Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 La Monte H.P. Yarroll
   7 *
   8 * This file is part of the SCTP kernel implementation
   9 *
  10 * This module provides the abstraction for an SCTP association.
  11 *
  12 * This SCTP implementation is free software;
  13 * you can redistribute it and/or modify it under the terms of
  14 * the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2, or (at your option)
  16 * any later version.
  17 *
  18 * This SCTP implementation is distributed in the hope that it
  19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  20 *                 ************************
  21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  22 * See the GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with GNU CC; see the file COPYING.  If not, write to
  26 * the Free Software Foundation, 59 Temple Place - Suite 330,
  27 * Boston, MA 02111-1307, USA.
  28 *
  29 * Please send any bug reports or fixes you make to the
  30 * email address(es):
  31 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  32 *
  33 * Or submit a bug report through the following website:
  34 *    http://www.sf.net/projects/lksctp
  35 *
  36 * Written or modified by:
  37 *    La Monte H.P. Yarroll <piggy@acm.org>
  38 *    Karl Knutson          <karl@athena.chicago.il.us>
  39 *    Jon Grimm             <jgrimm@us.ibm.com>
  40 *    Xingang Guo           <xingang.guo@intel.com>
  41 *    Hui Huang             <hui.huang@nokia.com>
  42 *    Sridhar Samudrala	    <sri@us.ibm.com>
  43 *    Daisy Chang	    <daisyc@us.ibm.com>
  44 *    Ryan Layer	    <rmlayer@us.ibm.com>
  45 *    Kevin Gao             <kevin.gao@intel.com>
  46 *
  47 * Any bugs reported given to us we will try to fix... any fixes shared will
  48 * be incorporated into the next SCTP release.
  49 */
  50
  51#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  52
  53#include <linux/types.h>
  54#include <linux/fcntl.h>
  55#include <linux/poll.h>
  56#include <linux/init.h>
  57
  58#include <linux/slab.h>
  59#include <linux/in.h>
  60#include <net/ipv6.h>
  61#include <net/sctp/sctp.h>
  62#include <net/sctp/sm.h>
  63
  64/* Forward declarations for internal functions. */
 
  65static void sctp_assoc_bh_rcv(struct work_struct *work);
  66static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
  67static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
  68
  69/* Keep track of the new idr low so that we don't re-use association id
  70 * numbers too fast.  It is protected by they idr spin lock is in the
  71 * range of 1 - INT_MAX.
  72 */
  73static u32 idr_low = 1;
  74
  75
  76/* 1st Level Abstractions. */
  77
  78/* Initialize a new association from provided memory. */
  79static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
  80					  const struct sctp_endpoint *ep,
  81					  const struct sock *sk,
  82					  sctp_scope_t scope,
  83					  gfp_t gfp)
  84{
  85	struct sctp_sock *sp;
 
  86	int i;
  87	sctp_paramhdr_t *p;
  88	int err;
  89
  90	/* Retrieve the SCTP per socket area.  */
  91	sp = sctp_sk((struct sock *)sk);
  92
  93	/* Discarding const is appropriate here.  */
  94	asoc->ep = (struct sctp_endpoint *)ep;
  95	sctp_endpoint_hold(asoc->ep);
  96
  97	/* Hold the sock.  */
  98	asoc->base.sk = (struct sock *)sk;
 
 
 
  99	sock_hold(asoc->base.sk);
 100
 101	/* Initialize the common base substructure.  */
 102	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
 103
 104	/* Initialize the object handling fields.  */
 105	atomic_set(&asoc->base.refcnt, 1);
 106	asoc->base.dead = 0;
 107	asoc->base.malloced = 0;
 108
 109	/* Initialize the bind addr area.  */
 110	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
 111
 112	asoc->state = SCTP_STATE_CLOSED;
 113
 114	/* Set these values from the socket values, a conversion between
 115	 * millsecons to seconds/microseconds must also be done.
 116	 */
 117	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
 118	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
 119					* 1000;
 120	asoc->frag_point = 0;
 121	asoc->user_frag = sp->user_frag;
 122
 123	/* Set the association max_retrans and RTO values from the
 124	 * socket values.
 125	 */
 126	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
 
 
 
 
 127	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
 128	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
 129	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
 130
 131	asoc->overall_error_count = 0;
 132
 133	/* Initialize the association's heartbeat interval based on the
 134	 * sock configured value.
 135	 */
 136	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
 
 
 
 137
 138	/* Initialize path max retrans value. */
 139	asoc->pathmaxrxt = sp->pathmaxrxt;
 140
 141	/* Initialize default path MTU. */
 142	asoc->pathmtu = sp->pathmtu;
 143
 144	/* Set association default SACK delay */
 145	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
 146	asoc->sackfreq = sp->sackfreq;
 147
 148	/* Set the association default flags controlling
 149	 * Heartbeat, SACK delay, and Path MTU Discovery.
 150	 */
 151	asoc->param_flags = sp->param_flags;
 152
 153	/* Initialize the maximum mumber of new data packets that can be sent
 154	 * in a burst.
 155	 */
 156	asoc->max_burst = sp->max_burst;
 157
 
 
 158	/* initialize association timers */
 159	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
 160	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
 161	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
 162	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
 163	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
 164	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
 165
 166	/* sctpimpguide Section 2.12.2
 167	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
 168	 * recommended value of 5 times 'RTO.Max'.
 169	 */
 170	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
 171		= 5 * asoc->rto_max;
 172
 173	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
 174	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
 175	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
 176		min_t(unsigned long, sp->autoclose, sctp_max_autoclose) * HZ;
 177
 178	/* Initializes the timers */
 179	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
 180		setup_timer(&asoc->timers[i], sctp_timer_events[i],
 181				(unsigned long)asoc);
 182
 183	/* Pull default initialization values from the sock options.
 184	 * Note: This assumes that the values have already been
 185	 * validated in the sock.
 186	 */
 187	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
 188	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
 189	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
 190
 191	asoc->max_init_timeo =
 192		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
 193
 194	/* Allocate storage for the ssnmap after the inbound and outbound
 195	 * streams have been negotiated during Init.
 196	 */
 197	asoc->ssnmap = NULL;
 198
 199	/* Set the local window size for receive.
 200	 * This is also the rcvbuf space per association.
 201	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
 202	 * 1500 bytes in one SCTP packet.
 203	 */
 204	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
 205		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
 206	else
 207		asoc->rwnd = sk->sk_rcvbuf/2;
 208
 209	asoc->a_rwnd = asoc->rwnd;
 210
 211	asoc->rwnd_over = 0;
 212	asoc->rwnd_press = 0;
 213
 214	/* Use my own max window until I learn something better.  */
 215	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
 216
 217	/* Set the sndbuf size for transmit.  */
 218	asoc->sndbuf_used = 0;
 219
 220	/* Initialize the receive memory counter */
 221	atomic_set(&asoc->rmem_alloc, 0);
 222
 223	init_waitqueue_head(&asoc->wait);
 224
 225	asoc->c.my_vtag = sctp_generate_tag(ep);
 226	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
 227	asoc->c.peer_vtag = 0;
 228	asoc->c.my_ttag   = 0;
 229	asoc->c.peer_ttag = 0;
 230	asoc->c.my_port = ep->base.bind_addr.port;
 231
 232	asoc->c.initial_tsn = sctp_generate_tsn(ep);
 233
 234	asoc->next_tsn = asoc->c.initial_tsn;
 235
 236	asoc->ctsn_ack_point = asoc->next_tsn - 1;
 237	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
 238	asoc->highest_sacked = asoc->ctsn_ack_point;
 239	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
 240	asoc->unack_data = 0;
 241
 242	/* ADDIP Section 4.1 Asconf Chunk Procedures
 243	 *
 244	 * When an endpoint has an ASCONF signaled change to be sent to the
 245	 * remote endpoint it should do the following:
 246	 * ...
 247	 * A2) a serial number should be assigned to the chunk. The serial
 248	 * number SHOULD be a monotonically increasing number. The serial
 249	 * numbers SHOULD be initialized at the start of the
 250	 * association to the same value as the initial TSN.
 251	 */
 252	asoc->addip_serial = asoc->c.initial_tsn;
 
 253
 254	INIT_LIST_HEAD(&asoc->addip_chunk_list);
 255	INIT_LIST_HEAD(&asoc->asconf_ack_list);
 256
 257	/* Make an empty list of remote transport addresses.  */
 258	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
 259	asoc->peer.transport_count = 0;
 260
 261	/* RFC 2960 5.1 Normal Establishment of an Association
 262	 *
 263	 * After the reception of the first data chunk in an
 264	 * association the endpoint must immediately respond with a
 265	 * sack to acknowledge the data chunk.  Subsequent
 266	 * acknowledgements should be done as described in Section
 267	 * 6.2.
 268	 *
 269	 * [We implement this by telling a new association that it
 270	 * already received one packet.]
 271	 */
 272	asoc->peer.sack_needed = 1;
 273	asoc->peer.sack_cnt = 0;
 274	asoc->peer.sack_generation = 1;
 275
 276	/* Assume that the peer will tell us if he recognizes ASCONF
 277	 * as part of INIT exchange.
 278	 * The sctp_addip_noauth option is there for backward compatibilty
 279	 * and will revert old behavior.
 280	 */
 281	asoc->peer.asconf_capable = 0;
 282	if (sctp_addip_noauth)
 283		asoc->peer.asconf_capable = 1;
 284	asoc->asconf_addr_del_pending = NULL;
 285	asoc->src_out_of_asoc_ok = 0;
 286	asoc->new_transport = NULL;
 287
 288	/* Create an input queue.  */
 289	sctp_inq_init(&asoc->base.inqueue);
 290	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
 291
 292	/* Create an output queue.  */
 293	sctp_outq_init(asoc, &asoc->outqueue);
 294
 295	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
 296		goto fail_init;
 297
 298	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
 299
 300	asoc->need_ecne = 0;
 
 301
 302	asoc->assoc_id = 0;
 
 
 303
 304	/* Assume that peer would support both address types unless we are
 305	 * told otherwise.
 306	 */
 307	asoc->peer.ipv4_address = 1;
 308	if (asoc->base.sk->sk_family == PF_INET6)
 309		asoc->peer.ipv6_address = 1;
 310	INIT_LIST_HEAD(&asoc->asocs);
 311
 312	asoc->autoclose = sp->autoclose;
 313
 314	asoc->default_stream = sp->default_stream;
 315	asoc->default_ppid = sp->default_ppid;
 316	asoc->default_flags = sp->default_flags;
 317	asoc->default_context = sp->default_context;
 318	asoc->default_timetolive = sp->default_timetolive;
 319	asoc->default_rcv_context = sp->default_rcv_context;
 320
 321	/* AUTH related initializations */
 322	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
 323	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
 324	if (err)
 325		goto fail_init;
 326
 327	asoc->active_key_id = ep->active_key_id;
 328	asoc->asoc_shared_key = NULL;
 329
 330	asoc->default_hmac_id = 0;
 331	/* Save the hmacs and chunks list into this association */
 332	if (ep->auth_hmacs_list)
 333		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
 334			ntohs(ep->auth_hmacs_list->param_hdr.length));
 335	if (ep->auth_chunk_list)
 336		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
 337			ntohs(ep->auth_chunk_list->param_hdr.length));
 338
 339	/* Get the AUTH random number for this association */
 340	p = (sctp_paramhdr_t *)asoc->c.auth_random;
 341	p->type = SCTP_PARAM_RANDOM;
 342	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
 343	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
 344
 345	return asoc;
 346
 347fail_init:
 348	sctp_endpoint_put(asoc->ep);
 349	sock_put(asoc->base.sk);
 
 350	return NULL;
 351}
 352
 353/* Allocate and initialize a new association */
 354struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
 355					 const struct sock *sk,
 356					 sctp_scope_t scope,
 357					 gfp_t gfp)
 358{
 359	struct sctp_association *asoc;
 360
 361	asoc = t_new(struct sctp_association, gfp);
 362	if (!asoc)
 363		goto fail;
 364
 365	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
 366		goto fail_init;
 367
 368	asoc->base.malloced = 1;
 369	SCTP_DBG_OBJCNT_INC(assoc);
 370	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
 
 371
 372	return asoc;
 373
 374fail_init:
 375	kfree(asoc);
 376fail:
 377	return NULL;
 378}
 379
 380/* Free this association if possible.  There may still be users, so
 381 * the actual deallocation may be delayed.
 382 */
 383void sctp_association_free(struct sctp_association *asoc)
 384{
 385	struct sock *sk = asoc->base.sk;
 386	struct sctp_transport *transport;
 387	struct list_head *pos, *temp;
 388	int i;
 389
 390	/* Only real associations count against the endpoint, so
 391	 * don't bother for if this is a temporary association.
 392	 */
 393	if (!asoc->temp) {
 394		list_del(&asoc->asocs);
 395
 396		/* Decrement the backlog value for a TCP-style listening
 397		 * socket.
 398		 */
 399		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
 400			sk->sk_ack_backlog--;
 401	}
 402
 403	/* Mark as dead, so other users can know this structure is
 404	 * going away.
 405	 */
 406	asoc->base.dead = 1;
 407
 408	/* Dispose of any data lying around in the outqueue. */
 409	sctp_outq_free(&asoc->outqueue);
 410
 411	/* Dispose of any pending messages for the upper layer. */
 412	sctp_ulpq_free(&asoc->ulpq);
 413
 414	/* Dispose of any pending chunks on the inqueue. */
 415	sctp_inq_free(&asoc->base.inqueue);
 416
 417	sctp_tsnmap_free(&asoc->peer.tsn_map);
 418
 419	/* Free ssnmap storage. */
 420	sctp_ssnmap_free(asoc->ssnmap);
 
 
 
 421
 422	/* Clean up the bound address list. */
 423	sctp_bind_addr_free(&asoc->base.bind_addr);
 424
 425	/* Do we need to go through all of our timers and
 426	 * delete them?   To be safe we will try to delete all, but we
 427	 * should be able to go through and make a guess based
 428	 * on our state.
 429	 */
 430	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
 431		if (timer_pending(&asoc->timers[i]) &&
 432		    del_timer(&asoc->timers[i]))
 433			sctp_association_put(asoc);
 434	}
 435
 436	/* Free peer's cached cookie. */
 437	kfree(asoc->peer.cookie);
 438	kfree(asoc->peer.peer_random);
 439	kfree(asoc->peer.peer_chunks);
 440	kfree(asoc->peer.peer_hmacs);
 441
 442	/* Release the transport structures. */
 443	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
 444		transport = list_entry(pos, struct sctp_transport, transports);
 445		list_del(pos);
 
 446		sctp_transport_free(transport);
 447	}
 448
 449	asoc->peer.transport_count = 0;
 450
 451	sctp_asconf_queue_teardown(asoc);
 452
 453	/* Free pending address space being deleted */
 454	if (asoc->asconf_addr_del_pending != NULL)
 455		kfree(asoc->asconf_addr_del_pending);
 456
 457	/* AUTH - Free the endpoint shared keys */
 458	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 459
 460	/* AUTH - Free the association shared key */
 461	sctp_auth_key_put(asoc->asoc_shared_key);
 462
 463	sctp_association_put(asoc);
 464}
 465
 466/* Cleanup and free up an association. */
 467static void sctp_association_destroy(struct sctp_association *asoc)
 468{
 469	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
 
 
 
 470
 471	sctp_endpoint_put(asoc->ep);
 472	sock_put(asoc->base.sk);
 473
 474	if (asoc->assoc_id != 0) {
 475		spin_lock_bh(&sctp_assocs_id_lock);
 476		idr_remove(&sctp_assocs_id, asoc->assoc_id);
 477		spin_unlock_bh(&sctp_assocs_id_lock);
 478	}
 479
 480	WARN_ON(atomic_read(&asoc->rmem_alloc));
 481
 482	if (asoc->base.malloced) {
 483		kfree(asoc);
 484		SCTP_DBG_OBJCNT_DEC(assoc);
 485	}
 486}
 487
 488/* Change the primary destination address for the peer. */
 489void sctp_assoc_set_primary(struct sctp_association *asoc,
 490			    struct sctp_transport *transport)
 491{
 492	int changeover = 0;
 493
 494	/* it's a changeover only if we already have a primary path
 495	 * that we are changing
 496	 */
 497	if (asoc->peer.primary_path != NULL &&
 498	    asoc->peer.primary_path != transport)
 499		changeover = 1 ;
 500
 501	asoc->peer.primary_path = transport;
 
 
 502
 503	/* Set a default msg_name for events. */
 504	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
 505	       sizeof(union sctp_addr));
 506
 507	/* If the primary path is changing, assume that the
 508	 * user wants to use this new path.
 509	 */
 510	if ((transport->state == SCTP_ACTIVE) ||
 511	    (transport->state == SCTP_UNKNOWN))
 512		asoc->peer.active_path = transport;
 513
 514	/*
 515	 * SFR-CACC algorithm:
 516	 * Upon the receipt of a request to change the primary
 517	 * destination address, on the data structure for the new
 518	 * primary destination, the sender MUST do the following:
 519	 *
 520	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
 521	 * to this destination address earlier. The sender MUST set
 522	 * CYCLING_CHANGEOVER to indicate that this switch is a
 523	 * double switch to the same destination address.
 524	 *
 525	 * Really, only bother is we have data queued or outstanding on
 526	 * the association.
 527	 */
 528	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
 529		return;
 530
 531	if (transport->cacc.changeover_active)
 532		transport->cacc.cycling_changeover = changeover;
 533
 534	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
 535	 * a changeover has occurred.
 536	 */
 537	transport->cacc.changeover_active = changeover;
 538
 539	/* 3) The sender MUST store the next TSN to be sent in
 540	 * next_tsn_at_change.
 541	 */
 542	transport->cacc.next_tsn_at_change = asoc->next_tsn;
 543}
 544
 545/* Remove a transport from an association.  */
 546void sctp_assoc_rm_peer(struct sctp_association *asoc,
 547			struct sctp_transport *peer)
 548{
 549	struct list_head	*pos;
 550	struct sctp_transport	*transport;
 
 551
 552	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
 553				 " port: %d\n",
 554				 asoc,
 555				 (&peer->ipaddr),
 556				 ntohs(peer->ipaddr.v4.sin_port));
 557
 558	/* If we are to remove the current retran_path, update it
 559	 * to the next peer before removing this peer from the list.
 560	 */
 561	if (asoc->peer.retran_path == peer)
 562		sctp_assoc_update_retran_path(asoc);
 563
 564	/* Remove this peer from the list. */
 565	list_del(&peer->transports);
 
 
 566
 567	/* Get the first transport of asoc. */
 568	pos = asoc->peer.transport_addr_list.next;
 569	transport = list_entry(pos, struct sctp_transport, transports);
 570
 571	/* Update any entries that match the peer to be deleted. */
 572	if (asoc->peer.primary_path == peer)
 573		sctp_assoc_set_primary(asoc, transport);
 574	if (asoc->peer.active_path == peer)
 575		asoc->peer.active_path = transport;
 576	if (asoc->peer.retran_path == peer)
 577		asoc->peer.retran_path = transport;
 578	if (asoc->peer.last_data_from == peer)
 579		asoc->peer.last_data_from = transport;
 580
 
 
 
 
 
 
 581	/* If we remove the transport an INIT was last sent to, set it to
 582	 * NULL. Combined with the update of the retran path above, this
 583	 * will cause the next INIT to be sent to the next available
 584	 * transport, maintaining the cycle.
 585	 */
 586	if (asoc->init_last_sent_to == peer)
 587		asoc->init_last_sent_to = NULL;
 588
 589	/* If we remove the transport an SHUTDOWN was last sent to, set it
 590	 * to NULL. Combined with the update of the retran path above, this
 591	 * will cause the next SHUTDOWN to be sent to the next available
 592	 * transport, maintaining the cycle.
 593	 */
 594	if (asoc->shutdown_last_sent_to == peer)
 595		asoc->shutdown_last_sent_to = NULL;
 596
 597	/* If we remove the transport an ASCONF was last sent to, set it to
 598	 * NULL.
 599	 */
 600	if (asoc->addip_last_asconf &&
 601	    asoc->addip_last_asconf->transport == peer)
 602		asoc->addip_last_asconf->transport = NULL;
 603
 604	/* If we have something on the transmitted list, we have to
 605	 * save it off.  The best place is the active path.
 606	 */
 607	if (!list_empty(&peer->transmitted)) {
 608		struct sctp_transport *active = asoc->peer.active_path;
 609		struct sctp_chunk *ch;
 610
 611		/* Reset the transport of each chunk on this list */
 612		list_for_each_entry(ch, &peer->transmitted,
 613					transmitted_list) {
 614			ch->transport = NULL;
 615			ch->rtt_in_progress = 0;
 616		}
 617
 618		list_splice_tail_init(&peer->transmitted,
 619					&active->transmitted);
 620
 621		/* Start a T3 timer here in case it wasn't running so
 622		 * that these migrated packets have a chance to get
 623		 * retrnasmitted.
 624		 */
 625		if (!timer_pending(&active->T3_rtx_timer))
 626			if (!mod_timer(&active->T3_rtx_timer,
 627					jiffies + active->rto))
 628				sctp_transport_hold(active);
 629	}
 630
 
 
 
 
 631	asoc->peer.transport_count--;
 632
 
 633	sctp_transport_free(peer);
 634}
 635
 636/* Add a transport address to an association.  */
 637struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
 638					   const union sctp_addr *addr,
 639					   const gfp_t gfp,
 640					   const int peer_state)
 641{
 642	struct sctp_transport *peer;
 643	struct sctp_sock *sp;
 644	unsigned short port;
 645
 646	sp = sctp_sk(asoc->base.sk);
 647
 648	/* AF_INET and AF_INET6 share common port field. */
 649	port = ntohs(addr->v4.sin_port);
 650
 651	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
 652				 " port: %d state:%d\n",
 653				 asoc,
 654				 addr,
 655				 port,
 656				 peer_state);
 657
 658	/* Set the port if it has not been set yet.  */
 659	if (0 == asoc->peer.port)
 660		asoc->peer.port = port;
 661
 662	/* Check to see if this is a duplicate. */
 663	peer = sctp_assoc_lookup_paddr(asoc, addr);
 664	if (peer) {
 665		/* An UNKNOWN state is only set on transports added by
 666		 * user in sctp_connectx() call.  Such transports should be
 667		 * considered CONFIRMED per RFC 4960, Section 5.4.
 668		 */
 669		if (peer->state == SCTP_UNKNOWN) {
 670			peer->state = SCTP_ACTIVE;
 671		}
 672		return peer;
 673	}
 674
 675	peer = sctp_transport_new(addr, gfp);
 676	if (!peer)
 677		return NULL;
 678
 679	sctp_transport_set_owner(peer, asoc);
 680
 681	/* Initialize the peer's heartbeat interval based on the
 682	 * association configured value.
 683	 */
 684	peer->hbinterval = asoc->hbinterval;
 
 
 
 685
 686	/* Set the path max_retrans.  */
 687	peer->pathmaxrxt = asoc->pathmaxrxt;
 688
 
 
 
 
 
 689	/* Initialize the peer's SACK delay timeout based on the
 690	 * association configured value.
 691	 */
 692	peer->sackdelay = asoc->sackdelay;
 693	peer->sackfreq = asoc->sackfreq;
 694
 
 
 
 
 
 
 
 
 
 
 
 
 695	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
 696	 * based on association setting.
 697	 */
 698	peer->param_flags = asoc->param_flags;
 699
 700	sctp_transport_route(peer, NULL, sp);
 701
 702	/* Initialize the pmtu of the transport. */
 703	if (peer->param_flags & SPP_PMTUD_DISABLE) {
 704		if (asoc->pathmtu)
 705			peer->pathmtu = asoc->pathmtu;
 706		else
 707			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
 708	}
 709
 710	/* If this is the first transport addr on this association,
 711	 * initialize the association PMTU to the peer's PMTU.
 712	 * If not and the current association PMTU is higher than the new
 713	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
 714	 */
 715	if (asoc->pathmtu)
 716		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
 717	else
 718		asoc->pathmtu = peer->pathmtu;
 719
 720	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
 721			  "%d\n", asoc, asoc->pathmtu);
 722	peer->pmtu_pending = 0;
 723
 724	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
 725
 726	/* The asoc->peer.port might not be meaningful yet, but
 727	 * initialize the packet structure anyway.
 728	 */
 729	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
 730			 asoc->peer.port);
 731
 732	/* 7.2.1 Slow-Start
 733	 *
 734	 * o The initial cwnd before DATA transmission or after a sufficiently
 735	 *   long idle period MUST be set to
 736	 *      min(4*MTU, max(2*MTU, 4380 bytes))
 737	 *
 738	 * o The initial value of ssthresh MAY be arbitrarily high
 739	 *   (for example, implementations MAY use the size of the
 740	 *   receiver advertised window).
 741	 */
 742	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
 743
 744	/* At this point, we may not have the receiver's advertised window,
 745	 * so initialize ssthresh to the default value and it will be set
 746	 * later when we process the INIT.
 747	 */
 748	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
 749
 750	peer->partial_bytes_acked = 0;
 751	peer->flight_size = 0;
 752	peer->burst_limited = 0;
 753
 754	/* Set the transport's RTO.initial value */
 755	peer->rto = asoc->rto_initial;
 
 756
 757	/* Set the peer's active state. */
 758	peer->state = peer_state;
 759
 
 
 
 
 
 
 
 
 760	/* Attach the remote transport to our asoc.  */
 761	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
 762	asoc->peer.transport_count++;
 763
 
 
 764	/* If we do not yet have a primary path, set one.  */
 765	if (!asoc->peer.primary_path) {
 766		sctp_assoc_set_primary(asoc, peer);
 767		asoc->peer.retran_path = peer;
 768	}
 769
 770	if (asoc->peer.active_path == asoc->peer.retran_path &&
 771	    peer->state != SCTP_UNCONFIRMED) {
 772		asoc->peer.retran_path = peer;
 773	}
 774
 775	return peer;
 776}
 777
 778/* Delete a transport address from an association.  */
 779void sctp_assoc_del_peer(struct sctp_association *asoc,
 780			 const union sctp_addr *addr)
 781{
 782	struct list_head	*pos;
 783	struct list_head	*temp;
 784	struct sctp_transport	*transport;
 785
 786	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
 787		transport = list_entry(pos, struct sctp_transport, transports);
 788		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
 789			/* Do book keeping for removing the peer and free it. */
 790			sctp_assoc_rm_peer(asoc, transport);
 791			break;
 792		}
 793	}
 794}
 795
 796/* Lookup a transport by address. */
 797struct sctp_transport *sctp_assoc_lookup_paddr(
 798					const struct sctp_association *asoc,
 799					const union sctp_addr *address)
 800{
 801	struct sctp_transport *t;
 802
 803	/* Cycle through all transports searching for a peer address. */
 804
 805	list_for_each_entry(t, &asoc->peer.transport_addr_list,
 806			transports) {
 807		if (sctp_cmp_addr_exact(address, &t->ipaddr))
 808			return t;
 809	}
 810
 811	return NULL;
 812}
 813
 814/* Remove all transports except a give one */
 815void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
 816				     struct sctp_transport *primary)
 817{
 818	struct sctp_transport	*temp;
 819	struct sctp_transport	*t;
 820
 821	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
 822				 transports) {
 823		/* if the current transport is not the primary one, delete it */
 824		if (t != primary)
 825			sctp_assoc_rm_peer(asoc, t);
 826	}
 827}
 828
 829/* Engage in transport control operations.
 830 * Mark the transport up or down and send a notification to the user.
 831 * Select and update the new active and retran paths.
 832 */
 833void sctp_assoc_control_transport(struct sctp_association *asoc,
 834				  struct sctp_transport *transport,
 835				  sctp_transport_cmd_t command,
 836				  sctp_sn_error_t error)
 837{
 838	struct sctp_transport *t = NULL;
 839	struct sctp_transport *first;
 840	struct sctp_transport *second;
 841	struct sctp_ulpevent *event;
 842	struct sockaddr_storage addr;
 843	int spc_state = 0;
 844
 845	/* Record the transition on the transport.  */
 846	switch (command) {
 847	case SCTP_TRANSPORT_UP:
 848		/* If we are moving from UNCONFIRMED state due
 849		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
 850		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
 851		 */
 852		if (SCTP_UNCONFIRMED == transport->state &&
 853		    SCTP_HEARTBEAT_SUCCESS == error)
 
 
 
 854			spc_state = SCTP_ADDR_CONFIRMED;
 855		else
 856			spc_state = SCTP_ADDR_AVAILABLE;
 857		transport->state = SCTP_ACTIVE;
 
 858		break;
 859
 860	case SCTP_TRANSPORT_DOWN:
 861		/* If the transport was never confirmed, do not transition it
 862		 * to inactive state.  Also, release the cached route since
 863		 * there may be a better route next time.
 864		 */
 865		if (transport->state != SCTP_UNCONFIRMED)
 866			transport->state = SCTP_INACTIVE;
 867		else {
 868			dst_release(transport->dst);
 869			transport->dst = NULL;
 
 
 870		}
 
 871
 872		spc_state = SCTP_ADDR_UNREACHABLE;
 
 
 
 
 
 873		break;
 874
 875	default:
 876		return;
 877	}
 878
 879	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
 880	 * user.
 881	 */
 882	memset(&addr, 0, sizeof(struct sockaddr_storage));
 883	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
 884	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
 885				0, spc_state, error, GFP_ATOMIC);
 886	if (event)
 887		sctp_ulpq_tail_event(&asoc->ulpq, event);
 888
 889	/* Select new active and retran paths. */
 890
 891	/* Look for the two most recently used active transports.
 892	 *
 893	 * This code produces the wrong ordering whenever jiffies
 894	 * rolls over, but we still get usable transports, so we don't
 895	 * worry about it.
 896	 */
 897	first = NULL; second = NULL;
 898
 899	list_for_each_entry(t, &asoc->peer.transport_addr_list,
 900			transports) {
 901
 902		if ((t->state == SCTP_INACTIVE) ||
 903		    (t->state == SCTP_UNCONFIRMED))
 904			continue;
 905		if (!first || t->last_time_heard > first->last_time_heard) {
 906			second = first;
 907			first = t;
 908		}
 909		if (!second || t->last_time_heard > second->last_time_heard)
 910			second = t;
 911	}
 912
 913	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
 914	 *
 915	 * By default, an endpoint should always transmit to the
 916	 * primary path, unless the SCTP user explicitly specifies the
 917	 * destination transport address (and possibly source
 918	 * transport address) to use.
 919	 *
 920	 * [If the primary is active but not most recent, bump the most
 921	 * recently used transport.]
 922	 */
 923	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
 924	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
 925	    first != asoc->peer.primary_path) {
 926		second = first;
 927		first = asoc->peer.primary_path;
 928	}
 929
 930	/* If we failed to find a usable transport, just camp on the
 931	 * primary, even if it is inactive.
 932	 */
 933	if (!first) {
 934		first = asoc->peer.primary_path;
 935		second = asoc->peer.primary_path;
 936	}
 937
 938	/* Set the active and retran transports.  */
 939	asoc->peer.active_path = first;
 940	asoc->peer.retran_path = second;
 941}
 942
 943/* Hold a reference to an association. */
 944void sctp_association_hold(struct sctp_association *asoc)
 945{
 946	atomic_inc(&asoc->base.refcnt);
 947}
 948
 949/* Release a reference to an association and cleanup
 950 * if there are no more references.
 951 */
 952void sctp_association_put(struct sctp_association *asoc)
 953{
 954	if (atomic_dec_and_test(&asoc->base.refcnt))
 955		sctp_association_destroy(asoc);
 956}
 957
 958/* Allocate the next TSN, Transmission Sequence Number, for the given
 959 * association.
 960 */
 961__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
 962{
 963	/* From Section 1.6 Serial Number Arithmetic:
 964	 * Transmission Sequence Numbers wrap around when they reach
 965	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
 966	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
 967	 */
 968	__u32 retval = asoc->next_tsn;
 969	asoc->next_tsn++;
 970	asoc->unack_data++;
 971
 972	return retval;
 973}
 974
 975/* Compare two addresses to see if they match.  Wildcard addresses
 976 * only match themselves.
 977 */
 978int sctp_cmp_addr_exact(const union sctp_addr *ss1,
 979			const union sctp_addr *ss2)
 980{
 981	struct sctp_af *af;
 982
 983	af = sctp_get_af_specific(ss1->sa.sa_family);
 984	if (unlikely(!af))
 985		return 0;
 986
 987	return af->cmp_addr(ss1, ss2);
 988}
 989
 990/* Return an ecne chunk to get prepended to a packet.
 991 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
 992 * No we don't, but we could/should.
 993 */
 994struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
 995{
 996	struct sctp_chunk *chunk;
 
 997
 998	/* Send ECNE if needed.
 999	 * Not being able to allocate a chunk here is not deadly.
1000	 */
1001	if (asoc->need_ecne)
1002		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1003	else
1004		chunk = NULL;
1005
1006	return chunk;
1007}
1008
1009/*
1010 * Find which transport this TSN was sent on.
1011 */
1012struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1013					     __u32 tsn)
1014{
1015	struct sctp_transport *active;
1016	struct sctp_transport *match;
1017	struct sctp_transport *transport;
1018	struct sctp_chunk *chunk;
1019	__be32 key = htonl(tsn);
1020
1021	match = NULL;
1022
1023	/*
1024	 * FIXME: In general, find a more efficient data structure for
1025	 * searching.
1026	 */
1027
1028	/*
1029	 * The general strategy is to search each transport's transmitted
1030	 * list.   Return which transport this TSN lives on.
1031	 *
1032	 * Let's be hopeful and check the active_path first.
1033	 * Another optimization would be to know if there is only one
1034	 * outbound path and not have to look for the TSN at all.
1035	 *
1036	 */
1037
1038	active = asoc->peer.active_path;
1039
1040	list_for_each_entry(chunk, &active->transmitted,
1041			transmitted_list) {
1042
1043		if (key == chunk->subh.data_hdr->tsn) {
1044			match = active;
1045			goto out;
1046		}
1047	}
1048
1049	/* If not found, go search all the other transports. */
1050	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1051			transports) {
1052
1053		if (transport == active)
1054			break;
1055		list_for_each_entry(chunk, &transport->transmitted,
1056				transmitted_list) {
1057			if (key == chunk->subh.data_hdr->tsn) {
1058				match = transport;
1059				goto out;
1060			}
1061		}
1062	}
1063out:
1064	return match;
1065}
1066
1067/* Is this the association we are looking for? */
1068struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1069					   const union sctp_addr *laddr,
1070					   const union sctp_addr *paddr)
1071{
1072	struct sctp_transport *transport;
1073
1074	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1075	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1076		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1077		if (!transport)
1078			goto out;
1079
1080		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1081					 sctp_sk(asoc->base.sk)))
1082			goto out;
1083	}
1084	transport = NULL;
1085
1086out:
1087	return transport;
1088}
1089
1090/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1091static void sctp_assoc_bh_rcv(struct work_struct *work)
1092{
1093	struct sctp_association *asoc =
1094		container_of(work, struct sctp_association,
1095			     base.inqueue.immediate);
 
 
1096	struct sctp_endpoint *ep;
1097	struct sctp_chunk *chunk;
1098	struct sctp_inq *inqueue;
1099	int state;
1100	sctp_subtype_t subtype;
1101	int error = 0;
 
1102
1103	/* The association should be held so we should be safe. */
1104	ep = asoc->ep;
1105
1106	inqueue = &asoc->base.inqueue;
1107	sctp_association_hold(asoc);
1108	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1109		state = asoc->state;
1110		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112		/* SCTP-AUTH, Section 6.3:
1113		 *    The receiver has a list of chunk types which it expects
1114		 *    to be received only after an AUTH-chunk.  This list has
1115		 *    been sent to the peer during the association setup.  It
1116		 *    MUST silently discard these chunks if they are not placed
1117		 *    after an AUTH chunk in the packet.
1118		 */
1119		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1120			continue;
1121
1122		/* Remember where the last DATA chunk came from so we
1123		 * know where to send the SACK.
1124		 */
1125		if (sctp_chunk_is_data(chunk))
1126			asoc->peer.last_data_from = chunk->transport;
1127		else
1128			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
 
 
 
 
1129
1130		if (chunk->transport)
1131			chunk->transport->last_time_heard = jiffies;
1132
1133		/* Run through the state machine. */
1134		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1135				   state, ep, asoc, chunk, GFP_ATOMIC);
1136
1137		/* Check to see if the association is freed in response to
1138		 * the incoming chunk.  If so, get out of the while loop.
1139		 */
1140		if (asoc->base.dead)
1141			break;
1142
1143		/* If there is an error on chunk, discard this packet. */
1144		if (error && chunk)
1145			chunk->pdiscard = 1;
 
 
 
1146	}
1147	sctp_association_put(asoc);
1148}
1149
1150/* This routine moves an association from its old sk to a new sk.  */
1151void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1152{
1153	struct sctp_sock *newsp = sctp_sk(newsk);
1154	struct sock *oldsk = assoc->base.sk;
1155
1156	/* Delete the association from the old endpoint's list of
1157	 * associations.
1158	 */
1159	list_del_init(&assoc->asocs);
1160
1161	/* Decrement the backlog value for a TCP-style socket. */
1162	if (sctp_style(oldsk, TCP))
1163		oldsk->sk_ack_backlog--;
1164
1165	/* Release references to the old endpoint and the sock.  */
1166	sctp_endpoint_put(assoc->ep);
1167	sock_put(assoc->base.sk);
1168
1169	/* Get a reference to the new endpoint.  */
1170	assoc->ep = newsp->ep;
1171	sctp_endpoint_hold(assoc->ep);
1172
1173	/* Get a reference to the new sock.  */
1174	assoc->base.sk = newsk;
1175	sock_hold(assoc->base.sk);
1176
1177	/* Add the association to the new endpoint's list of associations.  */
1178	sctp_endpoint_add_asoc(newsp->ep, assoc);
1179}
1180
1181/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1182void sctp_assoc_update(struct sctp_association *asoc,
1183		       struct sctp_association *new)
1184{
1185	struct sctp_transport *trans;
1186	struct list_head *pos, *temp;
1187
1188	/* Copy in new parameters of peer. */
1189	asoc->c = new->c;
1190	asoc->peer.rwnd = new->peer.rwnd;
1191	asoc->peer.sack_needed = new->peer.sack_needed;
 
1192	asoc->peer.i = new->peer.i;
1193	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1194			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
 
 
1195
1196	/* Remove any peer addresses not present in the new association. */
1197	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1198		trans = list_entry(pos, struct sctp_transport, transports);
1199		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1200			sctp_assoc_rm_peer(asoc, trans);
1201			continue;
1202		}
1203
1204		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1205			sctp_transport_reset(trans);
1206	}
1207
1208	/* If the case is A (association restart), use
1209	 * initial_tsn as next_tsn. If the case is B, use
1210	 * current next_tsn in case data sent to peer
1211	 * has been discarded and needs retransmission.
1212	 */
1213	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1214		asoc->next_tsn = new->next_tsn;
1215		asoc->ctsn_ack_point = new->ctsn_ack_point;
1216		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1217
1218		/* Reinitialize SSN for both local streams
1219		 * and peer's streams.
1220		 */
1221		sctp_ssnmap_clear(asoc->ssnmap);
1222
1223		/* Flush the ULP reassembly and ordered queue.
1224		 * Any data there will now be stale and will
1225		 * cause problems.
1226		 */
1227		sctp_ulpq_flush(&asoc->ulpq);
1228
1229		/* reset the overall association error count so
1230		 * that the restarted association doesn't get torn
1231		 * down on the next retransmission timer.
1232		 */
1233		asoc->overall_error_count = 0;
1234
1235	} else {
1236		/* Add any peer addresses from the new association. */
1237		list_for_each_entry(trans, &new->peer.transport_addr_list,
1238				transports) {
1239			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1240				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1241						    GFP_ATOMIC, trans->state);
1242		}
1243
1244		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1245		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1246		if (!asoc->ssnmap) {
1247			/* Move the ssnmap. */
1248			asoc->ssnmap = new->ssnmap;
1249			new->ssnmap = NULL;
1250		}
1251
1252		if (!asoc->assoc_id) {
1253			/* get a new association id since we don't have one
1254			 * yet.
1255			 */
1256			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1257		}
1258	}
1259
1260	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1261	 * and also move the association shared keys over
1262	 */
1263	kfree(asoc->peer.peer_random);
1264	asoc->peer.peer_random = new->peer.peer_random;
1265	new->peer.peer_random = NULL;
1266
1267	kfree(asoc->peer.peer_chunks);
1268	asoc->peer.peer_chunks = new->peer.peer_chunks;
1269	new->peer.peer_chunks = NULL;
1270
1271	kfree(asoc->peer.peer_hmacs);
1272	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1273	new->peer.peer_hmacs = NULL;
1274
1275	sctp_auth_key_put(asoc->asoc_shared_key);
1276	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1277}
1278
1279/* Update the retran path for sending a retransmitted packet.
1280 * Round-robin through the active transports, else round-robin
1281 * through the inactive transports as this is the next best thing
1282 * we can try.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1285{
1286	struct sctp_transport *t, *next;
1287	struct list_head *head = &asoc->peer.transport_addr_list;
1288	struct list_head *pos;
1289
 
1290	if (asoc->peer.transport_count == 1)
1291		return;
 
 
 
 
 
 
1292
1293	/* Find the next transport in a round-robin fashion. */
1294	t = asoc->peer.retran_path;
1295	pos = &t->transports;
1296	next = NULL;
1297
1298	while (1) {
1299		/* Skip the head. */
1300		if (pos->next == head)
1301			pos = head->next;
1302		else
1303			pos = pos->next;
 
 
 
 
 
1304
1305		t = list_entry(pos, struct sctp_transport, transports);
1306
1307		/* We have exhausted the list, but didn't find any
1308		 * other active transports.  If so, use the next
1309		 * transport.
1310		 */
1311		if (t == asoc->peer.retran_path) {
1312			t = next;
1313			break;
1314		}
1315
1316		/* Try to find an active transport. */
 
 
 
1317
1318		if ((t->state == SCTP_ACTIVE) ||
1319		    (t->state == SCTP_UNKNOWN)) {
1320			break;
1321		} else {
1322			/* Keep track of the next transport in case
1323			 * we don't find any active transport.
1324			 */
1325			if (t->state != SCTP_UNCONFIRMED && !next)
1326				next = t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327		}
1328	}
1329
1330	if (t)
1331		asoc->peer.retran_path = t;
1332	else
1333		t = asoc->peer.retran_path;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334
1335	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1336				 " %p addr: ",
1337				 " port: %d\n",
1338				 asoc,
1339				 (&t->ipaddr),
1340				 ntohs(t->ipaddr.v4.sin_port));
 
 
 
 
 
1341}
1342
1343/* Choose the transport for sending retransmit packet.  */
1344struct sctp_transport *sctp_assoc_choose_alter_transport(
1345	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1346{
1347	/* If this is the first time packet is sent, use the active path,
1348	 * else use the retran path. If the last packet was sent over the
1349	 * retran path, update the retran path and use it.
1350	 */
1351	if (!last_sent_to)
1352		return asoc->peer.active_path;
1353	else {
1354		if (last_sent_to == asoc->peer.retran_path)
1355			sctp_assoc_update_retran_path(asoc);
 
1356		return asoc->peer.retran_path;
1357	}
1358}
1359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360/* Update the association's pmtu and frag_point by going through all the
1361 * transports. This routine is called when a transport's PMTU has changed.
1362 */
1363void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1364{
1365	struct sctp_transport *t;
1366	__u32 pmtu = 0;
1367
1368	if (!asoc)
1369		return;
1370
1371	/* Get the lowest pmtu of all the transports. */
1372	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1373				transports) {
1374		if (t->pmtu_pending && t->dst) {
1375			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
 
1376			t->pmtu_pending = 0;
1377		}
1378		if (!pmtu || (t->pathmtu < pmtu))
1379			pmtu = t->pathmtu;
1380	}
1381
1382	if (pmtu) {
1383		asoc->pathmtu = pmtu;
1384		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1385	}
1386
1387	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1388			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1389}
1390
1391/* Should we send a SACK to update our peer? */
1392static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1393{
 
 
1394	switch (asoc->state) {
1395	case SCTP_STATE_ESTABLISHED:
1396	case SCTP_STATE_SHUTDOWN_PENDING:
1397	case SCTP_STATE_SHUTDOWN_RECEIVED:
1398	case SCTP_STATE_SHUTDOWN_SENT:
1399		if ((asoc->rwnd > asoc->a_rwnd) &&
1400		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1401			   (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1402			   asoc->pathmtu)))
1403			return 1;
1404		break;
1405	default:
1406		break;
1407	}
1408	return 0;
1409}
1410
1411/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1412void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1413{
1414	struct sctp_chunk *sack;
1415	struct timer_list *timer;
1416
1417	if (asoc->rwnd_over) {
1418		if (asoc->rwnd_over >= len) {
1419			asoc->rwnd_over -= len;
1420		} else {
1421			asoc->rwnd += (len - asoc->rwnd_over);
1422			asoc->rwnd_over = 0;
1423		}
1424	} else {
1425		asoc->rwnd += len;
1426	}
1427
1428	/* If we had window pressure, start recovering it
1429	 * once our rwnd had reached the accumulated pressure
1430	 * threshold.  The idea is to recover slowly, but up
1431	 * to the initial advertised window.
1432	 */
1433	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1434		int change = min(asoc->pathmtu, asoc->rwnd_press);
1435		asoc->rwnd += change;
1436		asoc->rwnd_press -= change;
1437	}
1438
1439	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1440			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1441			  asoc->rwnd_over, asoc->a_rwnd);
1442
1443	/* Send a window update SACK if the rwnd has increased by at least the
1444	 * minimum of the association's PMTU and half of the receive buffer.
1445	 * The algorithm used is similar to the one described in
1446	 * Section 4.2.3.3 of RFC 1122.
1447	 */
1448	if (sctp_peer_needs_update(asoc)) {
1449		asoc->a_rwnd = asoc->rwnd;
1450		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1451				  "rwnd: %u a_rwnd: %u\n", __func__,
1452				  asoc, asoc->rwnd, asoc->a_rwnd);
 
 
1453		sack = sctp_make_sack(asoc);
1454		if (!sack)
1455			return;
1456
1457		asoc->peer.sack_needed = 0;
1458
1459		sctp_outq_tail(&asoc->outqueue, sack);
1460
1461		/* Stop the SACK timer.  */
1462		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1463		if (timer_pending(timer) && del_timer(timer))
1464			sctp_association_put(asoc);
1465	}
1466}
1467
1468/* Decrease asoc's rwnd by len. */
1469void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1470{
1471	int rx_count;
1472	int over = 0;
1473
1474	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1475	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
 
 
1476
1477	if (asoc->ep->rcvbuf_policy)
1478		rx_count = atomic_read(&asoc->rmem_alloc);
1479	else
1480		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1481
1482	/* If we've reached or overflowed our receive buffer, announce
1483	 * a 0 rwnd if rwnd would still be positive.  Store the
1484	 * the pottential pressure overflow so that the window can be restored
1485	 * back to original value.
1486	 */
1487	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1488		over = 1;
1489
1490	if (asoc->rwnd >= len) {
1491		asoc->rwnd -= len;
1492		if (over) {
1493			asoc->rwnd_press += asoc->rwnd;
1494			asoc->rwnd = 0;
1495		}
1496	} else {
1497		asoc->rwnd_over = len - asoc->rwnd;
1498		asoc->rwnd = 0;
1499	}
1500	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1501			  __func__, asoc, len, asoc->rwnd,
1502			  asoc->rwnd_over, asoc->rwnd_press);
 
1503}
1504
1505/* Build the bind address list for the association based on info from the
1506 * local endpoint and the remote peer.
1507 */
1508int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1509				     sctp_scope_t scope, gfp_t gfp)
1510{
 
1511	int flags;
1512
1513	/* Use scoping rules to determine the subset of addresses from
1514	 * the endpoint.
1515	 */
1516	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
 
 
1517	if (asoc->peer.ipv4_address)
1518		flags |= SCTP_ADDR4_PEERSUPP;
1519	if (asoc->peer.ipv6_address)
1520		flags |= SCTP_ADDR6_PEERSUPP;
1521
1522	return sctp_bind_addr_copy(&asoc->base.bind_addr,
 
1523				   &asoc->ep->base.bind_addr,
1524				   scope, gfp, flags);
1525}
1526
1527/* Build the association's bind address list from the cookie.  */
1528int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1529					 struct sctp_cookie *cookie,
1530					 gfp_t gfp)
1531{
1532	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
 
1533	int var_size3 = cookie->raw_addr_list_len;
1534	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1535
1536	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1537				      asoc->ep->base.bind_addr.port, gfp);
1538}
1539
1540/* Lookup laddr in the bind address list of an association. */
1541int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1542			    const union sctp_addr *laddr)
1543{
1544	int found = 0;
1545
1546	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1547	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1548				 sctp_sk(asoc->base.sk)))
1549		found = 1;
1550
1551	return found;
1552}
1553
1554/* Set an association id for a given association */
1555int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1556{
1557	int assoc_id;
1558	int error = 0;
1559
1560	/* If the id is already assigned, keep it. */
1561	if (asoc->assoc_id)
1562		return error;
1563retry:
1564	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1565		return -ENOMEM;
1566
 
 
1567	spin_lock_bh(&sctp_assocs_id_lock);
1568	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1569				    idr_low, &assoc_id);
1570	if (!error) {
1571		idr_low = assoc_id + 1;
1572		if (idr_low == INT_MAX)
1573			idr_low = 1;
1574	}
1575	spin_unlock_bh(&sctp_assocs_id_lock);
1576	if (error == -EAGAIN)
1577		goto retry;
1578	else if (error)
1579		return error;
1580
1581	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1582	return error;
1583}
1584
1585/* Free the ASCONF queue */
1586static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1587{
1588	struct sctp_chunk *asconf;
1589	struct sctp_chunk *tmp;
1590
1591	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1592		list_del_init(&asconf->list);
1593		sctp_chunk_free(asconf);
1594	}
1595}
1596
1597/* Free asconf_ack cache */
1598static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1599{
1600	struct sctp_chunk *ack;
1601	struct sctp_chunk *tmp;
1602
1603	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1604				transmitted_list) {
1605		list_del_init(&ack->transmitted_list);
1606		sctp_chunk_free(ack);
1607	}
1608}
1609
1610/* Clean up the ASCONF_ACK queue */
1611void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1612{
1613	struct sctp_chunk *ack;
1614	struct sctp_chunk *tmp;
1615
1616	/* We can remove all the entries from the queue up to
1617	 * the "Peer-Sequence-Number".
1618	 */
1619	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1620				transmitted_list) {
1621		if (ack->subh.addip_hdr->serial ==
1622				htonl(asoc->peer.addip_serial))
1623			break;
1624
1625		list_del_init(&ack->transmitted_list);
1626		sctp_chunk_free(ack);
1627	}
1628}
1629
1630/* Find the ASCONF_ACK whose serial number matches ASCONF */
1631struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1632					const struct sctp_association *asoc,
1633					__be32 serial)
1634{
1635	struct sctp_chunk *ack;
1636
1637	/* Walk through the list of cached ASCONF-ACKs and find the
1638	 * ack chunk whose serial number matches that of the request.
1639	 */
1640	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
 
 
1641		if (ack->subh.addip_hdr->serial == serial) {
1642			sctp_chunk_hold(ack);
1643			return ack;
1644		}
1645	}
1646
1647	return NULL;
1648}
1649
1650void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1651{
1652	/* Free any cached ASCONF_ACK chunk. */
1653	sctp_assoc_free_asconf_acks(asoc);
1654
1655	/* Free the ASCONF queue. */
1656	sctp_assoc_free_asconf_queue(asoc);
1657
1658	/* Free any cached ASCONF chunk. */
1659	if (asoc->addip_last_asconf)
1660		sctp_chunk_free(asoc->addip_last_asconf);
1661}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * (C) Copyright IBM Corp. 2001, 2004
   4 * Copyright (c) 1999-2000 Cisco, Inc.
   5 * Copyright (c) 1999-2001 Motorola, Inc.
   6 * Copyright (c) 2001 Intel Corp.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * This module provides the abstraction for an SCTP association.
  12 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  13 * Please send any bug reports or fixes you make to the
  14 * email address(es):
  15 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
  16 *
  17 * Written or modified by:
  18 *    La Monte H.P. Yarroll <piggy@acm.org>
  19 *    Karl Knutson          <karl@athena.chicago.il.us>
  20 *    Jon Grimm             <jgrimm@us.ibm.com>
  21 *    Xingang Guo           <xingang.guo@intel.com>
  22 *    Hui Huang             <hui.huang@nokia.com>
  23 *    Sridhar Samudrala	    <sri@us.ibm.com>
  24 *    Daisy Chang	    <daisyc@us.ibm.com>
  25 *    Ryan Layer	    <rmlayer@us.ibm.com>
  26 *    Kevin Gao             <kevin.gao@intel.com>
 
 
 
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/types.h>
  32#include <linux/fcntl.h>
  33#include <linux/poll.h>
  34#include <linux/init.h>
  35
  36#include <linux/slab.h>
  37#include <linux/in.h>
  38#include <net/ipv6.h>
  39#include <net/sctp/sctp.h>
  40#include <net/sctp/sm.h>
  41
  42/* Forward declarations for internal functions. */
  43static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
  44static void sctp_assoc_bh_rcv(struct work_struct *work);
  45static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
  46static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
  47
 
 
 
 
 
 
 
  48/* 1st Level Abstractions. */
  49
  50/* Initialize a new association from provided memory. */
  51static struct sctp_association *sctp_association_init(
  52					struct sctp_association *asoc,
  53					const struct sctp_endpoint *ep,
  54					const struct sock *sk,
  55					enum sctp_scope scope, gfp_t gfp)
  56{
  57	struct sctp_sock *sp;
  58	struct sctp_paramhdr *p;
  59	int i;
 
 
  60
  61	/* Retrieve the SCTP per socket area.  */
  62	sp = sctp_sk((struct sock *)sk);
  63
  64	/* Discarding const is appropriate here.  */
  65	asoc->ep = (struct sctp_endpoint *)ep;
 
 
 
  66	asoc->base.sk = (struct sock *)sk;
  67	asoc->base.net = sock_net(sk);
  68
  69	sctp_endpoint_hold(asoc->ep);
  70	sock_hold(asoc->base.sk);
  71
  72	/* Initialize the common base substructure.  */
  73	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
  74
  75	/* Initialize the object handling fields.  */
  76	refcount_set(&asoc->base.refcnt, 1);
 
 
  77
  78	/* Initialize the bind addr area.  */
  79	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
  80
  81	asoc->state = SCTP_STATE_CLOSED;
  82	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
 
 
 
 
 
 
 
  83	asoc->user_frag = sp->user_frag;
  84
  85	/* Set the association max_retrans and RTO values from the
  86	 * socket values.
  87	 */
  88	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
  89	asoc->pf_retrans  = sp->pf_retrans;
  90	asoc->ps_retrans  = sp->ps_retrans;
  91	asoc->pf_expose   = sp->pf_expose;
  92
  93	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
  94	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
  95	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
  96
 
 
  97	/* Initialize the association's heartbeat interval based on the
  98	 * sock configured value.
  99	 */
 100	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
 101	asoc->probe_interval = msecs_to_jiffies(sp->probe_interval);
 102
 103	asoc->encap_port = sp->encap_port;
 104
 105	/* Initialize path max retrans value. */
 106	asoc->pathmaxrxt = sp->pathmaxrxt;
 107
 108	asoc->flowlabel = sp->flowlabel;
 109	asoc->dscp = sp->dscp;
 110
 111	/* Set association default SACK delay */
 112	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
 113	asoc->sackfreq = sp->sackfreq;
 114
 115	/* Set the association default flags controlling
 116	 * Heartbeat, SACK delay, and Path MTU Discovery.
 117	 */
 118	asoc->param_flags = sp->param_flags;
 119
 120	/* Initialize the maximum number of new data packets that can be sent
 121	 * in a burst.
 122	 */
 123	asoc->max_burst = sp->max_burst;
 124
 125	asoc->subscribe = sp->subscribe;
 126
 127	/* initialize association timers */
 
 128	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
 129	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
 130	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
 
 
 131
 132	/* sctpimpguide Section 2.12.2
 133	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
 134	 * recommended value of 5 times 'RTO.Max'.
 135	 */
 136	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
 137		= 5 * asoc->rto_max;
 138
 
 139	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
 140	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
 141		(unsigned long)sp->autoclose * HZ;
 142
 143	/* Initializes the timers */
 144	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
 145		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
 
 146
 147	/* Pull default initialization values from the sock options.
 148	 * Note: This assumes that the values have already been
 149	 * validated in the sock.
 150	 */
 151	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
 152	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
 153	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
 154
 155	asoc->max_init_timeo =
 156		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
 157
 
 
 
 
 
 158	/* Set the local window size for receive.
 159	 * This is also the rcvbuf space per association.
 160	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
 161	 * 1500 bytes in one SCTP packet.
 162	 */
 163	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
 164		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
 165	else
 166		asoc->rwnd = sk->sk_rcvbuf/2;
 167
 168	asoc->a_rwnd = asoc->rwnd;
 169
 
 
 
 170	/* Use my own max window until I learn something better.  */
 171	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
 172
 
 
 
 173	/* Initialize the receive memory counter */
 174	atomic_set(&asoc->rmem_alloc, 0);
 175
 176	init_waitqueue_head(&asoc->wait);
 177
 178	asoc->c.my_vtag = sctp_generate_tag(ep);
 
 
 
 
 179	asoc->c.my_port = ep->base.bind_addr.port;
 180
 181	asoc->c.initial_tsn = sctp_generate_tsn(ep);
 182
 183	asoc->next_tsn = asoc->c.initial_tsn;
 184
 185	asoc->ctsn_ack_point = asoc->next_tsn - 1;
 186	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
 187	asoc->highest_sacked = asoc->ctsn_ack_point;
 188	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
 
 189
 190	/* ADDIP Section 4.1 Asconf Chunk Procedures
 191	 *
 192	 * When an endpoint has an ASCONF signaled change to be sent to the
 193	 * remote endpoint it should do the following:
 194	 * ...
 195	 * A2) a serial number should be assigned to the chunk. The serial
 196	 * number SHOULD be a monotonically increasing number. The serial
 197	 * numbers SHOULD be initialized at the start of the
 198	 * association to the same value as the initial TSN.
 199	 */
 200	asoc->addip_serial = asoc->c.initial_tsn;
 201	asoc->strreset_outseq = asoc->c.initial_tsn;
 202
 203	INIT_LIST_HEAD(&asoc->addip_chunk_list);
 204	INIT_LIST_HEAD(&asoc->asconf_ack_list);
 205
 206	/* Make an empty list of remote transport addresses.  */
 207	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
 
 208
 209	/* RFC 2960 5.1 Normal Establishment of an Association
 210	 *
 211	 * After the reception of the first data chunk in an
 212	 * association the endpoint must immediately respond with a
 213	 * sack to acknowledge the data chunk.  Subsequent
 214	 * acknowledgements should be done as described in Section
 215	 * 6.2.
 216	 *
 217	 * [We implement this by telling a new association that it
 218	 * already received one packet.]
 219	 */
 220	asoc->peer.sack_needed = 1;
 
 221	asoc->peer.sack_generation = 1;
 222
 
 
 
 
 
 
 
 
 
 
 
 
 223	/* Create an input queue.  */
 224	sctp_inq_init(&asoc->base.inqueue);
 225	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
 226
 227	/* Create an output queue.  */
 228	sctp_outq_init(asoc, &asoc->outqueue);
 229
 230	sctp_ulpq_init(&asoc->ulpq, asoc);
 
 
 
 231
 232	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 0, gfp))
 233		goto stream_free;
 234
 235	/* Initialize default path MTU. */
 236	asoc->pathmtu = sp->pathmtu;
 237	sctp_assoc_update_frag_point(asoc);
 238
 239	/* Assume that peer would support both address types unless we are
 240	 * told otherwise.
 241	 */
 242	asoc->peer.ipv4_address = 1;
 243	if (asoc->base.sk->sk_family == PF_INET6)
 244		asoc->peer.ipv6_address = 1;
 245	INIT_LIST_HEAD(&asoc->asocs);
 246
 
 
 247	asoc->default_stream = sp->default_stream;
 248	asoc->default_ppid = sp->default_ppid;
 249	asoc->default_flags = sp->default_flags;
 250	asoc->default_context = sp->default_context;
 251	asoc->default_timetolive = sp->default_timetolive;
 252	asoc->default_rcv_context = sp->default_rcv_context;
 253
 254	/* AUTH related initializations */
 255	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
 256	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
 257		goto stream_free;
 
 258
 259	asoc->active_key_id = ep->active_key_id;
 260	asoc->strreset_enable = ep->strreset_enable;
 261
 
 262	/* Save the hmacs and chunks list into this association */
 263	if (ep->auth_hmacs_list)
 264		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
 265			ntohs(ep->auth_hmacs_list->param_hdr.length));
 266	if (ep->auth_chunk_list)
 267		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
 268			ntohs(ep->auth_chunk_list->param_hdr.length));
 269
 270	/* Get the AUTH random number for this association */
 271	p = (struct sctp_paramhdr *)asoc->c.auth_random;
 272	p->type = SCTP_PARAM_RANDOM;
 273	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
 274	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
 275
 276	return asoc;
 277
 278stream_free:
 279	sctp_stream_free(&asoc->stream);
 280	sock_put(asoc->base.sk);
 281	sctp_endpoint_put(asoc->ep);
 282	return NULL;
 283}
 284
 285/* Allocate and initialize a new association */
 286struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
 287					      const struct sock *sk,
 288					      enum sctp_scope scope, gfp_t gfp)
 
 289{
 290	struct sctp_association *asoc;
 291
 292	asoc = kzalloc(sizeof(*asoc), gfp);
 293	if (!asoc)
 294		goto fail;
 295
 296	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
 297		goto fail_init;
 298
 
 299	SCTP_DBG_OBJCNT_INC(assoc);
 300
 301	pr_debug("Created asoc %p\n", asoc);
 302
 303	return asoc;
 304
 305fail_init:
 306	kfree(asoc);
 307fail:
 308	return NULL;
 309}
 310
 311/* Free this association if possible.  There may still be users, so
 312 * the actual deallocation may be delayed.
 313 */
 314void sctp_association_free(struct sctp_association *asoc)
 315{
 316	struct sock *sk = asoc->base.sk;
 317	struct sctp_transport *transport;
 318	struct list_head *pos, *temp;
 319	int i;
 320
 321	/* Only real associations count against the endpoint, so
 322	 * don't bother for if this is a temporary association.
 323	 */
 324	if (!list_empty(&asoc->asocs)) {
 325		list_del(&asoc->asocs);
 326
 327		/* Decrement the backlog value for a TCP-style listening
 328		 * socket.
 329		 */
 330		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
 331			sk_acceptq_removed(sk);
 332	}
 333
 334	/* Mark as dead, so other users can know this structure is
 335	 * going away.
 336	 */
 337	asoc->base.dead = true;
 338
 339	/* Dispose of any data lying around in the outqueue. */
 340	sctp_outq_free(&asoc->outqueue);
 341
 342	/* Dispose of any pending messages for the upper layer. */
 343	sctp_ulpq_free(&asoc->ulpq);
 344
 345	/* Dispose of any pending chunks on the inqueue. */
 346	sctp_inq_free(&asoc->base.inqueue);
 347
 348	sctp_tsnmap_free(&asoc->peer.tsn_map);
 349
 350	/* Free stream information. */
 351	sctp_stream_free(&asoc->stream);
 352
 353	if (asoc->strreset_chunk)
 354		sctp_chunk_free(asoc->strreset_chunk);
 355
 356	/* Clean up the bound address list. */
 357	sctp_bind_addr_free(&asoc->base.bind_addr);
 358
 359	/* Do we need to go through all of our timers and
 360	 * delete them?   To be safe we will try to delete all, but we
 361	 * should be able to go through and make a guess based
 362	 * on our state.
 363	 */
 364	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
 365		if (del_timer(&asoc->timers[i]))
 
 366			sctp_association_put(asoc);
 367	}
 368
 369	/* Free peer's cached cookie. */
 370	kfree(asoc->peer.cookie);
 371	kfree(asoc->peer.peer_random);
 372	kfree(asoc->peer.peer_chunks);
 373	kfree(asoc->peer.peer_hmacs);
 374
 375	/* Release the transport structures. */
 376	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
 377		transport = list_entry(pos, struct sctp_transport, transports);
 378		list_del_rcu(pos);
 379		sctp_unhash_transport(transport);
 380		sctp_transport_free(transport);
 381	}
 382
 383	asoc->peer.transport_count = 0;
 384
 385	sctp_asconf_queue_teardown(asoc);
 386
 387	/* Free pending address space being deleted */
 388	kfree(asoc->asconf_addr_del_pending);
 
 389
 390	/* AUTH - Free the endpoint shared keys */
 391	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 392
 393	/* AUTH - Free the association shared key */
 394	sctp_auth_key_put(asoc->asoc_shared_key);
 395
 396	sctp_association_put(asoc);
 397}
 398
 399/* Cleanup and free up an association. */
 400static void sctp_association_destroy(struct sctp_association *asoc)
 401{
 402	if (unlikely(!asoc->base.dead)) {
 403		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
 404		return;
 405	}
 406
 407	sctp_endpoint_put(asoc->ep);
 408	sock_put(asoc->base.sk);
 409
 410	if (asoc->assoc_id != 0) {
 411		spin_lock_bh(&sctp_assocs_id_lock);
 412		idr_remove(&sctp_assocs_id, asoc->assoc_id);
 413		spin_unlock_bh(&sctp_assocs_id_lock);
 414	}
 415
 416	WARN_ON(atomic_read(&asoc->rmem_alloc));
 417
 418	kfree_rcu(asoc, rcu);
 419	SCTP_DBG_OBJCNT_DEC(assoc);
 
 
 420}
 421
 422/* Change the primary destination address for the peer. */
 423void sctp_assoc_set_primary(struct sctp_association *asoc,
 424			    struct sctp_transport *transport)
 425{
 426	int changeover = 0;
 427
 428	/* it's a changeover only if we already have a primary path
 429	 * that we are changing
 430	 */
 431	if (asoc->peer.primary_path != NULL &&
 432	    asoc->peer.primary_path != transport)
 433		changeover = 1 ;
 434
 435	asoc->peer.primary_path = transport;
 436	sctp_ulpevent_notify_peer_addr_change(transport,
 437					      SCTP_ADDR_MADE_PRIM, 0);
 438
 439	/* Set a default msg_name for events. */
 440	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
 441	       sizeof(union sctp_addr));
 442
 443	/* If the primary path is changing, assume that the
 444	 * user wants to use this new path.
 445	 */
 446	if ((transport->state == SCTP_ACTIVE) ||
 447	    (transport->state == SCTP_UNKNOWN))
 448		asoc->peer.active_path = transport;
 449
 450	/*
 451	 * SFR-CACC algorithm:
 452	 * Upon the receipt of a request to change the primary
 453	 * destination address, on the data structure for the new
 454	 * primary destination, the sender MUST do the following:
 455	 *
 456	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
 457	 * to this destination address earlier. The sender MUST set
 458	 * CYCLING_CHANGEOVER to indicate that this switch is a
 459	 * double switch to the same destination address.
 460	 *
 461	 * Really, only bother is we have data queued or outstanding on
 462	 * the association.
 463	 */
 464	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
 465		return;
 466
 467	if (transport->cacc.changeover_active)
 468		transport->cacc.cycling_changeover = changeover;
 469
 470	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
 471	 * a changeover has occurred.
 472	 */
 473	transport->cacc.changeover_active = changeover;
 474
 475	/* 3) The sender MUST store the next TSN to be sent in
 476	 * next_tsn_at_change.
 477	 */
 478	transport->cacc.next_tsn_at_change = asoc->next_tsn;
 479}
 480
 481/* Remove a transport from an association.  */
 482void sctp_assoc_rm_peer(struct sctp_association *asoc,
 483			struct sctp_transport *peer)
 484{
 485	struct sctp_transport *transport;
 486	struct list_head *pos;
 487	struct sctp_chunk *ch;
 488
 489	pr_debug("%s: association:%p addr:%pISpc\n",
 490		 __func__, asoc, &peer->ipaddr.sa);
 
 
 
 491
 492	/* If we are to remove the current retran_path, update it
 493	 * to the next peer before removing this peer from the list.
 494	 */
 495	if (asoc->peer.retran_path == peer)
 496		sctp_assoc_update_retran_path(asoc);
 497
 498	/* Remove this peer from the list. */
 499	list_del_rcu(&peer->transports);
 500	/* Remove this peer from the transport hashtable */
 501	sctp_unhash_transport(peer);
 502
 503	/* Get the first transport of asoc. */
 504	pos = asoc->peer.transport_addr_list.next;
 505	transport = list_entry(pos, struct sctp_transport, transports);
 506
 507	/* Update any entries that match the peer to be deleted. */
 508	if (asoc->peer.primary_path == peer)
 509		sctp_assoc_set_primary(asoc, transport);
 510	if (asoc->peer.active_path == peer)
 511		asoc->peer.active_path = transport;
 512	if (asoc->peer.retran_path == peer)
 513		asoc->peer.retran_path = transport;
 514	if (asoc->peer.last_data_from == peer)
 515		asoc->peer.last_data_from = transport;
 516
 517	if (asoc->strreset_chunk &&
 518	    asoc->strreset_chunk->transport == peer) {
 519		asoc->strreset_chunk->transport = transport;
 520		sctp_transport_reset_reconf_timer(transport);
 521	}
 522
 523	/* If we remove the transport an INIT was last sent to, set it to
 524	 * NULL. Combined with the update of the retran path above, this
 525	 * will cause the next INIT to be sent to the next available
 526	 * transport, maintaining the cycle.
 527	 */
 528	if (asoc->init_last_sent_to == peer)
 529		asoc->init_last_sent_to = NULL;
 530
 531	/* If we remove the transport an SHUTDOWN was last sent to, set it
 532	 * to NULL. Combined with the update of the retran path above, this
 533	 * will cause the next SHUTDOWN to be sent to the next available
 534	 * transport, maintaining the cycle.
 535	 */
 536	if (asoc->shutdown_last_sent_to == peer)
 537		asoc->shutdown_last_sent_to = NULL;
 538
 539	/* If we remove the transport an ASCONF was last sent to, set it to
 540	 * NULL.
 541	 */
 542	if (asoc->addip_last_asconf &&
 543	    asoc->addip_last_asconf->transport == peer)
 544		asoc->addip_last_asconf->transport = NULL;
 545
 546	/* If we have something on the transmitted list, we have to
 547	 * save it off.  The best place is the active path.
 548	 */
 549	if (!list_empty(&peer->transmitted)) {
 550		struct sctp_transport *active = asoc->peer.active_path;
 
 551
 552		/* Reset the transport of each chunk on this list */
 553		list_for_each_entry(ch, &peer->transmitted,
 554					transmitted_list) {
 555			ch->transport = NULL;
 556			ch->rtt_in_progress = 0;
 557		}
 558
 559		list_splice_tail_init(&peer->transmitted,
 560					&active->transmitted);
 561
 562		/* Start a T3 timer here in case it wasn't running so
 563		 * that these migrated packets have a chance to get
 564		 * retransmitted.
 565		 */
 566		if (!timer_pending(&active->T3_rtx_timer))
 567			if (!mod_timer(&active->T3_rtx_timer,
 568					jiffies + active->rto))
 569				sctp_transport_hold(active);
 570	}
 571
 572	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
 573		if (ch->transport == peer)
 574			ch->transport = NULL;
 575
 576	asoc->peer.transport_count--;
 577
 578	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
 579	sctp_transport_free(peer);
 580}
 581
 582/* Add a transport address to an association.  */
 583struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
 584					   const union sctp_addr *addr,
 585					   const gfp_t gfp,
 586					   const int peer_state)
 587{
 588	struct sctp_transport *peer;
 589	struct sctp_sock *sp;
 590	unsigned short port;
 591
 592	sp = sctp_sk(asoc->base.sk);
 593
 594	/* AF_INET and AF_INET6 share common port field. */
 595	port = ntohs(addr->v4.sin_port);
 596
 597	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
 598		 asoc, &addr->sa, peer_state);
 
 
 
 
 599
 600	/* Set the port if it has not been set yet.  */
 601	if (0 == asoc->peer.port)
 602		asoc->peer.port = port;
 603
 604	/* Check to see if this is a duplicate. */
 605	peer = sctp_assoc_lookup_paddr(asoc, addr);
 606	if (peer) {
 607		/* An UNKNOWN state is only set on transports added by
 608		 * user in sctp_connectx() call.  Such transports should be
 609		 * considered CONFIRMED per RFC 4960, Section 5.4.
 610		 */
 611		if (peer->state == SCTP_UNKNOWN) {
 612			peer->state = SCTP_ACTIVE;
 613		}
 614		return peer;
 615	}
 616
 617	peer = sctp_transport_new(asoc->base.net, addr, gfp);
 618	if (!peer)
 619		return NULL;
 620
 621	sctp_transport_set_owner(peer, asoc);
 622
 623	/* Initialize the peer's heartbeat interval based on the
 624	 * association configured value.
 625	 */
 626	peer->hbinterval = asoc->hbinterval;
 627	peer->probe_interval = asoc->probe_interval;
 628
 629	peer->encap_port = asoc->encap_port;
 630
 631	/* Set the path max_retrans.  */
 632	peer->pathmaxrxt = asoc->pathmaxrxt;
 633
 634	/* And the partial failure retrans threshold */
 635	peer->pf_retrans = asoc->pf_retrans;
 636	/* And the primary path switchover retrans threshold */
 637	peer->ps_retrans = asoc->ps_retrans;
 638
 639	/* Initialize the peer's SACK delay timeout based on the
 640	 * association configured value.
 641	 */
 642	peer->sackdelay = asoc->sackdelay;
 643	peer->sackfreq = asoc->sackfreq;
 644
 645	if (addr->sa.sa_family == AF_INET6) {
 646		__be32 info = addr->v6.sin6_flowinfo;
 647
 648		if (info) {
 649			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
 650			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
 651		} else {
 652			peer->flowlabel = asoc->flowlabel;
 653		}
 654	}
 655	peer->dscp = asoc->dscp;
 656
 657	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
 658	 * based on association setting.
 659	 */
 660	peer->param_flags = asoc->param_flags;
 661
 
 
 662	/* Initialize the pmtu of the transport. */
 663	sctp_transport_route(peer, NULL, sp);
 
 
 
 
 
 664
 665	/* If this is the first transport addr on this association,
 666	 * initialize the association PMTU to the peer's PMTU.
 667	 * If not and the current association PMTU is higher than the new
 668	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
 669	 */
 670	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
 671				  min_t(int, peer->pathmtu, asoc->pathmtu) :
 672				  peer->pathmtu);
 
 673
 
 
 674	peer->pmtu_pending = 0;
 675
 
 
 676	/* The asoc->peer.port might not be meaningful yet, but
 677	 * initialize the packet structure anyway.
 678	 */
 679	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
 680			 asoc->peer.port);
 681
 682	/* 7.2.1 Slow-Start
 683	 *
 684	 * o The initial cwnd before DATA transmission or after a sufficiently
 685	 *   long idle period MUST be set to
 686	 *      min(4*MTU, max(2*MTU, 4380 bytes))
 687	 *
 688	 * o The initial value of ssthresh MAY be arbitrarily high
 689	 *   (for example, implementations MAY use the size of the
 690	 *   receiver advertised window).
 691	 */
 692	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
 693
 694	/* At this point, we may not have the receiver's advertised window,
 695	 * so initialize ssthresh to the default value and it will be set
 696	 * later when we process the INIT.
 697	 */
 698	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
 699
 700	peer->partial_bytes_acked = 0;
 701	peer->flight_size = 0;
 702	peer->burst_limited = 0;
 703
 704	/* Set the transport's RTO.initial value */
 705	peer->rto = asoc->rto_initial;
 706	sctp_max_rto(asoc, peer);
 707
 708	/* Set the peer's active state. */
 709	peer->state = peer_state;
 710
 711	/* Add this peer into the transport hashtable */
 712	if (sctp_hash_transport(peer)) {
 713		sctp_transport_free(peer);
 714		return NULL;
 715	}
 716
 717	sctp_transport_pl_reset(peer);
 718
 719	/* Attach the remote transport to our asoc.  */
 720	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
 721	asoc->peer.transport_count++;
 722
 723	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
 724
 725	/* If we do not yet have a primary path, set one.  */
 726	if (!asoc->peer.primary_path) {
 727		sctp_assoc_set_primary(asoc, peer);
 728		asoc->peer.retran_path = peer;
 729	}
 730
 731	if (asoc->peer.active_path == asoc->peer.retran_path &&
 732	    peer->state != SCTP_UNCONFIRMED) {
 733		asoc->peer.retran_path = peer;
 734	}
 735
 736	return peer;
 737}
 738
 739/* Delete a transport address from an association.  */
 740void sctp_assoc_del_peer(struct sctp_association *asoc,
 741			 const union sctp_addr *addr)
 742{
 743	struct list_head	*pos;
 744	struct list_head	*temp;
 745	struct sctp_transport	*transport;
 746
 747	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
 748		transport = list_entry(pos, struct sctp_transport, transports);
 749		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
 750			/* Do book keeping for removing the peer and free it. */
 751			sctp_assoc_rm_peer(asoc, transport);
 752			break;
 753		}
 754	}
 755}
 756
 757/* Lookup a transport by address. */
 758struct sctp_transport *sctp_assoc_lookup_paddr(
 759					const struct sctp_association *asoc,
 760					const union sctp_addr *address)
 761{
 762	struct sctp_transport *t;
 763
 764	/* Cycle through all transports searching for a peer address. */
 765
 766	list_for_each_entry(t, &asoc->peer.transport_addr_list,
 767			transports) {
 768		if (sctp_cmp_addr_exact(address, &t->ipaddr))
 769			return t;
 770	}
 771
 772	return NULL;
 773}
 774
 775/* Remove all transports except a give one */
 776void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
 777				     struct sctp_transport *primary)
 778{
 779	struct sctp_transport	*temp;
 780	struct sctp_transport	*t;
 781
 782	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
 783				 transports) {
 784		/* if the current transport is not the primary one, delete it */
 785		if (t != primary)
 786			sctp_assoc_rm_peer(asoc, t);
 787	}
 788}
 789
 790/* Engage in transport control operations.
 791 * Mark the transport up or down and send a notification to the user.
 792 * Select and update the new active and retran paths.
 793 */
 794void sctp_assoc_control_transport(struct sctp_association *asoc,
 795				  struct sctp_transport *transport,
 796				  enum sctp_transport_cmd command,
 797				  sctp_sn_error_t error)
 798{
 799	int spc_state = SCTP_ADDR_AVAILABLE;
 800	bool ulp_notify = true;
 
 
 
 
 801
 802	/* Record the transition on the transport.  */
 803	switch (command) {
 804	case SCTP_TRANSPORT_UP:
 805		/* If we are moving from UNCONFIRMED state due
 806		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
 807		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
 808		 */
 809		if (transport->state == SCTP_PF &&
 810		    asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
 811			ulp_notify = false;
 812		else if (transport->state == SCTP_UNCONFIRMED &&
 813			 error == SCTP_HEARTBEAT_SUCCESS)
 814			spc_state = SCTP_ADDR_CONFIRMED;
 815
 
 816		transport->state = SCTP_ACTIVE;
 817		sctp_transport_pl_reset(transport);
 818		break;
 819
 820	case SCTP_TRANSPORT_DOWN:
 821		/* If the transport was never confirmed, do not transition it
 822		 * to inactive state.  Also, release the cached route since
 823		 * there may be a better route next time.
 824		 */
 825		if (transport->state != SCTP_UNCONFIRMED) {
 826			transport->state = SCTP_INACTIVE;
 827			sctp_transport_pl_reset(transport);
 828			spc_state = SCTP_ADDR_UNREACHABLE;
 829		} else {
 830			sctp_transport_dst_release(transport);
 831			ulp_notify = false;
 832		}
 833		break;
 834
 835	case SCTP_TRANSPORT_PF:
 836		transport->state = SCTP_PF;
 837		if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
 838			ulp_notify = false;
 839		else
 840			spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
 841		break;
 842
 843	default:
 844		return;
 845	}
 846
 847	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
 848	 * to the user.
 849	 */
 850	if (ulp_notify)
 851		sctp_ulpevent_notify_peer_addr_change(transport,
 852						      spc_state, error);
 
 
 
 853
 854	/* Select new active and retran paths. */
 855	sctp_select_active_and_retran_path(asoc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857
 858/* Hold a reference to an association. */
 859void sctp_association_hold(struct sctp_association *asoc)
 860{
 861	refcount_inc(&asoc->base.refcnt);
 862}
 863
 864/* Release a reference to an association and cleanup
 865 * if there are no more references.
 866 */
 867void sctp_association_put(struct sctp_association *asoc)
 868{
 869	if (refcount_dec_and_test(&asoc->base.refcnt))
 870		sctp_association_destroy(asoc);
 871}
 872
 873/* Allocate the next TSN, Transmission Sequence Number, for the given
 874 * association.
 875 */
 876__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
 877{
 878	/* From Section 1.6 Serial Number Arithmetic:
 879	 * Transmission Sequence Numbers wrap around when they reach
 880	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
 881	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
 882	 */
 883	__u32 retval = asoc->next_tsn;
 884	asoc->next_tsn++;
 885	asoc->unack_data++;
 886
 887	return retval;
 888}
 889
 890/* Compare two addresses to see if they match.  Wildcard addresses
 891 * only match themselves.
 892 */
 893int sctp_cmp_addr_exact(const union sctp_addr *ss1,
 894			const union sctp_addr *ss2)
 895{
 896	struct sctp_af *af;
 897
 898	af = sctp_get_af_specific(ss1->sa.sa_family);
 899	if (unlikely(!af))
 900		return 0;
 901
 902	return af->cmp_addr(ss1, ss2);
 903}
 904
 905/* Return an ecne chunk to get prepended to a packet.
 906 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
 907 * No we don't, but we could/should.
 908 */
 909struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
 910{
 911	if (!asoc->need_ecne)
 912		return NULL;
 913
 914	/* Send ECNE if needed.
 915	 * Not being able to allocate a chunk here is not deadly.
 916	 */
 917	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
 
 
 
 
 
 918}
 919
 920/*
 921 * Find which transport this TSN was sent on.
 922 */
 923struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
 924					     __u32 tsn)
 925{
 926	struct sctp_transport *active;
 927	struct sctp_transport *match;
 928	struct sctp_transport *transport;
 929	struct sctp_chunk *chunk;
 930	__be32 key = htonl(tsn);
 931
 932	match = NULL;
 933
 934	/*
 935	 * FIXME: In general, find a more efficient data structure for
 936	 * searching.
 937	 */
 938
 939	/*
 940	 * The general strategy is to search each transport's transmitted
 941	 * list.   Return which transport this TSN lives on.
 942	 *
 943	 * Let's be hopeful and check the active_path first.
 944	 * Another optimization would be to know if there is only one
 945	 * outbound path and not have to look for the TSN at all.
 946	 *
 947	 */
 948
 949	active = asoc->peer.active_path;
 950
 951	list_for_each_entry(chunk, &active->transmitted,
 952			transmitted_list) {
 953
 954		if (key == chunk->subh.data_hdr->tsn) {
 955			match = active;
 956			goto out;
 957		}
 958	}
 959
 960	/* If not found, go search all the other transports. */
 961	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
 962			transports) {
 963
 964		if (transport == active)
 965			continue;
 966		list_for_each_entry(chunk, &transport->transmitted,
 967				transmitted_list) {
 968			if (key == chunk->subh.data_hdr->tsn) {
 969				match = transport;
 970				goto out;
 971			}
 972		}
 973	}
 974out:
 975	return match;
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
 979static void sctp_assoc_bh_rcv(struct work_struct *work)
 980{
 981	struct sctp_association *asoc =
 982		container_of(work, struct sctp_association,
 983			     base.inqueue.immediate);
 984	struct net *net = asoc->base.net;
 985	union sctp_subtype subtype;
 986	struct sctp_endpoint *ep;
 987	struct sctp_chunk *chunk;
 988	struct sctp_inq *inqueue;
 989	int first_time = 1;	/* is this the first time through the loop */
 
 990	int error = 0;
 991	int state;
 992
 993	/* The association should be held so we should be safe. */
 994	ep = asoc->ep;
 995
 996	inqueue = &asoc->base.inqueue;
 997	sctp_association_hold(asoc);
 998	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
 999		state = asoc->state;
1000		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1001
1002		/* If the first chunk in the packet is AUTH, do special
1003		 * processing specified in Section 6.3 of SCTP-AUTH spec
1004		 */
1005		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1006			struct sctp_chunkhdr *next_hdr;
1007
1008			next_hdr = sctp_inq_peek(inqueue);
1009			if (!next_hdr)
1010				goto normal;
1011
1012			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1013			 * chunk while saving a pointer to it so we can do
1014			 * Authentication later (during cookie-echo
1015			 * processing).
1016			 */
1017			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1018				chunk->auth_chunk = skb_clone(chunk->skb,
1019							      GFP_ATOMIC);
1020				chunk->auth = 1;
1021				continue;
1022			}
1023		}
1024
1025normal:
1026		/* SCTP-AUTH, Section 6.3:
1027		 *    The receiver has a list of chunk types which it expects
1028		 *    to be received only after an AUTH-chunk.  This list has
1029		 *    been sent to the peer during the association setup.  It
1030		 *    MUST silently discard these chunks if they are not placed
1031		 *    after an AUTH chunk in the packet.
1032		 */
1033		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1034			continue;
1035
1036		/* Remember where the last DATA chunk came from so we
1037		 * know where to send the SACK.
1038		 */
1039		if (sctp_chunk_is_data(chunk))
1040			asoc->peer.last_data_from = chunk->transport;
1041		else {
1042			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1043			asoc->stats.ictrlchunks++;
1044			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1045				asoc->stats.isacks++;
1046		}
1047
1048		if (chunk->transport)
1049			chunk->transport->last_time_heard = ktime_get();
1050
1051		/* Run through the state machine. */
1052		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1053				   state, ep, asoc, chunk, GFP_ATOMIC);
1054
1055		/* Check to see if the association is freed in response to
1056		 * the incoming chunk.  If so, get out of the while loop.
1057		 */
1058		if (asoc->base.dead)
1059			break;
1060
1061		/* If there is an error on chunk, discard this packet. */
1062		if (error && chunk)
1063			chunk->pdiscard = 1;
1064
1065		if (first_time)
1066			first_time = 0;
1067	}
1068	sctp_association_put(asoc);
1069}
1070
1071/* This routine moves an association from its old sk to a new sk.  */
1072void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1073{
1074	struct sctp_sock *newsp = sctp_sk(newsk);
1075	struct sock *oldsk = assoc->base.sk;
1076
1077	/* Delete the association from the old endpoint's list of
1078	 * associations.
1079	 */
1080	list_del_init(&assoc->asocs);
1081
1082	/* Decrement the backlog value for a TCP-style socket. */
1083	if (sctp_style(oldsk, TCP))
1084		sk_acceptq_removed(oldsk);
1085
1086	/* Release references to the old endpoint and the sock.  */
1087	sctp_endpoint_put(assoc->ep);
1088	sock_put(assoc->base.sk);
1089
1090	/* Get a reference to the new endpoint.  */
1091	assoc->ep = newsp->ep;
1092	sctp_endpoint_hold(assoc->ep);
1093
1094	/* Get a reference to the new sock.  */
1095	assoc->base.sk = newsk;
1096	sock_hold(assoc->base.sk);
1097
1098	/* Add the association to the new endpoint's list of associations.  */
1099	sctp_endpoint_add_asoc(newsp->ep, assoc);
1100}
1101
1102/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1103int sctp_assoc_update(struct sctp_association *asoc,
1104		      struct sctp_association *new)
1105{
1106	struct sctp_transport *trans;
1107	struct list_head *pos, *temp;
1108
1109	/* Copy in new parameters of peer. */
1110	asoc->c = new->c;
1111	asoc->peer.rwnd = new->peer.rwnd;
1112	asoc->peer.sack_needed = new->peer.sack_needed;
1113	asoc->peer.auth_capable = new->peer.auth_capable;
1114	asoc->peer.i = new->peer.i;
1115
1116	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1117			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1118		return -ENOMEM;
1119
1120	/* Remove any peer addresses not present in the new association. */
1121	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1122		trans = list_entry(pos, struct sctp_transport, transports);
1123		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1124			sctp_assoc_rm_peer(asoc, trans);
1125			continue;
1126		}
1127
1128		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1129			sctp_transport_reset(trans);
1130	}
1131
1132	/* If the case is A (association restart), use
1133	 * initial_tsn as next_tsn. If the case is B, use
1134	 * current next_tsn in case data sent to peer
1135	 * has been discarded and needs retransmission.
1136	 */
1137	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1138		asoc->next_tsn = new->next_tsn;
1139		asoc->ctsn_ack_point = new->ctsn_ack_point;
1140		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1141
1142		/* Reinitialize SSN for both local streams
1143		 * and peer's streams.
1144		 */
1145		sctp_stream_clear(&asoc->stream);
1146
1147		/* Flush the ULP reassembly and ordered queue.
1148		 * Any data there will now be stale and will
1149		 * cause problems.
1150		 */
1151		sctp_ulpq_flush(&asoc->ulpq);
1152
1153		/* reset the overall association error count so
1154		 * that the restarted association doesn't get torn
1155		 * down on the next retransmission timer.
1156		 */
1157		asoc->overall_error_count = 0;
1158
1159	} else {
1160		/* Add any peer addresses from the new association. */
1161		list_for_each_entry(trans, &new->peer.transport_addr_list,
1162				    transports)
1163			if (!sctp_assoc_add_peer(asoc, &trans->ipaddr,
1164						 GFP_ATOMIC, trans->state))
1165				return -ENOMEM;
 
1166
1167		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1168		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
 
 
 
 
 
1169
1170		if (sctp_state(asoc, COOKIE_WAIT))
1171			sctp_stream_update(&asoc->stream, &new->stream);
1172
1173		/* get a new assoc id if we don't have one yet. */
1174		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1175			return -ENOMEM;
1176	}
1177
1178	/* SCTP-AUTH: Save the peer parameters from the new associations
1179	 * and also move the association shared keys over
1180	 */
1181	kfree(asoc->peer.peer_random);
1182	asoc->peer.peer_random = new->peer.peer_random;
1183	new->peer.peer_random = NULL;
1184
1185	kfree(asoc->peer.peer_chunks);
1186	asoc->peer.peer_chunks = new->peer.peer_chunks;
1187	new->peer.peer_chunks = NULL;
1188
1189	kfree(asoc->peer.peer_hmacs);
1190	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1191	new->peer.peer_hmacs = NULL;
1192
1193	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
 
1194}
1195
1196/* Update the retran path for sending a retransmitted packet.
1197 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1198 *
1199 *   When there is outbound data to send and the primary path
1200 *   becomes inactive (e.g., due to failures), or where the
1201 *   SCTP user explicitly requests to send data to an
1202 *   inactive destination transport address, before reporting
1203 *   an error to its ULP, the SCTP endpoint should try to send
1204 *   the data to an alternate active destination transport
1205 *   address if one exists.
1206 *
1207 *   When retransmitting data that timed out, if the endpoint
1208 *   is multihomed, it should consider each source-destination
1209 *   address pair in its retransmission selection policy.
1210 *   When retransmitting timed-out data, the endpoint should
1211 *   attempt to pick the most divergent source-destination
1212 *   pair from the original source-destination pair to which
1213 *   the packet was transmitted.
1214 *
1215 *   Note: Rules for picking the most divergent source-destination
1216 *   pair are an implementation decision and are not specified
1217 *   within this document.
1218 *
1219 * Our basic strategy is to round-robin transports in priorities
1220 * according to sctp_trans_score() e.g., if no such
1221 * transport with state SCTP_ACTIVE exists, round-robin through
1222 * SCTP_UNKNOWN, etc. You get the picture.
1223 */
1224static u8 sctp_trans_score(const struct sctp_transport *trans)
1225{
1226	switch (trans->state) {
1227	case SCTP_ACTIVE:
1228		return 3;	/* best case */
1229	case SCTP_UNKNOWN:
1230		return 2;
1231	case SCTP_PF:
1232		return 1;
1233	default: /* case SCTP_INACTIVE */
1234		return 0;	/* worst case */
1235	}
1236}
1237
1238static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1239						   struct sctp_transport *trans2)
1240{
1241	if (trans1->error_count > trans2->error_count) {
1242		return trans2;
1243	} else if (trans1->error_count == trans2->error_count &&
1244		   ktime_after(trans2->last_time_heard,
1245			       trans1->last_time_heard)) {
1246		return trans2;
1247	} else {
1248		return trans1;
1249	}
1250}
1251
1252static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1253						    struct sctp_transport *best)
1254{
1255	u8 score_curr, score_best;
1256
1257	if (best == NULL || curr == best)
1258		return curr;
1259
1260	score_curr = sctp_trans_score(curr);
1261	score_best = sctp_trans_score(best);
1262
1263	/* First, try a score-based selection if both transport states
1264	 * differ. If we're in a tie, lets try to make a more clever
1265	 * decision here based on error counts and last time heard.
1266	 */
1267	if (score_curr > score_best)
1268		return curr;
1269	else if (score_curr == score_best)
1270		return sctp_trans_elect_tie(best, curr);
1271	else
1272		return best;
1273}
1274
1275void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1276{
1277	struct sctp_transport *trans = asoc->peer.retran_path;
1278	struct sctp_transport *trans_next = NULL;
 
1279
1280	/* We're done as we only have the one and only path. */
1281	if (asoc->peer.transport_count == 1)
1282		return;
1283	/* If active_path and retran_path are the same and active,
1284	 * then this is the only active path. Use it.
1285	 */
1286	if (asoc->peer.active_path == asoc->peer.retran_path &&
1287	    asoc->peer.active_path->state == SCTP_ACTIVE)
1288		return;
1289
1290	/* Iterate from retran_path's successor back to retran_path. */
1291	for (trans = list_next_entry(trans, transports); 1;
1292	     trans = list_next_entry(trans, transports)) {
1293		/* Manually skip the head element. */
1294		if (&trans->transports == &asoc->peer.transport_addr_list)
1295			continue;
1296		if (trans->state == SCTP_UNCONFIRMED)
1297			continue;
1298		trans_next = sctp_trans_elect_best(trans, trans_next);
1299		/* Active is good enough for immediate return. */
1300		if (trans_next->state == SCTP_ACTIVE)
1301			break;
1302		/* We've reached the end, time to update path. */
1303		if (trans == asoc->peer.retran_path)
1304			break;
1305	}
1306
1307	asoc->peer.retran_path = trans_next;
1308
1309	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1310		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1311}
 
 
 
 
 
1312
1313static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1314{
1315	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1316	struct sctp_transport *trans_pf = NULL;
1317
1318	/* Look for the two most recently used active transports. */
1319	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1320			    transports) {
1321		/* Skip uninteresting transports. */
1322		if (trans->state == SCTP_INACTIVE ||
1323		    trans->state == SCTP_UNCONFIRMED)
1324			continue;
1325		/* Keep track of the best PF transport from our
1326		 * list in case we don't find an active one.
1327		 */
1328		if (trans->state == SCTP_PF) {
1329			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1330			continue;
1331		}
1332		/* For active transports, pick the most recent ones. */
1333		if (trans_pri == NULL ||
1334		    ktime_after(trans->last_time_heard,
1335				trans_pri->last_time_heard)) {
1336			trans_sec = trans_pri;
1337			trans_pri = trans;
1338		} else if (trans_sec == NULL ||
1339			   ktime_after(trans->last_time_heard,
1340				       trans_sec->last_time_heard)) {
1341			trans_sec = trans;
1342		}
1343	}
1344
1345	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1346	 *
1347	 * By default, an endpoint should always transmit to the primary
1348	 * path, unless the SCTP user explicitly specifies the
1349	 * destination transport address (and possibly source transport
1350	 * address) to use. [If the primary is active but not most recent,
1351	 * bump the most recently used transport.]
1352	 */
1353	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1354	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1355	     asoc->peer.primary_path != trans_pri) {
1356		trans_sec = trans_pri;
1357		trans_pri = asoc->peer.primary_path;
1358	}
1359
1360	/* We did not find anything useful for a possible retransmission
1361	 * path; either primary path that we found is the same as
1362	 * the current one, or we didn't generally find an active one.
1363	 */
1364	if (trans_sec == NULL)
1365		trans_sec = trans_pri;
1366
1367	/* If we failed to find a usable transport, just camp on the
1368	 * active or pick a PF iff it's the better choice.
1369	 */
1370	if (trans_pri == NULL) {
1371		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1372		trans_sec = trans_pri;
1373	}
1374
1375	/* Set the active and retran transports. */
1376	asoc->peer.active_path = trans_pri;
1377	asoc->peer.retran_path = trans_sec;
1378}
1379
1380struct sctp_transport *
1381sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1382				  struct sctp_transport *last_sent_to)
1383{
1384	/* If this is the first time packet is sent, use the active path,
1385	 * else use the retran path. If the last packet was sent over the
1386	 * retran path, update the retran path and use it.
1387	 */
1388	if (last_sent_to == NULL) {
1389		return asoc->peer.active_path;
1390	} else {
1391		if (last_sent_to == asoc->peer.retran_path)
1392			sctp_assoc_update_retran_path(asoc);
1393
1394		return asoc->peer.retran_path;
1395	}
1396}
1397
1398void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1399{
1400	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1401				    sctp_datachk_len(&asoc->stream));
1402
1403	if (asoc->user_frag)
1404		frag = min_t(int, frag, asoc->user_frag);
1405
1406	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1407				sctp_datachk_len(&asoc->stream));
1408
1409	asoc->frag_point = SCTP_TRUNC4(frag);
1410}
1411
1412void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1413{
1414	if (asoc->pathmtu != pmtu) {
1415		asoc->pathmtu = pmtu;
1416		sctp_assoc_update_frag_point(asoc);
1417	}
1418
1419	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1420		 asoc->pathmtu, asoc->frag_point);
1421}
1422
1423/* Update the association's pmtu and frag_point by going through all the
1424 * transports. This routine is called when a transport's PMTU has changed.
1425 */
1426void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1427{
1428	struct sctp_transport *t;
1429	__u32 pmtu = 0;
1430
1431	if (!asoc)
1432		return;
1433
1434	/* Get the lowest pmtu of all the transports. */
1435	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
 
1436		if (t->pmtu_pending && t->dst) {
1437			sctp_transport_update_pmtu(t,
1438						   atomic_read(&t->mtu_info));
1439			t->pmtu_pending = 0;
1440		}
1441		if (!pmtu || (t->pathmtu < pmtu))
1442			pmtu = t->pathmtu;
1443	}
1444
1445	sctp_assoc_set_pmtu(asoc, pmtu);
 
 
 
 
 
 
1446}
1447
1448/* Should we send a SACK to update our peer? */
1449static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1450{
1451	struct net *net = asoc->base.net;
1452
1453	switch (asoc->state) {
1454	case SCTP_STATE_ESTABLISHED:
1455	case SCTP_STATE_SHUTDOWN_PENDING:
1456	case SCTP_STATE_SHUTDOWN_RECEIVED:
1457	case SCTP_STATE_SHUTDOWN_SENT:
1458		if ((asoc->rwnd > asoc->a_rwnd) &&
1459		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1460			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1461			   asoc->pathmtu)))
1462			return true;
1463		break;
1464	default:
1465		break;
1466	}
1467	return false;
1468}
1469
1470/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1471void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1472{
1473	struct sctp_chunk *sack;
1474	struct timer_list *timer;
1475
1476	if (asoc->rwnd_over) {
1477		if (asoc->rwnd_over >= len) {
1478			asoc->rwnd_over -= len;
1479		} else {
1480			asoc->rwnd += (len - asoc->rwnd_over);
1481			asoc->rwnd_over = 0;
1482		}
1483	} else {
1484		asoc->rwnd += len;
1485	}
1486
1487	/* If we had window pressure, start recovering it
1488	 * once our rwnd had reached the accumulated pressure
1489	 * threshold.  The idea is to recover slowly, but up
1490	 * to the initial advertised window.
1491	 */
1492	if (asoc->rwnd_press) {
1493		int change = min(asoc->pathmtu, asoc->rwnd_press);
1494		asoc->rwnd += change;
1495		asoc->rwnd_press -= change;
1496	}
1497
1498	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1499		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1500		 asoc->a_rwnd);
1501
1502	/* Send a window update SACK if the rwnd has increased by at least the
1503	 * minimum of the association's PMTU and half of the receive buffer.
1504	 * The algorithm used is similar to the one described in
1505	 * Section 4.2.3.3 of RFC 1122.
1506	 */
1507	if (sctp_peer_needs_update(asoc)) {
1508		asoc->a_rwnd = asoc->rwnd;
1509
1510		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1511			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1512			 asoc->a_rwnd);
1513
1514		sack = sctp_make_sack(asoc);
1515		if (!sack)
1516			return;
1517
1518		asoc->peer.sack_needed = 0;
1519
1520		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1521
1522		/* Stop the SACK timer.  */
1523		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1524		if (del_timer(timer))
1525			sctp_association_put(asoc);
1526	}
1527}
1528
1529/* Decrease asoc's rwnd by len. */
1530void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1531{
1532	int rx_count;
1533	int over = 0;
1534
1535	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1536		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1537			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1538			 asoc->rwnd, asoc->rwnd_over);
1539
1540	if (asoc->ep->rcvbuf_policy)
1541		rx_count = atomic_read(&asoc->rmem_alloc);
1542	else
1543		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1544
1545	/* If we've reached or overflowed our receive buffer, announce
1546	 * a 0 rwnd if rwnd would still be positive.  Store the
1547	 * potential pressure overflow so that the window can be restored
1548	 * back to original value.
1549	 */
1550	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1551		over = 1;
1552
1553	if (asoc->rwnd >= len) {
1554		asoc->rwnd -= len;
1555		if (over) {
1556			asoc->rwnd_press += asoc->rwnd;
1557			asoc->rwnd = 0;
1558		}
1559	} else {
1560		asoc->rwnd_over += len - asoc->rwnd;
1561		asoc->rwnd = 0;
1562	}
1563
1564	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1565		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1566		 asoc->rwnd_press);
1567}
1568
1569/* Build the bind address list for the association based on info from the
1570 * local endpoint and the remote peer.
1571 */
1572int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1573				     enum sctp_scope scope, gfp_t gfp)
1574{
1575	struct sock *sk = asoc->base.sk;
1576	int flags;
1577
1578	/* Use scoping rules to determine the subset of addresses from
1579	 * the endpoint.
1580	 */
1581	flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1582	if (!inet_v6_ipv6only(sk))
1583		flags |= SCTP_ADDR4_ALLOWED;
1584	if (asoc->peer.ipv4_address)
1585		flags |= SCTP_ADDR4_PEERSUPP;
1586	if (asoc->peer.ipv6_address)
1587		flags |= SCTP_ADDR6_PEERSUPP;
1588
1589	return sctp_bind_addr_copy(asoc->base.net,
1590				   &asoc->base.bind_addr,
1591				   &asoc->ep->base.bind_addr,
1592				   scope, gfp, flags);
1593}
1594
1595/* Build the association's bind address list from the cookie.  */
1596int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1597					 struct sctp_cookie *cookie,
1598					 gfp_t gfp)
1599{
1600	struct sctp_init_chunk *peer_init = (struct sctp_init_chunk *)(cookie + 1);
1601	int var_size2 = ntohs(peer_init->chunk_hdr.length);
1602	int var_size3 = cookie->raw_addr_list_len;
1603	__u8 *raw = (__u8 *)peer_init + var_size2;
1604
1605	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1606				      asoc->ep->base.bind_addr.port, gfp);
1607}
1608
1609/* Lookup laddr in the bind address list of an association. */
1610int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1611			    const union sctp_addr *laddr)
1612{
1613	int found = 0;
1614
1615	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1616	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1617				 sctp_sk(asoc->base.sk)))
1618		found = 1;
1619
1620	return found;
1621}
1622
1623/* Set an association id for a given association */
1624int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1625{
1626	bool preload = gfpflags_allow_blocking(gfp);
1627	int ret;
1628
1629	/* If the id is already assigned, keep it. */
1630	if (asoc->assoc_id)
1631		return 0;
 
 
 
1632
1633	if (preload)
1634		idr_preload(gfp);
1635	spin_lock_bh(&sctp_assocs_id_lock);
1636	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1637	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1638	 */
1639	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1640			       GFP_NOWAIT);
 
 
1641	spin_unlock_bh(&sctp_assocs_id_lock);
1642	if (preload)
1643		idr_preload_end();
1644	if (ret < 0)
1645		return ret;
1646
1647	asoc->assoc_id = (sctp_assoc_t)ret;
1648	return 0;
1649}
1650
1651/* Free the ASCONF queue */
1652static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1653{
1654	struct sctp_chunk *asconf;
1655	struct sctp_chunk *tmp;
1656
1657	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1658		list_del_init(&asconf->list);
1659		sctp_chunk_free(asconf);
1660	}
1661}
1662
1663/* Free asconf_ack cache */
1664static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1665{
1666	struct sctp_chunk *ack;
1667	struct sctp_chunk *tmp;
1668
1669	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1670				transmitted_list) {
1671		list_del_init(&ack->transmitted_list);
1672		sctp_chunk_free(ack);
1673	}
1674}
1675
1676/* Clean up the ASCONF_ACK queue */
1677void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1678{
1679	struct sctp_chunk *ack;
1680	struct sctp_chunk *tmp;
1681
1682	/* We can remove all the entries from the queue up to
1683	 * the "Peer-Sequence-Number".
1684	 */
1685	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1686				transmitted_list) {
1687		if (ack->subh.addip_hdr->serial ==
1688				htonl(asoc->peer.addip_serial))
1689			break;
1690
1691		list_del_init(&ack->transmitted_list);
1692		sctp_chunk_free(ack);
1693	}
1694}
1695
1696/* Find the ASCONF_ACK whose serial number matches ASCONF */
1697struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1698					const struct sctp_association *asoc,
1699					__be32 serial)
1700{
1701	struct sctp_chunk *ack;
1702
1703	/* Walk through the list of cached ASCONF-ACKs and find the
1704	 * ack chunk whose serial number matches that of the request.
1705	 */
1706	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1707		if (sctp_chunk_pending(ack))
1708			continue;
1709		if (ack->subh.addip_hdr->serial == serial) {
1710			sctp_chunk_hold(ack);
1711			return ack;
1712		}
1713	}
1714
1715	return NULL;
1716}
1717
1718void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1719{
1720	/* Free any cached ASCONF_ACK chunk. */
1721	sctp_assoc_free_asconf_acks(asoc);
1722
1723	/* Free the ASCONF queue. */
1724	sctp_assoc_free_asconf_queue(asoc);
1725
1726	/* Free any cached ASCONF chunk. */
1727	if (asoc->addip_last_asconf)
1728		sctp_chunk_free(asoc->addip_last_asconf);
1729}