Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_inum.h"
 23#include "xfs_trans.h"
 24#include "xfs_trans_priv.h"
 25#include "xfs_sb.h"
 26#include "xfs_ag.h"
 27#include "xfs_mount.h"
 28#include "xfs_bmap_btree.h"
 29#include "xfs_inode.h"
 30#include "xfs_dinode.h"
 31#include "xfs_error.h"
 32#include "xfs_filestream.h"
 33#include "xfs_vnodeops.h"
 34#include "xfs_inode_item.h"
 35#include "xfs_quota.h"
 36#include "xfs_trace.h"
 37#include "xfs_fsops.h"
 38
 39#include <linux/kthread.h>
 40#include <linux/freezer.h>
 41
 42struct workqueue_struct	*xfs_syncd_wq;	/* sync workqueue */
 43
 44/*
 45 * The inode lookup is done in batches to keep the amount of lock traffic and
 46 * radix tree lookups to a minimum. The batch size is a trade off between
 47 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 48 * be too greedy.
 49 */
 50#define XFS_LOOKUP_BATCH	32
 51
 52STATIC int
 53xfs_inode_ag_walk_grab(
 54	struct xfs_inode	*ip)
 55{
 56	struct inode		*inode = VFS_I(ip);
 57
 58	ASSERT(rcu_read_lock_held());
 59
 60	/*
 61	 * check for stale RCU freed inode
 62	 *
 63	 * If the inode has been reallocated, it doesn't matter if it's not in
 64	 * the AG we are walking - we are walking for writeback, so if it
 65	 * passes all the "valid inode" checks and is dirty, then we'll write
 66	 * it back anyway.  If it has been reallocated and still being
 67	 * initialised, the XFS_INEW check below will catch it.
 68	 */
 69	spin_lock(&ip->i_flags_lock);
 70	if (!ip->i_ino)
 71		goto out_unlock_noent;
 72
 73	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 74	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
 75		goto out_unlock_noent;
 76	spin_unlock(&ip->i_flags_lock);
 77
 78	/* nothing to sync during shutdown */
 79	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 80		return EFSCORRUPTED;
 81
 82	/* If we can't grab the inode, it must on it's way to reclaim. */
 83	if (!igrab(inode))
 84		return ENOENT;
 85
 86	if (is_bad_inode(inode)) {
 87		IRELE(ip);
 88		return ENOENT;
 89	}
 90
 91	/* inode is valid */
 92	return 0;
 93
 94out_unlock_noent:
 95	spin_unlock(&ip->i_flags_lock);
 96	return ENOENT;
 97}
 98
 99STATIC int
100xfs_inode_ag_walk(
101	struct xfs_mount	*mp,
102	struct xfs_perag	*pag,
103	int			(*execute)(struct xfs_inode *ip,
104					   struct xfs_perag *pag, int flags),
105	int			flags)
106{
107	uint32_t		first_index;
108	int			last_error = 0;
109	int			skipped;
110	int			done;
111	int			nr_found;
112
113restart:
114	done = 0;
115	skipped = 0;
116	first_index = 0;
117	nr_found = 0;
118	do {
119		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
120		int		error = 0;
121		int		i;
122
123		rcu_read_lock();
124		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
125					(void **)batch, first_index,
126					XFS_LOOKUP_BATCH);
127		if (!nr_found) {
128			rcu_read_unlock();
129			break;
130		}
131
132		/*
133		 * Grab the inodes before we drop the lock. if we found
134		 * nothing, nr == 0 and the loop will be skipped.
135		 */
136		for (i = 0; i < nr_found; i++) {
137			struct xfs_inode *ip = batch[i];
138
139			if (done || xfs_inode_ag_walk_grab(ip))
140				batch[i] = NULL;
141
142			/*
143			 * Update the index for the next lookup. Catch
144			 * overflows into the next AG range which can occur if
145			 * we have inodes in the last block of the AG and we
146			 * are currently pointing to the last inode.
147			 *
148			 * Because we may see inodes that are from the wrong AG
149			 * due to RCU freeing and reallocation, only update the
150			 * index if it lies in this AG. It was a race that lead
151			 * us to see this inode, so another lookup from the
152			 * same index will not find it again.
153			 */
154			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155				continue;
156			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158				done = 1;
159		}
160
161		/* unlock now we've grabbed the inodes. */
162		rcu_read_unlock();
163
164		for (i = 0; i < nr_found; i++) {
165			if (!batch[i])
166				continue;
167			error = execute(batch[i], pag, flags);
168			IRELE(batch[i]);
169			if (error == EAGAIN) {
170				skipped++;
171				continue;
172			}
173			if (error && last_error != EFSCORRUPTED)
174				last_error = error;
175		}
176
177		/* bail out if the filesystem is corrupted.  */
178		if (error == EFSCORRUPTED)
179			break;
180
181		cond_resched();
182
183	} while (nr_found && !done);
184
185	if (skipped) {
186		delay(1);
187		goto restart;
188	}
189	return last_error;
190}
191
192int
193xfs_inode_ag_iterator(
194	struct xfs_mount	*mp,
195	int			(*execute)(struct xfs_inode *ip,
196					   struct xfs_perag *pag, int flags),
197	int			flags)
198{
199	struct xfs_perag	*pag;
200	int			error = 0;
201	int			last_error = 0;
202	xfs_agnumber_t		ag;
203
204	ag = 0;
205	while ((pag = xfs_perag_get(mp, ag))) {
206		ag = pag->pag_agno + 1;
207		error = xfs_inode_ag_walk(mp, pag, execute, flags);
208		xfs_perag_put(pag);
209		if (error) {
210			last_error = error;
211			if (error == EFSCORRUPTED)
212				break;
213		}
214	}
215	return XFS_ERROR(last_error);
216}
217
218STATIC int
219xfs_sync_inode_data(
220	struct xfs_inode	*ip,
221	struct xfs_perag	*pag,
222	int			flags)
223{
224	struct inode		*inode = VFS_I(ip);
225	struct address_space *mapping = inode->i_mapping;
226	int			error = 0;
227
228	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
229		return 0;
230
231	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
232		if (flags & SYNC_TRYLOCK)
233			return 0;
234		xfs_ilock(ip, XFS_IOLOCK_SHARED);
235	}
236
237	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
238				0 : XBF_ASYNC, FI_NONE);
239	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
240	return error;
241}
242
243/*
244 * Write out pagecache data for the whole filesystem.
245 */
246STATIC int
247xfs_sync_data(
248	struct xfs_mount	*mp,
249	int			flags)
250{
251	int			error;
252
253	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
254
255	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
256	if (error)
257		return XFS_ERROR(error);
258
259	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
260	return 0;
261}
262
263STATIC int
264xfs_sync_fsdata(
265	struct xfs_mount	*mp)
266{
267	struct xfs_buf		*bp;
268	int			error;
269
270	/*
271	 * If the buffer is pinned then push on the log so we won't get stuck
272	 * waiting in the write for someone, maybe ourselves, to flush the log.
273	 *
274	 * Even though we just pushed the log above, we did not have the
275	 * superblock buffer locked at that point so it can become pinned in
276	 * between there and here.
277	 */
278	bp = xfs_getsb(mp, 0);
279	if (xfs_buf_ispinned(bp))
280		xfs_log_force(mp, 0);
281	error = xfs_bwrite(bp);
282	xfs_buf_relse(bp);
283	return error;
284}
285
286/*
287 * When remounting a filesystem read-only or freezing the filesystem, we have
288 * two phases to execute. This first phase is syncing the data before we
289 * quiesce the filesystem, and the second is flushing all the inodes out after
290 * we've waited for all the transactions created by the first phase to
291 * complete. The second phase ensures that the inodes are written to their
292 * location on disk rather than just existing in transactions in the log. This
293 * means after a quiesce there is no log replay required to write the inodes to
294 * disk (this is the main difference between a sync and a quiesce).
295 */
296/*
297 * First stage of freeze - no writers will make progress now we are here,
298 * so we flush delwri and delalloc buffers here, then wait for all I/O to
299 * complete.  Data is frozen at that point. Metadata is not frozen,
300 * transactions can still occur here so don't bother emptying the AIL
301 * because it'll just get dirty again.
302 */
303int
304xfs_quiesce_data(
305	struct xfs_mount	*mp)
306{
307	int			error, error2 = 0;
308
309	/* force out the log */
310	xfs_log_force(mp, XFS_LOG_SYNC);
311
312	/* write superblock and hoover up shutdown errors */
313	error = xfs_sync_fsdata(mp);
314
315	/* mark the log as covered if needed */
316	if (xfs_log_need_covered(mp))
317		error2 = xfs_fs_log_dummy(mp);
318
319	return error ? error : error2;
320}
321
322/*
323 * Second stage of a quiesce. The data is already synced, now we have to take
324 * care of the metadata. New transactions are already blocked, so we need to
325 * wait for any remaining transactions to drain out before proceeding.
326 */
327void
328xfs_quiesce_attr(
329	struct xfs_mount	*mp)
330{
331	int	error = 0;
332
333	/* wait for all modifications to complete */
334	while (atomic_read(&mp->m_active_trans) > 0)
335		delay(100);
336
337	/* reclaim inodes to do any IO before the freeze completes */
338	xfs_reclaim_inodes(mp, 0);
339	xfs_reclaim_inodes(mp, SYNC_WAIT);
340
341	/* flush all pending changes from the AIL */
342	xfs_ail_push_all_sync(mp->m_ail);
343
344	/*
345	 * Just warn here till VFS can correctly support
346	 * read-only remount without racing.
347	 */
348	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
349
350	/* Push the superblock and write an unmount record */
351	error = xfs_log_sbcount(mp);
352	if (error)
353		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
354				"Frozen image may not be consistent.");
355	xfs_log_unmount_write(mp);
356
357	/*
358	 * At this point we might have modified the superblock again and thus
359	 * added an item to the AIL, thus flush it again.
360	 */
361	xfs_ail_push_all_sync(mp->m_ail);
362}
363
364static void
365xfs_syncd_queue_sync(
366	struct xfs_mount        *mp)
367{
368	queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
369				msecs_to_jiffies(xfs_syncd_centisecs * 10));
370}
371
372/*
373 * Every sync period we need to unpin all items, reclaim inodes and sync
374 * disk quotas.  We might need to cover the log to indicate that the
375 * filesystem is idle and not frozen.
376 */
377STATIC void
378xfs_sync_worker(
379	struct work_struct *work)
380{
381	struct xfs_mount *mp = container_of(to_delayed_work(work),
382					struct xfs_mount, m_sync_work);
383	int		error;
384
385	/*
386	 * We shouldn't write/force the log if we are in the mount/unmount
387	 * process or on a read only filesystem. The workqueue still needs to be
388	 * active in both cases, however, because it is used for inode reclaim
389	 * during these times.  Use the MS_ACTIVE flag to avoid doing anything
390	 * during mount.  Doing work during unmount is avoided by calling
391	 * cancel_delayed_work_sync on this work queue before tearing down
392	 * the ail and the log in xfs_log_unmount.
393	 */
394	if (!(mp->m_super->s_flags & MS_ACTIVE) &&
395	    !(mp->m_flags & XFS_MOUNT_RDONLY)) {
396		/* dgc: errors ignored here */
397		if (mp->m_super->s_frozen == SB_UNFROZEN &&
398		    xfs_log_need_covered(mp))
399			error = xfs_fs_log_dummy(mp);
400		else
401			xfs_log_force(mp, 0);
402
403		/* start pushing all the metadata that is currently
404		 * dirty */
405		xfs_ail_push_all(mp->m_ail);
406	}
407
408	/* queue us up again */
409	xfs_syncd_queue_sync(mp);
410}
411
412/*
413 * Queue a new inode reclaim pass if there are reclaimable inodes and there
414 * isn't a reclaim pass already in progress. By default it runs every 5s based
415 * on the xfs syncd work default of 30s. Perhaps this should have it's own
416 * tunable, but that can be done if this method proves to be ineffective or too
417 * aggressive.
418 */
419static void
420xfs_syncd_queue_reclaim(
421	struct xfs_mount        *mp)
422{
423
424	rcu_read_lock();
425	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
426		queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
427			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
428	}
429	rcu_read_unlock();
430}
431
432/*
433 * This is a fast pass over the inode cache to try to get reclaim moving on as
434 * many inodes as possible in a short period of time. It kicks itself every few
435 * seconds, as well as being kicked by the inode cache shrinker when memory
436 * goes low. It scans as quickly as possible avoiding locked inodes or those
437 * already being flushed, and once done schedules a future pass.
438 */
439STATIC void
440xfs_reclaim_worker(
441	struct work_struct *work)
442{
443	struct xfs_mount *mp = container_of(to_delayed_work(work),
444					struct xfs_mount, m_reclaim_work);
445
446	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
447	xfs_syncd_queue_reclaim(mp);
448}
449
450/*
451 * Flush delayed allocate data, attempting to free up reserved space
452 * from existing allocations.  At this point a new allocation attempt
453 * has failed with ENOSPC and we are in the process of scratching our
454 * heads, looking about for more room.
455 *
456 * Queue a new data flush if there isn't one already in progress and
457 * wait for completion of the flush. This means that we only ever have one
458 * inode flush in progress no matter how many ENOSPC events are occurring and
459 * so will prevent the system from bogging down due to every concurrent
460 * ENOSPC event scanning all the active inodes in the system for writeback.
461 */
462void
463xfs_flush_inodes(
464	struct xfs_inode	*ip)
465{
466	struct xfs_mount	*mp = ip->i_mount;
467
468	queue_work(xfs_syncd_wq, &mp->m_flush_work);
469	flush_work_sync(&mp->m_flush_work);
470}
471
472STATIC void
473xfs_flush_worker(
474	struct work_struct *work)
475{
476	struct xfs_mount *mp = container_of(work,
477					struct xfs_mount, m_flush_work);
478
479	xfs_sync_data(mp, SYNC_TRYLOCK);
480	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
481}
482
483int
484xfs_syncd_init(
485	struct xfs_mount	*mp)
486{
487	INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
488	INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
489	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
490
491	xfs_syncd_queue_sync(mp);
492
493	return 0;
494}
495
496void
497xfs_syncd_stop(
498	struct xfs_mount	*mp)
499{
500	cancel_delayed_work_sync(&mp->m_sync_work);
501	cancel_delayed_work_sync(&mp->m_reclaim_work);
502	cancel_work_sync(&mp->m_flush_work);
503}
504
505void
506__xfs_inode_set_reclaim_tag(
507	struct xfs_perag	*pag,
508	struct xfs_inode	*ip)
509{
510	radix_tree_tag_set(&pag->pag_ici_root,
511			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
512			   XFS_ICI_RECLAIM_TAG);
513
514	if (!pag->pag_ici_reclaimable) {
515		/* propagate the reclaim tag up into the perag radix tree */
516		spin_lock(&ip->i_mount->m_perag_lock);
517		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
518				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
519				XFS_ICI_RECLAIM_TAG);
520		spin_unlock(&ip->i_mount->m_perag_lock);
521
522		/* schedule periodic background inode reclaim */
523		xfs_syncd_queue_reclaim(ip->i_mount);
524
525		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
526							-1, _RET_IP_);
527	}
528	pag->pag_ici_reclaimable++;
529}
530
531/*
532 * We set the inode flag atomically with the radix tree tag.
533 * Once we get tag lookups on the radix tree, this inode flag
534 * can go away.
535 */
536void
537xfs_inode_set_reclaim_tag(
538	xfs_inode_t	*ip)
539{
540	struct xfs_mount *mp = ip->i_mount;
541	struct xfs_perag *pag;
542
543	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
544	spin_lock(&pag->pag_ici_lock);
545	spin_lock(&ip->i_flags_lock);
546	__xfs_inode_set_reclaim_tag(pag, ip);
547	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
548	spin_unlock(&ip->i_flags_lock);
549	spin_unlock(&pag->pag_ici_lock);
550	xfs_perag_put(pag);
551}
552
553STATIC void
554__xfs_inode_clear_reclaim(
555	xfs_perag_t	*pag,
556	xfs_inode_t	*ip)
557{
558	pag->pag_ici_reclaimable--;
559	if (!pag->pag_ici_reclaimable) {
560		/* clear the reclaim tag from the perag radix tree */
561		spin_lock(&ip->i_mount->m_perag_lock);
562		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
563				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
564				XFS_ICI_RECLAIM_TAG);
565		spin_unlock(&ip->i_mount->m_perag_lock);
566		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
567							-1, _RET_IP_);
568	}
569}
570
571void
572__xfs_inode_clear_reclaim_tag(
573	xfs_mount_t	*mp,
574	xfs_perag_t	*pag,
575	xfs_inode_t	*ip)
576{
577	radix_tree_tag_clear(&pag->pag_ici_root,
578			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
579	__xfs_inode_clear_reclaim(pag, ip);
580}
581
582/*
583 * Grab the inode for reclaim exclusively.
584 * Return 0 if we grabbed it, non-zero otherwise.
585 */
586STATIC int
587xfs_reclaim_inode_grab(
588	struct xfs_inode	*ip,
589	int			flags)
590{
591	ASSERT(rcu_read_lock_held());
592
593	/* quick check for stale RCU freed inode */
594	if (!ip->i_ino)
595		return 1;
596
597	/*
598	 * If we are asked for non-blocking operation, do unlocked checks to
599	 * see if the inode already is being flushed or in reclaim to avoid
600	 * lock traffic.
601	 */
602	if ((flags & SYNC_TRYLOCK) &&
603	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
604		return 1;
605
606	/*
607	 * The radix tree lock here protects a thread in xfs_iget from racing
608	 * with us starting reclaim on the inode.  Once we have the
609	 * XFS_IRECLAIM flag set it will not touch us.
610	 *
611	 * Due to RCU lookup, we may find inodes that have been freed and only
612	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
613	 * aren't candidates for reclaim at all, so we must check the
614	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
615	 */
616	spin_lock(&ip->i_flags_lock);
617	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
618	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
619		/* not a reclaim candidate. */
620		spin_unlock(&ip->i_flags_lock);
621		return 1;
622	}
623	__xfs_iflags_set(ip, XFS_IRECLAIM);
624	spin_unlock(&ip->i_flags_lock);
625	return 0;
626}
627
628/*
629 * Inodes in different states need to be treated differently. The following
630 * table lists the inode states and the reclaim actions necessary:
631 *
632 *	inode state	     iflush ret		required action
633 *      ---------------      ----------         ---------------
634 *	bad			-		reclaim
635 *	shutdown		EIO		unpin and reclaim
636 *	clean, unpinned		0		reclaim
637 *	stale, unpinned		0		reclaim
638 *	clean, pinned(*)	0		requeue
639 *	stale, pinned		EAGAIN		requeue
640 *	dirty, async		-		requeue
641 *	dirty, sync		0		reclaim
642 *
643 * (*) dgc: I don't think the clean, pinned state is possible but it gets
644 * handled anyway given the order of checks implemented.
645 *
646 * Also, because we get the flush lock first, we know that any inode that has
647 * been flushed delwri has had the flush completed by the time we check that
648 * the inode is clean.
649 *
650 * Note that because the inode is flushed delayed write by AIL pushing, the
651 * flush lock may already be held here and waiting on it can result in very
652 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
653 * the caller should push the AIL first before trying to reclaim inodes to
654 * minimise the amount of time spent waiting.  For background relaim, we only
655 * bother to reclaim clean inodes anyway.
656 *
657 * Hence the order of actions after gaining the locks should be:
658 *	bad		=> reclaim
659 *	shutdown	=> unpin and reclaim
660 *	pinned, async	=> requeue
661 *	pinned, sync	=> unpin
662 *	stale		=> reclaim
663 *	clean		=> reclaim
664 *	dirty, async	=> requeue
665 *	dirty, sync	=> flush, wait and reclaim
666 */
667STATIC int
668xfs_reclaim_inode(
669	struct xfs_inode	*ip,
670	struct xfs_perag	*pag,
671	int			sync_mode)
672{
673	struct xfs_buf		*bp = NULL;
674	int			error;
675
676restart:
677	error = 0;
678	xfs_ilock(ip, XFS_ILOCK_EXCL);
679	if (!xfs_iflock_nowait(ip)) {
680		if (!(sync_mode & SYNC_WAIT))
681			goto out;
682		xfs_iflock(ip);
683	}
684
685	if (is_bad_inode(VFS_I(ip)))
686		goto reclaim;
687	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
688		xfs_iunpin_wait(ip);
689		xfs_iflush_abort(ip, false);
690		goto reclaim;
691	}
692	if (xfs_ipincount(ip)) {
693		if (!(sync_mode & SYNC_WAIT))
694			goto out_ifunlock;
695		xfs_iunpin_wait(ip);
696	}
697	if (xfs_iflags_test(ip, XFS_ISTALE))
698		goto reclaim;
699	if (xfs_inode_clean(ip))
700		goto reclaim;
701
702	/*
703	 * Never flush out dirty data during non-blocking reclaim, as it would
704	 * just contend with AIL pushing trying to do the same job.
705	 */
706	if (!(sync_mode & SYNC_WAIT))
707		goto out_ifunlock;
708
709	/*
710	 * Now we have an inode that needs flushing.
711	 *
712	 * Note that xfs_iflush will never block on the inode buffer lock, as
713	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
714	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
715	 * doing a blocking xfs_itobp() to get the cluster buffer would result
716	 * in an ABBA deadlock with xfs_ifree_cluster().
717	 *
718	 * As xfs_ifree_cluser() must gather all inodes that are active in the
719	 * cache to mark them stale, if we hit this case we don't actually want
720	 * to do IO here - we want the inode marked stale so we can simply
721	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
722	 * inode, back off and try again.  Hopefully the next pass through will
723	 * see the stale flag set on the inode.
724	 */
725	error = xfs_iflush(ip, &bp);
726	if (error == EAGAIN) {
727		xfs_iunlock(ip, XFS_ILOCK_EXCL);
728		/* backoff longer than in xfs_ifree_cluster */
729		delay(2);
730		goto restart;
731	}
732
733	if (!error) {
734		error = xfs_bwrite(bp);
735		xfs_buf_relse(bp);
736	}
737
738	xfs_iflock(ip);
739reclaim:
740	xfs_ifunlock(ip);
741	xfs_iunlock(ip, XFS_ILOCK_EXCL);
742
743	XFS_STATS_INC(xs_ig_reclaims);
744	/*
745	 * Remove the inode from the per-AG radix tree.
746	 *
747	 * Because radix_tree_delete won't complain even if the item was never
748	 * added to the tree assert that it's been there before to catch
749	 * problems with the inode life time early on.
750	 */
751	spin_lock(&pag->pag_ici_lock);
752	if (!radix_tree_delete(&pag->pag_ici_root,
753				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
754		ASSERT(0);
755	__xfs_inode_clear_reclaim(pag, ip);
756	spin_unlock(&pag->pag_ici_lock);
757
758	/*
759	 * Here we do an (almost) spurious inode lock in order to coordinate
760	 * with inode cache radix tree lookups.  This is because the lookup
761	 * can reference the inodes in the cache without taking references.
762	 *
763	 * We make that OK here by ensuring that we wait until the inode is
764	 * unlocked after the lookup before we go ahead and free it.
765	 */
766	xfs_ilock(ip, XFS_ILOCK_EXCL);
767	xfs_qm_dqdetach(ip);
768	xfs_iunlock(ip, XFS_ILOCK_EXCL);
769
770	xfs_inode_free(ip);
771	return error;
772
773out_ifunlock:
774	xfs_ifunlock(ip);
775out:
776	xfs_iflags_clear(ip, XFS_IRECLAIM);
777	xfs_iunlock(ip, XFS_ILOCK_EXCL);
778	/*
779	 * We could return EAGAIN here to make reclaim rescan the inode tree in
780	 * a short while. However, this just burns CPU time scanning the tree
781	 * waiting for IO to complete and xfssyncd never goes back to the idle
782	 * state. Instead, return 0 to let the next scheduled background reclaim
783	 * attempt to reclaim the inode again.
784	 */
785	return 0;
786}
787
788/*
789 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
790 * corrupted, we still want to try to reclaim all the inodes. If we don't,
791 * then a shut down during filesystem unmount reclaim walk leak all the
792 * unreclaimed inodes.
793 */
794int
795xfs_reclaim_inodes_ag(
796	struct xfs_mount	*mp,
797	int			flags,
798	int			*nr_to_scan)
799{
800	struct xfs_perag	*pag;
801	int			error = 0;
802	int			last_error = 0;
803	xfs_agnumber_t		ag;
804	int			trylock = flags & SYNC_TRYLOCK;
805	int			skipped;
806
807restart:
808	ag = 0;
809	skipped = 0;
810	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
811		unsigned long	first_index = 0;
812		int		done = 0;
813		int		nr_found = 0;
814
815		ag = pag->pag_agno + 1;
816
817		if (trylock) {
818			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
819				skipped++;
820				xfs_perag_put(pag);
821				continue;
822			}
823			first_index = pag->pag_ici_reclaim_cursor;
824		} else
825			mutex_lock(&pag->pag_ici_reclaim_lock);
826
827		do {
828			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
829			int	i;
830
831			rcu_read_lock();
832			nr_found = radix_tree_gang_lookup_tag(
833					&pag->pag_ici_root,
834					(void **)batch, first_index,
835					XFS_LOOKUP_BATCH,
836					XFS_ICI_RECLAIM_TAG);
837			if (!nr_found) {
838				done = 1;
839				rcu_read_unlock();
840				break;
841			}
842
843			/*
844			 * Grab the inodes before we drop the lock. if we found
845			 * nothing, nr == 0 and the loop will be skipped.
846			 */
847			for (i = 0; i < nr_found; i++) {
848				struct xfs_inode *ip = batch[i];
849
850				if (done || xfs_reclaim_inode_grab(ip, flags))
851					batch[i] = NULL;
852
853				/*
854				 * Update the index for the next lookup. Catch
855				 * overflows into the next AG range which can
856				 * occur if we have inodes in the last block of
857				 * the AG and we are currently pointing to the
858				 * last inode.
859				 *
860				 * Because we may see inodes that are from the
861				 * wrong AG due to RCU freeing and
862				 * reallocation, only update the index if it
863				 * lies in this AG. It was a race that lead us
864				 * to see this inode, so another lookup from
865				 * the same index will not find it again.
866				 */
867				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
868								pag->pag_agno)
869					continue;
870				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
871				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
872					done = 1;
873			}
874
875			/* unlock now we've grabbed the inodes. */
876			rcu_read_unlock();
877
878			for (i = 0; i < nr_found; i++) {
879				if (!batch[i])
880					continue;
881				error = xfs_reclaim_inode(batch[i], pag, flags);
882				if (error && last_error != EFSCORRUPTED)
883					last_error = error;
884			}
885
886			*nr_to_scan -= XFS_LOOKUP_BATCH;
887
888			cond_resched();
889
890		} while (nr_found && !done && *nr_to_scan > 0);
891
892		if (trylock && !done)
893			pag->pag_ici_reclaim_cursor = first_index;
894		else
895			pag->pag_ici_reclaim_cursor = 0;
896		mutex_unlock(&pag->pag_ici_reclaim_lock);
897		xfs_perag_put(pag);
898	}
899
900	/*
901	 * if we skipped any AG, and we still have scan count remaining, do
902	 * another pass this time using blocking reclaim semantics (i.e
903	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
904	 * ensure that when we get more reclaimers than AGs we block rather
905	 * than spin trying to execute reclaim.
906	 */
907	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
908		trylock = 0;
909		goto restart;
910	}
911	return XFS_ERROR(last_error);
912}
913
914int
915xfs_reclaim_inodes(
916	xfs_mount_t	*mp,
917	int		mode)
918{
919	int		nr_to_scan = INT_MAX;
920
921	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
922}
923
924/*
925 * Scan a certain number of inodes for reclaim.
926 *
927 * When called we make sure that there is a background (fast) inode reclaim in
928 * progress, while we will throttle the speed of reclaim via doing synchronous
929 * reclaim of inodes. That means if we come across dirty inodes, we wait for
930 * them to be cleaned, which we hope will not be very long due to the
931 * background walker having already kicked the IO off on those dirty inodes.
932 */
933void
934xfs_reclaim_inodes_nr(
935	struct xfs_mount	*mp,
936	int			nr_to_scan)
937{
938	/* kick background reclaimer and push the AIL */
939	xfs_syncd_queue_reclaim(mp);
940	xfs_ail_push_all(mp->m_ail);
941
942	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
943}
944
945/*
946 * Return the number of reclaimable inodes in the filesystem for
947 * the shrinker to determine how much to reclaim.
948 */
949int
950xfs_reclaim_inodes_count(
951	struct xfs_mount	*mp)
952{
953	struct xfs_perag	*pag;
954	xfs_agnumber_t		ag = 0;
955	int			reclaimable = 0;
956
957	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
958		ag = pag->pag_agno + 1;
959		reclaimable += pag->pag_ici_reclaimable;
960		xfs_perag_put(pag);
961	}
962	return reclaimable;
963}
964