Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_types.h"
  23#include "xfs_log.h"
  24#include "xfs_inum.h"
  25#include "xfs_trans.h"
  26#include "xfs_trans_priv.h"
  27#include "xfs_sb.h"
  28#include "xfs_ag.h"
  29#include "xfs_mount.h"
  30#include "xfs_bmap_btree.h"
  31#include "xfs_alloc_btree.h"
  32#include "xfs_ialloc_btree.h"
  33#include "xfs_attr_sf.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
 
 
 
 
 
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_btree.h"
  39#include "xfs_alloc.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
 
 
  42#include "xfs_error.h"
  43#include "xfs_utils.h"
  44#include "xfs_quota.h"
  45#include "xfs_filestream.h"
  46#include "xfs_vnodeops.h"
  47#include "xfs_trace.h"
  48
  49kmem_zone_t *xfs_ifork_zone;
  50kmem_zone_t *xfs_inode_zone;
  51
  52/*
  53 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  54 * freed from a file in a single transaction.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55 */
  56#define	XFS_ITRUNC_MAX_EXTENTS	2
 
 
 
 
  57
  58STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  59STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  60STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  61STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
 
  62
  63/*
  64 * helper function to extract extent size hint from inode
  65 */
  66xfs_extlen_t
  67xfs_get_extsz_hint(
  68	struct xfs_inode	*ip)
  69{
  70	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  71		return ip->i_d.di_extsize;
  72	if (XFS_IS_REALTIME_INODE(ip))
  73		return ip->i_mount->m_sb.sb_rextsize;
  74	return 0;
 
  75}
  76
  77#ifdef DEBUG
  78/*
  79 * Make sure that the extents in the given memory buffer
  80 * are valid.
 
 
  81 */
  82STATIC void
  83xfs_validate_extents(
  84	xfs_ifork_t		*ifp,
  85	int			nrecs,
  86	xfs_exntfmt_t		fmt)
  87{
  88	xfs_bmbt_irec_t		irec;
  89	xfs_bmbt_rec_host_t	rec;
  90	int			i;
  91
  92	for (i = 0; i < nrecs; i++) {
  93		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  94		rec.l0 = get_unaligned(&ep->l0);
  95		rec.l1 = get_unaligned(&ep->l1);
  96		xfs_bmbt_get_all(&rec, &irec);
  97		if (fmt == XFS_EXTFMT_NOSTATE)
  98			ASSERT(irec.br_state == XFS_EXT_NORM);
  99	}
 100}
 101#else /* DEBUG */
 102#define xfs_validate_extents(ifp, nrecs, fmt)
 103#endif /* DEBUG */
 104
 105/*
 106 * Check that none of the inode's in the buffer have a next
 107 * unlinked field of 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108 */
 109#if defined(DEBUG)
 110void
 111xfs_inobp_check(
 112	xfs_mount_t	*mp,
 113	xfs_buf_t	*bp)
 114{
 115	int		i;
 116	int		j;
 117	xfs_dinode_t	*dip;
 118
 119	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 120
 121	for (i = 0; i < j; i++) {
 122		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 123					i * mp->m_sb.sb_inodesize);
 124		if (!dip->di_next_unlinked)  {
 125			xfs_alert(mp,
 126	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
 127				bp);
 128			ASSERT(dip->di_next_unlinked);
 129		}
 
 
 
 130	}
 
 
 
 
 
 131}
 132#endif
 133
 134/*
 135 * Find the buffer associated with the given inode map
 136 * We do basic validation checks on the buffer once it has been
 137 * retrieved from disk.
 
 
 
 
 
 
 
 138 */
 139STATIC int
 140xfs_imap_to_bp(
 141	xfs_mount_t	*mp,
 142	xfs_trans_t	*tp,
 143	struct xfs_imap	*imap,
 144	xfs_buf_t	**bpp,
 145	uint		buf_flags,
 146	uint		iget_flags)
 147{
 148	int		error;
 149	int		i;
 150	int		ni;
 151	xfs_buf_t	*bp;
 152
 153	buf_flags |= XBF_UNMAPPED;
 154	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
 155				   (int)imap->im_len, buf_flags, &bp);
 156	if (error) {
 157		if (error != EAGAIN) {
 158			xfs_warn(mp,
 159				"%s: xfs_trans_read_buf() returned error %d.",
 160				__func__, error);
 161		} else {
 162			ASSERT(buf_flags & XBF_TRYLOCK);
 163		}
 164		return error;
 165	}
 166
 167	/*
 168	 * Validate the magic number and version of every inode in the buffer
 169	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
 170	 */
 171#ifdef DEBUG
 172	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
 173#else	/* usual case */
 174	ni = 1;
 175#endif
 176
 177	for (i = 0; i < ni; i++) {
 178		int		di_ok;
 179		xfs_dinode_t	*dip;
 180
 181		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 182					(i << mp->m_sb.sb_inodelog));
 183		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
 184			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 185		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 186						XFS_ERRTAG_ITOBP_INOTOBP,
 187						XFS_RANDOM_ITOBP_INOTOBP))) {
 188			if (iget_flags & XFS_IGET_UNTRUSTED) {
 189				xfs_trans_brelse(tp, bp);
 190				return XFS_ERROR(EINVAL);
 191			}
 192			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
 193						XFS_ERRLEVEL_HIGH, mp, dip);
 194#ifdef DEBUG
 195			xfs_emerg(mp,
 196				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
 197				(unsigned long long)imap->im_blkno, i,
 198				be16_to_cpu(dip->di_magic));
 199			ASSERT(0);
 200#endif
 201			xfs_trans_brelse(tp, bp);
 202			return XFS_ERROR(EFSCORRUPTED);
 203		}
 204	}
 205
 206	xfs_inobp_check(mp, bp);
 207	*bpp = bp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	return 0;
 209}
 210
 211/*
 212 * This routine is called to map an inode number within a file
 213 * system to the buffer containing the on-disk version of the
 214 * inode.  It returns a pointer to the buffer containing the
 215 * on-disk inode in the bpp parameter, and in the dip parameter
 216 * it returns a pointer to the on-disk inode within that buffer.
 217 *
 218 * If a non-zero error is returned, then the contents of bpp and
 219 * dipp are undefined.
 
 
 220 *
 221 * Use xfs_imap() to determine the size and location of the
 222 * buffer to read from disk.
 223 */
 224int
 225xfs_inotobp(
 226	xfs_mount_t	*mp,
 227	xfs_trans_t	*tp,
 228	xfs_ino_t	ino,
 229	xfs_dinode_t	**dipp,
 230	xfs_buf_t	**bpp,
 231	int		*offset,
 232	uint		imap_flags)
 233{
 234	struct xfs_imap	imap;
 235	xfs_buf_t	*bp;
 236	int		error;
 237
 238	imap.im_blkno = 0;
 239	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
 240	if (error)
 241		return error;
 242
 243	error = xfs_imap_to_bp(mp, tp, &imap, &bp, 0, imap_flags);
 244	if (error)
 245		return error;
 
 246
 247	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
 248	*bpp = bp;
 249	*offset = imap.im_boffset;
 250	return 0;
 
 
 251}
 252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253
 254/*
 255 * This routine is called to map an inode to the buffer containing
 256 * the on-disk version of the inode.  It returns a pointer to the
 257 * buffer containing the on-disk inode in the bpp parameter, and in
 258 * the dip parameter it returns a pointer to the on-disk inode within
 259 * that buffer.
 260 *
 261 * If a non-zero error is returned, then the contents of bpp and
 262 * dipp are undefined.
 263 *
 264 * The inode is expected to already been mapped to its buffer and read
 265 * in once, thus we can use the mapping information stored in the inode
 266 * rather than calling xfs_imap().  This allows us to avoid the overhead
 267 * of looking at the inode btree for small block file systems
 268 * (see xfs_imap()).
 269 */
 270int
 271xfs_itobp(
 272	xfs_mount_t	*mp,
 273	xfs_trans_t	*tp,
 274	xfs_inode_t	*ip,
 275	xfs_dinode_t	**dipp,
 276	xfs_buf_t	**bpp,
 277	uint		buf_flags)
 278{
 279	xfs_buf_t	*bp;
 280	int		error;
 
 
 
 281
 282	ASSERT(ip->i_imap.im_blkno != 0);
 
 
 
 
 
 
 
 
 
 
 
 283
 284	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
 285	if (error)
 286		return error;
 287
 288	if (!bp) {
 289		ASSERT(buf_flags & XBF_TRYLOCK);
 290		ASSERT(tp == NULL);
 291		*bpp = NULL;
 292		return EAGAIN;
 293	}
 294
 295	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 296	*bpp = bp;
 297	return 0;
 
 
 
 
 
 
 
 
 298}
 299
 300/*
 301 * Move inode type and inode format specific information from the
 302 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 303 * this means set if_rdev to the proper value.  For files, directories,
 304 * and symlinks this means to bring in the in-line data or extent
 305 * pointers.  For a file in B-tree format, only the root is immediately
 306 * brought in-core.  The rest will be in-lined in if_extents when it
 307 * is first referenced (see xfs_iread_extents()).
 
 
 
 
 
 
 308 */
 309STATIC int
 310xfs_iformat(
 311	xfs_inode_t		*ip,
 312	xfs_dinode_t		*dip)
 
 313{
 314	xfs_attr_shortform_t	*atp;
 315	int			size;
 316	int			error = 0;
 317	xfs_fsize_t             di_size;
 
 318
 319	if (unlikely(be32_to_cpu(dip->di_nextents) +
 320		     be16_to_cpu(dip->di_anextents) >
 321		     be64_to_cpu(dip->di_nblocks))) {
 322		xfs_warn(ip->i_mount,
 323			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
 324			(unsigned long long)ip->i_ino,
 325			(int)(be32_to_cpu(dip->di_nextents) +
 326			      be16_to_cpu(dip->di_anextents)),
 327			(unsigned long long)
 328				be64_to_cpu(dip->di_nblocks));
 329		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
 330				     ip->i_mount, dip);
 331		return XFS_ERROR(EFSCORRUPTED);
 332	}
 333
 334	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
 335		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
 336			(unsigned long long)ip->i_ino,
 337			dip->di_forkoff);
 338		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
 339				     ip->i_mount, dip);
 340		return XFS_ERROR(EFSCORRUPTED);
 341	}
 342
 343	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
 344		     !ip->i_mount->m_rtdev_targp)) {
 345		xfs_warn(ip->i_mount,
 346			"corrupt dinode %Lu, has realtime flag set.",
 347			ip->i_ino);
 348		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
 349				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
 350		return XFS_ERROR(EFSCORRUPTED);
 351	}
 352
 353	switch (ip->i_d.di_mode & S_IFMT) {
 354	case S_IFIFO:
 355	case S_IFCHR:
 356	case S_IFBLK:
 357	case S_IFSOCK:
 358		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
 359			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
 360					      ip->i_mount, dip);
 361			return XFS_ERROR(EFSCORRUPTED);
 362		}
 363		ip->i_d.di_size = 0;
 364		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
 365		break;
 366
 367	case S_IFREG:
 368	case S_IFLNK:
 369	case S_IFDIR:
 370		switch (dip->di_format) {
 371		case XFS_DINODE_FMT_LOCAL:
 372			/*
 373			 * no local regular files yet
 374			 */
 375			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
 376				xfs_warn(ip->i_mount,
 377			"corrupt inode %Lu (local format for regular file).",
 378					(unsigned long long) ip->i_ino);
 379				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
 380						     XFS_ERRLEVEL_LOW,
 381						     ip->i_mount, dip);
 382				return XFS_ERROR(EFSCORRUPTED);
 383			}
 384
 385			di_size = be64_to_cpu(dip->di_size);
 386			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
 387				xfs_warn(ip->i_mount,
 388			"corrupt inode %Lu (bad size %Ld for local inode).",
 389					(unsigned long long) ip->i_ino,
 390					(long long) di_size);
 391				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
 392						     XFS_ERRLEVEL_LOW,
 393						     ip->i_mount, dip);
 394				return XFS_ERROR(EFSCORRUPTED);
 
 
 
 
 
 
 
 
 395			}
 
 396
 397			size = (int)di_size;
 398			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 399			break;
 400		case XFS_DINODE_FMT_EXTENTS:
 401			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 402			break;
 403		case XFS_DINODE_FMT_BTREE:
 404			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 405			break;
 406		default:
 407			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
 408					 ip->i_mount);
 409			return XFS_ERROR(EFSCORRUPTED);
 410		}
 411		break;
 412
 413	default:
 414		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
 415		return XFS_ERROR(EFSCORRUPTED);
 416	}
 417	if (error) {
 418		return error;
 419	}
 420	if (!XFS_DFORK_Q(dip))
 421		return 0;
 
 
 
 
 
 
 
 
 
 422
 423	ASSERT(ip->i_afp == NULL);
 424	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
 425
 426	switch (dip->di_aformat) {
 427	case XFS_DINODE_FMT_LOCAL:
 428		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 429		size = be16_to_cpu(atp->hdr.totsize);
 430
 431		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
 432			xfs_warn(ip->i_mount,
 433				"corrupt inode %Lu (bad attr fork size %Ld).",
 434				(unsigned long long) ip->i_ino,
 435				(long long) size);
 436			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
 437					     XFS_ERRLEVEL_LOW,
 438					     ip->i_mount, dip);
 439			return XFS_ERROR(EFSCORRUPTED);
 440		}
 441
 442		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 443		break;
 444	case XFS_DINODE_FMT_EXTENTS:
 445		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 446		break;
 447	case XFS_DINODE_FMT_BTREE:
 448		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 449		break;
 450	default:
 451		error = XFS_ERROR(EFSCORRUPTED);
 452		break;
 453	}
 454	if (error) {
 455		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 456		ip->i_afp = NULL;
 457		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 458	}
 459	return error;
 460}
 461
 462/*
 463 * The file is in-lined in the on-disk inode.
 464 * If it fits into if_inline_data, then copy
 465 * it there, otherwise allocate a buffer for it
 466 * and copy the data there.  Either way, set
 467 * if_data to point at the data.
 468 * If we allocate a buffer for the data, make
 469 * sure that its size is a multiple of 4 and
 470 * record the real size in i_real_bytes.
 471 */
 472STATIC int
 473xfs_iformat_local(
 474	xfs_inode_t	*ip,
 475	xfs_dinode_t	*dip,
 476	int		whichfork,
 477	int		size)
 478{
 479	xfs_ifork_t	*ifp;
 480	int		real_size;
 481
 482	/*
 483	 * If the size is unreasonable, then something
 484	 * is wrong and we just bail out rather than crash in
 485	 * kmem_alloc() or memcpy() below.
 486	 */
 487	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 488		xfs_warn(ip->i_mount,
 489	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
 490			(unsigned long long) ip->i_ino, size,
 491			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 492		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
 493				     ip->i_mount, dip);
 494		return XFS_ERROR(EFSCORRUPTED);
 495	}
 496	ifp = XFS_IFORK_PTR(ip, whichfork);
 497	real_size = 0;
 498	if (size == 0)
 499		ifp->if_u1.if_data = NULL;
 500	else if (size <= sizeof(ifp->if_u2.if_inline_data))
 501		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 502	else {
 503		real_size = roundup(size, 4);
 504		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
 505	}
 506	ifp->if_bytes = size;
 507	ifp->if_real_bytes = real_size;
 508	if (size)
 509		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
 510	ifp->if_flags &= ~XFS_IFEXTENTS;
 511	ifp->if_flags |= XFS_IFINLINE;
 512	return 0;
 513}
 514
 515/*
 516 * The file consists of a set of extents all
 517 * of which fit into the on-disk inode.
 518 * If there are few enough extents to fit into
 519 * the if_inline_ext, then copy them there.
 520 * Otherwise allocate a buffer for them and copy
 521 * them into it.  Either way, set if_extents
 522 * to point at the extents.
 523 */
 524STATIC int
 525xfs_iformat_extents(
 526	xfs_inode_t	*ip,
 527	xfs_dinode_t	*dip,
 528	int		whichfork)
 529{
 530	xfs_bmbt_rec_t	*dp;
 531	xfs_ifork_t	*ifp;
 532	int		nex;
 533	int		size;
 534	int		i;
 535
 536	ifp = XFS_IFORK_PTR(ip, whichfork);
 537	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 538	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
 539
 540	/*
 541	 * If the number of extents is unreasonable, then something
 542	 * is wrong and we just bail out rather than crash in
 543	 * kmem_alloc() or memcpy() below.
 544	 */
 545	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 546		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
 547			(unsigned long long) ip->i_ino, nex);
 548		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
 549				     ip->i_mount, dip);
 550		return XFS_ERROR(EFSCORRUPTED);
 551	}
 552
 553	ifp->if_real_bytes = 0;
 554	if (nex == 0)
 555		ifp->if_u1.if_extents = NULL;
 556	else if (nex <= XFS_INLINE_EXTS)
 557		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 558	else
 559		xfs_iext_add(ifp, 0, nex);
 560
 561	ifp->if_bytes = size;
 562	if (size) {
 563		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 564		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
 565		for (i = 0; i < nex; i++, dp++) {
 566			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 567			ep->l0 = get_unaligned_be64(&dp->l0);
 568			ep->l1 = get_unaligned_be64(&dp->l1);
 569		}
 570		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
 571		if (whichfork != XFS_DATA_FORK ||
 572			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
 573				if (unlikely(xfs_check_nostate_extents(
 574				    ifp, 0, nex))) {
 575					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
 576							 XFS_ERRLEVEL_LOW,
 577							 ip->i_mount);
 578					return XFS_ERROR(EFSCORRUPTED);
 579				}
 580	}
 581	ifp->if_flags |= XFS_IFEXTENTS;
 582	return 0;
 583}
 584
 585/*
 586 * The file has too many extents to fit into
 587 * the inode, so they are in B-tree format.
 588 * Allocate a buffer for the root of the B-tree
 589 * and copy the root into it.  The i_extents
 590 * field will remain NULL until all of the
 591 * extents are read in (when they are needed).
 592 */
 593STATIC int
 594xfs_iformat_btree(
 595	xfs_inode_t		*ip,
 596	xfs_dinode_t		*dip,
 597	int			whichfork)
 
 598{
 599	xfs_bmdr_block_t	*dfp;
 600	xfs_ifork_t		*ifp;
 601	/* REFERENCED */
 602	int			nrecs;
 603	int			size;
 604
 605	ifp = XFS_IFORK_PTR(ip, whichfork);
 606	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 607	size = XFS_BMAP_BROOT_SPACE(dfp);
 608	nrecs = be16_to_cpu(dfp->bb_numrecs);
 609
 610	/*
 611	 * blow out if -- fork has less extents than can fit in
 612	 * fork (fork shouldn't be a btree format), root btree
 613	 * block has more records than can fit into the fork,
 614	 * or the number of extents is greater than the number of
 615	 * blocks.
 616	 */
 617	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
 618			XFS_IFORK_MAXEXT(ip, whichfork) ||
 619		     XFS_BMDR_SPACE_CALC(nrecs) >
 620			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
 621		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
 622		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
 623			(unsigned long long) ip->i_ino);
 624		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
 625				 ip->i_mount, dip);
 626		return XFS_ERROR(EFSCORRUPTED);
 627	}
 628
 629	ifp->if_broot_bytes = size;
 630	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
 631	ASSERT(ifp->if_broot != NULL);
 632	/*
 633	 * Copy and convert from the on-disk structure
 634	 * to the in-memory structure.
 635	 */
 636	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
 637			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 638			 ifp->if_broot, size);
 639	ifp->if_flags &= ~XFS_IFEXTENTS;
 640	ifp->if_flags |= XFS_IFBROOT;
 641
 642	return 0;
 643}
 644
 645STATIC void
 646xfs_dinode_from_disk(
 647	xfs_icdinode_t		*to,
 648	xfs_dinode_t		*from)
 649{
 650	to->di_magic = be16_to_cpu(from->di_magic);
 651	to->di_mode = be16_to_cpu(from->di_mode);
 652	to->di_version = from ->di_version;
 653	to->di_format = from->di_format;
 654	to->di_onlink = be16_to_cpu(from->di_onlink);
 655	to->di_uid = be32_to_cpu(from->di_uid);
 656	to->di_gid = be32_to_cpu(from->di_gid);
 657	to->di_nlink = be32_to_cpu(from->di_nlink);
 658	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
 659	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
 660	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 661	to->di_flushiter = be16_to_cpu(from->di_flushiter);
 662	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
 663	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
 664	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
 665	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
 666	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
 667	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
 668	to->di_size = be64_to_cpu(from->di_size);
 669	to->di_nblocks = be64_to_cpu(from->di_nblocks);
 670	to->di_extsize = be32_to_cpu(from->di_extsize);
 671	to->di_nextents = be32_to_cpu(from->di_nextents);
 672	to->di_anextents = be16_to_cpu(from->di_anextents);
 673	to->di_forkoff = from->di_forkoff;
 674	to->di_aformat	= from->di_aformat;
 675	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
 676	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
 677	to->di_flags	= be16_to_cpu(from->di_flags);
 678	to->di_gen	= be32_to_cpu(from->di_gen);
 679}
 680
 681void
 682xfs_dinode_to_disk(
 683	xfs_dinode_t		*to,
 684	xfs_icdinode_t		*from)
 685{
 686	to->di_magic = cpu_to_be16(from->di_magic);
 687	to->di_mode = cpu_to_be16(from->di_mode);
 688	to->di_version = from ->di_version;
 689	to->di_format = from->di_format;
 690	to->di_onlink = cpu_to_be16(from->di_onlink);
 691	to->di_uid = cpu_to_be32(from->di_uid);
 692	to->di_gid = cpu_to_be32(from->di_gid);
 693	to->di_nlink = cpu_to_be32(from->di_nlink);
 694	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
 695	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
 696	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 697	to->di_flushiter = cpu_to_be16(from->di_flushiter);
 698	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
 699	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
 700	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
 701	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
 702	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
 703	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
 704	to->di_size = cpu_to_be64(from->di_size);
 705	to->di_nblocks = cpu_to_be64(from->di_nblocks);
 706	to->di_extsize = cpu_to_be32(from->di_extsize);
 707	to->di_nextents = cpu_to_be32(from->di_nextents);
 708	to->di_anextents = cpu_to_be16(from->di_anextents);
 709	to->di_forkoff = from->di_forkoff;
 710	to->di_aformat = from->di_aformat;
 711	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
 712	to->di_dmstate = cpu_to_be16(from->di_dmstate);
 713	to->di_flags = cpu_to_be16(from->di_flags);
 714	to->di_gen = cpu_to_be32(from->di_gen);
 715}
 716
 717STATIC uint
 718_xfs_dic2xflags(
 719	__uint16_t		di_flags)
 720{
 721	uint			flags = 0;
 722
 723	if (di_flags & XFS_DIFLAG_ANY) {
 724		if (di_flags & XFS_DIFLAG_REALTIME)
 725			flags |= XFS_XFLAG_REALTIME;
 726		if (di_flags & XFS_DIFLAG_PREALLOC)
 727			flags |= XFS_XFLAG_PREALLOC;
 728		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 729			flags |= XFS_XFLAG_IMMUTABLE;
 730		if (di_flags & XFS_DIFLAG_APPEND)
 731			flags |= XFS_XFLAG_APPEND;
 732		if (di_flags & XFS_DIFLAG_SYNC)
 733			flags |= XFS_XFLAG_SYNC;
 734		if (di_flags & XFS_DIFLAG_NOATIME)
 735			flags |= XFS_XFLAG_NOATIME;
 736		if (di_flags & XFS_DIFLAG_NODUMP)
 737			flags |= XFS_XFLAG_NODUMP;
 738		if (di_flags & XFS_DIFLAG_RTINHERIT)
 739			flags |= XFS_XFLAG_RTINHERIT;
 740		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 741			flags |= XFS_XFLAG_PROJINHERIT;
 742		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 743			flags |= XFS_XFLAG_NOSYMLINKS;
 744		if (di_flags & XFS_DIFLAG_EXTSIZE)
 745			flags |= XFS_XFLAG_EXTSIZE;
 746		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 747			flags |= XFS_XFLAG_EXTSZINHERIT;
 748		if (di_flags & XFS_DIFLAG_NODEFRAG)
 749			flags |= XFS_XFLAG_NODEFRAG;
 750		if (di_flags & XFS_DIFLAG_FILESTREAM)
 751			flags |= XFS_XFLAG_FILESTREAM;
 752	}
 753
 754	return flags;
 755}
 
 756
 757uint
 758xfs_ip2xflags(
 759	xfs_inode_t		*ip)
 760{
 761	xfs_icdinode_t		*dic = &ip->i_d;
 
 
 
 
 762
 763	return _xfs_dic2xflags(dic->di_flags) |
 764				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 765}
 766
 767uint
 768xfs_dic2xflags(
 769	xfs_dinode_t		*dip)
 770{
 771	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 772				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 
 
 773}
 774
 775/*
 776 * Read the disk inode attributes into the in-core inode structure.
 
 
 
 777 */
 778int
 779xfs_iread(
 780	xfs_mount_t	*mp,
 781	xfs_trans_t	*tp,
 782	xfs_inode_t	*ip,
 783	uint		iget_flags)
 784{
 785	xfs_buf_t	*bp;
 786	xfs_dinode_t	*dip;
 787	int		error;
 788
 789	/*
 790	 * Fill in the location information in the in-core inode.
 
 791	 */
 792	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
 793	if (error)
 794		return error;
 795
 796	/*
 797	 * Get pointers to the on-disk inode and the buffer containing it.
 798	 */
 799	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 0, iget_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800	if (error)
 801		return error;
 802	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 803
 804	/*
 805	 * If we got something that isn't an inode it means someone
 806	 * (nfs or dmi) has a stale handle.
 807	 */
 808	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
 809#ifdef DEBUG
 810		xfs_alert(mp,
 811			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
 812			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
 813#endif /* DEBUG */
 814		error = XFS_ERROR(EINVAL);
 815		goto out_brelse;
 816	}
 817
 
 
 
 
 818	/*
 819	 * If the on-disk inode is already linked to a directory
 820	 * entry, copy all of the inode into the in-core inode.
 821	 * xfs_iformat() handles copying in the inode format
 822	 * specific information.
 823	 * Otherwise, just get the truly permanent information.
 824	 */
 825	if (dip->di_mode) {
 826		xfs_dinode_from_disk(&ip->i_d, dip);
 827		error = xfs_iformat(ip, dip);
 828		if (error)  {
 829#ifdef DEBUG
 830			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
 831				__func__, error);
 832#endif /* DEBUG */
 833			goto out_brelse;
 834		}
 835	} else {
 836		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
 837		ip->i_d.di_version = dip->di_version;
 838		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
 839		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
 840		/*
 841		 * Make sure to pull in the mode here as well in
 842		 * case the inode is released without being used.
 843		 * This ensures that xfs_inactive() will see that
 844		 * the inode is already free and not try to mess
 845		 * with the uninitialized part of it.
 846		 */
 847		ip->i_d.di_mode = 0;
 848	}
 
 
 
 
 
 849
 850	/*
 851	 * The inode format changed when we moved the link count and
 852	 * made it 32 bits long.  If this is an old format inode,
 853	 * convert it in memory to look like a new one.  If it gets
 854	 * flushed to disk we will convert back before flushing or
 855	 * logging it.  We zero out the new projid field and the old link
 856	 * count field.  We'll handle clearing the pad field (the remains
 857	 * of the old uuid field) when we actually convert the inode to
 858	 * the new format. We don't change the version number so that we
 859	 * can distinguish this from a real new format inode.
 860	 */
 861	if (ip->i_d.di_version == 1) {
 862		ip->i_d.di_nlink = ip->i_d.di_onlink;
 863		ip->i_d.di_onlink = 0;
 864		xfs_set_projid(ip, 0);
 865	}
 866
 867	ip->i_delayed_blks = 0;
 
 
 
 
 
 
 
 
 
 
 
 868
 869	/*
 870	 * Mark the buffer containing the inode as something to keep
 871	 * around for a while.  This helps to keep recently accessed
 872	 * meta-data in-core longer.
 873	 */
 874	xfs_buf_set_ref(bp, XFS_INO_REF);
 
 875
 876	/*
 877	 * Use xfs_trans_brelse() to release the buffer containing the
 878	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
 879	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
 880	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
 881	 * will only release the buffer if it is not dirty within the
 882	 * transaction.  It will be OK to release the buffer in this case,
 883	 * because inodes on disk are never destroyed and we will be
 884	 * locking the new in-core inode before putting it in the hash
 885	 * table where other processes can find it.  Thus we don't have
 886	 * to worry about the inode being changed just because we released
 887	 * the buffer.
 888	 */
 889 out_brelse:
 890	xfs_trans_brelse(tp, bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891	return error;
 892}
 893
 894/*
 895 * Read in extents from a btree-format inode.
 896 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 897 */
 898int
 899xfs_iread_extents(
 900	xfs_trans_t	*tp,
 901	xfs_inode_t	*ip,
 902	int		whichfork)
 903{
 904	int		error;
 905	xfs_ifork_t	*ifp;
 906	xfs_extnum_t	nextents;
 907
 908	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
 909		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
 910				 ip->i_mount);
 911		return XFS_ERROR(EFSCORRUPTED);
 912	}
 913	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
 914	ifp = XFS_IFORK_PTR(ip, whichfork);
 915
 916	/*
 917	 * We know that the size is valid (it's checked in iformat_btree)
 918	 */
 919	ifp->if_bytes = ifp->if_real_bytes = 0;
 920	ifp->if_flags |= XFS_IFEXTENTS;
 921	xfs_iext_add(ifp, 0, nextents);
 922	error = xfs_bmap_read_extents(tp, ip, whichfork);
 923	if (error) {
 924		xfs_iext_destroy(ifp);
 925		ifp->if_flags &= ~XFS_IFEXTENTS;
 926		return error;
 927	}
 928	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930}
 931
 932/*
 933 * Allocate an inode on disk and return a copy of its in-core version.
 934 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 935 * appropriately within the inode.  The uid and gid for the inode are
 936 * set according to the contents of the given cred structure.
 937 *
 938 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 939 * has a free inode available, call xfs_iget()
 940 * to obtain the in-core version of the allocated inode.  Finally,
 941 * fill in the inode and log its initial contents.  In this case,
 942 * ialloc_context would be set to NULL and call_again set to false.
 943 *
 944 * If xfs_dialloc() does not have an available inode,
 945 * it will replenish its supply by doing an allocation. Since we can
 946 * only do one allocation within a transaction without deadlocks, we
 947 * must commit the current transaction before returning the inode itself.
 948 * In this case, therefore, we will set call_again to true and return.
 949 * The caller should then commit the current transaction, start a new
 950 * transaction, and call xfs_ialloc() again to actually get the inode.
 951 *
 952 * To ensure that some other process does not grab the inode that
 953 * was allocated during the first call to xfs_ialloc(), this routine
 954 * also returns the [locked] bp pointing to the head of the freelist
 955 * as ialloc_context.  The caller should hold this buffer across
 956 * the commit and pass it back into this routine on the second call.
 957 *
 958 * If we are allocating quota inodes, we do not have a parent inode
 959 * to attach to or associate with (i.e. pip == NULL) because they
 960 * are not linked into the directory structure - they are attached
 961 * directly to the superblock - and so have no parent.
 962 */
 963int
 964xfs_ialloc(
 965	xfs_trans_t	*tp,
 966	xfs_inode_t	*pip,
 967	umode_t		mode,
 968	xfs_nlink_t	nlink,
 969	xfs_dev_t	rdev,
 970	prid_t		prid,
 971	int		okalloc,
 972	xfs_buf_t	**ialloc_context,
 973	boolean_t	*call_again,
 974	xfs_inode_t	**ipp)
 975{
 976	xfs_ino_t	ino;
 977	xfs_inode_t	*ip;
 978	uint		flags;
 979	int		error;
 980	timespec_t	tv;
 981	int		filestreams = 0;
 
 
 
 
 
 982
 983	/*
 984	 * Call the space management code to pick
 985	 * the on-disk inode to be allocated.
 986	 */
 987	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 988			    ialloc_context, call_again, &ino);
 989	if (error)
 990		return error;
 991	if (*call_again || ino == NULLFSINO) {
 992		*ipp = NULL;
 993		return 0;
 994	}
 995	ASSERT(*ialloc_context == NULL);
 996
 997	/*
 998	 * Get the in-core inode with the lock held exclusively.
 999	 * This is because we're setting fields here we need
1000	 * to prevent others from looking at until we're done.
1001	 */
1002	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1003			 XFS_ILOCK_EXCL, &ip);
1004	if (error)
1005		return error;
1006	ASSERT(ip != NULL);
1007
1008	ip->i_d.di_mode = mode;
1009	ip->i_d.di_onlink = 0;
1010	ip->i_d.di_nlink = nlink;
1011	ASSERT(ip->i_d.di_nlink == nlink);
1012	ip->i_d.di_uid = current_fsuid();
1013	ip->i_d.di_gid = current_fsgid();
1014	xfs_set_projid(ip, prid);
1015	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1016
1017	/*
1018	 * If the superblock version is up to where we support new format
1019	 * inodes and this is currently an old format inode, then change
1020	 * the inode version number now.  This way we only do the conversion
1021	 * here rather than here and in the flush/logging code.
1022	 */
1023	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1024	    ip->i_d.di_version == 1) {
1025		ip->i_d.di_version = 2;
1026		/*
1027		 * We've already zeroed the old link count, the projid field,
1028		 * and the pad field.
1029		 */
1030	}
1031
1032	/*
1033	 * Project ids won't be stored on disk if we are using a version 1 inode.
 
 
1034	 */
1035	if ((prid != 0) && (ip->i_d.di_version == 1))
1036		xfs_bump_ino_vers2(tp, ip);
1037
1038	if (pip && XFS_INHERIT_GID(pip)) {
1039		ip->i_d.di_gid = pip->i_d.di_gid;
1040		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1041			ip->i_d.di_mode |= S_ISGID;
1042		}
1043	}
1044
1045	/*
1046	 * If the group ID of the new file does not match the effective group
1047	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1048	 * (and only if the irix_sgid_inherit compatibility variable is set).
1049	 */
1050	if ((irix_sgid_inherit) &&
1051	    (ip->i_d.di_mode & S_ISGID) &&
1052	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1053		ip->i_d.di_mode &= ~S_ISGID;
1054	}
1055
1056	ip->i_d.di_size = 0;
1057	ip->i_d.di_nextents = 0;
1058	ASSERT(ip->i_d.di_nblocks == 0);
1059
1060	nanotime(&tv);
1061	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1062	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1063	ip->i_d.di_atime = ip->i_d.di_mtime;
1064	ip->i_d.di_ctime = ip->i_d.di_mtime;
1065
1066	/*
1067	 * di_gen will have been taken care of in xfs_iread.
1068	 */
1069	ip->i_d.di_extsize = 0;
1070	ip->i_d.di_dmevmask = 0;
1071	ip->i_d.di_dmstate = 0;
1072	ip->i_d.di_flags = 0;
1073	flags = XFS_ILOG_CORE;
1074	switch (mode & S_IFMT) {
1075	case S_IFIFO:
1076	case S_IFCHR:
1077	case S_IFBLK:
1078	case S_IFSOCK:
1079		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1080		ip->i_df.if_u2.if_rdev = rdev;
1081		ip->i_df.if_flags = 0;
1082		flags |= XFS_ILOG_DEV;
1083		break;
1084	case S_IFREG:
1085		/*
1086		 * we can't set up filestreams until after the VFS inode
1087		 * is set up properly.
 
 
 
 
1088		 */
1089		if (pip && xfs_inode_is_filestream(pip))
1090			filestreams = 1;
1091		/* fall through */
1092	case S_IFDIR:
1093		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1094			uint	di_flags = 0;
1095
1096			if (S_ISDIR(mode)) {
1097				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1098					di_flags |= XFS_DIFLAG_RTINHERIT;
1099				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1100					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1101					ip->i_d.di_extsize = pip->i_d.di_extsize;
1102				}
1103			} else if (S_ISREG(mode)) {
1104				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1105					di_flags |= XFS_DIFLAG_REALTIME;
1106				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1107					di_flags |= XFS_DIFLAG_EXTSIZE;
1108					ip->i_d.di_extsize = pip->i_d.di_extsize;
1109				}
1110			}
1111			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1112			    xfs_inherit_noatime)
1113				di_flags |= XFS_DIFLAG_NOATIME;
1114			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1115			    xfs_inherit_nodump)
1116				di_flags |= XFS_DIFLAG_NODUMP;
1117			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1118			    xfs_inherit_sync)
1119				di_flags |= XFS_DIFLAG_SYNC;
1120			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1121			    xfs_inherit_nosymlinks)
1122				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1123			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1124				di_flags |= XFS_DIFLAG_PROJINHERIT;
1125			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1126			    xfs_inherit_nodefrag)
1127				di_flags |= XFS_DIFLAG_NODEFRAG;
1128			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1129				di_flags |= XFS_DIFLAG_FILESTREAM;
1130			ip->i_d.di_flags |= di_flags;
1131		}
1132		/* FALLTHROUGH */
1133	case S_IFLNK:
1134		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1135		ip->i_df.if_flags = XFS_IFEXTENTS;
1136		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1137		ip->i_df.if_u1.if_extents = NULL;
1138		break;
1139	default:
1140		ASSERT(0);
1141	}
1142	/*
1143	 * Attribute fork settings for new inode.
1144	 */
1145	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1146	ip->i_d.di_anextents = 0;
1147
1148	/*
1149	 * Log the new values stuffed into the inode.
 
 
1150	 */
1151	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1152	xfs_trans_log_inode(tp, ip, flags);
1153
1154	/* now that we have an i_mode we can setup inode ops and unlock */
1155	xfs_setup_inode(ip);
 
 
 
1156
1157	/* now we have set up the vfs inode we can associate the filestream */
1158	if (filestreams) {
1159		error = xfs_filestream_associate(pip, ip);
1160		if (error < 0)
1161			return -error;
1162		if (!error)
1163			xfs_iflags_set(ip, XFS_IFILESTREAM);
1164	}
 
 
 
1165
1166	*ipp = ip;
1167	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168}
1169
1170/*
1171 * Free up the underlying blocks past new_size.  The new size must be smaller
1172 * than the current size.  This routine can be used both for the attribute and
1173 * data fork, and does not modify the inode size, which is left to the caller.
1174 *
1175 * The transaction passed to this routine must have made a permanent log
1176 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1177 * given transaction and start new ones, so make sure everything involved in
1178 * the transaction is tidy before calling here.  Some transaction will be
1179 * returned to the caller to be committed.  The incoming transaction must
1180 * already include the inode, and both inode locks must be held exclusively.
1181 * The inode must also be "held" within the transaction.  On return the inode
1182 * will be "held" within the returned transaction.  This routine does NOT
1183 * require any disk space to be reserved for it within the transaction.
1184 *
1185 * If we get an error, we must return with the inode locked and linked into the
1186 * current transaction. This keeps things simple for the higher level code,
1187 * because it always knows that the inode is locked and held in the transaction
1188 * that returns to it whether errors occur or not.  We don't mark the inode
1189 * dirty on error so that transactions can be easily aborted if possible.
1190 */
1191int
1192xfs_itruncate_extents(
1193	struct xfs_trans	**tpp,
1194	struct xfs_inode	*ip,
1195	int			whichfork,
1196	xfs_fsize_t		new_size)
 
1197{
1198	struct xfs_mount	*mp = ip->i_mount;
1199	struct xfs_trans	*tp = *tpp;
1200	struct xfs_trans	*ntp;
1201	xfs_bmap_free_t		free_list;
1202	xfs_fsblock_t		first_block;
1203	xfs_fileoff_t		first_unmap_block;
1204	xfs_fileoff_t		last_block;
1205	xfs_filblks_t		unmap_len;
1206	int			committed;
1207	int			error = 0;
1208	int			done = 0;
1209
1210	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 
 
1211	ASSERT(new_size <= XFS_ISIZE(ip));
1212	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1213	ASSERT(ip->i_itemp != NULL);
1214	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1215	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1216
1217	trace_xfs_itruncate_extents_start(ip, new_size);
1218
 
 
1219	/*
1220	 * Since it is possible for space to become allocated beyond
1221	 * the end of the file (in a crash where the space is allocated
1222	 * but the inode size is not yet updated), simply remove any
1223	 * blocks which show up between the new EOF and the maximum
1224	 * possible file size.  If the first block to be removed is
1225	 * beyond the maximum file size (ie it is the same as last_block),
1226	 * then there is nothing to do.
 
1227	 */
1228	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1229	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1230	if (first_unmap_block == last_block)
1231		return 0;
 
1232
1233	ASSERT(first_unmap_block < last_block);
1234	unmap_len = last_block - first_unmap_block + 1;
1235	while (!done) {
1236		xfs_bmap_init(&free_list, &first_block);
1237		error = xfs_bunmapi(tp, ip,
1238				    first_unmap_block, unmap_len,
1239				    xfs_bmapi_aflag(whichfork),
1240				    XFS_ITRUNC_MAX_EXTENTS,
1241				    &first_block, &free_list,
1242				    &done);
1243		if (error)
1244			goto out_bmap_cancel;
1245
1246		/*
1247		 * Duplicate the transaction that has the permanent
1248		 * reservation and commit the old transaction.
1249		 */
1250		error = xfs_bmap_finish(&tp, &free_list, &committed);
1251		if (committed)
1252			xfs_trans_ijoin(tp, ip, 0);
1253		if (error)
1254			goto out_bmap_cancel;
1255
1256		if (committed) {
1257			/*
1258			 * Mark the inode dirty so it will be logged and
1259			 * moved forward in the log as part of every commit.
1260			 */
1261			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1262		}
1263
1264		ntp = xfs_trans_dup(tp);
1265		error = xfs_trans_commit(tp, 0);
1266		tp = ntp;
1267
1268		xfs_trans_ijoin(tp, ip, 0);
1269
 
 
 
 
1270		if (error)
1271			goto out;
1272
1273		/*
1274		 * Transaction commit worked ok so we can drop the extra ticket
1275		 * reference that we gained in xfs_trans_dup()
1276		 */
1277		xfs_log_ticket_put(tp->t_ticket);
1278		error = xfs_trans_reserve(tp, 0,
1279					XFS_ITRUNCATE_LOG_RES(mp), 0,
1280					XFS_TRANS_PERM_LOG_RES,
1281					XFS_ITRUNCATE_LOG_COUNT);
1282		if (error)
1283			goto out;
1284	}
1285
1286	/*
1287	 * Always re-log the inode so that our permanent transaction can keep
1288	 * on rolling it forward in the log.
1289	 */
1290	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1291
1292	trace_xfs_itruncate_extents_end(ip, new_size);
1293
1294out:
1295	*tpp = tp;
1296	return error;
1297out_bmap_cancel:
1298	/*
1299	 * If the bunmapi call encounters an error, return to the caller where
1300	 * the transaction can be properly aborted.  We just need to make sure
1301	 * we're not holding any resources that we were not when we came in.
1302	 */
1303	xfs_bmap_cancel(&free_list);
1304	goto out;
1305}
1306
1307/*
1308 * This is called when the inode's link count goes to 0.
1309 * We place the on-disk inode on a list in the AGI.  It
1310 * will be pulled from this list when the inode is freed.
 
1311 */
1312int
1313xfs_iunlink(
1314	xfs_trans_t	*tp,
1315	xfs_inode_t	*ip)
1316{
1317	xfs_mount_t	*mp;
1318	xfs_agi_t	*agi;
1319	xfs_dinode_t	*dip;
1320	xfs_buf_t	*agibp;
1321	xfs_buf_t	*ibp;
1322	xfs_agino_t	agino;
1323	short		bucket_index;
1324	int		offset;
1325	int		error;
1326
1327	ASSERT(ip->i_d.di_nlink == 0);
1328	ASSERT(ip->i_d.di_mode != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329
1330	mp = tp->t_mountp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331
1332	/*
1333	 * Get the agi buffer first.  It ensures lock ordering
1334	 * on the list.
 
1335	 */
1336	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
 
 
 
 
 
 
 
 
 
1337	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338		return error;
1339	agi = XFS_BUF_TO_AGI(agibp);
1340
1341	/*
1342	 * Get the index into the agi hash table for the
1343	 * list this inode will go on.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344	 */
1345	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1346	ASSERT(agino != 0);
1347	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1348	ASSERT(agi->agi_unlinked[bucket_index]);
1349	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1350
1351	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
 
 
1352		/*
1353		 * There is already another inode in the bucket we need
1354		 * to add ourselves to.  Add us at the front of the list.
1355		 * Here we put the head pointer into our next pointer,
1356		 * and then we fall through to point the head at us.
1357		 */
1358		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1359		if (error)
1360			return error;
1361
1362		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1363		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1364		offset = ip->i_imap.im_boffset +
1365			offsetof(xfs_dinode_t, di_next_unlinked);
1366		xfs_trans_inode_buf(tp, ibp);
1367		xfs_trans_log_buf(tp, ibp, offset,
1368				  (offset + sizeof(xfs_agino_t) - 1));
1369		xfs_inobp_check(mp, ibp);
1370	}
1371
1372	/*
1373	 * Point the bucket head pointer at the inode being inserted.
1374	 */
1375	ASSERT(agino != 0);
1376	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1377	offset = offsetof(xfs_agi_t, agi_unlinked) +
1378		(sizeof(xfs_agino_t) * bucket_index);
1379	xfs_trans_log_buf(tp, agibp, offset,
1380			  (offset + sizeof(xfs_agino_t) - 1));
1381	return 0;
1382}
1383
1384/*
1385 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
1386 */
1387STATIC int
1388xfs_iunlink_remove(
1389	xfs_trans_t	*tp,
1390	xfs_inode_t	*ip)
1391{
1392	xfs_ino_t	next_ino;
1393	xfs_mount_t	*mp;
1394	xfs_agi_t	*agi;
1395	xfs_dinode_t	*dip;
1396	xfs_buf_t	*agibp;
1397	xfs_buf_t	*ibp;
1398	xfs_agnumber_t	agno;
1399	xfs_agino_t	agino;
1400	xfs_agino_t	next_agino;
1401	xfs_buf_t	*last_ibp;
1402	xfs_dinode_t	*last_dip = NULL;
1403	short		bucket_index;
1404	int		offset, last_offset = 0;
1405	int		error;
1406
1407	mp = tp->t_mountp;
1408	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 
 
 
 
1409
1410	/*
1411	 * Get the agi buffer first.  It ensures lock ordering
1412	 * on the list.
1413	 */
1414	error = xfs_read_agi(mp, tp, agno, &agibp);
1415	if (error)
1416		return error;
 
 
 
1417
1418	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
1419
1420	/*
1421	 * Get the index into the agi hash table for the
1422	 * list this inode will go on.
 
 
 
 
1423	 */
1424	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1425	ASSERT(agino != 0);
1426	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1427	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1428	ASSERT(agi->agi_unlinked[bucket_index]);
1429
1430	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1431		/*
1432		 * We're at the head of the list.  Get the inode's
1433		 * on-disk buffer to see if there is anyone after us
1434		 * on the list.  Only modify our next pointer if it
1435		 * is not already NULLAGINO.  This saves us the overhead
1436		 * of dealing with the buffer when there is no need to
1437		 * change it.
1438		 */
1439		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1440		if (error) {
1441			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1442				__func__, error);
1443			return error;
1444		}
1445		next_agino = be32_to_cpu(dip->di_next_unlinked);
1446		ASSERT(next_agino != 0);
1447		if (next_agino != NULLAGINO) {
1448			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1449			offset = ip->i_imap.im_boffset +
1450				offsetof(xfs_dinode_t, di_next_unlinked);
1451			xfs_trans_inode_buf(tp, ibp);
1452			xfs_trans_log_buf(tp, ibp, offset,
1453					  (offset + sizeof(xfs_agino_t) - 1));
1454			xfs_inobp_check(mp, ibp);
1455		} else {
1456			xfs_trans_brelse(tp, ibp);
1457		}
1458		/*
1459		 * Point the bucket head pointer at the next inode.
1460		 */
1461		ASSERT(next_agino != 0);
1462		ASSERT(next_agino != agino);
1463		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1464		offset = offsetof(xfs_agi_t, agi_unlinked) +
1465			(sizeof(xfs_agino_t) * bucket_index);
1466		xfs_trans_log_buf(tp, agibp, offset,
1467				  (offset + sizeof(xfs_agino_t) - 1));
1468	} else {
1469		/*
1470		 * We need to search the list for the inode being freed.
1471		 */
1472		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1473		last_ibp = NULL;
1474		while (next_agino != agino) {
1475			/*
1476			 * If the last inode wasn't the one pointing to
1477			 * us, then release its buffer since we're not
1478			 * going to do anything with it.
1479			 */
1480			if (last_ibp != NULL) {
1481				xfs_trans_brelse(tp, last_ibp);
1482			}
1483			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1484			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1485					    &last_ibp, &last_offset, 0);
1486			if (error) {
1487				xfs_warn(mp,
1488					"%s: xfs_inotobp() returned error %d.",
1489					__func__, error);
1490				return error;
1491			}
1492			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1493			ASSERT(next_agino != NULLAGINO);
1494			ASSERT(next_agino != 0);
1495		}
1496		/*
1497		 * Now last_ibp points to the buffer previous to us on
1498		 * the unlinked list.  Pull us from the list.
1499		 */
1500		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1501		if (error) {
1502			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1503				__func__, error);
1504			return error;
1505		}
1506		next_agino = be32_to_cpu(dip->di_next_unlinked);
1507		ASSERT(next_agino != 0);
1508		ASSERT(next_agino != agino);
1509		if (next_agino != NULLAGINO) {
1510			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1511			offset = ip->i_imap.im_boffset +
1512				offsetof(xfs_dinode_t, di_next_unlinked);
1513			xfs_trans_inode_buf(tp, ibp);
1514			xfs_trans_log_buf(tp, ibp, offset,
1515					  (offset + sizeof(xfs_agino_t) - 1));
1516			xfs_inobp_check(mp, ibp);
1517		} else {
1518			xfs_trans_brelse(tp, ibp);
1519		}
1520		/*
1521		 * Point the previous inode on the list to the next inode.
1522		 */
1523		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1524		ASSERT(next_agino != 0);
1525		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1526		xfs_trans_inode_buf(tp, last_ibp);
1527		xfs_trans_log_buf(tp, last_ibp, offset,
1528				  (offset + sizeof(xfs_agino_t) - 1));
1529		xfs_inobp_check(mp, last_ibp);
1530	}
1531	return 0;
 
 
1532}
1533
1534/*
1535 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1536 * inodes that are in memory - they all must be marked stale and attached to
1537 * the cluster buffer.
 
 
 
1538 */
1539STATIC int
1540xfs_ifree_cluster(
1541	xfs_inode_t	*free_ip,
1542	xfs_trans_t	*tp,
1543	xfs_ino_t	inum)
1544{
1545	xfs_mount_t		*mp = free_ip->i_mount;
1546	int			blks_per_cluster;
1547	int			nbufs;
1548	int			ninodes;
1549	int			i, j;
1550	xfs_daddr_t		blkno;
1551	xfs_buf_t		*bp;
1552	xfs_inode_t		*ip;
1553	xfs_inode_log_item_t	*iip;
1554	xfs_log_item_t		*lip;
1555	struct xfs_perag	*pag;
1556
1557	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1558	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1559		blks_per_cluster = 1;
1560		ninodes = mp->m_sb.sb_inopblock;
1561		nbufs = XFS_IALLOC_BLOCKS(mp);
1562	} else {
1563		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1564					mp->m_sb.sb_blocksize;
1565		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1566		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1567	}
1568
1569	for (j = 0; j < nbufs; j++, inum += ninodes) {
1570		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1571					 XFS_INO_TO_AGBNO(mp, inum));
1572
1573		/*
1574		 * We obtain and lock the backing buffer first in the process
1575		 * here, as we have to ensure that any dirty inode that we
1576		 * can't get the flush lock on is attached to the buffer.
1577		 * If we scan the in-memory inodes first, then buffer IO can
1578		 * complete before we get a lock on it, and hence we may fail
1579		 * to mark all the active inodes on the buffer stale.
1580		 */
1581		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1582					mp->m_bsize * blks_per_cluster, 0);
1583
1584		if (!bp)
1585			return ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586		/*
1587		 * Walk the inodes already attached to the buffer and mark them
1588		 * stale. These will all have the flush locks held, so an
1589		 * in-memory inode walk can't lock them. By marking them all
1590		 * stale first, we will not attempt to lock them in the loop
1591		 * below as the XFS_ISTALE flag will be set.
1592		 */
1593		lip = bp->b_fspriv;
1594		while (lip) {
1595			if (lip->li_type == XFS_LI_INODE) {
1596				iip = (xfs_inode_log_item_t *)lip;
1597				ASSERT(iip->ili_logged == 1);
1598				lip->li_cb = xfs_istale_done;
1599				xfs_trans_ail_copy_lsn(mp->m_ail,
1600							&iip->ili_flush_lsn,
1601							&iip->ili_item.li_lsn);
1602				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1603			}
1604			lip = lip->li_bio_list;
1605		}
1606
 
 
1607
 
 
 
 
 
 
1608		/*
1609		 * For each inode in memory attempt to add it to the inode
1610		 * buffer and set it up for being staled on buffer IO
1611		 * completion.  This is safe as we've locked out tail pushing
1612		 * and flushing by locking the buffer.
1613		 *
1614		 * We have already marked every inode that was part of a
1615		 * transaction stale above, which means there is no point in
1616		 * even trying to lock them.
1617		 */
1618		for (i = 0; i < ninodes; i++) {
1619retry:
1620			rcu_read_lock();
1621			ip = radix_tree_lookup(&pag->pag_ici_root,
1622					XFS_INO_TO_AGINO(mp, (inum + i)));
1623
1624			/* Inode not in memory, nothing to do */
1625			if (!ip) {
1626				rcu_read_unlock();
1627				continue;
1628			}
1629
1630			/*
1631			 * because this is an RCU protected lookup, we could
1632			 * find a recently freed or even reallocated inode
1633			 * during the lookup. We need to check under the
1634			 * i_flags_lock for a valid inode here. Skip it if it
1635			 * is not valid, the wrong inode or stale.
1636			 */
1637			spin_lock(&ip->i_flags_lock);
1638			if (ip->i_ino != inum + i ||
1639			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1640				spin_unlock(&ip->i_flags_lock);
1641				rcu_read_unlock();
1642				continue;
1643			}
1644			spin_unlock(&ip->i_flags_lock);
1645
1646			/*
1647			 * Don't try to lock/unlock the current inode, but we
1648			 * _cannot_ skip the other inodes that we did not find
1649			 * in the list attached to the buffer and are not
1650			 * already marked stale. If we can't lock it, back off
1651			 * and retry.
1652			 */
1653			if (ip != free_ip &&
1654			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1655				rcu_read_unlock();
1656				delay(1);
1657				goto retry;
1658			}
1659			rcu_read_unlock();
1660
1661			xfs_iflock(ip);
1662			xfs_iflags_set(ip, XFS_ISTALE);
 
 
 
 
 
 
 
 
1663
1664			/*
1665			 * we don't need to attach clean inodes or those only
1666			 * with unlogged changes (which we throw away, anyway).
1667			 */
1668			iip = ip->i_itemp;
1669			if (!iip || xfs_inode_clean(ip)) {
1670				ASSERT(ip != free_ip);
1671				xfs_ifunlock(ip);
1672				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673				continue;
1674			}
1675
1676			iip->ili_last_fields = iip->ili_fields;
1677			iip->ili_fields = 0;
1678			iip->ili_logged = 1;
1679			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1680						&iip->ili_item.li_lsn);
1681
1682			xfs_buf_attach_iodone(bp, xfs_istale_done,
1683						  &iip->ili_item);
 
 
 
 
 
 
1684
1685			if (ip != free_ip)
1686				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1687		}
 
 
 
 
 
 
 
 
 
1688
1689		xfs_trans_stale_inode_buf(tp, bp);
1690		xfs_trans_binval(tp, bp);
 
 
 
 
1691	}
1692
1693	xfs_perag_put(pag);
1694	return 0;
 
 
 
 
 
 
 
 
 
1695}
1696
1697/*
1698 * This is called to return an inode to the inode free list.
1699 * The inode should already be truncated to 0 length and have
1700 * no pages associated with it.  This routine also assumes that
1701 * the inode is already a part of the transaction.
1702 *
1703 * The on-disk copy of the inode will have been added to the list
1704 * of unlinked inodes in the AGI. We need to remove the inode from
1705 * that list atomically with respect to freeing it here.
1706 */
1707int
1708xfs_ifree(
1709	xfs_trans_t	*tp,
1710	xfs_inode_t	*ip,
1711	xfs_bmap_free_t	*flist)
1712{
 
 
 
 
1713	int			error;
1714	int			delete;
1715	xfs_ino_t		first_ino;
1716	xfs_dinode_t    	*dip;
1717	xfs_buf_t       	*ibp;
1718
1719	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1720	ASSERT(ip->i_d.di_nlink == 0);
1721	ASSERT(ip->i_d.di_nextents == 0);
1722	ASSERT(ip->i_d.di_anextents == 0);
1723	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1724	ASSERT(ip->i_d.di_nblocks == 0);
1725
1726	/*
1727	 * Pull the on-disk inode from the AGI unlinked list.
1728	 */
1729	error = xfs_iunlink_remove(tp, ip);
1730	if (error != 0) {
1731		return error;
1732	}
1733
1734	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1735	if (error != 0) {
1736		return error;
1737	}
1738	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1739	ip->i_d.di_flags = 0;
1740	ip->i_d.di_dmevmask = 0;
1741	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1742	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1743	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1744	/*
1745	 * Bump the generation count so no one will be confused
1746	 * by reincarnations of this inode.
1747	 */
1748	ip->i_d.di_gen++;
1749
1750	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
 
1751
1752	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0);
1753	if (error)
 
 
 
 
 
 
 
 
1754		return error;
 
1755
1756        /*
1757	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1758	* from picking up this inode when it is reclaimed (its incore state
1759	* initialzed but not flushed to disk yet). The in-core di_mode is
1760	* already cleared  and a corresponding transaction logged.
1761	* The hack here just synchronizes the in-core to on-disk
1762	* di_mode value in advance before the actual inode sync to disk.
1763	* This is OK because the inode is already unlinked and would never
1764	* change its di_mode again for this inode generation.
1765	* This is a temporary hack that would require a proper fix
1766	* in the future.
1767	*/
1768	dip->di_mode = 0;
1769
1770	if (delete) {
1771		error = xfs_ifree_cluster(ip, tp, first_ino);
1772	}
1773
 
 
 
 
 
 
 
1774	return error;
1775}
1776
1777/*
1778 * Reallocate the space for if_broot based on the number of records
1779 * being added or deleted as indicated in rec_diff.  Move the records
1780 * and pointers in if_broot to fit the new size.  When shrinking this
1781 * will eliminate holes between the records and pointers created by
1782 * the caller.  When growing this will create holes to be filled in
1783 * by the caller.
1784 *
1785 * The caller must not request to add more records than would fit in
1786 * the on-disk inode root.  If the if_broot is currently NULL, then
1787 * if we adding records one will be allocated.  The caller must also
1788 * not request that the number of records go below zero, although
1789 * it can go to zero.
1790 *
1791 * ip -- the inode whose if_broot area is changing
1792 * ext_diff -- the change in the number of records, positive or negative,
1793 *	 requested for the if_broot array.
1794 */
1795void
1796xfs_iroot_realloc(
1797	xfs_inode_t		*ip,
1798	int			rec_diff,
1799	int			whichfork)
1800{
1801	struct xfs_mount	*mp = ip->i_mount;
1802	int			cur_max;
1803	xfs_ifork_t		*ifp;
1804	struct xfs_btree_block	*new_broot;
1805	int			new_max;
1806	size_t			new_size;
1807	char			*np;
1808	char			*op;
1809
1810	/*
1811	 * Handle the degenerate case quietly.
1812	 */
1813	if (rec_diff == 0) {
 
 
 
1814		return;
1815	}
1816
1817	ifp = XFS_IFORK_PTR(ip, whichfork);
1818	if (rec_diff > 0) {
1819		/*
1820		 * If there wasn't any memory allocated before, just
1821		 * allocate it now and get out.
1822		 */
1823		if (ifp->if_broot_bytes == 0) {
1824			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1825			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1826			ifp->if_broot_bytes = (int)new_size;
1827			return;
 
 
 
 
 
 
 
 
 
 
 
1828		}
1829
1830		/*
1831		 * If there is already an existing if_broot, then we need
1832		 * to realloc() it and shift the pointers to their new
1833		 * location.  The records don't change location because
1834		 * they are kept butted up against the btree block header.
1835		 */
1836		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1837		new_max = cur_max + rec_diff;
1838		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1839		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1840				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1841				KM_SLEEP | KM_NOFS);
1842		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1843						     ifp->if_broot_bytes);
1844		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1845						     (int)new_size);
1846		ifp->if_broot_bytes = (int)new_size;
1847		ASSERT(ifp->if_broot_bytes <=
1848			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1849		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1850		return;
1851	}
 
1852
1853	/*
1854	 * rec_diff is less than 0.  In this case, we are shrinking the
1855	 * if_broot buffer.  It must already exist.  If we go to zero
1856	 * records, just get rid of the root and clear the status bit.
1857	 */
1858	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1859	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1860	new_max = cur_max + rec_diff;
1861	ASSERT(new_max >= 0);
1862	if (new_max > 0)
1863		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1864	else
1865		new_size = 0;
1866	if (new_size > 0) {
1867		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1868		/*
1869		 * First copy over the btree block header.
1870		 */
1871		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1872	} else {
1873		new_broot = NULL;
1874		ifp->if_flags &= ~XFS_IFBROOT;
1875	}
1876
1877	/*
1878	 * Only copy the records and pointers if there are any.
 
 
 
1879	 */
1880	if (new_max > 0) {
1881		/*
1882		 * First copy the records.
1883		 */
1884		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1885		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1886		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1887
1888		/*
1889		 * Then copy the pointers.
1890		 */
1891		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1892						     ifp->if_broot_bytes);
1893		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1894						     (int)new_size);
1895		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1896	}
1897	kmem_free(ifp->if_broot);
1898	ifp->if_broot = new_broot;
1899	ifp->if_broot_bytes = (int)new_size;
1900	ASSERT(ifp->if_broot_bytes <=
1901		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1902	return;
1903}
1904
 
 
 
 
 
 
 
1905
1906/*
1907 * This is called when the amount of space needed for if_data
1908 * is increased or decreased.  The change in size is indicated by
1909 * the number of bytes that need to be added or deleted in the
1910 * byte_diff parameter.
1911 *
1912 * If the amount of space needed has decreased below the size of the
1913 * inline buffer, then switch to using the inline buffer.  Otherwise,
1914 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1915 * to what is needed.
1916 *
1917 * ip -- the inode whose if_data area is changing
1918 * byte_diff -- the change in the number of bytes, positive or negative,
1919 *	 requested for the if_data array.
1920 */
1921void
1922xfs_idata_realloc(
1923	xfs_inode_t	*ip,
1924	int		byte_diff,
1925	int		whichfork)
1926{
1927	xfs_ifork_t	*ifp;
1928	int		new_size;
1929	int		real_size;
 
 
 
 
 
 
 
1930
1931	if (byte_diff == 0) {
1932		return;
1933	}
1934
1935	ifp = XFS_IFORK_PTR(ip, whichfork);
1936	new_size = (int)ifp->if_bytes + byte_diff;
1937	ASSERT(new_size >= 0);
1938
1939	if (new_size == 0) {
1940		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1941			kmem_free(ifp->if_u1.if_data);
1942		}
1943		ifp->if_u1.if_data = NULL;
1944		real_size = 0;
1945	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1946		/*
1947		 * If the valid extents/data can fit in if_inline_ext/data,
1948		 * copy them from the malloc'd vector and free it.
 
1949		 */
1950		if (ifp->if_u1.if_data == NULL) {
1951			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1952		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1953			ASSERT(ifp->if_real_bytes != 0);
1954			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1955			      new_size);
1956			kmem_free(ifp->if_u1.if_data);
1957			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1958		}
1959		real_size = 0;
1960	} else {
 
 
1961		/*
1962		 * Stuck with malloc/realloc.
1963		 * For inline data, the underlying buffer must be
1964		 * a multiple of 4 bytes in size so that it can be
1965		 * logged and stay on word boundaries.  We enforce
1966		 * that here.
 
 
1967		 */
1968		real_size = roundup(new_size, 4);
1969		if (ifp->if_u1.if_data == NULL) {
1970			ASSERT(ifp->if_real_bytes == 0);
1971			ifp->if_u1.if_data = kmem_alloc(real_size,
1972							KM_SLEEP | KM_NOFS);
1973		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1974			/*
1975			 * Only do the realloc if the underlying size
1976			 * is really changing.
1977			 */
1978			if (ifp->if_real_bytes != real_size) {
1979				ifp->if_u1.if_data =
1980					kmem_realloc(ifp->if_u1.if_data,
1981							real_size,
1982							ifp->if_real_bytes,
1983							KM_SLEEP | KM_NOFS);
1984			}
1985		} else {
1986			ASSERT(ifp->if_real_bytes == 0);
1987			ifp->if_u1.if_data = kmem_alloc(real_size,
1988							KM_SLEEP | KM_NOFS);
1989			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1990				ifp->if_bytes);
1991		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992	}
1993	ifp->if_real_bytes = real_size;
1994	ifp->if_bytes = new_size;
1995	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1996}
1997
1998void
1999xfs_idestroy_fork(
2000	xfs_inode_t	*ip,
2001	int		whichfork)
2002{
2003	xfs_ifork_t	*ifp;
2004
2005	ifp = XFS_IFORK_PTR(ip, whichfork);
2006	if (ifp->if_broot != NULL) {
2007		kmem_free(ifp->if_broot);
2008		ifp->if_broot = NULL;
2009	}
 
 
 
 
 
 
 
2010
2011	/*
2012	 * If the format is local, then we can't have an extents
2013	 * array so just look for an inline data array.  If we're
2014	 * not local then we may or may not have an extents list,
2015	 * so check and free it up if we do.
2016	 */
2017	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2018		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2019		    (ifp->if_u1.if_data != NULL)) {
2020			ASSERT(ifp->if_real_bytes != 0);
2021			kmem_free(ifp->if_u1.if_data);
2022			ifp->if_u1.if_data = NULL;
2023			ifp->if_real_bytes = 0;
2024		}
2025	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2026		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2027		    ((ifp->if_u1.if_extents != NULL) &&
2028		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2029		ASSERT(ifp->if_real_bytes != 0);
2030		xfs_iext_destroy(ifp);
2031	}
2032	ASSERT(ifp->if_u1.if_extents == NULL ||
2033	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2034	ASSERT(ifp->if_real_bytes == 0);
2035	if (whichfork == XFS_ATTR_FORK) {
2036		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2037		ip->i_afp = NULL;
2038	}
2039}
2040
2041/*
2042 * This is called to unpin an inode.  The caller must have the inode locked
2043 * in at least shared mode so that the buffer cannot be subsequently pinned
2044 * once someone is waiting for it to be unpinned.
2045 */
2046static void
2047xfs_iunpin(
2048	struct xfs_inode	*ip)
2049{
2050	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2051
2052	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2053
2054	/* Give the log a push to start the unpinning I/O */
2055	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2056
2057}
2058
2059static void
2060__xfs_iunpin_wait(
2061	struct xfs_inode	*ip)
2062{
2063	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2064	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2065
2066	xfs_iunpin(ip);
2067
2068	do {
2069		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2070		if (xfs_ipincount(ip))
2071			io_schedule();
2072	} while (xfs_ipincount(ip));
2073	finish_wait(wq, &wait.wait);
2074}
2075
2076void
2077xfs_iunpin_wait(
2078	struct xfs_inode	*ip)
2079{
2080	if (xfs_ipincount(ip))
2081		__xfs_iunpin_wait(ip);
2082}
2083
2084/*
2085 * xfs_iextents_copy()
2086 *
2087 * This is called to copy the REAL extents (as opposed to the delayed
2088 * allocation extents) from the inode into the given buffer.  It
2089 * returns the number of bytes copied into the buffer.
2090 *
2091 * If there are no delayed allocation extents, then we can just
2092 * memcpy() the extents into the buffer.  Otherwise, we need to
2093 * examine each extent in turn and skip those which are delayed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094 */
2095int
2096xfs_iextents_copy(
2097	xfs_inode_t		*ip,
2098	xfs_bmbt_rec_t		*dp,
2099	int			whichfork)
2100{
2101	int			copied;
2102	int			i;
2103	xfs_ifork_t		*ifp;
2104	int			nrecs;
2105	xfs_fsblock_t		start_block;
2106
2107	ifp = XFS_IFORK_PTR(ip, whichfork);
2108	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2109	ASSERT(ifp->if_bytes > 0);
2110
2111	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2112	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2113	ASSERT(nrecs > 0);
2114
2115	/*
2116	 * There are some delayed allocation extents in the
2117	 * inode, so copy the extents one at a time and skip
2118	 * the delayed ones.  There must be at least one
2119	 * non-delayed extent.
2120	 */
2121	copied = 0;
2122	for (i = 0; i < nrecs; i++) {
2123		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2124		start_block = xfs_bmbt_get_startblock(ep);
2125		if (isnullstartblock(start_block)) {
2126			/*
2127			 * It's a delayed allocation extent, so skip it.
2128			 */
2129			continue;
2130		}
2131
2132		/* Translate to on disk format */
2133		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2134		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2135		dp++;
2136		copied++;
2137	}
2138	ASSERT(copied != 0);
2139	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2140
2141	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2142}
 
2143
2144/*
2145 * Each of the following cases stores data into the same region
2146 * of the on-disk inode, so only one of them can be valid at
2147 * any given time. While it is possible to have conflicting formats
2148 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2149 * in EXTENTS format, this can only happen when the fork has
2150 * changed formats after being modified but before being flushed.
2151 * In these cases, the format always takes precedence, because the
2152 * format indicates the current state of the fork.
2153 */
2154/*ARGSUSED*/
2155STATIC void
2156xfs_iflush_fork(
2157	xfs_inode_t		*ip,
2158	xfs_dinode_t		*dip,
2159	xfs_inode_log_item_t	*iip,
2160	int			whichfork,
2161	xfs_buf_t		*bp)
2162{
2163	char			*cp;
2164	xfs_ifork_t		*ifp;
2165	xfs_mount_t		*mp;
2166#ifdef XFS_TRANS_DEBUG
2167	int			first;
2168#endif
2169	static const short	brootflag[2] =
2170		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2171	static const short	dataflag[2] =
2172		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2173	static const short	extflag[2] =
2174		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2175
2176	if (!iip)
2177		return;
2178	ifp = XFS_IFORK_PTR(ip, whichfork);
2179	/*
2180	 * This can happen if we gave up in iformat in an error path,
2181	 * for the attribute fork.
2182	 */
2183	if (!ifp) {
2184		ASSERT(whichfork == XFS_ATTR_FORK);
2185		return;
 
 
 
 
 
 
 
 
 
 
2186	}
2187	cp = XFS_DFORK_PTR(dip, whichfork);
2188	mp = ip->i_mount;
2189	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2190	case XFS_DINODE_FMT_LOCAL:
2191		if ((iip->ili_fields & dataflag[whichfork]) &&
2192		    (ifp->if_bytes > 0)) {
2193			ASSERT(ifp->if_u1.if_data != NULL);
2194			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2195			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2196		}
2197		break;
2198
2199	case XFS_DINODE_FMT_EXTENTS:
2200		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2201		       !(iip->ili_fields & extflag[whichfork]));
2202		if ((iip->ili_fields & extflag[whichfork]) &&
2203		    (ifp->if_bytes > 0)) {
2204			ASSERT(xfs_iext_get_ext(ifp, 0));
2205			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2206			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2207				whichfork);
2208		}
2209		break;
2210
2211	case XFS_DINODE_FMT_BTREE:
2212		if ((iip->ili_fields & brootflag[whichfork]) &&
2213		    (ifp->if_broot_bytes > 0)) {
2214			ASSERT(ifp->if_broot != NULL);
2215			ASSERT(ifp->if_broot_bytes <=
2216			       (XFS_IFORK_SIZE(ip, whichfork) +
2217				XFS_BROOT_SIZE_ADJ));
2218			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2219				(xfs_bmdr_block_t *)cp,
2220				XFS_DFORK_SIZE(dip, mp, whichfork));
2221		}
2222		break;
2223
2224	case XFS_DINODE_FMT_DEV:
2225		if (iip->ili_fields & XFS_ILOG_DEV) {
2226			ASSERT(whichfork == XFS_DATA_FORK);
2227			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2228		}
2229		break;
2230
2231	case XFS_DINODE_FMT_UUID:
2232		if (iip->ili_fields & XFS_ILOG_UUID) {
2233			ASSERT(whichfork == XFS_DATA_FORK);
2234			memcpy(XFS_DFORK_DPTR(dip),
2235			       &ip->i_df.if_u2.if_uuid,
2236			       sizeof(uuid_t));
2237		}
2238		break;
2239
2240	default:
2241		ASSERT(0);
2242		break;
2243	}
2244}
2245
2246STATIC int
2247xfs_iflush_cluster(
2248	xfs_inode_t	*ip,
2249	xfs_buf_t	*bp)
2250{
2251	xfs_mount_t		*mp = ip->i_mount;
2252	struct xfs_perag	*pag;
2253	unsigned long		first_index, mask;
2254	unsigned long		inodes_per_cluster;
2255	int			ilist_size;
2256	xfs_inode_t		**ilist;
2257	xfs_inode_t		*iq;
2258	int			nr_found;
2259	int			clcount = 0;
2260	int			bufwasdelwri;
2261	int			i;
2262
2263	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
 
 
 
2264
2265	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2266	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2267	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2268	if (!ilist)
2269		goto out_put;
2270
2271	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2272	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2273	rcu_read_lock();
2274	/* really need a gang lookup range call here */
2275	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2276					first_index, inodes_per_cluster);
2277	if (nr_found == 0)
2278		goto out_free;
2279
2280	for (i = 0; i < nr_found; i++) {
2281		iq = ilist[i];
2282		if (iq == ip)
2283			continue;
2284
2285		/*
2286		 * because this is an RCU protected lookup, we could find a
2287		 * recently freed or even reallocated inode during the lookup.
2288		 * We need to check under the i_flags_lock for a valid inode
2289		 * here. Skip it if it is not valid or the wrong inode.
2290		 */
2291		spin_lock(&ip->i_flags_lock);
2292		if (!ip->i_ino ||
2293		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2294			spin_unlock(&ip->i_flags_lock);
2295			continue;
2296		}
2297		spin_unlock(&ip->i_flags_lock);
2298
2299		/*
2300		 * Do an un-protected check to see if the inode is dirty and
2301		 * is a candidate for flushing.  These checks will be repeated
2302		 * later after the appropriate locks are acquired.
2303		 */
2304		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2305			continue;
 
 
 
2306
2307		/*
2308		 * Try to get locks.  If any are unavailable or it is pinned,
2309		 * then this inode cannot be flushed and is skipped.
2310		 */
 
 
2311
2312		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
 
 
2313			continue;
2314		if (!xfs_iflock_nowait(iq)) {
2315			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2316			continue;
2317		}
2318		if (xfs_ipincount(iq)) {
2319			xfs_ifunlock(iq);
2320			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2321			continue;
2322		}
2323
2324		/*
2325		 * arriving here means that this inode can be flushed.  First
2326		 * re-check that it's dirty before flushing.
2327		 */
2328		if (!xfs_inode_clean(iq)) {
2329			int	error;
2330			error = xfs_iflush_int(iq, bp);
2331			if (error) {
2332				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2333				goto cluster_corrupt_out;
2334			}
2335			clcount++;
2336		} else {
2337			xfs_ifunlock(iq);
2338		}
2339		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2340	}
2341
2342	if (clcount) {
2343		XFS_STATS_INC(xs_icluster_flushcnt);
2344		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2345	}
 
2346
2347out_free:
2348	rcu_read_unlock();
2349	kmem_free(ilist);
2350out_put:
2351	xfs_perag_put(pag);
2352	return 0;
 
 
 
 
 
 
 
 
 
2353
 
 
2354
2355cluster_corrupt_out:
2356	/*
2357	 * Corruption detected in the clustering loop.  Invalidate the
2358	 * inode buffer and shut down the filesystem.
2359	 */
2360	rcu_read_unlock();
2361	/*
2362	 * Clean up the buffer.  If it was delwri, just release it --
2363	 * brelse can handle it with no problems.  If not, shut down the
2364	 * filesystem before releasing the buffer.
2365	 */
2366	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2367	if (bufwasdelwri)
2368		xfs_buf_relse(bp);
 
 
 
 
 
 
2369
2370	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 
2371
2372	if (!bufwasdelwri) {
2373		/*
2374		 * Just like incore_relse: if we have b_iodone functions,
2375		 * mark the buffer as an error and call them.  Otherwise
2376		 * mark it as stale and brelse.
2377		 */
2378		if (bp->b_iodone) {
2379			XFS_BUF_UNDONE(bp);
2380			xfs_buf_stale(bp);
2381			xfs_buf_ioerror(bp, EIO);
2382			xfs_buf_ioend(bp, 0);
2383		} else {
2384			xfs_buf_stale(bp);
2385			xfs_buf_relse(bp);
2386		}
2387	}
2388
2389	/*
2390	 * Unlocks the flush lock
 
2391	 */
2392	xfs_iflush_abort(iq, false);
2393	kmem_free(ilist);
2394	xfs_perag_put(pag);
2395	return XFS_ERROR(EFSCORRUPTED);
 
 
2396}
2397
2398/*
2399 * Flush dirty inode metadata into the backing buffer.
2400 *
2401 * The caller must have the inode lock and the inode flush lock held.  The
2402 * inode lock will still be held upon return to the caller, and the inode
2403 * flush lock will be released after the inode has reached the disk.
2404 *
2405 * The caller must write out the buffer returned in *bpp and release it.
 
 
 
2406 */
2407int
2408xfs_iflush(
2409	struct xfs_inode	*ip,
2410	struct xfs_buf		**bpp)
 
 
2411{
2412	struct xfs_mount	*mp = ip->i_mount;
2413	struct xfs_buf		*bp;
2414	struct xfs_dinode	*dip;
 
 
 
 
 
2415	int			error;
2416
2417	XFS_STATS_INC(xs_iflush_count);
 
 
2418
2419	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2420	ASSERT(xfs_isiflocked(ip));
2421	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2422	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 
 
 
 
2423
2424	*bpp = NULL;
 
 
 
 
 
 
 
2425
2426	xfs_iunpin_wait(ip);
 
 
2427
2428	/*
2429	 * For stale inodes we cannot rely on the backing buffer remaining
2430	 * stale in cache for the remaining life of the stale inode and so
2431	 * xfs_itobp() below may give us a buffer that no longer contains
2432	 * inodes below. We have to check this after ensuring the inode is
2433	 * unpinned so that it is safe to reclaim the stale inode after the
2434	 * flush call.
2435	 */
2436	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2437		xfs_ifunlock(ip);
2438		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439	}
2440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	/*
2442	 * This may have been unpinned because the filesystem is shutting
2443	 * down forcibly. If that's the case we must not write this inode
2444	 * to disk, because the log record didn't make it to disk.
2445	 *
2446	 * We also have to remove the log item from the AIL in this case,
2447	 * as we wait for an empty AIL as part of the unmount process.
2448	 */
2449	if (XFS_FORCED_SHUTDOWN(mp)) {
2450		error = XFS_ERROR(EIO);
2451		goto abort_out;
 
2452	}
2453
2454	/*
2455	 * Get the buffer containing the on-disk inode.
2456	 */
2457	error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
2458	if (error || !bp) {
2459		xfs_ifunlock(ip);
2460		return error;
2461	}
2462
2463	/*
2464	 * First flush out the inode that xfs_iflush was called with.
 
 
 
2465	 */
2466	error = xfs_iflush_int(ip, bp);
2467	if (error)
2468		goto corrupt_out;
2469
2470	/*
2471	 * If the buffer is pinned then push on the log now so we won't
2472	 * get stuck waiting in the write for too long.
2473	 */
2474	if (xfs_buf_ispinned(bp))
2475		xfs_log_force(mp, 0);
 
 
 
 
 
 
2476
2477	/*
2478	 * inode clustering:
2479	 * see if other inodes can be gathered into this write
 
2480	 */
2481	error = xfs_iflush_cluster(ip, bp);
2482	if (error)
2483		goto cluster_corrupt_out;
 
 
2484
2485	*bpp = bp;
2486	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488corrupt_out:
2489	xfs_buf_relse(bp);
2490	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2491cluster_corrupt_out:
2492	error = XFS_ERROR(EFSCORRUPTED);
2493abort_out:
2494	/*
2495	 * Unlocks the flush lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496	 */
2497	xfs_iflush_abort(ip, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	return error;
2499}
2500
2501
2502STATIC int
2503xfs_iflush_int(
2504	xfs_inode_t		*ip,
2505	xfs_buf_t		*bp)
2506{
2507	xfs_inode_log_item_t	*iip;
2508	xfs_dinode_t		*dip;
2509	xfs_mount_t		*mp;
2510#ifdef XFS_TRANS_DEBUG
2511	int			first;
2512#endif
2513
2514	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2515	ASSERT(xfs_isiflocked(ip));
2516	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2517	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2518
2519	iip = ip->i_itemp;
2520	mp = ip->i_mount;
 
 
 
2521
2522	/* set *dip = inode's place in the buffer */
2523	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2524
 
 
 
 
 
 
 
2525	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2526			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2527		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2528			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2529			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2530		goto corrupt_out;
2531	}
2532	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2533				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2534		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2535			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2536			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2537		goto corrupt_out;
2538	}
2539	if (S_ISREG(ip->i_d.di_mode)) {
2540		if (XFS_TEST_ERROR(
2541		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2542		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2543		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2544			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2545				"%s: Bad regular inode %Lu, ptr 0x%p",
2546				__func__, ip->i_ino, ip);
2547			goto corrupt_out;
2548		}
2549	} else if (S_ISDIR(ip->i_d.di_mode)) {
2550		if (XFS_TEST_ERROR(
2551		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2552		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2553		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2554		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2555			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2556				"%s: Bad directory inode %Lu, ptr 0x%p",
2557				__func__, ip->i_ino, ip);
2558			goto corrupt_out;
2559		}
2560	}
2561	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2562				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2563				XFS_RANDOM_IFLUSH_5)) {
2564		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2565			"%s: detected corrupt incore inode %Lu, "
2566			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2567			__func__, ip->i_ino,
2568			ip->i_d.di_nextents + ip->i_d.di_anextents,
2569			ip->i_d.di_nblocks, ip);
2570		goto corrupt_out;
2571	}
2572	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2573				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2574		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2575			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2576			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2577		goto corrupt_out;
2578	}
 
2579	/*
2580	 * bump the flush iteration count, used to detect flushes which
2581	 * postdate a log record during recovery.
 
 
 
 
2582	 */
 
 
2583
2584	ip->i_d.di_flushiter++;
 
 
 
 
 
 
 
 
 
 
2585
2586	/*
2587	 * Copy the dirty parts of the inode into the on-disk
2588	 * inode.  We always copy out the core of the inode,
2589	 * because if the inode is dirty at all the core must
2590	 * be.
2591	 */
2592	xfs_dinode_to_disk(dip, &ip->i_d);
2593
2594	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2595	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2596		ip->i_d.di_flushiter = 0;
2597
2598	/*
2599	 * If this is really an old format inode and the superblock version
2600	 * has not been updated to support only new format inodes, then
2601	 * convert back to the old inode format.  If the superblock version
2602	 * has been updated, then make the conversion permanent.
2603	 */
2604	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2605	if (ip->i_d.di_version == 1) {
2606		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2607			/*
2608			 * Convert it back.
2609			 */
2610			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2611			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2612		} else {
2613			/*
2614			 * The superblock version has already been bumped,
2615			 * so just make the conversion to the new inode
2616			 * format permanent.
2617			 */
2618			ip->i_d.di_version = 2;
2619			dip->di_version = 2;
2620			ip->i_d.di_onlink = 0;
2621			dip->di_onlink = 0;
2622			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2623			memset(&(dip->di_pad[0]), 0,
2624			      sizeof(dip->di_pad));
2625			ASSERT(xfs_get_projid(ip) == 0);
2626		}
2627	}
2628
2629	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2630	if (XFS_IFORK_Q(ip))
2631		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2632	xfs_inobp_check(mp, bp);
2633
2634	/*
2635	 * We've recorded everything logged in the inode, so we'd like to clear
2636	 * the ili_fields bits so we don't log and flush things unnecessarily.
2637	 * However, we can't stop logging all this information until the data
2638	 * we've copied into the disk buffer is written to disk.  If we did we
2639	 * might overwrite the copy of the inode in the log with all the data
2640	 * after re-logging only part of it, and in the face of a crash we
2641	 * wouldn't have all the data we need to recover.
2642	 *
2643	 * What we do is move the bits to the ili_last_fields field.  When
2644	 * logging the inode, these bits are moved back to the ili_fields field.
2645	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2646	 * know that the information those bits represent is permanently on
2647	 * disk.  As long as the flush completes before the inode is logged
2648	 * again, then both ili_fields and ili_last_fields will be cleared.
2649	 *
2650	 * We can play with the ili_fields bits here, because the inode lock
2651	 * must be held exclusively in order to set bits there and the flush
2652	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2653	 * done routine can tell whether or not to look in the AIL.  Also, store
2654	 * the current LSN of the inode so that we can tell whether the item has
2655	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2656	 * need the AIL lock, because it is a 64 bit value that cannot be read
2657	 * atomically.
2658	 */
2659	if (iip != NULL && iip->ili_fields != 0) {
2660		iip->ili_last_fields = iip->ili_fields;
2661		iip->ili_fields = 0;
2662		iip->ili_logged = 1;
2663
2664		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2665					&iip->ili_item.li_lsn);
2666
2667		/*
2668		 * Attach the function xfs_iflush_done to the inode's
2669		 * buffer.  This will remove the inode from the AIL
2670		 * and unlock the inode's flush lock when the inode is
2671		 * completely written to disk.
2672		 */
2673		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2674
2675		ASSERT(bp->b_fspriv != NULL);
2676		ASSERT(bp->b_iodone != NULL);
2677	} else {
2678		/*
2679		 * We're flushing an inode which is not in the AIL and has
2680		 * not been logged.  For this case we can immediately drop
2681		 * the inode flush lock because we can avoid the whole
2682		 * AIL state thing.  It's OK to drop the flush lock now,
2683		 * because we've already locked the buffer and to do anything
2684		 * you really need both.
2685		 */
2686		if (iip != NULL) {
2687			ASSERT(iip->ili_logged == 0);
2688			ASSERT(iip->ili_last_fields == 0);
2689			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2690		}
2691		xfs_ifunlock(ip);
2692	}
2693
2694	return 0;
 
 
 
 
 
2695
2696corrupt_out:
2697	return XFS_ERROR(EFSCORRUPTED);
 
 
 
2698}
2699
2700/*
2701 * Return a pointer to the extent record at file index idx.
 
 
 
 
 
 
 
 
 
 
2702 */
2703xfs_bmbt_rec_host_t *
2704xfs_iext_get_ext(
2705	xfs_ifork_t	*ifp,		/* inode fork pointer */
2706	xfs_extnum_t	idx)		/* index of target extent */
2707{
2708	ASSERT(idx >= 0);
2709	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2710
2711	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2712		return ifp->if_u1.if_ext_irec->er_extbuf;
2713	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2714		xfs_ext_irec_t	*erp;		/* irec pointer */
2715		int		erp_idx = 0;	/* irec index */
2716		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2717
2718		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2719		return &erp->er_extbuf[page_idx];
2720	} else if (ifp->if_bytes) {
2721		return &ifp->if_u1.if_extents[idx];
2722	} else {
2723		return NULL;
2724	}
2725}
2726
2727/*
2728 * Insert new item(s) into the extent records for incore inode
2729 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2730 */
2731void
2732xfs_iext_insert(
2733	xfs_inode_t	*ip,		/* incore inode pointer */
2734	xfs_extnum_t	idx,		/* starting index of new items */
2735	xfs_extnum_t	count,		/* number of inserted items */
2736	xfs_bmbt_irec_t	*new,		/* items to insert */
2737	int		state)		/* type of extent conversion */
2738{
2739	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2740	xfs_extnum_t	i;		/* extent record index */
2741
2742	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2743
2744	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2745	xfs_iext_add(ifp, idx, count);
2746	for (i = idx; i < idx + count; i++, new++)
2747		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2748}
2749
2750/*
2751 * This is called when the amount of space required for incore file
2752 * extents needs to be increased. The ext_diff parameter stores the
2753 * number of new extents being added and the idx parameter contains
2754 * the extent index where the new extents will be added. If the new
2755 * extents are being appended, then we just need to (re)allocate and
2756 * initialize the space. Otherwise, if the new extents are being
2757 * inserted into the middle of the existing entries, a bit more work
2758 * is required to make room for the new extents to be inserted. The
2759 * caller is responsible for filling in the new extent entries upon
2760 * return.
2761 */
2762void
2763xfs_iext_add(
2764	xfs_ifork_t	*ifp,		/* inode fork pointer */
2765	xfs_extnum_t	idx,		/* index to begin adding exts */
2766	int		ext_diff)	/* number of extents to add */
2767{
2768	int		byte_diff;	/* new bytes being added */
2769	int		new_size;	/* size of extents after adding */
2770	xfs_extnum_t	nextents;	/* number of extents in file */
2771
2772	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2773	ASSERT((idx >= 0) && (idx <= nextents));
2774	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2775	new_size = ifp->if_bytes + byte_diff;
2776	/*
2777	 * If the new number of extents (nextents + ext_diff)
2778	 * fits inside the inode, then continue to use the inline
2779	 * extent buffer.
2780	 */
2781	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2782		if (idx < nextents) {
2783			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2784				&ifp->if_u2.if_inline_ext[idx],
2785				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2786			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2787		}
2788		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2789		ifp->if_real_bytes = 0;
2790	}
2791	/*
2792	 * Otherwise use a linear (direct) extent list.
2793	 * If the extents are currently inside the inode,
2794	 * xfs_iext_realloc_direct will switch us from
2795	 * inline to direct extent allocation mode.
2796	 */
2797	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2798		xfs_iext_realloc_direct(ifp, new_size);
2799		if (idx < nextents) {
2800			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2801				&ifp->if_u1.if_extents[idx],
2802				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2803			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2804		}
2805	}
2806	/* Indirection array */
2807	else {
2808		xfs_ext_irec_t	*erp;
2809		int		erp_idx = 0;
2810		int		page_idx = idx;
2811
2812		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2813		if (ifp->if_flags & XFS_IFEXTIREC) {
2814			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2815		} else {
2816			xfs_iext_irec_init(ifp);
2817			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2818			erp = ifp->if_u1.if_ext_irec;
2819		}
2820		/* Extents fit in target extent page */
2821		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2822			if (page_idx < erp->er_extcount) {
2823				memmove(&erp->er_extbuf[page_idx + ext_diff],
2824					&erp->er_extbuf[page_idx],
2825					(erp->er_extcount - page_idx) *
2826					sizeof(xfs_bmbt_rec_t));
2827				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2828			}
2829			erp->er_extcount += ext_diff;
2830			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2831		}
2832		/* Insert a new extent page */
2833		else if (erp) {
2834			xfs_iext_add_indirect_multi(ifp,
2835				erp_idx, page_idx, ext_diff);
2836		}
2837		/*
2838		 * If extent(s) are being appended to the last page in
2839		 * the indirection array and the new extent(s) don't fit
2840		 * in the page, then erp is NULL and erp_idx is set to
2841		 * the next index needed in the indirection array.
2842		 */
2843		else {
2844			int	count = ext_diff;
2845
2846			while (count) {
2847				erp = xfs_iext_irec_new(ifp, erp_idx);
2848				erp->er_extcount = count;
2849				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2850				if (count) {
2851					erp_idx++;
2852				}
2853			}
2854		}
2855	}
2856	ifp->if_bytes = new_size;
2857}
2858
2859/*
2860 * This is called when incore extents are being added to the indirection
2861 * array and the new extents do not fit in the target extent list. The
2862 * erp_idx parameter contains the irec index for the target extent list
2863 * in the indirection array, and the idx parameter contains the extent
2864 * index within the list. The number of extents being added is stored
2865 * in the count parameter.
2866 *
2867 *    |-------|   |-------|
2868 *    |       |   |       |    idx - number of extents before idx
2869 *    |  idx  |   | count |
2870 *    |       |   |       |    count - number of extents being inserted at idx
2871 *    |-------|   |-------|
2872 *    | count |   | nex2  |    nex2 - number of extents after idx + count
2873 *    |-------|   |-------|
2874 */
2875void
2876xfs_iext_add_indirect_multi(
2877	xfs_ifork_t	*ifp,			/* inode fork pointer */
2878	int		erp_idx,		/* target extent irec index */
2879	xfs_extnum_t	idx,			/* index within target list */
2880	int		count)			/* new extents being added */
2881{
2882	int		byte_diff;		/* new bytes being added */
2883	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
2884	xfs_extnum_t	ext_diff;		/* number of extents to add */
2885	xfs_extnum_t	ext_cnt;		/* new extents still needed */
2886	xfs_extnum_t	nex2;			/* extents after idx + count */
2887	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
2888	int		nlists;			/* number of irec's (lists) */
2889
2890	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2891	erp = &ifp->if_u1.if_ext_irec[erp_idx];
2892	nex2 = erp->er_extcount - idx;
2893	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2894
2895	/*
2896	 * Save second part of target extent list
2897	 * (all extents past */
2898	if (nex2) {
2899		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2900		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2901		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2902		erp->er_extcount -= nex2;
2903		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2904		memset(&erp->er_extbuf[idx], 0, byte_diff);
2905	}
2906
2907	/*
2908	 * Add the new extents to the end of the target
2909	 * list, then allocate new irec record(s) and
2910	 * extent buffer(s) as needed to store the rest
2911	 * of the new extents.
2912	 */
2913	ext_cnt = count;
2914	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2915	if (ext_diff) {
2916		erp->er_extcount += ext_diff;
2917		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2918		ext_cnt -= ext_diff;
2919	}
2920	while (ext_cnt) {
2921		erp_idx++;
2922		erp = xfs_iext_irec_new(ifp, erp_idx);
2923		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2924		erp->er_extcount = ext_diff;
2925		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2926		ext_cnt -= ext_diff;
2927	}
2928
2929	/* Add nex2 extents back to indirection array */
2930	if (nex2) {
2931		xfs_extnum_t	ext_avail;
2932		int		i;
2933
2934		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2935		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2936		i = 0;
2937		/*
2938		 * If nex2 extents fit in the current page, append
2939		 * nex2_ep after the new extents.
 
 
 
2940		 */
2941		if (nex2 <= ext_avail) {
2942			i = erp->er_extcount;
 
 
 
2943		}
 
2944		/*
2945		 * Otherwise, check if space is available in the
2946		 * next page.
 
 
2947		 */
2948		else if ((erp_idx < nlists - 1) &&
2949			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2950			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2951			erp_idx++;
2952			erp++;
2953			/* Create a hole for nex2 extents */
2954			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2955				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2956		}
 
 
 
2957		/*
2958		 * Final choice, create a new extent page for
2959		 * nex2 extents.
2960		 */
2961		else {
2962			erp_idx++;
2963			erp = xfs_iext_irec_new(ifp, erp_idx);
 
 
 
 
 
 
2964		}
2965		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2966		kmem_free(nex2_ep);
2967		erp->er_extcount += nex2;
2968		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
 
 
 
 
 
 
 
 
 
 
 
 
2969	}
2970}
2971
2972/*
2973 * This is called when the amount of space required for incore file
2974 * extents needs to be decreased. The ext_diff parameter stores the
2975 * number of extents to be removed and the idx parameter contains
2976 * the extent index where the extents will be removed from.
2977 *
2978 * If the amount of space needed has decreased below the linear
2979 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2980 * extent array.  Otherwise, use kmem_realloc() to adjust the
2981 * size to what is needed.
2982 */
2983void
2984xfs_iext_remove(
2985	xfs_inode_t	*ip,		/* incore inode pointer */
2986	xfs_extnum_t	idx,		/* index to begin removing exts */
2987	int		ext_diff,	/* number of extents to remove */
2988	int		state)		/* type of extent conversion */
2989{
2990	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2991	xfs_extnum_t	nextents;	/* number of extents in file */
2992	int		new_size;	/* size of extents after removal */
2993
2994	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2995
2996	ASSERT(ext_diff > 0);
2997	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2998	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2999
3000	if (new_size == 0) {
3001		xfs_iext_destroy(ifp);
3002	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3003		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3004	} else if (ifp->if_real_bytes) {
3005		xfs_iext_remove_direct(ifp, idx, ext_diff);
3006	} else {
3007		xfs_iext_remove_inline(ifp, idx, ext_diff);
3008	}
3009	ifp->if_bytes = new_size;
 
 
 
 
 
 
 
3010}
3011
3012/*
3013 * This removes ext_diff extents from the inline buffer, beginning
3014 * at extent index idx.
3015 */
3016void
3017xfs_iext_remove_inline(
3018	xfs_ifork_t	*ifp,		/* inode fork pointer */
3019	xfs_extnum_t	idx,		/* index to begin removing exts */
3020	int		ext_diff)	/* number of extents to remove */
3021{
3022	int		nextents;	/* number of extents in file */
3023
3024	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3025	ASSERT(idx < XFS_INLINE_EXTS);
3026	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3027	ASSERT(((nextents - ext_diff) > 0) &&
3028		(nextents - ext_diff) < XFS_INLINE_EXTS);
3029
3030	if (idx + ext_diff < nextents) {
3031		memmove(&ifp->if_u2.if_inline_ext[idx],
3032			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3033			(nextents - (idx + ext_diff)) *
3034			 sizeof(xfs_bmbt_rec_t));
3035		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3036			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3037	} else {
3038		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3039			ext_diff * sizeof(xfs_bmbt_rec_t));
3040	}
3041}
3042
3043/*
3044 * This removes ext_diff extents from a linear (direct) extent list,
3045 * beginning at extent index idx. If the extents are being removed
3046 * from the end of the list (ie. truncate) then we just need to re-
3047 * allocate the list to remove the extra space. Otherwise, if the
3048 * extents are being removed from the middle of the existing extent
3049 * entries, then we first need to move the extent records beginning
3050 * at idx + ext_diff up in the list to overwrite the records being
3051 * removed, then remove the extra space via kmem_realloc.
3052 */
3053void
3054xfs_iext_remove_direct(
3055	xfs_ifork_t	*ifp,		/* inode fork pointer */
3056	xfs_extnum_t	idx,		/* index to begin removing exts */
3057	int		ext_diff)	/* number of extents to remove */
3058{
3059	xfs_extnum_t	nextents;	/* number of extents in file */
3060	int		new_size;	/* size of extents after removal */
3061
3062	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3063	new_size = ifp->if_bytes -
3064		(ext_diff * sizeof(xfs_bmbt_rec_t));
3065	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3066
3067	if (new_size == 0) {
3068		xfs_iext_destroy(ifp);
3069		return;
3070	}
3071	/* Move extents up in the list (if needed) */
3072	if (idx + ext_diff < nextents) {
3073		memmove(&ifp->if_u1.if_extents[idx],
3074			&ifp->if_u1.if_extents[idx + ext_diff],
3075			(nextents - (idx + ext_diff)) *
3076			 sizeof(xfs_bmbt_rec_t));
3077	}
3078	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3079		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3080	/*
3081	 * Reallocate the direct extent list. If the extents
3082	 * will fit inside the inode then xfs_iext_realloc_direct
3083	 * will switch from direct to inline extent allocation
3084	 * mode for us.
3085	 */
3086	xfs_iext_realloc_direct(ifp, new_size);
3087	ifp->if_bytes = new_size;
3088}
3089
3090/*
3091 * This is called when incore extents are being removed from the
3092 * indirection array and the extents being removed span multiple extent
3093 * buffers. The idx parameter contains the file extent index where we
3094 * want to begin removing extents, and the count parameter contains
3095 * how many extents need to be removed.
3096 *
3097 *    |-------|   |-------|
3098 *    | nex1  |   |       |    nex1 - number of extents before idx
3099 *    |-------|   | count |
3100 *    |       |   |       |    count - number of extents being removed at idx
3101 *    | count |   |-------|
3102 *    |       |   | nex2  |    nex2 - number of extents after idx + count
3103 *    |-------|   |-------|
3104 */
3105void
3106xfs_iext_remove_indirect(
3107	xfs_ifork_t	*ifp,		/* inode fork pointer */
3108	xfs_extnum_t	idx,		/* index to begin removing extents */
3109	int		count)		/* number of extents to remove */
3110{
3111	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3112	int		erp_idx = 0;	/* indirection array index */
3113	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3114	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3115	xfs_extnum_t	nex1;		/* number of extents before idx */
3116	xfs_extnum_t	nex2;		/* extents after idx + count */
3117	int		page_idx = idx;	/* index in target extent list */
3118
3119	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3120	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3121	ASSERT(erp != NULL);
3122	nex1 = page_idx;
3123	ext_cnt = count;
3124	while (ext_cnt) {
3125		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3126		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3127		/*
3128		 * Check for deletion of entire list;
3129		 * xfs_iext_irec_remove() updates extent offsets.
3130		 */
3131		if (ext_diff == erp->er_extcount) {
3132			xfs_iext_irec_remove(ifp, erp_idx);
3133			ext_cnt -= ext_diff;
3134			nex1 = 0;
3135			if (ext_cnt) {
3136				ASSERT(erp_idx < ifp->if_real_bytes /
3137					XFS_IEXT_BUFSZ);
3138				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3139				nex1 = 0;
3140				continue;
3141			} else {
3142				break;
3143			}
3144		}
3145		/* Move extents up (if needed) */
3146		if (nex2) {
3147			memmove(&erp->er_extbuf[nex1],
3148				&erp->er_extbuf[nex1 + ext_diff],
3149				nex2 * sizeof(xfs_bmbt_rec_t));
3150		}
3151		/* Zero out rest of page */
3152		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3153			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3154		/* Update remaining counters */
3155		erp->er_extcount -= ext_diff;
3156		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3157		ext_cnt -= ext_diff;
3158		nex1 = 0;
3159		erp_idx++;
3160		erp++;
3161	}
3162	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3163	xfs_iext_irec_compact(ifp);
3164}
3165
3166/*
3167 * Create, destroy, or resize a linear (direct) block of extents.
 
 
 
 
3168 */
3169void
3170xfs_iext_realloc_direct(
3171	xfs_ifork_t	*ifp,		/* inode fork pointer */
3172	int		new_size)	/* new size of extents */
3173{
3174	int		rnew_size;	/* real new size of extents */
3175
3176	rnew_size = new_size;
 
3177
3178	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3179		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3180		 (new_size != ifp->if_real_bytes)));
 
 
 
 
 
 
 
3181
3182	/* Free extent records */
3183	if (new_size == 0) {
3184		xfs_iext_destroy(ifp);
 
 
 
 
 
3185	}
3186	/* Resize direct extent list and zero any new bytes */
3187	else if (ifp->if_real_bytes) {
3188		/* Check if extents will fit inside the inode */
3189		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3190			xfs_iext_direct_to_inline(ifp, new_size /
3191				(uint)sizeof(xfs_bmbt_rec_t));
3192			ifp->if_bytes = new_size;
3193			return;
3194		}
3195		if (!is_power_of_2(new_size)){
3196			rnew_size = roundup_pow_of_two(new_size);
3197		}
3198		if (rnew_size != ifp->if_real_bytes) {
3199			ifp->if_u1.if_extents =
3200				kmem_realloc(ifp->if_u1.if_extents,
3201						rnew_size,
3202						ifp->if_real_bytes, KM_NOFS);
3203		}
3204		if (rnew_size > ifp->if_real_bytes) {
3205			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3206				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3207				rnew_size - ifp->if_real_bytes);
3208		}
3209	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3210	/*
3211	 * Switch from the inline extent buffer to a direct
3212	 * extent list. Be sure to include the inline extent
3213	 * bytes in new_size.
3214	 */
3215	else {
3216		new_size += ifp->if_bytes;
3217		if (!is_power_of_2(new_size)) {
3218			rnew_size = roundup_pow_of_two(new_size);
3219		}
3220		xfs_iext_inline_to_direct(ifp, rnew_size);
3221	}
3222	ifp->if_real_bytes = rnew_size;
3223	ifp->if_bytes = new_size;
3224}
3225
3226/*
3227 * Switch from linear (direct) extent records to inline buffer.
 
3228 */
3229void
3230xfs_iext_direct_to_inline(
3231	xfs_ifork_t	*ifp,		/* inode fork pointer */
3232	xfs_extnum_t	nextents)	/* number of extents in file */
3233{
3234	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3235	ASSERT(nextents <= XFS_INLINE_EXTS);
3236	/*
3237	 * The inline buffer was zeroed when we switched
3238	 * from inline to direct extent allocation mode,
3239	 * so we don't need to clear it here.
3240	 */
3241	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3242		nextents * sizeof(xfs_bmbt_rec_t));
3243	kmem_free(ifp->if_u1.if_extents);
3244	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3245	ifp->if_real_bytes = 0;
 
 
 
 
 
 
 
3246}
3247
3248/*
3249 * Switch from inline buffer to linear (direct) extent records.
3250 * new_size should already be rounded up to the next power of 2
3251 * by the caller (when appropriate), so use new_size as it is.
3252 * However, since new_size may be rounded up, we can't update
3253 * if_bytes here. It is the caller's responsibility to update
3254 * if_bytes upon return.
3255 */
3256void
3257xfs_iext_inline_to_direct(
3258	xfs_ifork_t	*ifp,		/* inode fork pointer */
3259	int		new_size)	/* number of extents in file */
3260{
3261	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3262	memset(ifp->if_u1.if_extents, 0, new_size);
3263	if (ifp->if_bytes) {
3264		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3265			ifp->if_bytes);
3266		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3267			sizeof(xfs_bmbt_rec_t));
3268	}
3269	ifp->if_real_bytes = new_size;
3270}
3271
3272/*
3273 * Resize an extent indirection array to new_size bytes.
3274 */
3275STATIC void
3276xfs_iext_realloc_indirect(
3277	xfs_ifork_t	*ifp,		/* inode fork pointer */
3278	int		new_size)	/* new indirection array size */
3279{
3280	int		nlists;		/* number of irec's (ex lists) */
3281	int		size;		/* current indirection array size */
3282
3283	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3284	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3285	size = nlists * sizeof(xfs_ext_irec_t);
3286	ASSERT(ifp->if_real_bytes);
3287	ASSERT((new_size >= 0) && (new_size != size));
3288	if (new_size == 0) {
3289		xfs_iext_destroy(ifp);
3290	} else {
3291		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3292			kmem_realloc(ifp->if_u1.if_ext_irec,
3293				new_size, size, KM_NOFS);
3294	}
3295}
3296
3297/*
3298 * Switch from indirection array to linear (direct) extent allocations.
3299 */
3300STATIC void
3301xfs_iext_indirect_to_direct(
3302	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3303{
3304	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3305	xfs_extnum_t	nextents;	/* number of extents in file */
3306	int		size;		/* size of file extents */
3307
3308	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3309	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3310	ASSERT(nextents <= XFS_LINEAR_EXTS);
3311	size = nextents * sizeof(xfs_bmbt_rec_t);
3312
3313	xfs_iext_irec_compact_pages(ifp);
3314	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
 
3315
3316	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3317	kmem_free(ifp->if_u1.if_ext_irec);
3318	ifp->if_flags &= ~XFS_IFEXTIREC;
3319	ifp->if_u1.if_extents = ep;
3320	ifp->if_bytes = size;
3321	if (nextents < XFS_LINEAR_EXTS) {
3322		xfs_iext_realloc_direct(ifp, size);
3323	}
3324}
3325
3326/*
3327 * Free incore file extents.
 
 
3328 */
3329void
3330xfs_iext_destroy(
3331	xfs_ifork_t	*ifp)		/* inode fork pointer */
 
3332{
3333	if (ifp->if_flags & XFS_IFEXTIREC) {
3334		int	erp_idx;
3335		int	nlists;
3336
3337		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3338		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3339			xfs_iext_irec_remove(ifp, erp_idx);
3340		}
3341		ifp->if_flags &= ~XFS_IFEXTIREC;
3342	} else if (ifp->if_real_bytes) {
3343		kmem_free(ifp->if_u1.if_extents);
3344	} else if (ifp->if_bytes) {
3345		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3346			sizeof(xfs_bmbt_rec_t));
3347	}
3348	ifp->if_u1.if_extents = NULL;
3349	ifp->if_real_bytes = 0;
3350	ifp->if_bytes = 0;
3351}
3352
3353/*
3354 * Return a pointer to the extent record for file system block bno.
3355 */
3356xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3357xfs_iext_bno_to_ext(
3358	xfs_ifork_t	*ifp,		/* inode fork pointer */
3359	xfs_fileoff_t	bno,		/* block number to search for */
3360	xfs_extnum_t	*idxp)		/* index of target extent */
3361{
3362	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3363	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3364	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3365	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3366	int		high;		/* upper boundary in search */
3367	xfs_extnum_t	idx = 0;	/* index of target extent */
3368	int		low;		/* lower boundary in search */
3369	xfs_extnum_t	nextents;	/* number of file extents */
3370	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3371
3372	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3373	if (nextents == 0) {
3374		*idxp = 0;
3375		return NULL;
3376	}
3377	low = 0;
3378	if (ifp->if_flags & XFS_IFEXTIREC) {
3379		/* Find target extent list */
3380		int	erp_idx = 0;
3381		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3382		base = erp->er_extbuf;
3383		high = erp->er_extcount - 1;
3384	} else {
3385		base = ifp->if_u1.if_extents;
3386		high = nextents - 1;
3387	}
3388	/* Binary search extent records */
3389	while (low <= high) {
3390		idx = (low + high) >> 1;
3391		ep = base + idx;
3392		startoff = xfs_bmbt_get_startoff(ep);
3393		blockcount = xfs_bmbt_get_blockcount(ep);
3394		if (bno < startoff) {
3395			high = idx - 1;
3396		} else if (bno >= startoff + blockcount) {
3397			low = idx + 1;
3398		} else {
3399			/* Convert back to file-based extent index */
3400			if (ifp->if_flags & XFS_IFEXTIREC) {
3401				idx += erp->er_extoff;
3402			}
3403			*idxp = idx;
3404			return ep;
3405		}
3406	}
3407	/* Convert back to file-based extent index */
3408	if (ifp->if_flags & XFS_IFEXTIREC) {
3409		idx += erp->er_extoff;
3410	}
3411	if (bno >= startoff + blockcount) {
3412		if (++idx == nextents) {
3413			ep = NULL;
3414		} else {
3415			ep = xfs_iext_get_ext(ifp, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416		}
3417	}
3418	*idxp = idx;
3419	return ep;
3420}
3421
3422/*
3423 * Return a pointer to the indirection array entry containing the
3424 * extent record for filesystem block bno. Store the index of the
3425 * target irec in *erp_idxp.
3426 */
3427xfs_ext_irec_t *			/* pointer to found extent record */
3428xfs_iext_bno_to_irec(
3429	xfs_ifork_t	*ifp,		/* inode fork pointer */
3430	xfs_fileoff_t	bno,		/* block number to search for */
3431	int		*erp_idxp)	/* irec index of target ext list */
3432{
3433	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3434	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3435	int		erp_idx;	/* indirection array index */
3436	int		nlists;		/* number of extent irec's (lists) */
3437	int		high;		/* binary search upper limit */
3438	int		low;		/* binary search lower limit */
3439
3440	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3441	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3442	erp_idx = 0;
3443	low = 0;
3444	high = nlists - 1;
3445	while (low <= high) {
3446		erp_idx = (low + high) >> 1;
3447		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3448		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3449		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3450			high = erp_idx - 1;
3451		} else if (erp_next && bno >=
3452			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3453			low = erp_idx + 1;
3454		} else {
3455			break;
3456		}
 
 
 
 
3457	}
3458	*erp_idxp = erp_idx;
3459	return erp;
 
 
 
 
 
3460}
3461
3462/*
3463 * Return a pointer to the indirection array entry containing the
3464 * extent record at file extent index *idxp. Store the index of the
3465 * target irec in *erp_idxp and store the page index of the target
3466 * extent record in *idxp.
3467 */
3468xfs_ext_irec_t *
3469xfs_iext_idx_to_irec(
3470	xfs_ifork_t	*ifp,		/* inode fork pointer */
3471	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3472	int		*erp_idxp,	/* pointer to target irec */
3473	int		realloc)	/* new bytes were just added */
3474{
3475	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3476	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3477	int		erp_idx;	/* indirection array index */
3478	int		nlists;		/* number of irec's (ex lists) */
3479	int		high;		/* binary search upper limit */
3480	int		low;		/* binary search lower limit */
3481	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3482
3483	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3484	ASSERT(page_idx >= 0);
3485	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3486	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3487
3488	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3489	erp_idx = 0;
3490	low = 0;
3491	high = nlists - 1;
3492
3493	/* Binary search extent irec's */
3494	while (low <= high) {
3495		erp_idx = (low + high) >> 1;
3496		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3497		prev = erp_idx > 0 ? erp - 1 : NULL;
3498		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3499		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3500			high = erp_idx - 1;
3501		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3502			   (page_idx == erp->er_extoff + erp->er_extcount &&
3503			    !realloc)) {
3504			low = erp_idx + 1;
3505		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3506			   erp->er_extcount == XFS_LINEAR_EXTS) {
3507			ASSERT(realloc);
3508			page_idx = 0;
3509			erp_idx++;
3510			erp = erp_idx < nlists ? erp + 1 : NULL;
3511			break;
3512		} else {
3513			page_idx -= erp->er_extoff;
3514			break;
3515		}
 
 
 
 
 
3516	}
3517	*idxp = page_idx;
3518	*erp_idxp = erp_idx;
3519	return(erp);
3520}
3521
3522/*
3523 * Allocate and initialize an indirection array once the space needed
3524 * for incore extents increases above XFS_IEXT_BUFSZ.
3525 */
3526void
3527xfs_iext_irec_init(
3528	xfs_ifork_t	*ifp)		/* inode fork pointer */
 
 
 
3529{
3530	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3531	xfs_extnum_t	nextents;	/* number of extents in file */
3532
3533	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3534	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3535	ASSERT(nextents <= XFS_LINEAR_EXTS);
3536
3537	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3538
3539	if (nextents == 0) {
3540		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3541	} else if (!ifp->if_real_bytes) {
3542		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3543	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3544		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3545	}
3546	erp->er_extbuf = ifp->if_u1.if_extents;
3547	erp->er_extcount = nextents;
3548	erp->er_extoff = 0;
3549
3550	ifp->if_flags |= XFS_IFEXTIREC;
3551	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3552	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3553	ifp->if_u1.if_ext_irec = erp;
3554
3555	return;
 
 
 
3556}
3557
3558/*
3559 * Allocate and initialize a new entry in the indirection array.
3560 */
3561xfs_ext_irec_t *
3562xfs_iext_irec_new(
3563	xfs_ifork_t	*ifp,		/* inode fork pointer */
3564	int		erp_idx)	/* index for new irec */
3565{
3566	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3567	int		i;		/* loop counter */
3568	int		nlists;		/* number of irec's (ex lists) */
3569
3570	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3571	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 
 
3572
3573	/* Resize indirection array */
3574	xfs_iext_realloc_indirect(ifp, ++nlists *
3575				  sizeof(xfs_ext_irec_t));
3576	/*
3577	 * Move records down in the array so the
3578	 * new page can use erp_idx.
3579	 */
3580	erp = ifp->if_u1.if_ext_irec;
3581	for (i = nlists - 1; i > erp_idx; i--) {
3582		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3583	}
3584	ASSERT(i == erp_idx);
3585
3586	/* Initialize new extent record */
3587	erp = ifp->if_u1.if_ext_irec;
3588	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3589	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3590	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3591	erp[erp_idx].er_extcount = 0;
3592	erp[erp_idx].er_extoff = erp_idx > 0 ?
3593		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3594	return (&erp[erp_idx]);
3595}
3596
3597/*
3598 * Remove a record from the indirection array.
3599 */
3600void
3601xfs_iext_irec_remove(
3602	xfs_ifork_t	*ifp,		/* inode fork pointer */
3603	int		erp_idx)	/* irec index to remove */
3604{
3605	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3606	int		i;		/* loop counter */
3607	int		nlists;		/* number of irec's (ex lists) */
3608
3609	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3610	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3611	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3612	if (erp->er_extbuf) {
3613		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3614			-erp->er_extcount);
3615		kmem_free(erp->er_extbuf);
3616	}
3617	/* Compact extent records */
3618	erp = ifp->if_u1.if_ext_irec;
3619	for (i = erp_idx; i < nlists - 1; i++) {
3620		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3621	}
3622	/*
3623	 * Manually free the last extent record from the indirection
3624	 * array.  A call to xfs_iext_realloc_indirect() with a size
3625	 * of zero would result in a call to xfs_iext_destroy() which
3626	 * would in turn call this function again, creating a nasty
3627	 * infinite loop.
3628	 */
3629	if (--nlists) {
3630		xfs_iext_realloc_indirect(ifp,
3631			nlists * sizeof(xfs_ext_irec_t));
3632	} else {
3633		kmem_free(ifp->if_u1.if_ext_irec);
3634	}
3635	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3636}
3637
3638/*
3639 * This is called to clean up large amounts of unused memory allocated
3640 * by the indirection array.  Before compacting anything though, verify
3641 * that the indirection array is still needed and switch back to the
3642 * linear extent list (or even the inline buffer) if possible.  The
3643 * compaction policy is as follows:
3644 *
3645 *    Full Compaction: Extents fit into a single page (or inline buffer)
3646 * Partial Compaction: Extents occupy less than 50% of allocated space
3647 *      No Compaction: Extents occupy at least 50% of allocated space
3648 */
3649void
3650xfs_iext_irec_compact(
3651	xfs_ifork_t	*ifp)		/* inode fork pointer */
3652{
3653	xfs_extnum_t	nextents;	/* number of extents in file */
3654	int		nlists;		/* number of irec's (ex lists) */
3655
3656	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3657	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3658	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3659
3660	if (nextents == 0) {
3661		xfs_iext_destroy(ifp);
3662	} else if (nextents <= XFS_INLINE_EXTS) {
3663		xfs_iext_indirect_to_direct(ifp);
3664		xfs_iext_direct_to_inline(ifp, nextents);
3665	} else if (nextents <= XFS_LINEAR_EXTS) {
3666		xfs_iext_indirect_to_direct(ifp);
3667	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3668		xfs_iext_irec_compact_pages(ifp);
3669	}
 
 
 
 
 
 
 
 
3670}
3671
3672/*
3673 * Combine extents from neighboring extent pages.
3674 */
3675void
3676xfs_iext_irec_compact_pages(
3677	xfs_ifork_t	*ifp)		/* inode fork pointer */
3678{
3679	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3680	int		erp_idx = 0;	/* indirection array index */
3681	int		nlists;		/* number of irec's (ex lists) */
3682
3683	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3685	while (erp_idx < nlists - 1) {
3686		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3687		erp_next = erp + 1;
3688		if (erp_next->er_extcount <=
3689		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3690			memcpy(&erp->er_extbuf[erp->er_extcount],
3691				erp_next->er_extbuf, erp_next->er_extcount *
3692				sizeof(xfs_bmbt_rec_t));
3693			erp->er_extcount += erp_next->er_extcount;
3694			/*
3695			 * Free page before removing extent record
3696			 * so er_extoffs don't get modified in
3697			 * xfs_iext_irec_remove.
3698			 */
3699			kmem_free(erp_next->er_extbuf);
3700			erp_next->er_extbuf = NULL;
3701			xfs_iext_irec_remove(ifp, erp_idx + 1);
3702			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3703		} else {
3704			erp_idx++;
3705		}
3706	}
3707}
3708
3709/*
3710 * This is called to update the er_extoff field in the indirection
3711 * array when extents have been added or removed from one of the
3712 * extent lists. erp_idx contains the irec index to begin updating
3713 * at and ext_diff contains the number of extents that were added
3714 * or removed.
3715 */
3716void
3717xfs_iext_irec_update_extoffs(
3718	xfs_ifork_t	*ifp,		/* inode fork pointer */
3719	int		erp_idx,	/* irec index to update */
3720	int		ext_diff)	/* number of new extents */
3721{
3722	int		i;		/* loop counter */
3723	int		nlists;		/* number of irec's (ex lists */
3724
3725	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3726	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3727	for (i = erp_idx; i < nlists; i++) {
3728		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3729	}
3730}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
 
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
 
 
 
 
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_bit.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
  24#include "xfs_iunlink_item.h"
 
  25#include "xfs_ialloc.h"
  26#include "xfs_bmap.h"
  27#include "xfs_bmap_util.h"
  28#include "xfs_errortag.h"
  29#include "xfs_error.h"
 
  30#include "xfs_quota.h"
  31#include "xfs_filestream.h"
 
  32#include "xfs_trace.h"
  33#include "xfs_icache.h"
  34#include "xfs_symlink.h"
  35#include "xfs_trans_priv.h"
  36#include "xfs_log.h"
  37#include "xfs_bmap_btree.h"
  38#include "xfs_reflink.h"
  39#include "xfs_ag.h"
  40#include "xfs_log_priv.h"
  41#include "xfs_health.h"
  42#include "xfs_pnfs.h"
  43#include "xfs_parent.h"
  44#include "xfs_xattr.h"
  45#include "xfs_inode_util.h"
  46#include "xfs_metafile.h"
  47
  48struct kmem_cache *xfs_inode_cache;
  49
  50/*
  51 * These two are wrapper routines around the xfs_ilock() routine used to
  52 * centralize some grungy code.  They are used in places that wish to lock the
  53 * inode solely for reading the extents.  The reason these places can't just
  54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  55 * bringing in of the extents from disk for a file in b-tree format.  If the
  56 * inode is in b-tree format, then we need to lock the inode exclusively until
  57 * the extents are read in.  Locking it exclusively all the time would limit
  58 * our parallelism unnecessarily, though.  What we do instead is check to see
  59 * if the extents have been read in yet, and only lock the inode exclusively
  60 * if they have not.
  61 *
  62 * The functions return a value which should be given to the corresponding
  63 * xfs_iunlock() call.
  64 */
  65uint
  66xfs_ilock_data_map_shared(
  67	struct xfs_inode	*ip)
  68{
  69	uint			lock_mode = XFS_ILOCK_SHARED;
  70
  71	if (xfs_need_iread_extents(&ip->i_df))
  72		lock_mode = XFS_ILOCK_EXCL;
  73	xfs_ilock(ip, lock_mode);
  74	return lock_mode;
  75}
  76
  77uint
  78xfs_ilock_attr_map_shared(
 
 
 
  79	struct xfs_inode	*ip)
  80{
  81	uint			lock_mode = XFS_ILOCK_SHARED;
  82
  83	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
  84		lock_mode = XFS_ILOCK_EXCL;
  85	xfs_ilock(ip, lock_mode);
  86	return lock_mode;
  87}
  88
 
  89/*
  90 * You can't set both SHARED and EXCL for the same lock,
  91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
  92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
  93 * to set in lock_flags.
  94 */
  95static inline void
  96xfs_lock_flags_assert(
  97	uint		lock_flags)
 
 
  98{
  99	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 100		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 101	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 102		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 103	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 104		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 105	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 106	ASSERT(lock_flags != 0);
 
 
 
 
 107}
 
 
 
 108
 109/*
 110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 111 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 112 * various combinations of the locks to be obtained.
 113 *
 114 * The 3 locks should always be ordered so that the IO lock is obtained first,
 115 * the mmap lock second and the ilock last in order to prevent deadlock.
 116 *
 117 * Basic locking order:
 118 *
 119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 120 *
 121 * mmap_lock locking order:
 122 *
 123 * i_rwsem -> page lock -> mmap_lock
 124 * mmap_lock -> invalidate_lock -> page_lock
 125 *
 126 * The difference in mmap_lock locking order mean that we cannot hold the
 127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 128 * can fault in pages during copy in/out (for buffered IO) or require the
 129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 131 * fault because page faults already hold the mmap_lock.
 132 *
 133 * Hence to serialise fully against both syscall and mmap based IO, we need to
 134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 135 * both taken in places where we need to invalidate the page cache in a race
 136 * free manner (e.g. truncate, hole punch and other extent manipulation
 137 * functions).
 138 */
 
 139void
 140xfs_ilock(
 141	xfs_inode_t		*ip,
 142	uint			lock_flags)
 143{
 144	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 145
 146	xfs_lock_flags_assert(lock_flags);
 147
 148	if (lock_flags & XFS_IOLOCK_EXCL) {
 149		down_write_nested(&VFS_I(ip)->i_rwsem,
 150				  XFS_IOLOCK_DEP(lock_flags));
 151	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 152		down_read_nested(&VFS_I(ip)->i_rwsem,
 153				 XFS_IOLOCK_DEP(lock_flags));
 154	}
 155
 156	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 157		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 158				  XFS_MMAPLOCK_DEP(lock_flags));
 159	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 160		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 161				 XFS_MMAPLOCK_DEP(lock_flags));
 162	}
 163
 164	if (lock_flags & XFS_ILOCK_EXCL)
 165		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 166	else if (lock_flags & XFS_ILOCK_SHARED)
 167		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 168}
 
 169
 170/*
 171 * This is just like xfs_ilock(), except that the caller
 172 * is guaranteed not to sleep.  It returns 1 if it gets
 173 * the requested locks and 0 otherwise.  If the IO lock is
 174 * obtained but the inode lock cannot be, then the IO lock
 175 * is dropped before returning.
 176 *
 177 * ip -- the inode being locked
 178 * lock_flags -- this parameter indicates the inode's locks to be
 179 *       to be locked.  See the comment for xfs_ilock() for a list
 180 *	 of valid values.
 181 */
 182int
 183xfs_ilock_nowait(
 184	xfs_inode_t		*ip,
 185	uint			lock_flags)
 186{
 187	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 190
 191	if (lock_flags & XFS_IOLOCK_EXCL) {
 192		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 193			goto out;
 194	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 195		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 196			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197	}
 198
 199	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 200		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 201			goto out_undo_iolock;
 202	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 203		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 204			goto out_undo_iolock;
 205	}
 206
 207	if (lock_flags & XFS_ILOCK_EXCL) {
 208		if (!down_write_trylock(&ip->i_lock))
 209			goto out_undo_mmaplock;
 210	} else if (lock_flags & XFS_ILOCK_SHARED) {
 211		if (!down_read_trylock(&ip->i_lock))
 212			goto out_undo_mmaplock;
 213	}
 214	return 1;
 215
 216out_undo_mmaplock:
 217	if (lock_flags & XFS_MMAPLOCK_EXCL)
 218		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 219	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 220		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 221out_undo_iolock:
 222	if (lock_flags & XFS_IOLOCK_EXCL)
 223		up_write(&VFS_I(ip)->i_rwsem);
 224	else if (lock_flags & XFS_IOLOCK_SHARED)
 225		up_read(&VFS_I(ip)->i_rwsem);
 226out:
 227	return 0;
 228}
 229
 230/*
 231 * xfs_iunlock() is used to drop the inode locks acquired with
 232 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 234 * that we know which locks to drop.
 
 235 *
 236 * ip -- the inode being unlocked
 237 * lock_flags -- this parameter indicates the inode's locks to be
 238 *       to be unlocked.  See the comment for xfs_ilock() for a list
 239 *	 of valid values for this parameter.
 240 *
 
 
 241 */
 242void
 243xfs_iunlock(
 244	xfs_inode_t		*ip,
 245	uint			lock_flags)
 246{
 247	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 248
 249	if (lock_flags & XFS_IOLOCK_EXCL)
 250		up_write(&VFS_I(ip)->i_rwsem);
 251	else if (lock_flags & XFS_IOLOCK_SHARED)
 252		up_read(&VFS_I(ip)->i_rwsem);
 253
 254	if (lock_flags & XFS_MMAPLOCK_EXCL)
 255		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 256	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 257		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 258
 259	if (lock_flags & XFS_ILOCK_EXCL)
 260		up_write(&ip->i_lock);
 261	else if (lock_flags & XFS_ILOCK_SHARED)
 262		up_read(&ip->i_lock);
 263
 264	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 265}
 266
 267/*
 268 * give up write locks.  the i/o lock cannot be held nested
 269 * if it is being demoted.
 270 */
 271void
 272xfs_ilock_demote(
 273	xfs_inode_t		*ip,
 274	uint			lock_flags)
 275{
 276	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 277	ASSERT((lock_flags &
 278		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 279
 280	if (lock_flags & XFS_ILOCK_EXCL)
 281		downgrade_write(&ip->i_lock);
 282	if (lock_flags & XFS_MMAPLOCK_EXCL)
 283		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 284	if (lock_flags & XFS_IOLOCK_EXCL)
 285		downgrade_write(&VFS_I(ip)->i_rwsem);
 286
 287	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 288}
 289
 290void
 291xfs_assert_ilocked(
 292	struct xfs_inode	*ip,
 293	uint			lock_flags)
 294{
 295	/*
 296	 * Sometimes we assert the ILOCK is held exclusively, but we're in
 297	 * a workqueue, so lockdep doesn't know we're the owner.
 298	 */
 299	if (lock_flags & XFS_ILOCK_SHARED)
 300		rwsem_assert_held(&ip->i_lock);
 301	else if (lock_flags & XFS_ILOCK_EXCL)
 302		rwsem_assert_held_write_nolockdep(&ip->i_lock);
 303
 304	if (lock_flags & XFS_MMAPLOCK_SHARED)
 305		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
 306	else if (lock_flags & XFS_MMAPLOCK_EXCL)
 307		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 308
 309	if (lock_flags & XFS_IOLOCK_SHARED)
 310		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
 311	else if (lock_flags & XFS_IOLOCK_EXCL)
 312		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
 313}
 314
 315/*
 316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 319 * errors and warnings.
 
 
 
 
 
 
 
 
 
 
 320 */
 321#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 322static bool
 323xfs_lockdep_subclass_ok(
 324	int subclass)
 
 
 
 
 325{
 326	return subclass < MAX_LOCKDEP_SUBCLASSES;
 327}
 328#else
 329#define xfs_lockdep_subclass_ok(subclass)	(true)
 330#endif
 331
 332/*
 333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 334 * value. This can be called for any type of inode lock combination, including
 335 * parent locking. Care must be taken to ensure we don't overrun the subclass
 336 * storage fields in the class mask we build.
 337 */
 338static inline uint
 339xfs_lock_inumorder(
 340	uint	lock_mode,
 341	uint	subclass)
 342{
 343	uint	class = 0;
 344
 345	ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
 346	ASSERT(xfs_lockdep_subclass_ok(subclass));
 
 347
 348	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 349		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 350		class += subclass << XFS_IOLOCK_SHIFT;
 
 
 351	}
 352
 353	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 354		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 355		class += subclass << XFS_MMAPLOCK_SHIFT;
 356	}
 357
 358	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 359		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 360		class += subclass << XFS_ILOCK_SHIFT;
 361	}
 362
 363	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 364}
 365
 366/*
 367 * The following routine will lock n inodes in exclusive mode.  We assume the
 368 * caller calls us with the inodes in i_ino order.
 369 *
 370 * We need to detect deadlock where an inode that we lock is in the AIL and we
 371 * start waiting for another inode that is locked by a thread in a long running
 372 * transaction (such as truncate). This can result in deadlock since the long
 373 * running trans might need to wait for the inode we just locked in order to
 374 * push the tail and free space in the log.
 375 *
 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 378 * lock more than one at a time, lockdep will report false positives saying we
 379 * have violated locking orders.
 380 */
 381void
 382xfs_lock_inodes(
 383	struct xfs_inode	**ips,
 384	int			inodes,
 385	uint			lock_mode)
 386{
 387	int			attempts = 0;
 388	uint			i;
 389	int			j;
 390	bool			try_lock;
 391	struct xfs_log_item	*lp;
 392
 393	/*
 394	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 395	 * support an arbitrary depth of locking here, but absolute limits on
 396	 * inodes depend on the type of locking and the limits placed by
 397	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 398	 * the asserts.
 399	 */
 400	ASSERT(ips && inodes >= 2 && inodes <= 5);
 401	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 402			    XFS_ILOCK_EXCL));
 403	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 404			      XFS_ILOCK_SHARED)));
 405	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 406		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 407	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 408		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 409
 410	if (lock_mode & XFS_IOLOCK_EXCL) {
 411		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 412	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 413		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415again:
 416	try_lock = false;
 417	i = 0;
 418	for (; i < inodes; i++) {
 419		ASSERT(ips[i]);
 420
 421		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 422			continue;
 423
 424		/*
 425		 * If try_lock is not set yet, make sure all locked inodes are
 426		 * not in the AIL.  If any are, set try_lock to be used later.
 427		 */
 428		if (!try_lock) {
 429			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 430				lp = &ips[j]->i_itemp->ili_item;
 431				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 432					try_lock = true;
 433			}
 434		}
 435
 436		/*
 437		 * If any of the previous locks we have locked is in the AIL,
 438		 * we must TRY to get the second and subsequent locks. If
 439		 * we can't get any, we must release all we have
 440		 * and try again.
 441		 */
 442		if (!try_lock) {
 443			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 444			continue;
 
 
 
 
 445		}
 
 446
 447		/* try_lock means we have an inode locked that is in the AIL. */
 448		ASSERT(i != 0);
 449		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 450			continue;
 451
 452		/*
 453		 * Unlock all previous guys and try again.  xfs_iunlock will try
 454		 * to push the tail if the inode is in the AIL.
 455		 */
 456		attempts++;
 457		for (j = i - 1; j >= 0; j--) {
 458			/*
 459			 * Check to see if we've already unlocked this one.  Not
 460			 * the first one going back, and the inode ptr is the
 461			 * same.
 462			 */
 463			if (j != (i - 1) && ips[j] == ips[j + 1])
 464				continue;
 465
 466			xfs_iunlock(ips[j], lock_mode);
 467		}
 468
 469		if ((attempts % 5) == 0) {
 470			delay(1); /* Don't just spin the CPU */
 471		}
 472		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	}
 
 474}
 475
 476/*
 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 478 * mmaplock must be double-locked separately since we use i_rwsem and
 479 * invalidate_lock for that. We now support taking one lock EXCL and the
 480 * other SHARED.
 
 
 
 
 481 */
 482void
 483xfs_lock_two_inodes(
 484	struct xfs_inode	*ip0,
 485	uint			ip0_mode,
 486	struct xfs_inode	*ip1,
 487	uint			ip1_mode)
 488{
 489	int			attempts = 0;
 490	struct xfs_log_item	*lp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491
 492	ASSERT(hweight32(ip0_mode) == 1);
 493	ASSERT(hweight32(ip1_mode) == 1);
 494	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 495	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 496	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 497	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 498	ASSERT(ip0->i_ino != ip1->i_ino);
 499
 500	if (ip0->i_ino > ip1->i_ino) {
 501		swap(ip0, ip1);
 502		swap(ip0_mode, ip1_mode);
 503	}
 504
 505 again:
 506	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 507
 508	/*
 509	 * If the first lock we have locked is in the AIL, we must TRY to get
 510	 * the second lock. If we can't get it, we must release the first one
 511	 * and try again.
 512	 */
 513	lp = &ip0->i_itemp->ili_item;
 514	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 515		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 516			xfs_iunlock(ip0, ip0_mode);
 517			if ((++attempts % 5) == 0)
 518				delay(1); /* Don't just spin the CPU */
 519			goto again;
 520		}
 521	} else {
 522		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	}
 
 
 524}
 525
 526/*
 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 529 * ci_name->name will point to a the actual name (caller must free) or
 530 * will be set to NULL if an exact match is found.
 
 
 531 */
 532int
 533xfs_lookup(
 534	struct xfs_inode	*dp,
 535	const struct xfs_name	*name,
 536	struct xfs_inode	**ipp,
 537	struct xfs_name		*ci_name)
 538{
 539	xfs_ino_t		inum;
 540	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541
 542	trace_xfs_lookup(dp, name);
 
 543
 544	if (xfs_is_shutdown(dp->i_mount))
 545		return -EIO;
 546	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 547		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 550	if (error)
 551		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 554	if (error)
 555		goto out_free_name;
 556
 557	/*
 558	 * Fail if a directory entry in the regular directory tree points to
 559	 * a metadata file.
 560	 */
 561	if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
 562		xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
 563		error = -EFSCORRUPTED;
 564		goto out_irele;
 565	}
 566
 567	return 0;
 
 
 568
 569out_irele:
 570	xfs_irele(*ipp);
 571out_free_name:
 572	if (ci_name)
 573		kfree(ci_name->name);
 574out_unlock:
 575	*ipp = NULL;
 576	return error;
 577}
 578
 579/*
 580 * Initialise a newly allocated inode and return the in-core inode to the
 581 * caller locked exclusively.
 582 *
 583 * Caller is responsible for unlocking the inode manually upon return
 584 */
 585int
 586xfs_icreate(
 587	struct xfs_trans	*tp,
 588	xfs_ino_t		ino,
 589	const struct xfs_icreate_args *args,
 590	struct xfs_inode	**ipp)
 591{
 592	struct xfs_mount	*mp = tp->t_mountp;
 593	struct xfs_inode	*ip = NULL;
 594	int			error;
 595
 596	/*
 597	 * Get the in-core inode with the lock held exclusively to prevent
 598	 * others from looking at until we're done.
 599	 */
 600	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 601	if (error)
 602		return error;
 603
 604	ASSERT(ip != NULL);
 605	xfs_trans_ijoin(tp, ip, 0);
 606	xfs_inode_init(tp, args, ip);
 607
 608	/* now that we have an i_mode we can setup the inode structure */
 609	xfs_setup_inode(ip);
 610
 611	*ipp = ip;
 612	return 0;
 613}
 614
 615/* Return dquots for the ids that will be assigned to a new file. */
 616int
 617xfs_icreate_dqalloc(
 618	const struct xfs_icreate_args	*args,
 619	struct xfs_dquot		**udqpp,
 620	struct xfs_dquot		**gdqpp,
 621	struct xfs_dquot		**pdqpp)
 622{
 623	struct inode			*dir = VFS_I(args->pip);
 624	kuid_t				uid = GLOBAL_ROOT_UID;
 625	kgid_t				gid = GLOBAL_ROOT_GID;
 626	prid_t				prid = 0;
 627	unsigned int			flags = XFS_QMOPT_QUOTALL;
 628
 629	if (args->idmap) {
 630		/*
 631		 * The uid/gid computation code must match what the VFS uses to
 632		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
 633		 * setgid/grpid systems.
 634		 */
 635		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
 636		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
 637		prid = xfs_get_initial_prid(args->pip);
 638		flags |= XFS_QMOPT_INHERIT;
 639	}
 640
 641	*udqpp = *gdqpp = *pdqpp = NULL;
 642
 643	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
 644			gdqpp, pdqpp);
 645}
 646
 647int
 648xfs_create(
 649	const struct xfs_icreate_args *args,
 650	struct xfs_name		*name,
 651	struct xfs_inode	**ipp)
 652{
 653	struct xfs_inode	*dp = args->pip;
 654	struct xfs_dir_update	du = {
 655		.dp		= dp,
 656		.name		= name,
 657	};
 658	struct xfs_mount	*mp = dp->i_mount;
 659	struct xfs_trans	*tp = NULL;
 660	struct xfs_dquot	*udqp;
 661	struct xfs_dquot	*gdqp;
 662	struct xfs_dquot	*pdqp;
 663	struct xfs_trans_res	*tres;
 664	xfs_ino_t		ino;
 665	bool			unlock_dp_on_error = false;
 666	bool			is_dir = S_ISDIR(args->mode);
 667	uint			resblks;
 668	int			error;
 669
 670	trace_xfs_create(dp, name);
 671
 672	if (xfs_is_shutdown(mp))
 673		return -EIO;
 674	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 675		return -EIO;
 676
 677	/* Make sure that we have allocated dquot(s) on disk. */
 678	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
 679	if (error)
 680		return error;
 
 681
 682	if (is_dir) {
 683		resblks = xfs_mkdir_space_res(mp, name->len);
 684		tres = &M_RES(mp)->tr_mkdir;
 685	} else {
 686		resblks = xfs_create_space_res(mp, name->len);
 687		tres = &M_RES(mp)->tr_create;
 
 
 
 
 
 
 688	}
 689
 690	error = xfs_parent_start(mp, &du.ppargs);
 691	if (error)
 692		goto out_release_dquots;
 693
 694	/*
 695	 * Initially assume that the file does not exist and
 696	 * reserve the resources for that case.  If that is not
 697	 * the case we'll drop the one we have and get a more
 698	 * appropriate transaction later.
 699	 */
 700	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
 701			&tp);
 702	if (error == -ENOSPC) {
 703		/* flush outstanding delalloc blocks and retry */
 704		xfs_flush_inodes(mp);
 705		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
 706				resblks, &tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	}
 708	if (error)
 709		goto out_parent;
 710
 711	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 712	unlock_dp_on_error = true;
 713
 714	/*
 715	 * A newly created regular or special file just has one directory
 716	 * entry pointing to them, but a directory also the "." entry
 717	 * pointing to itself.
 
 
 
 
 
 
 718	 */
 719	error = xfs_dialloc(&tp, args, &ino);
 720	if (!error)
 721		error = xfs_icreate(tp, ino, args, &du.ip);
 722	if (error)
 723		goto out_trans_cancel;
 724
 725	/*
 726	 * Now we join the directory inode to the transaction.  We do not do it
 727	 * earlier because xfs_dialloc might commit the previous transaction
 728	 * (and release all the locks).  An error from here on will result in
 729	 * the transaction cancel unlocking dp so don't do it explicitly in the
 730	 * error path.
 731	 */
 732	xfs_trans_ijoin(tp, dp, 0);
 733
 734	error = xfs_dir_create_child(tp, resblks, &du);
 735	if (error)
 736		goto out_trans_cancel;
 737
 738	/*
 739	 * If this is a synchronous mount, make sure that the
 740	 * create transaction goes to disk before returning to
 741	 * the user.
 742	 */
 743	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
 744		xfs_trans_set_sync(tp);
 745
 746	/*
 747	 * Attach the dquot(s) to the inodes and modify them incore.
 748	 * These ids of the inode couldn't have changed since the new
 749	 * inode has been locked ever since it was created.
 
 
 
 
 
 
 
 
 750	 */
 751	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
 752
 753	error = xfs_trans_commit(tp);
 754	if (error)
 755		goto out_release_inode;
 756
 757	xfs_qm_dqrele(udqp);
 758	xfs_qm_dqrele(gdqp);
 759	xfs_qm_dqrele(pdqp);
 760
 761	*ipp = du.ip;
 762	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
 763	xfs_iunlock(dp, XFS_ILOCK_EXCL);
 764	xfs_parent_finish(mp, du.ppargs);
 765	return 0;
 766
 767 out_trans_cancel:
 768	xfs_trans_cancel(tp);
 769 out_release_inode:
 770	/*
 771	 * Wait until after the current transaction is aborted to finish the
 772	 * setup of the inode and release the inode.  This prevents recursive
 773	 * transactions and deadlocks from xfs_inactive.
 774	 */
 775	if (du.ip) {
 776		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
 777		xfs_finish_inode_setup(du.ip);
 778		xfs_irele(du.ip);
 779	}
 780 out_parent:
 781	xfs_parent_finish(mp, du.ppargs);
 782 out_release_dquots:
 783	xfs_qm_dqrele(udqp);
 784	xfs_qm_dqrele(gdqp);
 785	xfs_qm_dqrele(pdqp);
 786
 787	if (unlock_dp_on_error)
 788		xfs_iunlock(dp, XFS_ILOCK_EXCL);
 789	return error;
 790}
 791
 
 
 
 
 792int
 793xfs_create_tmpfile(
 794	const struct xfs_icreate_args *args,
 795	struct xfs_inode	**ipp)
 796{
 797	struct xfs_inode	*dp = args->pip;
 798	struct xfs_mount	*mp = dp->i_mount;
 799	struct xfs_inode	*ip = NULL;
 800	struct xfs_trans	*tp = NULL;
 801	struct xfs_dquot	*udqp;
 802	struct xfs_dquot	*gdqp;
 803	struct xfs_dquot	*pdqp;
 804	struct xfs_trans_res	*tres;
 805	xfs_ino_t		ino;
 806	uint			resblks;
 807	int			error;
 808
 809	ASSERT(args->flags & XFS_ICREATE_TMPFILE);
 810
 811	if (xfs_is_shutdown(mp))
 812		return -EIO;
 813
 814	/* Make sure that we have allocated dquot(s) on disk. */
 815	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
 816	if (error)
 
 
 
 817		return error;
 818
 819	resblks = XFS_IALLOC_SPACE_RES(mp);
 820	tres = &M_RES(mp)->tr_create_tmpfile;
 821
 822	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
 823			&tp);
 824	if (error)
 825		goto out_release_dquots;
 826
 827	error = xfs_dialloc(&tp, args, &ino);
 828	if (!error)
 829		error = xfs_icreate(tp, ino, args, &ip);
 830	if (error)
 831		goto out_trans_cancel;
 832
 833	if (xfs_has_wsync(mp))
 834		xfs_trans_set_sync(tp);
 835
 836	/*
 837	 * Attach the dquot(s) to the inodes and modify them incore.
 838	 * These ids of the inode couldn't have changed since the new
 839	 * inode has been locked ever since it was created.
 840	 */
 841	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
 842
 843	error = xfs_iunlink(tp, ip);
 844	if (error)
 845		goto out_trans_cancel;
 846
 847	error = xfs_trans_commit(tp);
 848	if (error)
 849		goto out_release_inode;
 850
 851	xfs_qm_dqrele(udqp);
 852	xfs_qm_dqrele(gdqp);
 853	xfs_qm_dqrele(pdqp);
 854
 855	*ipp = ip;
 856	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 857	return 0;
 858
 859 out_trans_cancel:
 860	xfs_trans_cancel(tp);
 861 out_release_inode:
 862	/*
 863	 * Wait until after the current transaction is aborted to finish the
 864	 * setup of the inode and release the inode.  This prevents recursive
 865	 * transactions and deadlocks from xfs_inactive.
 866	 */
 867	if (ip) {
 868		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 869		xfs_finish_inode_setup(ip);
 870		xfs_irele(ip);
 871	}
 872 out_release_dquots:
 873	xfs_qm_dqrele(udqp);
 874	xfs_qm_dqrele(gdqp);
 875	xfs_qm_dqrele(pdqp);
 876
 877	return error;
 878}
 879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880int
 881xfs_link(
 882	struct xfs_inode	*tdp,
 883	struct xfs_inode	*sip,
 884	struct xfs_name		*target_name)
 885{
 886	struct xfs_dir_update	du = {
 887		.dp		= tdp,
 888		.name		= target_name,
 889		.ip		= sip,
 890	};
 891	struct xfs_mount	*mp = tdp->i_mount;
 892	struct xfs_trans	*tp;
 893	int			error, nospace_error = 0;
 894	int			resblks;
 895
 896	trace_xfs_link(tdp, target_name);
 897
 898	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
 899
 900	if (xfs_is_shutdown(mp))
 901		return -EIO;
 902	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
 903		return -EIO;
 904
 905	error = xfs_qm_dqattach(sip);
 
 
 
 
 
 906	if (error)
 907		goto std_return;
 
 
 
 
 
 908
 909	error = xfs_qm_dqattach(tdp);
 
 
 
 
 
 
 910	if (error)
 911		goto std_return;
 
 912
 913	error = xfs_parent_start(mp, &du.ppargs);
 914	if (error)
 915		goto std_return;
 916
 917	resblks = xfs_link_space_res(mp, target_name->len);
 918	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
 919			&tp, &nospace_error);
 920	if (error)
 921		goto out_parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923	/*
 924	 * We don't allow reservationless or quotaless hardlinking when parent
 925	 * pointers are enabled because we can't back out if the xattrs must
 926	 * grow.
 927	 */
 928	if (du.ppargs && nospace_error) {
 929		error = nospace_error;
 930		goto error_return;
 
 
 
 
 
 931	}
 932
 933	/*
 934	 * If we are using project inheritance, we only allow hard link
 935	 * creation in our tree when the project IDs are the same; else
 936	 * the tree quota mechanism could be circumvented.
 937	 */
 938	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
 939		     tdp->i_projid != sip->i_projid)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940		/*
 941		 * Project quota setup skips special files which can
 942		 * leave inodes in a PROJINHERIT directory without a
 943		 * project ID set. We need to allow links to be made
 944		 * to these "project-less" inodes because userspace
 945		 * expects them to succeed after project ID setup,
 946		 * but everything else should be rejected.
 947		 */
 948		if (!special_file(VFS_I(sip)->i_mode) ||
 949		    sip->i_projid != 0) {
 950			error = -EXDEV;
 951			goto error_return;
 952		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953	}
 954
 955	error = xfs_dir_add_child(tp, resblks, &du);
 956	if (error)
 957		goto error_return;
 
 958
 959	/*
 960	 * If this is a synchronous mount, make sure that the
 961	 * link transaction goes to disk before returning to
 962	 * the user.
 963	 */
 964	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
 965		xfs_trans_set_sync(tp);
 966
 967	error = xfs_trans_commit(tp);
 968	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
 969	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 970	xfs_parent_finish(mp, du.ppargs);
 971	return error;
 972
 973 error_return:
 974	xfs_trans_cancel(tp);
 975	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
 976	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 977 out_parent:
 978	xfs_parent_finish(mp, du.ppargs);
 979 std_return:
 980	if (error == -ENOSPC && nospace_error)
 981		error = nospace_error;
 982	return error;
 983}
 984
 985/* Clear the reflink flag and the cowblocks tag if possible. */
 986static void
 987xfs_itruncate_clear_reflink_flags(
 988	struct xfs_inode	*ip)
 989{
 990	struct xfs_ifork	*dfork;
 991	struct xfs_ifork	*cfork;
 992
 993	if (!xfs_is_reflink_inode(ip))
 994		return;
 995	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 996	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
 997	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
 998		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
 999	if (cfork->if_bytes == 0)
1000		xfs_inode_clear_cowblocks_tag(ip);
1001}
1002
1003/*
1004 * Free up the underlying blocks past new_size.  The new size must be smaller
1005 * than the current size.  This routine can be used both for the attribute and
1006 * data fork, and does not modify the inode size, which is left to the caller.
1007 *
1008 * The transaction passed to this routine must have made a permanent log
1009 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1010 * given transaction and start new ones, so make sure everything involved in
1011 * the transaction is tidy before calling here.  Some transaction will be
1012 * returned to the caller to be committed.  The incoming transaction must
1013 * already include the inode, and both inode locks must be held exclusively.
1014 * The inode must also be "held" within the transaction.  On return the inode
1015 * will be "held" within the returned transaction.  This routine does NOT
1016 * require any disk space to be reserved for it within the transaction.
1017 *
1018 * If we get an error, we must return with the inode locked and linked into the
1019 * current transaction. This keeps things simple for the higher level code,
1020 * because it always knows that the inode is locked and held in the transaction
1021 * that returns to it whether errors occur or not.  We don't mark the inode
1022 * dirty on error so that transactions can be easily aborted if possible.
1023 */
1024int
1025xfs_itruncate_extents_flags(
1026	struct xfs_trans	**tpp,
1027	struct xfs_inode	*ip,
1028	int			whichfork,
1029	xfs_fsize_t		new_size,
1030	int			flags)
1031{
1032	struct xfs_mount	*mp = ip->i_mount;
1033	struct xfs_trans	*tp = *tpp;
 
 
 
1034	xfs_fileoff_t		first_unmap_block;
 
 
 
1035	int			error = 0;
 
1036
1037	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038	if (atomic_read(&VFS_I(ip)->i_count))
1039		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040	ASSERT(new_size <= XFS_ISIZE(ip));
1041	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042	ASSERT(ip->i_itemp != NULL);
1043	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1045
1046	trace_xfs_itruncate_extents_start(ip, new_size);
1047
1048	flags |= xfs_bmapi_aflag(whichfork);
1049
1050	/*
1051	 * Since it is possible for space to become allocated beyond
1052	 * the end of the file (in a crash where the space is allocated
1053	 * but the inode size is not yet updated), simply remove any
1054	 * blocks which show up between the new EOF and the maximum
1055	 * possible file size.
1056	 *
1057	 * We have to free all the blocks to the bmbt maximum offset, even if
1058	 * the page cache can't scale that far.
1059	 */
1060	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063		return 0;
1064	}
1065
1066	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067			XFS_MAX_FILEOFF);
1068	if (error)
1069		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	if (whichfork == XFS_DATA_FORK) {
1072		/* Remove all pending CoW reservations. */
1073		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074				first_unmap_block, XFS_MAX_FILEOFF, true);
1075		if (error)
1076			goto out;
1077
1078		xfs_itruncate_clear_reflink_flags(ip);
 
 
 
 
 
 
 
 
 
 
1079	}
1080
1081	/*
1082	 * Always re-log the inode so that our permanent transaction can keep
1083	 * on rolling it forward in the log.
1084	 */
1085	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087	trace_xfs_itruncate_extents_end(ip, new_size);
1088
1089out:
1090	*tpp = tp;
1091	return error;
 
 
 
 
 
 
 
 
1092}
1093
1094/*
1095 * Mark all the buffers attached to this directory stale.  In theory we should
1096 * never be freeing a directory with any blocks at all, but this covers the
1097 * case where we've recovered a directory swap with a "temporary" directory
1098 * created by online repair and now need to dump it.
1099 */
1100STATIC void
1101xfs_inactive_dir(
1102	struct xfs_inode	*dp)
 
1103{
1104	struct xfs_iext_cursor	icur;
1105	struct xfs_bmbt_irec	got;
1106	struct xfs_mount	*mp = dp->i_mount;
1107	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1108	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109	xfs_fileoff_t		off;
1110
1111	/*
1112	 * Invalidate each directory block.  All directory blocks are of
1113	 * fsbcount length and alignment, so we only need to walk those same
1114	 * offsets.  We hold the only reference to this inode, so we must wait
1115	 * for the buffer locks.
1116	 */
1117	for_each_xfs_iext(ifp, &icur, &got) {
1118		for (off = round_up(got.br_startoff, geo->fsbcount);
1119		     off < got.br_startoff + got.br_blockcount;
1120		     off += geo->fsbcount) {
1121			struct xfs_buf	*bp = NULL;
1122			xfs_fsblock_t	fsbno;
1123			int		error;
1124
1125			fsbno = (off - got.br_startoff) + got.br_startblock;
1126			error = xfs_buf_incore(mp->m_ddev_targp,
1127					XFS_FSB_TO_DADDR(mp, fsbno),
1128					XFS_FSB_TO_BB(mp, geo->fsbcount),
1129					XBF_LIVESCAN, &bp);
1130			if (error)
1131				continue;
1132
1133			xfs_buf_stale(bp);
1134			xfs_buf_relse(bp);
1135		}
1136	}
1137}
1138
1139/*
1140 * xfs_inactive_truncate
1141 *
1142 * Called to perform a truncate when an inode becomes unlinked.
1143 */
1144STATIC int
1145xfs_inactive_truncate(
1146	struct xfs_inode *ip)
1147{
1148	struct xfs_mount	*mp = ip->i_mount;
1149	struct xfs_trans	*tp;
1150	int			error;
1151
1152	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153	if (error) {
1154		ASSERT(xfs_is_shutdown(mp));
1155		return error;
1156	}
1157	xfs_ilock(ip, XFS_ILOCK_EXCL);
1158	xfs_trans_ijoin(tp, ip, 0);
1159
1160	/*
1161	 * Log the inode size first to prevent stale data exposure in the event
1162	 * of a system crash before the truncate completes. See the related
1163	 * comment in xfs_vn_setattr_size() for details.
1164	 */
1165	ip->i_disk_size = 0;
1166	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1167
1168	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169	if (error)
1170		goto error_trans_cancel;
1171
1172	ASSERT(ip->i_df.if_nextents == 0);
1173
1174	error = xfs_trans_commit(tp);
1175	if (error)
1176		goto error_unlock;
1177
1178	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179	return 0;
1180
1181error_trans_cancel:
1182	xfs_trans_cancel(tp);
1183error_unlock:
1184	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185	return error;
1186}
1187
1188/*
1189 * xfs_inactive_ifree()
1190 *
1191 * Perform the inode free when an inode is unlinked.
1192 */
1193STATIC int
1194xfs_inactive_ifree(
1195	struct xfs_inode *ip)
1196{
1197	struct xfs_mount	*mp = ip->i_mount;
1198	struct xfs_trans	*tp;
1199	int			error;
1200
1201	/*
1202	 * We try to use a per-AG reservation for any block needed by the finobt
1203	 * tree, but as the finobt feature predates the per-AG reservation
1204	 * support a degraded file system might not have enough space for the
1205	 * reservation at mount time.  In that case try to dip into the reserved
1206	 * pool and pray.
1207	 *
1208	 * Send a warning if the reservation does happen to fail, as the inode
1209	 * now remains allocated and sits on the unlinked list until the fs is
1210	 * repaired.
1211	 */
1212	if (unlikely(mp->m_finobt_nores)) {
1213		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215				&tp);
1216	} else {
1217		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1218	}
1219	if (error) {
1220		if (error == -ENOSPC) {
1221			xfs_warn_ratelimited(mp,
1222			"Failed to remove inode(s) from unlinked list. "
1223			"Please free space, unmount and run xfs_repair.");
1224		} else {
1225			ASSERT(xfs_is_shutdown(mp));
1226		}
1227		return error;
1228	}
1229
1230	/*
1231	 * We do not hold the inode locked across the entire rolling transaction
1232	 * here. We only need to hold it for the first transaction that
1233	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235	 * here breaks the relationship between cluster buffer invalidation and
1236	 * stale inode invalidation on cluster buffer item journal commit
1237	 * completion, and can result in leaving dirty stale inodes hanging
1238	 * around in memory.
1239	 *
1240	 * We have no need for serialising this inode operation against other
1241	 * operations - we freed the inode and hence reallocation is required
1242	 * and that will serialise on reallocating the space the deferops need
1243	 * to free. Hence we can unlock the inode on the first commit of
1244	 * the transaction rather than roll it right through the deferops. This
1245	 * avoids relogging the XFS_ISTALE inode.
1246	 *
1247	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248	 * by asserting that the inode is still locked when it returns.
1249	 */
1250	xfs_ilock(ip, XFS_ILOCK_EXCL);
1251	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 
 
 
1252
1253	error = xfs_ifree(tp, ip);
1254	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255	if (error) {
1256		/*
1257		 * If we fail to free the inode, shut down.  The cancel
1258		 * might do that, we need to make sure.  Otherwise the
1259		 * inode might be lost for a long time or forever.
 
1260		 */
1261		if (!xfs_is_shutdown(mp)) {
1262			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263				__func__, error);
1264			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1265		}
1266		xfs_trans_cancel(tp);
1267		return error;
 
 
 
 
 
1268	}
1269
1270	/*
1271	 * Credit the quota account(s). The inode is gone.
1272	 */
1273	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1274
1275	return xfs_trans_commit(tp);
 
 
 
 
1276}
1277
1278/*
1279 * Returns true if we need to update the on-disk metadata before we can free
1280 * the memory used by this inode.  Updates include freeing post-eof
1281 * preallocations; freeing COW staging extents; and marking the inode free in
1282 * the inobt if it is on the unlinked list.
1283 */
1284bool
1285xfs_inode_needs_inactive(
1286	struct xfs_inode	*ip)
 
1287{
1288	struct xfs_mount	*mp = ip->i_mount;
1289	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
 
 
 
 
 
 
 
 
 
 
 
 
1290
1291	/*
1292	 * If the inode is already free, then there can be nothing
1293	 * to clean up here.
1294	 */
1295	if (VFS_I(ip)->i_mode == 0)
1296		return false;
1297
1298	/*
1299	 * If this is a read-only mount, don't do this (would generate I/O)
1300	 * unless we're in log recovery and cleaning the iunlinked list.
1301	 */
1302	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303		return false;
1304
1305	/* If the log isn't running, push inodes straight to reclaim. */
1306	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307		return false;
1308
1309	/* Metadata inodes require explicit resource cleanup. */
1310	if (xfs_is_internal_inode(ip))
1311		return false;
1312
1313	/* Want to clean out the cow blocks if there are any. */
1314	if (cow_ifp && cow_ifp->if_bytes > 0)
1315		return true;
1316
1317	/* Unlinked files must be freed. */
1318	if (VFS_I(ip)->i_nlink == 0)
1319		return true;
1320
1321	/*
1322	 * This file isn't being freed, so check if there are post-eof blocks
1323	 * to free.
1324	 *
1325	 * Note: don't bother with iolock here since lockdep complains about
1326	 * acquiring it in reclaim context. We have the only reference to the
1327	 * inode at this point anyways.
1328	 */
1329	return xfs_can_free_eofblocks(ip);
1330}
 
 
 
1331
1332/*
1333 * Save health status somewhere, if we're dumping an inode with uncorrected
1334 * errors and online repair isn't running.
1335 */
1336static inline void
1337xfs_inactive_health(
1338	struct xfs_inode	*ip)
1339{
1340	struct xfs_mount	*mp = ip->i_mount;
1341	struct xfs_perag	*pag;
1342	unsigned int		sick;
1343	unsigned int		checked;
1344
1345	xfs_inode_measure_sickness(ip, &sick, &checked);
1346	if (!sick)
1347		return;
1348
1349	trace_xfs_inode_unfixed_corruption(ip, sick);
1350
1351	if (sick & XFS_SICK_INO_FORGET)
1352		return;
1353
1354	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355	if (!pag) {
1356		/* There had better still be a perag structure! */
1357		ASSERT(0);
1358		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359	}
1360
1361	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362	xfs_perag_put(pag);
1363}
1364
1365/*
1366 * xfs_inactive
1367 *
1368 * This is called when the vnode reference count for the vnode
1369 * goes to zero.  If the file has been unlinked, then it must
1370 * now be truncated.  Also, we clear all of the read-ahead state
1371 * kept for the inode here since the file is now closed.
1372 */
1373int
1374xfs_inactive(
1375	xfs_inode_t	*ip)
 
 
1376{
1377	struct xfs_mount	*mp;
1378	int			error = 0;
1379	int			truncate = 0;
 
 
 
 
 
 
 
 
1380
1381	/*
1382	 * If the inode is already free, then there can be nothing
1383	 * to clean up here.
1384	 */
1385	if (VFS_I(ip)->i_mode == 0) {
1386		ASSERT(ip->i_df.if_broot_bytes == 0);
1387		goto out;
 
 
 
1388	}
1389
1390	mp = ip->i_mount;
1391	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
 
1392
1393	xfs_inactive_health(ip);
 
 
 
 
 
 
 
 
 
1394
1395	/*
1396	 * If this is a read-only mount, don't do this (would generate I/O)
1397	 * unless we're in log recovery and cleaning the iunlinked list.
1398	 */
1399	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400		goto out;
1401
1402	/* Metadata inodes require explicit resource cleanup. */
1403	if (xfs_is_internal_inode(ip))
1404		goto out;
1405
1406	/* Try to clean out the cow blocks if there are any. */
1407	if (xfs_inode_has_cow_data(ip)) {
1408		error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1409		if (error)
1410			goto out;
1411	}
1412
1413	if (VFS_I(ip)->i_nlink != 0) {
1414		/*
1415		 * Note: don't bother with iolock here since lockdep complains
1416		 * about acquiring it in reclaim context. We have the only
1417		 * reference to the inode at this point anyways.
 
 
1418		 */
1419		if (xfs_can_free_eofblocks(ip))
1420			error = xfs_free_eofblocks(ip);
 
 
 
 
 
 
 
 
 
 
 
1421
1422		goto out;
1423	}
1424
1425	if (S_ISREG(VFS_I(ip)->i_mode) &&
1426	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1427	     xfs_inode_has_filedata(ip)))
1428		truncate = 1;
1429
1430	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1431		/*
1432		 * If this inode is being inactivated during a quotacheck and
1433		 * has not yet been scanned by quotacheck, we /must/ remove
1434		 * the dquots from the inode before inactivation changes the
1435		 * block and inode counts.  Most probably this is a result of
1436		 * reloading the incore iunlinked list to purge unrecovered
1437		 * unlinked inodes.
 
 
1438		 */
1439		xfs_qm_dqdetach(ip);
1440	} else {
1441		error = xfs_qm_dqattach(ip);
1442		if (error)
1443			goto out;
1444	}
 
 
 
 
 
1445
1446	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1447		xfs_inactive_dir(ip);
1448		truncate = 1;
1449	}
 
 
 
 
 
 
 
 
 
 
 
1450
1451	if (S_ISLNK(VFS_I(ip)->i_mode))
1452		error = xfs_inactive_symlink(ip);
1453	else if (truncate)
1454		error = xfs_inactive_truncate(ip);
1455	if (error)
1456		goto out;
 
 
 
 
 
 
 
 
1457
1458	/*
1459	 * If there are attributes associated with the file then blow them away
1460	 * now.  The code calls a routine that recursively deconstructs the
1461	 * attribute fork. If also blows away the in-core attribute fork.
1462	 */
1463	if (xfs_inode_has_attr_fork(ip)) {
1464		error = xfs_attr_inactive(ip);
1465		if (error)
1466			goto out;
1467	}
1468
1469	ASSERT(ip->i_forkoff == 0);
 
 
 
 
 
 
 
 
 
 
1470
1471	/*
1472	 * Free the inode.
1473	 */
1474	error = xfs_inactive_ifree(ip);
 
1475
1476out:
1477	/*
1478	 * We're done making metadata updates for this inode, so we can release
1479	 * the attached dquots.
1480	 */
1481	xfs_qm_dqdetach(ip);
1482	return error;
1483}
1484
1485/*
1486 * Find an inode on the unlinked list. This does not take references to the
1487 * inode as we have existence guarantees by holding the AGI buffer lock and that
1488 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1489 * don't find the inode in cache, then let the caller handle the situation.
1490 */
1491struct xfs_inode *
1492xfs_iunlink_lookup(
1493	struct xfs_perag	*pag,
1494	xfs_agino_t		agino)
1495{
1496	struct xfs_inode	*ip;
1497
1498	rcu_read_lock();
1499	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1500	if (!ip) {
1501		/* Caller can handle inode not being in memory. */
1502		rcu_read_unlock();
1503		return NULL;
1504	}
1505
1506	/*
1507	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1508	 * let the caller handle the failure.
1509	 */
1510	if (WARN_ON_ONCE(!ip->i_ino)) {
1511		rcu_read_unlock();
1512		return NULL;
1513	}
1514	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1515	rcu_read_unlock();
1516	return ip;
1517}
1518
1519/*
1520 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1521 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1522 * to the unlinked list.
 
 
 
 
 
1523 */
1524int
1525xfs_iunlink_reload_next(
1526	struct xfs_trans	*tp,
1527	struct xfs_buf		*agibp,
1528	xfs_agino_t		prev_agino,
1529	xfs_agino_t		next_agino)
1530{
1531	struct xfs_perag	*pag = agibp->b_pag;
1532	struct xfs_mount	*mp = pag_mount(pag);
1533	struct xfs_inode	*next_ip = NULL;
1534	int			error;
 
 
 
 
 
 
 
 
 
 
 
1535
1536	ASSERT(next_agino != NULLAGINO);
 
 
 
 
 
 
1537
1538#ifdef DEBUG
1539	rcu_read_lock();
1540	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1541	ASSERT(next_ip == NULL);
1542	rcu_read_unlock();
1543#endif
 
 
 
 
 
 
 
 
 
1544
1545	xfs_info_ratelimited(mp,
1546 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1547			next_agino, pag_agno(pag));
1548
1549	/*
1550	 * Use an untrusted lookup just to be cautious in case the AGI has been
1551	 * corrupted and now points at a free inode.  That shouldn't happen,
1552	 * but we'd rather shut down now since we're already running in a weird
1553	 * situation.
1554	 */
1555	error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1556			XFS_IGET_UNTRUSTED, 0, &next_ip);
1557	if (error) {
1558		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1559		return error;
1560	}
1561
1562	/* If this is not an unlinked inode, something is very wrong. */
1563	if (VFS_I(next_ip)->i_nlink != 0) {
1564		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1565		error = -EFSCORRUPTED;
1566		goto rele;
 
 
 
 
 
 
 
 
 
 
 
1567	}
1568
1569	next_ip->i_prev_unlinked = prev_agino;
1570	trace_xfs_iunlink_reload_next(next_ip);
1571rele:
1572	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1573	if (xfs_is_quotacheck_running(mp) && next_ip)
1574		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1575	xfs_irele(next_ip);
1576	return error;
1577}
1578
1579/*
1580 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1581 * mark it stale. We should only find clean inodes in this lookup that aren't
1582 * already stale.
 
 
 
 
 
 
 
 
 
 
 
 
 
1583 */
1584static void
1585xfs_ifree_mark_inode_stale(
1586	struct xfs_perag	*pag,
1587	struct xfs_inode	*free_ip,
1588	xfs_ino_t		inum)
1589{
1590	struct xfs_mount	*mp = pag_mount(pag);
1591	struct xfs_inode_log_item *iip;
1592	struct xfs_inode	*ip;
 
 
 
 
 
1593
1594retry:
1595	rcu_read_lock();
1596	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1597
1598	/* Inode not in memory, nothing to do */
1599	if (!ip) {
1600		rcu_read_unlock();
1601		return;
1602	}
1603
1604	/*
1605	 * because this is an RCU protected lookup, we could find a recently
1606	 * freed or even reallocated inode during the lookup. We need to check
1607	 * under the i_flags_lock for a valid inode here. Skip it if it is not
1608	 * valid, the wrong inode or stale.
1609	 */
1610	spin_lock(&ip->i_flags_lock);
1611	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1612		goto out_iflags_unlock;
1613
1614	/*
1615	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1616	 * other inodes that we did not find in the list attached to the buffer
1617	 * and are not already marked stale. If we can't lock it, back off and
1618	 * retry.
1619	 */
1620	if (ip != free_ip) {
1621		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1622			spin_unlock(&ip->i_flags_lock);
1623			rcu_read_unlock();
1624			delay(1);
1625			goto retry;
1626		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627	}
1628	ip->i_flags |= XFS_ISTALE;
1629
1630	/*
1631	 * If the inode is flushing, it is already attached to the buffer.  All
1632	 * we needed to do here is mark the inode stale so buffer IO completion
1633	 * will remove it from the AIL.
1634	 */
1635	iip = ip->i_itemp;
1636	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1637		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1638		ASSERT(iip->ili_last_fields);
1639		goto out_iunlock;
 
 
 
 
 
 
 
 
 
 
 
 
1640	}
1641
1642	/*
1643	 * Inodes not attached to the buffer can be released immediately.
1644	 * Everything else has to go through xfs_iflush_abort() on journal
1645	 * commit as the flock synchronises removal of the inode from the
1646	 * cluster buffer against inode reclaim.
1647	 */
1648	if (!iip || list_empty(&iip->ili_item.li_bio_list))
1649		goto out_iunlock;
 
 
 
 
 
1650
1651	__xfs_iflags_set(ip, XFS_IFLUSHING);
1652	spin_unlock(&ip->i_flags_lock);
1653	rcu_read_unlock();
1654
1655	/* we have a dirty inode in memory that has not yet been flushed. */
1656	spin_lock(&iip->ili_lock);
1657	iip->ili_last_fields = iip->ili_fields;
1658	iip->ili_fields = 0;
1659	iip->ili_fsync_fields = 0;
1660	spin_unlock(&iip->ili_lock);
1661	ASSERT(iip->ili_last_fields);
1662
1663	if (ip != free_ip)
1664		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1665	return;
 
1666
1667out_iunlock:
1668	if (ip != free_ip)
1669		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1670out_iflags_unlock:
1671	spin_unlock(&ip->i_flags_lock);
1672	rcu_read_unlock();
1673}
1674
1675/*
1676 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1677 * inodes that are in memory - they all must be marked stale and attached to
1678 * the cluster buffer.
 
 
 
 
 
 
 
 
 
 
1679 */
1680static int
1681xfs_ifree_cluster(
1682	struct xfs_trans	*tp,
1683	struct xfs_perag	*pag,
1684	struct xfs_inode	*free_ip,
1685	struct xfs_icluster	*xic)
1686{
1687	struct xfs_mount	*mp = free_ip->i_mount;
1688	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1689	struct xfs_buf		*bp;
1690	xfs_daddr_t		blkno;
1691	xfs_ino_t		inum = xic->first_ino;
1692	int			nbufs;
1693	int			i, j;
1694	int			ioffset;
1695	int			error;
1696
1697	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
 
 
1698
1699	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
 
 
 
 
 
 
 
 
 
 
1700		/*
1701		 * The allocation bitmap tells us which inodes of the chunk were
1702		 * physically allocated. Skip the cluster if an inode falls into
1703		 * a sparse region.
1704		 */
1705		ioffset = inum - xic->first_ino;
1706		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1707			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1708			continue;
 
 
 
 
1709		}
1710
1711		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1712					 XFS_INO_TO_AGBNO(mp, inum));
1713
1714		/*
1715		 * We obtain and lock the backing buffer first in the process
1716		 * here to ensure dirty inodes attached to the buffer remain in
1717		 * the flushing state while we mark them stale.
1718		 *
1719		 * If we scan the in-memory inodes first, then buffer IO can
1720		 * complete before we get a lock on it, and hence we may fail
1721		 * to mark all the active inodes on the buffer stale.
1722		 */
1723		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1724				mp->m_bsize * igeo->blocks_per_cluster,
1725				XBF_UNMAPPED, &bp);
1726		if (error)
1727			return error;
1728
1729		/*
1730		 * This buffer may not have been correctly initialised as we
1731		 * didn't read it from disk. That's not important because we are
1732		 * only using to mark the buffer as stale in the log, and to
1733		 * attach stale cached inodes on it.
1734		 *
1735		 * For the inode that triggered the cluster freeing, this
1736		 * attachment may occur in xfs_inode_item_precommit() after we
1737		 * have marked this buffer stale.  If this buffer was not in
1738		 * memory before xfs_ifree_cluster() started, it will not be
1739		 * marked XBF_DONE and this will cause problems later in
1740		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1741		 * buffer to attached to the transaction.
1742		 *
1743		 * Hence we have to mark the buffer as XFS_DONE here. This is
1744		 * safe because we are also marking the buffer as XBF_STALE and
1745		 * XFS_BLI_STALE. That means it will never be dispatched for
1746		 * IO and it won't be unlocked until the cluster freeing has
1747		 * been committed to the journal and the buffer unpinned. If it
1748		 * is written, we want to know about it, and we want it to
1749		 * fail. We can acheive this by adding a write verifier to the
1750		 * buffer.
1751		 */
1752		bp->b_flags |= XBF_DONE;
1753		bp->b_ops = &xfs_inode_buf_ops;
1754
1755		/*
1756		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1757		 * too. This requires lookups, and will skip inodes that we've
1758		 * already marked XFS_ISTALE.
1759		 */
1760		for (i = 0; i < igeo->inodes_per_cluster; i++)
1761			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1762
1763		xfs_trans_stale_inode_buf(tp, bp);
1764		xfs_trans_binval(tp, bp);
1765	}
1766	return 0;
 
 
1767}
1768
1769/*
1770 * This is called to return an inode to the inode free list.  The inode should
1771 * already be truncated to 0 length and have no pages associated with it.  This
1772 * routine also assumes that the inode is already a part of the transaction.
1773 *
1774 * The on-disk copy of the inode will have been added to the list of unlinked
1775 * inodes in the AGI. We need to remove the inode from that list atomically with
1776 * respect to freeing it here.
1777 */
1778int
1779xfs_ifree(
1780	struct xfs_trans	*tp,
1781	struct xfs_inode	*ip)
1782{
1783	struct xfs_mount	*mp = ip->i_mount;
1784	struct xfs_perag	*pag;
1785	struct xfs_icluster	xic = { 0 };
1786	struct xfs_inode_log_item *iip = ip->i_itemp;
1787	int			error;
1788
1789	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1790	ASSERT(VFS_I(ip)->i_nlink == 0);
1791	ASSERT(ip->i_df.if_nextents == 0);
1792	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1793	ASSERT(ip->i_nblocks == 0);
1794
1795	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1796
1797	error = xfs_inode_uninit(tp, pag, ip, &xic);
1798	if (error)
1799		goto out;
1800
1801	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1802		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1803
1804	/* Don't attempt to replay owner changes for a deleted inode */
1805	spin_lock(&iip->ili_lock);
1806	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1807	spin_unlock(&iip->ili_lock);
1808
1809	if (xic.deleted)
1810		error = xfs_ifree_cluster(tp, pag, ip, &xic);
1811out:
1812	xfs_perag_put(pag);
1813	return error;
 
 
 
1814}
1815
1816/*
1817 * This is called to unpin an inode.  The caller must have the inode locked
1818 * in at least shared mode so that the buffer cannot be subsequently pinned
1819 * once someone is waiting for it to be unpinned.
1820 */
1821static void
1822xfs_iunpin(
1823	struct xfs_inode	*ip)
1824{
1825	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1826
1827	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1828
1829	/* Give the log a push to start the unpinning I/O */
1830	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1831
1832}
1833
1834static void
1835__xfs_iunpin_wait(
1836	struct xfs_inode	*ip)
1837{
1838	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1839	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1840
1841	xfs_iunpin(ip);
1842
1843	do {
1844		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1845		if (xfs_ipincount(ip))
1846			io_schedule();
1847	} while (xfs_ipincount(ip));
1848	finish_wait(wq, &wait.wq_entry);
1849}
1850
1851void
1852xfs_iunpin_wait(
1853	struct xfs_inode	*ip)
1854{
1855	if (xfs_ipincount(ip))
1856		__xfs_iunpin_wait(ip);
1857}
1858
1859/*
1860 * Removing an inode from the namespace involves removing the directory entry
1861 * and dropping the link count on the inode. Removing the directory entry can
1862 * result in locking an AGF (directory blocks were freed) and removing a link
1863 * count can result in placing the inode on an unlinked list which results in
1864 * locking an AGI.
1865 *
1866 * The big problem here is that we have an ordering constraint on AGF and AGI
1867 * locking - inode allocation locks the AGI, then can allocate a new extent for
1868 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1869 * removes the inode from the unlinked list, requiring that we lock the AGI
1870 * first, and then freeing the inode can result in an inode chunk being freed
1871 * and hence freeing disk space requiring that we lock an AGF.
1872 *
1873 * Hence the ordering that is imposed by other parts of the code is AGI before
1874 * AGF. This means we cannot remove the directory entry before we drop the inode
1875 * reference count and put it on the unlinked list as this results in a lock
1876 * order of AGF then AGI, and this can deadlock against inode allocation and
1877 * freeing. Therefore we must drop the link counts before we remove the
1878 * directory entry.
1879 *
1880 * This is still safe from a transactional point of view - it is not until we
1881 * get to xfs_defer_finish() that we have the possibility of multiple
1882 * transactions in this operation. Hence as long as we remove the directory
1883 * entry and drop the link count in the first transaction of the remove
1884 * operation, there are no transactional constraints on the ordering here.
1885 */
1886int
1887xfs_remove(
1888	struct xfs_inode	*dp,
1889	struct xfs_name		*name,
1890	struct xfs_inode	*ip)
1891{
1892	struct xfs_dir_update	du = {
1893		.dp		= dp,
1894		.name		= name,
1895		.ip		= ip,
1896	};
1897	struct xfs_mount	*mp = dp->i_mount;
1898	struct xfs_trans	*tp = NULL;
1899	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1900	int			dontcare;
1901	int                     error = 0;
1902	uint			resblks;
1903
1904	trace_xfs_remove(dp, name);
1905
1906	if (xfs_is_shutdown(mp))
1907		return -EIO;
1908	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1909		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
1910
1911	error = xfs_qm_dqattach(dp);
1912	if (error)
1913		goto std_return;
 
 
 
 
 
1914
1915	error = xfs_qm_dqattach(ip);
1916	if (error)
1917		goto std_return;
1918
1919	error = xfs_parent_start(mp, &du.ppargs);
1920	if (error)
1921		goto std_return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922
 
 
 
1923	/*
1924	 * We try to get the real space reservation first, allowing for
1925	 * directory btree deletion(s) implying possible bmap insert(s).  If we
1926	 * can't get the space reservation then we use 0 instead, and avoid the
1927	 * bmap btree insert(s) in the directory code by, if the bmap insert
1928	 * tries to happen, instead trimming the LAST block from the directory.
1929	 *
1930	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1931	 * the directory code can handle a reservationless update and we don't
1932	 * want to prevent a user from trying to free space by deleting things.
1933	 */
1934	resblks = xfs_remove_space_res(mp, name->len);
1935	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1936			&tp, &dontcare);
1937	if (error) {
1938		ASSERT(error != -ENOSPC);
1939		goto out_parent;
1940	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941
1942	error = xfs_dir_remove_child(tp, resblks, &du);
1943	if (error)
1944		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945
1946	/*
1947	 * If this is a synchronous mount, make sure that the
1948	 * remove transaction goes to disk before returning to
1949	 * the user.
1950	 */
1951	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1952		xfs_trans_set_sync(tp);
1953
1954	error = xfs_trans_commit(tp);
1955	if (error)
1956		goto out_unlock;
 
 
1957
1958	if (is_dir && xfs_inode_is_filestream(ip))
1959		xfs_filestream_deassociate(ip);
 
 
 
 
 
 
 
 
 
 
 
1960
1961	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1962	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1963	xfs_parent_finish(mp, du.ppargs);
1964	return 0;
 
 
 
 
 
 
 
 
 
1965
1966 out_trans_cancel:
1967	xfs_trans_cancel(tp);
1968 out_unlock:
1969	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1970	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1971 out_parent:
1972	xfs_parent_finish(mp, du.ppargs);
1973 std_return:
1974	return error;
1975}
1976
1977static inline void
1978xfs_iunlock_rename(
1979	struct xfs_inode	**i_tab,
1980	int			num_inodes)
1981{
1982	int			i;
1983
1984	for (i = num_inodes - 1; i >= 0; i--) {
1985		/* Skip duplicate inodes if src and target dps are the same */
1986		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1987			continue;
1988		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1989	}
1990}
1991
1992/*
1993 * Enter all inodes for a rename transaction into a sorted array.
1994 */
1995#define __XFS_SORT_INODES	5
1996STATIC void
1997xfs_sort_for_rename(
1998	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
1999	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2000	struct xfs_inode	*ip1,	/* in: inode of old entry */
2001	struct xfs_inode	*ip2,	/* in: inode of new entry */
2002	struct xfs_inode	*wip,	/* in: whiteout inode */
2003	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2004	int			*num_inodes)  /* in/out: inodes in array */
2005{
2006	int			i;
2007
2008	ASSERT(*num_inodes == __XFS_SORT_INODES);
2009	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2010
 
2011	/*
2012	 * i_tab contains a list of pointers to inodes.  We initialize
2013	 * the table here & we'll sort it.  We will then use it to
2014	 * order the acquisition of the inode locks.
2015	 *
2016	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
 
 
 
2017	 */
2018	i = 0;
2019	i_tab[i++] = dp1;
2020	i_tab[i++] = dp2;
2021	i_tab[i++] = ip1;
2022	if (ip2)
2023		i_tab[i++] = ip2;
2024	if (wip)
2025		i_tab[i++] = wip;
2026	*num_inodes = i;
2027
2028	xfs_sort_inodes(i_tab, *num_inodes);
2029}
2030
2031void
2032xfs_sort_inodes(
2033	struct xfs_inode	**i_tab,
2034	unsigned int		num_inodes)
2035{
2036	int			i, j;
2037
2038	ASSERT(num_inodes <= __XFS_SORT_INODES);
 
 
 
 
 
 
 
 
2039
2040	/*
2041	 * Sort the elements via bubble sort.  (Remember, there are at
2042	 * most 5 elements to sort, so this is adequate.)
2043	 */
2044	for (i = 0; i < num_inodes; i++) {
2045		for (j = 1; j < num_inodes; j++) {
2046			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2047				swap(i_tab[j], i_tab[j - 1]);
2048		}
2049	}
2050}
2051
2052/*
2053 * xfs_rename_alloc_whiteout()
 
 
 
 
2054 *
2055 * Return a referenced, unlinked, unlocked inode that can be used as a
2056 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2057 * crash between allocating the inode and linking it into the rename transaction
2058 * recovery will free the inode and we won't leak it.
2059 */
2060static int
2061xfs_rename_alloc_whiteout(
2062	struct mnt_idmap	*idmap,
2063	struct xfs_name		*src_name,
2064	struct xfs_inode	*dp,
2065	struct xfs_inode	**wip)
2066{
2067	struct xfs_icreate_args	args = {
2068		.idmap		= idmap,
2069		.pip		= dp,
2070		.mode		= S_IFCHR | WHITEOUT_MODE,
2071		.flags		= XFS_ICREATE_TMPFILE,
2072	};
2073	struct xfs_inode	*tmpfile;
2074	struct qstr		name;
2075	int			error;
2076
2077	error = xfs_create_tmpfile(&args, &tmpfile);
2078	if (error)
2079		return error;
2080
2081	name.name = src_name->name;
2082	name.len = src_name->len;
2083	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2084	if (error) {
2085		xfs_finish_inode_setup(tmpfile);
2086		xfs_irele(tmpfile);
2087		return error;
2088	}
2089
2090	/*
2091	 * Prepare the tmpfile inode as if it were created through the VFS.
2092	 * Complete the inode setup and flag it as linkable.  nlink is already
2093	 * zero, so we can skip the drop_nlink.
2094	 */
2095	xfs_setup_iops(tmpfile);
2096	xfs_finish_inode_setup(tmpfile);
2097	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2098
2099	*wip = tmpfile;
2100	return 0;
2101}
2102
2103/*
2104 * xfs_rename
2105 */
2106int
2107xfs_rename(
2108	struct mnt_idmap	*idmap,
2109	struct xfs_inode	*src_dp,
2110	struct xfs_name		*src_name,
2111	struct xfs_inode	*src_ip,
2112	struct xfs_inode	*target_dp,
2113	struct xfs_name		*target_name,
2114	struct xfs_inode	*target_ip,
2115	unsigned int		flags)
2116{
2117	struct xfs_dir_update	du_src = {
2118		.dp		= src_dp,
2119		.name		= src_name,
2120		.ip		= src_ip,
2121	};
2122	struct xfs_dir_update	du_tgt = {
2123		.dp		= target_dp,
2124		.name		= target_name,
2125		.ip		= target_ip,
2126	};
2127	struct xfs_dir_update	du_wip = { };
2128	struct xfs_mount	*mp = src_dp->i_mount;
2129	struct xfs_trans	*tp;
2130	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2131	int			i;
2132	int			num_inodes = __XFS_SORT_INODES;
2133	bool			new_parent = (src_dp != target_dp);
2134	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2135	int			spaceres;
2136	bool			retried = false;
2137	int			error, nospace_error = 0;
2138
2139	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2140
2141	if ((flags & RENAME_EXCHANGE) && !target_ip)
2142		return -EINVAL;
2143
2144	/*
2145	 * If we are doing a whiteout operation, allocate the whiteout inode
2146	 * we will be placing at the target and ensure the type is set
2147	 * appropriately.
2148	 */
2149	if (flags & RENAME_WHITEOUT) {
2150		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2151				&du_wip.ip);
2152		if (error)
2153			return error;
2154
2155		/* setup target dirent info as whiteout */
2156		src_name->type = XFS_DIR3_FT_CHRDEV;
2157	}
2158
2159	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2160			inodes, &num_inodes);
2161
2162	error = xfs_parent_start(mp, &du_src.ppargs);
2163	if (error)
2164		goto out_release_wip;
2165
2166	if (du_wip.ip) {
2167		error = xfs_parent_start(mp, &du_wip.ppargs);
2168		if (error)
2169			goto out_src_ppargs;
2170	}
2171
2172	if (target_ip) {
2173		error = xfs_parent_start(mp, &du_tgt.ppargs);
2174		if (error)
2175			goto out_wip_ppargs;
2176	}
2177
2178retry:
2179	nospace_error = 0;
2180	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2181			target_name->len, du_wip.ip != NULL);
2182	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2183	if (error == -ENOSPC) {
2184		nospace_error = error;
2185		spaceres = 0;
2186		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2187				&tp);
2188	}
2189	if (error)
2190		goto out_tgt_ppargs;
2191
2192	/*
2193	 * We don't allow reservationless renaming when parent pointers are
2194	 * enabled because we can't back out if the xattrs must grow.
 
 
 
 
2195	 */
2196	if (du_src.ppargs && nospace_error) {
2197		error = nospace_error;
2198		xfs_trans_cancel(tp);
2199		goto out_tgt_ppargs;
2200	}
2201
2202	/*
2203	 * Attach the dquots to the inodes
2204	 */
2205	error = xfs_qm_vop_rename_dqattach(inodes);
2206	if (error) {
2207		xfs_trans_cancel(tp);
2208		goto out_tgt_ppargs;
2209	}
2210
2211	/*
2212	 * Lock all the participating inodes. Depending upon whether
2213	 * the target_name exists in the target directory, and
2214	 * whether the target directory is the same as the source
2215	 * directory, we can lock from 2 to 5 inodes.
2216	 */
2217	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
 
 
2218
2219	/*
2220	 * Join all the inodes to the transaction.
 
2221	 */
2222	xfs_trans_ijoin(tp, src_dp, 0);
2223	if (new_parent)
2224		xfs_trans_ijoin(tp, target_dp, 0);
2225	xfs_trans_ijoin(tp, src_ip, 0);
2226	if (target_ip)
2227		xfs_trans_ijoin(tp, target_ip, 0);
2228	if (du_wip.ip)
2229		xfs_trans_ijoin(tp, du_wip.ip, 0);
2230
2231	/*
2232	 * If we are using project inheritance, we only allow renames
2233	 * into our tree when the project IDs are the same; else the
2234	 * tree quota mechanism would be circumvented.
2235	 */
2236	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2237		     target_dp->i_projid != src_ip->i_projid)) {
2238		error = -EXDEV;
2239		goto out_trans_cancel;
2240	}
2241
2242	/* RENAME_EXCHANGE is unique from here on. */
2243	if (flags & RENAME_EXCHANGE) {
2244		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2245				spaceres);
2246		if (error)
2247			goto out_trans_cancel;
2248		goto out_commit;
2249	}
2250
2251	/*
2252	 * Try to reserve quota to handle an expansion of the target directory.
2253	 * We'll allow the rename to continue in reservationless mode if we hit
2254	 * a space usage constraint.  If we trigger reservationless mode, save
2255	 * the errno if there isn't any free space in the target directory.
2256	 */
2257	if (spaceres != 0) {
2258		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2259				0, false);
2260		if (error == -EDQUOT || error == -ENOSPC) {
2261			if (!retried) {
2262				xfs_trans_cancel(tp);
2263				xfs_iunlock_rename(inodes, num_inodes);
2264				xfs_blockgc_free_quota(target_dp, 0);
2265				retried = true;
2266				goto retry;
2267			}
2268
2269			nospace_error = error;
2270			spaceres = 0;
2271			error = 0;
2272		}
2273		if (error)
2274			goto out_trans_cancel;
2275	}
2276
 
 
 
 
 
 
2277	/*
2278	 * We don't allow quotaless renaming when parent pointers are enabled
2279	 * because we can't back out if the xattrs must grow.
2280	 */
2281	if (du_src.ppargs && nospace_error) {
2282		error = nospace_error;
2283		goto out_trans_cancel;
2284	}
2285
2286	/*
2287	 * Lock the AGI buffers we need to handle bumping the nlink of the
2288	 * whiteout inode off the unlinked list and to handle dropping the
2289	 * nlink of the target inode.  Per locking order rules, do this in
2290	 * increasing AG order and before directory block allocation tries to
2291	 * grab AGFs because we grab AGIs before AGFs.
2292	 *
2293	 * The (vfs) caller must ensure that if src is a directory then
2294	 * target_ip is either null or an empty directory.
2295	 */
2296	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2297		if (inodes[i] == du_wip.ip ||
2298		    (inodes[i] == target_ip &&
2299		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2300			struct xfs_perag	*pag;
2301			struct xfs_buf		*bp;
2302
2303			pag = xfs_perag_get(mp,
2304					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2305			error = xfs_read_agi(pag, tp, 0, &bp);
2306			xfs_perag_put(pag);
2307			if (error)
2308				goto out_trans_cancel;
2309		}
2310	}
2311
2312	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2313			&du_wip);
2314	if (error)
2315		goto out_trans_cancel;
2316
2317	if (du_wip.ip) {
2318		/*
2319		 * Now we have a real link, clear the "I'm a tmpfile" state
2320		 * flag from the inode so it doesn't accidentally get misused in
2321		 * future.
2322		 */
2323		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2324	}
2325
2326out_commit:
2327	/*
2328	 * If this is a synchronous mount, make sure that the rename
2329	 * transaction goes to disk before returning to the user.
2330	 */
2331	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2332		xfs_trans_set_sync(tp);
2333
2334	error = xfs_trans_commit(tp);
2335	nospace_error = 0;
2336	goto out_unlock;
2337
2338out_trans_cancel:
2339	xfs_trans_cancel(tp);
2340out_unlock:
2341	xfs_iunlock_rename(inodes, num_inodes);
2342out_tgt_ppargs:
2343	xfs_parent_finish(mp, du_tgt.ppargs);
2344out_wip_ppargs:
2345	xfs_parent_finish(mp, du_wip.ppargs);
2346out_src_ppargs:
2347	xfs_parent_finish(mp, du_src.ppargs);
2348out_release_wip:
2349	if (du_wip.ip)
2350		xfs_irele(du_wip.ip);
2351	if (error == -ENOSPC && nospace_error)
2352		error = nospace_error;
2353	return error;
2354}
2355
2356static int
2357xfs_iflush(
2358	struct xfs_inode	*ip,
2359	struct xfs_buf		*bp)
 
2360{
2361	struct xfs_inode_log_item *iip = ip->i_itemp;
2362	struct xfs_dinode	*dip;
2363	struct xfs_mount	*mp = ip->i_mount;
2364	int			error;
 
 
 
 
 
 
 
2365
2366	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2367	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2368	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2369	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2370	ASSERT(iip->ili_item.li_buf == bp);
2371
2372	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
2373
2374	/*
2375	 * We don't flush the inode if any of the following checks fail, but we
2376	 * do still update the log item and attach to the backing buffer as if
2377	 * the flush happened. This is a formality to facilitate predictable
2378	 * error handling as the caller will shutdown and fail the buffer.
2379	 */
2380	error = -EFSCORRUPTED;
2381	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2382			       mp, XFS_ERRTAG_IFLUSH_1)) {
2383		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2384			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2385			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2386		goto flush_out;
 
 
 
 
 
 
 
2387	}
2388	if (S_ISREG(VFS_I(ip)->i_mode)) {
2389		if (XFS_TEST_ERROR(
2390		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2391		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2392		    mp, XFS_ERRTAG_IFLUSH_3)) {
2393			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394				"%s: Bad regular inode %llu, ptr "PTR_FMT,
2395				__func__, ip->i_ino, ip);
2396			goto flush_out;
2397		}
2398	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2399		if (XFS_TEST_ERROR(
2400		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2401		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2402		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2403		    mp, XFS_ERRTAG_IFLUSH_4)) {
2404			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2405				"%s: Bad directory inode %llu, ptr "PTR_FMT,
2406				__func__, ip->i_ino, ip);
2407			goto flush_out;
2408		}
2409	}
2410	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2411				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
2412		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2413			"%s: detected corrupt incore inode %llu, "
2414			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2415			__func__, ip->i_ino,
2416			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2417			ip->i_nblocks, ip);
2418		goto flush_out;
2419	}
2420	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2421				mp, XFS_ERRTAG_IFLUSH_6)) {
2422		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2423			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2424			__func__, ip->i_ino, ip->i_forkoff, ip);
2425		goto flush_out;
2426	}
2427
2428	/*
2429	 * Inode item log recovery for v2 inodes are dependent on the flushiter
2430	 * count for correct sequencing.  We bump the flush iteration count so
2431	 * we can detect flushes which postdate a log record during recovery.
2432	 * This is redundant as we now log every change and hence this can't
2433	 * happen but we need to still do it to ensure backwards compatibility
2434	 * with old kernels that predate logging all inode changes.
2435	 */
2436	if (!xfs_has_v3inodes(mp))
2437		ip->i_flushiter++;
2438
2439	/*
2440	 * If there are inline format data / attr forks attached to this inode,
2441	 * make sure they are not corrupt.
2442	 */
2443	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2444	    xfs_ifork_verify_local_data(ip))
2445		goto flush_out;
2446	if (xfs_inode_has_attr_fork(ip) &&
2447	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2448	    xfs_ifork_verify_local_attr(ip))
2449		goto flush_out;
2450
2451	/*
2452	 * Copy the dirty parts of the inode into the on-disk inode.  We always
2453	 * copy out the core of the inode, because if the inode is dirty at all
2454	 * the core must be.
 
2455	 */
2456	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2457
2458	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2459	if (!xfs_has_v3inodes(mp)) {
2460		if (ip->i_flushiter == DI_MAX_FLUSH)
2461			ip->i_flushiter = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462	}
2463
2464	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2465	if (xfs_inode_has_attr_fork(ip))
2466		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
2467
2468	/*
2469	 * We've recorded everything logged in the inode, so we'd like to clear
2470	 * the ili_fields bits so we don't log and flush things unnecessarily.
2471	 * However, we can't stop logging all this information until the data
2472	 * we've copied into the disk buffer is written to disk.  If we did we
2473	 * might overwrite the copy of the inode in the log with all the data
2474	 * after re-logging only part of it, and in the face of a crash we
2475	 * wouldn't have all the data we need to recover.
2476	 *
2477	 * What we do is move the bits to the ili_last_fields field.  When
2478	 * logging the inode, these bits are moved back to the ili_fields field.
2479	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2480	 * we know that the information those bits represent is permanently on
2481	 * disk.  As long as the flush completes before the inode is logged
2482	 * again, then both ili_fields and ili_last_fields will be cleared.
2483	 */
2484	error = 0;
2485flush_out:
2486	spin_lock(&iip->ili_lock);
2487	iip->ili_last_fields = iip->ili_fields;
2488	iip->ili_fields = 0;
2489	iip->ili_fsync_fields = 0;
2490	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2491	spin_unlock(&iip->ili_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492
2493	/*
2494	 * Store the current LSN of the inode so that we can tell whether the
2495	 * item has moved in the AIL from xfs_buf_inode_iodone().
2496	 */
2497	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2498				&iip->ili_item.li_lsn);
2499
2500	/* generate the checksum. */
2501	xfs_dinode_calc_crc(mp, dip);
2502	if (error)
2503		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2504	return error;
2505}
2506
2507/*
2508 * Non-blocking flush of dirty inode metadata into the backing buffer.
2509 *
2510 * The caller must have a reference to the inode and hold the cluster buffer
2511 * locked. The function will walk across all the inodes on the cluster buffer it
2512 * can find and lock without blocking, and flush them to the cluster buffer.
2513 *
2514 * On successful flushing of at least one inode, the caller must write out the
2515 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2516 * the caller needs to release the buffer. On failure, the filesystem will be
2517 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2518 * will be returned.
2519 */
2520int
2521xfs_iflush_cluster(
2522	struct xfs_buf		*bp)
 
2523{
2524	struct xfs_mount	*mp = bp->b_mount;
2525	struct xfs_log_item	*lip, *n;
2526	struct xfs_inode	*ip;
2527	struct xfs_inode_log_item *iip;
2528	int			clcount = 0;
2529	int			error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2530
2531	/*
2532	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2533	 * will remove itself from the list.
2534	 */
2535	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2536		iip = (struct xfs_inode_log_item *)lip;
2537		ip = iip->ili_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539		/*
2540		 * Quick and dirty check to avoid locks if possible.
 
 
 
2541		 */
2542		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2543			continue;
2544		if (xfs_ipincount(ip))
2545			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547		/*
2548		 * The inode is still attached to the buffer, which means it is
2549		 * dirty but reclaim might try to grab it. Check carefully for
2550		 * that, and grab the ilock while still holding the i_flags_lock
2551		 * to guarantee reclaim will not be able to reclaim this inode
2552		 * once we drop the i_flags_lock.
2553		 */
2554		spin_lock(&ip->i_flags_lock);
2555		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2556		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2557			spin_unlock(&ip->i_flags_lock);
2558			continue;
2559		}
2560
2561		/*
2562		 * ILOCK will pin the inode against reclaim and prevent
2563		 * concurrent transactions modifying the inode while we are
2564		 * flushing the inode. If we get the lock, set the flushing
2565		 * state before we drop the i_flags_lock.
2566		 */
2567		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2568			spin_unlock(&ip->i_flags_lock);
2569			continue;
 
 
 
 
 
2570		}
2571		__xfs_iflags_set(ip, XFS_IFLUSHING);
2572		spin_unlock(&ip->i_flags_lock);
2573
2574		/*
2575		 * Abort flushing this inode if we are shut down because the
2576		 * inode may not currently be in the AIL. This can occur when
2577		 * log I/O failure unpins the inode without inserting into the
2578		 * AIL, leaving a dirty/unpinned inode attached to the buffer
2579		 * that otherwise looks like it should be flushed.
2580		 */
2581		if (xlog_is_shutdown(mp->m_log)) {
2582			xfs_iunpin_wait(ip);
2583			xfs_iflush_abort(ip);
2584			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2585			error = -EIO;
2586			continue;
2587		}
2588
2589		/* don't block waiting on a log force to unpin dirty inodes */
2590		if (xfs_ipincount(ip)) {
2591			xfs_iflags_clear(ip, XFS_IFLUSHING);
2592			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2593			continue;
2594		}
2595
2596		if (!xfs_inode_clean(ip))
2597			error = xfs_iflush(ip, bp);
2598		else
2599			xfs_iflags_clear(ip, XFS_IFLUSHING);
2600		xfs_iunlock(ip, XFS_ILOCK_SHARED);
2601		if (error)
2602			break;
2603		clcount++;
2604	}
 
2605
2606	if (error) {
2607		/*
2608		 * Shutdown first so we kill the log before we release this
2609		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2610		 * of the log, failing it before the _log_ is shut down can
2611		 * result in the log tail being moved forward in the journal
2612		 * on disk because log writes can still be taking place. Hence
2613		 * unpinning the tail will allow the ICREATE intent to be
2614		 * removed from the log an recovery will fail with uninitialised
2615		 * inode cluster buffers.
2616		 */
2617		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2618		bp->b_flags |= XBF_ASYNC;
2619		xfs_buf_ioend_fail(bp);
2620		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621	}
2622
2623	if (!clcount)
2624		return -EAGAIN;
2625
2626	XFS_STATS_INC(mp, xs_icluster_flushcnt);
2627	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2628	return 0;
2629
2630}
2631
2632/* Release an inode. */
 
 
 
2633void
2634xfs_irele(
2635	struct xfs_inode	*ip)
2636{
2637	trace_xfs_irele(ip, _RET_IP_);
2638	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639}
2640
2641/*
2642 * Ensure all commited transactions touching the inode are written to the log.
 
 
 
 
 
 
 
2643 */
2644int
2645xfs_log_force_inode(
2646	struct xfs_inode	*ip)
2647{
2648	xfs_csn_t		seq = 0;
 
 
 
 
 
 
 
 
2649
2650	xfs_ilock(ip, XFS_ILOCK_SHARED);
2651	if (xfs_ipincount(ip))
2652		seq = ip->i_itemp->ili_commit_seq;
2653	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2654
2655	if (!seq)
2656		return 0;
2657	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658}
2659
2660/*
2661 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2662 * abide vfs locking order (lowest pointer value goes first) and breaking the
2663 * layout leases before proceeding.  The loop is needed because we cannot call
2664 * the blocking break_layout() with the iolocks held, and therefore have to
2665 * back out both locks.
2666 */
2667static int
2668xfs_iolock_two_inodes_and_break_layout(
2669	struct inode		*src,
2670	struct inode		*dest)
2671{
2672	int			error;
2673
2674	if (src > dest)
2675		swap(src, dest);
2676
2677retry:
2678	/* Wait to break both inodes' layouts before we start locking. */
2679	error = break_layout(src, true);
2680	if (error)
2681		return error;
2682	if (src != dest) {
2683		error = break_layout(dest, true);
2684		if (error)
2685			return error;
2686	}
2687
2688	/* Lock one inode and make sure nobody got in and leased it. */
2689	inode_lock(src);
2690	error = break_layout(src, false);
2691	if (error) {
2692		inode_unlock(src);
2693		if (error == -EWOULDBLOCK)
2694			goto retry;
2695		return error;
2696	}
2697
2698	if (src == dest)
2699		return 0;
2700
2701	/* Lock the other inode and make sure nobody got in and leased it. */
2702	inode_lock_nested(dest, I_MUTEX_NONDIR2);
2703	error = break_layout(dest, false);
2704	if (error) {
2705		inode_unlock(src);
2706		inode_unlock(dest);
2707		if (error == -EWOULDBLOCK)
2708			goto retry;
2709		return error;
 
 
 
 
 
 
 
 
 
 
2710	}
2711
2712	return 0;
2713}
2714
2715static int
2716xfs_mmaplock_two_inodes_and_break_dax_layout(
2717	struct xfs_inode	*ip1,
2718	struct xfs_inode	*ip2)
2719{
2720	int			error;
2721	bool			retry;
2722	struct page		*page;
2723
2724	if (ip1->i_ino > ip2->i_ino)
2725		swap(ip1, ip2);
2726
2727again:
2728	retry = false;
2729	/* Lock the first inode */
2730	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2731	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2732	if (error || retry) {
2733		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2734		if (error == 0 && retry)
2735			goto again;
2736		return error;
2737	}
2738
2739	if (ip1 == ip2)
2740		return 0;
2741
2742	/* Nested lock the second inode */
2743	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2744	/*
2745	 * We cannot use xfs_break_dax_layouts() directly here because it may
2746	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2747	 * for this nested lock case.
2748	 */
2749	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2750	if (page && page_ref_count(page) != 1) {
2751		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2752		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2753		goto again;
 
2754	}
2755
2756	return 0;
2757}
2758
2759/*
2760 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2761 * mmap activity.
2762 */
2763int
2764xfs_ilock2_io_mmap(
2765	struct xfs_inode	*ip1,
2766	struct xfs_inode	*ip2)
2767{
2768	int			ret;
2769
2770	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2771	if (ret)
2772		return ret;
2773
2774	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2775		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2776		if (ret) {
2777			inode_unlock(VFS_I(ip2));
2778			if (ip1 != ip2)
2779				inode_unlock(VFS_I(ip1));
2780			return ret;
2781		}
2782	} else
2783		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2784					    VFS_I(ip2)->i_mapping);
2785
2786	return 0;
2787}
2788
2789/* Unlock both inodes to allow IO and mmap activity. */
 
 
 
 
 
 
 
2790void
2791xfs_iunlock2_io_mmap(
2792	struct xfs_inode	*ip1,
2793	struct xfs_inode	*ip2)
2794{
2795	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2796		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2797		if (ip1 != ip2)
2798			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2799	} else
2800		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2801					      VFS_I(ip2)->i_mapping);
 
 
 
2802
2803	inode_unlock(VFS_I(ip2));
2804	if (ip1 != ip2)
2805		inode_unlock(VFS_I(ip1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806}
2807
2808/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2809void
2810xfs_iunlock2_remapping(
2811	struct xfs_inode	*ip1,
2812	struct xfs_inode	*ip2)
 
2813{
2814	xfs_iflags_clear(ip1, XFS_IREMAPPING);
 
 
 
 
 
 
 
2815
2816	if (ip1 != ip2)
2817		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2818	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2819
2820	if (ip1 != ip2)
2821		inode_unlock_shared(VFS_I(ip1));
2822	inode_unlock(VFS_I(ip2));
 
 
 
 
 
2823}
2824
2825/*
2826 * Reload the incore inode list for this inode.  Caller should ensure that
2827 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2828 * preventing other threads from executing.
2829 */
2830int
2831xfs_inode_reload_unlinked_bucket(
2832	struct xfs_trans	*tp,
2833	struct xfs_inode	*ip)
2834{
2835	struct xfs_mount	*mp = tp->t_mountp;
2836	struct xfs_buf		*agibp;
2837	struct xfs_agi		*agi;
2838	struct xfs_perag	*pag;
2839	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2840	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2841	xfs_agino_t		prev_agino, next_agino;
2842	unsigned int		bucket;
2843	bool			foundit = false;
2844	int			error;
 
 
 
 
 
 
 
 
 
2845
2846	/* Grab the first inode in the list */
2847	pag = xfs_perag_get(mp, agno);
2848	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2849	xfs_perag_put(pag);
2850	if (error)
2851		return error;
2852
2853	/*
2854	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2855	 * incore unlinked list pointers for this inode.  Check once more to
2856	 * see if we raced with anyone else to reload the unlinked list.
2857	 */
2858	if (!xfs_inode_unlinked_incomplete(ip)) {
2859		foundit = true;
2860		goto out_agibp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861	}
2862
2863	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2864	agi = agibp->b_addr;
2865
2866	trace_xfs_inode_reload_unlinked_bucket(ip);
2867
2868	xfs_info_ratelimited(mp,
2869 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
2870			agino, agno);
2871
2872	prev_agino = NULLAGINO;
2873	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2874	while (next_agino != NULLAGINO) {
2875		struct xfs_inode	*next_ip = NULL;
2876
2877		/* Found this caller's inode, set its backlink. */
2878		if (next_agino == agino) {
2879			next_ip = ip;
2880			next_ip->i_prev_unlinked = prev_agino;
2881			foundit = true;
2882			goto next_inode;
2883		}
 
 
 
 
2884
2885		/* Try in-memory lookup first. */
2886		next_ip = xfs_iunlink_lookup(pag, next_agino);
2887		if (next_ip)
2888			goto next_inode;
2889
2890		/* Inode not in memory, try reloading it. */
2891		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2892				next_agino);
2893		if (error)
2894			break;
2895
2896		/* Grab the reloaded inode. */
2897		next_ip = xfs_iunlink_lookup(pag, next_agino);
2898		if (!next_ip) {
2899			/* No incore inode at all?  We reloaded it... */
2900			ASSERT(next_ip != NULL);
2901			error = -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2902			break;
2903		}
2904
2905next_inode:
2906		prev_agino = next_agino;
2907		next_agino = next_ip->i_next_unlinked;
2908	}
2909
2910out_agibp:
2911	xfs_trans_brelse(tp, agibp);
2912	/* Should have found this inode somewhere in the iunlinked bucket. */
2913	if (!error && !foundit)
2914		error = -EFSCORRUPTED;
2915	return error;
2916}
2917
2918/* Decide if this inode is missing its unlinked list and reload it. */
2919int
2920xfs_inode_reload_unlinked(
2921	struct xfs_inode	*ip)
2922{
2923	struct xfs_trans	*tp;
2924	int			error;
2925
2926	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2927	if (error)
2928		return error;
2929
2930	xfs_ilock(ip, XFS_ILOCK_SHARED);
2931	if (xfs_inode_unlinked_incomplete(ip))
2932		error = xfs_inode_reload_unlinked_bucket(tp, ip);
2933	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2934	xfs_trans_cancel(tp);
2935
2936	return error;
2937}
2938
2939/* Has this inode fork been zapped by repair? */
2940bool
2941xfs_ifork_zapped(
2942	const struct xfs_inode	*ip,
2943	int			whichfork)
2944{
2945	unsigned int		datamask = 0;
2946
2947	switch (whichfork) {
2948	case XFS_DATA_FORK:
2949		switch (ip->i_vnode.i_mode & S_IFMT) {
2950		case S_IFDIR:
2951			datamask = XFS_SICK_INO_DIR_ZAPPED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952			break;
2953		case S_IFLNK:
2954			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2955			break;
2956		}
2957		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2958	case XFS_ATTR_FORK:
2959		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2960	default:
2961		return false;
2962	}
 
 
 
2963}
2964
2965/* Compute the number of data and realtime blocks used by a file. */
 
 
 
2966void
2967xfs_inode_count_blocks(
2968	struct xfs_trans	*tp,
2969	struct xfs_inode	*ip,
2970	xfs_filblks_t		*dblocks,
2971	xfs_filblks_t		*rblocks)
2972{
2973	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974
2975	*rblocks = 0;
2976	if (XFS_IS_REALTIME_INODE(ip))
2977		xfs_bmap_count_leaves(ifp, rblocks);
2978	*dblocks = ip->i_nblocks - *rblocks;
2979}
2980
2981static void
2982xfs_wait_dax_page(
2983	struct inode		*inode)
 
 
 
 
2984{
2985	struct xfs_inode        *ip = XFS_I(inode);
 
 
2986
2987	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2988	schedule();
2989	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2990}
2991
2992int
2993xfs_break_dax_layouts(
2994	struct inode		*inode,
2995	bool			*retry)
2996{
2997	struct page		*page;
 
 
 
 
 
 
2998
2999	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
 
 
 
 
 
 
 
 
 
3000
3001	page = dax_layout_busy_page(inode->i_mapping);
3002	if (!page)
3003		return 0;
3004
3005	*retry = true;
3006	return ___wait_var_event(&page->_refcount,
3007			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3008			0, 0, xfs_wait_dax_page(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009}
3010
3011int
3012xfs_break_layouts(
3013	struct inode		*inode,
3014	uint			*iolock,
3015	enum layout_break_reason reason)
 
 
 
 
 
 
 
 
 
3016{
3017	bool			retry;
3018	int			error;
3019
3020	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
 
 
3021
3022	do {
3023		retry = false;
3024		switch (reason) {
3025		case BREAK_UNMAP:
3026			error = xfs_break_dax_layouts(inode, &retry);
3027			if (error || retry)
3028				break;
3029			fallthrough;
3030		case BREAK_WRITE:
3031			error = xfs_break_leased_layouts(inode, iolock, &retry);
3032			break;
3033		default:
3034			WARN_ON_ONCE(1);
3035			error = -EINVAL;
3036		}
3037	} while (error == 0 && retry);
3038
3039	return error;
3040}
3041
3042/* Returns the size of fundamental allocation unit for a file, in bytes. */
3043unsigned int
3044xfs_inode_alloc_unitsize(
3045	struct xfs_inode	*ip)
 
 
3046{
3047	unsigned int		blocks = 1;
3048
3049	if (XFS_IS_REALTIME_INODE(ip))
3050		blocks = ip->i_mount->m_sb.sb_rextsize;
3051
3052	return XFS_FSB_TO_B(ip->i_mount, blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053}
3054
3055/* Should we always be using copy on write for file writes? */
3056bool
3057xfs_is_always_cow_inode(
3058	const struct xfs_inode	*ip)
3059{
3060	return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061}