Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.5.6
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 
 19#include <linux/time.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/fcntl.h>
 23#include <linux/stat.h>
 24#include <linux/nfs_fs.h>
 25#include <linux/nfs_mount.h>
 26#include <linux/mm.h>
 27#include <linux/pagemap.h>
 28#include <linux/aio.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 
 31
 32#include <asm/uaccess.h>
 
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 
 
 40#define NFSDBG_FACILITY		NFSDBG_FILE
 41
 42static const struct vm_operations_struct nfs_file_vm_ops;
 43
 44const struct inode_operations nfs_file_inode_operations = {
 45	.permission	= nfs_permission,
 46	.getattr	= nfs_getattr,
 47	.setattr	= nfs_setattr,
 48};
 49
 50#ifdef CONFIG_NFS_V3
 51const struct inode_operations nfs3_file_inode_operations = {
 52	.permission	= nfs_permission,
 53	.getattr	= nfs_getattr,
 54	.setattr	= nfs_setattr,
 55	.listxattr	= nfs3_listxattr,
 56	.getxattr	= nfs3_getxattr,
 57	.setxattr	= nfs3_setxattr,
 58	.removexattr	= nfs3_removexattr,
 59};
 60#endif  /* CONFIG_NFS_v3 */
 61
 62/* Hack for future NFS swap support */
 63#ifndef IS_SWAPFILE
 64# define IS_SWAPFILE(inode)	(0)
 65#endif
 66
 67static int nfs_check_flags(int flags)
 68{
 69	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 70		return -EINVAL;
 71
 72	return 0;
 73}
 
 74
 75/*
 76 * Open file
 77 */
 78static int
 79nfs_file_open(struct inode *inode, struct file *filp)
 80{
 81	int res;
 82
 83	dprintk("NFS: open file(%s/%s)\n",
 84			filp->f_path.dentry->d_parent->d_name.name,
 85			filp->f_path.dentry->d_name.name);
 86
 87	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 88	res = nfs_check_flags(filp->f_flags);
 89	if (res)
 90		return res;
 91
 92	res = nfs_open(inode, filp);
 
 
 93	return res;
 94}
 95
 96static int
 97nfs_file_release(struct inode *inode, struct file *filp)
 98{
 99	dprintk("NFS: release(%s/%s)\n",
100			filp->f_path.dentry->d_parent->d_name.name,
101			filp->f_path.dentry->d_name.name);
102
103	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
104	return nfs_release(inode, filp);
 
 
105}
 
106
107/**
108 * nfs_revalidate_size - Revalidate the file size
109 * @inode - pointer to inode struct
110 * @file - pointer to struct file
111 *
112 * Revalidates the file length. This is basically a wrapper around
113 * nfs_revalidate_inode() that takes into account the fact that we may
114 * have cached writes (in which case we don't care about the server's
115 * idea of what the file length is), or O_DIRECT (in which case we
116 * shouldn't trust the cache).
117 */
118static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
119{
120	struct nfs_server *server = NFS_SERVER(inode);
121	struct nfs_inode *nfsi = NFS_I(inode);
122
123	if (nfs_have_delegated_attributes(inode))
124		goto out_noreval;
125
126	if (filp->f_flags & O_DIRECT)
127		goto force_reval;
128	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
129		goto force_reval;
130	if (nfs_attribute_timeout(inode))
131		goto force_reval;
132out_noreval:
133	return 0;
134force_reval:
135	return __nfs_revalidate_inode(server, inode);
136}
137
138static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
139{
140	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
141			filp->f_path.dentry->d_parent->d_name.name,
142			filp->f_path.dentry->d_name.name,
143			offset, origin);
144
145	/*
146	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
147	 * the cached file length
148	 */
149	if (origin != SEEK_SET && origin != SEEK_CUR) {
150		struct inode *inode = filp->f_mapping->host;
151
152		int retval = nfs_revalidate_file_size(inode, filp);
153		if (retval < 0)
154			return (loff_t)retval;
155	}
156
157	return generic_file_llseek(filp, offset, origin);
158}
 
159
160/*
161 * Flush all dirty pages, and check for write errors.
162 */
163static int
164nfs_file_flush(struct file *file, fl_owner_t id)
165{
166	struct dentry	*dentry = file->f_path.dentry;
167	struct inode	*inode = dentry->d_inode;
168
169	dprintk("NFS: flush(%s/%s)\n",
170			dentry->d_parent->d_name.name,
171			dentry->d_name.name);
172
173	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
174	if ((file->f_mode & FMODE_WRITE) == 0)
175		return 0;
176
177	/*
178	 * If we're holding a write delegation, then just start the i/o
179	 * but don't wait for completion (or send a commit).
180	 */
181	if (nfs_have_delegation(inode, FMODE_WRITE))
182		return filemap_fdatawrite(file->f_mapping);
183
184	/* Flush writes to the server and return any errors */
185	return vfs_fsync(file, 0);
 
 
186}
187
188static ssize_t
189nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
190		unsigned long nr_segs, loff_t pos)
191{
192	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
193	struct inode * inode = dentry->d_inode;
194	ssize_t result;
195
196	if (iocb->ki_filp->f_flags & O_DIRECT)
197		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
198
199	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
200		dentry->d_parent->d_name.name, dentry->d_name.name,
201		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
 
 
 
 
202
203	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
204	if (!result) {
205		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
206		if (result > 0)
207			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
208	}
 
209	return result;
210}
 
 
 
 
 
 
 
 
 
 
211
212static ssize_t
213nfs_file_splice_read(struct file *filp, loff_t *ppos,
214		     struct pipe_inode_info *pipe, size_t count,
215		     unsigned int flags)
216{
217	struct dentry *dentry = filp->f_path.dentry;
218	struct inode *inode = dentry->d_inode;
219	ssize_t res;
220
221	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
222		dentry->d_parent->d_name.name, dentry->d_name.name,
223		(unsigned long) count, (unsigned long long) *ppos);
224
225	res = nfs_revalidate_mapping(inode, filp->f_mapping);
226	if (!res) {
227		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
228		if (res > 0)
229			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
230	}
231	return res;
 
232}
 
233
234static int
235nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
236{
237	struct dentry *dentry = file->f_path.dentry;
238	struct inode *inode = dentry->d_inode;
239	int	status;
240
241	dprintk("NFS: mmap(%s/%s)\n",
242		dentry->d_parent->d_name.name, dentry->d_name.name);
243
244	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
245	 *       so we call that before revalidating the mapping
246	 */
247	status = generic_file_mmap(file, vma);
248	if (!status) {
249		vma->vm_ops = &nfs_file_vm_ops;
250		status = nfs_revalidate_mapping(inode, file->f_mapping);
251	}
252	return status;
253}
 
254
255/*
256 * Flush any dirty pages for this process, and check for write errors.
257 * The return status from this call provides a reliable indication of
258 * whether any write errors occurred for this process.
259 *
260 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
261 * disk, but it retrieves and clears ctx->error after synching, despite
262 * the two being set at the same time in nfs_context_set_write_error().
263 * This is because the former is used to notify the _next_ call to
264 * nfs_file_write() that a write error occurred, and hence cause it to
265 * fall back to doing a synchronous write.
266 */
267static int
268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269{
270	struct dentry *dentry = file->f_path.dentry;
271	struct nfs_open_context *ctx = nfs_file_open_context(file);
272	struct inode *inode = dentry->d_inode;
273	int have_error, status;
274	int ret = 0;
275
276	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
277			dentry->d_parent->d_name.name, dentry->d_name.name,
278			datasync);
279
280	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
281	mutex_lock(&inode->i_mutex);
282
283	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
284	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
285	status = nfs_commit_inode(inode, FLUSH_SYNC);
286	if (status >= 0 && ret < 0)
287		status = ret;
288	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
289	if (have_error)
290		ret = xchg(&ctx->error, 0);
291	if (!ret && status < 0)
292		ret = status;
293	if (!ret && !datasync)
294		/* application has asked for meta-data sync */
295		ret = pnfs_layoutcommit_inode(inode, true);
296	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297	return ret;
298}
 
299
300/*
301 * Decide whether a read/modify/write cycle may be more efficient
302 * then a modify/write/read cycle when writing to a page in the
303 * page cache.
304 *
 
 
 
 
 
 
305 * The modify/write/read cycle may occur if a page is read before
306 * being completely filled by the writer.  In this situation, the
307 * page must be completely written to stable storage on the server
308 * before it can be refilled by reading in the page from the server.
309 * This can lead to expensive, small, FILE_SYNC mode writes being
310 * done.
311 *
312 * It may be more efficient to read the page first if the file is
313 * open for reading in addition to writing, the page is not marked
314 * as Uptodate, it is not dirty or waiting to be committed,
315 * indicating that it was previously allocated and then modified,
316 * that there were valid bytes of data in that range of the file,
317 * and that the new data won't completely replace the old data in
318 * that range of the file.
319 */
320static int nfs_want_read_modify_write(struct file *file, struct page *page,
321			loff_t pos, unsigned len)
322{
323	unsigned int pglen = nfs_page_length(page);
324	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
325	unsigned int end = offset + len;
326
327	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
328	    !PageUptodate(page) &&		/* Uptodate? */
329	    !PagePrivate(page) &&		/* i/o request already? */
330	    pglen &&				/* valid bytes of file? */
331	    (end < pglen || offset))		/* replace all valid bytes? */
332		return 1;
333	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
334}
335
336/*
337 * This does the "real" work of the write. We must allocate and lock the
338 * page to be sent back to the generic routine, which then copies the
339 * data from user space.
340 *
341 * If the writer ends up delaying the write, the writer needs to
342 * increment the page use counts until he is done with the page.
343 */
344static int nfs_write_begin(struct file *file, struct address_space *mapping,
345			loff_t pos, unsigned len, unsigned flags,
346			struct page **pagep, void **fsdata)
347{
348	int ret;
349	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
350	struct page *page;
351	int once_thru = 0;
 
352
353	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
354		file->f_path.dentry->d_parent->d_name.name,
355		file->f_path.dentry->d_name.name,
356		mapping->host->i_ino, len, (long long) pos);
357
 
358start:
359	/*
360	 * Prevent starvation issues if someone is doing a consistency
361	 * sync-to-disk
362	 */
363	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
364			nfs_wait_bit_killable, TASK_KILLABLE);
365	if (ret)
366		return ret;
367
368	page = grab_cache_page_write_begin(mapping, index, flags);
369	if (!page)
370		return -ENOMEM;
371	*pagep = page;
372
373	ret = nfs_flush_incompatible(file, page);
374	if (ret) {
375		unlock_page(page);
376		page_cache_release(page);
377	} else if (!once_thru &&
378		   nfs_want_read_modify_write(file, page, pos, len)) {
379		once_thru = 1;
380		ret = nfs_readpage(file, page);
381		page_cache_release(page);
382		if (!ret)
383			goto start;
384	}
385	return ret;
386}
387
388static int nfs_write_end(struct file *file, struct address_space *mapping,
389			loff_t pos, unsigned len, unsigned copied,
390			struct page *page, void *fsdata)
391{
392	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
 
393	int status;
394
395	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
396		file->f_path.dentry->d_parent->d_name.name,
397		file->f_path.dentry->d_name.name,
398		mapping->host->i_ino, len, (long long) pos);
399
400	/*
401	 * Zero any uninitialised parts of the page, and then mark the page
402	 * as up to date if it turns out that we're extending the file.
403	 */
404	if (!PageUptodate(page)) {
405		unsigned pglen = nfs_page_length(page);
406		unsigned end = offset + len;
 
407
408		if (pglen == 0) {
409			zero_user_segments(page, 0, offset,
410					end, PAGE_CACHE_SIZE);
411			SetPageUptodate(page);
412		} else if (end >= pglen) {
413			zero_user_segment(page, end, PAGE_CACHE_SIZE);
414			if (offset == 0)
415				SetPageUptodate(page);
416		} else
417			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418	}
419
420	status = nfs_updatepage(file, page, offset, copied);
421
422	unlock_page(page);
423	page_cache_release(page);
424
425	if (status < 0)
426		return status;
427	NFS_I(mapping->host)->write_io += copied;
 
 
 
 
428	return copied;
429}
430
431/*
432 * Partially or wholly invalidate a page
433 * - Release the private state associated with a page if undergoing complete
434 *   page invalidation
435 * - Called if either PG_private or PG_fscache is set on the page
436 * - Caller holds page lock
437 */
438static void nfs_invalidate_page(struct page *page, unsigned long offset)
 
439{
440	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
 
 
441
442	if (offset != 0)
443		return;
444	/* Cancel any unstarted writes on this page */
445	nfs_wb_page_cancel(page->mapping->host, page);
446
447	nfs_fscache_invalidate_page(page, page->mapping->host);
448}
449
450/*
451 * Attempt to release the private state associated with a page
452 * - Called if either PG_private or PG_fscache is set on the page
453 * - Caller holds page lock
454 * - Return true (may release page) or false (may not)
455 */
456static int nfs_release_page(struct page *page, gfp_t gfp)
457{
458	struct address_space *mapping = page->mapping;
459
460	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
 
 
 
 
 
 
 
 
 
461
462	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
463	 * doing this memory reclaim for a fs-related allocation.
464	 */
465	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
466	    !(current->flags & PF_FSTRANS)) {
467		int how = FLUSH_SYNC;
468
469		/* Don't let kswapd deadlock waiting for OOM RPC calls */
470		if (current_is_kswapd())
471			how = 0;
472		nfs_commit_inode(mapping->host, how);
 
 
 
 
 
473	}
474	/* If PagePrivate() is set, then the page is not freeable */
475	if (PagePrivate(page))
476		return 0;
477	return nfs_fscache_release_page(page, gfp);
 
 
 
 
478}
479
480/*
481 * Attempt to clear the private state associated with a page when an error
482 * occurs that requires the cached contents of an inode to be written back or
483 * destroyed
484 * - Called if either PG_private or fscache is set on the page
485 * - Caller holds page lock
486 * - Return 0 if successful, -error otherwise
487 */
488static int nfs_launder_page(struct page *page)
489{
490	struct inode *inode = page->mapping->host;
491	struct nfs_inode *nfsi = NFS_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492
493	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
494		inode->i_ino, (long long)page_offset(page));
 
 
 
 
495
496	nfs_fscache_wait_on_page_write(nfsi, page);
497	return nfs_wb_page(inode, page);
 
 
 
 
 
 
 
498}
499
500const struct address_space_operations nfs_file_aops = {
501	.readpage = nfs_readpage,
502	.readpages = nfs_readpages,
503	.set_page_dirty = __set_page_dirty_nobuffers,
504	.writepage = nfs_writepage,
505	.writepages = nfs_writepages,
506	.write_begin = nfs_write_begin,
507	.write_end = nfs_write_end,
508	.invalidatepage = nfs_invalidate_page,
509	.releasepage = nfs_release_page,
510	.direct_IO = nfs_direct_IO,
511	.migratepage = nfs_migrate_page,
512	.launder_page = nfs_launder_page,
513	.error_remove_page = generic_error_remove_page,
 
 
 
514};
515
516/*
517 * Notification that a PTE pointing to an NFS page is about to be made
518 * writable, implying that someone is about to modify the page through a
519 * shared-writable mapping
520 */
521static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
522{
523	struct page *page = vmf->page;
524	struct file *filp = vma->vm_file;
525	struct dentry *dentry = filp->f_path.dentry;
526	unsigned pagelen;
527	int ret = VM_FAULT_NOPAGE;
528	struct address_space *mapping;
 
 
 
 
 
529
530	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
531		dentry->d_parent->d_name.name, dentry->d_name.name,
532		filp->f_mapping->host->i_ino,
533		(long long)page_offset(page));
534
535	/* make sure the cache has finished storing the page */
536	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
 
 
 
 
537
538	lock_page(page);
539	mapping = page->mapping;
540	if (mapping != dentry->d_inode->i_mapping)
 
 
 
 
541		goto out_unlock;
542
543	wait_on_page_writeback(page);
544
545	pagelen = nfs_page_length(page);
546	if (pagelen == 0)
547		goto out_unlock;
548
549	ret = VM_FAULT_LOCKED;
550	if (nfs_flush_incompatible(filp, page) == 0 &&
551	    nfs_updatepage(filp, page, 0, pagelen) == 0)
552		goto out;
553
554	ret = VM_FAULT_SIGBUS;
555out_unlock:
556	unlock_page(page);
557out:
 
558	return ret;
559}
560
561static const struct vm_operations_struct nfs_file_vm_ops = {
562	.fault = filemap_fault,
 
563	.page_mkwrite = nfs_vm_page_mkwrite,
564};
565
566static int nfs_need_sync_write(struct file *filp, struct inode *inode)
567{
568	struct nfs_open_context *ctx;
 
 
 
 
 
 
 
 
 
569
570	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
571		return 1;
572	ctx = nfs_file_open_context(filp);
573	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
574		return 1;
575	return 0;
576}
577
578static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
579				unsigned long nr_segs, loff_t pos)
580{
581	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
582	struct inode * inode = dentry->d_inode;
583	unsigned long written = 0;
584	ssize_t result;
585	size_t count = iov_length(iov, nr_segs);
586
587	if (iocb->ki_filp->f_flags & O_DIRECT)
588		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
589
590	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
591		dentry->d_parent->d_name.name, dentry->d_name.name,
592		(unsigned long) count, (long long) pos);
593
594	result = -EBUSY;
595	if (IS_SWAPFILE(inode))
596		goto out_swapfile;
597	/*
598	 * O_APPEND implies that we must revalidate the file length.
599	 */
600	if (iocb->ki_filp->f_flags & O_APPEND) {
601		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
602		if (result)
603			goto out;
604	}
605
606	result = count;
607	if (!count)
608		goto out;
609
610	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
 
 
 
 
611	if (result > 0)
612		written = result;
 
 
 
 
 
 
613
614	/* Return error values for O_DSYNC and IS_SYNC() */
615	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
616		int err = vfs_fsync(iocb->ki_filp, 0);
617		if (err < 0)
618			result = err;
 
619	}
620	if (result > 0)
621		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
 
 
 
 
 
 
622out:
 
 
 
 
 
 
 
 
 
 
 
 
 
623	return result;
624
625out_swapfile:
626	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
627	goto out;
628}
629
630static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
631				     struct file *filp, loff_t *ppos,
632				     size_t count, unsigned int flags)
633{
634	struct dentry *dentry = filp->f_path.dentry;
635	struct inode *inode = dentry->d_inode;
636	unsigned long written = 0;
637	ssize_t ret;
638
639	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
640		dentry->d_parent->d_name.name, dentry->d_name.name,
641		(unsigned long) count, (unsigned long long) *ppos);
642
643	/*
644	 * The combination of splice and an O_APPEND destination is disallowed.
645	 */
646
647	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
648	if (ret > 0)
649		written = ret;
650
651	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
652		int err = vfs_fsync(filp, 0);
653		if (err < 0)
654			ret = err;
655	}
656	if (ret > 0)
657		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
658	return ret;
659}
 
660
661static int
662do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
663{
664	struct inode *inode = filp->f_mapping->host;
665	int status = 0;
666	unsigned int saved_type = fl->fl_type;
667
668	/* Try local locking first */
669	posix_test_lock(filp, fl);
670	if (fl->fl_type != F_UNLCK) {
671		/* found a conflict */
672		goto out;
673	}
674	fl->fl_type = saved_type;
675
676	if (nfs_have_delegation(inode, FMODE_READ))
677		goto out_noconflict;
678
679	if (is_local)
680		goto out_noconflict;
681
682	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
683out:
684	return status;
685out_noconflict:
686	fl->fl_type = F_UNLCK;
687	goto out;
688}
689
690static int do_vfs_lock(struct file *file, struct file_lock *fl)
691{
692	int res = 0;
693	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
694		case FL_POSIX:
695			res = posix_lock_file_wait(file, fl);
696			break;
697		case FL_FLOCK:
698			res = flock_lock_file_wait(file, fl);
699			break;
700		default:
701			BUG();
702	}
703	return res;
704}
705
706static int
707do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
708{
709	struct inode *inode = filp->f_mapping->host;
 
710	int status;
711
712	/*
713	 * Flush all pending writes before doing anything
714	 * with locks..
715	 */
716	nfs_sync_mapping(filp->f_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
717
718	/* NOTE: special case
719	 * 	If we're signalled while cleaning up locks on process exit, we
720	 * 	still need to complete the unlock.
721	 */
722	/*
723	 * Use local locking if mounted with "-onolock" or with appropriate
724	 * "-olocal_lock="
725	 */
726	if (!is_local)
727		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
728	else
729		status = do_vfs_lock(filp, fl);
730	return status;
731}
732
733static int
734is_time_granular(struct timespec *ts) {
735	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
736}
737
738static int
739do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
740{
741	struct inode *inode = filp->f_mapping->host;
742	int status;
743
744	/*
745	 * Flush all pending writes before doing anything
746	 * with locks..
747	 */
748	status = nfs_sync_mapping(filp->f_mapping);
749	if (status != 0)
750		goto out;
751
752	/*
753	 * Use local locking if mounted with "-onolock" or with appropriate
754	 * "-olocal_lock="
755	 */
756	if (!is_local)
757		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
758	else
759		status = do_vfs_lock(filp, fl);
760	if (status < 0)
761		goto out;
762
763	/*
764	 * Revalidate the cache if the server has time stamps granular
765	 * enough to detect subsecond changes.  Otherwise, clear the
766	 * cache to prevent missing any changes.
767	 *
768	 * This makes locking act as a cache coherency point.
769	 */
770	nfs_sync_mapping(filp->f_mapping);
771	if (!nfs_have_delegation(inode, FMODE_READ)) {
772		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
773			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
774		else
775			nfs_zap_caches(inode);
776	}
777out:
778	return status;
779}
780
781/*
782 * Lock a (portion of) a file
783 */
784static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
785{
786	struct inode *inode = filp->f_mapping->host;
787	int ret = -ENOLCK;
788	int is_local = 0;
789
790	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
791			filp->f_path.dentry->d_parent->d_name.name,
792			filp->f_path.dentry->d_name.name,
793			fl->fl_type, fl->fl_flags,
794			(long long)fl->fl_start, (long long)fl->fl_end);
795
796	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
797
798	/* No mandatory locks over NFS */
799	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
800		goto out_err;
801
802	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
803		is_local = 1;
804
805	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
806		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
807		if (ret < 0)
808			goto out_err;
809	}
810
811	if (IS_GETLK(cmd))
812		ret = do_getlk(filp, cmd, fl, is_local);
813	else if (fl->fl_type == F_UNLCK)
814		ret = do_unlk(filp, cmd, fl, is_local);
815	else
816		ret = do_setlk(filp, cmd, fl, is_local);
817out_err:
818	return ret;
819}
 
820
821/*
822 * Lock a (portion of) a file
823 */
824static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
825{
826	struct inode *inode = filp->f_mapping->host;
827	int is_local = 0;
828
829	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
830			filp->f_path.dentry->d_parent->d_name.name,
831			filp->f_path.dentry->d_name.name,
832			fl->fl_type, fl->fl_flags);
833
834	if (!(fl->fl_flags & FL_FLOCK))
835		return -ENOLCK;
836
837	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
838		is_local = 1;
839
840	/* We're simulating flock() locks using posix locks on the server */
841	fl->fl_owner = (fl_owner_t)filp;
842	fl->fl_start = 0;
843	fl->fl_end = OFFSET_MAX;
844
845	if (fl->fl_type == F_UNLCK)
846		return do_unlk(filp, cmd, fl, is_local);
847	return do_setlk(filp, cmd, fl, is_local);
848}
849
850/*
851 * There is no protocol support for leases, so we have no way to implement
852 * them correctly in the face of opens by other clients.
853 */
854static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
855{
856	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
857			file->f_path.dentry->d_parent->d_name.name,
858			file->f_path.dentry->d_name.name, arg);
859	return -EINVAL;
860}
861
862const struct file_operations nfs_file_operations = {
863	.llseek		= nfs_file_llseek,
864	.read		= do_sync_read,
865	.write		= do_sync_write,
866	.aio_read	= nfs_file_read,
867	.aio_write	= nfs_file_write,
868	.mmap		= nfs_file_mmap,
869	.open		= nfs_file_open,
870	.flush		= nfs_file_flush,
871	.release	= nfs_file_release,
872	.fsync		= nfs_file_fsync,
873	.lock		= nfs_lock,
874	.flock		= nfs_flock,
875	.splice_read	= nfs_file_splice_read,
876	.splice_write	= nfs_file_splice_write,
877	.check_flags	= nfs_check_flags,
878	.setlease	= nfs_setlease,
879};
880
881#ifdef CONFIG_NFS_V4
882static int
883nfs4_file_open(struct inode *inode, struct file *filp)
884{
885	struct nfs_open_context *ctx;
886	struct dentry *dentry = filp->f_path.dentry;
887	struct dentry *parent = NULL;
888	struct inode *dir;
889	unsigned openflags = filp->f_flags;
890	struct iattr attr;
891	int err;
892
893	BUG_ON(inode != dentry->d_inode);
894	/*
895	 * If no cached dentry exists or if it's negative, NFSv4 handled the
896	 * opens in ->lookup() or ->create().
897	 *
898	 * We only get this far for a cached positive dentry.  We skipped
899	 * revalidation, so handle it here by dropping the dentry and returning
900	 * -EOPENSTALE.  The VFS will retry the lookup/create/open.
901	 */
902
903	dprintk("NFS: open file(%s/%s)\n",
904		dentry->d_parent->d_name.name,
905		dentry->d_name.name);
906
907	if ((openflags & O_ACCMODE) == 3)
908		openflags--;
909
910	/* We can't create new files here */
911	openflags &= ~(O_CREAT|O_EXCL);
912
913	parent = dget_parent(dentry);
914	dir = parent->d_inode;
915
916	ctx = alloc_nfs_open_context(filp->f_path.dentry, filp->f_mode);
917	err = PTR_ERR(ctx);
918	if (IS_ERR(ctx))
919		goto out;
920
921	attr.ia_valid = ATTR_OPEN;
922	if (openflags & O_TRUNC) {
923		attr.ia_valid |= ATTR_SIZE;
924		attr.ia_size = 0;
925		nfs_wb_all(inode);
926	}
927
928	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
929	if (IS_ERR(inode)) {
930		err = PTR_ERR(inode);
931		switch (err) {
932		case -EPERM:
933		case -EACCES:
934		case -EDQUOT:
935		case -ENOSPC:
936		case -EROFS:
937			goto out_put_ctx;
938		default:
939			goto out_drop;
940		}
941	}
942	iput(inode);
943	if (inode != dentry->d_inode)
944		goto out_drop;
945
946	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
947	nfs_file_set_open_context(filp, ctx);
948	err = 0;
949
950out_put_ctx:
951	put_nfs_open_context(ctx);
952out:
953	dput(parent);
954	return err;
955
956out_drop:
957	d_drop(dentry);
958	err = -EOPENSTALE;
959	goto out_put_ctx;
960}
961
962const struct file_operations nfs4_file_operations = {
963	.llseek		= nfs_file_llseek,
964	.read		= do_sync_read,
965	.write		= do_sync_write,
966	.aio_read	= nfs_file_read,
967	.aio_write	= nfs_file_write,
968	.mmap		= nfs_file_mmap,
969	.open		= nfs4_file_open,
970	.flush		= nfs_file_flush,
971	.release	= nfs_file_release,
972	.fsync		= nfs_file_fsync,
973	.lock		= nfs_lock,
974	.flock		= nfs_flock,
975	.splice_read	= nfs_file_splice_read,
976	.splice_write	= nfs_file_splice_write,
977	.check_flags	= nfs_check_flags,
978	.setlease	= nfs_setlease,
979};
980#endif /* CONFIG_NFS_V4 */
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32#include <linux/compaction.h>
 33
 34#include <linux/uaccess.h>
 35#include <linux/filelock.h>
 36
 37#include "delegation.h"
 38#include "internal.h"
 39#include "iostat.h"
 40#include "fscache.h"
 41#include "pnfs.h"
 42
 43#include "nfstrace.h"
 44
 45#define NFSDBG_FACILITY		NFSDBG_FILE
 46
 47static const struct vm_operations_struct nfs_file_vm_ops;
 48
 49int nfs_check_flags(int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50{
 51	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 52		return -EINVAL;
 53
 54	return 0;
 55}
 56EXPORT_SYMBOL_GPL(nfs_check_flags);
 57
 58/*
 59 * Open file
 60 */
 61static int
 62nfs_file_open(struct inode *inode, struct file *filp)
 63{
 64	int res;
 65
 66	dprintk("NFS: open file(%pD2)\n", filp);
 
 
 67
 68	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 69	res = nfs_check_flags(filp->f_flags);
 70	if (res)
 71		return res;
 72
 73	res = nfs_open(inode, filp);
 74	if (res == 0)
 75		filp->f_mode |= FMODE_CAN_ODIRECT;
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 
 
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	nfs_fscache_release_file(inode, filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_file_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
 
 
 
 
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
 
 
109		goto force_reval;
 
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
 
 
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143	errseq_t since;
144
145	dprintk("NFS: flush(%pD2)\n", file);
 
 
146
147	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148	if ((file->f_mode & FMODE_WRITE) == 0)
149		return 0;
150
 
 
 
 
 
 
 
151	/* Flush writes to the server and return any errors */
152	since = filemap_sample_wb_err(file->f_mapping);
153	nfs_wb_all(inode);
154	return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 
159{
160	struct inode *inode = file_inode(iocb->ki_filp);
 
161	ssize_t result;
162
163	if (iocb->ki_flags & IOCB_DIRECT)
164		return nfs_file_direct_read(iocb, to, false);
165
166	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167		iocb->ki_filp,
168		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170	result = nfs_start_io_read(inode);
171	if (result)
172		return result;
173
174	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
175	if (!result) {
176		result = generic_file_read_iter(iocb, to);
177		if (result > 0)
178			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
179	}
180	nfs_end_io_read(inode);
181	return result;
182}
183EXPORT_SYMBOL_GPL(nfs_file_read);
184
185ssize_t
186nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
187		     size_t len, unsigned int flags)
188{
189	struct inode *inode = file_inode(in);
190	ssize_t result;
191
192	dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
193
194	result = nfs_start_io_read(inode);
195	if (result)
196		return result;
197
198	result = nfs_revalidate_mapping(inode, in->f_mapping);
199	if (!result) {
200		result = filemap_splice_read(in, ppos, pipe, len, flags);
201		if (result > 0)
202			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
 
 
 
 
 
 
 
 
 
203	}
204	nfs_end_io_read(inode);
205	return result;
206}
207EXPORT_SYMBOL_GPL(nfs_file_splice_read);
208
209int
210nfs_file_mmap(struct file *file, struct vm_area_struct *vma)
211{
212	struct inode *inode = file_inode(file);
 
213	int	status;
214
215	dprintk("NFS: mmap(%pD2)\n", file);
 
216
217	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
218	 *       so we call that before revalidating the mapping
219	 */
220	status = generic_file_mmap(file, vma);
221	if (!status) {
222		vma->vm_ops = &nfs_file_vm_ops;
223		status = nfs_revalidate_mapping(inode, file->f_mapping);
224	}
225	return status;
226}
227EXPORT_SYMBOL_GPL(nfs_file_mmap);
228
229/*
230 * Flush any dirty pages for this process, and check for write errors.
231 * The return status from this call provides a reliable indication of
232 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
233 */
234static int
235nfs_file_fsync_commit(struct file *file, int datasync)
236{
237	struct inode *inode = file_inode(file);
238	int ret, ret2;
 
 
 
 
 
 
 
239
240	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 
241
242	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
243	ret = nfs_commit_inode(inode, FLUSH_SYNC);
244	ret2 = file_check_and_advance_wb_err(file);
245	if (ret2 < 0)
246		return ret2;
247	return ret;
248}
249
250int
251nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
252{
253	struct inode *inode = file_inode(file);
254	struct nfs_inode *nfsi = NFS_I(inode);
255	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
256	long nredirtied;
257	int ret;
258
259	trace_nfs_fsync_enter(inode);
260
261	for (;;) {
262		ret = file_write_and_wait_range(file, start, end);
263		if (ret != 0)
264			break;
265		ret = nfs_file_fsync_commit(file, datasync);
266		if (ret != 0)
267			break;
268		ret = pnfs_sync_inode(inode, !!datasync);
269		if (ret != 0)
270			break;
271		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
272		if (nredirtied == save_nredirtied)
273			break;
274		save_nredirtied = nredirtied;
275	}
276
277	trace_nfs_fsync_exit(inode, ret);
278	return ret;
279}
280EXPORT_SYMBOL_GPL(nfs_file_fsync);
281
282/*
283 * Decide whether a read/modify/write cycle may be more efficient
284 * then a modify/write/read cycle when writing to a page in the
285 * page cache.
286 *
287 * Some pNFS layout drivers can only read/write at a certain block
288 * granularity like all block devices and therefore we must perform
289 * read/modify/write whenever a page hasn't read yet and the data
290 * to be written there is not aligned to a block boundary and/or
291 * smaller than the block size.
292 *
293 * The modify/write/read cycle may occur if a page is read before
294 * being completely filled by the writer.  In this situation, the
295 * page must be completely written to stable storage on the server
296 * before it can be refilled by reading in the page from the server.
297 * This can lead to expensive, small, FILE_SYNC mode writes being
298 * done.
299 *
300 * It may be more efficient to read the page first if the file is
301 * open for reading in addition to writing, the page is not marked
302 * as Uptodate, it is not dirty or waiting to be committed,
303 * indicating that it was previously allocated and then modified,
304 * that there were valid bytes of data in that range of the file,
305 * and that the new data won't completely replace the old data in
306 * that range of the file.
307 */
308static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
309				    unsigned int len)
310{
311	unsigned int pglen = nfs_folio_length(folio);
312	unsigned int offset = offset_in_folio(folio, pos);
313	unsigned int end = offset + len;
314
315	return !pglen || (end >= pglen && !offset);
316}
317
318static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
319				       loff_t pos, unsigned int len)
320{
321	/*
322	 * Up-to-date pages, those with ongoing or full-page write
323	 * don't need read/modify/write
324	 */
325	if (folio_test_uptodate(folio) || folio_test_private(folio) ||
326	    nfs_folio_is_full_write(folio, pos, len))
327		return false;
328
329	if (pnfs_ld_read_whole_page(file_inode(file)))
330		return true;
331	/* Open for reading too? */
332	if (file->f_mode & FMODE_READ)
333		return true;
334	return false;
335}
336
337/*
338 * This does the "real" work of the write. We must allocate and lock the
339 * page to be sent back to the generic routine, which then copies the
340 * data from user space.
341 *
342 * If the writer ends up delaying the write, the writer needs to
343 * increment the page use counts until he is done with the page.
344 */
345static int nfs_write_begin(struct file *file, struct address_space *mapping,
346			   loff_t pos, unsigned len, struct folio **foliop,
347			   void **fsdata)
348{
349	fgf_t fgp = FGP_WRITEBEGIN;
350	struct folio *folio;
 
351	int once_thru = 0;
352	int ret;
353
354	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
355		file, mapping->host->i_ino, len, (long long) pos);
 
 
356
357	fgp |= fgf_set_order(len);
358start:
359	folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, fgp,
360				    mapping_gfp_mask(mapping));
361	if (IS_ERR(folio))
362		return PTR_ERR(folio);
363	*foliop = folio;
 
 
 
 
 
 
 
 
364
365	ret = nfs_flush_incompatible(file, folio);
366	if (ret) {
367		folio_unlock(folio);
368		folio_put(folio);
369	} else if (!once_thru &&
370		   nfs_want_read_modify_write(file, folio, pos, len)) {
371		once_thru = 1;
372		ret = nfs_read_folio(file, folio);
373		folio_put(folio);
374		if (!ret)
375			goto start;
376	}
377	return ret;
378}
379
380static int nfs_write_end(struct file *file, struct address_space *mapping,
381			 loff_t pos, unsigned len, unsigned copied,
382			 struct folio *folio, void *fsdata)
383{
384	struct nfs_open_context *ctx = nfs_file_open_context(file);
385	unsigned offset = offset_in_folio(folio, pos);
386	int status;
387
388	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
389		file, mapping->host->i_ino, len, (long long) pos);
 
 
390
391	/*
392	 * Zero any uninitialised parts of the page, and then mark the page
393	 * as up to date if it turns out that we're extending the file.
394	 */
395	if (!folio_test_uptodate(folio)) {
396		size_t fsize = folio_size(folio);
397		unsigned pglen = nfs_folio_length(folio);
398		unsigned end = offset + copied;
399
400		if (pglen == 0) {
401			folio_zero_segments(folio, 0, offset, end, fsize);
402			folio_mark_uptodate(folio);
 
403		} else if (end >= pglen) {
404			folio_zero_segment(folio, end, fsize);
405			if (offset == 0)
406				folio_mark_uptodate(folio);
407		} else
408			folio_zero_segment(folio, pglen, fsize);
409	}
410
411	status = nfs_update_folio(file, folio, offset, copied);
412
413	folio_unlock(folio);
414	folio_put(folio);
415
416	if (status < 0)
417		return status;
418	NFS_I(mapping->host)->write_io += copied;
419
420	if (nfs_ctx_key_to_expire(ctx, mapping->host))
421		nfs_wb_all(mapping->host);
422
423	return copied;
424}
425
426/*
427 * Partially or wholly invalidate a page
428 * - Release the private state associated with a page if undergoing complete
429 *   page invalidation
430 * - Called if either PG_private or PG_fscache is set on the page
431 * - Caller holds page lock
432 */
433static void nfs_invalidate_folio(struct folio *folio, size_t offset,
434				size_t length)
435{
436	struct inode *inode = folio->mapping->host;
437	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
438		 folio->index, offset, length);
439
440	if (offset != 0 || length < folio_size(folio))
441		return;
442	/* Cancel any unstarted writes on this page */
443	nfs_wb_folio_cancel(inode, folio);
444	folio_wait_private_2(folio); /* [DEPRECATED] */
445	trace_nfs_invalidate_folio(inode, folio_pos(folio) + offset, length);
446}
447
448/*
449 * Attempt to release the private state associated with a folio
450 * - Called if either private or fscache flags are set on the folio
451 * - Caller holds folio lock
452 * - Return true (may release folio) or false (may not)
453 */
454static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
455{
456	dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
457
458	/* If the private flag is set, then the folio is not freeable */
459	if (folio_test_private(folio)) {
460		if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
461		    current_is_kswapd() || current_is_kcompactd())
462			return false;
463		if (nfs_wb_folio(folio->mapping->host, folio) < 0)
464			return false;
465	}
466	return nfs_fscache_release_folio(folio, gfp);
467}
468
469static void nfs_check_dirty_writeback(struct folio *folio,
470				bool *dirty, bool *writeback)
471{
472	struct nfs_inode *nfsi;
473	struct address_space *mapping = folio->mapping;
 
474
475	/*
476	 * Check if an unstable folio is currently being committed and
477	 * if so, have the VM treat it as if the folio is under writeback
478	 * so it will not block due to folios that will shortly be freeable.
479	 */
480	nfsi = NFS_I(mapping->host);
481	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
482		*writeback = true;
483		return;
484	}
485
486	/*
487	 * If the private flag is set, then the folio is not freeable
488	 * and as the inode is not being committed, it's not going to
489	 * be cleaned in the near future so treat it as dirty
490	 */
491	if (folio_test_private(folio))
492		*dirty = true;
493}
494
495/*
496 * Attempt to clear the private state associated with a page when an error
497 * occurs that requires the cached contents of an inode to be written back or
498 * destroyed
499 * - Called if either PG_private or fscache is set on the page
500 * - Caller holds page lock
501 * - Return 0 if successful, -error otherwise
502 */
503static int nfs_launder_folio(struct folio *folio)
504{
505	struct inode *inode = folio->mapping->host;
506	int ret;
507
508	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
509		inode->i_ino, folio_pos(folio));
510
511	folio_wait_private_2(folio); /* [DEPRECATED] */
512	ret = nfs_wb_folio(inode, folio);
513	trace_nfs_launder_folio_done(inode, folio_pos(folio),
514			folio_size(folio), ret);
515	return ret;
516}
517
518static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
519						sector_t *span)
520{
521	unsigned long blocks;
522	long long isize;
523	int ret;
524	struct inode *inode = file_inode(file);
525	struct rpc_clnt *clnt = NFS_CLIENT(inode);
526	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
527
528	spin_lock(&inode->i_lock);
529	blocks = inode->i_blocks;
530	isize = inode->i_size;
531	spin_unlock(&inode->i_lock);
532	if (blocks*512 < isize) {
533		pr_warn("swap activate: swapfile has holes\n");
534		return -EINVAL;
535	}
536
537	ret = rpc_clnt_swap_activate(clnt);
538	if (ret)
539		return ret;
540	ret = add_swap_extent(sis, 0, sis->max, 0);
541	if (ret < 0) {
542		rpc_clnt_swap_deactivate(clnt);
543		return ret;
544	}
545
546	*span = sis->pages;
547
548	if (cl->rpc_ops->enable_swap)
549		cl->rpc_ops->enable_swap(inode);
550
551	sis->flags |= SWP_FS_OPS;
552	return ret;
553}
554
555static void nfs_swap_deactivate(struct file *file)
556{
557	struct inode *inode = file_inode(file);
558	struct rpc_clnt *clnt = NFS_CLIENT(inode);
559	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
560
561	rpc_clnt_swap_deactivate(clnt);
562	if (cl->rpc_ops->disable_swap)
563		cl->rpc_ops->disable_swap(file_inode(file));
564}
565
566const struct address_space_operations nfs_file_aops = {
567	.read_folio = nfs_read_folio,
568	.readahead = nfs_readahead,
569	.dirty_folio = filemap_dirty_folio,
 
570	.writepages = nfs_writepages,
571	.write_begin = nfs_write_begin,
572	.write_end = nfs_write_end,
573	.invalidate_folio = nfs_invalidate_folio,
574	.release_folio = nfs_release_folio,
575	.migrate_folio = nfs_migrate_folio,
576	.launder_folio = nfs_launder_folio,
577	.is_dirty_writeback = nfs_check_dirty_writeback,
578	.error_remove_folio = generic_error_remove_folio,
579	.swap_activate = nfs_swap_activate,
580	.swap_deactivate = nfs_swap_deactivate,
581	.swap_rw = nfs_swap_rw,
582};
583
584/*
585 * Notification that a PTE pointing to an NFS page is about to be made
586 * writable, implying that someone is about to modify the page through a
587 * shared-writable mapping
588 */
589static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
590{
591	struct file *filp = vmf->vma->vm_file;
592	struct inode *inode = file_inode(filp);
 
593	unsigned pagelen;
594	vm_fault_t ret = VM_FAULT_NOPAGE;
595	struct address_space *mapping;
596	struct folio *folio = page_folio(vmf->page);
597
598	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
599		 filp, filp->f_mapping->host->i_ino,
600		 (long long)folio_pos(folio));
601
602	sb_start_pagefault(inode->i_sb);
 
 
 
603
604	/* make sure the cache has finished storing the page */
605	if (folio_test_private_2(folio) && /* [DEPRECATED] */
606	    folio_wait_private_2_killable(folio) < 0) {
607		ret = VM_FAULT_RETRY;
608		goto out;
609	}
610
611	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
612			   nfs_wait_bit_killable,
613			   TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
614
615	folio_lock(folio);
616	mapping = folio->mapping;
617	if (mapping != inode->i_mapping)
618		goto out_unlock;
619
620	folio_wait_writeback(folio);
621
622	pagelen = nfs_folio_length(folio);
623	if (pagelen == 0)
624		goto out_unlock;
625
626	ret = VM_FAULT_LOCKED;
627	if (nfs_flush_incompatible(filp, folio) == 0 &&
628	    nfs_update_folio(filp, folio, 0, pagelen) == 0)
629		goto out;
630
631	ret = VM_FAULT_SIGBUS;
632out_unlock:
633	folio_unlock(folio);
634out:
635	sb_end_pagefault(inode->i_sb);
636	return ret;
637}
638
639static const struct vm_operations_struct nfs_file_vm_ops = {
640	.fault = filemap_fault,
641	.map_pages = filemap_map_pages,
642	.page_mkwrite = nfs_vm_page_mkwrite,
643};
644
645ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
646{
647	struct file *file = iocb->ki_filp;
648	struct inode *inode = file_inode(file);
649	unsigned int mntflags = NFS_SERVER(inode)->flags;
650	ssize_t result, written;
651	errseq_t since;
652	int error;
653
654	result = nfs_key_timeout_notify(file, inode);
655	if (result)
656		return result;
657
658	if (iocb->ki_flags & IOCB_DIRECT)
659		return nfs_file_direct_write(iocb, from, false);
 
 
 
 
 
660
661	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
662		file, iov_iter_count(from), (long long) iocb->ki_pos);
 
 
 
 
 
 
 
 
 
663
 
 
 
 
 
664	if (IS_SWAPFILE(inode))
665		goto out_swapfile;
666	/*
667	 * O_APPEND implies that we must revalidate the file length.
668	 */
669	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
670		result = nfs_revalidate_file_size(inode, file);
671		if (result)
672			return result;
673	}
674
675	nfs_clear_invalid_mapping(file->f_mapping);
 
 
676
677	since = filemap_sample_wb_err(file->f_mapping);
678	error = nfs_start_io_write(inode);
679	if (error)
680		return error;
681	result = generic_write_checks(iocb, from);
682	if (result > 0)
683		result = generic_perform_write(iocb, from);
684	nfs_end_io_write(inode);
685	if (result <= 0)
686		goto out;
687
688	written = result;
689	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
690
691	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
692		result = filemap_fdatawrite_range(file->f_mapping,
693						  iocb->ki_pos - written,
694						  iocb->ki_pos - 1);
695		if (result < 0)
696			goto out;
697	}
698	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
699		filemap_fdatawait_range(file->f_mapping,
700					iocb->ki_pos - written,
701					iocb->ki_pos - 1);
702	}
703	result = generic_write_sync(iocb, written);
704	if (result < 0)
705		return result;
706
707out:
708	/* Return error values */
709	error = filemap_check_wb_err(file->f_mapping, since);
710	switch (error) {
711	default:
712		break;
713	case -EDQUOT:
714	case -EFBIG:
715	case -ENOSPC:
716		nfs_wb_all(inode);
717		error = file_check_and_advance_wb_err(file);
718		if (error < 0)
719			result = error;
720	}
721	return result;
722
723out_swapfile:
724	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
725	return -ETXTBSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726}
727EXPORT_SYMBOL_GPL(nfs_file_write);
728
729static int
730do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
731{
732	struct inode *inode = filp->f_mapping->host;
733	int status = 0;
734	unsigned int saved_type = fl->c.flc_type;
735
736	/* Try local locking first */
737	posix_test_lock(filp, fl);
738	if (fl->c.flc_type != F_UNLCK) {
739		/* found a conflict */
740		goto out;
741	}
742	fl->c.flc_type = saved_type;
743
744	if (nfs_have_read_or_write_delegation(inode))
745		goto out_noconflict;
746
747	if (is_local)
748		goto out_noconflict;
749
750	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
751out:
752	return status;
753out_noconflict:
754	fl->c.flc_type = F_UNLCK;
755	goto out;
756}
757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
758static int
759do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
760{
761	struct inode *inode = filp->f_mapping->host;
762	struct nfs_lock_context *l_ctx;
763	int status;
764
765	/*
766	 * Flush all pending writes before doing anything
767	 * with locks..
768	 */
769	nfs_wb_all(inode);
770
771	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
772	if (!IS_ERR(l_ctx)) {
773		status = nfs_iocounter_wait(l_ctx);
774		nfs_put_lock_context(l_ctx);
775		/*  NOTE: special case
776		 * 	If we're signalled while cleaning up locks on process exit, we
777		 * 	still need to complete the unlock.
778		 */
779		if (status < 0 && !(fl->c.flc_flags & FL_CLOSE))
780			return status;
781	}
782
 
 
 
 
783	/*
784	 * Use local locking if mounted with "-onolock" or with appropriate
785	 * "-olocal_lock="
786	 */
787	if (!is_local)
788		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
789	else
790		status = locks_lock_file_wait(filp, fl);
791	return status;
792}
793
794static int
 
 
 
 
 
795do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
796{
797	struct inode *inode = filp->f_mapping->host;
798	int status;
799
800	/*
801	 * Flush all pending writes before doing anything
802	 * with locks..
803	 */
804	status = nfs_sync_mapping(filp->f_mapping);
805	if (status != 0)
806		goto out;
807
808	/*
809	 * Use local locking if mounted with "-onolock" or with appropriate
810	 * "-olocal_lock="
811	 */
812	if (!is_local)
813		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
814	else
815		status = locks_lock_file_wait(filp, fl);
816	if (status < 0)
817		goto out;
818
819	/*
820	 * Invalidate cache to prevent missing any changes.  If
821	 * the file is mapped, clear the page cache as well so
822	 * those mappings will be loaded.
823	 *
824	 * This makes locking act as a cache coherency point.
825	 */
826	nfs_sync_mapping(filp->f_mapping);
827	if (!nfs_have_read_or_write_delegation(inode)) {
828		nfs_zap_caches(inode);
829		if (mapping_mapped(filp->f_mapping))
830			nfs_revalidate_mapping(inode, filp->f_mapping);
 
831	}
832out:
833	return status;
834}
835
836/*
837 * Lock a (portion of) a file
838 */
839int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
840{
841	struct inode *inode = filp->f_mapping->host;
842	int ret = -ENOLCK;
843	int is_local = 0;
844
845	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
846			filp, fl->c.flc_type, fl->c.flc_flags,
 
 
847			(long long)fl->fl_start, (long long)fl->fl_end);
848
849	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
850
851	if (fl->c.flc_flags & FL_RECLAIM)
852		return -ENOGRACE;
 
853
854	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
855		is_local = 1;
856
857	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
858		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
859		if (ret < 0)
860			goto out_err;
861	}
862
863	if (IS_GETLK(cmd))
864		ret = do_getlk(filp, cmd, fl, is_local);
865	else if (lock_is_unlock(fl))
866		ret = do_unlk(filp, cmd, fl, is_local);
867	else
868		ret = do_setlk(filp, cmd, fl, is_local);
869out_err:
870	return ret;
871}
872EXPORT_SYMBOL_GPL(nfs_lock);
873
874/*
875 * Lock a (portion of) a file
876 */
877int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
878{
879	struct inode *inode = filp->f_mapping->host;
880	int is_local = 0;
881
882	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
883			filp, fl->c.flc_type, fl->c.flc_flags);
 
 
884
885	if (!(fl->c.flc_flags & FL_FLOCK))
886		return -ENOLCK;
887
888	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
889		is_local = 1;
890
891	/* We're simulating flock() locks using posix locks on the server */
892	if (lock_is_unlock(fl))
 
 
 
 
893		return do_unlk(filp, cmd, fl, is_local);
894	return do_setlk(filp, cmd, fl, is_local);
895}
896EXPORT_SYMBOL_GPL(nfs_flock);
 
 
 
 
 
 
 
 
 
 
 
897
898const struct file_operations nfs_file_operations = {
899	.llseek		= nfs_file_llseek,
900	.read_iter	= nfs_file_read,
901	.write_iter	= nfs_file_write,
 
 
902	.mmap		= nfs_file_mmap,
903	.open		= nfs_file_open,
904	.flush		= nfs_file_flush,
905	.release	= nfs_file_release,
906	.fsync		= nfs_file_fsync,
907	.lock		= nfs_lock,
908	.flock		= nfs_flock,
909	.splice_read	= nfs_file_splice_read,
910	.splice_write	= iter_file_splice_write,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911	.check_flags	= nfs_check_flags,
912	.setlease	= simple_nosetlease,
913};
914EXPORT_SYMBOL_GPL(nfs_file_operations);