platform_info->autosuspend_delay);
2115		pm_runtime_use_autosuspend(dev);
2116		pm_runtime_put_autosuspend(dev);
2117	} else {
2118		pm_runtime_put(dev);
2119	}
 
 
2120	return 0;
2121
2122 err_spi_register:
2123	if (platform_info->enable_dma)
2124		pl022_dma_remove(pl022);
2125
2126	free_irq(adev->irq[0], pl022);
2127 err_no_irq:
2128	clk_disable(pl022->clk);
2129 err_no_clk_en:
2130	clk_unprepare(pl022->clk);
2131 err_clk_prep:
2132	clk_put(pl022->clk);
2133 err_no_clk:
2134	iounmap(pl022->virtbase);
2135 err_no_ioremap:
2136	amba_release_regions(adev);
2137 err_no_ioregion:
2138	spi_master_put(master);
2139 err_no_master:
2140 err_no_pdata:
2141	return status;
2142}
2143
2144static int __devexit
2145pl022_remove(struct amba_device *adev)
2146{
2147	struct pl022 *pl022 = amba_get_drvdata(adev);
2148
2149	if (!pl022)
2150		return 0;
2151
2152	/*
2153	 * undo pm_runtime_put() in probe.  I assume that we're not
2154	 * accessing the primecell here.
2155	 */
2156	pm_runtime_get_noresume(&adev->dev);
2157
2158	load_ssp_default_config(pl022);
2159	if (pl022->master_info->enable_dma)
2160		pl022_dma_remove(pl022);
2161
2162	free_irq(adev->irq[0], pl022);
2163	clk_disable(pl022->clk);
2164	clk_unprepare(pl022->clk);
2165	clk_put(pl022->clk);
2166	iounmap(pl022->virtbase);
2167	amba_release_regions(adev);
2168	tasklet_disable(&pl022->pump_transfers);
2169	spi_unregister_master(pl022->master);
2170	spi_master_put(pl022->master);
2171	amba_set_drvdata(adev, NULL);
2172	return 0;
2173}
2174
2175#ifdef CONFIG_SUSPEND
2176static int pl022_suspend(struct device *dev)
2177{
2178	struct pl022 *pl022 = dev_get_drvdata(dev);
2179	int ret;
2180
2181	ret = spi_master_suspend(pl022->master);
 
 
 
 
2182	if (ret) {
2183		dev_warn(dev, "cannot suspend master\n");
2184		return ret;
2185	}
2186
 
 
2187	dev_dbg(dev, "suspended\n");
2188	return 0;
2189}
2190
2191static int pl022_resume(struct device *dev)
2192{
2193	struct pl022 *pl022 = dev_get_drvdata(dev);
2194	int ret;
2195
 
 
 
 
2196	/* Start the queue running */
2197	ret = spi_master_resume(pl022->master);
2198	if (ret)
2199		dev_err(dev, "problem starting queue (%d)\n", ret);
2200	else
2201		dev_dbg(dev, "resumed\n");
2202
2203	return ret;
2204}
2205#endif	/* CONFIG_PM */
2206
2207#ifdef CONFIG_PM_RUNTIME
2208static int pl022_runtime_suspend(struct device *dev)
2209{
2210	struct pl022 *pl022 = dev_get_drvdata(dev);
2211
2212	clk_disable(pl022->clk);
 
2213
2214	return 0;
2215}
2216
2217static int pl022_runtime_resume(struct device *dev)
2218{
2219	struct pl022 *pl022 = dev_get_drvdata(dev);
2220
2221	clk_enable(pl022->clk);
 
2222
2223	return 0;
2224}
2225#endif
2226
2227static const struct dev_pm_ops pl022_dev_pm_ops = {
2228	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2229	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2230};
2231
2232static struct vendor_data vendor_arm = {
2233	.fifodepth = 8,
2234	.max_bpw = 16,
2235	.unidir = false,
2236	.extended_cr = false,
2237	.pl023 = false,
2238	.loopback = true,
 
2239};
2240
2241static struct vendor_data vendor_st = {
2242	.fifodepth = 32,
2243	.max_bpw = 32,
2244	.unidir = false,
2245	.extended_cr = true,
2246	.pl023 = false,
2247	.loopback = true,
 
2248};
2249
2250static struct vendor_data vendor_st_pl023 = {
2251	.fifodepth = 32,
2252	.max_bpw = 32,
2253	.unidir = false,
2254	.extended_cr = true,
2255	.pl023 = true,
2256	.loopback = false,
 
2257};
2258
2259static struct vendor_data vendor_db5500_pl023 = {
2260	.fifodepth = 32,
2261	.max_bpw = 32,
2262	.unidir = false,
2263	.extended_cr = true,
2264	.pl023 = true,
2265	.loopback = true,
 
2266};
2267
2268static struct amba_id pl022_ids[] = {
2269	{
2270		/*
2271		 * ARM PL022 variant, this has a 16bit wide
2272		 * and 8 locations deep TX/RX FIFO
2273		 */
2274		.id	= 0x00041022,
2275		.mask	= 0x000fffff,
2276		.data	= &vendor_arm,
2277	},
2278	{
2279		/*
2280		 * ST Micro derivative, this has 32bit wide
2281		 * and 32 locations deep TX/RX FIFO
2282		 */
2283		.id	= 0x01080022,
2284		.mask	= 0xffffffff,
2285		.data	= &vendor_st,
2286	},
2287	{
2288		/*
2289		 * ST-Ericsson derivative "PL023" (this is not
2290		 * an official ARM number), this is a PL022 SSP block
2291		 * stripped to SPI mode only, it has 32bit wide
2292		 * and 32 locations deep TX/RX FIFO but no extended
2293		 * CR0/CR1 register
2294		 */
2295		.id	= 0x00080023,
2296		.mask	= 0xffffffff,
2297		.data	= &vendor_st_pl023,
2298	},
2299	{
2300		.id	= 0x10080023,
2301		.mask	= 0xffffffff,
2302		.data	= &vendor_db5500_pl023,
 
 
 
 
2303	},
2304	{ 0, 0 },
2305};
2306
2307MODULE_DEVICE_TABLE(amba, pl022_ids);
2308
2309static struct amba_driver pl022_driver = {
2310	.drv = {
2311		.name	= "ssp-pl022",
2312		.pm	= &pl022_dev_pm_ops,
2313	},
2314	.id_table	= pl022_ids,
2315	.probe		= pl022_probe,
2316	.remove		= __devexit_p(pl022_remove),
2317};
2318
2319static int __init pl022_init(void)
2320{
2321	return amba_driver_register(&pl022_driver);
2322}
2323subsys_initcall(pl022_init);
2324
2325static void __exit pl022_exit(void)
2326{
2327	amba_driver_unregister(&pl022_driver);
2328}
2329module_exit(pl022_exit);
2330
2331MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2332MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2333MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
 
 
 
 
 
 
 
 
 
 
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/of.h>
  35#include <linux/pinctrl/consumer.h>
  36
  37/*
  38 * This macro is used to define some register default values.
  39 * reg is masked with mask, the OR:ed with an (again masked)
  40 * val shifted sb steps to the left.
  41 */
  42#define SSP_WRITE_BITS(reg, val, mask, sb) \
  43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  44
  45/*
  46 * This macro is also used to define some default values.
  47 * It will just shift val by sb steps to the left and mask
  48 * the result with mask.
  49 */
  50#define GEN_MASK_BITS(val, mask, sb) \
  51 (((val)<<(sb)) & (mask))
  52
  53#define DRIVE_TX		0
  54#define DO_NOT_DRIVE_TX		1
  55
  56#define DO_NOT_QUEUE_DMA	0
  57#define QUEUE_DMA		1
  58
  59#define RX_TRANSFER		1
  60#define TX_TRANSFER		2
  61
  62/*
  63 * Macros to access SSP Registers with their offsets
  64 */
  65#define SSP_CR0(r)	(r + 0x000)
  66#define SSP_CR1(r)	(r + 0x004)
  67#define SSP_DR(r)	(r + 0x008)
  68#define SSP_SR(r)	(r + 0x00C)
  69#define SSP_CPSR(r)	(r + 0x010)
  70#define SSP_IMSC(r)	(r + 0x014)
  71#define SSP_RIS(r)	(r + 0x018)
  72#define SSP_MIS(r)	(r + 0x01C)
  73#define SSP_ICR(r)	(r + 0x020)
  74#define SSP_DMACR(r)	(r + 0x024)
  75#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
  76#define SSP_ITCR(r)	(r + 0x080)
  77#define SSP_ITIP(r)	(r + 0x084)
  78#define SSP_ITOP(r)	(r + 0x088)
  79#define SSP_TDR(r)	(r + 0x08C)
  80
  81#define SSP_PID0(r)	(r + 0xFE0)
  82#define SSP_PID1(r)	(r + 0xFE4)
  83#define SSP_PID2(r)	(r + 0xFE8)
  84#define SSP_PID3(r)	(r + 0xFEC)
  85
  86#define SSP_CID0(r)	(r + 0xFF0)
  87#define SSP_CID1(r)	(r + 0xFF4)
  88#define SSP_CID2(r)	(r + 0xFF8)
  89#define SSP_CID3(r)	(r + 0xFFC)
  90
  91/*
  92 * SSP Control Register 0  - SSP_CR0
  93 */
  94#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
  95#define SSP_CR0_MASK_FRF	(0x3UL << 4)
  96#define SSP_CR0_MASK_SPO	(0x1UL << 6)
  97#define SSP_CR0_MASK_SPH	(0x1UL << 7)
  98#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
  99
 100/*
 101 * The ST version of this block moves som bits
 102 * in SSP_CR0 and extends it to 32 bits
 103 */
 104#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 105#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 106#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 107#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 108
 109/*
 110 * SSP Control Register 0  - SSP_CR1
 111 */
 112#define SSP_CR1_MASK_LBM	(0x1UL << 0)
 113#define SSP_CR1_MASK_SSE	(0x1UL << 1)
 114#define SSP_CR1_MASK_MS		(0x1UL << 2)
 115#define SSP_CR1_MASK_SOD	(0x1UL << 3)
 116
 117/*
 118 * The ST version of this block adds some bits
 119 * in SSP_CR1
 120 */
 121#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 122#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 123#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 126/* This one is only in the PL023 variant */
 127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 128
 129/*
 130 * SSP Status Register - SSP_SR
 131 */
 132#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 133#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 134#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 135#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 136#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 137
 138/*
 139 * SSP Clock Prescale Register  - SSP_CPSR
 140 */
 141#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 142
 143/*
 144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 145 */
 146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 147#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 148#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 149#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 150
 151/*
 152 * SSP Raw Interrupt Status Register - SSP_RIS
 153 */
 154/* Receive Overrun Raw Interrupt status */
 155#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 156/* Receive Timeout Raw Interrupt status */
 157#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 158/* Receive FIFO Raw Interrupt status */
 159#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 160/* Transmit FIFO Raw Interrupt status */
 161#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 162
 163/*
 164 * SSP Masked Interrupt Status Register - SSP_MIS
 165 */
 166/* Receive Overrun Masked Interrupt status */
 167#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 168/* Receive Timeout Masked Interrupt status */
 169#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 170/* Receive FIFO Masked Interrupt status */
 171#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 172/* Transmit FIFO Masked Interrupt status */
 173#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 174
 175/*
 176 * SSP Interrupt Clear Register - SSP_ICR
 177 */
 178/* Receive Overrun Raw Clear Interrupt bit */
 179#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 180/* Receive Timeout Clear Interrupt bit */
 181#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 182
 183/*
 184 * SSP DMA Control Register - SSP_DMACR
 185 */
 186/* Receive DMA Enable bit */
 187#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 188/* Transmit DMA Enable bit */
 189#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 190
 191/*
 192 * SSP Chip Select Control Register - SSP_CSR
 193 * (vendor extension)
 194 */
 195#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
 196
 197/*
 198 * SSP Integration Test control Register - SSP_ITCR
 199 */
 200#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 201#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 202
 203/*
 204 * SSP Integration Test Input Register - SSP_ITIP
 205 */
 206#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 207#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 208#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 209#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 210#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 211#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 212
 213/*
 214 * SSP Integration Test output Register - SSP_ITOP
 215 */
 216#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 217#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 218#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 219#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 220#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 221#define ITOP_MASK_RORINTR		 (0x1UL << 5)
 222#define ITOP_MASK_RTINTR		 (0x1UL << 6)
 223#define ITOP_MASK_RXINTR		 (0x1UL << 7)
 224#define ITOP_MASK_TXINTR		 (0x1UL << 8)
 225#define ITOP_MASK_INTR			 (0x1UL << 9)
 226#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 227#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 228#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 229#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 230
 231/*
 232 * SSP Test Data Register - SSP_TDR
 233 */
 234#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 235
 236/*
 237 * Message State
 238 * we use the spi_message.state (void *) pointer to
 239 * hold a single state value, that's why all this
 240 * (void *) casting is done here.
 241 */
 242#define STATE_START			((void *) 0)
 243#define STATE_RUNNING			((void *) 1)
 244#define STATE_DONE			((void *) 2)
 245#define STATE_ERROR			((void *) -1)
 246#define STATE_TIMEOUT			((void *) -2)
 247
 248/*
 249 * SSP State - Whether Enabled or Disabled
 250 */
 251#define SSP_DISABLED			(0)
 252#define SSP_ENABLED			(1)
 253
 254/*
 255 * SSP DMA State - Whether DMA Enabled or Disabled
 256 */
 257#define SSP_DMA_DISABLED		(0)
 258#define SSP_DMA_ENABLED			(1)
 259
 260/*
 261 * SSP Clock Defaults
 262 */
 263#define SSP_DEFAULT_CLKRATE 0x2
 264#define SSP_DEFAULT_PRESCALE 0x40
 265
 266/*
 267 * SSP Clock Parameter ranges
 268 */
 269#define CPSDVR_MIN 0x02
 270#define CPSDVR_MAX 0xFE
 271#define SCR_MIN 0x00
 272#define SCR_MAX 0xFF
 273
 274/*
 275 * SSP Interrupt related Macros
 276 */
 277#define DEFAULT_SSP_REG_IMSC  0x0UL
 278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 279#define ENABLE_ALL_INTERRUPTS ( \
 280	SSP_IMSC_MASK_RORIM | \
 281	SSP_IMSC_MASK_RTIM | \
 282	SSP_IMSC_MASK_RXIM | \
 283	SSP_IMSC_MASK_TXIM \
 284)
 285
 286#define CLEAR_ALL_INTERRUPTS  0x3
 287
 288#define SPI_POLLING_TIMEOUT 1000
 289
 290/*
 291 * The type of reading going on this chip
 292 */
 293enum ssp_reading {
 294	READING_NULL,
 295	READING_U8,
 296	READING_U16,
 297	READING_U32
 298};
 299
 300/*
 301 * The type of writing going on this chip
 302 */
 303enum ssp_writing {
 304	WRITING_NULL,
 305	WRITING_U8,
 306	WRITING_U16,
 307	WRITING_U32
 308};
 309
 310/**
 311 * struct vendor_data - vendor-specific config parameters
 312 * for PL022 derivates
 313 * @fifodepth: depth of FIFOs (both)
 314 * @max_bpw: maximum number of bits per word
 315 * @unidir: supports unidirection transfers
 316 * @extended_cr: 32 bit wide control register 0 with extra
 317 * features and extra features in CR1 as found in the ST variants
 318 * @pl023: supports a subset of the ST extensions called "PL023"
 319 * @loopback: supports loopback mode
 320 * @internal_cs_ctrl: supports chip select control register
 321 */
 322struct vendor_data {
 323	int fifodepth;
 324	int max_bpw;
 325	bool unidir;
 326	bool extended_cr;
 327	bool pl023;
 328	bool loopback;
 329	bool internal_cs_ctrl;
 330};
 331
 332/**
 333 * struct pl022 - This is the private SSP driver data structure
 334 * @adev: AMBA device model hookup
 335 * @vendor: vendor data for the IP block
 336 * @phybase: the physical memory where the SSP device resides
 337 * @virtbase: the virtual memory where the SSP is mapped
 338 * @clk: outgoing clock "SPICLK" for the SPI bus
 339 * @master: SPI framework hookup
 340 * @master_info: controller-specific data from machine setup
 
 
 
 
 
 
 
 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 342 * @cur_msg: Pointer to current spi_message being processed
 343 * @cur_transfer: Pointer to current spi_transfer
 344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 345 * @next_msg_cs_active: the next message in the queue has been examined
 346 *  and it was found that it uses the same chip select as the previous
 347 *  message, so we left it active after the previous transfer, and it's
 348 *  active already.
 349 * @tx: current position in TX buffer to be read
 350 * @tx_end: end position in TX buffer to be read
 351 * @rx: current position in RX buffer to be written
 352 * @rx_end: end position in RX buffer to be written
 353 * @read: the type of read currently going on
 354 * @write: the type of write currently going on
 355 * @exp_fifo_level: expected FIFO level
 356 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
 357 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
 358 * @dma_rx_channel: optional channel for RX DMA
 359 * @dma_tx_channel: optional channel for TX DMA
 360 * @sgt_rx: scattertable for the RX transfer
 361 * @sgt_tx: scattertable for the TX transfer
 362 * @dummypage: a dummy page used for driving data on the bus with DMA
 363 * @dma_running: indicates whether DMA is in operation
 364 * @cur_cs: current chip select index
 365 * @cur_gpiod: current chip select GPIO descriptor
 366 */
 367struct pl022 {
 368	struct amba_device		*adev;
 369	struct vendor_data		*vendor;
 370	resource_size_t			phybase;
 371	void __iomem			*virtbase;
 372	struct clk			*clk;
 373	struct spi_master		*master;
 374	struct pl022_ssp_controller	*master_info;
 375	/* Message per-transfer pump */
 376	struct tasklet_struct		pump_transfers;
 377	struct spi_message		*cur_msg;
 378	struct spi_transfer		*cur_transfer;
 379	struct chip_data		*cur_chip;
 380	bool				next_msg_cs_active;
 381	void				*tx;
 382	void				*tx_end;
 383	void				*rx;
 384	void				*rx_end;
 385	enum ssp_reading		read;
 386	enum ssp_writing		write;
 387	u32				exp_fifo_level;
 388	enum ssp_rx_level_trig		rx_lev_trig;
 389	enum ssp_tx_level_trig		tx_lev_trig;
 390	/* DMA settings */
 391#ifdef CONFIG_DMA_ENGINE
 392	struct dma_chan			*dma_rx_channel;
 393	struct dma_chan			*dma_tx_channel;
 394	struct sg_table			sgt_rx;
 395	struct sg_table			sgt_tx;
 396	char				*dummypage;
 397	bool				dma_running;
 398#endif
 399	int cur_cs;
 400	struct gpio_desc *cur_gpiod;
 401};
 402
 403/**
 404 * struct chip_data - To maintain runtime state of SSP for each client chip
 405 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 406 *       register is 32 bits wide rather than just 16
 407 * @cr1: Value of control register CR1 of SSP
 408 * @dmacr: Value of DMA control Register of SSP
 409 * @cpsr: Value of Clock prescale register
 410 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 411 * @enable_dma: Whether to enable DMA or not
 412 * @read: function ptr to be used to read when doing xfer for this chip
 413 * @write: function ptr to be used to write when doing xfer for this chip
 
 414 * @xfer_type: polling/interrupt/DMA
 415 *
 416 * Runtime state of the SSP controller, maintained per chip,
 417 * This would be set according to the current message that would be served
 418 */
 419struct chip_data {
 420	u32 cr0;
 421	u16 cr1;
 422	u16 dmacr;
 423	u16 cpsr;
 424	u8 n_bytes;
 425	bool enable_dma;
 426	enum ssp_reading read;
 427	enum ssp_writing write;
 
 428	int xfer_type;
 429};
 430
 431/**
 432 * internal_cs_control - Control chip select signals via SSP_CSR.
 433 * @pl022: SSP driver private data structure
 434 * @command: select/delect the chip
 435 *
 436 * Used on controller with internal chip select control via SSP_CSR register
 437 * (vendor extension). Each of the 5 LSB in the register controls one chip
 438 * select signal.
 439 */
 440static void internal_cs_control(struct pl022 *pl022, u32 command)
 441{
 442	u32 tmp;
 443
 444	tmp = readw(SSP_CSR(pl022->virtbase));
 445	if (command == SSP_CHIP_SELECT)
 446		tmp &= ~BIT(pl022->cur_cs);
 447	else
 448		tmp |= BIT(pl022->cur_cs);
 449	writew(tmp, SSP_CSR(pl022->virtbase));
 450}
 451
 452static void pl022_cs_control(struct pl022 *pl022, u32 command)
 453{
 454	if (pl022->vendor->internal_cs_ctrl)
 455		internal_cs_control(pl022, command);
 456	else if (pl022->cur_gpiod)
 457		/*
 458		 * This needs to be inverted since with GPIOLIB in
 459		 * control, the inversion will be handled by
 460		 * GPIOLIB's active low handling. The "command"
 461		 * passed into this function will be SSP_CHIP_SELECT
 462		 * which is enum:ed to 0, so we need the inverse
 463		 * (1) to activate chip select.
 464		 */
 465		gpiod_set_value(pl022->cur_gpiod, !command);
 466}
 467
 468/**
 469 * giveback - current spi_message is over, schedule next message and call
 470 * callback of this message. Assumes that caller already
 471 * set message->status; dma and pio irqs are blocked
 472 * @pl022: SSP driver private data structure
 473 */
 474static void giveback(struct pl022 *pl022)
 475{
 476	struct spi_transfer *last_transfer;
 477	pl022->next_msg_cs_active = false;
 478
 479	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 480					struct spi_transfer, transfer_list);
 
 481
 482	/* Delay if requested before any change in chip select */
 483	/*
 484	 * FIXME: This runs in interrupt context.
 485	 * Is this really smart?
 486	 */
 487	spi_transfer_delay_exec(last_transfer);
 
 488
 489	if (!last_transfer->cs_change) {
 490		struct spi_message *next_msg;
 491
 492		/*
 493		 * cs_change was not set. We can keep the chip select
 494		 * enabled if there is message in the queue and it is
 495		 * for the same spi device.
 496		 *
 497		 * We cannot postpone this until pump_messages, because
 498		 * after calling msg->complete (below) the driver that
 499		 * sent the current message could be unloaded, which
 500		 * could invalidate the cs_control() callback...
 501		 */
 502		/* get a pointer to the next message, if any */
 503		next_msg = spi_get_next_queued_message(pl022->master);
 504
 505		/*
 506		 * see if the next and current messages point
 507		 * to the same spi device.
 508		 */
 509		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 510			next_msg = NULL;
 511		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 512			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 513		else
 514			pl022->next_msg_cs_active = true;
 515
 516	}
 517
 518	pl022->cur_msg = NULL;
 519	pl022->cur_transfer = NULL;
 520	pl022->cur_chip = NULL;
 
 521
 522	/* disable the SPI/SSP operation */
 523	writew((readw(SSP_CR1(pl022->virtbase)) &
 524		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 525
 526	spi_finalize_current_message(pl022->master);
 527}
 528
 529/**
 530 * flush - flush the FIFO to reach a clean state
 531 * @pl022: SSP driver private data structure
 532 */
 533static int flush(struct pl022 *pl022)
 534{
 535	unsigned long limit = loops_per_jiffy << 1;
 536
 537	dev_dbg(&pl022->adev->dev, "flush\n");
 538	do {
 539		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 540			readw(SSP_DR(pl022->virtbase));
 541	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 542
 543	pl022->exp_fifo_level = 0;
 544
 545	return limit;
 546}
 547
 548/**
 549 * restore_state - Load configuration of current chip
 550 * @pl022: SSP driver private data structure
 551 */
 552static void restore_state(struct pl022 *pl022)
 553{
 554	struct chip_data *chip = pl022->cur_chip;
 555
 556	if (pl022->vendor->extended_cr)
 557		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 558	else
 559		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 560	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 561	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 562	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 563	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 564	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 565}
 566
 567/*
 568 * Default SSP Register Values
 569 */
 570#define DEFAULT_SSP_REG_CR0 ( \
 571	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 572	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 573	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 574	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 575	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 576)
 577
 578/* ST versions have slightly different bit layout */
 579#define DEFAULT_SSP_REG_CR0_ST ( \
 580	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 581	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 582	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 583	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 584	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 585	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 586	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 587)
 588
 589/* The PL023 version is slightly different again */
 590#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 591	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 592	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 593	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 594	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 595)
 596
 597#define DEFAULT_SSP_REG_CR1 ( \
 598	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 599	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 600	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 601	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 602)
 603
 604/* ST versions extend this register to use all 16 bits */
 605#define DEFAULT_SSP_REG_CR1_ST ( \
 606	DEFAULT_SSP_REG_CR1 | \
 607	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 608	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 609	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 610	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 611	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 612)
 613
 614/*
 615 * The PL023 variant has further differences: no loopback mode, no microwire
 616 * support, and a new clock feedback delay setting.
 617 */
 618#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 619	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 620	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 621	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 622	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 623	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 624	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 625	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 626	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 627)
 628
 629#define DEFAULT_SSP_REG_CPSR ( \
 630	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 631)
 632
 633#define DEFAULT_SSP_REG_DMACR (\
 634	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 635	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 636)
 637
 638/**
 639 * load_ssp_default_config - Load default configuration for SSP
 640 * @pl022: SSP driver private data structure
 641 */
 642static void load_ssp_default_config(struct pl022 *pl022)
 643{
 644	if (pl022->vendor->pl023) {
 645		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 646		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 647	} else if (pl022->vendor->extended_cr) {
 648		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 649		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 650	} else {
 651		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 652		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 653	}
 654	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 655	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 656	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 657	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 658}
 659
 660/*
 661 * This will write to TX and read from RX according to the parameters
 662 * set in pl022.
 663 */
 664static void readwriter(struct pl022 *pl022)
 665{
 666
 667	/*
 668	 * The FIFO depth is different between primecell variants.
 669	 * I believe filling in too much in the FIFO might cause
 670	 * errons in 8bit wide transfers on ARM variants (just 8 words
 671	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 672	 *
 673	 * To prevent this issue, the TX FIFO is only filled to the
 674	 * unused RX FIFO fill length, regardless of what the TX
 675	 * FIFO status flag indicates.
 676	 */
 677	dev_dbg(&pl022->adev->dev,
 678		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 679		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 680
 681	/* Read as much as you can */
 682	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 683	       && (pl022->rx < pl022->rx_end)) {
 684		switch (pl022->read) {
 685		case READING_NULL:
 686			readw(SSP_DR(pl022->virtbase));
 687			break;
 688		case READING_U8:
 689			*(u8 *) (pl022->rx) =
 690				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 691			break;
 692		case READING_U16:
 693			*(u16 *) (pl022->rx) =
 694				(u16) readw(SSP_DR(pl022->virtbase));
 695			break;
 696		case READING_U32:
 697			*(u32 *) (pl022->rx) =
 698				readl(SSP_DR(pl022->virtbase));
 699			break;
 700		}
 701		pl022->rx += (pl022->cur_chip->n_bytes);
 702		pl022->exp_fifo_level--;
 703	}
 704	/*
 705	 * Write as much as possible up to the RX FIFO size
 706	 */
 707	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 708	       && (pl022->tx < pl022->tx_end)) {
 709		switch (pl022->write) {
 710		case WRITING_NULL:
 711			writew(0x0, SSP_DR(pl022->virtbase));
 712			break;
 713		case WRITING_U8:
 714			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 715			break;
 716		case WRITING_U16:
 717			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 718			break;
 719		case WRITING_U32:
 720			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 721			break;
 722		}
 723		pl022->tx += (pl022->cur_chip->n_bytes);
 724		pl022->exp_fifo_level++;
 725		/*
 726		 * This inner reader takes care of things appearing in the RX
 727		 * FIFO as we're transmitting. This will happen a lot since the
 728		 * clock starts running when you put things into the TX FIFO,
 729		 * and then things are continuously clocked into the RX FIFO.
 730		 */
 731		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 732		       && (pl022->rx < pl022->rx_end)) {
 733			switch (pl022->read) {
 734			case READING_NULL:
 735				readw(SSP_DR(pl022->virtbase));
 736				break;
 737			case READING_U8:
 738				*(u8 *) (pl022->rx) =
 739					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 740				break;
 741			case READING_U16:
 742				*(u16 *) (pl022->rx) =
 743					(u16) readw(SSP_DR(pl022->virtbase));
 744				break;
 745			case READING_U32:
 746				*(u32 *) (pl022->rx) =
 747					readl(SSP_DR(pl022->virtbase));
 748				break;
 749			}
 750			pl022->rx += (pl022->cur_chip->n_bytes);
 751			pl022->exp_fifo_level--;
 752		}
 753	}
 754	/*
 755	 * When we exit here the TX FIFO should be full and the RX FIFO
 756	 * should be empty
 757	 */
 758}
 759
 760/**
 761 * next_transfer - Move to the Next transfer in the current spi message
 762 * @pl022: SSP driver private data structure
 763 *
 764 * This function moves though the linked list of spi transfers in the
 765 * current spi message and returns with the state of current spi
 766 * message i.e whether its last transfer is done(STATE_DONE) or
 767 * Next transfer is ready(STATE_RUNNING)
 768 */
 769static void *next_transfer(struct pl022 *pl022)
 770{
 771	struct spi_message *msg = pl022->cur_msg;
 772	struct spi_transfer *trans = pl022->cur_transfer;
 773
 774	/* Move to next transfer */
 775	if (trans->transfer_list.next != &msg->transfers) {
 776		pl022->cur_transfer =
 777		    list_entry(trans->transfer_list.next,
 778			       struct spi_transfer, transfer_list);
 779		return STATE_RUNNING;
 780	}
 781	return STATE_DONE;
 782}
 783
 784/*
 785 * This DMA functionality is only compiled in if we have
 786 * access to the generic DMA devices/DMA engine.
 787 */
 788#ifdef CONFIG_DMA_ENGINE
 789static void unmap_free_dma_scatter(struct pl022 *pl022)
 790{
 791	/* Unmap and free the SG tables */
 792	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 793		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 794	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 795		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 796	sg_free_table(&pl022->sgt_rx);
 797	sg_free_table(&pl022->sgt_tx);
 798}
 799
 800static void dma_callback(void *data)
 801{
 802	struct pl022 *pl022 = data;
 803	struct spi_message *msg = pl022->cur_msg;
 804
 805	BUG_ON(!pl022->sgt_rx.sgl);
 806
 807#ifdef VERBOSE_DEBUG
 808	/*
 809	 * Optionally dump out buffers to inspect contents, this is
 810	 * good if you want to convince yourself that the loopback
 811	 * read/write contents are the same, when adopting to a new
 812	 * DMA engine.
 813	 */
 814	{
 815		struct scatterlist *sg;
 816		unsigned int i;
 817
 818		dma_sync_sg_for_cpu(&pl022->adev->dev,
 819				    pl022->sgt_rx.sgl,
 820				    pl022->sgt_rx.nents,
 821				    DMA_FROM_DEVICE);
 822
 823		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 824			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 825			print_hex_dump(KERN_ERR, "SPI RX: ",
 826				       DUMP_PREFIX_OFFSET,
 827				       16,
 828				       1,
 829				       sg_virt(sg),
 830				       sg_dma_len(sg),
 831				       1);
 832		}
 833		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 834			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 835			print_hex_dump(KERN_ERR, "SPI TX: ",
 836				       DUMP_PREFIX_OFFSET,
 837				       16,
 838				       1,
 839				       sg_virt(sg),
 840				       sg_dma_len(sg),
 841				       1);
 842		}
 843	}
 844#endif
 845
 846	unmap_free_dma_scatter(pl022);
 847
 848	/* Update total bytes transferred */
 849	msg->actual_length += pl022->cur_transfer->len;
 
 
 
 
 850	/* Move to next transfer */
 851	msg->state = next_transfer(pl022);
 852	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 853		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 854	tasklet_schedule(&pl022->pump_transfers);
 855}
 856
 857static void setup_dma_scatter(struct pl022 *pl022,
 858			      void *buffer,
 859			      unsigned int length,
 860			      struct sg_table *sgtab)
 861{
 862	struct scatterlist *sg;
 863	int bytesleft = length;
 864	void *bufp = buffer;
 865	int mapbytes;
 866	int i;
 867
 868	if (buffer) {
 869		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 870			/*
 871			 * If there are less bytes left than what fits
 872			 * in the current page (plus page alignment offset)
 873			 * we just feed in this, else we stuff in as much
 874			 * as we can.
 875			 */
 876			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 877				mapbytes = bytesleft;
 878			else
 879				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 880			sg_set_page(sg, virt_to_page(bufp),
 881				    mapbytes, offset_in_page(bufp));
 882			bufp += mapbytes;
 883			bytesleft -= mapbytes;
 884			dev_dbg(&pl022->adev->dev,
 885				"set RX/TX target page @ %p, %d bytes, %d left\n",
 886				bufp, mapbytes, bytesleft);
 887		}
 888	} else {
 889		/* Map the dummy buffer on every page */
 890		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 891			if (bytesleft < PAGE_SIZE)
 892				mapbytes = bytesleft;
 893			else
 894				mapbytes = PAGE_SIZE;
 895			sg_set_page(sg, virt_to_page(pl022->dummypage),
 896				    mapbytes, 0);
 897			bytesleft -= mapbytes;
 898			dev_dbg(&pl022->adev->dev,
 899				"set RX/TX to dummy page %d bytes, %d left\n",
 900				mapbytes, bytesleft);
 901
 902		}
 903	}
 904	BUG_ON(bytesleft);
 905}
 906
 907/**
 908 * configure_dma - configures the channels for the next transfer
 909 * @pl022: SSP driver's private data structure
 910 */
 911static int configure_dma(struct pl022 *pl022)
 912{
 913	struct dma_slave_config rx_conf = {
 914		.src_addr = SSP_DR(pl022->phybase),
 915		.direction = DMA_DEV_TO_MEM,
 916		.device_fc = false,
 917	};
 918	struct dma_slave_config tx_conf = {
 919		.dst_addr = SSP_DR(pl022->phybase),
 920		.direction = DMA_MEM_TO_DEV,
 921		.device_fc = false,
 922	};
 923	unsigned int pages;
 924	int ret;
 925	int rx_sglen, tx_sglen;
 926	struct dma_chan *rxchan = pl022->dma_rx_channel;
 927	struct dma_chan *txchan = pl022->dma_tx_channel;
 928	struct dma_async_tx_descriptor *rxdesc;
 929	struct dma_async_tx_descriptor *txdesc;
 930
 931	/* Check that the channels are available */
 932	if (!rxchan || !txchan)
 933		return -ENODEV;
 934
 935	/*
 936	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 937	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 938	 * not trigger on 2 elements this needs explicit mapping rather than
 939	 * calculation.
 940	 */
 941	switch (pl022->rx_lev_trig) {
 942	case SSP_RX_1_OR_MORE_ELEM:
 943		rx_conf.src_maxburst = 1;
 944		break;
 945	case SSP_RX_4_OR_MORE_ELEM:
 946		rx_conf.src_maxburst = 4;
 947		break;
 948	case SSP_RX_8_OR_MORE_ELEM:
 949		rx_conf.src_maxburst = 8;
 950		break;
 951	case SSP_RX_16_OR_MORE_ELEM:
 952		rx_conf.src_maxburst = 16;
 953		break;
 954	case SSP_RX_32_OR_MORE_ELEM:
 955		rx_conf.src_maxburst = 32;
 956		break;
 957	default:
 958		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 959		break;
 960	}
 961
 962	switch (pl022->tx_lev_trig) {
 963	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 964		tx_conf.dst_maxburst = 1;
 965		break;
 966	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 967		tx_conf.dst_maxburst = 4;
 968		break;
 969	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 970		tx_conf.dst_maxburst = 8;
 971		break;
 972	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 973		tx_conf.dst_maxburst = 16;
 974		break;
 975	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 976		tx_conf.dst_maxburst = 32;
 977		break;
 978	default:
 979		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 980		break;
 981	}
 982
 983	switch (pl022->read) {
 984	case READING_NULL:
 985		/* Use the same as for writing */
 986		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 987		break;
 988	case READING_U8:
 989		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 990		break;
 991	case READING_U16:
 992		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 993		break;
 994	case READING_U32:
 995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 996		break;
 997	}
 998
 999	switch (pl022->write) {
1000	case WRITING_NULL:
1001		/* Use the same as for reading */
1002		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003		break;
1004	case WRITING_U8:
1005		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1006		break;
1007	case WRITING_U16:
1008		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1009		break;
1010	case WRITING_U32:
1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1012		break;
1013	}
1014
1015	/* SPI pecularity: we need to read and write the same width */
1016	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1017		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1018	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1019		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1020	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1021
1022	dmaengine_slave_config(rxchan, &rx_conf);
1023	dmaengine_slave_config(txchan, &tx_conf);
1024
1025	/* Create sglists for the transfers */
1026	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1027	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1028
1029	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1030	if (ret)
1031		goto err_alloc_rx_sg;
1032
1033	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1034	if (ret)
1035		goto err_alloc_tx_sg;
1036
1037	/* Fill in the scatterlists for the RX+TX buffers */
1038	setup_dma_scatter(pl022, pl022->rx,
1039			  pl022->cur_transfer->len, &pl022->sgt_rx);
1040	setup_dma_scatter(pl022, pl022->tx,
1041			  pl022->cur_transfer->len, &pl022->sgt_tx);
1042
1043	/* Map DMA buffers */
1044	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1045			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1046	if (!rx_sglen)
1047		goto err_rx_sgmap;
1048
1049	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1050			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1051	if (!tx_sglen)
1052		goto err_tx_sgmap;
1053
1054	/* Send both scatterlists */
1055	rxdesc = dmaengine_prep_slave_sg(rxchan,
1056				      pl022->sgt_rx.sgl,
1057				      rx_sglen,
1058				      DMA_DEV_TO_MEM,
1059				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060	if (!rxdesc)
1061		goto err_rxdesc;
1062
1063	txdesc = dmaengine_prep_slave_sg(txchan,
1064				      pl022->sgt_tx.sgl,
1065				      tx_sglen,
1066				      DMA_MEM_TO_DEV,
1067				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1068	if (!txdesc)
1069		goto err_txdesc;
1070
1071	/* Put the callback on the RX transfer only, that should finish last */
1072	rxdesc->callback = dma_callback;
1073	rxdesc->callback_param = pl022;
1074
1075	/* Submit and fire RX and TX with TX last so we're ready to read! */
1076	dmaengine_submit(rxdesc);
1077	dmaengine_submit(txdesc);
1078	dma_async_issue_pending(rxchan);
1079	dma_async_issue_pending(txchan);
1080	pl022->dma_running = true;
1081
1082	return 0;
1083
1084err_txdesc:
1085	dmaengine_terminate_all(txchan);
1086err_rxdesc:
1087	dmaengine_terminate_all(rxchan);
1088	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1089		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1090err_tx_sgmap:
1091	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1092		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1093err_rx_sgmap:
1094	sg_free_table(&pl022->sgt_tx);
1095err_alloc_tx_sg:
1096	sg_free_table(&pl022->sgt_rx);
1097err_alloc_rx_sg:
1098	return -ENOMEM;
1099}
1100
1101static int pl022_dma_probe(struct pl022 *pl022)
1102{
1103	dma_cap_mask_t mask;
1104
1105	/* Try to acquire a generic DMA engine slave channel */
1106	dma_cap_zero(mask);
1107	dma_cap_set(DMA_SLAVE, mask);
1108	/*
1109	 * We need both RX and TX channels to do DMA, else do none
1110	 * of them.
1111	 */
1112	pl022->dma_rx_channel = dma_request_channel(mask,
1113					    pl022->master_info->dma_filter,
1114					    pl022->master_info->dma_rx_param);
1115	if (!pl022->dma_rx_channel) {
1116		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1117		goto err_no_rxchan;
1118	}
1119
1120	pl022->dma_tx_channel = dma_request_channel(mask,
1121					    pl022->master_info->dma_filter,
1122					    pl022->master_info->dma_tx_param);
1123	if (!pl022->dma_tx_channel) {
1124		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1125		goto err_no_txchan;
1126	}
1127
1128	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129	if (!pl022->dummypage)
 
1130		goto err_no_dummypage;
 
1131
1132	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1133		 dma_chan_name(pl022->dma_rx_channel),
1134		 dma_chan_name(pl022->dma_tx_channel));
1135
1136	return 0;
1137
1138err_no_dummypage:
1139	dma_release_channel(pl022->dma_tx_channel);
1140err_no_txchan:
1141	dma_release_channel(pl022->dma_rx_channel);
1142	pl022->dma_rx_channel = NULL;
1143err_no_rxchan:
1144	dev_err(&pl022->adev->dev,
1145			"Failed to work in dma mode, work without dma!\n");
1146	return -ENODEV;
1147}
1148
1149static int pl022_dma_autoprobe(struct pl022 *pl022)
1150{
1151	struct device *dev = &pl022->adev->dev;
1152	struct dma_chan *chan;
1153	int err;
1154
1155	/* automatically configure DMA channels from platform, normally using DT */
1156	chan = dma_request_chan(dev, "rx");
1157	if (IS_ERR(chan)) {
1158		err = PTR_ERR(chan);
1159		goto err_no_rxchan;
1160	}
1161
1162	pl022->dma_rx_channel = chan;
1163
1164	chan = dma_request_chan(dev, "tx");
1165	if (IS_ERR(chan)) {
1166		err = PTR_ERR(chan);
1167		goto err_no_txchan;
1168	}
1169
1170	pl022->dma_tx_channel = chan;
1171
1172	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1173	if (!pl022->dummypage) {
1174		err = -ENOMEM;
1175		goto err_no_dummypage;
1176	}
1177
1178	return 0;
1179
1180err_no_dummypage:
1181	dma_release_channel(pl022->dma_tx_channel);
1182	pl022->dma_tx_channel = NULL;
1183err_no_txchan:
1184	dma_release_channel(pl022->dma_rx_channel);
1185	pl022->dma_rx_channel = NULL;
1186err_no_rxchan:
1187	return err;
1188}
1189
1190static void terminate_dma(struct pl022 *pl022)
1191{
1192	struct dma_chan *rxchan = pl022->dma_rx_channel;
1193	struct dma_chan *txchan = pl022->dma_tx_channel;
1194
1195	dmaengine_terminate_all(rxchan);
1196	dmaengine_terminate_all(txchan);
1197	unmap_free_dma_scatter(pl022);
1198	pl022->dma_running = false;
1199}
1200
1201static void pl022_dma_remove(struct pl022 *pl022)
1202{
1203	if (pl022->dma_running)
1204		terminate_dma(pl022);
1205	if (pl022->dma_tx_channel)
1206		dma_release_channel(pl022->dma_tx_channel);
1207	if (pl022->dma_rx_channel)
1208		dma_release_channel(pl022->dma_rx_channel);
1209	kfree(pl022->dummypage);
1210}
1211
1212#else
1213static inline int configure_dma(struct pl022 *pl022)
1214{
1215	return -ENODEV;
1216}
1217
1218static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1219{
1220	return 0;
1221}
1222
1223static inline int pl022_dma_probe(struct pl022 *pl022)
1224{
1225	return 0;
1226}
1227
1228static inline void pl022_dma_remove(struct pl022 *pl022)
1229{
1230}
1231#endif
1232
1233/**
1234 * pl022_interrupt_handler - Interrupt handler for SSP controller
1235 * @irq: IRQ number
1236 * @dev_id: Local device data
1237 *
1238 * This function handles interrupts generated for an interrupt based transfer.
1239 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1240 * current message's state as STATE_ERROR and schedule the tasklet
1241 * pump_transfers which will do the postprocessing of the current message by
1242 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1243 * more data, and writes data in TX FIFO till it is not full. If we complete
1244 * the transfer we move to the next transfer and schedule the tasklet.
1245 */
1246static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1247{
1248	struct pl022 *pl022 = dev_id;
1249	struct spi_message *msg = pl022->cur_msg;
1250	u16 irq_status = 0;
 
1251
1252	if (unlikely(!msg)) {
1253		dev_err(&pl022->adev->dev,
1254			"bad message state in interrupt handler");
1255		/* Never fail */
1256		return IRQ_HANDLED;
1257	}
1258
1259	/* Read the Interrupt Status Register */
1260	irq_status = readw(SSP_MIS(pl022->virtbase));
1261
1262	if (unlikely(!irq_status))
1263		return IRQ_NONE;
1264
1265	/*
1266	 * This handles the FIFO interrupts, the timeout
1267	 * interrupts are flatly ignored, they cannot be
1268	 * trusted.
1269	 */
1270	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1271		/*
1272		 * Overrun interrupt - bail out since our Data has been
1273		 * corrupted
1274		 */
1275		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1276		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1277			dev_err(&pl022->adev->dev,
1278				"RXFIFO is full\n");
 
 
 
1279
1280		/*
1281		 * Disable and clear interrupts, disable SSP,
1282		 * mark message with bad status so it can be
1283		 * retried.
1284		 */
1285		writew(DISABLE_ALL_INTERRUPTS,
1286		       SSP_IMSC(pl022->virtbase));
1287		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1288		writew((readw(SSP_CR1(pl022->virtbase)) &
1289			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1290		msg->state = STATE_ERROR;
1291
1292		/* Schedule message queue handler */
1293		tasklet_schedule(&pl022->pump_transfers);
1294		return IRQ_HANDLED;
1295	}
1296
1297	readwriter(pl022);
1298
1299	if (pl022->tx == pl022->tx_end) {
 
1300		/* Disable Transmit interrupt, enable receive interrupt */
1301		writew((readw(SSP_IMSC(pl022->virtbase)) &
1302		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1303		       SSP_IMSC(pl022->virtbase));
1304	}
1305
1306	/*
1307	 * Since all transactions must write as much as shall be read,
1308	 * we can conclude the entire transaction once RX is complete.
1309	 * At this point, all TX will always be finished.
1310	 */
1311	if (pl022->rx >= pl022->rx_end) {
1312		writew(DISABLE_ALL_INTERRUPTS,
1313		       SSP_IMSC(pl022->virtbase));
1314		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1315		if (unlikely(pl022->rx > pl022->rx_end)) {
1316			dev_warn(&pl022->adev->dev, "read %u surplus "
1317				 "bytes (did you request an odd "
1318				 "number of bytes on a 16bit bus?)\n",
1319				 (u32) (pl022->rx - pl022->rx_end));
1320		}
1321		/* Update total bytes transferred */
1322		msg->actual_length += pl022->cur_transfer->len;
 
 
 
1323		/* Move to next transfer */
1324		msg->state = next_transfer(pl022);
1325		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1326			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1327		tasklet_schedule(&pl022->pump_transfers);
1328		return IRQ_HANDLED;
1329	}
1330
1331	return IRQ_HANDLED;
1332}
1333
1334/*
1335 * This sets up the pointers to memory for the next message to
1336 * send out on the SPI bus.
1337 */
1338static int set_up_next_transfer(struct pl022 *pl022,
1339				struct spi_transfer *transfer)
1340{
1341	int residue;
1342
1343	/* Sanity check the message for this bus width */
1344	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1345	if (unlikely(residue != 0)) {
1346		dev_err(&pl022->adev->dev,
1347			"message of %u bytes to transmit but the current "
1348			"chip bus has a data width of %u bytes!\n",
1349			pl022->cur_transfer->len,
1350			pl022->cur_chip->n_bytes);
1351		dev_err(&pl022->adev->dev, "skipping this message\n");
1352		return -EIO;
1353	}
1354	pl022->tx = (void *)transfer->tx_buf;
1355	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1356	pl022->rx = (void *)transfer->rx_buf;
1357	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1358	pl022->write =
1359	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1360	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1361	return 0;
1362}
1363
1364/**
1365 * pump_transfers - Tasklet function which schedules next transfer
1366 * when running in interrupt or DMA transfer mode.
1367 * @data: SSP driver private data structure
1368 *
1369 */
1370static void pump_transfers(unsigned long data)
1371{
1372	struct pl022 *pl022 = (struct pl022 *) data;
1373	struct spi_message *message = NULL;
1374	struct spi_transfer *transfer = NULL;
1375	struct spi_transfer *previous = NULL;
1376
1377	/* Get current state information */
1378	message = pl022->cur_msg;
1379	transfer = pl022->cur_transfer;
1380
1381	/* Handle for abort */
1382	if (message->state == STATE_ERROR) {
1383		message->status = -EIO;
1384		giveback(pl022);
1385		return;
1386	}
1387
1388	/* Handle end of message */
1389	if (message->state == STATE_DONE) {
1390		message->status = 0;
1391		giveback(pl022);
1392		return;
1393	}
1394
1395	/* Delay if requested at end of transfer before CS change */
1396	if (message->state == STATE_RUNNING) {
1397		previous = list_entry(transfer->transfer_list.prev,
1398					struct spi_transfer,
1399					transfer_list);
1400		/*
1401		 * FIXME: This runs in interrupt context.
1402		 * Is this really smart?
1403		 */
1404		spi_transfer_delay_exec(previous);
 
1405
1406		/* Reselect chip select only if cs_change was requested */
1407		if (previous->cs_change)
1408			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1409	} else {
1410		/* STATE_START */
1411		message->state = STATE_RUNNING;
1412	}
1413
1414	if (set_up_next_transfer(pl022, transfer)) {
1415		message->state = STATE_ERROR;
1416		message->status = -EIO;
1417		giveback(pl022);
1418		return;
1419	}
1420	/* Flush the FIFOs and let's go! */
1421	flush(pl022);
1422
1423	if (pl022->cur_chip->enable_dma) {
1424		if (configure_dma(pl022)) {
1425			dev_dbg(&pl022->adev->dev,
1426				"configuration of DMA failed, fall back to interrupt mode\n");
1427			goto err_config_dma;
1428		}
1429		return;
1430	}
1431
1432err_config_dma:
1433	/* enable all interrupts except RX */
1434	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1435}
1436
1437static void do_interrupt_dma_transfer(struct pl022 *pl022)
1438{
1439	/*
1440	 * Default is to enable all interrupts except RX -
1441	 * this will be enabled once TX is complete
1442	 */
1443	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1444
1445	/* Enable target chip, if not already active */
1446	if (!pl022->next_msg_cs_active)
1447		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1448
1449	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1450		/* Error path */
1451		pl022->cur_msg->state = STATE_ERROR;
1452		pl022->cur_msg->status = -EIO;
1453		giveback(pl022);
1454		return;
1455	}
1456	/* If we're using DMA, set up DMA here */
1457	if (pl022->cur_chip->enable_dma) {
1458		/* Configure DMA transfer */
1459		if (configure_dma(pl022)) {
1460			dev_dbg(&pl022->adev->dev,
1461				"configuration of DMA failed, fall back to interrupt mode\n");
1462			goto err_config_dma;
1463		}
1464		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1465		irqflags = DISABLE_ALL_INTERRUPTS;
1466	}
1467err_config_dma:
1468	/* Enable SSP, turn on interrupts */
1469	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1470	       SSP_CR1(pl022->virtbase));
1471	writew(irqflags, SSP_IMSC(pl022->virtbase));
1472}
1473
1474static void print_current_status(struct pl022 *pl022)
1475{
1476	u32 read_cr0;
1477	u16 read_cr1, read_dmacr, read_sr;
1478
1479	if (pl022->vendor->extended_cr)
1480		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1481	else
1482		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1483	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1484	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1485	read_sr = readw(SSP_SR(pl022->virtbase));
1486
1487	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1488	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1489	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1490	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1491	dev_warn(&pl022->adev->dev,
1492			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1493			pl022->exp_fifo_level,
1494			pl022->vendor->fifodepth);
1495
1496}
1497
1498static void do_polling_transfer(struct pl022 *pl022)
1499{
1500	struct spi_message *message = NULL;
1501	struct spi_transfer *transfer = NULL;
1502	struct spi_transfer *previous = NULL;
 
1503	unsigned long time, timeout;
1504
 
1505	message = pl022->cur_msg;
1506
1507	while (message->state != STATE_DONE) {
1508		/* Handle for abort */
1509		if (message->state == STATE_ERROR)
1510			break;
1511		transfer = pl022->cur_transfer;
1512
1513		/* Delay if requested at end of transfer */
1514		if (message->state == STATE_RUNNING) {
1515			previous =
1516			    list_entry(transfer->transfer_list.prev,
1517				       struct spi_transfer, transfer_list);
1518			spi_transfer_delay_exec(previous);
 
1519			if (previous->cs_change)
1520				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521		} else {
1522			/* STATE_START */
1523			message->state = STATE_RUNNING;
1524			if (!pl022->next_msg_cs_active)
1525				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526		}
1527
1528		/* Configuration Changing Per Transfer */
1529		if (set_up_next_transfer(pl022, transfer)) {
1530			/* Error path */
1531			message->state = STATE_ERROR;
1532			break;
1533		}
1534		/* Flush FIFOs and enable SSP */
1535		flush(pl022);
1536		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537		       SSP_CR1(pl022->virtbase));
1538
1539		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540
1541		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543			time = jiffies;
1544			readwriter(pl022);
1545			if (time_after(time, timeout)) {
1546				dev_warn(&pl022->adev->dev,
1547				"%s: timeout!\n", __func__);
1548				message->state = STATE_TIMEOUT;
1549				print_current_status(pl022);
1550				goto out;
1551			}
1552			cpu_relax();
1553		}
1554
1555		/* Update total byte transferred */
1556		message->actual_length += pl022->cur_transfer->len;
 
 
1557		/* Move to next transfer */
1558		message->state = next_transfer(pl022);
1559		if (message->state != STATE_DONE
1560		    && pl022->cur_transfer->cs_change)
1561			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1562	}
1563out:
1564	/* Handle end of message */
1565	if (message->state == STATE_DONE)
1566		message->status = 0;
1567	else if (message->state == STATE_TIMEOUT)
1568		message->status = -EAGAIN;
1569	else
1570		message->status = -EIO;
1571
1572	giveback(pl022);
1573	return;
1574}
1575
1576static int pl022_transfer_one_message(struct spi_master *master,
1577				      struct spi_message *msg)
1578{
1579	struct pl022 *pl022 = spi_master_get_devdata(master);
1580
1581	/* Initial message state */
1582	pl022->cur_msg = msg;
1583	msg->state = STATE_START;
1584
1585	pl022->cur_transfer = list_entry(msg->transfers.next,
1586					 struct spi_transfer, transfer_list);
1587
1588	/* Setup the SPI using the per chip configuration */
1589	pl022->cur_chip = spi_get_ctldata(msg->spi);
1590	pl022->cur_cs = msg->spi->chip_select;
1591	/* This is always available but may be set to -ENOENT */
1592	pl022->cur_gpiod = msg->spi->cs_gpiod;
1593
1594	restore_state(pl022);
1595	flush(pl022);
1596
1597	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1598		do_polling_transfer(pl022);
1599	else
1600		do_interrupt_dma_transfer(pl022);
1601
1602	return 0;
1603}
1604
 
 
 
 
 
 
 
 
 
 
 
 
1605static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1606{
1607	struct pl022 *pl022 = spi_master_get_devdata(master);
1608
1609	/* nothing more to do - disable spi/ssp and power off */
1610	writew((readw(SSP_CR1(pl022->virtbase)) &
1611		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1612
 
 
 
 
 
 
 
1613	return 0;
1614}
1615
1616static int verify_controller_parameters(struct pl022 *pl022,
1617				struct pl022_config_chip const *chip_info)
1618{
1619	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1620	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1621		dev_err(&pl022->adev->dev,
1622			"interface is configured incorrectly\n");
1623		return -EINVAL;
1624	}
1625	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1626	    (!pl022->vendor->unidir)) {
1627		dev_err(&pl022->adev->dev,
1628			"unidirectional mode not supported in this "
1629			"hardware version\n");
1630		return -EINVAL;
1631	}
1632	if ((chip_info->hierarchy != SSP_MASTER)
1633	    && (chip_info->hierarchy != SSP_SLAVE)) {
1634		dev_err(&pl022->adev->dev,
1635			"hierarchy is configured incorrectly\n");
1636		return -EINVAL;
1637	}
1638	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1639	    && (chip_info->com_mode != DMA_TRANSFER)
1640	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1641		dev_err(&pl022->adev->dev,
1642			"Communication mode is configured incorrectly\n");
1643		return -EINVAL;
1644	}
1645	switch (chip_info->rx_lev_trig) {
1646	case SSP_RX_1_OR_MORE_ELEM:
1647	case SSP_RX_4_OR_MORE_ELEM:
1648	case SSP_RX_8_OR_MORE_ELEM:
1649		/* These are always OK, all variants can handle this */
1650		break;
1651	case SSP_RX_16_OR_MORE_ELEM:
1652		if (pl022->vendor->fifodepth < 16) {
1653			dev_err(&pl022->adev->dev,
1654			"RX FIFO Trigger Level is configured incorrectly\n");
1655			return -EINVAL;
1656		}
1657		break;
1658	case SSP_RX_32_OR_MORE_ELEM:
1659		if (pl022->vendor->fifodepth < 32) {
1660			dev_err(&pl022->adev->dev,
1661			"RX FIFO Trigger Level is configured incorrectly\n");
1662			return -EINVAL;
1663		}
1664		break;
1665	default:
1666		dev_err(&pl022->adev->dev,
1667			"RX FIFO Trigger Level is configured incorrectly\n");
1668		return -EINVAL;
 
1669	}
1670	switch (chip_info->tx_lev_trig) {
1671	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1672	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1673	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1674		/* These are always OK, all variants can handle this */
1675		break;
1676	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1677		if (pl022->vendor->fifodepth < 16) {
1678			dev_err(&pl022->adev->dev,
1679			"TX FIFO Trigger Level is configured incorrectly\n");
1680			return -EINVAL;
1681		}
1682		break;
1683	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1684		if (pl022->vendor->fifodepth < 32) {
1685			dev_err(&pl022->adev->dev,
1686			"TX FIFO Trigger Level is configured incorrectly\n");
1687			return -EINVAL;
1688		}
1689		break;
1690	default:
1691		dev_err(&pl022->adev->dev,
1692			"TX FIFO Trigger Level is configured incorrectly\n");
1693		return -EINVAL;
 
1694	}
1695	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1696		if ((chip_info->ctrl_len < SSP_BITS_4)
1697		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1698			dev_err(&pl022->adev->dev,
1699				"CTRL LEN is configured incorrectly\n");
1700			return -EINVAL;
1701		}
1702		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1703		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1704			dev_err(&pl022->adev->dev,
1705				"Wait State is configured incorrectly\n");
1706			return -EINVAL;
1707		}
1708		/* Half duplex is only available in the ST Micro version */
1709		if (pl022->vendor->extended_cr) {
1710			if ((chip_info->duplex !=
1711			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1712			    && (chip_info->duplex !=
1713				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1714				dev_err(&pl022->adev->dev,
1715					"Microwire duplex mode is configured incorrectly\n");
1716				return -EINVAL;
1717			}
1718		} else {
1719			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1720				dev_err(&pl022->adev->dev,
1721					"Microwire half duplex mode requested,"
1722					" but this is only available in the"
1723					" ST version of PL022\n");
1724				return -EINVAL;
1725			}
1726		}
1727	}
1728	return 0;
1729}
1730
1731static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732{
1733	return rate / (cpsdvsr * (1 + scr));
1734}
1735
1736static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737				    ssp_clock_params * clk_freq)
1738{
1739	/* Lets calculate the frequency parameters */
1740	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742		best_scr = 0, tmp, found = 0;
1743
1744	rate = clk_get_rate(pl022->clk);
1745	/* cpsdvscr = 2 & scr 0 */
1746	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747	/* cpsdvsr = 254 & scr = 255 */
1748	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749
1750	if (freq > max_tclk)
1751		dev_warn(&pl022->adev->dev,
1752			"Max speed that can be programmed is %d Hz, you requested %d\n",
1753			max_tclk, freq);
1754
1755	if (freq < min_tclk) {
1756		dev_err(&pl022->adev->dev,
1757			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758			freq, min_tclk);
1759		return -EINVAL;
1760	}
1761
1762	/*
1763	 * best_freq will give closest possible available rate (<= requested
1764	 * freq) for all values of scr & cpsdvsr.
1765	 */
1766	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767		while (scr <= SCR_MAX) {
1768			tmp = spi_rate(rate, cpsdvsr, scr);
1769
1770			if (tmp > freq) {
1771				/* we need lower freq */
1772				scr++;
1773				continue;
1774			}
1775
1776			/*
1777			 * If found exact value, mark found and break.
1778			 * If found more closer value, update and break.
1779			 */
1780			if (tmp > best_freq) {
1781				best_freq = tmp;
1782				best_cpsdvsr = cpsdvsr;
1783				best_scr = scr;
1784
1785				if (tmp == freq)
1786					found = 1;
1787			}
1788			/*
1789			 * increased scr will give lower rates, which are not
1790			 * required
1791			 */
1792			break;
1793		}
1794		cpsdvsr += 2;
1795		scr = SCR_MIN;
1796	}
1797
1798	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799			freq);
1800
1801	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802	clk_freq->scr = (u8) (best_scr & 0xFF);
1803	dev_dbg(&pl022->adev->dev,
1804		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805		freq, best_freq);
1806	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807		clk_freq->cpsdvsr, clk_freq->scr);
1808
1809	return 0;
1810}
1811
1812/*
1813 * A piece of default chip info unless the platform
1814 * supplies it.
1815 */
1816static const struct pl022_config_chip pl022_default_chip_info = {
1817	.com_mode = INTERRUPT_TRANSFER,
1818	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1819	.hierarchy = SSP_MASTER,
1820	.slave_tx_disable = DO_NOT_DRIVE_TX,
1821	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823	.ctrl_len = SSP_BITS_8,
1824	.wait_state = SSP_MWIRE_WAIT_ZERO,
1825	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
 
1826};
1827
1828/**
1829 * pl022_setup - setup function registered to SPI master framework
1830 * @spi: spi device which is requesting setup
1831 *
1832 * This function is registered to the SPI framework for this SPI master
1833 * controller. If it is the first time when setup is called by this device,
1834 * this function will initialize the runtime state for this chip and save
1835 * the same in the device structure. Else it will update the runtime info
1836 * with the updated chip info. Nothing is really being written to the
1837 * controller hardware here, that is not done until the actual transfer
1838 * commence.
1839 */
1840static int pl022_setup(struct spi_device *spi)
1841{
1842	struct pl022_config_chip const *chip_info;
1843	struct pl022_config_chip chip_info_dt;
1844	struct chip_data *chip;
1845	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1846	int status = 0;
1847	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1848	unsigned int bits = spi->bits_per_word;
1849	u32 tmp;
1850	struct device_node *np = spi->dev.of_node;
1851
1852	if (!spi->max_speed_hz)
1853		return -EINVAL;
1854
1855	/* Get controller_state if one is supplied */
1856	chip = spi_get_ctldata(spi);
1857
1858	if (chip == NULL) {
1859		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1860		if (!chip)
 
 
1861			return -ENOMEM;
 
1862		dev_dbg(&spi->dev,
1863			"allocated memory for controller's runtime state\n");
1864	}
1865
1866	/* Get controller data if one is supplied */
1867	chip_info = spi->controller_data;
1868
1869	if (chip_info == NULL) {
1870		if (np) {
1871			chip_info_dt = pl022_default_chip_info;
1872
1873			chip_info_dt.hierarchy = SSP_MASTER;
1874			of_property_read_u32(np, "pl022,interface",
1875				&chip_info_dt.iface);
1876			of_property_read_u32(np, "pl022,com-mode",
1877				&chip_info_dt.com_mode);
1878			of_property_read_u32(np, "pl022,rx-level-trig",
1879				&chip_info_dt.rx_lev_trig);
1880			of_property_read_u32(np, "pl022,tx-level-trig",
1881				&chip_info_dt.tx_lev_trig);
1882			of_property_read_u32(np, "pl022,ctrl-len",
1883				&chip_info_dt.ctrl_len);
1884			of_property_read_u32(np, "pl022,wait-state",
1885				&chip_info_dt.wait_state);
1886			of_property_read_u32(np, "pl022,duplex",
1887				&chip_info_dt.duplex);
1888
1889			chip_info = &chip_info_dt;
1890		} else {
1891			chip_info = &pl022_default_chip_info;
1892			/* spi_board_info.controller_data not is supplied */
1893			dev_dbg(&spi->dev,
1894				"using default controller_data settings\n");
1895		}
1896	} else
1897		dev_dbg(&spi->dev,
1898			"using user supplied controller_data settings\n");
1899
1900	/*
1901	 * We can override with custom divisors, else we use the board
1902	 * frequency setting
1903	 */
1904	if ((0 == chip_info->clk_freq.cpsdvsr)
1905	    && (0 == chip_info->clk_freq.scr)) {
1906		status = calculate_effective_freq(pl022,
1907						  spi->max_speed_hz,
1908						  &clk_freq);
1909		if (status < 0)
1910			goto err_config_params;
1911	} else {
1912		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1913		if ((clk_freq.cpsdvsr % 2) != 0)
1914			clk_freq.cpsdvsr =
1915				clk_freq.cpsdvsr - 1;
1916	}
1917	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1918	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1919		status = -EINVAL;
1920		dev_err(&spi->dev,
1921			"cpsdvsr is configured incorrectly\n");
1922		goto err_config_params;
1923	}
1924
1925	status = verify_controller_parameters(pl022, chip_info);
1926	if (status) {
1927		dev_err(&spi->dev, "controller data is incorrect");
1928		goto err_config_params;
1929	}
1930
1931	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1932	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1933
1934	/* Now set controller state based on controller data */
1935	chip->xfer_type = chip_info->com_mode;
 
 
 
 
 
 
1936
1937	/* Check bits per word with vendor specific range */
1938	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1939		status = -ENOTSUPP;
1940		dev_err(&spi->dev, "illegal data size for this controller!\n");
1941		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1942				pl022->vendor->max_bpw);
1943		goto err_config_params;
1944	} else if (bits <= 8) {
1945		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1946		chip->n_bytes = 1;
1947		chip->read = READING_U8;
1948		chip->write = WRITING_U8;
1949	} else if (bits <= 16) {
1950		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1951		chip->n_bytes = 2;
1952		chip->read = READING_U16;
1953		chip->write = WRITING_U16;
1954	} else {
1955		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1956		chip->n_bytes = 4;
1957		chip->read = READING_U32;
1958		chip->write = WRITING_U32;
1959	}
1960
1961	/* Now Initialize all register settings required for this chip */
1962	chip->cr0 = 0;
1963	chip->cr1 = 0;
1964	chip->dmacr = 0;
1965	chip->cpsr = 0;
1966	if ((chip_info->com_mode == DMA_TRANSFER)
1967	    && ((pl022->master_info)->enable_dma)) {
1968		chip->enable_dma = true;
1969		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1970		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1971			       SSP_DMACR_MASK_RXDMAE, 0);
1972		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1973			       SSP_DMACR_MASK_TXDMAE, 1);
1974	} else {
1975		chip->enable_dma = false;
1976		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1977		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1978			       SSP_DMACR_MASK_RXDMAE, 0);
1979		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1980			       SSP_DMACR_MASK_TXDMAE, 1);
1981	}
1982
1983	chip->cpsr = clk_freq.cpsdvsr;
1984
1985	/* Special setup for the ST micro extended control registers */
1986	if (pl022->vendor->extended_cr) {
1987		u32 etx;
1988
1989		if (pl022->vendor->pl023) {
1990			/* These bits are only in the PL023 */
1991			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1992				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1993		} else {
1994			/* These bits are in the PL022 but not PL023 */
1995			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1996				       SSP_CR0_MASK_HALFDUP_ST, 5);
1997			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1998				       SSP_CR0_MASK_CSS_ST, 16);
1999			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2000				       SSP_CR0_MASK_FRF_ST, 21);
2001			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2002				       SSP_CR1_MASK_MWAIT_ST, 6);
2003		}
2004		SSP_WRITE_BITS(chip->cr0, bits - 1,
2005			       SSP_CR0_MASK_DSS_ST, 0);
2006
2007		if (spi->mode & SPI_LSB_FIRST) {
2008			tmp = SSP_RX_LSB;
2009			etx = SSP_TX_LSB;
2010		} else {
2011			tmp = SSP_RX_MSB;
2012			etx = SSP_TX_MSB;
2013		}
2014		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2015		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2016		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2017			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2018		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2019			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2020	} else {
2021		SSP_WRITE_BITS(chip->cr0, bits - 1,
2022			       SSP_CR0_MASK_DSS, 0);
2023		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2024			       SSP_CR0_MASK_FRF, 4);
2025	}
2026
2027	/* Stuff that is common for all versions */
2028	if (spi->mode & SPI_CPOL)
2029		tmp = SSP_CLK_POL_IDLE_HIGH;
2030	else
2031		tmp = SSP_CLK_POL_IDLE_LOW;
2032	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2033
2034	if (spi->mode & SPI_CPHA)
2035		tmp = SSP_CLK_SECOND_EDGE;
2036	else
2037		tmp = SSP_CLK_FIRST_EDGE;
2038	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2039
2040	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2041	/* Loopback is available on all versions except PL023 */
2042	if (pl022->vendor->loopback) {
2043		if (spi->mode & SPI_LOOP)
2044			tmp = LOOPBACK_ENABLED;
2045		else
2046			tmp = LOOPBACK_DISABLED;
2047		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2048	}
2049	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2050	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2051	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2052		3);
2053
2054	/* Save controller_state */
2055	spi_set_ctldata(spi, chip);
2056	return status;
2057 err_config_params:
2058	spi_set_ctldata(spi, NULL);
2059	kfree(chip);
2060	return status;
2061}
2062
2063/**
2064 * pl022_cleanup - cleanup function registered to SPI master framework
2065 * @spi: spi device which is requesting cleanup
2066 *
2067 * This function is registered to the SPI framework for this SPI master
2068 * controller. It will free the runtime state of chip.
2069 */
2070static void pl022_cleanup(struct spi_device *spi)
2071{
2072	struct chip_data *chip = spi_get_ctldata(spi);
2073
2074	spi_set_ctldata(spi, NULL);
2075	kfree(chip);
2076}
2077
2078static struct pl022_ssp_controller *
2079pl022_platform_data_dt_get(struct device *dev)
2080{
2081	struct device_node *np = dev->of_node;
2082	struct pl022_ssp_controller *pd;
2083
2084	if (!np) {
2085		dev_err(dev, "no dt node defined\n");
2086		return NULL;
2087	}
2088
2089	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2090	if (!pd)
2091		return NULL;
2092
2093	pd->bus_id = -1;
2094	pd->enable_dma = 1;
2095	of_property_read_u32(np, "pl022,autosuspend-delay",
2096			     &pd->autosuspend_delay);
2097	pd->rt = of_property_read_bool(np, "pl022,rt");
2098
2099	return pd;
2100}
2101
2102static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2103{
2104	struct device *dev = &adev->dev;
2105	struct pl022_ssp_controller *platform_info =
2106			dev_get_platdata(&adev->dev);
2107	struct spi_master *master;
2108	struct pl022 *pl022 = NULL;	/*Data for this driver */
2109	int status = 0;
2110
2111	dev_info(&adev->dev,
2112		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2113	if (!platform_info && IS_ENABLED(CONFIG_OF))
2114		platform_info = pl022_platform_data_dt_get(dev);
2115
2116	if (!platform_info) {
2117		dev_err(dev, "probe: no platform data defined\n");
2118		return -ENODEV;
2119	}
2120
2121	/* Allocate master with space for data */
2122	master = spi_alloc_master(dev, sizeof(struct pl022));
2123	if (master == NULL) {
2124		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2125		return -ENOMEM;
 
2126	}
2127
2128	pl022 = spi_master_get_devdata(master);
2129	pl022->master = master;
2130	pl022->master_info = platform_info;
2131	pl022->adev = adev;
2132	pl022->vendor = id->data;
2133
2134	/*
2135	 * Bus Number Which has been Assigned to this SSP controller
2136	 * on this board
2137	 */
2138	master->bus_num = platform_info->bus_id;
 
2139	master->cleanup = pl022_cleanup;
2140	master->setup = pl022_setup;
2141	master->auto_runtime_pm = true;
2142	master->transfer_one_message = pl022_transfer_one_message;
2143	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2144	master->rt = platform_info->rt;
2145	master->dev.of_node = dev->of_node;
2146	master->use_gpio_descriptors = true;
2147
2148	/*
2149	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2150	 * always MS bit first on the original pl022.
2151	 */
2152	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2153	if (pl022->vendor->extended_cr)
2154		master->mode_bits |= SPI_LSB_FIRST;
2155
2156	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2157
2158	status = amba_request_regions(adev, NULL);
2159	if (status)
2160		goto err_no_ioregion;
2161
2162	pl022->phybase = adev->res.start;
2163	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2164				       resource_size(&adev->res));
2165	if (pl022->virtbase == NULL) {
2166		status = -ENOMEM;
2167		goto err_no_ioremap;
2168	}
2169	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2170		&adev->res.start, pl022->virtbase);
2171
2172	pl022->clk = devm_clk_get(&adev->dev, NULL);
2173	if (IS_ERR(pl022->clk)) {
2174		status = PTR_ERR(pl022->clk);
2175		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2176		goto err_no_clk;
2177	}
2178
2179	status = clk_prepare_enable(pl022->clk);
 
 
 
 
 
 
2180	if (status) {
2181		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2182		goto err_no_clk_en;
2183	}
2184
2185	/* Initialize transfer pump */
2186	tasklet_init(&pl022->pump_transfers, pump_transfers,
2187		     (unsigned long)pl022);
2188
2189	/* Disable SSP */
2190	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2191	       SSP_CR1(pl022->virtbase));
2192	load_ssp_default_config(pl022);
2193
2194	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2195				  0, "pl022", pl022);
2196	if (status < 0) {
2197		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2198		goto err_no_irq;
2199	}
2200
2201	/* Get DMA channels, try autoconfiguration first */
2202	status = pl022_dma_autoprobe(pl022);
2203	if (status == -EPROBE_DEFER) {
2204		dev_dbg(dev, "deferring probe to get DMA channel\n");
2205		goto err_no_irq;
2206	}
2207
2208	/* If that failed, use channels from platform_info */
2209	if (status == 0)
2210		platform_info->enable_dma = 1;
2211	else if (platform_info->enable_dma) {
2212		status = pl022_dma_probe(pl022);
2213		if (status != 0)
2214			platform_info->enable_dma = 0;
2215	}
2216
2217	/* Register with the SPI framework */
2218	amba_set_drvdata(adev, pl022);
2219	status = devm_spi_register_master(&adev->dev, master);
2220	if (status != 0) {
2221		dev_err(&adev->dev,
2222			"probe - problem registering spi master\n");
2223		goto err_spi_register;
2224	}
2225	dev_dbg(dev, "probe succeeded\n");
2226
2227	/* let runtime pm put suspend */
2228	if (platform_info->autosuspend_delay > 0) {
2229		dev_info(&adev->dev,
2230			"will use autosuspend for runtime pm, delay %dms\n",
2231			platform_info->autosuspend_delay);
2232		pm_runtime_set_autosuspend_delay(dev,
2233			platform_info->autosuspend_delay);
2234		pm_runtime_use_autosuspend(dev);
 
 
 
2235	}
2236	pm_runtime_put(dev);
2237
2238	return 0;
2239
2240 err_spi_register:
2241	if (platform_info->enable_dma)
2242		pl022_dma_remove(pl022);
 
 
2243 err_no_irq:
2244	clk_disable_unprepare(pl022->clk);
2245 err_no_clk_en:
 
 
 
2246 err_no_clk:
 
2247 err_no_ioremap:
2248	amba_release_regions(adev);
2249 err_no_ioregion:
2250	spi_master_put(master);
 
 
2251	return status;
2252}
2253
2254static void
2255pl022_remove(struct amba_device *adev)
2256{
2257	struct pl022 *pl022 = amba_get_drvdata(adev);
2258
2259	if (!pl022)
2260		return;
2261
2262	/*
2263	 * undo pm_runtime_put() in probe.  I assume that we're not
2264	 * accessing the primecell here.
2265	 */
2266	pm_runtime_get_noresume(&adev->dev);
2267
2268	load_ssp_default_config(pl022);
2269	if (pl022->master_info->enable_dma)
2270		pl022_dma_remove(pl022);
2271
2272	clk_disable_unprepare(pl022->clk);
 
 
 
 
2273	amba_release_regions(adev);
2274	tasklet_disable(&pl022->pump_transfers);
 
 
 
 
2275}
2276
2277#ifdef CONFIG_PM_SLEEP
2278static int pl022_suspend(struct device *dev)
2279{
2280	struct pl022 *pl022 = dev_get_drvdata(dev);
2281	int ret;
2282
2283	ret = spi_master_suspend(pl022->master);
2284	if (ret)
2285		return ret;
2286
2287	ret = pm_runtime_force_suspend(dev);
2288	if (ret) {
2289		spi_master_resume(pl022->master);
2290		return ret;
2291	}
2292
2293	pinctrl_pm_select_sleep_state(dev);
2294
2295	dev_dbg(dev, "suspended\n");
2296	return 0;
2297}
2298
2299static int pl022_resume(struct device *dev)
2300{
2301	struct pl022 *pl022 = dev_get_drvdata(dev);
2302	int ret;
2303
2304	ret = pm_runtime_force_resume(dev);
2305	if (ret)
2306		dev_err(dev, "problem resuming\n");
2307
2308	/* Start the queue running */
2309	ret = spi_master_resume(pl022->master);
2310	if (!ret)
 
 
2311		dev_dbg(dev, "resumed\n");
2312
2313	return ret;
2314}
2315#endif
2316
2317#ifdef CONFIG_PM
2318static int pl022_runtime_suspend(struct device *dev)
2319{
2320	struct pl022 *pl022 = dev_get_drvdata(dev);
2321
2322	clk_disable_unprepare(pl022->clk);
2323	pinctrl_pm_select_idle_state(dev);
2324
2325	return 0;
2326}
2327
2328static int pl022_runtime_resume(struct device *dev)
2329{
2330	struct pl022 *pl022 = dev_get_drvdata(dev);
2331
2332	pinctrl_pm_select_default_state(dev);
2333	clk_prepare_enable(pl022->clk);
2334
2335	return 0;
2336}
2337#endif
2338
2339static const struct dev_pm_ops pl022_dev_pm_ops = {
2340	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2341	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2342};
2343
2344static struct vendor_data vendor_arm = {
2345	.fifodepth = 8,
2346	.max_bpw = 16,
2347	.unidir = false,
2348	.extended_cr = false,
2349	.pl023 = false,
2350	.loopback = true,
2351	.internal_cs_ctrl = false,
2352};
2353
2354static struct vendor_data vendor_st = {
2355	.fifodepth = 32,
2356	.max_bpw = 32,
2357	.unidir = false,
2358	.extended_cr = true,
2359	.pl023 = false,
2360	.loopback = true,
2361	.internal_cs_ctrl = false,
2362};
2363
2364static struct vendor_data vendor_st_pl023 = {
2365	.fifodepth = 32,
2366	.max_bpw = 32,
2367	.unidir = false,
2368	.extended_cr = true,
2369	.pl023 = true,
2370	.loopback = false,
2371	.internal_cs_ctrl = false,
2372};
2373
2374static struct vendor_data vendor_lsi = {
2375	.fifodepth = 8,
2376	.max_bpw = 16,
2377	.unidir = false,
2378	.extended_cr = false,
2379	.pl023 = false,
2380	.loopback = true,
2381	.internal_cs_ctrl = true,
2382};
2383
2384static const struct amba_id pl022_ids[] = {
2385	{
2386		/*
2387		 * ARM PL022 variant, this has a 16bit wide
2388		 * and 8 locations deep TX/RX FIFO
2389		 */
2390		.id	= 0x00041022,
2391		.mask	= 0x000fffff,
2392		.data	= &vendor_arm,
2393	},
2394	{
2395		/*
2396		 * ST Micro derivative, this has 32bit wide
2397		 * and 32 locations deep TX/RX FIFO
2398		 */
2399		.id	= 0x01080022,
2400		.mask	= 0xffffffff,
2401		.data	= &vendor_st,
2402	},
2403	{
2404		/*
2405		 * ST-Ericsson derivative "PL023" (this is not
2406		 * an official ARM number), this is a PL022 SSP block
2407		 * stripped to SPI mode only, it has 32bit wide
2408		 * and 32 locations deep TX/RX FIFO but no extended
2409		 * CR0/CR1 register
2410		 */
2411		.id	= 0x00080023,
2412		.mask	= 0xffffffff,
2413		.data	= &vendor_st_pl023,
2414	},
2415	{
2416		/*
2417		 * PL022 variant that has a chip select control register whih
2418		 * allows control of 5 output signals nCS[0:4].
2419		 */
2420		.id	= 0x000b6022,
2421		.mask	= 0x000fffff,
2422		.data	= &vendor_lsi,
2423	},
2424	{ 0, 0 },
2425};
2426
2427MODULE_DEVICE_TABLE(amba, pl022_ids);
2428
2429static struct amba_driver pl022_driver = {
2430	.drv = {
2431		.name	= "ssp-pl022",
2432		.pm	= &pl022_dev_pm_ops,
2433	},
2434	.id_table	= pl022_ids,
2435	.probe		= pl022_probe,
2436	.remove		= pl022_remove,
2437};
2438
2439static int __init pl022_init(void)
2440{
2441	return amba_driver_register(&pl022_driver);
2442}
2443subsys_initcall(pl022_init);
2444
2445static void __exit pl022_exit(void)
2446{
2447	amba_driver_unregister(&pl022_driver);
2448}
2449module_exit(pl022_exit);
2450
2451MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2452MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2453MODULE_LICENSE("GPL");