Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include "util/evsel.h"
23#include <linux/rbtree.h>
24#include "util/symbol.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36
37#define SUPPORT_OLD_POWER_EVENTS 1
38#define PWR_EVENT_EXIT -1
39
40
41static const char *input_name;
42static const char *output_name = "output.svg";
43
44static unsigned int numcpus;
45static u64 min_freq; /* Lowest CPU frequency seen */
46static u64 max_freq; /* Highest CPU frequency seen */
47static u64 turbo_frequency;
48
49static u64 first_time, last_time;
50
51static bool power_only;
52
53
54struct per_pid;
55struct per_pidcomm;
56
57struct cpu_sample;
58struct power_event;
59struct wake_event;
60
61struct sample_wrapper;
62
63/*
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
71 */
72
73struct per_pid {
74 struct per_pid *next;
75
76 int pid;
77 int ppid;
78
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
83
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
86};
87
88
89struct per_pidcomm {
90 struct per_pidcomm *next;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95
96 int Y;
97 int display;
98
99 long state;
100 u64 state_since;
101
102 char *comm;
103
104 struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108 struct sample_wrapper *next;
109
110 u64 timestamp;
111 unsigned char data[0];
112};
113
114#define TYPE_NONE 0
115#define TYPE_RUNNING 1
116#define TYPE_WAITING 2
117#define TYPE_BLOCKED 3
118
119struct cpu_sample {
120 struct cpu_sample *next;
121
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
140};
141
142struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
147};
148
149static struct power_event *power_events;
150static struct wake_event *wake_events;
151
152struct process_filter;
153struct process_filter {
154 char *name;
155 int pid;
156 struct process_filter *next;
157};
158
159static struct process_filter *process_filter;
160
161
162static struct per_pid *find_create_pid(int pid)
163{
164 struct per_pid *cursor = all_data;
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
171 cursor = malloc(sizeof(struct per_pid));
172 assert(cursor != NULL);
173 memset(cursor, 0, sizeof(struct per_pid));
174 cursor->pid = pid;
175 cursor->next = all_data;
176 all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = malloc(sizeof(struct per_pidcomm));
199 assert(c != NULL);
200 memset(c, 0, sizeof(struct per_pidcomm));
201 c->comm = strdup(comm);
202 p->current = c;
203 c->next = p->all;
204 p->all = c;
205}
206
207static void pid_fork(int pid, int ppid, u64 timestamp)
208{
209 struct per_pid *p, *pp;
210 p = find_create_pid(pid);
211 pp = find_create_pid(ppid);
212 p->ppid = ppid;
213 if (pp->current && pp->current->comm && !p->current)
214 pid_set_comm(pid, pp->current->comm);
215
216 p->start_time = timestamp;
217 if (p->current) {
218 p->current->start_time = timestamp;
219 p->current->state_since = timestamp;
220 }
221}
222
223static void pid_exit(int pid, u64 timestamp)
224{
225 struct per_pid *p;
226 p = find_create_pid(pid);
227 p->end_time = timestamp;
228 if (p->current)
229 p->current->end_time = timestamp;
230}
231
232static void
233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(pid);
240 c = p->current;
241 if (!c) {
242 c = malloc(sizeof(struct per_pidcomm));
243 assert(c != NULL);
244 memset(c, 0, sizeof(struct per_pidcomm));
245 p->current = c;
246 c->next = p->all;
247 p->all = c;
248 }
249
250 sample = malloc(sizeof(struct cpu_sample));
251 assert(sample != NULL);
252 memset(sample, 0, sizeof(struct cpu_sample));
253 sample->start_time = start;
254 sample->end_time = end;
255 sample->type = type;
256 sample->next = c->samples;
257 sample->cpu = cpu;
258 c->samples = sample;
259
260 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 c->total_time += (end-start);
262 p->total_time += (end-start);
263 }
264
265 if (c->start_time == 0 || c->start_time > start)
266 c->start_time = start;
267 if (p->start_time == 0 || p->start_time > start)
268 p->start_time = start;
269}
270
271#define MAX_CPUS 4096
272
273static u64 cpus_cstate_start_times[MAX_CPUS];
274static int cpus_cstate_state[MAX_CPUS];
275static u64 cpus_pstate_start_times[MAX_CPUS];
276static u64 cpus_pstate_state[MAX_CPUS];
277
278static int process_comm_event(struct perf_tool *tool __used,
279 union perf_event *event,
280 struct perf_sample *sample __used,
281 struct machine *machine __used)
282{
283 pid_set_comm(event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool __used,
288 union perf_event *event,
289 struct perf_sample *sample __used,
290 struct machine *machine __used)
291{
292 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293 return 0;
294}
295
296static int process_exit_event(struct perf_tool *tool __used,
297 union perf_event *event,
298 struct perf_sample *sample __used,
299 struct machine *machine __used)
300{
301 pid_exit(event->fork.pid, event->fork.time);
302 return 0;
303}
304
305struct trace_entry {
306 unsigned short type;
307 unsigned char flags;
308 unsigned char preempt_count;
309 int pid;
310 int lock_depth;
311};
312
313#ifdef SUPPORT_OLD_POWER_EVENTS
314static int use_old_power_events;
315struct power_entry_old {
316 struct trace_entry te;
317 u64 type;
318 u64 value;
319 u64 cpu_id;
320};
321#endif
322
323struct power_processor_entry {
324 struct trace_entry te;
325 u32 state;
326 u32 cpu_id;
327};
328
329#define TASK_COMM_LEN 16
330struct wakeup_entry {
331 struct trace_entry te;
332 char comm[TASK_COMM_LEN];
333 int pid;
334 int prio;
335 int success;
336};
337
338/*
339 * trace_flag_type is an enumeration that holds different
340 * states when a trace occurs. These are:
341 * IRQS_OFF - interrupts were disabled
342 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
343 * NEED_RESCED - reschedule is requested
344 * HARDIRQ - inside an interrupt handler
345 * SOFTIRQ - inside a softirq handler
346 */
347enum trace_flag_type {
348 TRACE_FLAG_IRQS_OFF = 0x01,
349 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
350 TRACE_FLAG_NEED_RESCHED = 0x04,
351 TRACE_FLAG_HARDIRQ = 0x08,
352 TRACE_FLAG_SOFTIRQ = 0x10,
353};
354
355
356
357struct sched_switch {
358 struct trace_entry te;
359 char prev_comm[TASK_COMM_LEN];
360 int prev_pid;
361 int prev_prio;
362 long prev_state; /* Arjan weeps. */
363 char next_comm[TASK_COMM_LEN];
364 int next_pid;
365 int next_prio;
366};
367
368static void c_state_start(int cpu, u64 timestamp, int state)
369{
370 cpus_cstate_start_times[cpu] = timestamp;
371 cpus_cstate_state[cpu] = state;
372}
373
374static void c_state_end(int cpu, u64 timestamp)
375{
376 struct power_event *pwr;
377 pwr = malloc(sizeof(struct power_event));
378 if (!pwr)
379 return;
380 memset(pwr, 0, sizeof(struct power_event));
381
382 pwr->state = cpus_cstate_state[cpu];
383 pwr->start_time = cpus_cstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = CSTATE;
387 pwr->next = power_events;
388
389 power_events = pwr;
390}
391
392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
393{
394 struct power_event *pwr;
395 pwr = malloc(sizeof(struct power_event));
396
397 if (new_freq > 8000000) /* detect invalid data */
398 return;
399
400 if (!pwr)
401 return;
402 memset(pwr, 0, sizeof(struct power_event));
403
404 pwr->state = cpus_pstate_state[cpu];
405 pwr->start_time = cpus_pstate_start_times[cpu];
406 pwr->end_time = timestamp;
407 pwr->cpu = cpu;
408 pwr->type = PSTATE;
409 pwr->next = power_events;
410
411 if (!pwr->start_time)
412 pwr->start_time = first_time;
413
414 power_events = pwr;
415
416 cpus_pstate_state[cpu] = new_freq;
417 cpus_pstate_start_times[cpu] = timestamp;
418
419 if ((u64)new_freq > max_freq)
420 max_freq = new_freq;
421
422 if (new_freq < min_freq || min_freq == 0)
423 min_freq = new_freq;
424
425 if (new_freq == max_freq - 1000)
426 turbo_frequency = max_freq;
427}
428
429static void
430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
431{
432 struct wake_event *we;
433 struct per_pid *p;
434 struct wakeup_entry *wake = (void *)te;
435
436 we = malloc(sizeof(struct wake_event));
437 if (!we)
438 return;
439
440 memset(we, 0, sizeof(struct wake_event));
441 we->time = timestamp;
442 we->waker = pid;
443
444 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
445 we->waker = -1;
446
447 we->wakee = wake->pid;
448 we->next = wake_events;
449 wake_events = we;
450 p = find_create_pid(we->wakee);
451
452 if (p && p->current && p->current->state == TYPE_NONE) {
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456 if (p && p->current && p->current->state == TYPE_BLOCKED) {
457 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_WAITING;
460 }
461}
462
463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
464{
465 struct per_pid *p = NULL, *prev_p;
466 struct sched_switch *sw = (void *)te;
467
468
469 prev_p = find_create_pid(sw->prev_pid);
470
471 p = find_create_pid(sw->next_pid);
472
473 if (prev_p->current && prev_p->current->state != TYPE_NONE)
474 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
475 if (p && p->current) {
476 if (p->current->state != TYPE_NONE)
477 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
478
479 p->current->state_since = timestamp;
480 p->current->state = TYPE_RUNNING;
481 }
482
483 if (prev_p->current) {
484 prev_p->current->state = TYPE_NONE;
485 prev_p->current->state_since = timestamp;
486 if (sw->prev_state & 2)
487 prev_p->current->state = TYPE_BLOCKED;
488 if (sw->prev_state == 0)
489 prev_p->current->state = TYPE_WAITING;
490 }
491}
492
493
494static int process_sample_event(struct perf_tool *tool __used,
495 union perf_event *event __used,
496 struct perf_sample *sample,
497 struct perf_evsel *evsel,
498 struct machine *machine __used)
499{
500 struct trace_entry *te;
501
502 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
503 if (!first_time || first_time > sample->time)
504 first_time = sample->time;
505 if (last_time < sample->time)
506 last_time = sample->time;
507 }
508
509 te = (void *)sample->raw_data;
510 if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
511 char *event_str;
512#ifdef SUPPORT_OLD_POWER_EVENTS
513 struct power_entry_old *peo;
514 peo = (void *)te;
515#endif
516 /*
517 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 * remove perf_header__find_event infrastructure bits.
519 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 * ID and then just comparing against evsel->attr.config.
521 *
522 * e.g.:
523 *
524 * if (evsel->attr.config == power_cpu_idle_id)
525 */
526 event_str = perf_header__find_event(te->type);
527
528 if (!event_str)
529 return 0;
530
531 if (sample->cpu > numcpus)
532 numcpus = sample->cpu;
533
534 if (strcmp(event_str, "power:cpu_idle") == 0) {
535 struct power_processor_entry *ppe = (void *)te;
536 if (ppe->state == (u32)PWR_EVENT_EXIT)
537 c_state_end(ppe->cpu_id, sample->time);
538 else
539 c_state_start(ppe->cpu_id, sample->time,
540 ppe->state);
541 }
542 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
543 struct power_processor_entry *ppe = (void *)te;
544 p_state_change(ppe->cpu_id, sample->time, ppe->state);
545 }
546
547 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
548 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
549
550 else if (strcmp(event_str, "sched:sched_switch") == 0)
551 sched_switch(sample->cpu, sample->time, te);
552
553#ifdef SUPPORT_OLD_POWER_EVENTS
554 if (use_old_power_events) {
555 if (strcmp(event_str, "power:power_start") == 0)
556 c_state_start(peo->cpu_id, sample->time,
557 peo->value);
558
559 else if (strcmp(event_str, "power:power_end") == 0)
560 c_state_end(sample->cpu, sample->time);
561
562 else if (strcmp(event_str,
563 "power:power_frequency") == 0)
564 p_state_change(peo->cpu_id, sample->time,
565 peo->value);
566 }
567#endif
568 }
569 return 0;
570}
571
572/*
573 * After the last sample we need to wrap up the current C/P state
574 * and close out each CPU for these.
575 */
576static void end_sample_processing(void)
577{
578 u64 cpu;
579 struct power_event *pwr;
580
581 for (cpu = 0; cpu <= numcpus; cpu++) {
582 pwr = malloc(sizeof(struct power_event));
583 if (!pwr)
584 return;
585 memset(pwr, 0, sizeof(struct power_event));
586
587 /* C state */
588#if 0
589 pwr->state = cpus_cstate_state[cpu];
590 pwr->start_time = cpus_cstate_start_times[cpu];
591 pwr->end_time = last_time;
592 pwr->cpu = cpu;
593 pwr->type = CSTATE;
594 pwr->next = power_events;
595
596 power_events = pwr;
597#endif
598 /* P state */
599
600 pwr = malloc(sizeof(struct power_event));
601 if (!pwr)
602 return;
603 memset(pwr, 0, sizeof(struct power_event));
604
605 pwr->state = cpus_pstate_state[cpu];
606 pwr->start_time = cpus_pstate_start_times[cpu];
607 pwr->end_time = last_time;
608 pwr->cpu = cpu;
609 pwr->type = PSTATE;
610 pwr->next = power_events;
611
612 if (!pwr->start_time)
613 pwr->start_time = first_time;
614 if (!pwr->state)
615 pwr->state = min_freq;
616 power_events = pwr;
617 }
618}
619
620/*
621 * Sort the pid datastructure
622 */
623static void sort_pids(void)
624{
625 struct per_pid *new_list, *p, *cursor, *prev;
626 /* sort by ppid first, then by pid, lowest to highest */
627
628 new_list = NULL;
629
630 while (all_data) {
631 p = all_data;
632 all_data = p->next;
633 p->next = NULL;
634
635 if (new_list == NULL) {
636 new_list = p;
637 p->next = NULL;
638 continue;
639 }
640 prev = NULL;
641 cursor = new_list;
642 while (cursor) {
643 if (cursor->ppid > p->ppid ||
644 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
645 /* must insert before */
646 if (prev) {
647 p->next = prev->next;
648 prev->next = p;
649 cursor = NULL;
650 continue;
651 } else {
652 p->next = new_list;
653 new_list = p;
654 cursor = NULL;
655 continue;
656 }
657 }
658
659 prev = cursor;
660 cursor = cursor->next;
661 if (!cursor)
662 prev->next = p;
663 }
664 }
665 all_data = new_list;
666}
667
668
669static void draw_c_p_states(void)
670{
671 struct power_event *pwr;
672 pwr = power_events;
673
674 /*
675 * two pass drawing so that the P state bars are on top of the C state blocks
676 */
677 while (pwr) {
678 if (pwr->type == CSTATE)
679 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
680 pwr = pwr->next;
681 }
682
683 pwr = power_events;
684 while (pwr) {
685 if (pwr->type == PSTATE) {
686 if (!pwr->state)
687 pwr->state = min_freq;
688 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
689 }
690 pwr = pwr->next;
691 }
692}
693
694static void draw_wakeups(void)
695{
696 struct wake_event *we;
697 struct per_pid *p;
698 struct per_pidcomm *c;
699
700 we = wake_events;
701 while (we) {
702 int from = 0, to = 0;
703 char *task_from = NULL, *task_to = NULL;
704
705 /* locate the column of the waker and wakee */
706 p = all_data;
707 while (p) {
708 if (p->pid == we->waker || p->pid == we->wakee) {
709 c = p->all;
710 while (c) {
711 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
712 if (p->pid == we->waker && !from) {
713 from = c->Y;
714 task_from = strdup(c->comm);
715 }
716 if (p->pid == we->wakee && !to) {
717 to = c->Y;
718 task_to = strdup(c->comm);
719 }
720 }
721 c = c->next;
722 }
723 c = p->all;
724 while (c) {
725 if (p->pid == we->waker && !from) {
726 from = c->Y;
727 task_from = strdup(c->comm);
728 }
729 if (p->pid == we->wakee && !to) {
730 to = c->Y;
731 task_to = strdup(c->comm);
732 }
733 c = c->next;
734 }
735 }
736 p = p->next;
737 }
738
739 if (!task_from) {
740 task_from = malloc(40);
741 sprintf(task_from, "[%i]", we->waker);
742 }
743 if (!task_to) {
744 task_to = malloc(40);
745 sprintf(task_to, "[%i]", we->wakee);
746 }
747
748 if (we->waker == -1)
749 svg_interrupt(we->time, to);
750 else if (from && to && abs(from - to) == 1)
751 svg_wakeline(we->time, from, to);
752 else
753 svg_partial_wakeline(we->time, from, task_from, to, task_to);
754 we = we->next;
755
756 free(task_from);
757 free(task_to);
758 }
759}
760
761static void draw_cpu_usage(void)
762{
763 struct per_pid *p;
764 struct per_pidcomm *c;
765 struct cpu_sample *sample;
766 p = all_data;
767 while (p) {
768 c = p->all;
769 while (c) {
770 sample = c->samples;
771 while (sample) {
772 if (sample->type == TYPE_RUNNING)
773 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
774
775 sample = sample->next;
776 }
777 c = c->next;
778 }
779 p = p->next;
780 }
781}
782
783static void draw_process_bars(void)
784{
785 struct per_pid *p;
786 struct per_pidcomm *c;
787 struct cpu_sample *sample;
788 int Y = 0;
789
790 Y = 2 * numcpus + 2;
791
792 p = all_data;
793 while (p) {
794 c = p->all;
795 while (c) {
796 if (!c->display) {
797 c->Y = 0;
798 c = c->next;
799 continue;
800 }
801
802 svg_box(Y, c->start_time, c->end_time, "process");
803 sample = c->samples;
804 while (sample) {
805 if (sample->type == TYPE_RUNNING)
806 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
807 if (sample->type == TYPE_BLOCKED)
808 svg_box(Y, sample->start_time, sample->end_time, "blocked");
809 if (sample->type == TYPE_WAITING)
810 svg_waiting(Y, sample->start_time, sample->end_time);
811 sample = sample->next;
812 }
813
814 if (c->comm) {
815 char comm[256];
816 if (c->total_time > 5000000000) /* 5 seconds */
817 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
818 else
819 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
820
821 svg_text(Y, c->start_time, comm);
822 }
823 c->Y = Y;
824 Y++;
825 c = c->next;
826 }
827 p = p->next;
828 }
829}
830
831static void add_process_filter(const char *string)
832{
833 struct process_filter *filt;
834 int pid;
835
836 pid = strtoull(string, NULL, 10);
837 filt = malloc(sizeof(struct process_filter));
838 if (!filt)
839 return;
840
841 filt->name = strdup(string);
842 filt->pid = pid;
843 filt->next = process_filter;
844
845 process_filter = filt;
846}
847
848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
849{
850 struct process_filter *filt;
851 if (!process_filter)
852 return 1;
853
854 filt = process_filter;
855 while (filt) {
856 if (filt->pid && p->pid == filt->pid)
857 return 1;
858 if (strcmp(filt->name, c->comm) == 0)
859 return 1;
860 filt = filt->next;
861 }
862 return 0;
863}
864
865static int determine_display_tasks_filtered(void)
866{
867 struct per_pid *p;
868 struct per_pidcomm *c;
869 int count = 0;
870
871 p = all_data;
872 while (p) {
873 p->display = 0;
874 if (p->start_time == 1)
875 p->start_time = first_time;
876
877 /* no exit marker, task kept running to the end */
878 if (p->end_time == 0)
879 p->end_time = last_time;
880
881 c = p->all;
882
883 while (c) {
884 c->display = 0;
885
886 if (c->start_time == 1)
887 c->start_time = first_time;
888
889 if (passes_filter(p, c)) {
890 c->display = 1;
891 p->display = 1;
892 count++;
893 }
894
895 if (c->end_time == 0)
896 c->end_time = last_time;
897
898 c = c->next;
899 }
900 p = p->next;
901 }
902 return count;
903}
904
905static int determine_display_tasks(u64 threshold)
906{
907 struct per_pid *p;
908 struct per_pidcomm *c;
909 int count = 0;
910
911 if (process_filter)
912 return determine_display_tasks_filtered();
913
914 p = all_data;
915 while (p) {
916 p->display = 0;
917 if (p->start_time == 1)
918 p->start_time = first_time;
919
920 /* no exit marker, task kept running to the end */
921 if (p->end_time == 0)
922 p->end_time = last_time;
923 if (p->total_time >= threshold && !power_only)
924 p->display = 1;
925
926 c = p->all;
927
928 while (c) {
929 c->display = 0;
930
931 if (c->start_time == 1)
932 c->start_time = first_time;
933
934 if (c->total_time >= threshold && !power_only) {
935 c->display = 1;
936 count++;
937 }
938
939 if (c->end_time == 0)
940 c->end_time = last_time;
941
942 c = c->next;
943 }
944 p = p->next;
945 }
946 return count;
947}
948
949
950
951#define TIME_THRESH 10000000
952
953static void write_svg_file(const char *filename)
954{
955 u64 i;
956 int count;
957
958 numcpus++;
959
960
961 count = determine_display_tasks(TIME_THRESH);
962
963 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
964 if (count < 15)
965 count = determine_display_tasks(TIME_THRESH / 10);
966
967 open_svg(filename, numcpus, count, first_time, last_time);
968
969 svg_time_grid();
970 svg_legenda();
971
972 for (i = 0; i < numcpus; i++)
973 svg_cpu_box(i, max_freq, turbo_frequency);
974
975 draw_cpu_usage();
976 draw_process_bars();
977 draw_c_p_states();
978 draw_wakeups();
979
980 svg_close();
981}
982
983static struct perf_tool perf_timechart = {
984 .comm = process_comm_event,
985 .fork = process_fork_event,
986 .exit = process_exit_event,
987 .sample = process_sample_event,
988 .ordered_samples = true,
989};
990
991static int __cmd_timechart(void)
992{
993 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 0, false, &perf_timechart);
995 int ret = -EINVAL;
996
997 if (session == NULL)
998 return -ENOMEM;
999
1000 if (!perf_session__has_traces(session, "timechart record"))
1001 goto out_delete;
1002
1003 ret = perf_session__process_events(session, &perf_timechart);
1004 if (ret)
1005 goto out_delete;
1006
1007 end_sample_processing();
1008
1009 sort_pids();
1010
1011 write_svg_file(output_name);
1012
1013 pr_info("Written %2.1f seconds of trace to %s.\n",
1014 (last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016 perf_session__delete(session);
1017 return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021 "perf timechart [<options>] {record}",
1022 NULL
1023};
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027 "record",
1028 "-a",
1029 "-R",
1030 "-f",
1031 "-c", "1",
1032 "-e", "power:power_start",
1033 "-e", "power:power_end",
1034 "-e", "power:power_frequency",
1035 "-e", "sched:sched_wakeup",
1036 "-e", "sched:sched_switch",
1037};
1038#endif
1039
1040static const char * const record_new_args[] = {
1041 "record",
1042 "-a",
1043 "-R",
1044 "-f",
1045 "-c", "1",
1046 "-e", "power:cpu_frequency",
1047 "-e", "power:cpu_idle",
1048 "-e", "sched:sched_wakeup",
1049 "-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054 unsigned int rec_argc, i, j;
1055 const char **rec_argv;
1056 const char * const *record_args = record_new_args;
1057 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060 if (!is_valid_tracepoint("power:cpu_idle") &&
1061 is_valid_tracepoint("power:power_start")) {
1062 use_old_power_events = 1;
1063 record_args = record_old_args;
1064 record_elems = ARRAY_SIZE(record_old_args);
1065 }
1066#endif
1067
1068 rec_argc = record_elems + argc - 1;
1069 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071 if (rec_argv == NULL)
1072 return -ENOMEM;
1073
1074 for (i = 0; i < record_elems; i++)
1075 rec_argv[i] = strdup(record_args[i]);
1076
1077 for (j = 1; j < (unsigned int)argc; j++, i++)
1078 rec_argv[i] = argv[j];
1079
1080 return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085{
1086 if (arg)
1087 add_process_filter(arg);
1088 return 0;
1089}
1090
1091static const struct option options[] = {
1092 OPT_STRING('i', "input", &input_name, "file",
1093 "input file name"),
1094 OPT_STRING('o', "output", &output_name, "file",
1095 "output file name"),
1096 OPT_INTEGER('w', "width", &svg_page_width,
1097 "page width"),
1098 OPT_BOOLEAN('P', "power-only", &power_only,
1099 "output power data only"),
1100 OPT_CALLBACK('p', "process", NULL, "process",
1101 "process selector. Pass a pid or process name.",
1102 parse_process),
1103 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104 "Look for files with symbols relative to this directory"),
1105 OPT_END()
1106};
1107
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111 argc = parse_options(argc, argv, options, timechart_usage,
1112 PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114 symbol__init();
1115
1116 if (argc && !strncmp(argv[0], "rec", 3))
1117 return __cmd_record(argc, argv);
1118 else if (argc)
1119 usage_with_options(timechart_usage, options);
1120
1121 setup_pager();
1122
1123 return __cmd_timechart();
1124}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11#include <errno.h>
12#include <inttypes.h>
13
14#include "builtin.h"
15#include "util/color.h"
16#include <linux/list.h>
17#include "util/evlist.h" // for struct evsel_str_handler
18#include "util/evsel.h"
19#include <linux/kernel.h>
20#include <linux/rbtree.h>
21#include <linux/time64.h>
22#include <linux/zalloc.h>
23#include "util/symbol.h"
24#include "util/thread.h"
25#include "util/callchain.h"
26
27#include "util/header.h"
28#include <subcmd/pager.h>
29#include <subcmd/parse-options.h>
30#include "util/parse-events.h"
31#include "util/event.h"
32#include "util/session.h"
33#include "util/svghelper.h"
34#include "util/tool.h"
35#include "util/data.h"
36#include "util/debug.h"
37#include "util/string2.h"
38#include "util/tracepoint.h"
39#include "util/util.h"
40#include <linux/err.h>
41#include <event-parse.h>
42
43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
44FILE *open_memstream(char **ptr, size_t *sizeloc);
45#endif
46
47#define SUPPORT_OLD_POWER_EVENTS 1
48#define PWR_EVENT_EXIT -1
49
50struct per_pid;
51struct power_event;
52struct wake_event;
53
54struct timechart {
55 struct perf_tool tool;
56 struct per_pid *all_data;
57 struct power_event *power_events;
58 struct wake_event *wake_events;
59 int proc_num;
60 unsigned int numcpus;
61 u64 min_freq, /* Lowest CPU frequency seen */
62 max_freq, /* Highest CPU frequency seen */
63 turbo_frequency,
64 first_time, last_time;
65 bool power_only,
66 tasks_only,
67 with_backtrace,
68 topology;
69 bool force;
70 /* IO related settings */
71 bool io_only,
72 skip_eagain;
73 u64 io_events;
74 u64 min_time,
75 merge_dist;
76};
77
78struct per_pidcomm;
79struct cpu_sample;
80struct io_sample;
81
82/*
83 * Datastructure layout:
84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
85 * Each "pid" entry, has a list of "comm"s.
86 * this is because we want to track different programs different, while
87 * exec will reuse the original pid (by design).
88 * Each comm has a list of samples that will be used to draw
89 * final graph.
90 */
91
92struct per_pid {
93 struct per_pid *next;
94
95 int pid;
96 int ppid;
97
98 u64 start_time;
99 u64 end_time;
100 u64 total_time;
101 u64 total_bytes;
102 int display;
103
104 struct per_pidcomm *all;
105 struct per_pidcomm *current;
106};
107
108
109struct per_pidcomm {
110 struct per_pidcomm *next;
111
112 u64 start_time;
113 u64 end_time;
114 u64 total_time;
115 u64 max_bytes;
116 u64 total_bytes;
117
118 int Y;
119 int display;
120
121 long state;
122 u64 state_since;
123
124 char *comm;
125
126 struct cpu_sample *samples;
127 struct io_sample *io_samples;
128};
129
130struct sample_wrapper {
131 struct sample_wrapper *next;
132
133 u64 timestamp;
134 unsigned char data[];
135};
136
137#define TYPE_NONE 0
138#define TYPE_RUNNING 1
139#define TYPE_WAITING 2
140#define TYPE_BLOCKED 3
141
142struct cpu_sample {
143 struct cpu_sample *next;
144
145 u64 start_time;
146 u64 end_time;
147 int type;
148 int cpu;
149 const char *backtrace;
150};
151
152enum {
153 IOTYPE_READ,
154 IOTYPE_WRITE,
155 IOTYPE_SYNC,
156 IOTYPE_TX,
157 IOTYPE_RX,
158 IOTYPE_POLL,
159};
160
161struct io_sample {
162 struct io_sample *next;
163
164 u64 start_time;
165 u64 end_time;
166 u64 bytes;
167 int type;
168 int fd;
169 int err;
170 int merges;
171};
172
173#define CSTATE 1
174#define PSTATE 2
175
176struct power_event {
177 struct power_event *next;
178 int type;
179 int state;
180 u64 start_time;
181 u64 end_time;
182 int cpu;
183};
184
185struct wake_event {
186 struct wake_event *next;
187 int waker;
188 int wakee;
189 u64 time;
190 const char *backtrace;
191};
192
193struct process_filter {
194 char *name;
195 int pid;
196 struct process_filter *next;
197};
198
199static struct process_filter *process_filter;
200
201
202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
203{
204 struct per_pid *cursor = tchart->all_data;
205
206 while (cursor) {
207 if (cursor->pid == pid)
208 return cursor;
209 cursor = cursor->next;
210 }
211 cursor = zalloc(sizeof(*cursor));
212 assert(cursor != NULL);
213 cursor->pid = pid;
214 cursor->next = tchart->all_data;
215 tchart->all_data = cursor;
216 return cursor;
217}
218
219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
220{
221 struct per_pidcomm *c;
222
223 c = zalloc(sizeof(*c));
224 if (!c)
225 return NULL;
226 p->current = c;
227 c->next = p->all;
228 p->all = c;
229 return c;
230}
231
232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
233{
234 struct per_pid *p;
235 struct per_pidcomm *c;
236 p = find_create_pid(tchart, pid);
237 c = p->all;
238 while (c) {
239 if (c->comm && strcmp(c->comm, comm) == 0) {
240 p->current = c;
241 return;
242 }
243 if (!c->comm) {
244 c->comm = strdup(comm);
245 p->current = c;
246 return;
247 }
248 c = c->next;
249 }
250 c = create_pidcomm(p);
251 assert(c != NULL);
252 c->comm = strdup(comm);
253}
254
255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
256{
257 struct per_pid *p, *pp;
258 p = find_create_pid(tchart, pid);
259 pp = find_create_pid(tchart, ppid);
260 p->ppid = ppid;
261 if (pp->current && pp->current->comm && !p->current)
262 pid_set_comm(tchart, pid, pp->current->comm);
263
264 p->start_time = timestamp;
265 if (p->current && !p->current->start_time) {
266 p->current->start_time = timestamp;
267 p->current->state_since = timestamp;
268 }
269}
270
271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
272{
273 struct per_pid *p;
274 p = find_create_pid(tchart, pid);
275 p->end_time = timestamp;
276 if (p->current)
277 p->current->end_time = timestamp;
278}
279
280static void pid_put_sample(struct timechart *tchart, int pid, int type,
281 unsigned int cpu, u64 start, u64 end,
282 const char *backtrace)
283{
284 struct per_pid *p;
285 struct per_pidcomm *c;
286 struct cpu_sample *sample;
287
288 p = find_create_pid(tchart, pid);
289 c = p->current;
290 if (!c) {
291 c = create_pidcomm(p);
292 assert(c != NULL);
293 }
294
295 sample = zalloc(sizeof(*sample));
296 assert(sample != NULL);
297 sample->start_time = start;
298 sample->end_time = end;
299 sample->type = type;
300 sample->next = c->samples;
301 sample->cpu = cpu;
302 sample->backtrace = backtrace;
303 c->samples = sample;
304
305 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
306 c->total_time += (end-start);
307 p->total_time += (end-start);
308 }
309
310 if (c->start_time == 0 || c->start_time > start)
311 c->start_time = start;
312 if (p->start_time == 0 || p->start_time > start)
313 p->start_time = start;
314}
315
316#define MAX_CPUS 4096
317
318static u64 *cpus_cstate_start_times;
319static int *cpus_cstate_state;
320static u64 *cpus_pstate_start_times;
321static u64 *cpus_pstate_state;
322
323static int process_comm_event(const struct perf_tool *tool,
324 union perf_event *event,
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
327{
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
330 return 0;
331}
332
333static int process_fork_event(const struct perf_tool *tool,
334 union perf_event *event,
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
337{
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
340 return 0;
341}
342
343static int process_exit_event(const struct perf_tool *tool,
344 union perf_event *event,
345 struct perf_sample *sample __maybe_unused,
346 struct machine *machine __maybe_unused)
347{
348 struct timechart *tchart = container_of(tool, struct timechart, tool);
349 pid_exit(tchart, event->fork.pid, event->fork.time);
350 return 0;
351}
352
353#ifdef SUPPORT_OLD_POWER_EVENTS
354static int use_old_power_events;
355#endif
356
357static void c_state_start(int cpu, u64 timestamp, int state)
358{
359 cpus_cstate_start_times[cpu] = timestamp;
360 cpus_cstate_state[cpu] = state;
361}
362
363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
364{
365 struct power_event *pwr = zalloc(sizeof(*pwr));
366
367 if (!pwr)
368 return;
369
370 pwr->state = cpus_cstate_state[cpu];
371 pwr->start_time = cpus_cstate_start_times[cpu];
372 pwr->end_time = timestamp;
373 pwr->cpu = cpu;
374 pwr->type = CSTATE;
375 pwr->next = tchart->power_events;
376
377 tchart->power_events = pwr;
378}
379
380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
381 u64 timestamp)
382{
383 struct power_event *pwr = zalloc(sizeof(*pwr));
384
385 if (!pwr)
386 return NULL;
387
388 pwr->state = cpus_pstate_state[cpu];
389 pwr->start_time = cpus_pstate_start_times[cpu];
390 pwr->end_time = timestamp;
391 pwr->cpu = cpu;
392 pwr->type = PSTATE;
393 pwr->next = tchart->power_events;
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
396
397 tchart->power_events = pwr;
398 return pwr;
399}
400
401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
402{
403 struct power_event *pwr;
404
405 if (new_freq > 8000000) /* detect invalid data */
406 return;
407
408 pwr = p_state_end(tchart, cpu, timestamp);
409 if (!pwr)
410 return;
411
412 cpus_pstate_state[cpu] = new_freq;
413 cpus_pstate_start_times[cpu] = timestamp;
414
415 if ((u64)new_freq > tchart->max_freq)
416 tchart->max_freq = new_freq;
417
418 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
419 tchart->min_freq = new_freq;
420
421 if (new_freq == tchart->max_freq - 1000)
422 tchart->turbo_frequency = tchart->max_freq;
423}
424
425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
426 int waker, int wakee, u8 flags, const char *backtrace)
427{
428 struct per_pid *p;
429 struct wake_event *we = zalloc(sizeof(*we));
430
431 if (!we)
432 return;
433
434 we->time = timestamp;
435 we->waker = waker;
436 we->backtrace = backtrace;
437
438 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
439 we->waker = -1;
440
441 we->wakee = wakee;
442 we->next = tchart->wake_events;
443 tchart->wake_events = we;
444 p = find_create_pid(tchart, we->wakee);
445
446 if (p && p->current && p->current->state == TYPE_NONE) {
447 p->current->state_since = timestamp;
448 p->current->state = TYPE_WAITING;
449 }
450 if (p && p->current && p->current->state == TYPE_BLOCKED) {
451 pid_put_sample(tchart, p->pid, p->current->state, cpu,
452 p->current->state_since, timestamp, NULL);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456}
457
458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
459 int prev_pid, int next_pid, u64 prev_state,
460 const char *backtrace)
461{
462 struct per_pid *p = NULL, *prev_p;
463
464 prev_p = find_create_pid(tchart, prev_pid);
465
466 p = find_create_pid(tchart, next_pid);
467
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
470 prev_p->current->state_since, timestamp,
471 backtrace);
472 if (p && p->current) {
473 if (p->current->state != TYPE_NONE)
474 pid_put_sample(tchart, next_pid, p->current->state, cpu,
475 p->current->state_since, timestamp,
476 backtrace);
477
478 p->current->state_since = timestamp;
479 p->current->state = TYPE_RUNNING;
480 }
481
482 if (prev_p->current) {
483 prev_p->current->state = TYPE_NONE;
484 prev_p->current->state_since = timestamp;
485 if (prev_state & 2)
486 prev_p->current->state = TYPE_BLOCKED;
487 if (prev_state == 0)
488 prev_p->current->state = TYPE_WAITING;
489 }
490}
491
492static const char *cat_backtrace(union perf_event *event,
493 struct perf_sample *sample,
494 struct machine *machine)
495{
496 struct addr_location al;
497 unsigned int i;
498 char *p = NULL;
499 size_t p_len;
500 u8 cpumode = PERF_RECORD_MISC_USER;
501 struct ip_callchain *chain = sample->callchain;
502 FILE *f = open_memstream(&p, &p_len);
503
504 if (!f) {
505 perror("open_memstream error");
506 return NULL;
507 }
508
509 addr_location__init(&al);
510 if (!chain)
511 goto exit;
512
513 if (machine__resolve(machine, &al, sample) < 0) {
514 fprintf(stderr, "problem processing %d event, skipping it.\n",
515 event->header.type);
516 goto exit;
517 }
518
519 for (i = 0; i < chain->nr; i++) {
520 u64 ip;
521 struct addr_location tal;
522
523 if (callchain_param.order == ORDER_CALLEE)
524 ip = chain->ips[i];
525 else
526 ip = chain->ips[chain->nr - i - 1];
527
528 if (ip >= PERF_CONTEXT_MAX) {
529 switch (ip) {
530 case PERF_CONTEXT_HV:
531 cpumode = PERF_RECORD_MISC_HYPERVISOR;
532 break;
533 case PERF_CONTEXT_KERNEL:
534 cpumode = PERF_RECORD_MISC_KERNEL;
535 break;
536 case PERF_CONTEXT_USER:
537 cpumode = PERF_RECORD_MISC_USER;
538 break;
539 default:
540 pr_debug("invalid callchain context: "
541 "%"PRId64"\n", (s64) ip);
542
543 /*
544 * It seems the callchain is corrupted.
545 * Discard all.
546 */
547 zfree(&p);
548 goto exit;
549 }
550 continue;
551 }
552
553 addr_location__init(&tal);
554 tal.filtered = 0;
555 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
556 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
557 else
558 fprintf(f, "..... %016" PRIx64 "\n", ip);
559
560 addr_location__exit(&tal);
561 }
562exit:
563 addr_location__exit(&al);
564 fclose(f);
565
566 return p;
567}
568
569typedef int (*tracepoint_handler)(struct timechart *tchart,
570 struct evsel *evsel,
571 struct perf_sample *sample,
572 const char *backtrace);
573
574static int process_sample_event(const struct perf_tool *tool,
575 union perf_event *event,
576 struct perf_sample *sample,
577 struct evsel *evsel,
578 struct machine *machine)
579{
580 struct timechart *tchart = container_of(tool, struct timechart, tool);
581
582 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
583 if (!tchart->first_time || tchart->first_time > sample->time)
584 tchart->first_time = sample->time;
585 if (tchart->last_time < sample->time)
586 tchart->last_time = sample->time;
587 }
588
589 if (evsel->handler != NULL) {
590 tracepoint_handler f = evsel->handler;
591 return f(tchart, evsel, sample,
592 cat_backtrace(event, sample, machine));
593 }
594
595 return 0;
596}
597
598static int
599process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
600 struct evsel *evsel,
601 struct perf_sample *sample,
602 const char *backtrace __maybe_unused)
603{
604 u32 state = evsel__intval(evsel, sample, "state");
605 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
606
607 if (state == (u32)PWR_EVENT_EXIT)
608 c_state_end(tchart, cpu_id, sample->time);
609 else
610 c_state_start(cpu_id, sample->time, state);
611 return 0;
612}
613
614static int
615process_sample_cpu_frequency(struct timechart *tchart,
616 struct evsel *evsel,
617 struct perf_sample *sample,
618 const char *backtrace __maybe_unused)
619{
620 u32 state = evsel__intval(evsel, sample, "state");
621 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
622
623 p_state_change(tchart, cpu_id, sample->time, state);
624 return 0;
625}
626
627static int
628process_sample_sched_wakeup(struct timechart *tchart,
629 struct evsel *evsel,
630 struct perf_sample *sample,
631 const char *backtrace)
632{
633 u8 flags = evsel__intval(evsel, sample, "common_flags");
634 int waker = evsel__intval(evsel, sample, "common_pid");
635 int wakee = evsel__intval(evsel, sample, "pid");
636
637 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
638 return 0;
639}
640
641static int
642process_sample_sched_switch(struct timechart *tchart,
643 struct evsel *evsel,
644 struct perf_sample *sample,
645 const char *backtrace)
646{
647 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
648 int next_pid = evsel__intval(evsel, sample, "next_pid");
649 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
650
651 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
652 prev_state, backtrace);
653 return 0;
654}
655
656#ifdef SUPPORT_OLD_POWER_EVENTS
657static int
658process_sample_power_start(struct timechart *tchart __maybe_unused,
659 struct evsel *evsel,
660 struct perf_sample *sample,
661 const char *backtrace __maybe_unused)
662{
663 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
664 u64 value = evsel__intval(evsel, sample, "value");
665
666 c_state_start(cpu_id, sample->time, value);
667 return 0;
668}
669
670static int
671process_sample_power_end(struct timechart *tchart,
672 struct evsel *evsel __maybe_unused,
673 struct perf_sample *sample,
674 const char *backtrace __maybe_unused)
675{
676 c_state_end(tchart, sample->cpu, sample->time);
677 return 0;
678}
679
680static int
681process_sample_power_frequency(struct timechart *tchart,
682 struct evsel *evsel,
683 struct perf_sample *sample,
684 const char *backtrace __maybe_unused)
685{
686 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
687 u64 value = evsel__intval(evsel, sample, "value");
688
689 p_state_change(tchart, cpu_id, sample->time, value);
690 return 0;
691}
692#endif /* SUPPORT_OLD_POWER_EVENTS */
693
694/*
695 * After the last sample we need to wrap up the current C/P state
696 * and close out each CPU for these.
697 */
698static void end_sample_processing(struct timechart *tchart)
699{
700 u64 cpu;
701 struct power_event *pwr;
702
703 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
704 /* C state */
705#if 0
706 pwr = zalloc(sizeof(*pwr));
707 if (!pwr)
708 return;
709
710 pwr->state = cpus_cstate_state[cpu];
711 pwr->start_time = cpus_cstate_start_times[cpu];
712 pwr->end_time = tchart->last_time;
713 pwr->cpu = cpu;
714 pwr->type = CSTATE;
715 pwr->next = tchart->power_events;
716
717 tchart->power_events = pwr;
718#endif
719 /* P state */
720
721 pwr = p_state_end(tchart, cpu, tchart->last_time);
722 if (!pwr)
723 return;
724
725 if (!pwr->state)
726 pwr->state = tchart->min_freq;
727 }
728}
729
730static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
731 u64 start, int fd)
732{
733 struct per_pid *p = find_create_pid(tchart, pid);
734 struct per_pidcomm *c = p->current;
735 struct io_sample *sample;
736 struct io_sample *prev;
737
738 if (!c) {
739 c = create_pidcomm(p);
740 if (!c)
741 return -ENOMEM;
742 }
743
744 prev = c->io_samples;
745
746 if (prev && prev->start_time && !prev->end_time) {
747 pr_warning("Skip invalid start event: "
748 "previous event already started!\n");
749
750 /* remove previous event that has been started,
751 * we are not sure we will ever get an end for it */
752 c->io_samples = prev->next;
753 free(prev);
754 return 0;
755 }
756
757 sample = zalloc(sizeof(*sample));
758 if (!sample)
759 return -ENOMEM;
760 sample->start_time = start;
761 sample->type = type;
762 sample->fd = fd;
763 sample->next = c->io_samples;
764 c->io_samples = sample;
765
766 if (c->start_time == 0 || c->start_time > start)
767 c->start_time = start;
768
769 return 0;
770}
771
772static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
773 u64 end, long ret)
774{
775 struct per_pid *p = find_create_pid(tchart, pid);
776 struct per_pidcomm *c = p->current;
777 struct io_sample *sample, *prev;
778
779 if (!c) {
780 pr_warning("Invalid pidcomm!\n");
781 return -1;
782 }
783
784 sample = c->io_samples;
785
786 if (!sample) /* skip partially captured events */
787 return 0;
788
789 if (sample->end_time) {
790 pr_warning("Skip invalid end event: "
791 "previous event already ended!\n");
792 return 0;
793 }
794
795 if (sample->type != type) {
796 pr_warning("Skip invalid end event: invalid event type!\n");
797 return 0;
798 }
799
800 sample->end_time = end;
801 prev = sample->next;
802
803 /* we want to be able to see small and fast transfers, so make them
804 * at least min_time long, but don't overlap them */
805 if (sample->end_time - sample->start_time < tchart->min_time)
806 sample->end_time = sample->start_time + tchart->min_time;
807 if (prev && sample->start_time < prev->end_time) {
808 if (prev->err) /* try to make errors more visible */
809 sample->start_time = prev->end_time;
810 else
811 prev->end_time = sample->start_time;
812 }
813
814 if (ret < 0) {
815 sample->err = ret;
816 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
817 type == IOTYPE_TX || type == IOTYPE_RX) {
818
819 if ((u64)ret > c->max_bytes)
820 c->max_bytes = ret;
821
822 c->total_bytes += ret;
823 p->total_bytes += ret;
824 sample->bytes = ret;
825 }
826
827 /* merge two requests to make svg smaller and render-friendly */
828 if (prev &&
829 prev->type == sample->type &&
830 prev->err == sample->err &&
831 prev->fd == sample->fd &&
832 prev->end_time + tchart->merge_dist >= sample->start_time) {
833
834 sample->bytes += prev->bytes;
835 sample->merges += prev->merges + 1;
836
837 sample->start_time = prev->start_time;
838 sample->next = prev->next;
839 free(prev);
840
841 if (!sample->err && sample->bytes > c->max_bytes)
842 c->max_bytes = sample->bytes;
843 }
844
845 tchart->io_events++;
846
847 return 0;
848}
849
850static int
851process_enter_read(struct timechart *tchart,
852 struct evsel *evsel,
853 struct perf_sample *sample)
854{
855 long fd = evsel__intval(evsel, sample, "fd");
856 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
857 sample->time, fd);
858}
859
860static int
861process_exit_read(struct timechart *tchart,
862 struct evsel *evsel,
863 struct perf_sample *sample)
864{
865 long ret = evsel__intval(evsel, sample, "ret");
866 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
867 sample->time, ret);
868}
869
870static int
871process_enter_write(struct timechart *tchart,
872 struct evsel *evsel,
873 struct perf_sample *sample)
874{
875 long fd = evsel__intval(evsel, sample, "fd");
876 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
877 sample->time, fd);
878}
879
880static int
881process_exit_write(struct timechart *tchart,
882 struct evsel *evsel,
883 struct perf_sample *sample)
884{
885 long ret = evsel__intval(evsel, sample, "ret");
886 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
887 sample->time, ret);
888}
889
890static int
891process_enter_sync(struct timechart *tchart,
892 struct evsel *evsel,
893 struct perf_sample *sample)
894{
895 long fd = evsel__intval(evsel, sample, "fd");
896 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
897 sample->time, fd);
898}
899
900static int
901process_exit_sync(struct timechart *tchart,
902 struct evsel *evsel,
903 struct perf_sample *sample)
904{
905 long ret = evsel__intval(evsel, sample, "ret");
906 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
907 sample->time, ret);
908}
909
910static int
911process_enter_tx(struct timechart *tchart,
912 struct evsel *evsel,
913 struct perf_sample *sample)
914{
915 long fd = evsel__intval(evsel, sample, "fd");
916 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
917 sample->time, fd);
918}
919
920static int
921process_exit_tx(struct timechart *tchart,
922 struct evsel *evsel,
923 struct perf_sample *sample)
924{
925 long ret = evsel__intval(evsel, sample, "ret");
926 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
927 sample->time, ret);
928}
929
930static int
931process_enter_rx(struct timechart *tchart,
932 struct evsel *evsel,
933 struct perf_sample *sample)
934{
935 long fd = evsel__intval(evsel, sample, "fd");
936 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
937 sample->time, fd);
938}
939
940static int
941process_exit_rx(struct timechart *tchart,
942 struct evsel *evsel,
943 struct perf_sample *sample)
944{
945 long ret = evsel__intval(evsel, sample, "ret");
946 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
947 sample->time, ret);
948}
949
950static int
951process_enter_poll(struct timechart *tchart,
952 struct evsel *evsel,
953 struct perf_sample *sample)
954{
955 long fd = evsel__intval(evsel, sample, "fd");
956 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
957 sample->time, fd);
958}
959
960static int
961process_exit_poll(struct timechart *tchart,
962 struct evsel *evsel,
963 struct perf_sample *sample)
964{
965 long ret = evsel__intval(evsel, sample, "ret");
966 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
967 sample->time, ret);
968}
969
970/*
971 * Sort the pid datastructure
972 */
973static void sort_pids(struct timechart *tchart)
974{
975 struct per_pid *new_list, *p, *cursor, *prev;
976 /* sort by ppid first, then by pid, lowest to highest */
977
978 new_list = NULL;
979
980 while (tchart->all_data) {
981 p = tchart->all_data;
982 tchart->all_data = p->next;
983 p->next = NULL;
984
985 if (new_list == NULL) {
986 new_list = p;
987 p->next = NULL;
988 continue;
989 }
990 prev = NULL;
991 cursor = new_list;
992 while (cursor) {
993 if (cursor->ppid > p->ppid ||
994 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
995 /* must insert before */
996 if (prev) {
997 p->next = prev->next;
998 prev->next = p;
999 cursor = NULL;
1000 continue;
1001 } else {
1002 p->next = new_list;
1003 new_list = p;
1004 cursor = NULL;
1005 continue;
1006 }
1007 }
1008
1009 prev = cursor;
1010 cursor = cursor->next;
1011 if (!cursor)
1012 prev->next = p;
1013 }
1014 }
1015 tchart->all_data = new_list;
1016}
1017
1018
1019static void draw_c_p_states(struct timechart *tchart)
1020{
1021 struct power_event *pwr;
1022 pwr = tchart->power_events;
1023
1024 /*
1025 * two pass drawing so that the P state bars are on top of the C state blocks
1026 */
1027 while (pwr) {
1028 if (pwr->type == CSTATE)
1029 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 pwr = pwr->next;
1031 }
1032
1033 pwr = tchart->power_events;
1034 while (pwr) {
1035 if (pwr->type == PSTATE) {
1036 if (!pwr->state)
1037 pwr->state = tchart->min_freq;
1038 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1039 }
1040 pwr = pwr->next;
1041 }
1042}
1043
1044static void draw_wakeups(struct timechart *tchart)
1045{
1046 struct wake_event *we;
1047 struct per_pid *p;
1048 struct per_pidcomm *c;
1049
1050 we = tchart->wake_events;
1051 while (we) {
1052 int from = 0, to = 0;
1053 char *task_from = NULL, *task_to = NULL;
1054
1055 /* locate the column of the waker and wakee */
1056 p = tchart->all_data;
1057 while (p) {
1058 if (p->pid == we->waker || p->pid == we->wakee) {
1059 c = p->all;
1060 while (c) {
1061 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062 if (p->pid == we->waker && !from) {
1063 from = c->Y;
1064 task_from = strdup(c->comm);
1065 }
1066 if (p->pid == we->wakee && !to) {
1067 to = c->Y;
1068 task_to = strdup(c->comm);
1069 }
1070 }
1071 c = c->next;
1072 }
1073 c = p->all;
1074 while (c) {
1075 if (p->pid == we->waker && !from) {
1076 from = c->Y;
1077 task_from = strdup(c->comm);
1078 }
1079 if (p->pid == we->wakee && !to) {
1080 to = c->Y;
1081 task_to = strdup(c->comm);
1082 }
1083 c = c->next;
1084 }
1085 }
1086 p = p->next;
1087 }
1088
1089 if (!task_from) {
1090 task_from = malloc(40);
1091 sprintf(task_from, "[%i]", we->waker);
1092 }
1093 if (!task_to) {
1094 task_to = malloc(40);
1095 sprintf(task_to, "[%i]", we->wakee);
1096 }
1097
1098 if (we->waker == -1)
1099 svg_interrupt(we->time, to, we->backtrace);
1100 else if (from && to && abs(from - to) == 1)
1101 svg_wakeline(we->time, from, to, we->backtrace);
1102 else
1103 svg_partial_wakeline(we->time, from, task_from, to,
1104 task_to, we->backtrace);
1105 we = we->next;
1106
1107 free(task_from);
1108 free(task_to);
1109 }
1110}
1111
1112static void draw_cpu_usage(struct timechart *tchart)
1113{
1114 struct per_pid *p;
1115 struct per_pidcomm *c;
1116 struct cpu_sample *sample;
1117 p = tchart->all_data;
1118 while (p) {
1119 c = p->all;
1120 while (c) {
1121 sample = c->samples;
1122 while (sample) {
1123 if (sample->type == TYPE_RUNNING) {
1124 svg_process(sample->cpu,
1125 sample->start_time,
1126 sample->end_time,
1127 p->pid,
1128 c->comm,
1129 sample->backtrace);
1130 }
1131
1132 sample = sample->next;
1133 }
1134 c = c->next;
1135 }
1136 p = p->next;
1137 }
1138}
1139
1140static void draw_io_bars(struct timechart *tchart)
1141{
1142 const char *suf;
1143 double bytes;
1144 char comm[256];
1145 struct per_pid *p;
1146 struct per_pidcomm *c;
1147 struct io_sample *sample;
1148 int Y = 1;
1149
1150 p = tchart->all_data;
1151 while (p) {
1152 c = p->all;
1153 while (c) {
1154 if (!c->display) {
1155 c->Y = 0;
1156 c = c->next;
1157 continue;
1158 }
1159
1160 svg_box(Y, c->start_time, c->end_time, "process3");
1161 for (sample = c->io_samples; sample; sample = sample->next) {
1162 double h = (double)sample->bytes / c->max_bytes;
1163
1164 if (tchart->skip_eagain &&
1165 sample->err == -EAGAIN)
1166 continue;
1167
1168 if (sample->err)
1169 h = 1;
1170
1171 if (sample->type == IOTYPE_SYNC)
1172 svg_fbox(Y,
1173 sample->start_time,
1174 sample->end_time,
1175 1,
1176 sample->err ? "error" : "sync",
1177 sample->fd,
1178 sample->err,
1179 sample->merges);
1180 else if (sample->type == IOTYPE_POLL)
1181 svg_fbox(Y,
1182 sample->start_time,
1183 sample->end_time,
1184 1,
1185 sample->err ? "error" : "poll",
1186 sample->fd,
1187 sample->err,
1188 sample->merges);
1189 else if (sample->type == IOTYPE_READ)
1190 svg_ubox(Y,
1191 sample->start_time,
1192 sample->end_time,
1193 h,
1194 sample->err ? "error" : "disk",
1195 sample->fd,
1196 sample->err,
1197 sample->merges);
1198 else if (sample->type == IOTYPE_WRITE)
1199 svg_lbox(Y,
1200 sample->start_time,
1201 sample->end_time,
1202 h,
1203 sample->err ? "error" : "disk",
1204 sample->fd,
1205 sample->err,
1206 sample->merges);
1207 else if (sample->type == IOTYPE_RX)
1208 svg_ubox(Y,
1209 sample->start_time,
1210 sample->end_time,
1211 h,
1212 sample->err ? "error" : "net",
1213 sample->fd,
1214 sample->err,
1215 sample->merges);
1216 else if (sample->type == IOTYPE_TX)
1217 svg_lbox(Y,
1218 sample->start_time,
1219 sample->end_time,
1220 h,
1221 sample->err ? "error" : "net",
1222 sample->fd,
1223 sample->err,
1224 sample->merges);
1225 }
1226
1227 suf = "";
1228 bytes = c->total_bytes;
1229 if (bytes > 1024) {
1230 bytes = bytes / 1024;
1231 suf = "K";
1232 }
1233 if (bytes > 1024) {
1234 bytes = bytes / 1024;
1235 suf = "M";
1236 }
1237 if (bytes > 1024) {
1238 bytes = bytes / 1024;
1239 suf = "G";
1240 }
1241
1242
1243 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1244 svg_text(Y, c->start_time, comm);
1245
1246 c->Y = Y;
1247 Y++;
1248 c = c->next;
1249 }
1250 p = p->next;
1251 }
1252}
1253
1254static void draw_process_bars(struct timechart *tchart)
1255{
1256 struct per_pid *p;
1257 struct per_pidcomm *c;
1258 struct cpu_sample *sample;
1259 int Y = 0;
1260
1261 Y = 2 * tchart->numcpus + 2;
1262
1263 p = tchart->all_data;
1264 while (p) {
1265 c = p->all;
1266 while (c) {
1267 if (!c->display) {
1268 c->Y = 0;
1269 c = c->next;
1270 continue;
1271 }
1272
1273 svg_box(Y, c->start_time, c->end_time, "process");
1274 sample = c->samples;
1275 while (sample) {
1276 if (sample->type == TYPE_RUNNING)
1277 svg_running(Y, sample->cpu,
1278 sample->start_time,
1279 sample->end_time,
1280 sample->backtrace);
1281 if (sample->type == TYPE_BLOCKED)
1282 svg_blocked(Y, sample->cpu,
1283 sample->start_time,
1284 sample->end_time,
1285 sample->backtrace);
1286 if (sample->type == TYPE_WAITING)
1287 svg_waiting(Y, sample->cpu,
1288 sample->start_time,
1289 sample->end_time,
1290 sample->backtrace);
1291 sample = sample->next;
1292 }
1293
1294 if (c->comm) {
1295 char comm[256];
1296 if (c->total_time > 5000000000) /* 5 seconds */
1297 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1298 else
1299 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1300
1301 svg_text(Y, c->start_time, comm);
1302 }
1303 c->Y = Y;
1304 Y++;
1305 c = c->next;
1306 }
1307 p = p->next;
1308 }
1309}
1310
1311static void add_process_filter(const char *string)
1312{
1313 int pid = strtoull(string, NULL, 10);
1314 struct process_filter *filt = malloc(sizeof(*filt));
1315
1316 if (!filt)
1317 return;
1318
1319 filt->name = strdup(string);
1320 filt->pid = pid;
1321 filt->next = process_filter;
1322
1323 process_filter = filt;
1324}
1325
1326static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1327{
1328 struct process_filter *filt;
1329 if (!process_filter)
1330 return 1;
1331
1332 filt = process_filter;
1333 while (filt) {
1334 if (filt->pid && p->pid == filt->pid)
1335 return 1;
1336 if (strcmp(filt->name, c->comm) == 0)
1337 return 1;
1338 filt = filt->next;
1339 }
1340 return 0;
1341}
1342
1343static int determine_display_tasks_filtered(struct timechart *tchart)
1344{
1345 struct per_pid *p;
1346 struct per_pidcomm *c;
1347 int count = 0;
1348
1349 p = tchart->all_data;
1350 while (p) {
1351 p->display = 0;
1352 if (p->start_time == 1)
1353 p->start_time = tchart->first_time;
1354
1355 /* no exit marker, task kept running to the end */
1356 if (p->end_time == 0)
1357 p->end_time = tchart->last_time;
1358
1359 c = p->all;
1360
1361 while (c) {
1362 c->display = 0;
1363
1364 if (c->start_time == 1)
1365 c->start_time = tchart->first_time;
1366
1367 if (passes_filter(p, c)) {
1368 c->display = 1;
1369 p->display = 1;
1370 count++;
1371 }
1372
1373 if (c->end_time == 0)
1374 c->end_time = tchart->last_time;
1375
1376 c = c->next;
1377 }
1378 p = p->next;
1379 }
1380 return count;
1381}
1382
1383static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1384{
1385 struct per_pid *p;
1386 struct per_pidcomm *c;
1387 int count = 0;
1388
1389 p = tchart->all_data;
1390 while (p) {
1391 p->display = 0;
1392 if (p->start_time == 1)
1393 p->start_time = tchart->first_time;
1394
1395 /* no exit marker, task kept running to the end */
1396 if (p->end_time == 0)
1397 p->end_time = tchart->last_time;
1398 if (p->total_time >= threshold)
1399 p->display = 1;
1400
1401 c = p->all;
1402
1403 while (c) {
1404 c->display = 0;
1405
1406 if (c->start_time == 1)
1407 c->start_time = tchart->first_time;
1408
1409 if (c->total_time >= threshold) {
1410 c->display = 1;
1411 count++;
1412 }
1413
1414 if (c->end_time == 0)
1415 c->end_time = tchart->last_time;
1416
1417 c = c->next;
1418 }
1419 p = p->next;
1420 }
1421 return count;
1422}
1423
1424static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1425{
1426 struct per_pid *p;
1427 struct per_pidcomm *c;
1428 int count = 0;
1429
1430 p = timechart->all_data;
1431 while (p) {
1432 /* no exit marker, task kept running to the end */
1433 if (p->end_time == 0)
1434 p->end_time = timechart->last_time;
1435
1436 c = p->all;
1437
1438 while (c) {
1439 c->display = 0;
1440
1441 if (c->total_bytes >= threshold) {
1442 c->display = 1;
1443 count++;
1444 }
1445
1446 if (c->end_time == 0)
1447 c->end_time = timechart->last_time;
1448
1449 c = c->next;
1450 }
1451 p = p->next;
1452 }
1453 return count;
1454}
1455
1456#define BYTES_THRESH (1 * 1024 * 1024)
1457#define TIME_THRESH 10000000
1458
1459static void write_svg_file(struct timechart *tchart, const char *filename)
1460{
1461 u64 i;
1462 int count;
1463 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1464
1465 if (tchart->power_only)
1466 tchart->proc_num = 0;
1467
1468 /* We'd like to show at least proc_num tasks;
1469 * be less picky if we have fewer */
1470 do {
1471 if (process_filter)
1472 count = determine_display_tasks_filtered(tchart);
1473 else if (tchart->io_events)
1474 count = determine_display_io_tasks(tchart, thresh);
1475 else
1476 count = determine_display_tasks(tchart, thresh);
1477 thresh /= 10;
1478 } while (!process_filter && thresh && count < tchart->proc_num);
1479
1480 if (!tchart->proc_num)
1481 count = 0;
1482
1483 if (tchart->io_events) {
1484 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1485
1486 svg_time_grid(0.5);
1487 svg_io_legenda();
1488
1489 draw_io_bars(tchart);
1490 } else {
1491 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1492
1493 svg_time_grid(0);
1494
1495 svg_legenda();
1496
1497 for (i = 0; i < tchart->numcpus; i++)
1498 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1499
1500 draw_cpu_usage(tchart);
1501 if (tchart->proc_num)
1502 draw_process_bars(tchart);
1503 if (!tchart->tasks_only)
1504 draw_c_p_states(tchart);
1505 if (tchart->proc_num)
1506 draw_wakeups(tchart);
1507 }
1508
1509 svg_close();
1510}
1511
1512static int process_header(struct perf_file_section *section __maybe_unused,
1513 struct perf_header *ph,
1514 int feat,
1515 int fd __maybe_unused,
1516 void *data)
1517{
1518 struct timechart *tchart = data;
1519
1520 switch (feat) {
1521 case HEADER_NRCPUS:
1522 tchart->numcpus = ph->env.nr_cpus_avail;
1523 break;
1524
1525 case HEADER_CPU_TOPOLOGY:
1526 if (!tchart->topology)
1527 break;
1528
1529 if (svg_build_topology_map(&ph->env))
1530 fprintf(stderr, "problem building topology\n");
1531 break;
1532
1533 default:
1534 break;
1535 }
1536
1537 return 0;
1538}
1539
1540static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1541{
1542 const struct evsel_str_handler power_tracepoints[] = {
1543 { "power:cpu_idle", process_sample_cpu_idle },
1544 { "power:cpu_frequency", process_sample_cpu_frequency },
1545 { "sched:sched_wakeup", process_sample_sched_wakeup },
1546 { "sched:sched_switch", process_sample_sched_switch },
1547#ifdef SUPPORT_OLD_POWER_EVENTS
1548 { "power:power_start", process_sample_power_start },
1549 { "power:power_end", process_sample_power_end },
1550 { "power:power_frequency", process_sample_power_frequency },
1551#endif
1552
1553 { "syscalls:sys_enter_read", process_enter_read },
1554 { "syscalls:sys_enter_pread64", process_enter_read },
1555 { "syscalls:sys_enter_readv", process_enter_read },
1556 { "syscalls:sys_enter_preadv", process_enter_read },
1557 { "syscalls:sys_enter_write", process_enter_write },
1558 { "syscalls:sys_enter_pwrite64", process_enter_write },
1559 { "syscalls:sys_enter_writev", process_enter_write },
1560 { "syscalls:sys_enter_pwritev", process_enter_write },
1561 { "syscalls:sys_enter_sync", process_enter_sync },
1562 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1563 { "syscalls:sys_enter_fsync", process_enter_sync },
1564 { "syscalls:sys_enter_msync", process_enter_sync },
1565 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1566 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1567 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1568 { "syscalls:sys_enter_sendto", process_enter_tx },
1569 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1570 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1571 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1572 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1573 { "syscalls:sys_enter_poll", process_enter_poll },
1574 { "syscalls:sys_enter_ppoll", process_enter_poll },
1575 { "syscalls:sys_enter_pselect6", process_enter_poll },
1576 { "syscalls:sys_enter_select", process_enter_poll },
1577
1578 { "syscalls:sys_exit_read", process_exit_read },
1579 { "syscalls:sys_exit_pread64", process_exit_read },
1580 { "syscalls:sys_exit_readv", process_exit_read },
1581 { "syscalls:sys_exit_preadv", process_exit_read },
1582 { "syscalls:sys_exit_write", process_exit_write },
1583 { "syscalls:sys_exit_pwrite64", process_exit_write },
1584 { "syscalls:sys_exit_writev", process_exit_write },
1585 { "syscalls:sys_exit_pwritev", process_exit_write },
1586 { "syscalls:sys_exit_sync", process_exit_sync },
1587 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1588 { "syscalls:sys_exit_fsync", process_exit_sync },
1589 { "syscalls:sys_exit_msync", process_exit_sync },
1590 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1591 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1592 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1593 { "syscalls:sys_exit_sendto", process_exit_tx },
1594 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1595 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1596 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1597 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1598 { "syscalls:sys_exit_poll", process_exit_poll },
1599 { "syscalls:sys_exit_ppoll", process_exit_poll },
1600 { "syscalls:sys_exit_pselect6", process_exit_poll },
1601 { "syscalls:sys_exit_select", process_exit_poll },
1602 };
1603 struct perf_data data = {
1604 .path = input_name,
1605 .mode = PERF_DATA_MODE_READ,
1606 .force = tchart->force,
1607 };
1608 struct perf_session *session;
1609 int ret = -EINVAL;
1610
1611 perf_tool__init(&tchart->tool, /*ordered_events=*/true);
1612 tchart->tool.comm = process_comm_event;
1613 tchart->tool.fork = process_fork_event;
1614 tchart->tool.exit = process_exit_event;
1615 tchart->tool.sample = process_sample_event;
1616
1617 session = perf_session__new(&data, &tchart->tool);
1618 if (IS_ERR(session))
1619 return PTR_ERR(session);
1620
1621 symbol__init(&session->header.env);
1622
1623 (void)perf_header__process_sections(&session->header,
1624 perf_data__fd(session->data),
1625 tchart,
1626 process_header);
1627
1628 if (!perf_session__has_traces(session, "timechart record"))
1629 goto out_delete;
1630
1631 if (perf_session__set_tracepoints_handlers(session,
1632 power_tracepoints)) {
1633 pr_err("Initializing session tracepoint handlers failed\n");
1634 goto out_delete;
1635 }
1636
1637 ret = perf_session__process_events(session);
1638 if (ret)
1639 goto out_delete;
1640
1641 end_sample_processing(tchart);
1642
1643 sort_pids(tchart);
1644
1645 write_svg_file(tchart, output_name);
1646
1647 pr_info("Written %2.1f seconds of trace to %s.\n",
1648 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1649out_delete:
1650 perf_session__delete(session);
1651 return ret;
1652}
1653
1654static int timechart__io_record(int argc, const char **argv)
1655{
1656 unsigned int rec_argc, i;
1657 const char **rec_argv;
1658 const char **p;
1659 char *filter = NULL;
1660
1661 const char * const common_args[] = {
1662 "record", "-a", "-R", "-c", "1",
1663 };
1664 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1665
1666 const char * const disk_events[] = {
1667 "syscalls:sys_enter_read",
1668 "syscalls:sys_enter_pread64",
1669 "syscalls:sys_enter_readv",
1670 "syscalls:sys_enter_preadv",
1671 "syscalls:sys_enter_write",
1672 "syscalls:sys_enter_pwrite64",
1673 "syscalls:sys_enter_writev",
1674 "syscalls:sys_enter_pwritev",
1675 "syscalls:sys_enter_sync",
1676 "syscalls:sys_enter_sync_file_range",
1677 "syscalls:sys_enter_fsync",
1678 "syscalls:sys_enter_msync",
1679
1680 "syscalls:sys_exit_read",
1681 "syscalls:sys_exit_pread64",
1682 "syscalls:sys_exit_readv",
1683 "syscalls:sys_exit_preadv",
1684 "syscalls:sys_exit_write",
1685 "syscalls:sys_exit_pwrite64",
1686 "syscalls:sys_exit_writev",
1687 "syscalls:sys_exit_pwritev",
1688 "syscalls:sys_exit_sync",
1689 "syscalls:sys_exit_sync_file_range",
1690 "syscalls:sys_exit_fsync",
1691 "syscalls:sys_exit_msync",
1692 };
1693 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1694
1695 const char * const net_events[] = {
1696 "syscalls:sys_enter_recvfrom",
1697 "syscalls:sys_enter_recvmmsg",
1698 "syscalls:sys_enter_recvmsg",
1699 "syscalls:sys_enter_sendto",
1700 "syscalls:sys_enter_sendmsg",
1701 "syscalls:sys_enter_sendmmsg",
1702
1703 "syscalls:sys_exit_recvfrom",
1704 "syscalls:sys_exit_recvmmsg",
1705 "syscalls:sys_exit_recvmsg",
1706 "syscalls:sys_exit_sendto",
1707 "syscalls:sys_exit_sendmsg",
1708 "syscalls:sys_exit_sendmmsg",
1709 };
1710 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1711
1712 const char * const poll_events[] = {
1713 "syscalls:sys_enter_epoll_pwait",
1714 "syscalls:sys_enter_epoll_wait",
1715 "syscalls:sys_enter_poll",
1716 "syscalls:sys_enter_ppoll",
1717 "syscalls:sys_enter_pselect6",
1718 "syscalls:sys_enter_select",
1719
1720 "syscalls:sys_exit_epoll_pwait",
1721 "syscalls:sys_exit_epoll_wait",
1722 "syscalls:sys_exit_poll",
1723 "syscalls:sys_exit_ppoll",
1724 "syscalls:sys_exit_pselect6",
1725 "syscalls:sys_exit_select",
1726 };
1727 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1728
1729 rec_argc = common_args_nr +
1730 disk_events_nr * 4 +
1731 net_events_nr * 4 +
1732 poll_events_nr * 4 +
1733 argc;
1734 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1735
1736 if (rec_argv == NULL)
1737 return -ENOMEM;
1738
1739 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1740 free(rec_argv);
1741 return -ENOMEM;
1742 }
1743
1744 p = rec_argv;
1745 for (i = 0; i < common_args_nr; i++)
1746 *p++ = strdup(common_args[i]);
1747
1748 for (i = 0; i < disk_events_nr; i++) {
1749 if (!is_valid_tracepoint(disk_events[i])) {
1750 rec_argc -= 4;
1751 continue;
1752 }
1753
1754 *p++ = "-e";
1755 *p++ = strdup(disk_events[i]);
1756 *p++ = "--filter";
1757 *p++ = filter;
1758 }
1759 for (i = 0; i < net_events_nr; i++) {
1760 if (!is_valid_tracepoint(net_events[i])) {
1761 rec_argc -= 4;
1762 continue;
1763 }
1764
1765 *p++ = "-e";
1766 *p++ = strdup(net_events[i]);
1767 *p++ = "--filter";
1768 *p++ = filter;
1769 }
1770 for (i = 0; i < poll_events_nr; i++) {
1771 if (!is_valid_tracepoint(poll_events[i])) {
1772 rec_argc -= 4;
1773 continue;
1774 }
1775
1776 *p++ = "-e";
1777 *p++ = strdup(poll_events[i]);
1778 *p++ = "--filter";
1779 *p++ = filter;
1780 }
1781
1782 for (i = 0; i < (unsigned int)argc; i++)
1783 *p++ = argv[i];
1784
1785 return cmd_record(rec_argc, rec_argv);
1786}
1787
1788
1789static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1790{
1791 unsigned int rec_argc, i, j;
1792 const char **rec_argv;
1793 const char **p;
1794 unsigned int record_elems;
1795
1796 const char * const common_args[] = {
1797 "record", "-a", "-R", "-c", "1",
1798 };
1799 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1800
1801 const char * const backtrace_args[] = {
1802 "-g",
1803 };
1804 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1805
1806 const char * const power_args[] = {
1807 "-e", "power:cpu_frequency",
1808 "-e", "power:cpu_idle",
1809 };
1810 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1811
1812 const char * const old_power_args[] = {
1813#ifdef SUPPORT_OLD_POWER_EVENTS
1814 "-e", "power:power_start",
1815 "-e", "power:power_end",
1816 "-e", "power:power_frequency",
1817#endif
1818 };
1819 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1820
1821 const char * const tasks_args[] = {
1822 "-e", "sched:sched_wakeup",
1823 "-e", "sched:sched_switch",
1824 };
1825 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1826
1827#ifdef SUPPORT_OLD_POWER_EVENTS
1828 if (!is_valid_tracepoint("power:cpu_idle") &&
1829 is_valid_tracepoint("power:power_start")) {
1830 use_old_power_events = 1;
1831 power_args_nr = 0;
1832 } else {
1833 old_power_args_nr = 0;
1834 }
1835#endif
1836
1837 if (tchart->power_only)
1838 tasks_args_nr = 0;
1839
1840 if (tchart->tasks_only) {
1841 power_args_nr = 0;
1842 old_power_args_nr = 0;
1843 }
1844
1845 if (!tchart->with_backtrace)
1846 backtrace_args_no = 0;
1847
1848 record_elems = common_args_nr + tasks_args_nr +
1849 power_args_nr + old_power_args_nr + backtrace_args_no;
1850
1851 rec_argc = record_elems + argc;
1852 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1853
1854 if (rec_argv == NULL)
1855 return -ENOMEM;
1856
1857 p = rec_argv;
1858 for (i = 0; i < common_args_nr; i++)
1859 *p++ = strdup(common_args[i]);
1860
1861 for (i = 0; i < backtrace_args_no; i++)
1862 *p++ = strdup(backtrace_args[i]);
1863
1864 for (i = 0; i < tasks_args_nr; i++)
1865 *p++ = strdup(tasks_args[i]);
1866
1867 for (i = 0; i < power_args_nr; i++)
1868 *p++ = strdup(power_args[i]);
1869
1870 for (i = 0; i < old_power_args_nr; i++)
1871 *p++ = strdup(old_power_args[i]);
1872
1873 for (j = 0; j < (unsigned int)argc; j++)
1874 *p++ = argv[j];
1875
1876 return cmd_record(rec_argc, rec_argv);
1877}
1878
1879static int
1880parse_process(const struct option *opt __maybe_unused, const char *arg,
1881 int __maybe_unused unset)
1882{
1883 if (arg)
1884 add_process_filter(arg);
1885 return 0;
1886}
1887
1888static int
1889parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1890 int __maybe_unused unset)
1891{
1892 unsigned long duration = strtoul(arg, NULL, 0);
1893
1894 if (svg_highlight || svg_highlight_name)
1895 return -1;
1896
1897 if (duration)
1898 svg_highlight = duration;
1899 else
1900 svg_highlight_name = strdup(arg);
1901
1902 return 0;
1903}
1904
1905static int
1906parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1907{
1908 char unit = 'n';
1909 u64 *value = opt->value;
1910
1911 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1912 switch (unit) {
1913 case 'm':
1914 *value *= NSEC_PER_MSEC;
1915 break;
1916 case 'u':
1917 *value *= NSEC_PER_USEC;
1918 break;
1919 case 'n':
1920 break;
1921 default:
1922 return -1;
1923 }
1924 }
1925
1926 return 0;
1927}
1928
1929int cmd_timechart(int argc, const char **argv)
1930{
1931 struct timechart tchart = {
1932 .proc_num = 15,
1933 .min_time = NSEC_PER_MSEC,
1934 .merge_dist = 1000,
1935 };
1936 const char *output_name = "output.svg";
1937 const struct option timechart_common_options[] = {
1938 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1939 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1940 OPT_END()
1941 };
1942 const struct option timechart_options[] = {
1943 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1944 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1945 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1946 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1947 "highlight tasks. Pass duration in ns or process name.",
1948 parse_highlight),
1949 OPT_CALLBACK('p', "process", NULL, "process",
1950 "process selector. Pass a pid or process name.",
1951 parse_process),
1952 OPT_CALLBACK(0, "symfs", NULL, "directory",
1953 "Look for files with symbols relative to this directory",
1954 symbol__config_symfs),
1955 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1956 "min. number of tasks to print"),
1957 OPT_BOOLEAN('t', "topology", &tchart.topology,
1958 "sort CPUs according to topology"),
1959 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1960 "skip EAGAIN errors"),
1961 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1962 "all IO faster than min-time will visually appear longer",
1963 parse_time),
1964 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1965 "merge events that are merge-dist us apart",
1966 parse_time),
1967 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1968 OPT_PARENT(timechart_common_options),
1969 };
1970 const char * const timechart_subcommands[] = { "record", NULL };
1971 const char *timechart_usage[] = {
1972 "perf timechart [<options>] {record}",
1973 NULL
1974 };
1975 const struct option timechart_record_options[] = {
1976 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1977 "record only IO data"),
1978 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1979 OPT_PARENT(timechart_common_options),
1980 };
1981 const char * const timechart_record_usage[] = {
1982 "perf timechart record [<options>]",
1983 NULL
1984 };
1985 int ret;
1986
1987 cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1988 if (!cpus_cstate_start_times)
1989 return -ENOMEM;
1990 cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1991 if (!cpus_cstate_state) {
1992 ret = -ENOMEM;
1993 goto out;
1994 }
1995 cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1996 if (!cpus_pstate_start_times) {
1997 ret = -ENOMEM;
1998 goto out;
1999 }
2000 cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2001 if (!cpus_pstate_state) {
2002 ret = -ENOMEM;
2003 goto out;
2004 }
2005
2006 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2007 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2008
2009 if (tchart.power_only && tchart.tasks_only) {
2010 pr_err("-P and -T options cannot be used at the same time.\n");
2011 ret = -1;
2012 goto out;
2013 }
2014
2015 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2016 argc = parse_options(argc, argv, timechart_record_options,
2017 timechart_record_usage,
2018 PARSE_OPT_STOP_AT_NON_OPTION);
2019
2020 if (tchart.power_only && tchart.tasks_only) {
2021 pr_err("-P and -T options cannot be used at the same time.\n");
2022 ret = -1;
2023 goto out;
2024 }
2025
2026 if (tchart.io_only)
2027 ret = timechart__io_record(argc, argv);
2028 else
2029 ret = timechart__record(&tchart, argc, argv);
2030 goto out;
2031 } else if (argc)
2032 usage_with_options(timechart_usage, timechart_options);
2033
2034 setup_pager();
2035
2036 ret = __cmd_timechart(&tchart, output_name);
2037out:
2038 zfree(&cpus_cstate_start_times);
2039 zfree(&cpus_cstate_state);
2040 zfree(&cpus_pstate_start_times);
2041 zfree(&cpus_pstate_state);
2042 return ret;
2043}