Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
 
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
 
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
 
 
 
 
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_dbg.h>
  27#include <scsi/scsi_device.h>
  28#include <scsi/scsi_driver.h>
  29#include <scsi/scsi_eh.h>
  30#include <scsi/scsi_host.h>
 
 
  31
 
 
 
  32#include "scsi_priv.h"
  33#include "scsi_logging.h"
  34
  35
  36#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  37#define SG_MEMPOOL_SIZE		2
  38
  39struct scsi_host_sg_pool {
  40	size_t		size;
  41	char		*name;
  42	struct kmem_cache	*slab;
  43	mempool_t	*pool;
  44};
  45
  46#define SP(x) { x, "sgpool-" __stringify(x) }
  47#if (SCSI_MAX_SG_SEGMENTS < 32)
  48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  49#endif
  50static struct scsi_host_sg_pool scsi_sg_pools[] = {
  51	SP(8),
  52	SP(16),
  53#if (SCSI_MAX_SG_SEGMENTS > 32)
  54	SP(32),
  55#if (SCSI_MAX_SG_SEGMENTS > 64)
  56	SP(64),
  57#if (SCSI_MAX_SG_SEGMENTS > 128)
  58	SP(128),
  59#if (SCSI_MAX_SG_SEGMENTS > 256)
  60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  61#endif
  62#endif
  63#endif
  64#endif
  65	SP(SCSI_MAX_SG_SEGMENTS)
  66};
  67#undef SP
  68
  69struct kmem_cache *scsi_sdb_cache;
 
  70
  71/*
  72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  73 * not change behaviour from the previous unplug mechanism, experimentation
  74 * may prove this needs changing.
  75 */
  76#define SCSI_QUEUE_DELAY	3
  77
  78/*
  79 * Function:	scsi_unprep_request()
  80 *
  81 * Purpose:	Remove all preparation done for a request, including its
  82 *		associated scsi_cmnd, so that it can be requeued.
  83 *
  84 * Arguments:	req	- request to unprepare
  85 *
  86 * Lock status:	Assumed that no locks are held upon entry.
  87 *
  88 * Returns:	Nothing.
  89 */
  90static void scsi_unprep_request(struct request *req)
  91{
  92	struct scsi_cmnd *cmd = req->special;
  93
  94	blk_unprep_request(req);
  95	req->special = NULL;
  96
  97	scsi_put_command(cmd);
 
 
 
 
 
 
 
  98}
  99
 100/**
 101 * __scsi_queue_insert - private queue insertion
 102 * @cmd: The SCSI command being requeued
 103 * @reason:  The reason for the requeue
 104 * @unbusy: Whether the queue should be unbusied
 105 *
 106 * This is a private queue insertion.  The public interface
 107 * scsi_queue_insert() always assumes the queue should be unbusied
 108 * because it's always called before the completion.  This function is
 109 * for a requeue after completion, which should only occur in this
 110 * file.
 111 */
 112static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 113{
 114	struct Scsi_Host *host = cmd->device->host;
 115	struct scsi_device *device = cmd->device;
 116	struct scsi_target *starget = scsi_target(device);
 117	struct request_queue *q = device->request_queue;
 118	unsigned long flags;
 119
 120	SCSI_LOG_MLQUEUE(1,
 121		 printk("Inserting command %p into mlqueue\n", cmd));
 122
 123	/*
 124	 * Set the appropriate busy bit for the device/host.
 125	 *
 126	 * If the host/device isn't busy, assume that something actually
 127	 * completed, and that we should be able to queue a command now.
 128	 *
 129	 * Note that the prior mid-layer assumption that any host could
 130	 * always queue at least one command is now broken.  The mid-layer
 131	 * will implement a user specifiable stall (see
 132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 133	 * if a command is requeued with no other commands outstanding
 134	 * either for the device or for the host.
 135	 */
 136	switch (reason) {
 137	case SCSI_MLQUEUE_HOST_BUSY:
 138		host->host_blocked = host->max_host_blocked;
 139		break;
 140	case SCSI_MLQUEUE_DEVICE_BUSY:
 141	case SCSI_MLQUEUE_EH_RETRY:
 142		device->device_blocked = device->max_device_blocked;
 
 143		break;
 144	case SCSI_MLQUEUE_TARGET_BUSY:
 145		starget->target_blocked = starget->max_target_blocked;
 
 146		break;
 147	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149	/*
 150	 * Decrement the counters, since these commands are no longer
 151	 * active on the host/device.
 152	 */
 153	if (unbusy)
 154		scsi_device_unbusy(device);
 155
 156	/*
 157	 * Requeue this command.  It will go before all other commands
 158	 * that are already in the queue.
 
 
 159	 */
 160	spin_lock_irqsave(q->queue_lock, flags);
 161	blk_requeue_request(q, cmd->request);
 162	spin_unlock_irqrestore(q->queue_lock, flags);
 163
 164	kblockd_schedule_work(q, &device->requeue_work);
 165
 166	return 0;
 167}
 168
 169/*
 170 * Function:    scsi_queue_insert()
 171 *
 172 * Purpose:     Insert a command in the midlevel queue.
 173 *
 174 * Arguments:   cmd    - command that we are adding to queue.
 175 *              reason - why we are inserting command to queue.
 176 *
 177 * Lock status: Assumed that lock is not held upon entry.
 
 
 178 *
 179 * Returns:     Nothing.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180 *
 181 * Notes:       We do this for one of two cases.  Either the host is busy
 182 *              and it cannot accept any more commands for the time being,
 183 *              or the device returned QUEUE_FULL and can accept no more
 184 *              commands.
 185 * Notes:       This could be called either from an interrupt context or a
 186 *              normal process context.
 187 */
 188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 
 189{
 190	return __scsi_queue_insert(cmd, reason, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191}
 
 192/**
 193 * scsi_execute - insert request and wait for the result
 194 * @sdev:	scsi device
 195 * @cmd:	scsi command
 196 * @data_direction: data direction
 197 * @buffer:	data buffer
 198 * @bufflen:	len of buffer
 199 * @sense:	optional sense buffer
 200 * @timeout:	request timeout in seconds
 201 * @retries:	number of times to retry request
 202 * @flags:	or into request flags;
 203 * @resid:	optional residual length
 204 *
 205 * returns the req->errors value which is the scsi_cmnd result
 206 * field.
 207 */
 208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 209		 int data_direction, void *buffer, unsigned bufflen,
 210		 unsigned char *sense, int timeout, int retries, int flags,
 211		 int *resid)
 212{
 
 213	struct request *req;
 214	int write = (data_direction == DMA_TO_DEVICE);
 215	int ret = DRIVER_ERROR << 24;
 
 
 
 
 
 
 216
 217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 218	if (!req)
 219		return ret;
 220
 221	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 222					buffer, bufflen, __GFP_WAIT))
 223		goto out;
 224
 225	req->cmd_len = COMMAND_SIZE(cmd[0]);
 226	memcpy(req->cmd, cmd, req->cmd_len);
 227	req->sense = sense;
 228	req->sense_len = 0;
 229	req->retries = retries;
 
 
 
 230	req->timeout = timeout;
 231	req->cmd_type = REQ_TYPE_BLOCK_PC;
 232	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 233
 234	/*
 235	 * head injection *required* here otherwise quiesce won't work
 236	 */
 237	blk_execute_rq(req->q, NULL, req, 1);
 
 
 
 
 
 238
 239	/*
 240	 * Some devices (USB mass-storage in particular) may transfer
 241	 * garbage data together with a residue indicating that the data
 242	 * is invalid.  Prevent the garbage from being misinterpreted
 243	 * and prevent security leaks by zeroing out the excess data.
 244	 */
 245	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 246		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 
 
 
 
 
 
 
 
 247
 248	if (resid)
 249		*resid = req->resid_len;
 250	ret = req->errors;
 251 out:
 252	blk_put_request(req);
 253
 254	return ret;
 255}
 256EXPORT_SYMBOL(scsi_execute);
 257
 258
 259int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
 260		     int data_direction, void *buffer, unsigned bufflen,
 261		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 262		     int *resid)
 263{
 264	char *sense = NULL;
 265	int result;
 266	
 267	if (sshdr) {
 268		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 269		if (!sense)
 270			return DRIVER_ERROR << 24;
 271	}
 272	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 273			      sense, timeout, retries, 0, resid);
 274	if (sshdr)
 275		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 276
 277	kfree(sense);
 278	return result;
 279}
 280EXPORT_SYMBOL(scsi_execute_req);
 281
 282/*
 283 * Function:    scsi_init_cmd_errh()
 284 *
 285 * Purpose:     Initialize cmd fields related to error handling.
 286 *
 287 * Arguments:   cmd	- command that is ready to be queued.
 288 *
 289 * Notes:       This function has the job of initializing a number of
 290 *              fields related to error handling.   Typically this will
 291 *              be called once for each command, as required.
 292 */
 293static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 294{
 295	cmd->serial_number = 0;
 296	scsi_set_resid(cmd, 0);
 297	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 298	if (cmd->cmd_len == 0)
 299		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 
 
 
 
 
 
 
 
 300}
 301
 302void scsi_device_unbusy(struct scsi_device *sdev)
 303{
 304	struct Scsi_Host *shost = sdev->host;
 305	struct scsi_target *starget = scsi_target(sdev);
 306	unsigned long flags;
 307
 308	spin_lock_irqsave(shost->host_lock, flags);
 309	shost->host_busy--;
 310	starget->target_busy--;
 311	if (unlikely(scsi_host_in_recovery(shost) &&
 312		     (shost->host_failed || shost->host_eh_scheduled)))
 313		scsi_eh_wakeup(shost);
 314	spin_unlock(shost->host_lock);
 315	spin_lock(sdev->request_queue->queue_lock);
 316	sdev->device_busy--;
 317	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 318}
 319
 320/*
 321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 322 * and call blk_run_queue for all the scsi_devices on the target -
 323 * including current_sdev first.
 324 *
 325 * Called with *no* scsi locks held.
 326 */
 327static void scsi_single_lun_run(struct scsi_device *current_sdev)
 328{
 329	struct Scsi_Host *shost = current_sdev->host;
 330	struct scsi_device *sdev, *tmp;
 331	struct scsi_target *starget = scsi_target(current_sdev);
 332	unsigned long flags;
 333
 334	spin_lock_irqsave(shost->host_lock, flags);
 335	starget->starget_sdev_user = NULL;
 336	spin_unlock_irqrestore(shost->host_lock, flags);
 337
 338	/*
 339	 * Call blk_run_queue for all LUNs on the target, starting with
 340	 * current_sdev. We race with others (to set starget_sdev_user),
 341	 * but in most cases, we will be first. Ideally, each LU on the
 342	 * target would get some limited time or requests on the target.
 343	 */
 344	blk_run_queue(current_sdev->request_queue);
 
 345
 346	spin_lock_irqsave(shost->host_lock, flags);
 347	if (starget->starget_sdev_user)
 348		goto out;
 349	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 350			same_target_siblings) {
 351		if (sdev == current_sdev)
 352			continue;
 353		if (scsi_device_get(sdev))
 354			continue;
 355
 356		spin_unlock_irqrestore(shost->host_lock, flags);
 357		blk_run_queue(sdev->request_queue);
 358		spin_lock_irqsave(shost->host_lock, flags);
 359	
 360		scsi_device_put(sdev);
 361	}
 362 out:
 363	spin_unlock_irqrestore(shost->host_lock, flags);
 364}
 365
 366static inline int scsi_device_is_busy(struct scsi_device *sdev)
 367{
 368	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 369		return 1;
 370
 371	return 0;
 
 372}
 373
 374static inline int scsi_target_is_busy(struct scsi_target *starget)
 375{
 376	return ((starget->can_queue > 0 &&
 377		 starget->target_busy >= starget->can_queue) ||
 378		 starget->target_blocked);
 
 
 
 
 379}
 380
 381static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 382{
 383	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 384	    shost->host_blocked || shost->host_self_blocked)
 385		return 1;
 386
 387	return 0;
 388}
 389
 390/*
 391 * Function:	scsi_run_queue()
 392 *
 393 * Purpose:	Select a proper request queue to serve next
 394 *
 395 * Arguments:	q	- last request's queue
 396 *
 397 * Returns:     Nothing
 398 *
 399 * Notes:	The previous command was completely finished, start
 400 *		a new one if possible.
 401 */
 402static void scsi_run_queue(struct request_queue *q)
 403{
 404	struct scsi_device *sdev = q->queuedata;
 405	struct Scsi_Host *shost;
 406	LIST_HEAD(starved_list);
 
 407	unsigned long flags;
 408
 409	shost = sdev->host;
 410	if (scsi_target(sdev)->single_lun)
 411		scsi_single_lun_run(sdev);
 412
 413	spin_lock_irqsave(shost->host_lock, flags);
 414	list_splice_init(&shost->starved_list, &starved_list);
 415
 416	while (!list_empty(&starved_list)) {
 
 
 417		/*
 418		 * As long as shost is accepting commands and we have
 419		 * starved queues, call blk_run_queue. scsi_request_fn
 420		 * drops the queue_lock and can add us back to the
 421		 * starved_list.
 422		 *
 423		 * host_lock protects the starved_list and starved_entry.
 424		 * scsi_request_fn must get the host_lock before checking
 425		 * or modifying starved_list or starved_entry.
 426		 */
 427		if (scsi_host_is_busy(shost))
 428			break;
 429
 430		sdev = list_entry(starved_list.next,
 431				  struct scsi_device, starved_entry);
 432		list_del_init(&sdev->starved_entry);
 433		if (scsi_target_is_busy(scsi_target(sdev))) {
 434			list_move_tail(&sdev->starved_entry,
 435				       &shost->starved_list);
 436			continue;
 437		}
 438
 439		spin_unlock(shost->host_lock);
 440		spin_lock(sdev->request_queue->queue_lock);
 441		__blk_run_queue(sdev->request_queue);
 442		spin_unlock(sdev->request_queue->queue_lock);
 443		spin_lock(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444	}
 445	/* put any unprocessed entries back */
 446	list_splice(&starved_list, &shost->starved_list);
 447	spin_unlock_irqrestore(shost->host_lock, flags);
 448
 449	blk_run_queue(q);
 450}
 451
 452void scsi_requeue_run_queue(struct work_struct *work)
 453{
 454	struct scsi_device *sdev;
 455	struct request_queue *q;
 456
 457	sdev = container_of(work, struct scsi_device, requeue_work);
 458	q = sdev->request_queue;
 459	scsi_run_queue(q);
 460}
 461
 462/*
 463 * Function:	scsi_requeue_command()
 464 *
 465 * Purpose:	Handle post-processing of completed commands.
 466 *
 467 * Arguments:	q	- queue to operate on
 468 *		cmd	- command that may need to be requeued.
 469 *
 470 * Returns:	Nothing
 471 *
 472 * Notes:	After command completion, there may be blocks left
 473 *		over which weren't finished by the previous command
 474 *		this can be for a number of reasons - the main one is
 475 *		I/O errors in the middle of the request, in which case
 476 *		we need to request the blocks that come after the bad
 477 *		sector.
 478 * Notes:	Upon return, cmd is a stale pointer.
 479 */
 480static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 481{
 482	struct scsi_device *sdev = cmd->device;
 483	struct request *req = cmd->request;
 484	unsigned long flags;
 485
 486	/*
 487	 * We need to hold a reference on the device to avoid the queue being
 488	 * killed after the unlock and before scsi_run_queue is invoked which
 489	 * may happen because scsi_unprep_request() puts the command which
 490	 * releases its reference on the device.
 491	 */
 492	get_device(&sdev->sdev_gendev);
 493
 494	spin_lock_irqsave(q->queue_lock, flags);
 495	scsi_unprep_request(req);
 496	blk_requeue_request(q, req);
 497	spin_unlock_irqrestore(q->queue_lock, flags);
 498
 499	scsi_run_queue(q);
 
 
 
 500
 501	put_device(&sdev->sdev_gendev);
 
 502}
 503
 504void scsi_next_command(struct scsi_cmnd *cmd)
 505{
 506	struct scsi_device *sdev = cmd->device;
 507	struct request_queue *q = sdev->request_queue;
 508
 509	/* need to hold a reference on the device before we let go of the cmd */
 510	get_device(&sdev->sdev_gendev);
 511
 512	scsi_put_command(cmd);
 
 513	scsi_run_queue(q);
 514
 515	/* ok to remove device now */
 516	put_device(&sdev->sdev_gendev);
 517}
 518
 519void scsi_run_host_queues(struct Scsi_Host *shost)
 520{
 521	struct scsi_device *sdev;
 522
 523	shost_for_each_device(sdev, shost)
 524		scsi_run_queue(sdev->request_queue);
 525}
 526
 527static void __scsi_release_buffers(struct scsi_cmnd *, int);
 528
 529/*
 530 * Function:    scsi_end_request()
 531 *
 532 * Purpose:     Post-processing of completed commands (usually invoked at end
 533 *		of upper level post-processing and scsi_io_completion).
 534 *
 535 * Arguments:   cmd	 - command that is complete.
 536 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 537 *              bytes    - number of bytes of completed I/O
 538 *		requeue  - indicates whether we should requeue leftovers.
 539 *
 540 * Lock status: Assumed that lock is not held upon entry.
 541 *
 542 * Returns:     cmd if requeue required, NULL otherwise.
 543 *
 544 * Notes:       This is called for block device requests in order to
 545 *              mark some number of sectors as complete.
 546 * 
 547 *		We are guaranteeing that the request queue will be goosed
 548 *		at some point during this call.
 549 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
 550 */
 551static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 552					  int bytes, int requeue)
 553{
 554	struct request_queue *q = cmd->device->request_queue;
 555	struct request *req = cmd->request;
 556
 557	/*
 558	 * If there are blocks left over at the end, set up the command
 559	 * to queue the remainder of them.
 560	 */
 561	if (blk_end_request(req, error, bytes)) {
 562		/* kill remainder if no retrys */
 563		if (error && scsi_noretry_cmd(cmd))
 564			blk_end_request_all(req, error);
 565		else {
 566			if (requeue) {
 567				/*
 568				 * Bleah.  Leftovers again.  Stick the
 569				 * leftovers in the front of the
 570				 * queue, and goose the queue again.
 571				 */
 572				scsi_release_buffers(cmd);
 573				scsi_requeue_command(q, cmd);
 574				cmd = NULL;
 575			}
 576			return cmd;
 577		}
 578	}
 579
 580	/*
 581	 * This will goose the queue request function at the end, so we don't
 582	 * need to worry about launching another command.
 583	 */
 584	__scsi_release_buffers(cmd, 0);
 585	scsi_next_command(cmd);
 586	return NULL;
 587}
 588
 589static inline unsigned int scsi_sgtable_index(unsigned short nents)
 590{
 591	unsigned int index;
 592
 593	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 594
 595	if (nents <= 8)
 596		index = 0;
 597	else
 598		index = get_count_order(nents) - 3;
 599
 600	return index;
 601}
 
 602
 603static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 604{
 605	struct scsi_host_sg_pool *sgp;
 606
 607	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 608	mempool_free(sgl, sgp->pool);
 609}
 610
 611static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 612{
 613	struct scsi_host_sg_pool *sgp;
 
 
 
 
 
 
 
 
 
 
 
 
 614
 615	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 616	return mempool_alloc(sgp->pool, gfp_mask);
 
 
 
 
 
 
 
 
 
 617}
 618
 619static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 620			      gfp_t gfp_mask)
 
 621{
 622	int ret;
 
 
 623
 624	BUG_ON(!nents);
 
 625
 626	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 627			       gfp_mask, scsi_sg_alloc);
 628	if (unlikely(ret))
 629		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 630				scsi_sg_free);
 631
 632	return ret;
 633}
 
 634
 635static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 636{
 637	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 638}
 
 
 
 639
 640static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 641{
 
 
 
 
 
 
 642
 643	if (cmd->sdb.table.nents)
 644		scsi_free_sgtable(&cmd->sdb);
 
 
 
 645
 646	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 647
 648	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 649		struct scsi_data_buffer *bidi_sdb =
 650			cmd->request->next_rq->special;
 651		scsi_free_sgtable(bidi_sdb);
 652		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 653		cmd->request->next_rq->special = NULL;
 654	}
 655
 656	if (scsi_prot_sg_count(cmd))
 657		scsi_free_sgtable(cmd->prot_sdb);
 658}
 659
 660/*
 661 * Function:    scsi_release_buffers()
 662 *
 663 * Purpose:     Completion processing for block device I/O requests.
 664 *
 665 * Arguments:   cmd	- command that we are bailing.
 666 *
 667 * Lock status: Assumed that no lock is held upon entry.
 668 *
 669 * Returns:     Nothing
 670 *
 671 * Notes:       In the event that an upper level driver rejects a
 672 *		command, we must release resources allocated during
 673 *		the __init_io() function.  Primarily this would involve
 674 *		the scatter-gather table, and potentially any bounce
 675 *		buffers.
 676 */
 677void scsi_release_buffers(struct scsi_cmnd *cmd)
 678{
 679	__scsi_release_buffers(cmd, 1);
 680}
 681EXPORT_SYMBOL(scsi_release_buffers);
 682
 683static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 684{
 685	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	switch(host_byte(result)) {
 
 
 
 
 688	case DID_TRANSPORT_FAILFAST:
 689		error = -ENOLINK;
 690		break;
 691	case DID_TARGET_FAILURE:
 692		set_host_byte(cmd, DID_OK);
 693		error = -EREMOTEIO;
 694		break;
 695	case DID_NEXUS_FAILURE:
 696		set_host_byte(cmd, DID_OK);
 697		error = -EBADE;
 698		break;
 699	default:
 700		error = -EIO;
 701		break;
 702	}
 703
 704	return error;
 705}
 706
 707/*
 708 * Function:    scsi_io_completion()
 709 *
 710 * Purpose:     Completion processing for block device I/O requests.
 711 *
 712 * Arguments:   cmd   - command that is finished.
 713 *
 714 * Lock status: Assumed that no lock is held upon entry.
 715 *
 716 * Returns:     Nothing
 717 *
 718 * Notes:       This function is matched in terms of capabilities to
 719 *              the function that created the scatter-gather list.
 720 *              In other words, if there are no bounce buffers
 721 *              (the normal case for most drivers), we don't need
 722 *              the logic to deal with cleaning up afterwards.
 723 *
 724 *		We must call scsi_end_request().  This will finish off
 725 *		the specified number of sectors.  If we are done, the
 726 *		command block will be released and the queue function
 727 *		will be goosed.  If we are not done then we have to
 728 *		figure out what to do next:
 729 *
 730 *		a) We can call scsi_requeue_command().  The request
 731 *		   will be unprepared and put back on the queue.  Then
 732 *		   a new command will be created for it.  This should
 733 *		   be used if we made forward progress, or if we want
 734 *		   to switch from READ(10) to READ(6) for example.
 735 *
 736 *		b) We can call scsi_queue_insert().  The request will
 737 *		   be put back on the queue and retried using the same
 738 *		   command as before, possibly after a delay.
 
 
 739 *
 740 *		c) We can call blk_end_request() with -EIO to fail
 741 *		   the remainder of the request.
 742 */
 743void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 744{
 745	int result = cmd->result;
 746	struct request_queue *q = cmd->device->request_queue;
 747	struct request *req = cmd->request;
 748	int error = 0;
 749	struct scsi_sense_hdr sshdr;
 750	int sense_valid = 0;
 751	int sense_deferred = 0;
 752	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 753	      ACTION_DELAYED_RETRY} action;
 754	char *description = NULL;
 755
 756	if (result) {
 757		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 758		if (sense_valid)
 759			sense_deferred = scsi_sense_is_deferred(&sshdr);
 760	}
 761
 762	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 763		if (result) {
 764			if (sense_valid && req->sense) {
 765				/*
 766				 * SG_IO wants current and deferred errors
 767				 */
 768				int len = 8 + cmd->sense_buffer[7];
 769
 770				if (len > SCSI_SENSE_BUFFERSIZE)
 771					len = SCSI_SENSE_BUFFERSIZE;
 772				memcpy(req->sense, cmd->sense_buffer,  len);
 773				req->sense_len = len;
 774			}
 775			if (!sense_deferred)
 776				error = __scsi_error_from_host_byte(cmd, result);
 777		}
 778		/*
 779		 * __scsi_error_from_host_byte may have reset the host_byte
 780		 */
 781		req->errors = cmd->result;
 782
 783		req->resid_len = scsi_get_resid(cmd);
 
 
 
 784
 785		if (scsi_bidi_cmnd(cmd)) {
 786			/*
 787			 * Bidi commands Must be complete as a whole,
 788			 * both sides at once.
 789			 */
 790			req->next_rq->resid_len = scsi_in(cmd)->resid;
 791
 792			scsi_release_buffers(cmd);
 793			blk_end_request_all(req, 0);
 794
 795			scsi_next_command(cmd);
 796			return;
 797		}
 
 
 798	}
 
 
 799
 800	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 801	BUG_ON(blk_bidi_rq(req));
 802
 803	/*
 804	 * Next deal with any sectors which we were able to correctly
 805	 * handle.
 806	 */
 807	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 808				      "%d bytes done.\n",
 809				      blk_rq_sectors(req), good_bytes));
 810
 811	/*
 812	 * Recovered errors need reporting, but they're always treated
 813	 * as success, so fiddle the result code here.  For BLOCK_PC
 814	 * we already took a copy of the original into rq->errors which
 815	 * is what gets returned to the user
 816	 */
 817	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 818		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 819		 * print since caller wants ATA registers. Only occurs on
 820		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 821		 */
 822		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 823			;
 824		else if (!(req->cmd_flags & REQ_QUIET))
 825			scsi_print_sense("", cmd);
 826		result = 0;
 827		/* BLOCK_PC may have set error */
 828		error = 0;
 829	}
 830
 831	/*
 832	 * A number of bytes were successfully read.  If there
 833	 * are leftovers and there is some kind of error
 834	 * (result != 0), retry the rest.
 835	 */
 836	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 837		return;
 
 
 
 
 
 
 
 
 838
 839	error = __scsi_error_from_host_byte(cmd, result);
 840
 841	if (host_byte(result) == DID_RESET) {
 842		/* Third party bus reset or reset for error recovery
 843		 * reasons.  Just retry the command and see what
 844		 * happens.
 845		 */
 846		action = ACTION_RETRY;
 847	} else if (sense_valid && !sense_deferred) {
 848		switch (sshdr.sense_key) {
 849		case UNIT_ATTENTION:
 850			if (cmd->device->removable) {
 851				/* Detected disc change.  Set a bit
 852				 * and quietly refuse further access.
 853				 */
 854				cmd->device->changed = 1;
 855				description = "Media Changed";
 856				action = ACTION_FAIL;
 857			} else {
 858				/* Must have been a power glitch, or a
 859				 * bus reset.  Could not have been a
 860				 * media change, so we just retry the
 861				 * command and see what happens.
 862				 */
 863				action = ACTION_RETRY;
 864			}
 865			break;
 866		case ILLEGAL_REQUEST:
 867			/* If we had an ILLEGAL REQUEST returned, then
 868			 * we may have performed an unsupported
 869			 * command.  The only thing this should be
 870			 * would be a ten byte read where only a six
 871			 * byte read was supported.  Also, on a system
 872			 * where READ CAPACITY failed, we may have
 873			 * read past the end of the disk.
 874			 */
 875			if ((cmd->device->use_10_for_rw &&
 876			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 877			    (cmd->cmnd[0] == READ_10 ||
 878			     cmd->cmnd[0] == WRITE_10)) {
 879				/* This will issue a new 6-byte command. */
 880				cmd->device->use_10_for_rw = 0;
 881				action = ACTION_REPREP;
 882			} else if (sshdr.asc == 0x10) /* DIX */ {
 883				description = "Host Data Integrity Failure";
 884				action = ACTION_FAIL;
 885				error = -EILSEQ;
 886			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 887			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
 888				   (cmd->cmnd[0] == UNMAP ||
 889				    cmd->cmnd[0] == WRITE_SAME_16 ||
 890				    cmd->cmnd[0] == WRITE_SAME)) {
 891				description = "Discard failure";
 892				action = ACTION_FAIL;
 893				error = -EREMOTEIO;
 894			} else
 895				action = ACTION_FAIL;
 896			break;
 897		case ABORTED_COMMAND:
 898			action = ACTION_FAIL;
 899			if (sshdr.asc == 0x10) { /* DIF */
 900				description = "Target Data Integrity Failure";
 901				error = -EILSEQ;
 902			}
 903			break;
 904		case NOT_READY:
 905			/* If the device is in the process of becoming
 906			 * ready, or has a temporary blockage, retry.
 907			 */
 908			if (sshdr.asc == 0x04) {
 909				switch (sshdr.ascq) {
 910				case 0x01: /* becoming ready */
 911				case 0x04: /* format in progress */
 912				case 0x05: /* rebuild in progress */
 913				case 0x06: /* recalculation in progress */
 914				case 0x07: /* operation in progress */
 915				case 0x08: /* Long write in progress */
 916				case 0x09: /* self test in progress */
 
 917				case 0x14: /* space allocation in progress */
 
 
 
 918					action = ACTION_DELAYED_RETRY;
 919					break;
 
 
 
 
 
 
 
 
 
 
 920				default:
 921					description = "Device not ready";
 922					action = ACTION_FAIL;
 923					break;
 924				}
 925			} else {
 926				description = "Device not ready";
 927				action = ACTION_FAIL;
 928			}
 929			break;
 930		case VOLUME_OVERFLOW:
 931			/* See SSC3rXX or current. */
 932			action = ACTION_FAIL;
 933			break;
 
 
 
 
 
 
 
 
 
 
 
 934		default:
 935			description = "Unhandled sense code";
 936			action = ACTION_FAIL;
 937			break;
 938		}
 939	} else {
 940		description = "Unhandled error code";
 
 
 941		action = ACTION_FAIL;
 942	}
 943
 944	switch (action) {
 945	case ACTION_FAIL:
 946		/* Give up and fail the remainder of the request */
 947		scsi_release_buffers(cmd);
 948		if (!(req->cmd_flags & REQ_QUIET)) {
 949			if (description)
 950				scmd_printk(KERN_INFO, cmd, "%s\n",
 951					    description);
 952			scsi_print_result(cmd);
 953			if (driver_byte(result) & DRIVER_SENSE)
 954				scsi_print_sense("", cmd);
 955			scsi_print_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 956		}
 957		if (blk_end_request_err(req, error))
 958			scsi_requeue_command(q, cmd);
 959		else
 960			scsi_next_command(cmd);
 961		break;
 962	case ACTION_REPREP:
 963		/* Unprep the request and put it back at the head of the queue.
 964		 * A new command will be prepared and issued.
 965		 */
 966		scsi_release_buffers(cmd);
 967		scsi_requeue_command(q, cmd);
 968		break;
 969	case ACTION_RETRY:
 970		/* Retry the same command immediately */
 971		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 972		break;
 973	case ACTION_DELAYED_RETRY:
 974		/* Retry the same command after a delay */
 975		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 976		break;
 977	}
 978}
 979
 980static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
 981			     gfp_t gfp_mask)
 
 
 
 
 
 982{
 983	int count;
 
 
 
 
 
 
 
 984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	/*
 986	 * If sg table allocation fails, requeue request later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987	 */
 988	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
 989					gfp_mask))) {
 990		return BLKPREP_DEFER;
 991	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	req->buffer = NULL;
 
 994
 995	/* 
 996	 * Next, walk the list, and fill in the addresses and sizes of
 997	 * each segment.
 998	 */
 999	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1000	BUG_ON(count > sdb->table.nents);
1001	sdb->table.nents = count;
1002	sdb->length = blk_rq_bytes(req);
1003	return BLKPREP_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004}
1005
1006/*
1007 * Function:    scsi_init_io()
1008 *
1009 * Purpose:     SCSI I/O initialize function.
 
 
 
 
 
 
 
1010 *
1011 * Arguments:   cmd   - Command descriptor we wish to initialize
 
1012 *
1013 * Returns:     0 on success
1014 *		BLKPREP_DEFER if the failure is retryable
1015 *		BLKPREP_KILL if the failure is fatal
 
1016 */
1017int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1018{
1019	struct request *rq = cmd->request;
 
 
 
 
 
 
1020
1021	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1022	if (error)
1023		goto err_exit;
1024
1025	if (blk_bidi_rq(rq)) {
1026		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1027			scsi_sdb_cache, GFP_ATOMIC);
1028		if (!bidi_sdb) {
1029			error = BLKPREP_DEFER;
1030			goto err_exit;
1031		}
1032
1033		rq->next_rq->special = bidi_sdb;
1034		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1035		if (error)
1036			goto err_exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037	}
1038
 
 
 
 
1039	if (blk_integrity_rq(rq)) {
1040		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1041		int ivecs, count;
1042
1043		BUG_ON(prot_sdb == NULL);
1044		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1045
1046		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1047			error = BLKPREP_DEFER;
1048			goto err_exit;
 
 
1049		}
1050
1051		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1052						prot_sdb->table.sgl);
1053		BUG_ON(unlikely(count > ivecs));
1054		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
 
 
 
1055
 
1056		cmd->prot_sdb = prot_sdb;
1057		cmd->prot_sdb->table.nents = count;
1058	}
1059
1060	return BLKPREP_OK ;
1061
1062err_exit:
1063	scsi_release_buffers(cmd);
1064	cmd->request->special = NULL;
1065	scsi_put_command(cmd);
1066	return error;
1067}
1068EXPORT_SYMBOL(scsi_init_io);
1069
1070static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1071		struct request *req)
 
 
 
 
 
 
 
1072{
1073	struct scsi_cmnd *cmd;
1074
1075	if (!req->special) {
1076		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1077		if (unlikely(!cmd))
1078			return NULL;
1079		req->special = cmd;
1080	} else {
1081		cmd = req->special;
1082	}
1083
1084	/* pull a tag out of the request if we have one */
1085	cmd->tag = req->tag;
1086	cmd->request = req;
 
1087
1088	cmd->cmnd = req->cmd;
1089	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
1090
1091	return cmd;
 
 
 
 
 
 
 
 
 
1092}
1093
1094int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1095{
1096	struct scsi_cmnd *cmd;
1097	int ret = scsi_prep_state_check(sdev, req);
 
 
 
 
1098
1099	if (ret != BLKPREP_OK)
1100		return ret;
 
 
1101
1102	cmd = scsi_get_cmd_from_req(sdev, req);
1103	if (unlikely(!cmd))
1104		return BLKPREP_DEFER;
 
1105
1106	/*
1107	 * BLOCK_PC requests may transfer data, in which case they must
1108	 * a bio attached to them.  Or they might contain a SCSI command
1109	 * that does not transfer data, in which case they may optionally
1110	 * submit a request without an attached bio.
1111	 */
1112	if (req->bio) {
1113		int ret;
1114
1115		BUG_ON(!req->nr_phys_segments);
1116
1117		ret = scsi_init_io(cmd, GFP_ATOMIC);
1118		if (unlikely(ret))
1119			return ret;
1120	} else {
1121		BUG_ON(blk_rq_bytes(req));
1122
1123		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1124		req->buffer = NULL;
1125	}
1126
1127	cmd->cmd_len = req->cmd_len;
1128	if (!blk_rq_bytes(req))
1129		cmd->sc_data_direction = DMA_NONE;
1130	else if (rq_data_dir(req) == WRITE)
1131		cmd->sc_data_direction = DMA_TO_DEVICE;
1132	else
1133		cmd->sc_data_direction = DMA_FROM_DEVICE;
1134	
1135	cmd->transfersize = blk_rq_bytes(req);
1136	cmd->allowed = req->retries;
1137	return BLKPREP_OK;
1138}
1139EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1140
1141/*
1142 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1143 * from filesystems that still need to be translated to SCSI CDBs from
1144 * the ULD.
1145 */
1146int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1147{
1148	struct scsi_cmnd *cmd;
1149	int ret = scsi_prep_state_check(sdev, req);
1150
1151	if (ret != BLKPREP_OK)
1152		return ret;
1153
1154	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1155			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1156		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1157		if (ret != BLKPREP_OK)
1158			return ret;
1159	}
1160
1161	/*
1162	 * Filesystem requests must transfer data.
1163	 */
1164	BUG_ON(!req->nr_phys_segments);
1165
1166	cmd = scsi_get_cmd_from_req(sdev, req);
1167	if (unlikely(!cmd))
1168		return BLKPREP_DEFER;
1169
1170	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1171	return scsi_init_io(cmd, GFP_ATOMIC);
1172}
1173EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1174
1175int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1176{
1177	int ret = BLKPREP_OK;
1178
1179	/*
1180	 * If the device is not in running state we will reject some
1181	 * or all commands.
1182	 */
1183	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1184		switch (sdev->sdev_state) {
1185		case SDEV_OFFLINE:
1186			/*
1187			 * If the device is offline we refuse to process any
1188			 * commands.  The device must be brought online
1189			 * before trying any recovery commands.
1190			 */
1191			sdev_printk(KERN_ERR, sdev,
1192				    "rejecting I/O to offline device\n");
1193			ret = BLKPREP_KILL;
1194			break;
1195		case SDEV_DEL:
1196			/*
1197			 * If the device is fully deleted, we refuse to
1198			 * process any commands as well.
1199			 */
1200			sdev_printk(KERN_ERR, sdev,
1201				    "rejecting I/O to dead device\n");
1202			ret = BLKPREP_KILL;
1203			break;
1204		case SDEV_QUIESCE:
1205		case SDEV_BLOCK:
1206		case SDEV_CREATED_BLOCK:
1207			/*
1208			 * If the devices is blocked we defer normal commands.
1209			 */
1210			if (!(req->cmd_flags & REQ_PREEMPT))
1211				ret = BLKPREP_DEFER;
1212			break;
1213		default:
1214			/*
1215			 * For any other not fully online state we only allow
1216			 * special commands.  In particular any user initiated
1217			 * command is not allowed.
1218			 */
1219			if (!(req->cmd_flags & REQ_PREEMPT))
1220				ret = BLKPREP_KILL;
1221			break;
1222		}
1223	}
1224	return ret;
1225}
1226EXPORT_SYMBOL(scsi_prep_state_check);
1227
1228int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1229{
1230	struct scsi_device *sdev = q->queuedata;
1231
1232	switch (ret) {
1233	case BLKPREP_KILL:
1234		req->errors = DID_NO_CONNECT << 16;
1235		/* release the command and kill it */
1236		if (req->special) {
1237			struct scsi_cmnd *cmd = req->special;
1238			scsi_release_buffers(cmd);
1239			scsi_put_command(cmd);
1240			req->special = NULL;
1241		}
1242		break;
1243	case BLKPREP_DEFER:
1244		/*
1245		 * If we defer, the blk_peek_request() returns NULL, but the
1246		 * queue must be restarted, so we schedule a callback to happen
1247		 * shortly.
1248		 */
1249		if (sdev->device_busy == 0)
1250			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1251		break;
 
 
 
 
 
 
 
 
 
 
 
1252	default:
1253		req->cmd_flags |= REQ_DONTPREP;
 
 
 
 
 
 
1254	}
1255
1256	return ret;
1257}
1258EXPORT_SYMBOL(scsi_prep_return);
1259
1260int scsi_prep_fn(struct request_queue *q, struct request *req)
1261{
1262	struct scsi_device *sdev = q->queuedata;
1263	int ret = BLKPREP_KILL;
1264
1265	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1266		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1267	return scsi_prep_return(q, req, ret);
1268}
1269EXPORT_SYMBOL(scsi_prep_fn);
1270
1271/*
1272 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1273 * return 0.
1274 *
1275 * Called with the queue_lock held.
1276 */
1277static inline int scsi_dev_queue_ready(struct request_queue *q,
1278				  struct scsi_device *sdev)
1279{
1280	if (sdev->device_busy == 0 && sdev->device_blocked) {
1281		/*
1282		 * unblock after device_blocked iterates to zero
1283		 */
1284		if (--sdev->device_blocked == 0) {
1285			SCSI_LOG_MLQUEUE(3,
1286				   sdev_printk(KERN_INFO, sdev,
1287				   "unblocking device at zero depth\n"));
1288		} else {
1289			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290			return 0;
1291		}
 
 
 
 
 
1292	}
1293	if (scsi_device_is_busy(sdev))
1294		return 0;
1295
1296	return 1;
1297}
1298
 
 
1299
1300/*
1301 * scsi_target_queue_ready: checks if there we can send commands to target
1302 * @sdev: scsi device on starget to check.
1303 *
1304 * Called with the host lock held.
1305 */
1306static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1307					   struct scsi_device *sdev)
1308{
1309	struct scsi_target *starget = scsi_target(sdev);
 
1310
1311	if (starget->single_lun) {
 
1312		if (starget->starget_sdev_user &&
1313		    starget->starget_sdev_user != sdev)
 
1314			return 0;
 
1315		starget->starget_sdev_user = sdev;
 
1316	}
1317
1318	if (starget->target_busy == 0 && starget->target_blocked) {
 
 
 
 
 
 
 
1319		/*
1320		 * unblock after target_blocked iterates to zero
1321		 */
1322		if (--starget->target_blocked == 0) {
1323			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1324					 "unblocking target at zero depth\n"));
1325		} else
1326			return 0;
1327	}
1328
1329	if (scsi_target_is_busy(starget)) {
1330		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1331		return 0;
1332	}
1333
 
 
 
1334	return 1;
 
 
 
 
 
 
 
 
 
1335}
1336
1337/*
1338 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1339 * return 0. We must end up running the queue again whenever 0 is
1340 * returned, else IO can hang.
1341 *
1342 * Called with host_lock held.
1343 */
1344static inline int scsi_host_queue_ready(struct request_queue *q,
1345				   struct Scsi_Host *shost,
1346				   struct scsi_device *sdev)
 
1347{
1348	if (scsi_host_in_recovery(shost))
1349		return 0;
1350	if (shost->host_busy == 0 && shost->host_blocked) {
 
1351		/*
1352		 * unblock after host_blocked iterates to zero
1353		 */
1354		if (--shost->host_blocked == 0) {
1355			SCSI_LOG_MLQUEUE(3,
1356				printk("scsi%d unblocking host at zero depth\n",
1357					shost->host_no));
1358		} else {
1359			return 0;
1360		}
1361	}
1362	if (scsi_host_is_busy(shost)) {
1363		if (list_empty(&sdev->starved_entry))
1364			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1365		return 0;
1366	}
1367
 
 
 
1368	/* We're OK to process the command, so we can't be starved */
1369	if (!list_empty(&sdev->starved_entry))
1370		list_del_init(&sdev->starved_entry);
 
 
 
 
 
 
1371
1372	return 1;
 
 
 
 
 
 
 
 
 
1373}
1374
1375/*
1376 * Busy state exporting function for request stacking drivers.
1377 *
1378 * For efficiency, no lock is taken to check the busy state of
1379 * shost/starget/sdev, since the returned value is not guaranteed and
1380 * may be changed after request stacking drivers call the function,
1381 * regardless of taking lock or not.
1382 *
1383 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384 * needs to return 'not busy'. Otherwise, request stacking drivers
1385 * may hold requests forever.
1386 */
1387static int scsi_lld_busy(struct request_queue *q)
1388{
1389	struct scsi_device *sdev = q->queuedata;
1390	struct Scsi_Host *shost;
1391
1392	if (blk_queue_dead(q))
1393		return 0;
1394
1395	shost = sdev->host;
1396
1397	/*
1398	 * Ignore host/starget busy state.
1399	 * Since block layer does not have a concept of fairness across
1400	 * multiple queues, congestion of host/starget needs to be handled
1401	 * in SCSI layer.
1402	 */
1403	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404		return 1;
1405
1406	return 0;
1407}
1408
1409/*
1410 * Kill a request for a dead device
 
1411 */
1412static void scsi_kill_request(struct request *req, struct request_queue *q)
1413{
1414	struct scsi_cmnd *cmd = req->special;
1415	struct scsi_device *sdev;
1416	struct scsi_target *starget;
1417	struct Scsi_Host *shost;
1418
1419	blk_start_request(req);
1420
1421	scmd_printk(KERN_INFO, cmd, "killing request\n");
1422
1423	sdev = cmd->device;
1424	starget = scsi_target(sdev);
1425	shost = sdev->host;
1426	scsi_init_cmd_errh(cmd);
1427	cmd->result = DID_NO_CONNECT << 16;
1428	atomic_inc(&cmd->device->iorequest_cnt);
1429
1430	/*
1431	 * SCSI request completion path will do scsi_device_unbusy(),
1432	 * bump busy counts.  To bump the counters, we need to dance
1433	 * with the locks as normal issue path does.
1434	 */
1435	sdev->device_busy++;
1436	spin_unlock(sdev->request_queue->queue_lock);
1437	spin_lock(shost->host_lock);
1438	shost->host_busy++;
1439	starget->target_busy++;
1440	spin_unlock(shost->host_lock);
1441	spin_lock(sdev->request_queue->queue_lock);
1442
1443	blk_complete_request(req);
1444}
1445
1446static void scsi_softirq_done(struct request *rq)
1447{
1448	struct scsi_cmnd *cmd = rq->special;
1449	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1450	int disposition;
1451
1452	INIT_LIST_HEAD(&cmd->eh_entry);
1453
1454	atomic_inc(&cmd->device->iodone_cnt);
1455	if (cmd->result)
1456		atomic_inc(&cmd->device->ioerr_cnt);
1457
1458	disposition = scsi_decide_disposition(cmd);
1459	if (disposition != SUCCESS &&
1460	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1461		sdev_printk(KERN_ERR, cmd->device,
1462			    "timing out command, waited %lus\n",
1463			    wait_for/HZ);
1464		disposition = SUCCESS;
1465	}
1466			
1467	scsi_log_completion(cmd, disposition);
1468
1469	switch (disposition) {
1470		case SUCCESS:
1471			scsi_finish_command(cmd);
1472			break;
1473		case NEEDS_RETRY:
1474			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1475			break;
1476		case ADD_TO_MLQUEUE:
1477			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1478			break;
1479		default:
1480			if (!scsi_eh_scmd_add(cmd, 0))
1481				scsi_finish_command(cmd);
1482	}
1483}
1484
1485/*
1486 * Function:    scsi_request_fn()
1487 *
1488 * Purpose:     Main strategy routine for SCSI.
1489 *
1490 * Arguments:   q       - Pointer to actual queue.
1491 *
1492 * Returns:     Nothing
1493 *
1494 * Lock status: IO request lock assumed to be held when called.
 
1495 */
1496static void scsi_request_fn(struct request_queue *q)
1497{
1498	struct scsi_device *sdev = q->queuedata;
1499	struct Scsi_Host *shost;
1500	struct scsi_cmnd *cmd;
1501	struct request *req;
1502
1503	if(!get_device(&sdev->sdev_gendev))
1504		/* We must be tearing the block queue down already */
1505		return;
1506
1507	/*
1508	 * To start with, we keep looping until the queue is empty, or until
1509	 * the host is no longer able to accept any more requests.
1510	 */
1511	shost = sdev->host;
1512	for (;;) {
1513		int rtn;
 
 
 
 
1514		/*
1515		 * get next queueable request.  We do this early to make sure
1516		 * that the request is fully prepared even if we cannot 
1517		 * accept it.
 
 
1518		 */
1519		req = blk_peek_request(q);
1520		if (!req || !scsi_dev_queue_ready(q, sdev))
1521			break;
 
 
1522
1523		if (unlikely(!scsi_device_online(sdev))) {
1524			sdev_printk(KERN_ERR, sdev,
1525				    "rejecting I/O to offline device\n");
1526			scsi_kill_request(req, q);
1527			continue;
1528		}
1529
 
1530
1531		/*
1532		 * Remove the request from the request list.
1533		 */
1534		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1535			blk_start_request(req);
1536		sdev->device_busy++;
1537
1538		spin_unlock(q->queue_lock);
1539		cmd = req->special;
1540		if (unlikely(cmd == NULL)) {
1541			printk(KERN_CRIT "impossible request in %s.\n"
1542					 "please mail a stack trace to "
1543					 "linux-scsi@vger.kernel.org\n",
1544					 __func__);
1545			blk_dump_rq_flags(req, "foo");
1546			BUG();
1547		}
1548		spin_lock(shost->host_lock);
1549
1550		/*
1551		 * We hit this when the driver is using a host wide
1552		 * tag map. For device level tag maps the queue_depth check
1553		 * in the device ready fn would prevent us from trying
1554		 * to allocate a tag. Since the map is a shared host resource
1555		 * we add the dev to the starved list so it eventually gets
1556		 * a run when a tag is freed.
1557		 */
1558		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1559			if (list_empty(&sdev->starved_entry))
1560				list_add_tail(&sdev->starved_entry,
1561					      &shost->starved_list);
1562			goto not_ready;
1563		}
1564
1565		if (!scsi_target_queue_ready(shost, sdev))
1566			goto not_ready;
1567
1568		if (!scsi_host_queue_ready(q, shost, sdev))
1569			goto not_ready;
 
 
 
 
 
 
1570
1571		scsi_target(sdev)->target_busy++;
1572		shost->host_busy++;
 
1573
1574		/*
1575		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1576		 *		take the lock again.
1577		 */
1578		spin_unlock_irq(shost->host_lock);
1579
1580		/*
1581		 * Finally, initialize any error handling parameters, and set up
1582		 * the timers for timeouts.
1583		 */
1584		scsi_init_cmd_errh(cmd);
 
1585
1586		/*
1587		 * Dispatch the command to the low-level driver.
1588		 */
1589		rtn = scsi_dispatch_cmd(cmd);
1590		spin_lock_irq(q->queue_lock);
1591		if (rtn)
1592			goto out_delay;
1593	}
1594
1595	goto out;
1596
1597 not_ready:
1598	spin_unlock_irq(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599
1600	/*
1601	 * lock q, handle tag, requeue req, and decrement device_busy. We
1602	 * must return with queue_lock held.
1603	 *
1604	 * Decrementing device_busy without checking it is OK, as all such
1605	 * cases (host limits or settings) should run the queue at some
1606	 * later time.
1607	 */
1608	spin_lock_irq(q->queue_lock);
1609	blk_requeue_request(q, req);
1610	sdev->device_busy--;
1611out_delay:
1612	if (sdev->device_busy == 0)
1613		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1614out:
1615	/* must be careful here...if we trigger the ->remove() function
1616	 * we cannot be holding the q lock */
1617	spin_unlock_irq(q->queue_lock);
1618	put_device(&sdev->sdev_gendev);
1619	spin_lock_irq(q->queue_lock);
 
 
1620}
1621
1622u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1623{
1624	struct device *host_dev;
1625	u64 bounce_limit = 0xffffffff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626
1627	if (shost->unchecked_isa_dma)
1628		return BLK_BOUNCE_ISA;
1629	/*
1630	 * Platforms with virtual-DMA translation
1631	 * hardware have no practical limit.
 
1632	 */
1633	if (!PCI_DMA_BUS_IS_PHYS)
1634		return BLK_BOUNCE_ANY;
1635
1636	host_dev = scsi_get_device(shost);
1637	if (host_dev && host_dev->dma_mask)
1638		bounce_limit = *host_dev->dma_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639
1640	return bounce_limit;
1641}
1642EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1643
1644struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1645					 request_fn_proc *request_fn)
1646{
1647	struct request_queue *q;
1648	struct device *dev = shost->dma_dev;
1649
1650	q = blk_init_queue(request_fn, NULL);
1651	if (!q)
1652		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1653
1654	/*
1655	 * this limit is imposed by hardware restrictions
 
1656	 */
1657	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1658					SCSI_MAX_SG_CHAIN_SEGMENTS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660	if (scsi_host_prot_dma(shost)) {
1661		shost->sg_prot_tablesize =
1662			min_not_zero(shost->sg_prot_tablesize,
1663				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1664		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1665		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1666	}
1667
1668	blk_queue_max_hw_sectors(q, shost->max_sectors);
1669	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1670	blk_queue_segment_boundary(q, shost->dma_boundary);
1671	dma_set_seg_boundary(dev, shost->dma_boundary);
 
 
1672
1673	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1674
1675	if (!shost->use_clustering)
1676		q->limits.cluster = 0;
1677
1678	/*
1679	 * set a reasonable default alignment on word boundaries: the
1680	 * host and device may alter it using
1681	 * blk_queue_update_dma_alignment() later.
1682	 */
1683	blk_queue_dma_alignment(q, 0x03);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684
1685	return q;
1686}
1687EXPORT_SYMBOL(__scsi_alloc_queue);
1688
1689struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690{
1691	struct request_queue *q;
 
1692
1693	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1694	if (!q)
1695		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696
1697	blk_queue_prep_rq(q, scsi_prep_fn);
1698	blk_queue_softirq_done(q, scsi_softirq_done);
1699	blk_queue_rq_timed_out(q, scsi_times_out);
1700	blk_queue_lld_busy(q, scsi_lld_busy);
1701	return q;
 
 
1702}
1703
1704/*
1705 * Function:    scsi_block_requests()
1706 *
1707 * Purpose:     Utility function used by low-level drivers to prevent further
1708 *		commands from being queued to the device.
1709 *
1710 * Arguments:   shost       - Host in question
1711 *
1712 * Returns:     Nothing
1713 *
1714 * Lock status: No locks are assumed held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715 *
1716 * Notes:       There is no timer nor any other means by which the requests
1717 *		get unblocked other than the low-level driver calling
1718 *		scsi_unblock_requests().
1719 */
1720void scsi_block_requests(struct Scsi_Host *shost)
1721{
1722	shost->host_self_blocked = 1;
1723}
1724EXPORT_SYMBOL(scsi_block_requests);
1725
1726/*
1727 * Function:    scsi_unblock_requests()
1728 *
1729 * Purpose:     Utility function used by low-level drivers to allow further
1730 *		commands from being queued to the device.
1731 *
1732 * Arguments:   shost       - Host in question
1733 *
1734 * Returns:     Nothing
1735 *
1736 * Lock status: No locks are assumed held.
1737 *
1738 * Notes:       There is no timer nor any other means by which the requests
1739 *		get unblocked other than the low-level driver calling
1740 *		scsi_unblock_requests().
1741 *
1742 *		This is done as an API function so that changes to the
1743 *		internals of the scsi mid-layer won't require wholesale
1744 *		changes to drivers that use this feature.
1745 */
1746void scsi_unblock_requests(struct Scsi_Host *shost)
1747{
1748	shost->host_self_blocked = 0;
1749	scsi_run_host_queues(shost);
1750}
1751EXPORT_SYMBOL(scsi_unblock_requests);
1752
1753int __init scsi_init_queue(void)
1754{
1755	int i;
1756
1757	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1758					   sizeof(struct scsi_data_buffer),
1759					   0, 0, NULL);
1760	if (!scsi_sdb_cache) {
1761		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1762		return -ENOMEM;
1763	}
1764
1765	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767		int size = sgp->size * sizeof(struct scatterlist);
1768
1769		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1770				SLAB_HWCACHE_ALIGN, NULL);
1771		if (!sgp->slab) {
1772			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1773					sgp->name);
1774			goto cleanup_sdb;
1775		}
1776
1777		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1778						     sgp->slab);
1779		if (!sgp->pool) {
1780			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1781					sgp->name);
1782			goto cleanup_sdb;
1783		}
1784	}
1785
1786	return 0;
1787
1788cleanup_sdb:
1789	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791		if (sgp->pool)
1792			mempool_destroy(sgp->pool);
1793		if (sgp->slab)
1794			kmem_cache_destroy(sgp->slab);
1795	}
1796	kmem_cache_destroy(scsi_sdb_cache);
1797
1798	return -ENOMEM;
1799}
1800
1801void scsi_exit_queue(void)
1802{
1803	int i;
1804
1805	kmem_cache_destroy(scsi_sdb_cache);
1806
1807	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1808		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809		mempool_destroy(sgp->pool);
1810		kmem_cache_destroy(sgp->slab);
1811	}
1812}
1813
1814/**
1815 *	scsi_mode_select - issue a mode select
1816 *	@sdev:	SCSI device to be queried
1817 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1818 *	@sp:	Save page bit (0 == don't save, 1 == save)
1819 *	@modepage: mode page being requested
1820 *	@buffer: request buffer (may not be smaller than eight bytes)
1821 *	@len:	length of request buffer.
1822 *	@timeout: command timeout
1823 *	@retries: number of retries before failing
1824 *	@data: returns a structure abstracting the mode header data
1825 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1826 *		must be SCSI_SENSE_BUFFERSIZE big.
1827 *
1828 *	Returns zero if successful; negative error number or scsi
1829 *	status on error
1830 *
1831 */
1832int
1833scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1834		 unsigned char *buffer, int len, int timeout, int retries,
1835		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1836{
1837	unsigned char cmd[10];
1838	unsigned char *real_buffer;
 
 
 
1839	int ret;
1840
1841	memset(cmd, 0, sizeof(cmd));
1842	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1843
1844	if (sdev->use_10_for_ms) {
1845		if (len > 65535)
 
 
 
 
 
 
 
1846			return -EINVAL;
1847		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1848		if (!real_buffer)
1849			return -ENOMEM;
1850		memcpy(real_buffer + 8, buffer, len);
1851		len += 8;
1852		real_buffer[0] = 0;
1853		real_buffer[1] = 0;
1854		real_buffer[2] = data->medium_type;
1855		real_buffer[3] = data->device_specific;
1856		real_buffer[4] = data->longlba ? 0x01 : 0;
1857		real_buffer[5] = 0;
1858		real_buffer[6] = data->block_descriptor_length >> 8;
1859		real_buffer[7] = data->block_descriptor_length;
1860
1861		cmd[0] = MODE_SELECT_10;
1862		cmd[7] = len >> 8;
1863		cmd[8] = len;
1864	} else {
1865		if (len > 255 || data->block_descriptor_length > 255 ||
1866		    data->longlba)
1867			return -EINVAL;
1868
1869		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1870		if (!real_buffer)
1871			return -ENOMEM;
1872		memcpy(real_buffer + 4, buffer, len);
1873		len += 4;
1874		real_buffer[0] = 0;
1875		real_buffer[1] = data->medium_type;
1876		real_buffer[2] = data->device_specific;
1877		real_buffer[3] = data->block_descriptor_length;
1878		
1879
1880		cmd[0] = MODE_SELECT;
1881		cmd[4] = len;
1882	}
1883
1884	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1885			       sshdr, timeout, retries, NULL);
1886	kfree(real_buffer);
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(scsi_mode_select);
1890
1891/**
1892 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1893 *	@sdev:	SCSI device to be queried
1894 *	@dbd:	set if mode sense will allow block descriptors to be returned
1895 *	@modepage: mode page being requested
 
1896 *	@buffer: request buffer (may not be smaller than eight bytes)
1897 *	@len:	length of request buffer.
1898 *	@timeout: command timeout
1899 *	@retries: number of retries before failing
1900 *	@data: returns a structure abstracting the mode header data
1901 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1902 *		must be SCSI_SENSE_BUFFERSIZE big.
1903 *
1904 *	Returns zero if unsuccessful, or the header offset (either 4
1905 *	or 8 depending on whether a six or ten byte command was
1906 *	issued) if successful.
1907 */
1908int
1909scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1910		  unsigned char *buffer, int len, int timeout, int retries,
1911		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1912{
1913	unsigned char cmd[12];
1914	int use_10_for_ms;
1915	int header_length;
1916	int result;
1917	struct scsi_sense_hdr my_sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918
1919	memset(data, 0, sizeof(*data));
1920	memset(&cmd[0], 0, 12);
 
 
1921	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1922	cmd[2] = modepage;
 
1923
1924	/* caller might not be interested in sense, but we need it */
1925	if (!sshdr)
1926		sshdr = &my_sshdr;
1927
1928 retry:
1929	use_10_for_ms = sdev->use_10_for_ms;
1930
1931	if (use_10_for_ms) {
1932		if (len < 8)
1933			len = 8;
1934
1935		cmd[0] = MODE_SENSE_10;
1936		cmd[8] = len;
1937		header_length = 8;
1938	} else {
1939		if (len < 4)
1940			len = 4;
1941
1942		cmd[0] = MODE_SENSE;
1943		cmd[4] = len;
1944		header_length = 4;
1945	}
1946
1947	memset(buffer, 0, len);
1948
1949	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1950				  sshdr, timeout, retries, NULL);
 
 
1951
1952	/* This code looks awful: what it's doing is making sure an
1953	 * ILLEGAL REQUEST sense return identifies the actual command
1954	 * byte as the problem.  MODE_SENSE commands can return
1955	 * ILLEGAL REQUEST if the code page isn't supported */
1956
1957	if (use_10_for_ms && !scsi_status_is_good(result) &&
1958	    (driver_byte(result) & DRIVER_SENSE)) {
1959		if (scsi_sense_valid(sshdr)) {
1960			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1961			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1962				/* 
1963				 * Invalid command operation code
 
 
 
 
1964				 */
1965				sdev->use_10_for_ms = 0;
1966				goto retry;
 
 
 
 
1967			}
1968		}
 
1969	}
1970
1971	if(scsi_status_is_good(result)) {
1972		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1973			     (modepage == 6 || modepage == 8))) {
1974			/* Initio breakage? */
1975			header_length = 0;
1976			data->length = 13;
1977			data->medium_type = 0;
1978			data->device_specific = 0;
1979			data->longlba = 0;
1980			data->block_descriptor_length = 0;
1981		} else if(use_10_for_ms) {
1982			data->length = buffer[0]*256 + buffer[1] + 2;
1983			data->medium_type = buffer[2];
1984			data->device_specific = buffer[3];
1985			data->longlba = buffer[4] & 0x01;
1986			data->block_descriptor_length = buffer[6]*256
1987				+ buffer[7];
1988		} else {
1989			data->length = buffer[0] + 1;
1990			data->medium_type = buffer[1];
1991			data->device_specific = buffer[2];
1992			data->block_descriptor_length = buffer[3];
1993		}
1994		data->header_length = header_length;
1995	}
 
1996
1997	return result;
1998}
1999EXPORT_SYMBOL(scsi_mode_sense);
2000
2001/**
2002 *	scsi_test_unit_ready - test if unit is ready
2003 *	@sdev:	scsi device to change the state of.
2004 *	@timeout: command timeout
2005 *	@retries: number of retries before failing
2006 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2007 *		returning sense. Make sure that this is cleared before passing
2008 *		in.
2009 *
2010 *	Returns zero if unsuccessful or an error if TUR failed.  For
2011 *	removable media, UNIT_ATTENTION sets ->changed flag.
2012 **/
2013int
2014scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2015		     struct scsi_sense_hdr *sshdr_external)
2016{
2017	char cmd[] = {
2018		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2019	};
2020	struct scsi_sense_hdr *sshdr;
 
 
2021	int result;
2022
2023	if (!sshdr_external)
2024		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2025	else
2026		sshdr = sshdr_external;
2027
2028	/* try to eat the UNIT_ATTENTION if there are enough retries */
2029	do {
2030		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2031					  timeout, retries, NULL);
2032		if (sdev->removable && scsi_sense_valid(sshdr) &&
2033		    sshdr->sense_key == UNIT_ATTENTION)
2034			sdev->changed = 1;
2035	} while (scsi_sense_valid(sshdr) &&
2036		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2037
2038	if (!sshdr_external)
2039		kfree(sshdr);
2040	return result;
2041}
2042EXPORT_SYMBOL(scsi_test_unit_ready);
2043
2044/**
2045 *	scsi_device_set_state - Take the given device through the device state model.
2046 *	@sdev:	scsi device to change the state of.
2047 *	@state:	state to change to.
2048 *
2049 *	Returns zero if unsuccessful or an error if the requested 
2050 *	transition is illegal.
2051 */
2052int
2053scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054{
2055	enum scsi_device_state oldstate = sdev->sdev_state;
2056
2057	if (state == oldstate)
2058		return 0;
2059
2060	switch (state) {
2061	case SDEV_CREATED:
2062		switch (oldstate) {
2063		case SDEV_CREATED_BLOCK:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069			
2070	case SDEV_RUNNING:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_OFFLINE:
 
2074		case SDEV_QUIESCE:
2075		case SDEV_BLOCK:
2076			break;
2077		default:
2078			goto illegal;
2079		}
2080		break;
2081
2082	case SDEV_QUIESCE:
2083		switch (oldstate) {
2084		case SDEV_RUNNING:
2085		case SDEV_OFFLINE:
 
2086			break;
2087		default:
2088			goto illegal;
2089		}
2090		break;
2091
2092	case SDEV_OFFLINE:
 
2093		switch (oldstate) {
2094		case SDEV_CREATED:
2095		case SDEV_RUNNING:
2096		case SDEV_QUIESCE:
2097		case SDEV_BLOCK:
2098			break;
2099		default:
2100			goto illegal;
2101		}
2102		break;
2103
2104	case SDEV_BLOCK:
2105		switch (oldstate) {
2106		case SDEV_RUNNING:
2107		case SDEV_CREATED_BLOCK:
 
 
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_CREATED_BLOCK:
2115		switch (oldstate) {
2116		case SDEV_CREATED:
2117			break;
2118		default:
2119			goto illegal;
2120		}
2121		break;
2122
2123	case SDEV_CANCEL:
2124		switch (oldstate) {
2125		case SDEV_CREATED:
2126		case SDEV_RUNNING:
2127		case SDEV_QUIESCE:
2128		case SDEV_OFFLINE:
2129		case SDEV_BLOCK:
2130			break;
2131		default:
2132			goto illegal;
2133		}
2134		break;
2135
2136	case SDEV_DEL:
2137		switch (oldstate) {
2138		case SDEV_CREATED:
2139		case SDEV_RUNNING:
2140		case SDEV_OFFLINE:
 
2141		case SDEV_CANCEL:
 
 
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	}
 
2149	sdev->sdev_state = state;
2150	return 0;
2151
2152 illegal:
2153	SCSI_LOG_ERROR_RECOVERY(1, 
2154				sdev_printk(KERN_ERR, sdev,
2155					    "Illegal state transition %s->%s\n",
2156					    scsi_device_state_name(oldstate),
2157					    scsi_device_state_name(state))
2158				);
2159	return -EINVAL;
2160}
2161EXPORT_SYMBOL(scsi_device_set_state);
2162
2163/**
2164 * 	sdev_evt_emit - emit a single SCSI device uevent
2165 *	@sdev: associated SCSI device
2166 *	@evt: event to emit
2167 *
2168 *	Send a single uevent (scsi_event) to the associated scsi_device.
2169 */
2170static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171{
2172	int idx = 0;
2173	char *envp[3];
2174
2175	switch (evt->evt_type) {
2176	case SDEV_EVT_MEDIA_CHANGE:
2177		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2178		break;
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	default:
2181		/* do nothing */
2182		break;
2183	}
2184
2185	envp[idx++] = NULL;
2186
2187	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2188}
2189
2190/**
2191 * 	sdev_evt_thread - send a uevent for each scsi event
2192 *	@work: work struct for scsi_device
2193 *
2194 *	Dispatch queued events to their associated scsi_device kobjects
2195 *	as uevents.
2196 */
2197void scsi_evt_thread(struct work_struct *work)
2198{
2199	struct scsi_device *sdev;
 
2200	LIST_HEAD(event_list);
2201
2202	sdev = container_of(work, struct scsi_device, event_work);
2203
 
 
 
 
2204	while (1) {
2205		struct scsi_event *evt;
2206		struct list_head *this, *tmp;
2207		unsigned long flags;
2208
2209		spin_lock_irqsave(&sdev->list_lock, flags);
2210		list_splice_init(&sdev->event_list, &event_list);
2211		spin_unlock_irqrestore(&sdev->list_lock, flags);
2212
2213		if (list_empty(&event_list))
2214			break;
2215
2216		list_for_each_safe(this, tmp, &event_list) {
2217			evt = list_entry(this, struct scsi_event, node);
2218			list_del(&evt->node);
2219			scsi_evt_emit(sdev, evt);
2220			kfree(evt);
2221		}
2222	}
2223}
2224
2225/**
2226 * 	sdev_evt_send - send asserted event to uevent thread
2227 *	@sdev: scsi_device event occurred on
2228 *	@evt: event to send
2229 *
2230 *	Assert scsi device event asynchronously.
2231 */
2232void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233{
2234	unsigned long flags;
2235
2236#if 0
2237	/* FIXME: currently this check eliminates all media change events
2238	 * for polled devices.  Need to update to discriminate between AN
2239	 * and polled events */
2240	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2241		kfree(evt);
2242		return;
2243	}
2244#endif
2245
2246	spin_lock_irqsave(&sdev->list_lock, flags);
2247	list_add_tail(&evt->node, &sdev->event_list);
2248	schedule_work(&sdev->event_work);
2249	spin_unlock_irqrestore(&sdev->list_lock, flags);
2250}
2251EXPORT_SYMBOL_GPL(sdev_evt_send);
2252
2253/**
2254 * 	sdev_evt_alloc - allocate a new scsi event
2255 *	@evt_type: type of event to allocate
2256 *	@gfpflags: GFP flags for allocation
2257 *
2258 *	Allocates and returns a new scsi_event.
2259 */
2260struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2261				  gfp_t gfpflags)
2262{
2263	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2264	if (!evt)
2265		return NULL;
2266
2267	evt->evt_type = evt_type;
2268	INIT_LIST_HEAD(&evt->node);
2269
2270	/* evt_type-specific initialization, if any */
2271	switch (evt_type) {
2272	case SDEV_EVT_MEDIA_CHANGE:
 
 
 
 
 
 
 
2273	default:
2274		/* do nothing */
2275		break;
2276	}
2277
2278	return evt;
2279}
2280EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2281
2282/**
2283 * 	sdev_evt_send_simple - send asserted event to uevent thread
2284 *	@sdev: scsi_device event occurred on
2285 *	@evt_type: type of event to send
2286 *	@gfpflags: GFP flags for allocation
2287 *
2288 *	Assert scsi device event asynchronously, given an event type.
2289 */
2290void sdev_evt_send_simple(struct scsi_device *sdev,
2291			  enum scsi_device_event evt_type, gfp_t gfpflags)
2292{
2293	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2294	if (!evt) {
2295		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2296			    evt_type);
2297		return;
2298	}
2299
2300	sdev_evt_send(sdev, evt);
2301}
2302EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2303
2304/**
2305 *	scsi_device_quiesce - Block user issued commands.
2306 *	@sdev:	scsi device to quiesce.
2307 *
2308 *	This works by trying to transition to the SDEV_QUIESCE state
2309 *	(which must be a legal transition).  When the device is in this
2310 *	state, only special requests will be accepted, all others will
2311 *	be deferred.  Since special requests may also be requeued requests,
2312 *	a successful return doesn't guarantee the device will be 
2313 *	totally quiescent.
2314 *
2315 *	Must be called with user context, may sleep.
2316 *
2317 *	Returns zero if unsuccessful or an error if not.
2318 */
2319int
2320scsi_device_quiesce(struct scsi_device *sdev)
2321{
2322	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2323	if (err)
2324		return err;
2325
2326	scsi_run_queue(sdev->request_queue);
2327	while (sdev->device_busy) {
2328		msleep_interruptible(200);
2329		scsi_run_queue(sdev->request_queue);
2330	}
2331	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332}
2333EXPORT_SYMBOL(scsi_device_quiesce);
2334
2335/**
2336 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2337 *	@sdev:	scsi device to resume.
2338 *
2339 *	Moves the device from quiesced back to running and restarts the
2340 *	queues.
2341 *
2342 *	Must be called with user context, may sleep.
2343 */
2344void scsi_device_resume(struct scsi_device *sdev)
2345{
2346	/* check if the device state was mutated prior to resume, and if
2347	 * so assume the state is being managed elsewhere (for example
2348	 * device deleted during suspend)
2349	 */
2350	if (sdev->sdev_state != SDEV_QUIESCE ||
2351	    scsi_device_set_state(sdev, SDEV_RUNNING))
2352		return;
2353	scsi_run_queue(sdev->request_queue);
 
 
 
 
2354}
2355EXPORT_SYMBOL(scsi_device_resume);
2356
2357static void
2358device_quiesce_fn(struct scsi_device *sdev, void *data)
2359{
2360	scsi_device_quiesce(sdev);
2361}
2362
2363void
2364scsi_target_quiesce(struct scsi_target *starget)
2365{
2366	starget_for_each_device(starget, NULL, device_quiesce_fn);
2367}
2368EXPORT_SYMBOL(scsi_target_quiesce);
2369
2370static void
2371device_resume_fn(struct scsi_device *sdev, void *data)
2372{
2373	scsi_device_resume(sdev);
2374}
2375
2376void
2377scsi_target_resume(struct scsi_target *starget)
2378{
2379	starget_for_each_device(starget, NULL, device_resume_fn);
2380}
2381EXPORT_SYMBOL(scsi_target_resume);
2382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383/**
2384 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2385 * @sdev:	device to block
2386 *
2387 * Block request made by scsi lld's to temporarily stop all
2388 * scsi commands on the specified device.  Called from interrupt
2389 * or normal process context.
2390 *
2391 * Returns zero if successful or error if not
2392 *
2393 * Notes:       
2394 *	This routine transitions the device to the SDEV_BLOCK state
2395 *	(which must be a legal transition).  When the device is in this
2396 *	state, all commands are deferred until the scsi lld reenables
2397 *	the device with scsi_device_unblock or device_block_tmo fires.
2398 *	This routine assumes the host_lock is held on entry.
2399 */
2400int
2401scsi_internal_device_block(struct scsi_device *sdev)
2402{
2403	struct request_queue *q = sdev->request_queue;
2404	unsigned long flags;
2405	int err = 0;
2406
2407	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2408	if (err) {
2409		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2410
2411		if (err)
2412			return err;
2413	}
2414
2415	/* 
2416	 * The device has transitioned to SDEV_BLOCK.  Stop the
2417	 * block layer from calling the midlayer with this device's
2418	 * request queue. 
2419	 */
2420	spin_lock_irqsave(q->queue_lock, flags);
2421	blk_stop_queue(q);
2422	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
2423
2424	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425}
2426EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2427 
2428/**
2429 * scsi_internal_device_unblock - resume a device after a block request
2430 * @sdev:	device to resume
 
2431 *
2432 * Called by scsi lld's or the midlayer to restart the device queue
2433 * for the previously suspended scsi device.  Called from interrupt or
2434 * normal process context.
2435 *
2436 * Returns zero if successful or error if not.
2437 *
2438 * Notes:       
2439 *	This routine transitions the device to the SDEV_RUNNING state
2440 *	(which must be a legal transition) allowing the midlayer to
2441 *	goose the queue for this device.  This routine assumes the 
2442 *	host_lock is held upon entry.
2443 */
2444int
2445scsi_internal_device_unblock(struct scsi_device *sdev)
2446{
2447	struct request_queue *q = sdev->request_queue; 
2448	unsigned long flags;
2449	
2450	/* 
2451	 * Try to transition the scsi device to SDEV_RUNNING
2452	 * and goose the device queue if successful.  
2453	 */
2454	if (sdev->sdev_state == SDEV_BLOCK)
2455		sdev->sdev_state = SDEV_RUNNING;
2456	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2457		sdev->sdev_state = SDEV_CREATED;
2458	else if (sdev->sdev_state != SDEV_CANCEL &&
2459		 sdev->sdev_state != SDEV_OFFLINE)
2460		return -EINVAL;
 
2461
2462	spin_lock_irqsave(q->queue_lock, flags);
2463	blk_start_queue(q);
2464	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466	return 0;
2467}
2468EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2469
2470static void
2471device_block(struct scsi_device *sdev, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2472{
2473	scsi_internal_device_block(sdev);
 
 
 
 
 
 
2474}
2475
2476static int
2477target_block(struct device *dev, void *data)
2478{
2479	if (scsi_is_target_device(dev))
2480		starget_for_each_device(to_scsi_target(dev), NULL,
2481					device_block);
2482	return 0;
2483}
2484
 
 
 
 
 
 
 
 
 
 
 
 
2485void
2486scsi_target_block(struct device *dev)
2487{
2488	if (scsi_is_target_device(dev))
2489		starget_for_each_device(to_scsi_target(dev), NULL,
2490					device_block);
2491	else
2492		device_for_each_child(dev, NULL, target_block);
2493}
2494EXPORT_SYMBOL_GPL(scsi_target_block);
2495
2496static void
2497device_unblock(struct scsi_device *sdev, void *data)
2498{
2499	scsi_internal_device_unblock(sdev);
2500}
2501
2502static int
2503target_unblock(struct device *dev, void *data)
2504{
2505	if (scsi_is_target_device(dev))
2506		starget_for_each_device(to_scsi_target(dev), NULL,
2507					device_unblock);
2508	return 0;
2509}
2510
2511void
2512scsi_target_unblock(struct device *dev)
2513{
2514	if (scsi_is_target_device(dev))
2515		starget_for_each_device(to_scsi_target(dev), NULL,
2516					device_unblock);
2517	else
2518		device_for_each_child(dev, NULL, target_unblock);
2519}
2520EXPORT_SYMBOL_GPL(scsi_target_unblock);
2521
2522/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2524 * @sgl:	scatter-gather list
2525 * @sg_count:	number of segments in sg
2526 * @offset:	offset in bytes into sg, on return offset into the mapped area
2527 * @len:	bytes to map, on return number of bytes mapped
2528 *
2529 * Returns virtual address of the start of the mapped page
2530 */
2531void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2532			  size_t *offset, size_t *len)
2533{
2534	int i;
2535	size_t sg_len = 0, len_complete = 0;
2536	struct scatterlist *sg;
2537	struct page *page;
2538
2539	WARN_ON(!irqs_disabled());
2540
2541	for_each_sg(sgl, sg, sg_count, i) {
2542		len_complete = sg_len; /* Complete sg-entries */
2543		sg_len += sg->length;
2544		if (sg_len > *offset)
2545			break;
2546	}
2547
2548	if (unlikely(i == sg_count)) {
2549		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2550			"elements %d\n",
2551		       __func__, sg_len, *offset, sg_count);
2552		WARN_ON(1);
2553		return NULL;
2554	}
2555
2556	/* Offset starting from the beginning of first page in this sg-entry */
2557	*offset = *offset - len_complete + sg->offset;
2558
2559	/* Assumption: contiguous pages can be accessed as "page + i" */
2560	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2561	*offset &= ~PAGE_MASK;
2562
2563	/* Bytes in this sg-entry from *offset to the end of the page */
2564	sg_len = PAGE_SIZE - *offset;
2565	if (*len > sg_len)
2566		*len = sg_len;
2567
2568	return kmap_atomic(page);
2569}
2570EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2571
2572/**
2573 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2574 * @virt:	virtual address to be unmapped
2575 */
2576void scsi_kunmap_atomic_sg(void *virt)
2577{
2578	kunmap_atomic(virt);
2579}
2580EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
 
 
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <linux/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* scsi_init_limits() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54#endif
 
 
 
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
 
 
 
 
 
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
  62{
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
 
 
 
 
 
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 
 
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 
 
 
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187void scsi_failures_reset_retries(struct scsi_failures *failures)
 188{
 189	struct scsi_failure *failure;
 190
 191	failures->total_retries = 0;
 192
 193	for (failure = failures->failure_definitions; failure->result;
 194	     failure++)
 195		failure->retries = 0;
 196}
 197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
 198
 199/**
 200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
 201 * @scmd: scsi_cmnd to check.
 202 * @failures: scsi_failures struct that lists failures to check for.
 203 *
 204 * Returns -EAGAIN if the caller should retry else 0.
 
 
 
 
 
 205 */
 206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
 207				  struct scsi_failures *failures)
 208{
 209	struct scsi_failure *failure;
 210	struct scsi_sense_hdr sshdr;
 211	enum sam_status status;
 212
 213	if (!scmd->result)
 214		return 0;
 215
 216	if (!failures)
 217		return 0;
 218
 219	for (failure = failures->failure_definitions; failure->result;
 220	     failure++) {
 221		if (failure->result == SCMD_FAILURE_RESULT_ANY)
 222			goto maybe_retry;
 223
 224		if (host_byte(scmd->result) &&
 225		    host_byte(scmd->result) == host_byte(failure->result))
 226			goto maybe_retry;
 227
 228		status = status_byte(scmd->result);
 229		if (!status)
 230			continue;
 231
 232		if (failure->result == SCMD_FAILURE_STAT_ANY &&
 233		    !scsi_status_is_good(scmd->result))
 234			goto maybe_retry;
 235
 236		if (status != status_byte(failure->result))
 237			continue;
 238
 239		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
 240		    failure->sense == SCMD_FAILURE_SENSE_ANY)
 241			goto maybe_retry;
 242
 243		if (!scsi_command_normalize_sense(scmd, &sshdr))
 244			return 0;
 245
 246		if (failure->sense != sshdr.sense_key)
 247			continue;
 248
 249		if (failure->asc == SCMD_FAILURE_ASC_ANY)
 250			goto maybe_retry;
 251
 252		if (failure->asc != sshdr.asc)
 253			continue;
 254
 255		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
 256		    failure->ascq == sshdr.ascq)
 257			goto maybe_retry;
 258	}
 259
 260	return 0;
 261
 262maybe_retry:
 263	if (failure->allowed) {
 264		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
 265		    ++failure->retries <= failure->allowed)
 266			return -EAGAIN;
 267	} else {
 268		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
 269		    ++failures->total_retries <= failures->total_allowed)
 270			return -EAGAIN;
 271	}
 272
 273	return 0;
 274}
 275
 276/**
 277 * scsi_execute_cmd - insert request and wait for the result
 278 * @sdev:	scsi_device
 279 * @cmd:	scsi command
 280 * @opf:	block layer request cmd_flags
 281 * @buffer:	data buffer
 282 * @bufflen:	len of buffer
 283 * @timeout:	request timeout in HZ
 284 * @ml_retries:	number of times SCSI midlayer will retry request
 285 * @args:	Optional args. See struct definition for field descriptions
 286 *
 287 * Returns the scsi_cmnd result field if a command was executed, or a negative
 288 * Linux error code if we didn't get that far.
 289 */
 290int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 291		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 292		     int timeout, int ml_retries,
 293		     const struct scsi_exec_args *args)
 
 
 294{
 295	static const struct scsi_exec_args default_args;
 296	struct request *req;
 297	struct scsi_cmnd *scmd;
 298	int ret;
 299
 300	if (!args)
 301		args = &default_args;
 302	else if (WARN_ON_ONCE(args->sense &&
 303			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 304		return -EINVAL;
 305
 306retry:
 307	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 308	if (IS_ERR(req))
 309		return PTR_ERR(req);
 310
 311	if (bufflen) {
 312		ret = blk_rq_map_kern(sdev->request_queue, req,
 313				      buffer, bufflen, GFP_NOIO);
 314		if (ret)
 315			goto out;
 316	}
 317	scmd = blk_mq_rq_to_pdu(req);
 318	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 319	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 320	scmd->allowed = ml_retries;
 321	scmd->flags |= args->scmd_flags;
 322	req->timeout = timeout;
 323	req->rq_flags |= RQF_QUIET;
 
 324
 325	/*
 326	 * head injection *required* here otherwise quiesce won't work
 327	 */
 328	blk_execute_rq(req, true);
 329
 330	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
 331		blk_mq_free_request(req);
 332		goto retry;
 333	}
 334
 335	/*
 336	 * Some devices (USB mass-storage in particular) may transfer
 337	 * garbage data together with a residue indicating that the data
 338	 * is invalid.  Prevent the garbage from being misinterpreted
 339	 * and prevent security leaks by zeroing out the excess data.
 340	 */
 341	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 342		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 343
 344	if (args->resid)
 345		*args->resid = scmd->resid_len;
 346	if (args->sense)
 347		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 348	if (args->sshdr)
 349		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 350				     args->sshdr);
 351
 352	ret = scmd->result;
 
 
 353 out:
 354	blk_mq_free_request(req);
 355
 356	return ret;
 357}
 358EXPORT_SYMBOL(scsi_execute_cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359
 360/*
 361 * Wake up the error handler if necessary. Avoid as follows that the error
 362 * handler is not woken up if host in-flight requests number ==
 363 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 364 * with an RCU read lock in this function to ensure that this function in
 365 * its entirety either finishes before scsi_eh_scmd_add() increases the
 366 * host_failed counter or that it notices the shost state change made by
 367 * scsi_eh_scmd_add().
 
 
 368 */
 369static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 370{
 371	unsigned long flags;
 372
 373	rcu_read_lock();
 374	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 375	if (unlikely(scsi_host_in_recovery(shost))) {
 376		unsigned int busy = scsi_host_busy(shost);
 377
 378		spin_lock_irqsave(shost->host_lock, flags);
 379		if (shost->host_failed || shost->host_eh_scheduled)
 380			scsi_eh_wakeup(shost, busy);
 381		spin_unlock_irqrestore(shost->host_lock, flags);
 382	}
 383	rcu_read_unlock();
 384}
 385
 386void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 387{
 388	struct Scsi_Host *shost = sdev->host;
 389	struct scsi_target *starget = scsi_target(sdev);
 
 390
 391	scsi_dec_host_busy(shost, cmd);
 392
 393	if (starget->can_queue > 0)
 394		atomic_dec(&starget->target_busy);
 395
 396	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 397	cmd->budget_token = -1;
 398}
 399
 400/*
 401 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 402 * interrupts disabled.
 403 */
 404static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 405{
 406	struct scsi_device *current_sdev = data;
 407
 408	if (sdev != current_sdev)
 409		blk_mq_run_hw_queues(sdev->request_queue, true);
 410}
 411
 412/*
 413 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 414 * and call blk_run_queue for all the scsi_devices on the target -
 415 * including current_sdev first.
 416 *
 417 * Called with *no* scsi locks held.
 418 */
 419static void scsi_single_lun_run(struct scsi_device *current_sdev)
 420{
 421	struct Scsi_Host *shost = current_sdev->host;
 
 422	struct scsi_target *starget = scsi_target(current_sdev);
 423	unsigned long flags;
 424
 425	spin_lock_irqsave(shost->host_lock, flags);
 426	starget->starget_sdev_user = NULL;
 427	spin_unlock_irqrestore(shost->host_lock, flags);
 428
 429	/*
 430	 * Call blk_run_queue for all LUNs on the target, starting with
 431	 * current_sdev. We race with others (to set starget_sdev_user),
 432	 * but in most cases, we will be first. Ideally, each LU on the
 433	 * target would get some limited time or requests on the target.
 434	 */
 435	blk_mq_run_hw_queues(current_sdev->request_queue,
 436			     shost->queuecommand_may_block);
 437
 438	spin_lock_irqsave(shost->host_lock, flags);
 439	if (!starget->starget_sdev_user)
 440		__starget_for_each_device(starget, current_sdev,
 441					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	spin_unlock_irqrestore(shost->host_lock, flags);
 443}
 444
 445static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 446{
 447	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 448		return true;
 449	if (atomic_read(&sdev->device_blocked) > 0)
 450		return true;
 451	return false;
 452}
 453
 454static inline bool scsi_target_is_busy(struct scsi_target *starget)
 455{
 456	if (starget->can_queue > 0) {
 457		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 458			return true;
 459		if (atomic_read(&starget->target_blocked) > 0)
 460			return true;
 461	}
 462	return false;
 463}
 464
 465static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 466{
 467	if (atomic_read(&shost->host_blocked) > 0)
 468		return true;
 469	if (shost->host_self_blocked)
 470		return true;
 471	return false;
 472}
 473
 474static void scsi_starved_list_run(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
 475{
 
 
 476	LIST_HEAD(starved_list);
 477	struct scsi_device *sdev;
 478	unsigned long flags;
 479
 
 
 
 
 480	spin_lock_irqsave(shost->host_lock, flags);
 481	list_splice_init(&shost->starved_list, &starved_list);
 482
 483	while (!list_empty(&starved_list)) {
 484		struct request_queue *slq;
 485
 486		/*
 487		 * As long as shost is accepting commands and we have
 488		 * starved queues, call blk_run_queue. scsi_request_fn
 489		 * drops the queue_lock and can add us back to the
 490		 * starved_list.
 491		 *
 492		 * host_lock protects the starved_list and starved_entry.
 493		 * scsi_request_fn must get the host_lock before checking
 494		 * or modifying starved_list or starved_entry.
 495		 */
 496		if (scsi_host_is_busy(shost))
 497			break;
 498
 499		sdev = list_entry(starved_list.next,
 500				  struct scsi_device, starved_entry);
 501		list_del_init(&sdev->starved_entry);
 502		if (scsi_target_is_busy(scsi_target(sdev))) {
 503			list_move_tail(&sdev->starved_entry,
 504				       &shost->starved_list);
 505			continue;
 506		}
 507
 508		/*
 509		 * Once we drop the host lock, a racing scsi_remove_device()
 510		 * call may remove the sdev from the starved list and destroy
 511		 * it and the queue.  Mitigate by taking a reference to the
 512		 * queue and never touching the sdev again after we drop the
 513		 * host lock.  Note: if __scsi_remove_device() invokes
 514		 * blk_mq_destroy_queue() before the queue is run from this
 515		 * function then blk_run_queue() will return immediately since
 516		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 517		 */
 518		slq = sdev->request_queue;
 519		if (!blk_get_queue(slq))
 520			continue;
 521		spin_unlock_irqrestore(shost->host_lock, flags);
 522
 523		blk_mq_run_hw_queues(slq, false);
 524		blk_put_queue(slq);
 525
 526		spin_lock_irqsave(shost->host_lock, flags);
 527	}
 528	/* put any unprocessed entries back */
 529	list_splice(&starved_list, &shost->starved_list);
 530	spin_unlock_irqrestore(shost->host_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 531}
 532
 533/**
 534 * scsi_run_queue - Select a proper request queue to serve next.
 535 * @q:  last request's queue
 
 
 
 
 
 
 536 *
 537 * The previous command was completely finished, start a new one if possible.
 
 
 
 
 
 
 538 */
 539static void scsi_run_queue(struct request_queue *q)
 540{
 541	struct scsi_device *sdev = q->queuedata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543	if (scsi_target(sdev)->single_lun)
 544		scsi_single_lun_run(sdev);
 545	if (!list_empty(&sdev->host->starved_list))
 546		scsi_starved_list_run(sdev->host);
 547
 548	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 549	blk_mq_kick_requeue_list(q);
 550}
 551
 552void scsi_requeue_run_queue(struct work_struct *work)
 553{
 554	struct scsi_device *sdev;
 555	struct request_queue *q;
 
 
 
 556
 557	sdev = container_of(work, struct scsi_device, requeue_work);
 558	q = sdev->request_queue;
 559	scsi_run_queue(q);
 
 
 
 560}
 561
 562void scsi_run_host_queues(struct Scsi_Host *shost)
 563{
 564	struct scsi_device *sdev;
 565
 566	shost_for_each_device(sdev, shost)
 567		scsi_run_queue(sdev->request_queue);
 568}
 569
 570static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571{
 572	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 573		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 574
 575		if (drv->uninit_command)
 576			drv->uninit_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577	}
 
 
 
 
 
 
 
 
 578}
 579
 580void scsi_free_sgtables(struct scsi_cmnd *cmd)
 581{
 582	if (cmd->sdb.table.nents)
 583		sg_free_table_chained(&cmd->sdb.table,
 584				SCSI_INLINE_SG_CNT);
 585	if (scsi_prot_sg_count(cmd))
 586		sg_free_table_chained(&cmd->prot_sdb->table,
 587				SCSI_INLINE_PROT_SG_CNT);
 
 
 
 
 588}
 589EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 590
 591static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 592{
 593	scsi_free_sgtables(cmd);
 594	scsi_uninit_cmd(cmd);
 
 
 595}
 596
 597static void scsi_run_queue_async(struct scsi_device *sdev)
 598{
 599	if (scsi_host_in_recovery(sdev->host))
 600		return;
 601
 602	if (scsi_target(sdev)->single_lun ||
 603	    !list_empty(&sdev->host->starved_list)) {
 604		kblockd_schedule_work(&sdev->requeue_work);
 605	} else {
 606		/*
 607		 * smp_mb() present in sbitmap_queue_clear() or implied in
 608		 * .end_io is for ordering writing .device_busy in
 609		 * scsi_device_unbusy() and reading sdev->restarts.
 610		 */
 611		int old = atomic_read(&sdev->restarts);
 612
 613		/*
 614		 * ->restarts has to be kept as non-zero if new budget
 615		 *  contention occurs.
 616		 *
 617		 *  No need to run queue when either another re-run
 618		 *  queue wins in updating ->restarts or a new budget
 619		 *  contention occurs.
 620		 */
 621		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 622			blk_mq_run_hw_queues(sdev->request_queue, true);
 623	}
 624}
 625
 626/* Returns false when no more bytes to process, true if there are more */
 627static bool scsi_end_request(struct request *req, blk_status_t error,
 628		unsigned int bytes)
 629{
 630	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 631	struct scsi_device *sdev = cmd->device;
 632	struct request_queue *q = sdev->request_queue;
 633
 634	if (blk_update_request(req, error, bytes))
 635		return true;
 636
 637	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
 638		add_disk_randomness(req->q->disk);
 
 
 
 639
 640	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
 641		     !(cmd->flags & SCMD_INITIALIZED));
 642	cmd->flags = 0;
 643
 644	/*
 645	 * Calling rcu_barrier() is not necessary here because the
 646	 * SCSI error handler guarantees that the function called by
 647	 * call_rcu() has been called before scsi_end_request() is
 648	 * called.
 649	 */
 650	destroy_rcu_head(&cmd->rcu);
 651
 652	/*
 653	 * In the MQ case the command gets freed by __blk_mq_end_request,
 654	 * so we have to do all cleanup that depends on it earlier.
 655	 *
 656	 * We also can't kick the queues from irq context, so we
 657	 * will have to defer it to a workqueue.
 658	 */
 659	scsi_mq_uninit_cmd(cmd);
 660
 661	/*
 662	 * queue is still alive, so grab the ref for preventing it
 663	 * from being cleaned up during running queue.
 664	 */
 665	percpu_ref_get(&q->q_usage_counter);
 666
 667	__blk_mq_end_request(req, error);
 668
 669	scsi_run_queue_async(sdev);
 
 
 
 
 
 
 670
 671	percpu_ref_put(&q->q_usage_counter);
 672	return false;
 673}
 674
 675/**
 676 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 677 * @result:	scsi error code
 
 
 
 
 
 
 
 678 *
 679 * Translate a SCSI result code into a blk_status_t value.
 
 
 
 
 680 */
 681static blk_status_t scsi_result_to_blk_status(int result)
 
 
 
 
 
 
 682{
 683	/*
 684	 * Check the scsi-ml byte first in case we converted a host or status
 685	 * byte.
 686	 */
 687	switch (scsi_ml_byte(result)) {
 688	case SCSIML_STAT_OK:
 689		break;
 690	case SCSIML_STAT_RESV_CONFLICT:
 691		return BLK_STS_RESV_CONFLICT;
 692	case SCSIML_STAT_NOSPC:
 693		return BLK_STS_NOSPC;
 694	case SCSIML_STAT_MED_ERROR:
 695		return BLK_STS_MEDIUM;
 696	case SCSIML_STAT_TGT_FAILURE:
 697		return BLK_STS_TARGET;
 698	case SCSIML_STAT_DL_TIMEOUT:
 699		return BLK_STS_DURATION_LIMIT;
 700	}
 701
 702	switch (host_byte(result)) {
 703	case DID_OK:
 704		if (scsi_status_is_good(result))
 705			return BLK_STS_OK;
 706		return BLK_STS_IOERR;
 707	case DID_TRANSPORT_FAILFAST:
 708	case DID_TRANSPORT_MARGINAL:
 709		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 710	default:
 711		return BLK_STS_IOERR;
 
 712	}
 
 
 713}
 714
 715/**
 716 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 717 * @rq: request to examine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718 *
 719 * Description:
 720 *     A request could be merge of IOs which require different failure
 721 *     handling.  This function determines the number of bytes which
 722 *     can be failed from the beginning of the request without
 723 *     crossing into area which need to be retried further.
 724 *
 725 * Return:
 726 *     The number of bytes to fail.
 727 */
 728static unsigned int scsi_rq_err_bytes(const struct request *rq)
 729{
 730	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 731	unsigned int bytes = 0;
 732	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 735		return blk_rq_bytes(rq);
 
 
 
 
 
 736
 737	/*
 738	 * Currently the only 'mixing' which can happen is between
 739	 * different fastfail types.  We can safely fail portions
 740	 * which have all the failfast bits that the first one has -
 741	 * the ones which are at least as eager to fail as the first
 742	 * one.
 743	 */
 744	for (bio = rq->bio; bio; bio = bio->bi_next) {
 745		if ((bio->bi_opf & ff) != ff)
 746			break;
 747		bytes += bio->bi_iter.bi_size;
 748	}
 749
 750	/* this could lead to infinite loop */
 751	BUG_ON(blk_rq_bytes(rq) && !bytes);
 752	return bytes;
 753}
 754
 755static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 756{
 757	struct request *req = scsi_cmd_to_rq(cmd);
 758	unsigned long wait_for;
 
 
 759
 760	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 761		return false;
 762
 763	wait_for = (cmd->allowed + 1) * req->timeout;
 764	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 765		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 766			    wait_for/HZ);
 767		return true;
 768	}
 769	return false;
 770}
 771
 772/*
 773 * When ALUA transition state is returned, reprep the cmd to
 774 * use the ALUA handler's transition timeout. Delay the reprep
 775 * 1 sec to avoid aggressive retries of the target in that
 776 * state.
 777 */
 778#define ALUA_TRANSITION_REPREP_DELAY	1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780/* Helper for scsi_io_completion() when special action required. */
 781static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 782{
 783	struct request *req = scsi_cmd_to_rq(cmd);
 784	int level = 0;
 785	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 786	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 787	struct scsi_sense_hdr sshdr;
 788	bool sense_valid;
 789	bool sense_current = true;      /* false implies "deferred sense" */
 790	blk_status_t blk_stat;
 791
 792	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 793	if (sense_valid)
 794		sense_current = !scsi_sense_is_deferred(&sshdr);
 795
 796	blk_stat = scsi_result_to_blk_status(result);
 797
 798	if (host_byte(result) == DID_RESET) {
 799		/* Third party bus reset or reset for error recovery
 800		 * reasons.  Just retry the command and see what
 801		 * happens.
 802		 */
 803		action = ACTION_RETRY;
 804	} else if (sense_valid && sense_current) {
 805		switch (sshdr.sense_key) {
 806		case UNIT_ATTENTION:
 807			if (cmd->device->removable) {
 808				/* Detected disc change.  Set a bit
 809				 * and quietly refuse further access.
 810				 */
 811				cmd->device->changed = 1;
 
 812				action = ACTION_FAIL;
 813			} else {
 814				/* Must have been a power glitch, or a
 815				 * bus reset.  Could not have been a
 816				 * media change, so we just retry the
 817				 * command and see what happens.
 818				 */
 819				action = ACTION_RETRY;
 820			}
 821			break;
 822		case ILLEGAL_REQUEST:
 823			/* If we had an ILLEGAL REQUEST returned, then
 824			 * we may have performed an unsupported
 825			 * command.  The only thing this should be
 826			 * would be a ten byte read where only a six
 827			 * byte read was supported.  Also, on a system
 828			 * where READ CAPACITY failed, we may have
 829			 * read past the end of the disk.
 830			 */
 831			if ((cmd->device->use_10_for_rw &&
 832			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 833			    (cmd->cmnd[0] == READ_10 ||
 834			     cmd->cmnd[0] == WRITE_10)) {
 835				/* This will issue a new 6-byte command. */
 836				cmd->device->use_10_for_rw = 0;
 837				action = ACTION_REPREP;
 838			} else if (sshdr.asc == 0x10) /* DIX */ {
 
 839				action = ACTION_FAIL;
 840				blk_stat = BLK_STS_PROTECTION;
 841			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 842			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 
 
 
 
 843				action = ACTION_FAIL;
 844				blk_stat = BLK_STS_TARGET;
 845			} else
 846				action = ACTION_FAIL;
 847			break;
 848		case ABORTED_COMMAND:
 849			action = ACTION_FAIL;
 850			if (sshdr.asc == 0x10) /* DIF */
 851				blk_stat = BLK_STS_PROTECTION;
 
 
 852			break;
 853		case NOT_READY:
 854			/* If the device is in the process of becoming
 855			 * ready, or has a temporary blockage, retry.
 856			 */
 857			if (sshdr.asc == 0x04) {
 858				switch (sshdr.ascq) {
 859				case 0x01: /* becoming ready */
 860				case 0x04: /* format in progress */
 861				case 0x05: /* rebuild in progress */
 862				case 0x06: /* recalculation in progress */
 863				case 0x07: /* operation in progress */
 864				case 0x08: /* Long write in progress */
 865				case 0x09: /* self test in progress */
 866				case 0x11: /* notify (enable spinup) required */
 867				case 0x14: /* space allocation in progress */
 868				case 0x1a: /* start stop unit in progress */
 869				case 0x1b: /* sanitize in progress */
 870				case 0x1d: /* configuration in progress */
 871					action = ACTION_DELAYED_RETRY;
 872					break;
 873				case 0x0a: /* ALUA state transition */
 874					action = ACTION_DELAYED_REPREP;
 875					break;
 876				/*
 877				 * Depopulation might take many hours,
 878				 * thus it is not worthwhile to retry.
 879				 */
 880				case 0x24: /* depopulation in progress */
 881				case 0x25: /* depopulation restore in progress */
 882					fallthrough;
 883				default:
 
 884					action = ACTION_FAIL;
 885					break;
 886				}
 887			} else
 
 888				action = ACTION_FAIL;
 
 889			break;
 890		case VOLUME_OVERFLOW:
 891			/* See SSC3rXX or current. */
 892			action = ACTION_FAIL;
 893			break;
 894		case DATA_PROTECT:
 895			action = ACTION_FAIL;
 896			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 897			    (sshdr.asc == 0x55 &&
 898			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 899				/* Insufficient zone resources */
 900				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 901			}
 902			break;
 903		case COMPLETED:
 904			fallthrough;
 905		default:
 
 906			action = ACTION_FAIL;
 907			break;
 908		}
 909	} else
 910		action = ACTION_FAIL;
 911
 912	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 913		action = ACTION_FAIL;
 
 914
 915	switch (action) {
 916	case ACTION_FAIL:
 917		/* Give up and fail the remainder of the request */
 918		if (!(req->rq_flags & RQF_QUIET)) {
 919			static DEFINE_RATELIMIT_STATE(_rs,
 920					DEFAULT_RATELIMIT_INTERVAL,
 921					DEFAULT_RATELIMIT_BURST);
 922
 923			if (unlikely(scsi_logging_level))
 924				level =
 925				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 926						    SCSI_LOG_MLCOMPLETE_BITS);
 927
 928			/*
 929			 * if logging is enabled the failure will be printed
 930			 * in scsi_log_completion(), so avoid duplicate messages
 931			 */
 932			if (!level && __ratelimit(&_rs)) {
 933				scsi_print_result(cmd, NULL, FAILED);
 934				if (sense_valid)
 935					scsi_print_sense(cmd);
 936				scsi_print_command(cmd);
 937			}
 938		}
 939		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 940			return;
 941		fallthrough;
 
 
 942	case ACTION_REPREP:
 943		scsi_mq_requeue_cmd(cmd, 0);
 944		break;
 945	case ACTION_DELAYED_REPREP:
 946		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 
 947		break;
 948	case ACTION_RETRY:
 949		/* Retry the same command immediately */
 950		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 951		break;
 952	case ACTION_DELAYED_RETRY:
 953		/* Retry the same command after a delay */
 954		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 955		break;
 956	}
 957}
 958
 959/*
 960 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 961 * new result that may suppress further error checking. Also modifies
 962 * *blk_statp in some cases.
 963 */
 964static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 965					blk_status_t *blk_statp)
 966{
 967	bool sense_valid;
 968	bool sense_current = true;	/* false implies "deferred sense" */
 969	struct request *req = scsi_cmd_to_rq(cmd);
 970	struct scsi_sense_hdr sshdr;
 971
 972	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 973	if (sense_valid)
 974		sense_current = !scsi_sense_is_deferred(&sshdr);
 975
 976	if (blk_rq_is_passthrough(req)) {
 977		if (sense_valid) {
 978			/*
 979			 * SG_IO wants current and deferred errors
 980			 */
 981			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 982					     SCSI_SENSE_BUFFERSIZE);
 983		}
 984		if (sense_current)
 985			*blk_statp = scsi_result_to_blk_status(result);
 986	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 987		/*
 988		 * Flush commands do not transfers any data, and thus cannot use
 989		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 990		 * This sets *blk_statp explicitly for the problem case.
 991		 */
 992		*blk_statp = scsi_result_to_blk_status(result);
 993	}
 994	/*
 995	 * Recovered errors need reporting, but they're always treated as
 996	 * success, so fiddle the result code here.  For passthrough requests
 997	 * we already took a copy of the original into sreq->result which
 998	 * is what gets returned to the user
 999	 */
1000	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1001		bool do_print = true;
1002		/*
1003		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1004		 * skip print since caller wants ATA registers. Only occurs
1005		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1006		 */
1007		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1008			do_print = false;
1009		else if (req->rq_flags & RQF_QUIET)
1010			do_print = false;
1011		if (do_print)
1012			scsi_print_sense(cmd);
1013		result = 0;
1014		/* for passthrough, *blk_statp may be set */
1015		*blk_statp = BLK_STS_OK;
1016	}
1017	/*
1018	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1019	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1020	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1021	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1022	 * intermediate statuses (both obsolete in SAM-4) as good.
1023	 */
1024	if ((result & 0xff) && scsi_status_is_good(result)) {
1025		result = 0;
1026		*blk_statp = BLK_STS_OK;
1027	}
1028	return result;
1029}
1030
1031/**
1032 * scsi_io_completion - Completion processing for SCSI commands.
1033 * @cmd:	command that is finished.
1034 * @good_bytes:	number of processed bytes.
1035 *
1036 * We will finish off the specified number of sectors. If we are done, the
1037 * command block will be released and the queue function will be goosed. If we
1038 * are not done then we have to figure out what to do next:
1039 *
1040 *   a) We can call scsi_mq_requeue_cmd().  The request will be
1041 *	unprepared and put back on the queue.  Then a new command will
1042 *	be created for it.  This should be used if we made forward
1043 *	progress, or if we want to switch from READ(10) to READ(6) for
1044 *	example.
1045 *
1046 *   b) We can call scsi_io_completion_action().  The request will be
1047 *	put back on the queue and retried using the same command as
1048 *	before, possibly after a delay.
1049 *
1050 *   c) We can call scsi_end_request() with blk_stat other than
1051 *	BLK_STS_OK, to fail the remainder of the request.
1052 */
1053void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1054{
1055	int result = cmd->result;
1056	struct request *req = scsi_cmd_to_rq(cmd);
1057	blk_status_t blk_stat = BLK_STS_OK;
1058
1059	if (unlikely(result))	/* a nz result may or may not be an error */
1060		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1061
1062	/*
1063	 * Next deal with any sectors which we were able to correctly
1064	 * handle.
1065	 */
1066	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1067		"%u sectors total, %d bytes done.\n",
1068		blk_rq_sectors(req), good_bytes));
1069
1070	/*
1071	 * Failed, zero length commands always need to drop down
1072	 * to retry code. Fast path should return in this block.
1073	 */
1074	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1075		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1076			return; /* no bytes remaining */
1077	}
1078
1079	/* Kill remainder if no retries. */
1080	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1081		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1082			WARN_ONCE(true,
1083			    "Bytes remaining after failed, no-retry command");
1084		return;
1085	}
1086
1087	/*
1088	 * If there had been no error, but we have leftover bytes in the
1089	 * request just queue the command up again.
1090	 */
1091	if (likely(result == 0))
1092		scsi_mq_requeue_cmd(cmd, 0);
1093	else
1094		scsi_io_completion_action(cmd, result);
1095}
1096
1097static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1098		struct request *rq)
1099{
1100	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1101	       !op_is_write(req_op(rq)) &&
1102	       sdev->host->hostt->dma_need_drain(rq);
1103}
1104
1105/**
1106 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1107 * @cmd: SCSI command data structure to initialize.
1108 *
1109 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1110 * for @cmd.
1111 *
1112 * Returns:
1113 * * BLK_STS_OK       - on success
1114 * * BLK_STS_RESOURCE - if the failure is retryable
1115 * * BLK_STS_IOERR    - if the failure is fatal
1116 */
1117blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1118{
1119	struct scsi_device *sdev = cmd->device;
1120	struct request *rq = scsi_cmd_to_rq(cmd);
1121	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1122	struct scatterlist *last_sg = NULL;
1123	blk_status_t ret;
1124	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1125	int count;
1126
1127	if (WARN_ON_ONCE(!nr_segs))
1128		return BLK_STS_IOERR;
 
1129
1130	/*
1131	 * Make sure there is space for the drain.  The driver must adjust
1132	 * max_hw_segments to be prepared for this.
1133	 */
1134	if (need_drain)
1135		nr_segs++;
 
1136
1137	/*
1138	 * If sg table allocation fails, requeue request later.
1139	 */
1140	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1141			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1142		return BLK_STS_RESOURCE;
1143
1144	/*
1145	 * Next, walk the list, and fill in the addresses and sizes of
1146	 * each segment.
1147	 */
1148	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1149
1150	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1151		unsigned int pad_len =
1152			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1153
1154		last_sg->length += pad_len;
1155		cmd->extra_len += pad_len;
1156	}
1157
1158	if (need_drain) {
1159		sg_unmark_end(last_sg);
1160		last_sg = sg_next(last_sg);
1161		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1162		sg_mark_end(last_sg);
1163
1164		cmd->extra_len += sdev->dma_drain_len;
1165		count++;
1166	}
1167
1168	BUG_ON(count > cmd->sdb.table.nents);
1169	cmd->sdb.table.nents = count;
1170	cmd->sdb.length = blk_rq_payload_bytes(rq);
1171
1172	if (blk_integrity_rq(rq)) {
1173		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
 
1174
1175		if (WARN_ON_ONCE(!prot_sdb)) {
1176			/*
1177			 * This can happen if someone (e.g. multipath)
1178			 * queues a command to a device on an adapter
1179			 * that does not support DIX.
1180			 */
1181			ret = BLK_STS_IOERR;
1182			goto out_free_sgtables;
1183		}
1184
1185		if (sg_alloc_table_chained(&prot_sdb->table,
1186				rq->nr_integrity_segments,
1187				prot_sdb->table.sgl,
1188				SCSI_INLINE_PROT_SG_CNT)) {
1189			ret = BLK_STS_RESOURCE;
1190			goto out_free_sgtables;
1191		}
1192
1193		count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1194		cmd->prot_sdb = prot_sdb;
1195		cmd->prot_sdb->table.nents = count;
1196	}
1197
1198	return BLK_STS_OK;
1199out_free_sgtables:
1200	scsi_free_sgtables(cmd);
1201	return ret;
 
 
 
1202}
1203EXPORT_SYMBOL(scsi_alloc_sgtables);
1204
1205/**
1206 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1207 * @rq: Request associated with the SCSI command to be initialized.
1208 *
1209 * This function initializes the members of struct scsi_cmnd that must be
1210 * initialized before request processing starts and that won't be
1211 * reinitialized if a SCSI command is requeued.
1212 */
1213static void scsi_initialize_rq(struct request *rq)
1214{
1215	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1216
1217	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1218	cmd->cmd_len = MAX_COMMAND_SIZE;
1219	cmd->sense_len = 0;
1220	init_rcu_head(&cmd->rcu);
1221	cmd->jiffies_at_alloc = jiffies;
1222	cmd->retries = 0;
1223}
 
1224
1225struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1226				   blk_mq_req_flags_t flags)
1227{
1228	struct request *rq;
1229
1230	rq = blk_mq_alloc_request(q, opf, flags);
1231	if (!IS_ERR(rq))
1232		scsi_initialize_rq(rq);
1233	return rq;
1234}
1235EXPORT_SYMBOL_GPL(scsi_alloc_request);
1236
1237/*
1238 * Only called when the request isn't completed by SCSI, and not freed by
1239 * SCSI
1240 */
1241static void scsi_cleanup_rq(struct request *rq)
1242{
1243	if (rq->rq_flags & RQF_DONTPREP) {
1244		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1245		rq->rq_flags &= ~RQF_DONTPREP;
1246	}
1247}
1248
1249/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1250void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1251{
1252	struct request *rq = scsi_cmd_to_rq(cmd);
1253
1254	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1255		cmd->flags |= SCMD_INITIALIZED;
1256		scsi_initialize_rq(rq);
1257	}
1258
1259	cmd->device = dev;
1260	INIT_LIST_HEAD(&cmd->eh_entry);
1261	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1262}
1263
1264static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1265		struct request *req)
1266{
1267	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269	/*
1270	 * Passthrough requests may transfer data, in which case they must
1271	 * a bio attached to them.  Or they might contain a SCSI command
1272	 * that does not transfer data, in which case they may optionally
1273	 * submit a request without an attached bio.
1274	 */
1275	if (req->bio) {
1276		blk_status_t ret = scsi_alloc_sgtables(cmd);
1277		if (unlikely(ret != BLK_STS_OK))
 
 
 
 
1278			return ret;
1279	} else {
1280		BUG_ON(blk_rq_bytes(req));
1281
1282		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1283	}
1284
 
 
 
 
 
 
 
 
1285	cmd->transfersize = blk_rq_bytes(req);
1286	return BLK_STS_OK;
 
1287}
 
1288
1289static blk_status_t
1290scsi_device_state_check(struct scsi_device *sdev, struct request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291{
1292	switch (sdev->sdev_state) {
1293	case SDEV_CREATED:
1294		return BLK_STS_OK;
1295	case SDEV_OFFLINE:
1296	case SDEV_TRANSPORT_OFFLINE:
1297		/*
1298		 * If the device is offline we refuse to process any
1299		 * commands.  The device must be brought online
1300		 * before trying any recovery commands.
1301		 */
1302		if (!sdev->offline_already) {
1303			sdev->offline_already = true;
 
 
1304			sdev_printk(KERN_ERR, sdev,
1305				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306		}
1307		return BLK_STS_IOERR;
1308	case SDEV_DEL:
1309		/*
1310		 * If the device is fully deleted, we refuse to
1311		 * process any commands as well.
 
1312		 */
1313		sdev_printk(KERN_ERR, sdev,
1314			    "rejecting I/O to dead device\n");
1315		return BLK_STS_IOERR;
1316	case SDEV_BLOCK:
1317	case SDEV_CREATED_BLOCK:
1318		return BLK_STS_RESOURCE;
1319	case SDEV_QUIESCE:
1320		/*
1321		 * If the device is blocked we only accept power management
1322		 * commands.
1323		 */
1324		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1325			return BLK_STS_RESOURCE;
1326		return BLK_STS_OK;
1327	default:
1328		/*
1329		 * For any other not fully online state we only allow
1330		 * power management commands.
1331		 */
1332		if (req && !(req->rq_flags & RQF_PM))
1333			return BLK_STS_OFFLINE;
1334		return BLK_STS_OK;
1335	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1336}
 
1337
1338/*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1340 * and return the token else return -1.
 
 
1341 */
1342static inline int scsi_dev_queue_ready(struct request_queue *q,
1343				  struct scsi_device *sdev)
1344{
1345	int token;
1346
1347	token = sbitmap_get(&sdev->budget_map);
1348	if (token < 0)
1349		return -1;
1350
1351	if (!atomic_read(&sdev->device_blocked))
1352		return token;
1353
1354	/*
1355	 * Only unblock if no other commands are pending and
1356	 * if device_blocked has decreased to zero
1357	 */
1358	if (scsi_device_busy(sdev) > 1 ||
1359	    atomic_dec_return(&sdev->device_blocked) > 0) {
1360		sbitmap_put(&sdev->budget_map, token);
1361		return -1;
1362	}
 
 
1363
1364	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1365			 "unblocking device at zero depth\n"));
1366
1367	return token;
1368}
1369
1370/*
1371 * scsi_target_queue_ready: checks if there we can send commands to target
1372 * @sdev: scsi device on starget to check.
 
 
1373 */
1374static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1375					   struct scsi_device *sdev)
1376{
1377	struct scsi_target *starget = scsi_target(sdev);
1378	unsigned int busy;
1379
1380	if (starget->single_lun) {
1381		spin_lock_irq(shost->host_lock);
1382		if (starget->starget_sdev_user &&
1383		    starget->starget_sdev_user != sdev) {
1384			spin_unlock_irq(shost->host_lock);
1385			return 0;
1386		}
1387		starget->starget_sdev_user = sdev;
1388		spin_unlock_irq(shost->host_lock);
1389	}
1390
1391	if (starget->can_queue <= 0)
1392		return 1;
1393
1394	busy = atomic_inc_return(&starget->target_busy) - 1;
1395	if (atomic_read(&starget->target_blocked) > 0) {
1396		if (busy)
1397			goto starved;
1398
1399		/*
1400		 * unblock after target_blocked iterates to zero
1401		 */
1402		if (atomic_dec_return(&starget->target_blocked) > 0)
1403			goto out_dec;
 
 
 
 
1404
1405		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1406				 "unblocking target at zero depth\n"));
 
1407	}
1408
1409	if (busy >= starget->can_queue)
1410		goto starved;
1411
1412	return 1;
1413
1414starved:
1415	spin_lock_irq(shost->host_lock);
1416	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1417	spin_unlock_irq(shost->host_lock);
1418out_dec:
1419	if (starget->can_queue > 0)
1420		atomic_dec(&starget->target_busy);
1421	return 0;
1422}
1423
1424/*
1425 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1426 * return 0. We must end up running the queue again whenever 0 is
1427 * returned, else IO can hang.
 
 
1428 */
1429static inline int scsi_host_queue_ready(struct request_queue *q,
1430				   struct Scsi_Host *shost,
1431				   struct scsi_device *sdev,
1432				   struct scsi_cmnd *cmd)
1433{
1434	if (atomic_read(&shost->host_blocked) > 0) {
1435		if (scsi_host_busy(shost) > 0)
1436			goto starved;
1437
1438		/*
1439		 * unblock after host_blocked iterates to zero
1440		 */
1441		if (atomic_dec_return(&shost->host_blocked) > 0)
1442			goto out_dec;
1443
1444		SCSI_LOG_MLQUEUE(3,
1445			shost_printk(KERN_INFO, shost,
1446				     "unblocking host at zero depth\n"));
 
 
 
 
 
 
1447	}
1448
1449	if (shost->host_self_blocked)
1450		goto starved;
1451
1452	/* We're OK to process the command, so we can't be starved */
1453	if (!list_empty(&sdev->starved_entry)) {
1454		spin_lock_irq(shost->host_lock);
1455		if (!list_empty(&sdev->starved_entry))
1456			list_del_init(&sdev->starved_entry);
1457		spin_unlock_irq(shost->host_lock);
1458	}
1459
1460	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1461
1462	return 1;
1463
1464starved:
1465	spin_lock_irq(shost->host_lock);
1466	if (list_empty(&sdev->starved_entry))
1467		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1468	spin_unlock_irq(shost->host_lock);
1469out_dec:
1470	scsi_dec_host_busy(shost, cmd);
1471	return 0;
1472}
1473
1474/*
1475 * Busy state exporting function for request stacking drivers.
1476 *
1477 * For efficiency, no lock is taken to check the busy state of
1478 * shost/starget/sdev, since the returned value is not guaranteed and
1479 * may be changed after request stacking drivers call the function,
1480 * regardless of taking lock or not.
1481 *
1482 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1483 * needs to return 'not busy'. Otherwise, request stacking drivers
1484 * may hold requests forever.
1485 */
1486static bool scsi_mq_lld_busy(struct request_queue *q)
1487{
1488	struct scsi_device *sdev = q->queuedata;
1489	struct Scsi_Host *shost;
1490
1491	if (blk_queue_dying(q))
1492		return false;
1493
1494	shost = sdev->host;
1495
1496	/*
1497	 * Ignore host/starget busy state.
1498	 * Since block layer does not have a concept of fairness across
1499	 * multiple queues, congestion of host/starget needs to be handled
1500	 * in SCSI layer.
1501	 */
1502	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1503		return true;
1504
1505	return false;
1506}
1507
1508/*
1509 * Block layer request completion callback. May be called from interrupt
1510 * context.
1511 */
1512static void scsi_complete(struct request *rq)
1513{
1514	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1515	enum scsi_disposition disposition;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516
1517	INIT_LIST_HEAD(&cmd->eh_entry);
1518
1519	atomic_inc(&cmd->device->iodone_cnt);
1520	if (cmd->result)
1521		atomic_inc(&cmd->device->ioerr_cnt);
1522
1523	disposition = scsi_decide_disposition(cmd);
1524	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1525		disposition = SUCCESS;
1526
 
1527	scsi_log_completion(cmd, disposition);
1528
1529	switch (disposition) {
1530	case SUCCESS:
1531		scsi_finish_command(cmd);
1532		break;
1533	case NEEDS_RETRY:
1534		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1535		break;
1536	case ADD_TO_MLQUEUE:
1537		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1538		break;
1539	default:
1540		scsi_eh_scmd_add(cmd);
1541		break;
1542	}
1543}
1544
1545/**
1546 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1547 * @cmd: command block we are dispatching.
 
 
 
 
 
1548 *
1549 * Return: nonzero return request was rejected and device's queue needs to be
1550 * plugged.
1551 */
1552static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1553{
1554	struct Scsi_Host *host = cmd->device->host;
1555	int rtn = 0;
 
 
1556
1557	atomic_inc(&cmd->device->iorequest_cnt);
 
 
1558
1559	/* check if the device is still usable */
1560	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1561		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1562		 * returns an immediate error upwards, and signals
1563		 * that the device is no longer present */
1564		cmd->result = DID_NO_CONNECT << 16;
1565		goto done;
1566	}
1567
1568	/* Check to see if the scsi lld made this device blocked. */
1569	if (unlikely(scsi_device_blocked(cmd->device))) {
1570		/*
1571		 * in blocked state, the command is just put back on
1572		 * the device queue.  The suspend state has already
1573		 * blocked the queue so future requests should not
1574		 * occur until the device transitions out of the
1575		 * suspend state.
1576		 */
1577		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1578			"queuecommand : device blocked\n"));
1579		atomic_dec(&cmd->device->iorequest_cnt);
1580		return SCSI_MLQUEUE_DEVICE_BUSY;
1581	}
1582
1583	/* Store the LUN value in cmnd, if needed. */
1584	if (cmd->device->lun_in_cdb)
1585		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1586			       (cmd->device->lun << 5 & 0xe0);
 
 
1587
1588	scsi_log_send(cmd);
1589
1590	/*
1591	 * Before we queue this command, check if the command
1592	 * length exceeds what the host adapter can handle.
1593	 */
1594	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1595		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1596			       "queuecommand : command too long. "
1597			       "cdb_size=%d host->max_cmd_len=%d\n",
1598			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1599		cmd->result = (DID_ABORT << 16);
1600		goto done;
1601	}
 
 
 
 
 
 
1602
1603	if (unlikely(host->shost_state == SHOST_DEL)) {
1604		cmd->result = (DID_NO_CONNECT << 16);
1605		goto done;
 
 
 
 
 
 
 
 
 
 
 
1606
1607	}
 
1608
1609	trace_scsi_dispatch_cmd_start(cmd);
1610	rtn = host->hostt->queuecommand(host, cmd);
1611	if (rtn) {
1612		atomic_dec(&cmd->device->iorequest_cnt);
1613		trace_scsi_dispatch_cmd_error(cmd, rtn);
1614		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1615		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1616			rtn = SCSI_MLQUEUE_HOST_BUSY;
1617
1618		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1619			"queuecommand : request rejected\n"));
1620	}
1621
1622	return rtn;
1623 done:
1624	scsi_done(cmd);
1625	return 0;
1626}
1627
1628/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1629static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1630{
1631	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1632		sizeof(struct scatterlist);
1633}
1634
1635static blk_status_t scsi_prepare_cmd(struct request *req)
1636{
1637	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638	struct scsi_device *sdev = req->q->queuedata;
1639	struct Scsi_Host *shost = sdev->host;
1640	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1641	struct scatterlist *sg;
 
1642
1643	scsi_init_command(sdev, cmd);
1644
1645	cmd->eh_eflags = 0;
1646	cmd->prot_type = 0;
1647	cmd->prot_flags = 0;
1648	cmd->submitter = 0;
1649	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1650	cmd->underflow = 0;
1651	cmd->transfersize = 0;
1652	cmd->host_scribble = NULL;
1653	cmd->result = 0;
1654	cmd->extra_len = 0;
1655	cmd->state = 0;
1656	if (in_flight)
1657		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1658
1659	cmd->prot_op = SCSI_PROT_NORMAL;
1660	if (blk_rq_bytes(req))
1661		cmd->sc_data_direction = rq_dma_dir(req);
1662	else
1663		cmd->sc_data_direction = DMA_NONE;
1664
1665	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1666	cmd->sdb.table.sgl = sg;
1667
1668	if (scsi_host_get_prot(shost)) {
1669		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1670
1671		cmd->prot_sdb->table.sgl =
1672			(struct scatterlist *)(cmd->prot_sdb + 1);
1673	}
1674
1675	/*
1676	 * Special handling for passthrough commands, which don't go to the ULP
1677	 * at all:
 
 
 
 
1678	 */
1679	if (blk_rq_is_passthrough(req))
1680		return scsi_setup_scsi_cmnd(sdev, req);
1681
1682	if (sdev->handler && sdev->handler->prep_fn) {
1683		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1684
1685		if (ret != BLK_STS_OK)
1686			return ret;
1687	}
1688
1689	/* Usually overridden by the ULP */
1690	cmd->allowed = 0;
1691	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1692	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1693}
1694
1695static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1696{
1697	struct request *req = scsi_cmd_to_rq(cmd);
1698
1699	switch (cmd->submitter) {
1700	case SUBMITTED_BY_BLOCK_LAYER:
1701		break;
1702	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1703		return scsi_eh_done(cmd);
1704	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1705		return;
1706	}
1707
1708	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1709		return;
1710	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1711		return;
1712	trace_scsi_dispatch_cmd_done(cmd);
1713
1714	if (complete_directly)
1715		blk_mq_complete_request_direct(req, scsi_complete);
1716	else
1717		blk_mq_complete_request(req);
1718}
1719
1720void scsi_done(struct scsi_cmnd *cmd)
1721{
1722	scsi_done_internal(cmd, false);
1723}
1724EXPORT_SYMBOL(scsi_done);
1725
1726void scsi_done_direct(struct scsi_cmnd *cmd)
1727{
1728	scsi_done_internal(cmd, true);
1729}
1730EXPORT_SYMBOL(scsi_done_direct);
1731
1732static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1733{
1734	struct scsi_device *sdev = q->queuedata;
1735
1736	sbitmap_put(&sdev->budget_map, budget_token);
1737}
1738
1739/*
1740 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1741 * not change behaviour from the previous unplug mechanism, experimentation
1742 * may prove this needs changing.
1743 */
1744#define SCSI_QUEUE_DELAY 3
1745
1746static int scsi_mq_get_budget(struct request_queue *q)
1747{
1748	struct scsi_device *sdev = q->queuedata;
1749	int token = scsi_dev_queue_ready(q, sdev);
1750
1751	if (token >= 0)
1752		return token;
1753
1754	atomic_inc(&sdev->restarts);
1755
 
 
1756	/*
1757	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1758	 * .restarts must be incremented before .device_busy is read because the
1759	 * code in scsi_run_queue_async() depends on the order of these operations.
1760	 */
1761	smp_mb__after_atomic();
 
1762
1763	/*
1764	 * If all in-flight requests originated from this LUN are completed
1765	 * before reading .device_busy, sdev->device_busy will be observed as
1766	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1767	 * soon. Otherwise, completion of one of these requests will observe
1768	 * the .restarts flag, and the request queue will be run for handling
1769	 * this request, see scsi_end_request().
1770	 */
1771	if (unlikely(scsi_device_busy(sdev) == 0 &&
1772				!scsi_device_blocked(sdev)))
1773		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1774	return -1;
1775}
1776
1777static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1778{
1779	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1780
1781	cmd->budget_token = token;
1782}
 
1783
1784static int scsi_mq_get_rq_budget_token(struct request *req)
 
1785{
1786	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 
1787
1788	return cmd->budget_token;
1789}
1790
1791static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1792			 const struct blk_mq_queue_data *bd)
1793{
1794	struct request *req = bd->rq;
1795	struct request_queue *q = req->q;
1796	struct scsi_device *sdev = q->queuedata;
1797	struct Scsi_Host *shost = sdev->host;
1798	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799	blk_status_t ret;
1800	int reason;
1801
1802	WARN_ON_ONCE(cmd->budget_token < 0);
1803
1804	/*
1805	 * If the device is not in running state we will reject some or all
1806	 * commands.
1807	 */
1808	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1809		ret = scsi_device_state_check(sdev, req);
1810		if (ret != BLK_STS_OK)
1811			goto out_put_budget;
1812	}
1813
1814	ret = BLK_STS_RESOURCE;
1815	if (!scsi_target_queue_ready(shost, sdev))
1816		goto out_put_budget;
1817	if (unlikely(scsi_host_in_recovery(shost))) {
1818		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1819			ret = BLK_STS_OFFLINE;
1820		goto out_dec_target_busy;
1821	}
1822	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1823		goto out_dec_target_busy;
1824
1825	/*
1826	 * Only clear the driver-private command data if the LLD does not supply
1827	 * a function to initialize that data.
1828	 */
1829	if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1830		memset(cmd + 1, 0, shost->hostt->cmd_size);
1831
1832	if (!(req->rq_flags & RQF_DONTPREP)) {
1833		ret = scsi_prepare_cmd(req);
1834		if (ret != BLK_STS_OK)
1835			goto out_dec_host_busy;
1836		req->rq_flags |= RQF_DONTPREP;
1837	} else {
1838		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1839	}
1840
1841	cmd->flags &= SCMD_PRESERVED_FLAGS;
1842	if (sdev->simple_tags)
1843		cmd->flags |= SCMD_TAGGED;
1844	if (bd->last)
1845		cmd->flags |= SCMD_LAST;
1846
1847	scsi_set_resid(cmd, 0);
1848	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1849	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1850
1851	blk_mq_start_request(req);
1852	reason = scsi_dispatch_cmd(cmd);
1853	if (reason) {
1854		scsi_set_blocked(cmd, reason);
1855		ret = BLK_STS_RESOURCE;
1856		goto out_dec_host_busy;
1857	}
1858
1859	return BLK_STS_OK;
1860
1861out_dec_host_busy:
1862	scsi_dec_host_busy(shost, cmd);
1863out_dec_target_busy:
1864	if (scsi_target(sdev)->can_queue > 0)
1865		atomic_dec(&scsi_target(sdev)->target_busy);
1866out_put_budget:
1867	scsi_mq_put_budget(q, cmd->budget_token);
1868	cmd->budget_token = -1;
1869	switch (ret) {
1870	case BLK_STS_OK:
1871		break;
1872	case BLK_STS_RESOURCE:
1873		if (scsi_device_blocked(sdev))
1874			ret = BLK_STS_DEV_RESOURCE;
1875		break;
1876	case BLK_STS_AGAIN:
1877		cmd->result = DID_BUS_BUSY << 16;
1878		if (req->rq_flags & RQF_DONTPREP)
1879			scsi_mq_uninit_cmd(cmd);
1880		break;
1881	default:
1882		if (unlikely(!scsi_device_online(sdev)))
1883			cmd->result = DID_NO_CONNECT << 16;
1884		else
1885			cmd->result = DID_ERROR << 16;
1886		/*
1887		 * Make sure to release all allocated resources when
1888		 * we hit an error, as we will never see this command
1889		 * again.
1890		 */
1891		if (req->rq_flags & RQF_DONTPREP)
1892			scsi_mq_uninit_cmd(cmd);
1893		scsi_run_queue_async(sdev);
1894		break;
1895	}
1896	return ret;
1897}
1898
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900				unsigned int hctx_idx, unsigned int numa_node)
1901{
1902	struct Scsi_Host *shost = set->driver_data;
1903	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904	struct scatterlist *sg;
1905	int ret = 0;
1906
1907	cmd->sense_buffer =
1908		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1909	if (!cmd->sense_buffer)
1910		return -ENOMEM;
1911
1912	if (scsi_host_get_prot(shost)) {
1913		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914			shost->hostt->cmd_size;
1915		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916	}
1917
1918	if (shost->hostt->init_cmd_priv) {
1919		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920		if (ret < 0)
1921			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922	}
1923
1924	return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928				 unsigned int hctx_idx)
1929{
1930	struct Scsi_Host *shost = set->driver_data;
1931	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933	if (shost->hostt->exit_cmd_priv)
1934		shost->hostt->exit_cmd_priv(shost, cmd);
1935	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941	struct Scsi_Host *shost = hctx->driver_data;
1942
1943	if (shost->hostt->mq_poll)
1944		return shost->hostt->mq_poll(shost, hctx->queue_num);
1945
1946	return 0;
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950			  unsigned int hctx_idx)
1951{
1952	struct Scsi_Host *shost = data;
1953
1954	hctx->driver_data = shost;
1955	return 0;
1956}
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962	if (shost->hostt->map_queues)
1963		return shost->hostt->map_queues(shost);
1964	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1968{
1969	struct device *dev = shost->dma_dev;
1970
1971	memset(lim, 0, sizeof(*lim));
1972	lim->max_segments =
1973		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1974
1975	if (scsi_host_prot_dma(shost)) {
1976		shost->sg_prot_tablesize =
1977			min_not_zero(shost->sg_prot_tablesize,
1978				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1979		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1980		lim->max_integrity_segments = shost->sg_prot_tablesize;
1981	}
1982
1983	lim->max_hw_sectors = shost->max_sectors;
1984	lim->seg_boundary_mask = shost->dma_boundary;
1985	lim->max_segment_size = shost->max_segment_size;
1986	lim->virt_boundary_mask = shost->virt_boundary_mask;
1987	lim->dma_alignment = max_t(unsigned int,
1988		shost->dma_alignment, dma_get_cache_alignment() - 1);
1989
1990	if (shost->no_highmem)
1991		lim->features |= BLK_FEAT_BOUNCE_HIGH;
 
 
1992
1993	/*
1994	 * Propagate the DMA formation properties to the dma-mapping layer as
1995	 * a courtesy service to the LLDDs.  This needs to check that the buses
1996	 * actually support the DMA API first, though.
1997	 */
1998	if (dev->dma_parms) {
1999		dma_set_seg_boundary(dev, shost->dma_boundary);
2000		dma_set_max_seg_size(dev, shost->max_segment_size);
2001	}
2002}
2003EXPORT_SYMBOL_GPL(scsi_init_limits);
2004
2005static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2006	.get_budget	= scsi_mq_get_budget,
2007	.put_budget	= scsi_mq_put_budget,
2008	.queue_rq	= scsi_queue_rq,
2009	.complete	= scsi_complete,
2010	.timeout	= scsi_timeout,
2011#ifdef CONFIG_BLK_DEBUG_FS
2012	.show_rq	= scsi_show_rq,
2013#endif
2014	.init_request	= scsi_mq_init_request,
2015	.exit_request	= scsi_mq_exit_request,
2016	.cleanup_rq	= scsi_cleanup_rq,
2017	.busy		= scsi_mq_lld_busy,
2018	.map_queues	= scsi_map_queues,
2019	.init_hctx	= scsi_init_hctx,
2020	.poll		= scsi_mq_poll,
2021	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2022	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2023};
2024
2025
2026static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2027{
2028	struct Scsi_Host *shost = hctx->driver_data;
2029
2030	shost->hostt->commit_rqs(shost, hctx->queue_num);
2031}
 
2032
2033static const struct blk_mq_ops scsi_mq_ops = {
2034	.get_budget	= scsi_mq_get_budget,
2035	.put_budget	= scsi_mq_put_budget,
2036	.queue_rq	= scsi_queue_rq,
2037	.commit_rqs	= scsi_commit_rqs,
2038	.complete	= scsi_complete,
2039	.timeout	= scsi_timeout,
2040#ifdef CONFIG_BLK_DEBUG_FS
2041	.show_rq	= scsi_show_rq,
2042#endif
2043	.init_request	= scsi_mq_init_request,
2044	.exit_request	= scsi_mq_exit_request,
2045	.cleanup_rq	= scsi_cleanup_rq,
2046	.busy		= scsi_mq_lld_busy,
2047	.map_queues	= scsi_map_queues,
2048	.init_hctx	= scsi_init_hctx,
2049	.poll		= scsi_mq_poll,
2050	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2051	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2052};
2053
2054int scsi_mq_setup_tags(struct Scsi_Host *shost)
2055{
2056	unsigned int cmd_size, sgl_size;
2057	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2058
2059	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2060				scsi_mq_inline_sgl_size(shost));
2061	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2062	if (scsi_host_get_prot(shost))
2063		cmd_size += sizeof(struct scsi_data_buffer) +
2064			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2065
2066	memset(tag_set, 0, sizeof(*tag_set));
2067	if (shost->hostt->commit_rqs)
2068		tag_set->ops = &scsi_mq_ops;
2069	else
2070		tag_set->ops = &scsi_mq_ops_no_commit;
2071	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2072	tag_set->nr_maps = shost->nr_maps ? : 1;
2073	tag_set->queue_depth = shost->can_queue;
2074	tag_set->cmd_size = cmd_size;
2075	tag_set->numa_node = dev_to_node(shost->dma_dev);
2076	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2077	tag_set->flags |=
2078		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2079	if (shost->queuecommand_may_block)
2080		tag_set->flags |= BLK_MQ_F_BLOCKING;
2081	tag_set->driver_data = shost;
2082	if (shost->host_tagset)
2083		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2084
2085	return blk_mq_alloc_tag_set(tag_set);
2086}
2087
2088void scsi_mq_free_tags(struct kref *kref)
2089{
2090	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2091					       tagset_refcnt);
2092
2093	blk_mq_free_tag_set(&shost->tag_set);
2094	complete(&shost->tagset_freed);
2095}
2096
2097/**
2098 * scsi_device_from_queue - return sdev associated with a request_queue
2099 * @q: The request queue to return the sdev from
 
 
 
 
 
 
2100 *
2101 * Return the sdev associated with a request queue or NULL if the
2102 * request_queue does not reference a SCSI device.
2103 */
2104struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2105{
2106	struct scsi_device *sdev = NULL;
2107
2108	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2109	    q->mq_ops == &scsi_mq_ops)
2110		sdev = q->queuedata;
2111	if (!sdev || !get_device(&sdev->sdev_gendev))
2112		sdev = NULL;
2113
2114	return sdev;
2115}
2116/*
2117 * pktcdvd should have been integrated into the SCSI layers, but for historical
2118 * reasons like the old IDE driver it isn't.  This export allows it to safely
2119 * probe if a given device is a SCSI one and only attach to that.
2120 */
2121#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2122EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2123#endif
2124
2125/**
2126 * scsi_block_requests - Utility function used by low-level drivers to prevent
2127 * further commands from being queued to the device.
2128 * @shost:  host in question
2129 *
2130 * There is no timer nor any other means by which the requests get unblocked
2131 * other than the low-level driver calling scsi_unblock_requests().
 
2132 */
2133void scsi_block_requests(struct Scsi_Host *shost)
2134{
2135	shost->host_self_blocked = 1;
2136}
2137EXPORT_SYMBOL(scsi_block_requests);
2138
2139/**
2140 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2141 * further commands to be queued to the device.
2142 * @shost:  host in question
2143 *
2144 * There is no timer nor any other means by which the requests get unblocked
2145 * other than the low-level driver calling scsi_unblock_requests(). This is done
2146 * as an API function so that changes to the internals of the scsi mid-layer
2147 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2148 */
2149void scsi_unblock_requests(struct Scsi_Host *shost)
2150{
2151	shost->host_self_blocked = 0;
2152	scsi_run_host_queues(shost);
2153}
2154EXPORT_SYMBOL(scsi_unblock_requests);
2155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156void scsi_exit_queue(void)
2157{
2158	kmem_cache_destroy(scsi_sense_cache);
 
 
 
 
 
 
 
 
2159}
2160
2161/**
2162 *	scsi_mode_select - issue a mode select
2163 *	@sdev:	SCSI device to be queried
2164 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2165 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2166 *	@buffer: request buffer (may not be smaller than eight bytes)
2167 *	@len:	length of request buffer.
2168 *	@timeout: command timeout
2169 *	@retries: number of retries before failing
2170 *	@data: returns a structure abstracting the mode header data
2171 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2172 *		must be SCSI_SENSE_BUFFERSIZE big.
2173 *
2174 *	Returns zero if successful; negative error number or scsi
2175 *	status on error
2176 *
2177 */
2178int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2179		     unsigned char *buffer, int len, int timeout, int retries,
2180		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2181{
2182	unsigned char cmd[10];
2183	unsigned char *real_buffer;
2184	const struct scsi_exec_args exec_args = {
2185		.sshdr = sshdr,
2186	};
2187	int ret;
2188
2189	memset(cmd, 0, sizeof(cmd));
2190	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2191
2192	/*
2193	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2194	 * and the mode select header cannot fit within the maximumm 255 bytes
2195	 * of the MODE SELECT(6) command.
2196	 */
2197	if (sdev->use_10_for_ms ||
2198	    len + 4 > 255 ||
2199	    data->block_descriptor_length > 255) {
2200		if (len > 65535 - 8)
2201			return -EINVAL;
2202		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2203		if (!real_buffer)
2204			return -ENOMEM;
2205		memcpy(real_buffer + 8, buffer, len);
2206		len += 8;
2207		real_buffer[0] = 0;
2208		real_buffer[1] = 0;
2209		real_buffer[2] = data->medium_type;
2210		real_buffer[3] = data->device_specific;
2211		real_buffer[4] = data->longlba ? 0x01 : 0;
2212		real_buffer[5] = 0;
2213		put_unaligned_be16(data->block_descriptor_length,
2214				   &real_buffer[6]);
2215
2216		cmd[0] = MODE_SELECT_10;
2217		put_unaligned_be16(len, &cmd[7]);
 
2218	} else {
2219		if (data->longlba)
 
2220			return -EINVAL;
2221
2222		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2223		if (!real_buffer)
2224			return -ENOMEM;
2225		memcpy(real_buffer + 4, buffer, len);
2226		len += 4;
2227		real_buffer[0] = 0;
2228		real_buffer[1] = data->medium_type;
2229		real_buffer[2] = data->device_specific;
2230		real_buffer[3] = data->block_descriptor_length;
 
2231
2232		cmd[0] = MODE_SELECT;
2233		cmd[4] = len;
2234	}
2235
2236	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2237			       timeout, retries, &exec_args);
2238	kfree(real_buffer);
2239	return ret;
2240}
2241EXPORT_SYMBOL_GPL(scsi_mode_select);
2242
2243/**
2244 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2245 *	@sdev:	SCSI device to be queried
2246 *	@dbd:	set to prevent mode sense from returning block descriptors
2247 *	@modepage: mode page being requested
2248 *	@subpage: sub-page of the mode page being requested
2249 *	@buffer: request buffer (may not be smaller than eight bytes)
2250 *	@len:	length of request buffer.
2251 *	@timeout: command timeout
2252 *	@retries: number of retries before failing
2253 *	@data: returns a structure abstracting the mode header data
2254 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2255 *		must be SCSI_SENSE_BUFFERSIZE big.
2256 *
2257 *	Returns zero if successful, or a negative error number on failure
 
 
2258 */
2259int
2260scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2261		  unsigned char *buffer, int len, int timeout, int retries,
2262		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2263{
2264	unsigned char cmd[12];
2265	int use_10_for_ms;
2266	int header_length;
2267	int result;
2268	struct scsi_sense_hdr my_sshdr;
2269	struct scsi_failure failure_defs[] = {
2270		{
2271			.sense = UNIT_ATTENTION,
2272			.asc = SCMD_FAILURE_ASC_ANY,
2273			.ascq = SCMD_FAILURE_ASCQ_ANY,
2274			.allowed = retries,
2275			.result = SAM_STAT_CHECK_CONDITION,
2276		},
2277		{}
2278	};
2279	struct scsi_failures failures = {
2280		.failure_definitions = failure_defs,
2281	};
2282	const struct scsi_exec_args exec_args = {
2283		/* caller might not be interested in sense, but we need it */
2284		.sshdr = sshdr ? : &my_sshdr,
2285		.failures = &failures,
2286	};
2287
2288	memset(data, 0, sizeof(*data));
2289	memset(&cmd[0], 0, 12);
2290
2291	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2292	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2293	cmd[2] = modepage;
2294	cmd[3] = subpage;
2295
2296	sshdr = exec_args.sshdr;
 
 
2297
2298 retry:
2299	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2300
2301	if (use_10_for_ms) {
2302		if (len < 8 || len > 65535)
2303			return -EINVAL;
2304
2305		cmd[0] = MODE_SENSE_10;
2306		put_unaligned_be16(len, &cmd[7]);
2307		header_length = 8;
2308	} else {
2309		if (len < 4)
2310			return -EINVAL;
2311
2312		cmd[0] = MODE_SENSE;
2313		cmd[4] = len;
2314		header_length = 4;
2315	}
2316
2317	memset(buffer, 0, len);
2318
2319	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2320				  timeout, retries, &exec_args);
2321	if (result < 0)
2322		return result;
2323
2324	/* This code looks awful: what it's doing is making sure an
2325	 * ILLEGAL REQUEST sense return identifies the actual command
2326	 * byte as the problem.  MODE_SENSE commands can return
2327	 * ILLEGAL REQUEST if the code page isn't supported */
2328
2329	if (!scsi_status_is_good(result)) {
 
2330		if (scsi_sense_valid(sshdr)) {
2331			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2332			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2333				/*
2334				 * Invalid command operation code: retry using
2335				 * MODE SENSE(6) if this was a MODE SENSE(10)
2336				 * request, except if the request mode page is
2337				 * too large for MODE SENSE single byte
2338				 * allocation length field.
2339				 */
2340				if (use_10_for_ms) {
2341					if (len > 255)
2342						return -EIO;
2343					sdev->use_10_for_ms = 0;
2344					goto retry;
2345				}
2346			}
2347		}
2348		return -EIO;
2349	}
2350	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2351		     (modepage == 6 || modepage == 8))) {
2352		/* Initio breakage? */
2353		header_length = 0;
2354		data->length = 13;
2355		data->medium_type = 0;
2356		data->device_specific = 0;
2357		data->longlba = 0;
2358		data->block_descriptor_length = 0;
2359	} else if (use_10_for_ms) {
2360		data->length = get_unaligned_be16(&buffer[0]) + 2;
2361		data->medium_type = buffer[2];
2362		data->device_specific = buffer[3];
2363		data->longlba = buffer[4] & 0x01;
2364		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2365	} else {
2366		data->length = buffer[0] + 1;
2367		data->medium_type = buffer[1];
2368		data->device_specific = buffer[2];
2369		data->block_descriptor_length = buffer[3];
 
 
 
 
 
2370	}
2371	data->header_length = header_length;
2372
2373	return 0;
2374}
2375EXPORT_SYMBOL(scsi_mode_sense);
2376
2377/**
2378 *	scsi_test_unit_ready - test if unit is ready
2379 *	@sdev:	scsi device to change the state of.
2380 *	@timeout: command timeout
2381 *	@retries: number of retries before failing
2382 *	@sshdr: outpout pointer for decoded sense information.
 
 
2383 *
2384 *	Returns zero if unsuccessful or an error if TUR failed.  For
2385 *	removable media, UNIT_ATTENTION sets ->changed flag.
2386 **/
2387int
2388scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2389		     struct scsi_sense_hdr *sshdr)
2390{
2391	char cmd[] = {
2392		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2393	};
2394	const struct scsi_exec_args exec_args = {
2395		.sshdr = sshdr,
2396	};
2397	int result;
2398
 
 
 
 
 
2399	/* try to eat the UNIT_ATTENTION if there are enough retries */
2400	do {
2401		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2402					  timeout, 1, &exec_args);
2403		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2404		    sshdr->sense_key == UNIT_ATTENTION)
2405			sdev->changed = 1;
2406	} while (result > 0 && scsi_sense_valid(sshdr) &&
2407		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2408
 
 
2409	return result;
2410}
2411EXPORT_SYMBOL(scsi_test_unit_ready);
2412
2413/**
2414 *	scsi_device_set_state - Take the given device through the device state model.
2415 *	@sdev:	scsi device to change the state of.
2416 *	@state:	state to change to.
2417 *
2418 *	Returns zero if successful or an error if the requested
2419 *	transition is illegal.
2420 */
2421int
2422scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2423{
2424	enum scsi_device_state oldstate = sdev->sdev_state;
2425
2426	if (state == oldstate)
2427		return 0;
2428
2429	switch (state) {
2430	case SDEV_CREATED:
2431		switch (oldstate) {
2432		case SDEV_CREATED_BLOCK:
2433			break;
2434		default:
2435			goto illegal;
2436		}
2437		break;
2438
2439	case SDEV_RUNNING:
2440		switch (oldstate) {
2441		case SDEV_CREATED:
2442		case SDEV_OFFLINE:
2443		case SDEV_TRANSPORT_OFFLINE:
2444		case SDEV_QUIESCE:
2445		case SDEV_BLOCK:
2446			break;
2447		default:
2448			goto illegal;
2449		}
2450		break;
2451
2452	case SDEV_QUIESCE:
2453		switch (oldstate) {
2454		case SDEV_RUNNING:
2455		case SDEV_OFFLINE:
2456		case SDEV_TRANSPORT_OFFLINE:
2457			break;
2458		default:
2459			goto illegal;
2460		}
2461		break;
2462
2463	case SDEV_OFFLINE:
2464	case SDEV_TRANSPORT_OFFLINE:
2465		switch (oldstate) {
2466		case SDEV_CREATED:
2467		case SDEV_RUNNING:
2468		case SDEV_QUIESCE:
2469		case SDEV_BLOCK:
2470			break;
2471		default:
2472			goto illegal;
2473		}
2474		break;
2475
2476	case SDEV_BLOCK:
2477		switch (oldstate) {
2478		case SDEV_RUNNING:
2479		case SDEV_CREATED_BLOCK:
2480		case SDEV_QUIESCE:
2481		case SDEV_OFFLINE:
2482			break;
2483		default:
2484			goto illegal;
2485		}
2486		break;
2487
2488	case SDEV_CREATED_BLOCK:
2489		switch (oldstate) {
2490		case SDEV_CREATED:
2491			break;
2492		default:
2493			goto illegal;
2494		}
2495		break;
2496
2497	case SDEV_CANCEL:
2498		switch (oldstate) {
2499		case SDEV_CREATED:
2500		case SDEV_RUNNING:
2501		case SDEV_QUIESCE:
2502		case SDEV_OFFLINE:
2503		case SDEV_TRANSPORT_OFFLINE:
2504			break;
2505		default:
2506			goto illegal;
2507		}
2508		break;
2509
2510	case SDEV_DEL:
2511		switch (oldstate) {
2512		case SDEV_CREATED:
2513		case SDEV_RUNNING:
2514		case SDEV_OFFLINE:
2515		case SDEV_TRANSPORT_OFFLINE:
2516		case SDEV_CANCEL:
2517		case SDEV_BLOCK:
2518		case SDEV_CREATED_BLOCK:
2519			break;
2520		default:
2521			goto illegal;
2522		}
2523		break;
2524
2525	}
2526	sdev->offline_already = false;
2527	sdev->sdev_state = state;
2528	return 0;
2529
2530 illegal:
2531	SCSI_LOG_ERROR_RECOVERY(1,
2532				sdev_printk(KERN_ERR, sdev,
2533					    "Illegal state transition %s->%s",
2534					    scsi_device_state_name(oldstate),
2535					    scsi_device_state_name(state))
2536				);
2537	return -EINVAL;
2538}
2539EXPORT_SYMBOL(scsi_device_set_state);
2540
2541/**
2542 *	scsi_evt_emit - emit a single SCSI device uevent
2543 *	@sdev: associated SCSI device
2544 *	@evt: event to emit
2545 *
2546 *	Send a single uevent (scsi_event) to the associated scsi_device.
2547 */
2548static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2549{
2550	int idx = 0;
2551	char *envp[3];
2552
2553	switch (evt->evt_type) {
2554	case SDEV_EVT_MEDIA_CHANGE:
2555		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2556		break;
2557	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558		scsi_rescan_device(sdev);
2559		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2560		break;
2561	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2562		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2563		break;
2564	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2565	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2566		break;
2567	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2569		break;
2570	case SDEV_EVT_LUN_CHANGE_REPORTED:
2571		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2572		break;
2573	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2574		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2575		break;
2576	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2577		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2578		break;
2579	default:
2580		/* do nothing */
2581		break;
2582	}
2583
2584	envp[idx++] = NULL;
2585
2586	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2587}
2588
2589/**
2590 *	scsi_evt_thread - send a uevent for each scsi event
2591 *	@work: work struct for scsi_device
2592 *
2593 *	Dispatch queued events to their associated scsi_device kobjects
2594 *	as uevents.
2595 */
2596void scsi_evt_thread(struct work_struct *work)
2597{
2598	struct scsi_device *sdev;
2599	enum scsi_device_event evt_type;
2600	LIST_HEAD(event_list);
2601
2602	sdev = container_of(work, struct scsi_device, event_work);
2603
2604	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2605		if (test_and_clear_bit(evt_type, sdev->pending_events))
2606			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2607
2608	while (1) {
2609		struct scsi_event *evt;
2610		struct list_head *this, *tmp;
2611		unsigned long flags;
2612
2613		spin_lock_irqsave(&sdev->list_lock, flags);
2614		list_splice_init(&sdev->event_list, &event_list);
2615		spin_unlock_irqrestore(&sdev->list_lock, flags);
2616
2617		if (list_empty(&event_list))
2618			break;
2619
2620		list_for_each_safe(this, tmp, &event_list) {
2621			evt = list_entry(this, struct scsi_event, node);
2622			list_del(&evt->node);
2623			scsi_evt_emit(sdev, evt);
2624			kfree(evt);
2625		}
2626	}
2627}
2628
2629/**
2630 * 	sdev_evt_send - send asserted event to uevent thread
2631 *	@sdev: scsi_device event occurred on
2632 *	@evt: event to send
2633 *
2634 *	Assert scsi device event asynchronously.
2635 */
2636void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2637{
2638	unsigned long flags;
2639
2640#if 0
2641	/* FIXME: currently this check eliminates all media change events
2642	 * for polled devices.  Need to update to discriminate between AN
2643	 * and polled events */
2644	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2645		kfree(evt);
2646		return;
2647	}
2648#endif
2649
2650	spin_lock_irqsave(&sdev->list_lock, flags);
2651	list_add_tail(&evt->node, &sdev->event_list);
2652	schedule_work(&sdev->event_work);
2653	spin_unlock_irqrestore(&sdev->list_lock, flags);
2654}
2655EXPORT_SYMBOL_GPL(sdev_evt_send);
2656
2657/**
2658 * 	sdev_evt_alloc - allocate a new scsi event
2659 *	@evt_type: type of event to allocate
2660 *	@gfpflags: GFP flags for allocation
2661 *
2662 *	Allocates and returns a new scsi_event.
2663 */
2664struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2665				  gfp_t gfpflags)
2666{
2667	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2668	if (!evt)
2669		return NULL;
2670
2671	evt->evt_type = evt_type;
2672	INIT_LIST_HEAD(&evt->node);
2673
2674	/* evt_type-specific initialization, if any */
2675	switch (evt_type) {
2676	case SDEV_EVT_MEDIA_CHANGE:
2677	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2678	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2679	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2680	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2681	case SDEV_EVT_LUN_CHANGE_REPORTED:
2682	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2683	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2684	default:
2685		/* do nothing */
2686		break;
2687	}
2688
2689	return evt;
2690}
2691EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2692
2693/**
2694 * 	sdev_evt_send_simple - send asserted event to uevent thread
2695 *	@sdev: scsi_device event occurred on
2696 *	@evt_type: type of event to send
2697 *	@gfpflags: GFP flags for allocation
2698 *
2699 *	Assert scsi device event asynchronously, given an event type.
2700 */
2701void sdev_evt_send_simple(struct scsi_device *sdev,
2702			  enum scsi_device_event evt_type, gfp_t gfpflags)
2703{
2704	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2705	if (!evt) {
2706		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2707			    evt_type);
2708		return;
2709	}
2710
2711	sdev_evt_send(sdev, evt);
2712}
2713EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2714
2715/**
2716 *	scsi_device_quiesce - Block all commands except power management.
2717 *	@sdev:	scsi device to quiesce.
2718 *
2719 *	This works by trying to transition to the SDEV_QUIESCE state
2720 *	(which must be a legal transition).  When the device is in this
2721 *	state, only power management requests will be accepted, all others will
2722 *	be deferred.
 
 
2723 *
2724 *	Must be called with user context, may sleep.
2725 *
2726 *	Returns zero if unsuccessful or an error if not.
2727 */
2728int
2729scsi_device_quiesce(struct scsi_device *sdev)
2730{
2731	struct request_queue *q = sdev->request_queue;
2732	int err;
2733
2734	/*
2735	 * It is allowed to call scsi_device_quiesce() multiple times from
2736	 * the same context but concurrent scsi_device_quiesce() calls are
2737	 * not allowed.
2738	 */
2739	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2740
2741	if (sdev->quiesced_by == current)
2742		return 0;
2743
2744	blk_set_pm_only(q);
2745
2746	blk_mq_freeze_queue(q);
2747	/*
2748	 * Ensure that the effect of blk_set_pm_only() will be visible
2749	 * for percpu_ref_tryget() callers that occur after the queue
2750	 * unfreeze even if the queue was already frozen before this function
2751	 * was called. See also https://lwn.net/Articles/573497/.
2752	 */
2753	synchronize_rcu();
2754	blk_mq_unfreeze_queue(q);
2755
2756	mutex_lock(&sdev->state_mutex);
2757	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758	if (err == 0)
2759		sdev->quiesced_by = current;
2760	else
2761		blk_clear_pm_only(q);
2762	mutex_unlock(&sdev->state_mutex);
2763
2764	return err;
2765}
2766EXPORT_SYMBOL(scsi_device_quiesce);
2767
2768/**
2769 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2770 *	@sdev:	scsi device to resume.
2771 *
2772 *	Moves the device from quiesced back to running and restarts the
2773 *	queues.
2774 *
2775 *	Must be called with user context, may sleep.
2776 */
2777void scsi_device_resume(struct scsi_device *sdev)
2778{
2779	/* check if the device state was mutated prior to resume, and if
2780	 * so assume the state is being managed elsewhere (for example
2781	 * device deleted during suspend)
2782	 */
2783	mutex_lock(&sdev->state_mutex);
2784	if (sdev->sdev_state == SDEV_QUIESCE)
2785		scsi_device_set_state(sdev, SDEV_RUNNING);
2786	if (sdev->quiesced_by) {
2787		sdev->quiesced_by = NULL;
2788		blk_clear_pm_only(sdev->request_queue);
2789	}
2790	mutex_unlock(&sdev->state_mutex);
2791}
2792EXPORT_SYMBOL(scsi_device_resume);
2793
2794static void
2795device_quiesce_fn(struct scsi_device *sdev, void *data)
2796{
2797	scsi_device_quiesce(sdev);
2798}
2799
2800void
2801scsi_target_quiesce(struct scsi_target *starget)
2802{
2803	starget_for_each_device(starget, NULL, device_quiesce_fn);
2804}
2805EXPORT_SYMBOL(scsi_target_quiesce);
2806
2807static void
2808device_resume_fn(struct scsi_device *sdev, void *data)
2809{
2810	scsi_device_resume(sdev);
2811}
2812
2813void
2814scsi_target_resume(struct scsi_target *starget)
2815{
2816	starget_for_each_device(starget, NULL, device_resume_fn);
2817}
2818EXPORT_SYMBOL(scsi_target_resume);
2819
2820static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2821{
2822	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2823		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825	return 0;
2826}
2827
2828void scsi_start_queue(struct scsi_device *sdev)
2829{
2830	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2831		blk_mq_unquiesce_queue(sdev->request_queue);
2832}
2833
2834static void scsi_stop_queue(struct scsi_device *sdev)
2835{
2836	/*
2837	 * The atomic variable of ->queue_stopped covers that
2838	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2839	 *
2840	 * The caller needs to wait until quiesce is done.
2841	 */
2842	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2843		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2844}
2845
2846/**
2847 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2848 * @sdev: device to block
2849 *
2850 * Pause SCSI command processing on the specified device. Does not sleep.
 
 
2851 *
2852 * Returns zero if successful or a negative error code upon failure.
2853 *
2854 * Notes:
2855 * This routine transitions the device to the SDEV_BLOCK state (which must be
2856 * a legal transition). When the device is in this state, command processing
2857 * is paused until the device leaves the SDEV_BLOCK state. See also
2858 * scsi_internal_device_unblock_nowait().
 
2859 */
2860int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
2861{
2862	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
 
 
 
 
 
 
 
 
2863
2864	/*
2865	 * The device has transitioned to SDEV_BLOCK.  Stop the
2866	 * block layer from calling the midlayer with this device's
2867	 * request queue.
2868	 */
2869	if (!ret)
2870		scsi_stop_queue(sdev);
2871	return ret;
2872}
2873EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2874
2875/**
2876 * scsi_device_block - try to transition to the SDEV_BLOCK state
2877 * @sdev: device to block
2878 * @data: dummy argument, ignored
2879 *
2880 * Pause SCSI command processing on the specified device. Callers must wait
2881 * until all ongoing scsi_queue_rq() calls have finished after this function
2882 * returns.
2883 *
2884 * Note:
2885 * This routine transitions the device to the SDEV_BLOCK state (which must be
2886 * a legal transition). When the device is in this state, command processing
2887 * is paused until the device leaves the SDEV_BLOCK state. See also
2888 * scsi_internal_device_unblock().
2889 */
2890static void scsi_device_block(struct scsi_device *sdev, void *data)
2891{
2892	int err;
2893	enum scsi_device_state state;
2894
2895	mutex_lock(&sdev->state_mutex);
2896	err = __scsi_internal_device_block_nowait(sdev);
2897	state = sdev->sdev_state;
2898	if (err == 0)
2899		/*
2900		 * scsi_stop_queue() must be called with the state_mutex
2901		 * held. Otherwise a simultaneous scsi_start_queue() call
2902		 * might unquiesce the queue before we quiesce it.
2903		 */
2904		scsi_stop_queue(sdev);
2905
2906	mutex_unlock(&sdev->state_mutex);
2907
2908	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2909		  __func__, dev_name(&sdev->sdev_gendev), state);
2910}
2911
 
2912/**
2913 * scsi_internal_device_unblock_nowait - resume a device after a block request
2914 * @sdev:	device to resume
2915 * @new_state:	state to set the device to after unblocking
2916 *
2917 * Restart the device queue for a previously suspended SCSI device. Does not
2918 * sleep.
2919 *
2920 * Returns zero if successful or a negative error code upon failure.
2921 *
2922 * Notes:
2923 * This routine transitions the device to the SDEV_RUNNING state or to one of
2924 * the offline states (which must be a legal transition) allowing the midlayer
2925 * to goose the queue for this device.
 
 
2926 */
2927int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2928					enum scsi_device_state new_state)
2929{
2930	switch (new_state) {
2931	case SDEV_RUNNING:
2932	case SDEV_TRANSPORT_OFFLINE:
2933		break;
2934	default:
 
 
 
 
 
 
 
 
2935		return -EINVAL;
2936	}
2937
2938	/*
2939	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2940	 * offlined states and goose the device queue if successful.
2941	 */
2942	switch (sdev->sdev_state) {
2943	case SDEV_BLOCK:
2944	case SDEV_TRANSPORT_OFFLINE:
2945		sdev->sdev_state = new_state;
2946		break;
2947	case SDEV_CREATED_BLOCK:
2948		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2949		    new_state == SDEV_OFFLINE)
2950			sdev->sdev_state = new_state;
2951		else
2952			sdev->sdev_state = SDEV_CREATED;
2953		break;
2954	case SDEV_CANCEL:
2955	case SDEV_OFFLINE:
2956		break;
2957	default:
2958		return -EINVAL;
2959	}
2960	scsi_start_queue(sdev);
2961
2962	return 0;
2963}
2964EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2965
2966/**
2967 * scsi_internal_device_unblock - resume a device after a block request
2968 * @sdev:	device to resume
2969 * @new_state:	state to set the device to after unblocking
2970 *
2971 * Restart the device queue for a previously suspended SCSI device. May sleep.
2972 *
2973 * Returns zero if successful or a negative error code upon failure.
2974 *
2975 * Notes:
2976 * This routine transitions the device to the SDEV_RUNNING state or to one of
2977 * the offline states (which must be a legal transition) allowing the midlayer
2978 * to goose the queue for this device.
2979 */
2980static int scsi_internal_device_unblock(struct scsi_device *sdev,
2981					enum scsi_device_state new_state)
2982{
2983	int ret;
2984
2985	mutex_lock(&sdev->state_mutex);
2986	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2987	mutex_unlock(&sdev->state_mutex);
2988
2989	return ret;
2990}
2991
2992static int
2993target_block(struct device *dev, void *data)
2994{
2995	if (scsi_is_target_device(dev))
2996		starget_for_each_device(to_scsi_target(dev), NULL,
2997					scsi_device_block);
2998	return 0;
2999}
3000
3001/**
3002 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3003 * @dev: a parent device of one or more scsi_target devices
3004 * @shost: the Scsi_Host to which this device belongs
3005 *
3006 * Iterate over all children of @dev, which should be scsi_target devices,
3007 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3008 * ongoing scsi_queue_rq() calls to finish. May sleep.
3009 *
3010 * Note:
3011 * @dev must not itself be a scsi_target device.
3012 */
3013void
3014scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3015{
3016	WARN_ON_ONCE(scsi_is_target_device(dev));
3017	device_for_each_child(dev, NULL, target_block);
3018	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
3019}
3020EXPORT_SYMBOL_GPL(scsi_block_targets);
3021
3022static void
3023device_unblock(struct scsi_device *sdev, void *data)
3024{
3025	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3026}
3027
3028static int
3029target_unblock(struct device *dev, void *data)
3030{
3031	if (scsi_is_target_device(dev))
3032		starget_for_each_device(to_scsi_target(dev), data,
3033					device_unblock);
3034	return 0;
3035}
3036
3037void
3038scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3039{
3040	if (scsi_is_target_device(dev))
3041		starget_for_each_device(to_scsi_target(dev), &new_state,
3042					device_unblock);
3043	else
3044		device_for_each_child(dev, &new_state, target_unblock);
3045}
3046EXPORT_SYMBOL_GPL(scsi_target_unblock);
3047
3048/**
3049 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3050 * @shost: device to block
3051 *
3052 * Pause SCSI command processing for all logical units associated with the SCSI
3053 * host and wait until pending scsi_queue_rq() calls have finished.
3054 *
3055 * Returns zero if successful or a negative error code upon failure.
3056 */
3057int
3058scsi_host_block(struct Scsi_Host *shost)
3059{
3060	struct scsi_device *sdev;
3061	int ret;
3062
3063	/*
3064	 * Call scsi_internal_device_block_nowait so we can avoid
3065	 * calling synchronize_rcu() for each LUN.
3066	 */
3067	shost_for_each_device(sdev, shost) {
3068		mutex_lock(&sdev->state_mutex);
3069		ret = scsi_internal_device_block_nowait(sdev);
3070		mutex_unlock(&sdev->state_mutex);
3071		if (ret) {
3072			scsi_device_put(sdev);
3073			return ret;
3074		}
3075	}
3076
3077	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3078	blk_mq_wait_quiesce_done(&shost->tag_set);
3079
3080	return 0;
3081}
3082EXPORT_SYMBOL_GPL(scsi_host_block);
3083
3084int
3085scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3086{
3087	struct scsi_device *sdev;
3088	int ret = 0;
3089
3090	shost_for_each_device(sdev, shost) {
3091		ret = scsi_internal_device_unblock(sdev, new_state);
3092		if (ret) {
3093			scsi_device_put(sdev);
3094			break;
3095		}
3096	}
3097	return ret;
3098}
3099EXPORT_SYMBOL_GPL(scsi_host_unblock);
3100
3101/**
3102 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103 * @sgl:	scatter-gather list
3104 * @sg_count:	number of segments in sg
3105 * @offset:	offset in bytes into sg, on return offset into the mapped area
3106 * @len:	bytes to map, on return number of bytes mapped
3107 *
3108 * Returns virtual address of the start of the mapped page
3109 */
3110void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111			  size_t *offset, size_t *len)
3112{
3113	int i;
3114	size_t sg_len = 0, len_complete = 0;
3115	struct scatterlist *sg;
3116	struct page *page;
3117
3118	WARN_ON(!irqs_disabled());
3119
3120	for_each_sg(sgl, sg, sg_count, i) {
3121		len_complete = sg_len; /* Complete sg-entries */
3122		sg_len += sg->length;
3123		if (sg_len > *offset)
3124			break;
3125	}
3126
3127	if (unlikely(i == sg_count)) {
3128		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129			"elements %d\n",
3130		       __func__, sg_len, *offset, sg_count);
3131		WARN_ON(1);
3132		return NULL;
3133	}
3134
3135	/* Offset starting from the beginning of first page in this sg-entry */
3136	*offset = *offset - len_complete + sg->offset;
3137
3138	/* Assumption: contiguous pages can be accessed as "page + i" */
3139	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140	*offset &= ~PAGE_MASK;
3141
3142	/* Bytes in this sg-entry from *offset to the end of the page */
3143	sg_len = PAGE_SIZE - *offset;
3144	if (*len > sg_len)
3145		*len = sg_len;
3146
3147	return kmap_atomic(page);
3148}
3149EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150
3151/**
3152 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153 * @virt:	virtual address to be unmapped
3154 */
3155void scsi_kunmap_atomic_sg(void *virt)
3156{
3157	kunmap_atomic(virt);
3158}
3159EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160
3161void sdev_disable_disk_events(struct scsi_device *sdev)
3162{
3163	atomic_inc(&sdev->disk_events_disable_depth);
3164}
3165EXPORT_SYMBOL(sdev_disable_disk_events);
3166
3167void sdev_enable_disk_events(struct scsi_device *sdev)
3168{
3169	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170		return;
3171	atomic_dec(&sdev->disk_events_disable_depth);
3172}
3173EXPORT_SYMBOL(sdev_enable_disk_events);
3174
3175static unsigned char designator_prio(const unsigned char *d)
3176{
3177	if (d[1] & 0x30)
3178		/* not associated with LUN */
3179		return 0;
3180
3181	if (d[3] == 0)
3182		/* invalid length */
3183		return 0;
3184
3185	/*
3186	 * Order of preference for lun descriptor:
3187	 * - SCSI name string
3188	 * - NAA IEEE Registered Extended
3189	 * - EUI-64 based 16-byte
3190	 * - EUI-64 based 12-byte
3191	 * - NAA IEEE Registered
3192	 * - NAA IEEE Extended
3193	 * - EUI-64 based 8-byte
3194	 * - SCSI name string (truncated)
3195	 * - T10 Vendor ID
3196	 * as longer descriptors reduce the likelyhood
3197	 * of identification clashes.
3198	 */
3199
3200	switch (d[1] & 0xf) {
3201	case 8:
3202		/* SCSI name string, variable-length UTF-8 */
3203		return 9;
3204	case 3:
3205		switch (d[4] >> 4) {
3206		case 6:
3207			/* NAA registered extended */
3208			return 8;
3209		case 5:
3210			/* NAA registered */
3211			return 5;
3212		case 4:
3213			/* NAA extended */
3214			return 4;
3215		case 3:
3216			/* NAA locally assigned */
3217			return 1;
3218		default:
3219			break;
3220		}
3221		break;
3222	case 2:
3223		switch (d[3]) {
3224		case 16:
3225			/* EUI64-based, 16 byte */
3226			return 7;
3227		case 12:
3228			/* EUI64-based, 12 byte */
3229			return 6;
3230		case 8:
3231			/* EUI64-based, 8 byte */
3232			return 3;
3233		default:
3234			break;
3235		}
3236		break;
3237	case 1:
3238		/* T10 vendor ID */
3239		return 1;
3240	default:
3241		break;
3242	}
3243
3244	return 0;
3245}
3246
3247/**
3248 * scsi_vpd_lun_id - return a unique device identification
3249 * @sdev: SCSI device
3250 * @id:   buffer for the identification
3251 * @id_len:  length of the buffer
3252 *
3253 * Copies a unique device identification into @id based
3254 * on the information in the VPD page 0x83 of the device.
3255 * The string will be formatted as a SCSI name string.
3256 *
3257 * Returns the length of the identification or error on failure.
3258 * If the identifier is longer than the supplied buffer the actual
3259 * identifier length is returned and the buffer is not zero-padded.
3260 */
3261int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262{
3263	u8 cur_id_prio = 0;
3264	u8 cur_id_size = 0;
3265	const unsigned char *d, *cur_id_str;
3266	const struct scsi_vpd *vpd_pg83;
3267	int id_size = -EINVAL;
3268
3269	rcu_read_lock();
3270	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271	if (!vpd_pg83) {
3272		rcu_read_unlock();
3273		return -ENXIO;
3274	}
3275
3276	/* The id string must be at least 20 bytes + terminating NULL byte */
3277	if (id_len < 21) {
3278		rcu_read_unlock();
3279		return -EINVAL;
3280	}
3281
3282	memset(id, 0, id_len);
3283	for (d = vpd_pg83->data + 4;
3284	     d < vpd_pg83->data + vpd_pg83->len;
3285	     d += d[3] + 4) {
3286		u8 prio = designator_prio(d);
3287
3288		if (prio == 0 || cur_id_prio > prio)
3289			continue;
3290
3291		switch (d[1] & 0xf) {
3292		case 0x1:
3293			/* T10 Vendor ID */
3294			if (cur_id_size > d[3])
3295				break;
3296			cur_id_prio = prio;
3297			cur_id_size = d[3];
3298			if (cur_id_size + 4 > id_len)
3299				cur_id_size = id_len - 4;
3300			cur_id_str = d + 4;
3301			id_size = snprintf(id, id_len, "t10.%*pE",
3302					   cur_id_size, cur_id_str);
3303			break;
3304		case 0x2:
3305			/* EUI-64 */
3306			cur_id_prio = prio;
3307			cur_id_size = d[3];
3308			cur_id_str = d + 4;
3309			switch (cur_id_size) {
3310			case 8:
3311				id_size = snprintf(id, id_len,
3312						   "eui.%8phN",
3313						   cur_id_str);
3314				break;
3315			case 12:
3316				id_size = snprintf(id, id_len,
3317						   "eui.%12phN",
3318						   cur_id_str);
3319				break;
3320			case 16:
3321				id_size = snprintf(id, id_len,
3322						   "eui.%16phN",
3323						   cur_id_str);
3324				break;
3325			default:
3326				break;
3327			}
3328			break;
3329		case 0x3:
3330			/* NAA */
3331			cur_id_prio = prio;
3332			cur_id_size = d[3];
3333			cur_id_str = d + 4;
3334			switch (cur_id_size) {
3335			case 8:
3336				id_size = snprintf(id, id_len,
3337						   "naa.%8phN",
3338						   cur_id_str);
3339				break;
3340			case 16:
3341				id_size = snprintf(id, id_len,
3342						   "naa.%16phN",
3343						   cur_id_str);
3344				break;
3345			default:
3346				break;
3347			}
3348			break;
3349		case 0x8:
3350			/* SCSI name string */
3351			if (cur_id_size > d[3])
3352				break;
3353			/* Prefer others for truncated descriptor */
3354			if (d[3] > id_len) {
3355				prio = 2;
3356				if (cur_id_prio > prio)
3357					break;
3358			}
3359			cur_id_prio = prio;
3360			cur_id_size = id_size = d[3];
3361			cur_id_str = d + 4;
3362			if (cur_id_size >= id_len)
3363				cur_id_size = id_len - 1;
3364			memcpy(id, cur_id_str, cur_id_size);
3365			break;
3366		default:
3367			break;
3368		}
3369	}
3370	rcu_read_unlock();
3371
3372	return id_size;
3373}
3374EXPORT_SYMBOL(scsi_vpd_lun_id);
3375
3376/*
3377 * scsi_vpd_tpg_id - return a target port group identifier
3378 * @sdev: SCSI device
3379 *
3380 * Returns the Target Port Group identifier from the information
3381 * froom VPD page 0x83 of the device.
3382 *
3383 * Returns the identifier or error on failure.
3384 */
3385int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3386{
3387	const unsigned char *d;
3388	const struct scsi_vpd *vpd_pg83;
3389	int group_id = -EAGAIN, rel_port = -1;
3390
3391	rcu_read_lock();
3392	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3393	if (!vpd_pg83) {
3394		rcu_read_unlock();
3395		return -ENXIO;
3396	}
3397
3398	d = vpd_pg83->data + 4;
3399	while (d < vpd_pg83->data + vpd_pg83->len) {
3400		switch (d[1] & 0xf) {
3401		case 0x4:
3402			/* Relative target port */
3403			rel_port = get_unaligned_be16(&d[6]);
3404			break;
3405		case 0x5:
3406			/* Target port group */
3407			group_id = get_unaligned_be16(&d[6]);
3408			break;
3409		default:
3410			break;
3411		}
3412		d += d[3] + 4;
3413	}
3414	rcu_read_unlock();
3415
3416	if (group_id >= 0 && rel_id && rel_port != -1)
3417		*rel_id = rel_port;
3418
3419	return group_id;
3420}
3421EXPORT_SYMBOL(scsi_vpd_tpg_id);
3422
3423/**
3424 * scsi_build_sense - build sense data for a command
3425 * @scmd:	scsi command for which the sense should be formatted
3426 * @desc:	Sense format (non-zero == descriptor format,
3427 *              0 == fixed format)
3428 * @key:	Sense key
3429 * @asc:	Additional sense code
3430 * @ascq:	Additional sense code qualifier
3431 *
3432 **/
3433void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3434{
3435	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3436	scmd->result = SAM_STAT_CHECK_CONDITION;
3437}
3438EXPORT_SYMBOL_GPL(scsi_build_sense);
3439
3440#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3441#include "scsi_lib_test.c"
3442#endif