Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->timer))
  60		return;
  61	complete(&task->completion);
 
 
 
 
 
 
 
 
  62}
  63
 
 
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  74
 
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->timer.data = (unsigned long) task;
  95		task->timer.function = smp_task_timedout;
  96		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_dev_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 199{
 200	enum sas_dev_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 
 
 
 
 
 
 
 
 
 
 
 238	phy->attached_dev_type = to_dev_type(dr);
 239	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 240		goto out;
 241	phy->phy_id = phy_id;
 242	phy->linkrate = dr->linkrate;
 243	phy->attached_sata_host = dr->attached_sata_host;
 244	phy->attached_sata_dev  = dr->attached_sata_dev;
 245	phy->attached_sata_ps   = dr->attached_sata_ps;
 246	phy->attached_iproto = dr->iproto << 1;
 247	phy->attached_tproto = dr->tproto << 1;
 248	/* help some expanders that fail to zero sas_address in the 'no
 249	 * device' case
 250	 */
 251	if (phy->attached_dev_type == NO_DEVICE ||
 252	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 253		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 254	else
 255		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 256	phy->attached_phy_id = dr->attached_phy_id;
 257	phy->phy_change_count = dr->change_count;
 258	phy->routing_attr = dr->routing_attr;
 259	phy->virtual = dr->virtual;
 260	phy->last_da_index = -1;
 261
 262	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 263	phy->phy->identify.device_type = dr->attached_dev_type;
 264	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 265	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 266	if (!phy->attached_tproto && dr->attached_sata_dev)
 267		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 268	phy->phy->identify.phy_identifier = phy_id;
 269	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 270	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 271	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 272	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 273	phy->phy->negotiated_linkrate = phy->linkrate;
 
 274
 
 275	if (new_phy)
 276		if (sas_phy_add(phy->phy)) {
 277			sas_phy_free(phy->phy);
 278			return;
 279		}
 280
 281 out:
 282	switch (phy->attached_dev_type) {
 283	case SATA_PENDING:
 284		type = "stp pending";
 285		break;
 286	case NO_DEVICE:
 287		type = "no device";
 288		break;
 289	case SAS_END_DEV:
 290		if (phy->attached_iproto) {
 291			if (phy->attached_tproto)
 292				type = "host+target";
 293			else
 294				type = "host";
 295		} else {
 296			if (dr->attached_sata_dev)
 297				type = "stp";
 298			else
 299				type = "ssp";
 300		}
 301		break;
 302	case EDGE_DEV:
 303	case FANOUT_DEV:
 304		type = "smp";
 305		break;
 306	default:
 307		type = "unknown";
 308	}
 309
 310	/* this routine is polled by libata error recovery so filter
 311	 * unimportant messages
 312	 */
 313	if (new_phy || phy->attached_dev_type != dev_type ||
 314	    phy->linkrate != linkrate ||
 315	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 316		/* pass */;
 317	else
 318		return;
 319
 320	/* if the attached device type changed and ata_eh is active,
 321	 * make sure we run revalidation when eh completes (see:
 322	 * sas_enable_revalidation)
 323	 */
 324	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 325		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 326
 327	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 328		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 329		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 330		    sas_route_char(dev, phy), phy->linkrate,
 331		    SAS_ADDR(phy->attached_sas_addr), type);
 332}
 333
 334/* check if we have an existing attached ata device on this expander phy */
 335struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 336{
 337	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 338	struct domain_device *dev;
 339	struct sas_rphy *rphy;
 340
 341	if (!ex_phy->port)
 342		return NULL;
 343
 344	rphy = ex_phy->port->rphy;
 345	if (!rphy)
 346		return NULL;
 347
 348	dev = sas_find_dev_by_rphy(rphy);
 349
 350	if (dev && dev_is_sata(dev))
 351		return dev;
 352
 353	return NULL;
 354}
 355
 356#define DISCOVER_REQ_SIZE  16
 357#define DISCOVER_RESP_SIZE 56
 358
 359static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 360				      u8 *disc_resp, int single)
 
 361{
 362	struct discover_resp *dr;
 363	int res;
 364
 365	disc_req[9] = single;
 366
 367	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 368			       disc_resp, DISCOVER_RESP_SIZE);
 369	if (res)
 370		return res;
 371	dr = &((struct smp_resp *)disc_resp)->disc;
 372	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 373		sas_printk("Found loopback topology, just ignore it!\n");
 374		return 0;
 375	}
 376	sas_set_ex_phy(dev, single, disc_resp);
 377	return 0;
 378}
 379
 380int sas_ex_phy_discover(struct domain_device *dev, int single)
 381{
 382	struct expander_device *ex = &dev->ex_dev;
 383	int  res = 0;
 384	u8   *disc_req;
 385	u8   *disc_resp;
 386
 387	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 388	if (!disc_req)
 389		return -ENOMEM;
 390
 391	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 392	if (!disc_resp) {
 393		kfree(disc_req);
 394		return -ENOMEM;
 395	}
 396
 397	disc_req[1] = SMP_DISCOVER;
 398
 399	if (0 <= single && single < ex->num_phys) {
 400		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 401	} else {
 402		int i;
 403
 404		for (i = 0; i < ex->num_phys; i++) {
 405			res = sas_ex_phy_discover_helper(dev, disc_req,
 406							 disc_resp, i);
 407			if (res)
 408				goto out_err;
 409		}
 410	}
 411out_err:
 412	kfree(disc_resp);
 413	kfree(disc_req);
 414	return res;
 415}
 416
 417static int sas_expander_discover(struct domain_device *dev)
 418{
 419	struct expander_device *ex = &dev->ex_dev;
 420	int res = -ENOMEM;
 421
 422	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 423	if (!ex->ex_phy)
 424		return -ENOMEM;
 425
 426	res = sas_ex_phy_discover(dev, -1);
 427	if (res)
 428		goto out_err;
 429
 430	return 0;
 431 out_err:
 432	kfree(ex->ex_phy);
 433	ex->ex_phy = NULL;
 434	return res;
 435}
 436
 437#define MAX_EXPANDER_PHYS 128
 438
 439static void ex_assign_report_general(struct domain_device *dev,
 440					    struct smp_resp *resp)
 441{
 442	struct report_general_resp *rg = &resp->rg;
 443
 444	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 445	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 446	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 447	dev->ex_dev.t2t_supp = rg->t2t_supp;
 448	dev->ex_dev.conf_route_table = rg->conf_route_table;
 449	dev->ex_dev.configuring = rg->configuring;
 450	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 451}
 452
 453#define RG_REQ_SIZE   8
 454#define RG_RESP_SIZE 32
 455
 456static int sas_ex_general(struct domain_device *dev)
 457{
 458	u8 *rg_req;
 459	struct smp_resp *rg_resp;
 
 460	int res;
 461	int i;
 462
 463	rg_req = alloc_smp_req(RG_REQ_SIZE);
 464	if (!rg_req)
 465		return -ENOMEM;
 466
 467	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 468	if (!rg_resp) {
 469		kfree(rg_req);
 470		return -ENOMEM;
 471	}
 472
 473	rg_req[1] = SMP_REPORT_GENERAL;
 474
 475	for (i = 0; i < 5; i++) {
 476		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 477				       RG_RESP_SIZE);
 478
 479		if (res) {
 480			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 481				    SAS_ADDR(dev->sas_addr), res);
 482			goto out;
 483		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 484			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 485				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 486			res = rg_resp->result;
 487			goto out;
 488		}
 489
 490		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 491
 492		if (dev->ex_dev.configuring) {
 493			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 494				    SAS_ADDR(dev->sas_addr));
 495			schedule_timeout_interruptible(5*HZ);
 496		} else
 497			break;
 498	}
 499out:
 500	kfree(rg_req);
 501	kfree(rg_resp);
 502	return res;
 503}
 504
 505static void ex_assign_manuf_info(struct domain_device *dev, void
 506					*_mi_resp)
 507{
 508	u8 *mi_resp = _mi_resp;
 509	struct sas_rphy *rphy = dev->rphy;
 510	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 511
 512	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 513	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 514	memcpy(edev->product_rev, mi_resp + 36,
 515	       SAS_EXPANDER_PRODUCT_REV_LEN);
 516
 517	if (mi_resp[8] & 1) {
 518		memcpy(edev->component_vendor_id, mi_resp + 40,
 519		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 520		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 521		edev->component_revision_id = mi_resp[50];
 522	}
 523}
 524
 525#define MI_REQ_SIZE   8
 526#define MI_RESP_SIZE 64
 527
 528static int sas_ex_manuf_info(struct domain_device *dev)
 529{
 530	u8 *mi_req;
 531	u8 *mi_resp;
 532	int res;
 533
 534	mi_req = alloc_smp_req(MI_REQ_SIZE);
 535	if (!mi_req)
 536		return -ENOMEM;
 537
 538	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 539	if (!mi_resp) {
 540		kfree(mi_req);
 541		return -ENOMEM;
 542	}
 543
 544	mi_req[1] = SMP_REPORT_MANUF_INFO;
 545
 546	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 547	if (res) {
 548		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 549			    SAS_ADDR(dev->sas_addr), res);
 550		goto out;
 551	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 552		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 553			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 554		goto out;
 555	}
 556
 557	ex_assign_manuf_info(dev, mi_resp);
 558out:
 559	kfree(mi_req);
 560	kfree(mi_resp);
 561	return res;
 562}
 563
 564#define PC_REQ_SIZE  44
 565#define PC_RESP_SIZE 8
 566
 567int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 568			enum phy_func phy_func,
 569			struct sas_phy_linkrates *rates)
 570{
 571	u8 *pc_req;
 572	u8 *pc_resp;
 573	int res;
 574
 575	pc_req = alloc_smp_req(PC_REQ_SIZE);
 576	if (!pc_req)
 577		return -ENOMEM;
 578
 579	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 580	if (!pc_resp) {
 581		kfree(pc_req);
 582		return -ENOMEM;
 583	}
 584
 585	pc_req[1] = SMP_PHY_CONTROL;
 586	pc_req[9] = phy_id;
 587	pc_req[10]= phy_func;
 588	if (rates) {
 589		pc_req[32] = rates->minimum_linkrate << 4;
 590		pc_req[33] = rates->maximum_linkrate << 4;
 591	}
 592
 593	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 594
 
 
 
 
 
 
 
 595	kfree(pc_resp);
 596	kfree(pc_req);
 597	return res;
 598}
 599
 600static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 601{
 602	struct expander_device *ex = &dev->ex_dev;
 603	struct ex_phy *phy = &ex->ex_phy[phy_id];
 604
 605	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 606	phy->linkrate = SAS_PHY_DISABLED;
 607}
 608
 609static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 610{
 611	struct expander_device *ex = &dev->ex_dev;
 612	int i;
 613
 614	for (i = 0; i < ex->num_phys; i++) {
 615		struct ex_phy *phy = &ex->ex_phy[i];
 616
 617		if (phy->phy_state == PHY_VACANT ||
 618		    phy->phy_state == PHY_NOT_PRESENT)
 619			continue;
 620
 621		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 622			sas_ex_disable_phy(dev, i);
 623	}
 624}
 625
 626static int sas_dev_present_in_domain(struct asd_sas_port *port,
 627					    u8 *sas_addr)
 628{
 629	struct domain_device *dev;
 630
 631	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 632		return 1;
 633	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 634		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 635			return 1;
 636	}
 637	return 0;
 638}
 639
 640#define RPEL_REQ_SIZE	16
 641#define RPEL_RESP_SIZE	32
 642int sas_smp_get_phy_events(struct sas_phy *phy)
 643{
 644	int res;
 645	u8 *req;
 646	u8 *resp;
 647	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 648	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 649
 650	req = alloc_smp_req(RPEL_REQ_SIZE);
 651	if (!req)
 652		return -ENOMEM;
 653
 654	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 655	if (!resp) {
 656		kfree(req);
 657		return -ENOMEM;
 658	}
 659
 660	req[1] = SMP_REPORT_PHY_ERR_LOG;
 661	req[9] = phy->number;
 662
 663	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 664			            resp, RPEL_RESP_SIZE);
 665
 666	if (!res)
 667		goto out;
 668
 669	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 670	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 671	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 672	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 673
 674 out:
 
 675	kfree(resp);
 676	return res;
 677
 678}
 679
 680#ifdef CONFIG_SCSI_SAS_ATA
 681
 682#define RPS_REQ_SIZE  16
 683#define RPS_RESP_SIZE 60
 684
 685int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 686			    struct smp_resp *rps_resp)
 687{
 688	int res;
 689	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 690	u8 *resp = (u8 *)rps_resp;
 691
 692	if (!rps_req)
 693		return -ENOMEM;
 694
 695	rps_req[1] = SMP_REPORT_PHY_SATA;
 696	rps_req[9] = phy_id;
 697
 698	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 699			            rps_resp, RPS_RESP_SIZE);
 700
 701	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 702	 * standards cockup here.  sas-2 explicitly specifies the FIS
 703	 * should be encoded so that FIS type is in resp[24].
 704	 * However, some expanders endian reverse this.  Undo the
 705	 * reversal here */
 706	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 707		int i;
 708
 709		for (i = 0; i < 5; i++) {
 710			int j = 24 + (i*4);
 711			u8 a, b;
 712			a = resp[j + 0];
 713			b = resp[j + 1];
 714			resp[j + 0] = resp[j + 3];
 715			resp[j + 1] = resp[j + 2];
 716			resp[j + 2] = b;
 717			resp[j + 3] = a;
 718		}
 719	}
 720
 721	kfree(rps_req);
 722	return res;
 723}
 724#endif
 725
 726static void sas_ex_get_linkrate(struct domain_device *parent,
 727				       struct domain_device *child,
 728				       struct ex_phy *parent_phy)
 729{
 730	struct expander_device *parent_ex = &parent->ex_dev;
 731	struct sas_port *port;
 732	int i;
 733
 734	child->pathways = 0;
 735
 736	port = parent_phy->port;
 737
 738	for (i = 0; i < parent_ex->num_phys; i++) {
 739		struct ex_phy *phy = &parent_ex->ex_phy[i];
 740
 741		if (phy->phy_state == PHY_VACANT ||
 742		    phy->phy_state == PHY_NOT_PRESENT)
 743			continue;
 744
 745		if (SAS_ADDR(phy->attached_sas_addr) ==
 746		    SAS_ADDR(child->sas_addr)) {
 747
 748			child->min_linkrate = min(parent->min_linkrate,
 749						  phy->linkrate);
 750			child->max_linkrate = max(parent->max_linkrate,
 751						  phy->linkrate);
 752			child->pathways++;
 753			sas_port_add_phy(port, phy->phy);
 754		}
 755	}
 756	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 757	child->pathways = min(child->pathways, parent->pathways);
 758}
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760static struct domain_device *sas_ex_discover_end_dev(
 761	struct domain_device *parent, int phy_id)
 762{
 763	struct expander_device *parent_ex = &parent->ex_dev;
 764	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 765	struct domain_device *child = NULL;
 766	struct sas_rphy *rphy;
 767	int res;
 768
 769	if (phy->attached_sata_host || phy->attached_sata_ps)
 770		return NULL;
 771
 772	child = sas_alloc_device();
 773	if (!child)
 774		return NULL;
 775
 776	kref_get(&parent->kref);
 777	child->parent = parent;
 778	child->port   = parent->port;
 779	child->iproto = phy->attached_iproto;
 780	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 781	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 782	if (!phy->port) {
 783		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 784		if (unlikely(!phy->port))
 785			goto out_err;
 786		if (unlikely(sas_port_add(phy->port) != 0)) {
 787			sas_port_free(phy->port);
 788			goto out_err;
 789		}
 790	}
 791	sas_ex_get_linkrate(parent, child, phy);
 792	sas_device_set_phy(child, phy->port);
 793
 794#ifdef CONFIG_SCSI_SAS_ATA
 795	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 796		res = sas_get_ata_info(child, phy);
 797		if (res)
 798			goto out_free;
 799
 800		sas_init_dev(child);
 801		res = sas_ata_init(child);
 802		if (res)
 803			goto out_free;
 804		rphy = sas_end_device_alloc(phy->port);
 805		if (!rphy)
 806			goto out_free;
 807
 808		child->rphy = rphy;
 809		get_device(&rphy->dev);
 810
 811		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 812
 813		res = sas_discover_sata(child);
 814		if (res) {
 815			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 816				    "%016llx:0x%x returned 0x%x\n",
 817				    SAS_ADDR(child->sas_addr),
 818				    SAS_ADDR(parent->sas_addr), phy_id, res);
 819			goto out_list_del;
 820		}
 821	} else
 822#endif
 823	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 824		child->dev_type = SAS_END_DEV;
 825		rphy = sas_end_device_alloc(phy->port);
 826		/* FIXME: error handling */
 827		if (unlikely(!rphy))
 828			goto out_free;
 829		child->tproto = phy->attached_tproto;
 830		sas_init_dev(child);
 831
 832		child->rphy = rphy;
 833		get_device(&rphy->dev);
 834		sas_fill_in_rphy(child, rphy);
 835
 836		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 837
 838		res = sas_discover_end_dev(child);
 839		if (res) {
 840			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 841				    "at %016llx:0x%x returned 0x%x\n",
 842				    SAS_ADDR(child->sas_addr),
 843				    SAS_ADDR(parent->sas_addr), phy_id, res);
 844			goto out_list_del;
 845		}
 846	} else {
 847		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 848			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 849			    phy_id);
 850		goto out_free;
 851	}
 852
 
 
 
 853	list_add_tail(&child->siblings, &parent_ex->children);
 854	return child;
 855
 856 out_list_del:
 857	sas_rphy_free(child->rphy);
 858	list_del(&child->disco_list_node);
 859	spin_lock_irq(&parent->port->dev_list_lock);
 860	list_del(&child->dev_list_node);
 861	spin_unlock_irq(&parent->port->dev_list_lock);
 862 out_free:
 863	sas_port_delete(phy->port);
 864 out_err:
 865	phy->port = NULL;
 866	sas_put_device(child);
 867	return NULL;
 868}
 869
 870/* See if this phy is part of a wide port */
 871static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 872{
 873	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 874	int i;
 875
 876	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 877		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 878
 879		if (ephy == phy)
 880			continue;
 881
 882		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 883			    SAS_ADDR_SIZE) && ephy->port) {
 884			sas_port_add_phy(ephy->port, phy->phy);
 885			phy->port = ephy->port;
 886			phy->phy_state = PHY_DEVICE_DISCOVERED;
 887			return true;
 888		}
 889	}
 890
 891	return false;
 892}
 893
 894static struct domain_device *sas_ex_discover_expander(
 895	struct domain_device *parent, int phy_id)
 896{
 897	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 898	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 899	struct domain_device *child = NULL;
 900	struct sas_rphy *rphy;
 901	struct sas_expander_device *edev;
 902	struct asd_sas_port *port;
 903	int res;
 904
 905	if (phy->routing_attr == DIRECT_ROUTING) {
 906		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 907			    "allowed\n",
 908			    SAS_ADDR(parent->sas_addr), phy_id,
 909			    SAS_ADDR(phy->attached_sas_addr),
 910			    phy->attached_phy_id);
 911		return NULL;
 912	}
 913	child = sas_alloc_device();
 914	if (!child)
 915		return NULL;
 916
 917	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 918	/* FIXME: better error handling */
 919	BUG_ON(sas_port_add(phy->port) != 0);
 920
 921
 922	switch (phy->attached_dev_type) {
 923	case EDGE_DEV:
 924		rphy = sas_expander_alloc(phy->port,
 925					  SAS_EDGE_EXPANDER_DEVICE);
 926		break;
 927	case FANOUT_DEV:
 928		rphy = sas_expander_alloc(phy->port,
 929					  SAS_FANOUT_EXPANDER_DEVICE);
 930		break;
 931	default:
 932		rphy = NULL;	/* shut gcc up */
 933		BUG();
 934	}
 935	port = parent->port;
 936	child->rphy = rphy;
 937	get_device(&rphy->dev);
 938	edev = rphy_to_expander_device(rphy);
 939	child->dev_type = phy->attached_dev_type;
 940	kref_get(&parent->kref);
 941	child->parent = parent;
 942	child->port = port;
 943	child->iproto = phy->attached_iproto;
 944	child->tproto = phy->attached_tproto;
 945	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 946	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 947	sas_ex_get_linkrate(parent, child, phy);
 948	edev->level = parent_ex->level + 1;
 949	parent->port->disc.max_level = max(parent->port->disc.max_level,
 950					   edev->level);
 951	sas_init_dev(child);
 952	sas_fill_in_rphy(child, rphy);
 953	sas_rphy_add(rphy);
 954
 955	spin_lock_irq(&parent->port->dev_list_lock);
 956	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 957	spin_unlock_irq(&parent->port->dev_list_lock);
 958
 959	res = sas_discover_expander(child);
 960	if (res) {
 961		sas_rphy_delete(rphy);
 962		spin_lock_irq(&parent->port->dev_list_lock);
 963		list_del(&child->dev_list_node);
 964		spin_unlock_irq(&parent->port->dev_list_lock);
 965		sas_put_device(child);
 
 
 966		return NULL;
 967	}
 968	list_add_tail(&child->siblings, &parent->ex_dev.children);
 969	return child;
 970}
 971
 972static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 973{
 974	struct expander_device *ex = &dev->ex_dev;
 975	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 976	struct domain_device *child = NULL;
 977	int res = 0;
 978
 979	/* Phy state */
 980	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 981		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 982			res = sas_ex_phy_discover(dev, phy_id);
 983		if (res)
 984			return res;
 985	}
 986
 987	/* Parent and domain coherency */
 988	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 989			     SAS_ADDR(dev->port->sas_addr))) {
 990		sas_add_parent_port(dev, phy_id);
 991		return 0;
 992	}
 993	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 994			    SAS_ADDR(dev->parent->sas_addr))) {
 995		sas_add_parent_port(dev, phy_id);
 996		if (ex_phy->routing_attr == TABLE_ROUTING)
 997			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 998		return 0;
 999	}
1000
1001	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004	if (ex_phy->attached_dev_type == NO_DEVICE) {
1005		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008		}
1009		return 0;
1010	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011		return 0;
1012
1013	if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014	    ex_phy->attached_dev_type != FANOUT_DEV &&
1015	    ex_phy->attached_dev_type != EDGE_DEV &&
1016	    ex_phy->attached_dev_type != SATA_PENDING) {
1017		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018			    "phy 0x%x\n", ex_phy->attached_dev_type,
1019			    SAS_ADDR(dev->sas_addr),
1020			    phy_id);
1021		return 0;
1022	}
1023
1024	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025	if (res) {
1026		SAS_DPRINTK("configure routing for dev %016llx "
1027			    "reported 0x%x. Forgotten\n",
1028			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1029		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030		return res;
1031	}
1032
1033	if (sas_ex_join_wide_port(dev, phy_id)) {
1034		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036		return res;
1037	}
1038
1039	switch (ex_phy->attached_dev_type) {
1040	case SAS_END_DEV:
1041	case SATA_PENDING:
1042		child = sas_ex_discover_end_dev(dev, phy_id);
1043		break;
1044	case FANOUT_DEV:
1045		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047				    "attached to ex %016llx phy 0x%x\n",
1048				    SAS_ADDR(ex_phy->attached_sas_addr),
1049				    ex_phy->attached_phy_id,
1050				    SAS_ADDR(dev->sas_addr),
1051				    phy_id);
1052			sas_ex_disable_phy(dev, phy_id);
1053			break;
1054		} else
1055			memcpy(dev->port->disc.fanout_sas_addr,
1056			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057		/* fallthrough */
1058	case EDGE_DEV:
1059		child = sas_ex_discover_expander(dev, phy_id);
1060		break;
1061	default:
1062		break;
1063	}
1064
1065	if (child) {
1066		int i;
1067
1068		for (i = 0; i < ex->num_phys; i++) {
1069			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071				continue;
1072			/*
1073			 * Due to races, the phy might not get added to the
1074			 * wide port, so we add the phy to the wide port here.
1075			 */
1076			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077			    SAS_ADDR(child->sas_addr)) {
1078				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079				if (sas_ex_join_wide_port(dev, i))
1080					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083			}
1084		}
1085	}
1086
1087	return res;
1088}
1089
1090static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091{
1092	struct expander_device *ex = &dev->ex_dev;
1093	int i;
1094
1095	for (i = 0; i < ex->num_phys; i++) {
1096		struct ex_phy *phy = &ex->ex_phy[i];
1097
1098		if (phy->phy_state == PHY_VACANT ||
1099		    phy->phy_state == PHY_NOT_PRESENT)
1100			continue;
1101
1102		if ((phy->attached_dev_type == EDGE_DEV ||
1103		     phy->attached_dev_type == FANOUT_DEV) &&
1104		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108			return 1;
1109		}
1110	}
1111	return 0;
1112}
1113
1114static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115{
1116	struct expander_device *ex = &dev->ex_dev;
1117	struct domain_device *child;
1118	u8 sub_addr[8] = {0, };
1119
1120	list_for_each_entry(child, &ex->children, siblings) {
1121		if (child->dev_type != EDGE_DEV &&
1122		    child->dev_type != FANOUT_DEV)
1123			continue;
1124		if (sub_addr[0] == 0) {
1125			sas_find_sub_addr(child, sub_addr);
1126			continue;
1127		} else {
1128			u8 s2[8];
1129
1130			if (sas_find_sub_addr(child, s2) &&
1131			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134					    "diverges from subtractive "
1135					    "boundary %016llx\n",
1136					    SAS_ADDR(dev->sas_addr),
1137					    SAS_ADDR(child->sas_addr),
1138					    SAS_ADDR(s2),
1139					    SAS_ADDR(sub_addr));
1140
1141				sas_ex_disable_port(child, s2);
1142			}
1143		}
1144	}
1145	return 0;
1146}
1147/**
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1151 *
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1154 */
1155static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156{
1157	struct expander_device *ex = &dev->ex_dev;
1158	int i = 0, end = ex->num_phys;
1159	int res = 0;
1160
1161	if (0 <= single && single < end) {
1162		i = single;
1163		end = i+1;
1164	}
1165
1166	for ( ; i < end; i++) {
1167		struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169		if (ex_phy->phy_state == PHY_VACANT ||
1170		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1171		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172			continue;
1173
1174		switch (ex_phy->linkrate) {
1175		case SAS_PHY_DISABLED:
1176		case SAS_PHY_RESET_PROBLEM:
1177		case SAS_SATA_PORT_SELECTOR:
1178			continue;
1179		default:
1180			res = sas_ex_discover_dev(dev, i);
1181			if (res)
1182				break;
1183			continue;
1184		}
1185	}
1186
1187	if (!res)
1188		sas_check_level_subtractive_boundary(dev);
1189
1190	return res;
1191}
1192
1193static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194{
1195	struct expander_device *ex = &dev->ex_dev;
1196	int i;
1197	u8  *sub_sas_addr = NULL;
1198
1199	if (dev->dev_type != EDGE_DEV)
1200		return 0;
1201
1202	for (i = 0; i < ex->num_phys; i++) {
1203		struct ex_phy *phy = &ex->ex_phy[i];
1204
1205		if (phy->phy_state == PHY_VACANT ||
1206		    phy->phy_state == PHY_NOT_PRESENT)
1207			continue;
1208
1209		if ((phy->attached_dev_type == FANOUT_DEV ||
1210		     phy->attached_dev_type == EDGE_DEV) &&
1211		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213			if (!sub_sas_addr)
1214				sub_sas_addr = &phy->attached_sas_addr[0];
1215			else if (SAS_ADDR(sub_sas_addr) !=
1216				 SAS_ADDR(phy->attached_sas_addr)) {
1217
1218				SAS_DPRINTK("ex %016llx phy 0x%x "
1219					    "diverges(%016llx) on subtractive "
1220					    "boundary(%016llx). Disabled\n",
1221					    SAS_ADDR(dev->sas_addr), i,
1222					    SAS_ADDR(phy->attached_sas_addr),
1223					    SAS_ADDR(sub_sas_addr));
1224				sas_ex_disable_phy(dev, i);
1225			}
1226		}
1227	}
1228	return 0;
1229}
1230
1231static void sas_print_parent_topology_bug(struct domain_device *child,
1232						 struct ex_phy *parent_phy,
1233						 struct ex_phy *child_phy)
1234{
1235	static const char *ex_type[] = {
1236		[EDGE_DEV] = "edge",
1237		[FANOUT_DEV] = "fanout",
1238	};
1239	struct domain_device *parent = child->parent;
1240
1241	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242		   "phy 0x%x has %c:%c routing link!\n",
 
 
1243
1244		   ex_type[parent->dev_type],
1245		   SAS_ADDR(parent->sas_addr),
1246		   parent_phy->phy_id,
1247
1248		   ex_type[child->dev_type],
1249		   SAS_ADDR(child->sas_addr),
1250		   child_phy->phy_id,
1251
1252		   sas_route_char(parent, parent_phy),
1253		   sas_route_char(child, child_phy));
 
 
 
 
 
 
 
 
 
 
 
1254}
1255
1256static int sas_check_eeds(struct domain_device *child,
1257				 struct ex_phy *parent_phy,
1258				 struct ex_phy *child_phy)
1259{
1260	int res = 0;
1261	struct domain_device *parent = child->parent;
 
1262
1263	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264		res = -ENODEV;
1265		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1267			    SAS_ADDR(parent->sas_addr),
1268			    parent_phy->phy_id,
1269			    SAS_ADDR(child->sas_addr),
1270			    child_phy->phy_id,
1271			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274		       SAS_ADDR_SIZE);
1275		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276		       SAS_ADDR_SIZE);
1277	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278		    SAS_ADDR(parent->sas_addr)) ||
1279		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1280		    SAS_ADDR(child->sas_addr)))
1281		   &&
1282		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283		     SAS_ADDR(parent->sas_addr)) ||
1284		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1285		     SAS_ADDR(child->sas_addr))))
1286		;
1287	else {
1288		res = -ENODEV;
1289		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290			    "phy 0x%x link forms a third EEDS!\n",
1291			    SAS_ADDR(parent->sas_addr),
1292			    parent_phy->phy_id,
1293			    SAS_ADDR(child->sas_addr),
1294			    child_phy->phy_id);
1295	}
1296
1297	return res;
1298}
1299
1300/* Here we spill over 80 columns.  It is intentional.
1301 */
1302static int sas_check_parent_topology(struct domain_device *child)
1303{
1304	struct expander_device *child_ex = &child->ex_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305	struct expander_device *parent_ex;
1306	int i;
1307	int res = 0;
1308
1309	if (!child->parent)
1310		return 0;
1311
1312	if (child->parent->dev_type != EDGE_DEV &&
1313	    child->parent->dev_type != FANOUT_DEV)
1314		return 0;
1315
1316	parent_ex = &child->parent->ex_dev;
1317
1318	for (i = 0; i < parent_ex->num_phys; i++) {
1319		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320		struct ex_phy *child_phy;
1321
1322		if (parent_phy->phy_state == PHY_VACANT ||
1323		    parent_phy->phy_state == PHY_NOT_PRESENT)
1324			continue;
1325
1326		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327			continue;
1328
1329		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331		switch (child->parent->dev_type) {
1332		case EDGE_DEV:
1333			if (child->dev_type == FANOUT_DEV) {
1334				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335				    child_phy->routing_attr != TABLE_ROUTING) {
1336					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337					res = -ENODEV;
1338				}
1339			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341					res = sas_check_eeds(child, parent_phy, child_phy);
1342				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1343					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344					res = -ENODEV;
1345				}
1346			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348				    (child_phy->routing_attr == TABLE_ROUTING &&
1349				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350					/* All good */;
1351				} else {
1352					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353					res = -ENODEV;
1354				}
1355			}
1356			break;
1357		case FANOUT_DEV:
1358			if (parent_phy->routing_attr != TABLE_ROUTING ||
1359			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361				res = -ENODEV;
1362			}
1363			break;
1364		default:
1365			break;
1366		}
1367	}
1368
1369	return res;
1370}
1371
1372#define RRI_REQ_SIZE  16
1373#define RRI_RESP_SIZE 44
1374
1375static int sas_configure_present(struct domain_device *dev, int phy_id,
1376				 u8 *sas_addr, int *index, int *present)
1377{
1378	int i, res = 0;
1379	struct expander_device *ex = &dev->ex_dev;
1380	struct ex_phy *phy = &ex->ex_phy[phy_id];
1381	u8 *rri_req;
1382	u8 *rri_resp;
1383
1384	*present = 0;
1385	*index = 0;
1386
1387	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388	if (!rri_req)
1389		return -ENOMEM;
1390
1391	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392	if (!rri_resp) {
1393		kfree(rri_req);
1394		return -ENOMEM;
1395	}
1396
1397	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398	rri_req[9] = phy_id;
1399
1400	for (i = 0; i < ex->max_route_indexes ; i++) {
1401		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403				       RRI_RESP_SIZE);
1404		if (res)
1405			goto out;
1406		res = rri_resp[2];
1407		if (res == SMP_RESP_NO_INDEX) {
1408			SAS_DPRINTK("overflow of indexes: dev %016llx "
1409				    "phy 0x%x index 0x%x\n",
1410				    SAS_ADDR(dev->sas_addr), phy_id, i);
1411			goto out;
1412		} else if (res != SMP_RESP_FUNC_ACC) {
1413			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414				    "result 0x%x\n", __func__,
1415				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416			goto out;
1417		}
1418		if (SAS_ADDR(sas_addr) != 0) {
1419			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420				*index = i;
1421				if ((rri_resp[12] & 0x80) == 0x80)
1422					*present = 0;
1423				else
1424					*present = 1;
1425				goto out;
1426			} else if (SAS_ADDR(rri_resp+16) == 0) {
1427				*index = i;
1428				*present = 0;
1429				goto out;
1430			}
1431		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1432			   phy->last_da_index < i) {
1433			phy->last_da_index = i;
1434			*index = i;
1435			*present = 0;
1436			goto out;
1437		}
1438	}
1439	res = -1;
1440out:
1441	kfree(rri_req);
1442	kfree(rri_resp);
1443	return res;
1444}
1445
1446#define CRI_REQ_SIZE  44
1447#define CRI_RESP_SIZE  8
1448
1449static int sas_configure_set(struct domain_device *dev, int phy_id,
1450			     u8 *sas_addr, int index, int include)
1451{
1452	int res;
1453	u8 *cri_req;
1454	u8 *cri_resp;
1455
1456	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457	if (!cri_req)
1458		return -ENOMEM;
1459
1460	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461	if (!cri_resp) {
1462		kfree(cri_req);
1463		return -ENOMEM;
1464	}
1465
1466	cri_req[1] = SMP_CONF_ROUTE_INFO;
1467	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468	cri_req[9] = phy_id;
1469	if (SAS_ADDR(sas_addr) == 0 || !include)
1470		cri_req[12] |= 0x80;
1471	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474			       CRI_RESP_SIZE);
1475	if (res)
1476		goto out;
1477	res = cri_resp[2];
1478	if (res == SMP_RESP_NO_INDEX) {
1479		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480			    "index 0x%x\n",
1481			    SAS_ADDR(dev->sas_addr), phy_id, index);
1482	}
1483out:
1484	kfree(cri_req);
1485	kfree(cri_resp);
1486	return res;
1487}
1488
1489static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490				    u8 *sas_addr, int include)
1491{
1492	int index;
1493	int present;
1494	int res;
1495
1496	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497	if (res)
1498		return res;
1499	if (include ^ present)
1500		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1501
1502	return res;
1503}
1504
1505/**
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
 
1510 */
1511static int sas_configure_parent(struct domain_device *parent,
1512				struct domain_device *child,
1513				u8 *sas_addr, int include)
1514{
1515	struct expander_device *ex_parent = &parent->ex_dev;
1516	int res = 0;
1517	int i;
1518
1519	if (parent->parent) {
1520		res = sas_configure_parent(parent->parent, parent, sas_addr,
1521					   include);
1522		if (res)
1523			return res;
1524	}
1525
1526	if (ex_parent->conf_route_table == 0) {
1527		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528			    SAS_ADDR(parent->sas_addr));
1529		return 0;
1530	}
1531
1532	for (i = 0; i < ex_parent->num_phys; i++) {
1533		struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535		if ((phy->routing_attr == TABLE_ROUTING) &&
1536		    (SAS_ADDR(phy->attached_sas_addr) ==
1537		     SAS_ADDR(child->sas_addr))) {
1538			res = sas_configure_phy(parent, i, sas_addr, include);
1539			if (res)
1540				return res;
1541		}
1542	}
1543
1544	return res;
1545}
1546
1547/**
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1551 */
1552static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553{
1554	if (dev->parent)
1555		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556	return 0;
1557}
1558
1559static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1560{
1561	if (dev->parent)
1562		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563	return 0;
1564}
1565
1566/**
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1569 *
1570 * See comment in sas_discover_sata().
1571 */
1572static int sas_discover_expander(struct domain_device *dev)
1573{
1574	int res;
1575
1576	res = sas_notify_lldd_dev_found(dev);
1577	if (res)
1578		return res;
1579
1580	res = sas_ex_general(dev);
1581	if (res)
1582		goto out_err;
1583	res = sas_ex_manuf_info(dev);
1584	if (res)
1585		goto out_err;
1586
1587	res = sas_expander_discover(dev);
1588	if (res) {
1589		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590			    SAS_ADDR(dev->sas_addr), res);
1591		goto out_err;
1592	}
1593
1594	sas_check_ex_subtractive_boundary(dev);
1595	res = sas_check_parent_topology(dev);
1596	if (res)
1597		goto out_err;
1598	return 0;
1599out_err:
1600	sas_notify_lldd_dev_gone(dev);
1601	return res;
1602}
1603
1604static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605{
1606	int res = 0;
1607	struct domain_device *dev;
1608
1609	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610		if (dev->dev_type == EDGE_DEV ||
1611		    dev->dev_type == FANOUT_DEV) {
1612			struct sas_expander_device *ex =
1613				rphy_to_expander_device(dev->rphy);
1614
1615			if (level == ex->level)
1616				res = sas_ex_discover_devices(dev, -1);
1617			else if (level > 0)
1618				res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620		}
1621	}
1622
1623	return res;
1624}
1625
1626static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627{
1628	int res;
1629	int level;
1630
1631	do {
1632		level = port->disc.max_level;
1633		res = sas_ex_level_discovery(port, level);
1634		mb();
1635	} while (level < port->disc.max_level);
1636
1637	return res;
1638}
1639
1640int sas_discover_root_expander(struct domain_device *dev)
1641{
1642	int res;
1643	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645	res = sas_rphy_add(dev->rphy);
1646	if (res)
1647		goto out_err;
1648
1649	ex->level = dev->port->disc.max_level; /* 0 */
1650	res = sas_discover_expander(dev);
1651	if (res)
1652		goto out_err2;
1653
1654	sas_ex_bfs_disc(dev->port);
1655
1656	return res;
1657
1658out_err2:
1659	sas_rphy_remove(dev->rphy);
1660out_err:
1661	return res;
1662}
1663
1664/* ---------- Domain revalidation ---------- */
1665
 
 
 
 
 
 
 
 
 
 
1666static int sas_get_phy_discover(struct domain_device *dev,
1667				int phy_id, struct smp_resp *disc_resp)
1668{
1669	int res;
1670	u8 *disc_req;
1671
1672	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673	if (!disc_req)
1674		return -ENOMEM;
1675
1676	disc_req[1] = SMP_DISCOVER;
1677	disc_req[9] = phy_id;
1678
1679	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680			       disc_resp, DISCOVER_RESP_SIZE);
1681	if (res)
1682		goto out;
1683	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684		res = disc_resp->result;
1685		goto out;
1686	}
1687out:
1688	kfree(disc_req);
1689	return res;
1690}
1691
1692static int sas_get_phy_change_count(struct domain_device *dev,
1693				    int phy_id, int *pcc)
1694{
1695	int res;
1696	struct smp_resp *disc_resp;
1697
1698	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699	if (!disc_resp)
1700		return -ENOMEM;
1701
1702	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703	if (!res)
1704		*pcc = disc_resp->disc.change_count;
1705
1706	kfree(disc_resp);
1707	return res;
1708}
1709
1710static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711				    u8 *sas_addr, enum sas_dev_type *type)
1712{
1713	int res;
1714	struct smp_resp *disc_resp;
1715	struct discover_resp *dr;
1716
1717	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718	if (!disc_resp)
1719		return -ENOMEM;
1720	dr = &disc_resp->disc;
1721
1722	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723	if (res == 0) {
1724		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725		*type = to_dev_type(dr);
1726		if (*type == 0)
1727			memset(sas_addr, 0, 8);
1728	}
1729	kfree(disc_resp);
1730	return res;
1731}
1732
1733static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734			      int from_phy, bool update)
1735{
1736	struct expander_device *ex = &dev->ex_dev;
1737	int res = 0;
1738	int i;
1739
1740	for (i = from_phy; i < ex->num_phys; i++) {
1741		int phy_change_count = 0;
1742
1743		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744		switch (res) {
1745		case SMP_RESP_PHY_VACANT:
1746		case SMP_RESP_NO_PHY:
1747			continue;
1748		case SMP_RESP_FUNC_ACC:
1749			break;
1750		default:
1751			return res;
1752		}
1753
1754		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755			if (update)
1756				ex->ex_phy[i].phy_change_count =
1757					phy_change_count;
1758			*phy_id = i;
1759			return 0;
1760		}
1761	}
1762	return 0;
1763}
1764
1765static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766{
1767	int res;
1768	u8  *rg_req;
1769	struct smp_resp  *rg_resp;
1770
1771	rg_req = alloc_smp_req(RG_REQ_SIZE);
1772	if (!rg_req)
1773		return -ENOMEM;
1774
1775	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776	if (!rg_resp) {
1777		kfree(rg_req);
1778		return -ENOMEM;
1779	}
1780
1781	rg_req[1] = SMP_REPORT_GENERAL;
1782
1783	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784			       RG_RESP_SIZE);
1785	if (res)
1786		goto out;
1787	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788		res = rg_resp->result;
1789		goto out;
1790	}
1791
1792	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1793out:
1794	kfree(rg_resp);
1795	kfree(rg_req);
1796	return res;
1797}
1798/**
1799 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1802 *
1803 * Add self-configuration expander suport. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1810 * we concerned.
1811 */
1812
1813static int sas_find_bcast_dev(struct domain_device *dev,
1814			      struct domain_device **src_dev)
1815{
1816	struct expander_device *ex = &dev->ex_dev;
1817	int ex_change_count = -1;
1818	int phy_id = -1;
1819	int res;
1820	struct domain_device *ch;
1821
1822	res = sas_get_ex_change_count(dev, &ex_change_count);
1823	if (res)
1824		goto out;
1825	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826		/* Just detect if this expander phys phy change count changed,
1827		* in order to determine if this expander originate BROADCAST,
1828		* and do not update phy change count field in our structure.
1829		*/
1830		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831		if (phy_id != -1) {
1832			*src_dev = dev;
1833			ex->ex_change_count = ex_change_count;
1834			SAS_DPRINTK("Expander phy change count has changed\n");
 
1835			return res;
1836		} else
1837			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1838	}
1839	list_for_each_entry(ch, &ex->children, siblings) {
1840		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841			res = sas_find_bcast_dev(ch, src_dev);
1842			if (*src_dev)
1843				return res;
1844		}
1845	}
1846out:
1847	return res;
1848}
1849
1850static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851{
1852	struct expander_device *ex = &dev->ex_dev;
1853	struct domain_device *child, *n;
1854
1855	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856		set_bit(SAS_DEV_GONE, &child->state);
1857		if (child->dev_type == EDGE_DEV ||
1858		    child->dev_type == FANOUT_DEV)
1859			sas_unregister_ex_tree(port, child);
1860		else
1861			sas_unregister_dev(port, child);
1862	}
1863	sas_unregister_dev(port, dev);
1864}
1865
1866static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867					 int phy_id, bool last)
1868{
1869	struct expander_device *ex_dev = &parent->ex_dev;
1870	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871	struct domain_device *child, *n, *found = NULL;
1872	if (last) {
1873		list_for_each_entry_safe(child, n,
1874			&ex_dev->children, siblings) {
1875			if (SAS_ADDR(child->sas_addr) ==
1876			    SAS_ADDR(phy->attached_sas_addr)) {
1877				set_bit(SAS_DEV_GONE, &child->state);
1878				if (child->dev_type == EDGE_DEV ||
1879				    child->dev_type == FANOUT_DEV)
1880					sas_unregister_ex_tree(parent->port, child);
1881				else
1882					sas_unregister_dev(parent->port, child);
1883				found = child;
1884				break;
1885			}
1886		}
1887		sas_disable_routing(parent, phy->attached_sas_addr);
1888	}
1889	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890	if (phy->port) {
1891		sas_port_delete_phy(phy->port, phy->phy);
1892		sas_device_set_phy(found, phy->port);
1893		if (phy->port->num_phys == 0)
1894			sas_port_delete(phy->port);
 
 
 
 
1895		phy->port = NULL;
1896	}
1897}
1898
1899static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900					  const int level)
1901{
1902	struct expander_device *ex_root = &root->ex_dev;
1903	struct domain_device *child;
1904	int res = 0;
1905
1906	list_for_each_entry(child, &ex_root->children, siblings) {
1907		if (child->dev_type == EDGE_DEV ||
1908		    child->dev_type == FANOUT_DEV) {
1909			struct sas_expander_device *ex =
1910				rphy_to_expander_device(child->rphy);
1911
1912			if (level > ex->level)
1913				res = sas_discover_bfs_by_root_level(child,
1914								     level);
1915			else if (level == ex->level)
1916				res = sas_ex_discover_devices(child, -1);
1917		}
1918	}
1919	return res;
1920}
1921
1922static int sas_discover_bfs_by_root(struct domain_device *dev)
1923{
1924	int res;
1925	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926	int level = ex->level+1;
1927
1928	res = sas_ex_discover_devices(dev, -1);
1929	if (res)
1930		goto out;
1931	do {
1932		res = sas_discover_bfs_by_root_level(dev, level);
1933		mb();
1934		level += 1;
1935	} while (level <= dev->port->disc.max_level);
1936out:
1937	return res;
1938}
1939
1940static int sas_discover_new(struct domain_device *dev, int phy_id)
1941{
1942	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943	struct domain_device *child;
1944	int res;
1945
1946	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947		    SAS_ADDR(dev->sas_addr), phy_id);
1948	res = sas_ex_phy_discover(dev, phy_id);
1949	if (res)
1950		return res;
1951
1952	if (sas_ex_join_wide_port(dev, phy_id))
1953		return 0;
1954
1955	res = sas_ex_discover_devices(dev, phy_id);
1956	if (res)
1957		return res;
1958	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959		if (SAS_ADDR(child->sas_addr) ==
1960		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1961			if (child->dev_type == EDGE_DEV ||
1962			    child->dev_type == FANOUT_DEV)
1963				res = sas_discover_bfs_by_root(child);
1964			break;
1965		}
1966	}
1967	return res;
1968}
1969
1970static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971{
1972	if (old == new)
1973		return true;
1974
1975	/* treat device directed resets as flutter, if we went
1976	 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977	 */
1978	if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979	    (old == SAS_END_DEV && new == SATA_PENDING))
1980		return true;
1981
1982	return false;
1983}
1984
1985static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
1986{
1987	struct expander_device *ex = &dev->ex_dev;
1988	struct ex_phy *phy = &ex->ex_phy[phy_id];
1989	enum sas_dev_type type = NO_DEVICE;
1990	u8 sas_addr[8];
 
 
1991	int res;
1992
1993	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
 
 
 
 
 
 
 
 
 
 
 
1994	switch (res) {
1995	case SMP_RESP_NO_PHY:
1996		phy->phy_state = PHY_NOT_PRESENT;
1997		sas_unregister_devs_sas_addr(dev, phy_id, last);
1998		return res;
1999	case SMP_RESP_PHY_VACANT:
2000		phy->phy_state = PHY_VACANT;
2001		sas_unregister_devs_sas_addr(dev, phy_id, last);
2002		return res;
2003	case SMP_RESP_FUNC_ACC:
2004		break;
 
 
 
 
2005	}
2006
2007	if (SAS_ADDR(sas_addr) == 0) {
 
 
 
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
2010		return res;
 
 
 
 
 
 
2011	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2012		   dev_type_flutter(type, phy->attached_dev_type)) {
2013		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2014		char *action = "";
2015
2016		sas_ex_phy_discover(dev, phy_id);
2017
2018		if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2019			action = ", needs recovery";
2020		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2021			    SAS_ADDR(dev->sas_addr), phy_id, action);
2022		return res;
2023	}
2024
2025	/* delete the old link */
2026	if (SAS_ADDR(phy->attached_sas_addr) &&
2027	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2028		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2029			    SAS_ADDR(dev->sas_addr), phy_id,
2030			    SAS_ADDR(phy->attached_sas_addr));
2031		sas_unregister_devs_sas_addr(dev, phy_id, last);
2032	}
2033
2034	return sas_discover_new(dev, phy_id);
 
 
 
2035}
2036
2037/**
2038 * sas_rediscover - revalidate the domain.
2039 * @dev:domain device to be detect.
2040 * @phy_id: the phy id will be detected.
2041 *
2042 * NOTE: this process _must_ quit (return) as soon as any connection
2043 * errors are encountered.  Connection recovery is done elsewhere.
2044 * Discover process only interrogates devices in order to discover the
2045 * domain.For plugging out, we un-register the device only when it is
2046 * the last phy in the port, for other phys in this port, we just delete it
2047 * from the port.For inserting, we do discovery when it is the
2048 * first phy,for other phys in this port, we add it to the port to
2049 * forming the wide-port.
2050 */
2051static int sas_rediscover(struct domain_device *dev, const int phy_id)
2052{
2053	struct expander_device *ex = &dev->ex_dev;
2054	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2055	int res = 0;
2056	int i;
2057	bool last = true;	/* is this the last phy of the port */
2058
2059	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2060		    SAS_ADDR(dev->sas_addr), phy_id);
2061
2062	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2063		for (i = 0; i < ex->num_phys; i++) {
2064			struct ex_phy *phy = &ex->ex_phy[i];
2065
2066			if (i == phy_id)
2067				continue;
2068			if (SAS_ADDR(phy->attached_sas_addr) ==
2069			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2070				SAS_DPRINTK("phy%d part of wide port with "
2071					    "phy%d\n", phy_id, i);
2072				last = false;
2073				break;
2074			}
2075		}
2076		res = sas_rediscover_dev(dev, phy_id, last);
2077	} else
2078		res = sas_discover_new(dev, phy_id);
2079	return res;
2080}
2081
2082/**
2083 * sas_revalidate_domain -- revalidate the domain
2084 * @port: port to the domain of interest
2085 *
2086 * NOTE: this process _must_ quit (return) as soon as any connection
2087 * errors are encountered.  Connection recovery is done elsewhere.
2088 * Discover process only interrogates devices in order to discover the
2089 * domain.
2090 */
2091int sas_ex_revalidate_domain(struct domain_device *port_dev)
2092{
2093	int res;
2094	struct domain_device *dev = NULL;
2095
2096	res = sas_find_bcast_dev(port_dev, &dev);
2097	while (res == 0 && dev) {
2098		struct expander_device *ex = &dev->ex_dev;
2099		int i = 0, phy_id;
2100
2101		do {
2102			phy_id = -1;
2103			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2104			if (phy_id == -1)
2105				break;
2106			res = sas_rediscover(dev, phy_id);
2107			i = phy_id + 1;
2108		} while (i < ex->num_phys);
2109
2110		dev = NULL;
2111		res = sas_find_bcast_dev(port_dev, &dev);
2112	}
2113	return res;
2114}
2115
2116int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2117		    struct request *req)
2118{
2119	struct domain_device *dev;
2120	int ret, type;
2121	struct request *rsp = req->next_rq;
2122
2123	if (!rsp) {
2124		printk("%s: space for a smp response is missing\n",
2125		       __func__);
2126		return -EINVAL;
2127	}
2128
 
 
 
 
 
 
 
 
 
 
 
2129	/* no rphy means no smp target support (ie aic94xx host) */
2130	if (!rphy)
2131		return sas_smp_host_handler(shost, req, rsp);
2132
2133	type = rphy->identify.device_type;
2134
2135	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2136	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2137		printk("%s: can we send a smp request to a device?\n",
 
2138		       __func__);
2139		return -EINVAL;
2140	}
2141
2142	dev = sas_find_dev_by_rphy(rphy);
2143	if (!dev) {
2144		printk("%s: fail to find a domain_device?\n", __func__);
2145		return -EINVAL;
2146	}
2147
2148	/* do we need to support multiple segments? */
2149	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2150		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2151		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2152		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2153		return -EINVAL;
 
2154	}
2155
2156	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2157			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2158	if (ret > 0) {
2159		/* positive number is the untransferred residual */
2160		rsp->resid_len = ret;
2161		req->resid_len = 0;
2162		ret = 0;
2163	} else if (ret == 0) {
2164		rsp->resid_len = 0;
2165		req->resid_len = 0;
2166	}
2167
2168	return ret;
 
2169}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <linux/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29static void sas_port_add_ex_phy(struct sas_port *port, struct ex_phy *ex_phy)
 
 
  30{
  31	sas_port_add_phy(port, ex_phy->phy);
  32	ex_phy->port = port;
  33	ex_phy->phy_state = PHY_DEVICE_DISCOVERED;
 
 
 
 
 
 
  34}
  35
  36static void sas_ex_add_parent_port(struct domain_device *dev, int phy_id)
  37{
  38	struct expander_device *ex = &dev->ex_dev;
  39	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
  40
  41	if (!ex->parent_port) {
  42		ex->parent_port = sas_port_alloc(&dev->rphy->dev, phy_id);
  43		/* FIXME: error handling */
  44		BUG_ON(!ex->parent_port);
  45		BUG_ON(sas_port_add(ex->parent_port));
  46		sas_port_mark_backlink(ex->parent_port);
  47	}
  48	sas_port_add_ex_phy(ex->parent_port, ex_phy);
  49}
  50
  51/* ---------- SMP task management ---------- */
  52
  53/* Give it some long enough timeout. In seconds. */
  54#define SMP_TIMEOUT 10
  55
  56static int smp_execute_task_sg(struct domain_device *dev,
  57		struct scatterlist *req, struct scatterlist *resp)
  58{
  59	int res, retry;
  60	struct sas_task *task = NULL;
  61	struct sas_internal *i =
  62		to_sas_internal(dev->port->ha->shost->transportt);
  63	struct sas_ha_struct *ha = dev->port->ha;
  64
  65	pm_runtime_get_sync(ha->dev);
  66	mutex_lock(&dev->ex_dev.cmd_mutex);
  67	for (retry = 0; retry < 3; retry++) {
  68		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  69			res = -ECOMM;
  70			break;
  71		}
  72
  73		task = sas_alloc_slow_task(GFP_KERNEL);
  74		if (!task) {
  75			res = -ENOMEM;
  76			break;
  77		}
  78		task->dev = dev;
  79		task->task_proto = dev->tproto;
  80		task->smp_task.smp_req = *req;
  81		task->smp_task.smp_resp = *resp;
  82
  83		task->task_done = sas_task_internal_done;
  84
  85		task->slow_task->timer.function = sas_task_internal_timedout;
  86		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  87		add_timer(&task->slow_task->timer);
 
  88
  89		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  90
  91		if (res) {
  92			del_timer_sync(&task->slow_task->timer);
  93			pr_notice("executing SMP task failed:%d\n", res);
  94			break;
  95		}
  96
  97		wait_for_completion(&task->slow_task->completion);
  98		res = -ECOMM;
  99		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 100			pr_notice("smp task timed out or aborted\n");
 101			i->dft->lldd_abort_task(task);
 102			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 103				pr_notice("SMP task aborted and not done\n");
 104				break;
 105			}
 106		}
 107		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 108		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
 109			res = 0;
 110			break;
 111		}
 112		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 113		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 114			/* no error, but return the number of bytes of
 115			 * underrun */
 116			res = task->task_status.residual;
 117			break;
 118		}
 119		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		    task->task_status.stat == SAS_DATA_OVERRUN) {
 121			res = -EMSGSIZE;
 122			break;
 123		}
 124		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 125		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 126			break;
 127		else {
 128			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 129				  __func__,
 130				  SAS_ADDR(dev->sas_addr),
 131				  task->task_status.resp,
 132				  task->task_status.stat);
 133			sas_free_task(task);
 134			task = NULL;
 135		}
 136	}
 137	mutex_unlock(&dev->ex_dev.cmd_mutex);
 138	pm_runtime_put_sync(ha->dev);
 139
 140	BUG_ON(retry == 3 && task != NULL);
 141	sas_free_task(task);
 142	return res;
 143}
 144
 145static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 146			    void *resp, int resp_size)
 147{
 148	struct scatterlist req_sg;
 149	struct scatterlist resp_sg;
 150
 151	sg_init_one(&req_sg, req, req_size);
 152	sg_init_one(&resp_sg, resp, resp_size);
 153	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 154}
 155
 156/* ---------- Allocations ---------- */
 157
 158static inline void *alloc_smp_req(int size)
 159{
 160	u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
 161	if (p)
 162		p[0] = SMP_REQUEST;
 163	return p;
 164}
 165
 166static inline void *alloc_smp_resp(int size)
 167{
 168	return kzalloc(size, GFP_KERNEL);
 169}
 170
 171static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 172{
 173	switch (phy->routing_attr) {
 174	case TABLE_ROUTING:
 175		if (dev->ex_dev.t2t_supp)
 176			return 'U';
 177		else
 178			return 'T';
 179	case DIRECT_ROUTING:
 180		return 'D';
 181	case SUBTRACTIVE_ROUTING:
 182		return 'S';
 183	default:
 184		return '?';
 185	}
 186}
 187
 188static enum sas_device_type to_dev_type(struct discover_resp *dr)
 189{
 190	/* This is detecting a failure to transmit initial dev to host
 191	 * FIS as described in section J.5 of sas-2 r16
 192	 */
 193	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 194	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 195		return SAS_SATA_PENDING;
 196	else
 197		return dr->attached_dev_type;
 198}
 199
 200static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 201			   struct smp_disc_resp *disc_resp)
 202{
 203	enum sas_device_type dev_type;
 204	enum sas_linkrate linkrate;
 205	u8 sas_addr[SAS_ADDR_SIZE];
 206	struct discover_resp *dr = &disc_resp->disc;
 
 207	struct sas_ha_struct *ha = dev->port->ha;
 208	struct expander_device *ex = &dev->ex_dev;
 209	struct ex_phy *phy = &ex->ex_phy[phy_id];
 210	struct sas_rphy *rphy = dev->rphy;
 211	bool new_phy = !phy->phy;
 212	char *type;
 213
 214	if (new_phy) {
 215		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 216			return;
 217		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 218
 219		/* FIXME: error_handling */
 220		BUG_ON(!phy->phy);
 221	}
 222
 223	switch (disc_resp->result) {
 224	case SMP_RESP_PHY_VACANT:
 225		phy->phy_state = PHY_VACANT;
 226		break;
 227	default:
 228		phy->phy_state = PHY_NOT_PRESENT;
 229		break;
 230	case SMP_RESP_FUNC_ACC:
 231		phy->phy_state = PHY_EMPTY; /* do not know yet */
 232		break;
 233	}
 234
 235	/* check if anything important changed to squelch debug */
 236	dev_type = phy->attached_dev_type;
 237	linkrate  = phy->linkrate;
 238	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 239
 240	/* Handle vacant phy - rest of dr data is not valid so skip it */
 241	if (phy->phy_state == PHY_VACANT) {
 242		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 243		phy->attached_dev_type = SAS_PHY_UNUSED;
 244		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 245			phy->phy_id = phy_id;
 246			goto skip;
 247		} else
 248			goto out;
 249	}
 250
 251	phy->attached_dev_type = to_dev_type(dr);
 252	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 253		goto out;
 254	phy->phy_id = phy_id;
 255	phy->linkrate = dr->linkrate;
 256	phy->attached_sata_host = dr->attached_sata_host;
 257	phy->attached_sata_dev  = dr->attached_sata_dev;
 258	phy->attached_sata_ps   = dr->attached_sata_ps;
 259	phy->attached_iproto = dr->iproto << 1;
 260	phy->attached_tproto = dr->tproto << 1;
 261	/* help some expanders that fail to zero sas_address in the 'no
 262	 * device' case
 263	 */
 264	if (phy->attached_dev_type == SAS_PHY_UNUSED)
 
 265		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 266	else
 267		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 268	phy->attached_phy_id = dr->attached_phy_id;
 269	phy->phy_change_count = dr->change_count;
 270	phy->routing_attr = dr->routing_attr;
 271	phy->virtual = dr->virtual;
 272	phy->last_da_index = -1;
 273
 274	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 275	phy->phy->identify.device_type = dr->attached_dev_type;
 276	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 277	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 278	if (!phy->attached_tproto && dr->attached_sata_dev)
 279		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 280	phy->phy->identify.phy_identifier = phy_id;
 281	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 282	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 283	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 284	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 285	phy->phy->negotiated_linkrate = phy->linkrate;
 286	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 287
 288 skip:
 289	if (new_phy)
 290		if (sas_phy_add(phy->phy)) {
 291			sas_phy_free(phy->phy);
 292			return;
 293		}
 294
 295 out:
 296	switch (phy->attached_dev_type) {
 297	case SAS_SATA_PENDING:
 298		type = "stp pending";
 299		break;
 300	case SAS_PHY_UNUSED:
 301		type = "no device";
 302		break;
 303	case SAS_END_DEVICE:
 304		if (phy->attached_iproto) {
 305			if (phy->attached_tproto)
 306				type = "host+target";
 307			else
 308				type = "host";
 309		} else {
 310			if (dr->attached_sata_dev)
 311				type = "stp";
 312			else
 313				type = "ssp";
 314		}
 315		break;
 316	case SAS_EDGE_EXPANDER_DEVICE:
 317	case SAS_FANOUT_EXPANDER_DEVICE:
 318		type = "smp";
 319		break;
 320	default:
 321		type = "unknown";
 322	}
 323
 324	/* this routine is polled by libata error recovery so filter
 325	 * unimportant messages
 326	 */
 327	if (new_phy || phy->attached_dev_type != dev_type ||
 328	    phy->linkrate != linkrate ||
 329	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 330		/* pass */;
 331	else
 332		return;
 333
 334	/* if the attached device type changed and ata_eh is active,
 335	 * make sure we run revalidation when eh completes (see:
 336	 * sas_enable_revalidation)
 337	 */
 338	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 339		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 340
 341	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 342		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 343		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 344		 sas_route_char(dev, phy), phy->linkrate,
 345		 SAS_ADDR(phy->attached_sas_addr), type);
 346}
 347
 348/* check if we have an existing attached ata device on this expander phy */
 349struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 350{
 351	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 352	struct domain_device *dev;
 353	struct sas_rphy *rphy;
 354
 355	if (!ex_phy->port)
 356		return NULL;
 357
 358	rphy = ex_phy->port->rphy;
 359	if (!rphy)
 360		return NULL;
 361
 362	dev = sas_find_dev_by_rphy(rphy);
 363
 364	if (dev && dev_is_sata(dev))
 365		return dev;
 366
 367	return NULL;
 368}
 369
 370#define DISCOVER_REQ_SIZE  16
 371#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 372
 373static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 374				      struct smp_disc_resp *disc_resp,
 375				      int single)
 376{
 377	struct discover_resp *dr = &disc_resp->disc;
 378	int res;
 379
 380	disc_req[9] = single;
 381
 382	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 383			       disc_resp, DISCOVER_RESP_SIZE);
 384	if (res)
 385		return res;
 
 386	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 387		pr_notice("Found loopback topology, just ignore it!\n");
 388		return 0;
 389	}
 390	sas_set_ex_phy(dev, single, disc_resp);
 391	return 0;
 392}
 393
 394int sas_ex_phy_discover(struct domain_device *dev, int single)
 395{
 396	struct expander_device *ex = &dev->ex_dev;
 397	int  res = 0;
 398	u8   *disc_req;
 399	struct smp_disc_resp *disc_resp;
 400
 401	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 402	if (!disc_req)
 403		return -ENOMEM;
 404
 405	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 406	if (!disc_resp) {
 407		kfree(disc_req);
 408		return -ENOMEM;
 409	}
 410
 411	disc_req[1] = SMP_DISCOVER;
 412
 413	if (0 <= single && single < ex->num_phys) {
 414		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 415	} else {
 416		int i;
 417
 418		for (i = 0; i < ex->num_phys; i++) {
 419			res = sas_ex_phy_discover_helper(dev, disc_req,
 420							 disc_resp, i);
 421			if (res)
 422				goto out_err;
 423		}
 424	}
 425out_err:
 426	kfree(disc_resp);
 427	kfree(disc_req);
 428	return res;
 429}
 430
 431static int sas_expander_discover(struct domain_device *dev)
 432{
 433	struct expander_device *ex = &dev->ex_dev;
 434	int res;
 435
 436	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 437	if (!ex->ex_phy)
 438		return -ENOMEM;
 439
 440	res = sas_ex_phy_discover(dev, -1);
 441	if (res)
 442		goto out_err;
 443
 444	return 0;
 445 out_err:
 446	kfree(ex->ex_phy);
 447	ex->ex_phy = NULL;
 448	return res;
 449}
 450
 451#define MAX_EXPANDER_PHYS 128
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453#define RG_REQ_SIZE   8
 454#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 455
 456static int sas_ex_general(struct domain_device *dev)
 457{
 458	u8 *rg_req;
 459	struct smp_rg_resp *rg_resp;
 460	struct report_general_resp *rg;
 461	int res;
 462	int i;
 463
 464	rg_req = alloc_smp_req(RG_REQ_SIZE);
 465	if (!rg_req)
 466		return -ENOMEM;
 467
 468	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 469	if (!rg_resp) {
 470		kfree(rg_req);
 471		return -ENOMEM;
 472	}
 473
 474	rg_req[1] = SMP_REPORT_GENERAL;
 475
 476	for (i = 0; i < 5; i++) {
 477		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 478				       RG_RESP_SIZE);
 479
 480		if (res) {
 481			pr_notice("RG to ex %016llx failed:0x%x\n",
 482				  SAS_ADDR(dev->sas_addr), res);
 483			goto out;
 484		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 485			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 486				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 487			res = rg_resp->result;
 488			goto out;
 489		}
 490
 491		rg = &rg_resp->rg;
 492		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 493		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 494		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 495		dev->ex_dev.t2t_supp = rg->t2t_supp;
 496		dev->ex_dev.conf_route_table = rg->conf_route_table;
 497		dev->ex_dev.configuring = rg->configuring;
 498		memcpy(dev->ex_dev.enclosure_logical_id,
 499		       rg->enclosure_logical_id, 8);
 500
 501		if (dev->ex_dev.configuring) {
 502			pr_debug("RG: ex %016llx self-configuring...\n",
 503				 SAS_ADDR(dev->sas_addr));
 504			schedule_timeout_interruptible(5*HZ);
 505		} else
 506			break;
 507	}
 508out:
 509	kfree(rg_req);
 510	kfree(rg_resp);
 511	return res;
 512}
 513
 514static void ex_assign_manuf_info(struct domain_device *dev, void
 515					*_mi_resp)
 516{
 517	u8 *mi_resp = _mi_resp;
 518	struct sas_rphy *rphy = dev->rphy;
 519	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 520
 521	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 522	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 523	memcpy(edev->product_rev, mi_resp + 36,
 524	       SAS_EXPANDER_PRODUCT_REV_LEN);
 525
 526	if (mi_resp[8] & 1) {
 527		memcpy(edev->component_vendor_id, mi_resp + 40,
 528		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 529		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 530		edev->component_revision_id = mi_resp[50];
 531	}
 532}
 533
 534#define MI_REQ_SIZE   8
 535#define MI_RESP_SIZE 64
 536
 537static int sas_ex_manuf_info(struct domain_device *dev)
 538{
 539	u8 *mi_req;
 540	u8 *mi_resp;
 541	int res;
 542
 543	mi_req = alloc_smp_req(MI_REQ_SIZE);
 544	if (!mi_req)
 545		return -ENOMEM;
 546
 547	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 548	if (!mi_resp) {
 549		kfree(mi_req);
 550		return -ENOMEM;
 551	}
 552
 553	mi_req[1] = SMP_REPORT_MANUF_INFO;
 554
 555	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 556	if (res) {
 557		pr_notice("MI: ex %016llx failed:0x%x\n",
 558			  SAS_ADDR(dev->sas_addr), res);
 559		goto out;
 560	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 561		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 562			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 563		goto out;
 564	}
 565
 566	ex_assign_manuf_info(dev, mi_resp);
 567out:
 568	kfree(mi_req);
 569	kfree(mi_resp);
 570	return res;
 571}
 572
 573#define PC_REQ_SIZE  44
 574#define PC_RESP_SIZE 8
 575
 576int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 577			enum phy_func phy_func,
 578			struct sas_phy_linkrates *rates)
 579{
 580	u8 *pc_req;
 581	u8 *pc_resp;
 582	int res;
 583
 584	pc_req = alloc_smp_req(PC_REQ_SIZE);
 585	if (!pc_req)
 586		return -ENOMEM;
 587
 588	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 589	if (!pc_resp) {
 590		kfree(pc_req);
 591		return -ENOMEM;
 592	}
 593
 594	pc_req[1] = SMP_PHY_CONTROL;
 595	pc_req[9] = phy_id;
 596	pc_req[10] = phy_func;
 597	if (rates) {
 598		pc_req[32] = rates->minimum_linkrate << 4;
 599		pc_req[33] = rates->maximum_linkrate << 4;
 600	}
 601
 602	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 603	if (res) {
 604		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 605		       SAS_ADDR(dev->sas_addr), phy_id, res);
 606	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 607		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 608		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 609		res = pc_resp[2];
 610	}
 611	kfree(pc_resp);
 612	kfree(pc_req);
 613	return res;
 614}
 615
 616static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 617{
 618	struct expander_device *ex = &dev->ex_dev;
 619	struct ex_phy *phy = &ex->ex_phy[phy_id];
 620
 621	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 622	phy->linkrate = SAS_PHY_DISABLED;
 623}
 624
 625static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 626{
 627	struct expander_device *ex = &dev->ex_dev;
 628	int i;
 629
 630	for (i = 0; i < ex->num_phys; i++) {
 631		struct ex_phy *phy = &ex->ex_phy[i];
 632
 633		if (phy->phy_state == PHY_VACANT ||
 634		    phy->phy_state == PHY_NOT_PRESENT)
 635			continue;
 636
 637		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 638			sas_ex_disable_phy(dev, i);
 639	}
 640}
 641
 642static int sas_dev_present_in_domain(struct asd_sas_port *port,
 643					    u8 *sas_addr)
 644{
 645	struct domain_device *dev;
 646
 647	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 648		return 1;
 649	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 650		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 651			return 1;
 652	}
 653	return 0;
 654}
 655
 656#define RPEL_REQ_SIZE	16
 657#define RPEL_RESP_SIZE	32
 658int sas_smp_get_phy_events(struct sas_phy *phy)
 659{
 660	int res;
 661	u8 *req;
 662	u8 *resp;
 663	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 664	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 665
 666	req = alloc_smp_req(RPEL_REQ_SIZE);
 667	if (!req)
 668		return -ENOMEM;
 669
 670	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 671	if (!resp) {
 672		kfree(req);
 673		return -ENOMEM;
 674	}
 675
 676	req[1] = SMP_REPORT_PHY_ERR_LOG;
 677	req[9] = phy->number;
 678
 679	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 680			       resp, RPEL_RESP_SIZE);
 681
 682	if (res)
 683		goto out;
 684
 685	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 686	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 687	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 688	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 689
 690 out:
 691	kfree(req);
 692	kfree(resp);
 693	return res;
 694
 695}
 696
 697#ifdef CONFIG_SCSI_SAS_ATA
 698
 699#define RPS_REQ_SIZE  16
 700#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 701
 702int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 703			    struct smp_rps_resp *rps_resp)
 704{
 705	int res;
 706	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 707	u8 *resp = (u8 *)rps_resp;
 708
 709	if (!rps_req)
 710		return -ENOMEM;
 711
 712	rps_req[1] = SMP_REPORT_PHY_SATA;
 713	rps_req[9] = phy_id;
 714
 715	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 716			       rps_resp, RPS_RESP_SIZE);
 717
 718	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 719	 * standards cockup here.  sas-2 explicitly specifies the FIS
 720	 * should be encoded so that FIS type is in resp[24].
 721	 * However, some expanders endian reverse this.  Undo the
 722	 * reversal here */
 723	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 724		int i;
 725
 726		for (i = 0; i < 5; i++) {
 727			int j = 24 + (i*4);
 728			u8 a, b;
 729			a = resp[j + 0];
 730			b = resp[j + 1];
 731			resp[j + 0] = resp[j + 3];
 732			resp[j + 1] = resp[j + 2];
 733			resp[j + 2] = b;
 734			resp[j + 3] = a;
 735		}
 736	}
 737
 738	kfree(rps_req);
 739	return res;
 740}
 741#endif
 742
 743static void sas_ex_get_linkrate(struct domain_device *parent,
 744				       struct domain_device *child,
 745				       struct ex_phy *parent_phy)
 746{
 747	struct expander_device *parent_ex = &parent->ex_dev;
 748	struct sas_port *port;
 749	int i;
 750
 751	child->pathways = 0;
 752
 753	port = parent_phy->port;
 754
 755	for (i = 0; i < parent_ex->num_phys; i++) {
 756		struct ex_phy *phy = &parent_ex->ex_phy[i];
 757
 758		if (phy->phy_state == PHY_VACANT ||
 759		    phy->phy_state == PHY_NOT_PRESENT)
 760			continue;
 761
 762		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 763			child->min_linkrate = min(parent->min_linkrate,
 764						  phy->linkrate);
 765			child->max_linkrate = max(parent->max_linkrate,
 766						  phy->linkrate);
 767			child->pathways++;
 768			sas_port_add_phy(port, phy->phy);
 769		}
 770	}
 771	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 772	child->pathways = min(child->pathways, parent->pathways);
 773}
 774
 775static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
 776			  struct domain_device *child, int phy_id)
 777{
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	child->dev_type = SAS_END_DEVICE;
 782	rphy = sas_end_device_alloc(phy->port);
 783	if (!rphy)
 784		return -ENOMEM;
 785
 786	child->tproto = phy->attached_tproto;
 787	sas_init_dev(child);
 788
 789	child->rphy = rphy;
 790	get_device(&rphy->dev);
 791	rphy->identify.phy_identifier = phy_id;
 792	sas_fill_in_rphy(child, rphy);
 793
 794	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 795
 796	res = sas_notify_lldd_dev_found(child);
 797	if (res) {
 798		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
 799			  SAS_ADDR(child->sas_addr),
 800			  SAS_ADDR(parent->sas_addr), phy_id, res);
 801		sas_rphy_free(child->rphy);
 802		list_del(&child->disco_list_node);
 803		return res;
 804	}
 805
 806	return 0;
 807}
 808
 809static struct domain_device *sas_ex_discover_end_dev(
 810	struct domain_device *parent, int phy_id)
 811{
 812	struct expander_device *parent_ex = &parent->ex_dev;
 813	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 814	struct domain_device *child = NULL;
 
 815	int res;
 816
 817	if (phy->attached_sata_host || phy->attached_sata_ps)
 818		return NULL;
 819
 820	child = sas_alloc_device();
 821	if (!child)
 822		return NULL;
 823
 824	kref_get(&parent->kref);
 825	child->parent = parent;
 826	child->port   = parent->port;
 827	child->iproto = phy->attached_iproto;
 828	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 829	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 830	if (!phy->port) {
 831		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 832		if (unlikely(!phy->port))
 833			goto out_err;
 834		if (unlikely(sas_port_add(phy->port) != 0)) {
 835			sas_port_free(phy->port);
 836			goto out_err;
 837		}
 838	}
 839	sas_ex_get_linkrate(parent, child, phy);
 840	sas_device_set_phy(child, phy->port);
 841
 
 842	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 843		res = sas_ata_add_dev(parent, phy, child, phy_id);
 844	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 845		res = sas_ex_add_dev(parent, phy, child, phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846	} else {
 847		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 848			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 849			  phy_id);
 850		res = -ENODEV;
 851	}
 852
 853	if (res)
 854		goto out_free;
 855
 856	list_add_tail(&child->siblings, &parent_ex->children);
 857	return child;
 858
 
 
 
 
 
 
 859 out_free:
 860	sas_port_delete(phy->port);
 861 out_err:
 862	phy->port = NULL;
 863	sas_put_device(child);
 864	return NULL;
 865}
 866
 867/* See if this phy is part of a wide port */
 868static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 869{
 870	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 871	int i;
 872
 873	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 874		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 875
 876		if (ephy == phy)
 877			continue;
 878
 879		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 880			    SAS_ADDR_SIZE) && ephy->port) {
 881			sas_port_add_ex_phy(ephy->port, phy);
 
 
 882			return true;
 883		}
 884	}
 885
 886	return false;
 887}
 888
 889static struct domain_device *sas_ex_discover_expander(
 890	struct domain_device *parent, int phy_id)
 891{
 892	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 893	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 894	struct domain_device *child = NULL;
 895	struct sas_rphy *rphy;
 896	struct sas_expander_device *edev;
 897	struct asd_sas_port *port;
 898	int res;
 899
 900	if (phy->routing_attr == DIRECT_ROUTING) {
 901		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 902			SAS_ADDR(parent->sas_addr), phy_id,
 903			SAS_ADDR(phy->attached_sas_addr),
 904			phy->attached_phy_id);
 
 905		return NULL;
 906	}
 907	child = sas_alloc_device();
 908	if (!child)
 909		return NULL;
 910
 911	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 912	/* FIXME: better error handling */
 913	BUG_ON(sas_port_add(phy->port) != 0);
 914
 915
 916	switch (phy->attached_dev_type) {
 917	case SAS_EDGE_EXPANDER_DEVICE:
 918		rphy = sas_expander_alloc(phy->port,
 919					  SAS_EDGE_EXPANDER_DEVICE);
 920		break;
 921	case SAS_FANOUT_EXPANDER_DEVICE:
 922		rphy = sas_expander_alloc(phy->port,
 923					  SAS_FANOUT_EXPANDER_DEVICE);
 924		break;
 925	default:
 926		rphy = NULL;	/* shut gcc up */
 927		BUG();
 928	}
 929	port = parent->port;
 930	child->rphy = rphy;
 931	get_device(&rphy->dev);
 932	edev = rphy_to_expander_device(rphy);
 933	child->dev_type = phy->attached_dev_type;
 934	kref_get(&parent->kref);
 935	child->parent = parent;
 936	child->port = port;
 937	child->iproto = phy->attached_iproto;
 938	child->tproto = phy->attached_tproto;
 939	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 940	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 941	sas_ex_get_linkrate(parent, child, phy);
 942	edev->level = parent_ex->level + 1;
 943	parent->port->disc.max_level = max(parent->port->disc.max_level,
 944					   edev->level);
 945	sas_init_dev(child);
 946	sas_fill_in_rphy(child, rphy);
 947	sas_rphy_add(rphy);
 948
 949	spin_lock_irq(&parent->port->dev_list_lock);
 950	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 951	spin_unlock_irq(&parent->port->dev_list_lock);
 952
 953	res = sas_discover_expander(child);
 954	if (res) {
 955		sas_rphy_delete(rphy);
 956		spin_lock_irq(&parent->port->dev_list_lock);
 957		list_del(&child->dev_list_node);
 958		spin_unlock_irq(&parent->port->dev_list_lock);
 959		sas_put_device(child);
 960		sas_port_delete(phy->port);
 961		phy->port = NULL;
 962		return NULL;
 963	}
 964	list_add_tail(&child->siblings, &parent->ex_dev.children);
 965	return child;
 966}
 967
 968static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 969{
 970	struct expander_device *ex = &dev->ex_dev;
 971	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 972	struct domain_device *child = NULL;
 973	int res = 0;
 974
 975	/* Phy state */
 976	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 977		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 978			res = sas_ex_phy_discover(dev, phy_id);
 979		if (res)
 980			return res;
 981	}
 982
 983	/* Parent and domain coherency */
 984	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 985		sas_ex_add_parent_port(dev, phy_id);
 
 986		return 0;
 987	}
 988	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 989		sas_ex_add_parent_port(dev, phy_id);
 
 990		if (ex_phy->routing_attr == TABLE_ROUTING)
 991			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 992		return 0;
 993	}
 994
 995	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 996		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 997
 998	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
 999		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1000			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1001			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1002		}
1003		return 0;
1004	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1005		return 0;
1006
1007	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1008	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1009	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1010	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1011		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1012			ex_phy->attached_dev_type,
1013			SAS_ADDR(dev->sas_addr),
1014			phy_id);
1015		return 0;
1016	}
1017
1018	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1019	if (res) {
1020		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1021			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1022		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1023		return res;
1024	}
1025
1026	if (sas_ex_join_wide_port(dev, phy_id)) {
1027		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1028			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1029		return res;
1030	}
1031
1032	switch (ex_phy->attached_dev_type) {
1033	case SAS_END_DEVICE:
1034	case SAS_SATA_PENDING:
1035		child = sas_ex_discover_end_dev(dev, phy_id);
1036		break;
1037	case SAS_FANOUT_EXPANDER_DEVICE:
1038		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1039			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1040				 SAS_ADDR(ex_phy->attached_sas_addr),
1041				 ex_phy->attached_phy_id,
1042				 SAS_ADDR(dev->sas_addr),
1043				 phy_id);
 
1044			sas_ex_disable_phy(dev, phy_id);
1045			return res;
1046		} else
1047			memcpy(dev->port->disc.fanout_sas_addr,
1048			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1049		fallthrough;
1050	case SAS_EDGE_EXPANDER_DEVICE:
1051		child = sas_ex_discover_expander(dev, phy_id);
1052		break;
1053	default:
1054		break;
1055	}
1056
1057	if (!child)
1058		pr_notice("ex %016llx phy%02d failed to discover\n",
1059			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060	return res;
1061}
1062
1063static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1064{
1065	struct expander_device *ex = &dev->ex_dev;
1066	int i;
1067
1068	for (i = 0; i < ex->num_phys; i++) {
1069		struct ex_phy *phy = &ex->ex_phy[i];
1070
1071		if (phy->phy_state == PHY_VACANT ||
1072		    phy->phy_state == PHY_NOT_PRESENT)
1073			continue;
1074
1075		if (dev_is_expander(phy->attached_dev_type) &&
 
1076		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1077
1078			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1079
1080			return 1;
1081		}
1082	}
1083	return 0;
1084}
1085
1086static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1087{
1088	struct expander_device *ex = &dev->ex_dev;
1089	struct domain_device *child;
1090	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1091
1092	list_for_each_entry(child, &ex->children, siblings) {
1093		if (!dev_is_expander(child->dev_type))
 
1094			continue;
1095		if (sub_addr[0] == 0) {
1096			sas_find_sub_addr(child, sub_addr);
1097			continue;
1098		} else {
1099			u8 s2[SAS_ADDR_SIZE];
1100
1101			if (sas_find_sub_addr(child, s2) &&
1102			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1103
1104				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1105					  SAS_ADDR(dev->sas_addr),
1106					  SAS_ADDR(child->sas_addr),
1107					  SAS_ADDR(s2),
1108					  SAS_ADDR(sub_addr));
 
 
1109
1110				sas_ex_disable_port(child, s2);
1111			}
1112		}
1113	}
1114	return 0;
1115}
1116/**
1117 * sas_ex_discover_devices - discover devices attached to this expander
1118 * @dev: pointer to the expander domain device
1119 * @single: if you want to do a single phy, else set to -1;
1120 *
1121 * Configure this expander for use with its devices and register the
1122 * devices of this expander.
1123 */
1124static int sas_ex_discover_devices(struct domain_device *dev, int single)
1125{
1126	struct expander_device *ex = &dev->ex_dev;
1127	int i = 0, end = ex->num_phys;
1128	int res = 0;
1129
1130	if (0 <= single && single < end) {
1131		i = single;
1132		end = i+1;
1133	}
1134
1135	for ( ; i < end; i++) {
1136		struct ex_phy *ex_phy = &ex->ex_phy[i];
1137
1138		if (ex_phy->phy_state == PHY_VACANT ||
1139		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1140		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1141			continue;
1142
1143		switch (ex_phy->linkrate) {
1144		case SAS_PHY_DISABLED:
1145		case SAS_PHY_RESET_PROBLEM:
1146		case SAS_SATA_PORT_SELECTOR:
1147			continue;
1148		default:
1149			res = sas_ex_discover_dev(dev, i);
1150			if (res)
1151				break;
1152			continue;
1153		}
1154	}
1155
1156	if (!res)
1157		sas_check_level_subtractive_boundary(dev);
1158
1159	return res;
1160}
1161
1162static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1163{
1164	struct expander_device *ex = &dev->ex_dev;
1165	int i;
1166	u8  *sub_sas_addr = NULL;
1167
1168	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1169		return 0;
1170
1171	for (i = 0; i < ex->num_phys; i++) {
1172		struct ex_phy *phy = &ex->ex_phy[i];
1173
1174		if (phy->phy_state == PHY_VACANT ||
1175		    phy->phy_state == PHY_NOT_PRESENT)
1176			continue;
1177
1178		if (dev_is_expander(phy->attached_dev_type) &&
 
1179		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1180
1181			if (!sub_sas_addr)
1182				sub_sas_addr = &phy->attached_sas_addr[0];
1183			else if (SAS_ADDR(sub_sas_addr) !=
1184				 SAS_ADDR(phy->attached_sas_addr)) {
1185
1186				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1187					  SAS_ADDR(dev->sas_addr), i,
1188					  SAS_ADDR(phy->attached_sas_addr),
1189					  SAS_ADDR(sub_sas_addr));
 
 
1190				sas_ex_disable_phy(dev, i);
1191			}
1192		}
1193	}
1194	return 0;
1195}
1196
1197static void sas_print_parent_topology_bug(struct domain_device *child,
1198						 struct ex_phy *parent_phy,
1199						 struct ex_phy *child_phy)
1200{
1201	static const char *ex_type[] = {
1202		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1203		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1204	};
1205	struct domain_device *parent = child->parent;
1206
1207	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1208		  ex_type[parent->dev_type],
1209		  SAS_ADDR(parent->sas_addr),
1210		  parent_phy->phy_id,
1211
1212		  ex_type[child->dev_type],
1213		  SAS_ADDR(child->sas_addr),
1214		  child_phy->phy_id,
 
 
 
 
1215
1216		  sas_route_char(parent, parent_phy),
1217		  sas_route_char(child, child_phy));
1218}
1219
1220static bool sas_eeds_valid(struct domain_device *parent,
1221			   struct domain_device *child)
1222{
1223	struct sas_discovery *disc = &parent->port->disc;
1224
1225	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1226		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1227	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1228		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1229}
1230
1231static int sas_check_eeds(struct domain_device *child,
1232			  struct ex_phy *parent_phy,
1233			  struct ex_phy *child_phy)
1234{
1235	int res = 0;
1236	struct domain_device *parent = child->parent;
1237	struct sas_discovery *disc = &parent->port->disc;
1238
1239	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1240		res = -ENODEV;
1241		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1242			SAS_ADDR(parent->sas_addr),
1243			parent_phy->phy_id,
1244			SAS_ADDR(child->sas_addr),
1245			child_phy->phy_id,
1246			SAS_ADDR(disc->fanout_sas_addr));
1247	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1248		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1249		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1250	} else if (!sas_eeds_valid(parent, child)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1251		res = -ENODEV;
1252		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1253			SAS_ADDR(parent->sas_addr),
1254			parent_phy->phy_id,
1255			SAS_ADDR(child->sas_addr),
1256			child_phy->phy_id);
 
1257	}
1258
1259	return res;
1260}
1261
1262static int sas_check_edge_expander_topo(struct domain_device *child,
1263					struct ex_phy *parent_phy)
 
1264{
1265	struct expander_device *child_ex = &child->ex_dev;
1266	struct expander_device *parent_ex = &child->parent->ex_dev;
1267	struct ex_phy *child_phy;
1268
1269	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1270
1271	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1272		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1273		    child_phy->routing_attr != TABLE_ROUTING)
1274			goto error;
1275	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1276		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1277			return sas_check_eeds(child, parent_phy, child_phy);
1278		else if (child_phy->routing_attr != TABLE_ROUTING)
1279			goto error;
1280	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1281		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1282		    (child_phy->routing_attr != TABLE_ROUTING ||
1283		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1284			goto error;
1285	}
1286
1287	return 0;
1288error:
1289	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1290	return -ENODEV;
1291}
1292
1293static int sas_check_fanout_expander_topo(struct domain_device *child,
1294					  struct ex_phy *parent_phy)
1295{
1296	struct expander_device *child_ex = &child->ex_dev;
1297	struct ex_phy *child_phy;
1298
1299	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1300
1301	if (parent_phy->routing_attr == TABLE_ROUTING &&
1302	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1303		return 0;
1304
1305	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1306
1307	return -ENODEV;
1308}
1309
1310static int sas_check_parent_topology(struct domain_device *child)
1311{
1312	struct expander_device *parent_ex;
1313	int i;
1314	int res = 0;
1315
1316	if (!child->parent)
1317		return 0;
1318
1319	if (!dev_is_expander(child->parent->dev_type))
 
1320		return 0;
1321
1322	parent_ex = &child->parent->ex_dev;
1323
1324	for (i = 0; i < parent_ex->num_phys; i++) {
1325		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
 
1326
1327		if (parent_phy->phy_state == PHY_VACANT ||
1328		    parent_phy->phy_state == PHY_NOT_PRESENT)
1329			continue;
1330
1331		if (!sas_phy_match_dev_addr(child, parent_phy))
1332			continue;
1333
 
 
1334		switch (child->parent->dev_type) {
1335		case SAS_EDGE_EXPANDER_DEVICE:
1336			if (sas_check_edge_expander_topo(child, parent_phy))
1337				res = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338			break;
1339		case SAS_FANOUT_EXPANDER_DEVICE:
1340			if (sas_check_fanout_expander_topo(child, parent_phy))
 
 
1341				res = -ENODEV;
 
1342			break;
1343		default:
1344			break;
1345		}
1346	}
1347
1348	return res;
1349}
1350
1351#define RRI_REQ_SIZE  16
1352#define RRI_RESP_SIZE 44
1353
1354static int sas_configure_present(struct domain_device *dev, int phy_id,
1355				 u8 *sas_addr, int *index, int *present)
1356{
1357	int i, res = 0;
1358	struct expander_device *ex = &dev->ex_dev;
1359	struct ex_phy *phy = &ex->ex_phy[phy_id];
1360	u8 *rri_req;
1361	u8 *rri_resp;
1362
1363	*present = 0;
1364	*index = 0;
1365
1366	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1367	if (!rri_req)
1368		return -ENOMEM;
1369
1370	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1371	if (!rri_resp) {
1372		kfree(rri_req);
1373		return -ENOMEM;
1374	}
1375
1376	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1377	rri_req[9] = phy_id;
1378
1379	for (i = 0; i < ex->max_route_indexes ; i++) {
1380		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1381		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1382				       RRI_RESP_SIZE);
1383		if (res)
1384			goto out;
1385		res = rri_resp[2];
1386		if (res == SMP_RESP_NO_INDEX) {
1387			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1388				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1389			goto out;
1390		} else if (res != SMP_RESP_FUNC_ACC) {
1391			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1392				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1393				  i, res);
1394			goto out;
1395		}
1396		if (SAS_ADDR(sas_addr) != 0) {
1397			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1398				*index = i;
1399				if ((rri_resp[12] & 0x80) == 0x80)
1400					*present = 0;
1401				else
1402					*present = 1;
1403				goto out;
1404			} else if (SAS_ADDR(rri_resp+16) == 0) {
1405				*index = i;
1406				*present = 0;
1407				goto out;
1408			}
1409		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1410			   phy->last_da_index < i) {
1411			phy->last_da_index = i;
1412			*index = i;
1413			*present = 0;
1414			goto out;
1415		}
1416	}
1417	res = -1;
1418out:
1419	kfree(rri_req);
1420	kfree(rri_resp);
1421	return res;
1422}
1423
1424#define CRI_REQ_SIZE  44
1425#define CRI_RESP_SIZE  8
1426
1427static int sas_configure_set(struct domain_device *dev, int phy_id,
1428			     u8 *sas_addr, int index, int include)
1429{
1430	int res;
1431	u8 *cri_req;
1432	u8 *cri_resp;
1433
1434	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1435	if (!cri_req)
1436		return -ENOMEM;
1437
1438	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1439	if (!cri_resp) {
1440		kfree(cri_req);
1441		return -ENOMEM;
1442	}
1443
1444	cri_req[1] = SMP_CONF_ROUTE_INFO;
1445	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1446	cri_req[9] = phy_id;
1447	if (SAS_ADDR(sas_addr) == 0 || !include)
1448		cri_req[12] |= 0x80;
1449	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1450
1451	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1452			       CRI_RESP_SIZE);
1453	if (res)
1454		goto out;
1455	res = cri_resp[2];
1456	if (res == SMP_RESP_NO_INDEX) {
1457		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1458			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1459	}
1460out:
1461	kfree(cri_req);
1462	kfree(cri_resp);
1463	return res;
1464}
1465
1466static int sas_configure_phy(struct domain_device *dev, int phy_id,
1467				    u8 *sas_addr, int include)
1468{
1469	int index;
1470	int present;
1471	int res;
1472
1473	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1474	if (res)
1475		return res;
1476	if (include ^ present)
1477		return sas_configure_set(dev, phy_id, sas_addr, index,
1478					 include);
1479
1480	return res;
1481}
1482
1483/**
1484 * sas_configure_parent - configure routing table of parent
1485 * @parent: parent expander
1486 * @child: child expander
1487 * @sas_addr: SAS port identifier of device directly attached to child
1488 * @include: whether or not to include @child in the expander routing table
1489 */
1490static int sas_configure_parent(struct domain_device *parent,
1491				struct domain_device *child,
1492				u8 *sas_addr, int include)
1493{
1494	struct expander_device *ex_parent = &parent->ex_dev;
1495	int res = 0;
1496	int i;
1497
1498	if (parent->parent) {
1499		res = sas_configure_parent(parent->parent, parent, sas_addr,
1500					   include);
1501		if (res)
1502			return res;
1503	}
1504
1505	if (ex_parent->conf_route_table == 0) {
1506		pr_debug("ex %016llx has self-configuring routing table\n",
1507			 SAS_ADDR(parent->sas_addr));
1508		return 0;
1509	}
1510
1511	for (i = 0; i < ex_parent->num_phys; i++) {
1512		struct ex_phy *phy = &ex_parent->ex_phy[i];
1513
1514		if ((phy->routing_attr == TABLE_ROUTING) &&
1515		    sas_phy_match_dev_addr(child, phy)) {
 
1516			res = sas_configure_phy(parent, i, sas_addr, include);
1517			if (res)
1518				return res;
1519		}
1520	}
1521
1522	return res;
1523}
1524
1525/**
1526 * sas_configure_routing - configure routing
1527 * @dev: expander device
1528 * @sas_addr: port identifier of device directly attached to the expander device
1529 */
1530static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1531{
1532	if (dev->parent)
1533		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1534	return 0;
1535}
1536
1537static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1538{
1539	if (dev->parent)
1540		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1541	return 0;
1542}
1543
1544/**
1545 * sas_discover_expander - expander discovery
1546 * @dev: pointer to expander domain device
1547 *
1548 * See comment in sas_discover_sata().
1549 */
1550static int sas_discover_expander(struct domain_device *dev)
1551{
1552	int res;
1553
1554	res = sas_notify_lldd_dev_found(dev);
1555	if (res)
1556		return res;
1557
1558	res = sas_ex_general(dev);
1559	if (res)
1560		goto out_err;
1561	res = sas_ex_manuf_info(dev);
1562	if (res)
1563		goto out_err;
1564
1565	res = sas_expander_discover(dev);
1566	if (res) {
1567		pr_warn("expander %016llx discovery failed(0x%x)\n",
1568			SAS_ADDR(dev->sas_addr), res);
1569		goto out_err;
1570	}
1571
1572	sas_check_ex_subtractive_boundary(dev);
1573	res = sas_check_parent_topology(dev);
1574	if (res)
1575		goto out_err;
1576	return 0;
1577out_err:
1578	sas_notify_lldd_dev_gone(dev);
1579	return res;
1580}
1581
1582static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1583{
1584	int res = 0;
1585	struct domain_device *dev;
1586
1587	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1588		if (dev_is_expander(dev->dev_type)) {
 
1589			struct sas_expander_device *ex =
1590				rphy_to_expander_device(dev->rphy);
1591
1592			if (level == ex->level)
1593				res = sas_ex_discover_devices(dev, -1);
1594			else if (level > 0)
1595				res = sas_ex_discover_devices(port->port_dev, -1);
1596
1597		}
1598	}
1599
1600	return res;
1601}
1602
1603static int sas_ex_bfs_disc(struct asd_sas_port *port)
1604{
1605	int res;
1606	int level;
1607
1608	do {
1609		level = port->disc.max_level;
1610		res = sas_ex_level_discovery(port, level);
1611		mb();
1612	} while (level < port->disc.max_level);
1613
1614	return res;
1615}
1616
1617int sas_discover_root_expander(struct domain_device *dev)
1618{
1619	int res;
1620	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1621
1622	res = sas_rphy_add(dev->rphy);
1623	if (res)
1624		goto out_err;
1625
1626	ex->level = dev->port->disc.max_level; /* 0 */
1627	res = sas_discover_expander(dev);
1628	if (res)
1629		goto out_err2;
1630
1631	sas_ex_bfs_disc(dev->port);
1632
1633	return res;
1634
1635out_err2:
1636	sas_rphy_remove(dev->rphy);
1637out_err:
1638	return res;
1639}
1640
1641/* ---------- Domain revalidation ---------- */
1642
1643static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1644					  u8 *sas_addr,
1645					  enum sas_device_type *type)
1646{
1647	memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1648	*type = to_dev_type(&disc_resp->disc);
1649	if (*type == SAS_PHY_UNUSED)
1650		memset(sas_addr, 0, SAS_ADDR_SIZE);
1651}
1652
1653static int sas_get_phy_discover(struct domain_device *dev,
1654				int phy_id, struct smp_disc_resp *disc_resp)
1655{
1656	int res;
1657	u8 *disc_req;
1658
1659	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1660	if (!disc_req)
1661		return -ENOMEM;
1662
1663	disc_req[1] = SMP_DISCOVER;
1664	disc_req[9] = phy_id;
1665
1666	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1667			       disc_resp, DISCOVER_RESP_SIZE);
1668	if (res)
1669		goto out;
1670	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1671		res = disc_resp->result;
 
 
1672out:
1673	kfree(disc_req);
1674	return res;
1675}
1676
1677static int sas_get_phy_change_count(struct domain_device *dev,
1678				    int phy_id, int *pcc)
1679{
1680	int res;
1681	struct smp_disc_resp *disc_resp;
1682
1683	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1684	if (!disc_resp)
1685		return -ENOMEM;
1686
1687	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1688	if (!res)
1689		*pcc = disc_resp->disc.change_count;
1690
1691	kfree(disc_resp);
1692	return res;
1693}
1694
1695int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1696			     u8 *sas_addr, enum sas_device_type *type)
1697{
1698	int res;
1699	struct smp_disc_resp *disc_resp;
 
1700
1701	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1702	if (!disc_resp)
1703		return -ENOMEM;
 
1704
1705	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1706	if (res == 0)
1707		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
 
 
 
 
1708	kfree(disc_resp);
1709	return res;
1710}
1711
1712static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1713			      int from_phy, bool update)
1714{
1715	struct expander_device *ex = &dev->ex_dev;
1716	int res = 0;
1717	int i;
1718
1719	for (i = from_phy; i < ex->num_phys; i++) {
1720		int phy_change_count = 0;
1721
1722		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1723		switch (res) {
1724		case SMP_RESP_PHY_VACANT:
1725		case SMP_RESP_NO_PHY:
1726			continue;
1727		case SMP_RESP_FUNC_ACC:
1728			break;
1729		default:
1730			return res;
1731		}
1732
1733		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1734			if (update)
1735				ex->ex_phy[i].phy_change_count =
1736					phy_change_count;
1737			*phy_id = i;
1738			return 0;
1739		}
1740	}
1741	return 0;
1742}
1743
1744static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1745{
1746	int res;
1747	u8  *rg_req;
1748	struct smp_rg_resp  *rg_resp;
1749
1750	rg_req = alloc_smp_req(RG_REQ_SIZE);
1751	if (!rg_req)
1752		return -ENOMEM;
1753
1754	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1755	if (!rg_resp) {
1756		kfree(rg_req);
1757		return -ENOMEM;
1758	}
1759
1760	rg_req[1] = SMP_REPORT_GENERAL;
1761
1762	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1763			       RG_RESP_SIZE);
1764	if (res)
1765		goto out;
1766	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1767		res = rg_resp->result;
1768		goto out;
1769	}
1770
1771	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1772out:
1773	kfree(rg_resp);
1774	kfree(rg_req);
1775	return res;
1776}
1777/**
1778 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1779 * @dev:domain device to be detect.
1780 * @src_dev: the device which originated BROADCAST(CHANGE).
1781 *
1782 * Add self-configuration expander support. Suppose two expander cascading,
1783 * when the first level expander is self-configuring, hotplug the disks in
1784 * second level expander, BROADCAST(CHANGE) will not only be originated
1785 * in the second level expander, but also be originated in the first level
1786 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1787 * expander changed count in two level expanders will all increment at least
1788 * once, but the phy which chang count has changed is the source device which
1789 * we concerned.
1790 */
1791
1792static int sas_find_bcast_dev(struct domain_device *dev,
1793			      struct domain_device **src_dev)
1794{
1795	struct expander_device *ex = &dev->ex_dev;
1796	int ex_change_count = -1;
1797	int phy_id = -1;
1798	int res;
1799	struct domain_device *ch;
1800
1801	res = sas_get_ex_change_count(dev, &ex_change_count);
1802	if (res)
1803		goto out;
1804	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1805		/* Just detect if this expander phys phy change count changed,
1806		* in order to determine if this expander originate BROADCAST,
1807		* and do not update phy change count field in our structure.
1808		*/
1809		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1810		if (phy_id != -1) {
1811			*src_dev = dev;
1812			ex->ex_change_count = ex_change_count;
1813			pr_info("ex %016llx phy%02d change count has changed\n",
1814				SAS_ADDR(dev->sas_addr), phy_id);
1815			return res;
1816		} else
1817			pr_info("ex %016llx phys DID NOT change\n",
1818				SAS_ADDR(dev->sas_addr));
1819	}
1820	list_for_each_entry(ch, &ex->children, siblings) {
1821		if (dev_is_expander(ch->dev_type)) {
1822			res = sas_find_bcast_dev(ch, src_dev);
1823			if (*src_dev)
1824				return res;
1825		}
1826	}
1827out:
1828	return res;
1829}
1830
1831static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1832{
1833	struct expander_device *ex = &dev->ex_dev;
1834	struct domain_device *child, *n;
1835
1836	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1837		set_bit(SAS_DEV_GONE, &child->state);
1838		if (dev_is_expander(child->dev_type))
 
1839			sas_unregister_ex_tree(port, child);
1840		else
1841			sas_unregister_dev(port, child);
1842	}
1843	sas_unregister_dev(port, dev);
1844}
1845
1846static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1847					 int phy_id, bool last)
1848{
1849	struct expander_device *ex_dev = &parent->ex_dev;
1850	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1851	struct domain_device *child, *n, *found = NULL;
1852	if (last) {
1853		list_for_each_entry_safe(child, n,
1854			&ex_dev->children, siblings) {
1855			if (sas_phy_match_dev_addr(child, phy)) {
 
1856				set_bit(SAS_DEV_GONE, &child->state);
1857				if (dev_is_expander(child->dev_type))
 
1858					sas_unregister_ex_tree(parent->port, child);
1859				else
1860					sas_unregister_dev(parent->port, child);
1861				found = child;
1862				break;
1863			}
1864		}
1865		sas_disable_routing(parent, phy->attached_sas_addr);
1866	}
1867	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1868	if (phy->port) {
1869		sas_port_delete_phy(phy->port, phy->phy);
1870		sas_device_set_phy(found, phy->port);
1871		if (phy->port->num_phys == 0) {
1872			list_add_tail(&phy->port->del_list,
1873				&parent->port->sas_port_del_list);
1874			if (ex_dev->parent_port == phy->port)
1875				ex_dev->parent_port = NULL;
1876		}
1877		phy->port = NULL;
1878	}
1879}
1880
1881static int sas_discover_bfs_by_root_level(struct domain_device *root,
1882					  const int level)
1883{
1884	struct expander_device *ex_root = &root->ex_dev;
1885	struct domain_device *child;
1886	int res = 0;
1887
1888	list_for_each_entry(child, &ex_root->children, siblings) {
1889		if (dev_is_expander(child->dev_type)) {
 
1890			struct sas_expander_device *ex =
1891				rphy_to_expander_device(child->rphy);
1892
1893			if (level > ex->level)
1894				res = sas_discover_bfs_by_root_level(child,
1895								     level);
1896			else if (level == ex->level)
1897				res = sas_ex_discover_devices(child, -1);
1898		}
1899	}
1900	return res;
1901}
1902
1903static int sas_discover_bfs_by_root(struct domain_device *dev)
1904{
1905	int res;
1906	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1907	int level = ex->level+1;
1908
1909	res = sas_ex_discover_devices(dev, -1);
1910	if (res)
1911		goto out;
1912	do {
1913		res = sas_discover_bfs_by_root_level(dev, level);
1914		mb();
1915		level += 1;
1916	} while (level <= dev->port->disc.max_level);
1917out:
1918	return res;
1919}
1920
1921static int sas_discover_new(struct domain_device *dev, int phy_id)
1922{
1923	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1924	struct domain_device *child;
1925	int res;
1926
1927	pr_debug("ex %016llx phy%02d new device attached\n",
1928		 SAS_ADDR(dev->sas_addr), phy_id);
1929	res = sas_ex_phy_discover(dev, phy_id);
1930	if (res)
1931		return res;
1932
1933	if (sas_ex_join_wide_port(dev, phy_id))
1934		return 0;
1935
1936	res = sas_ex_discover_devices(dev, phy_id);
1937	if (res)
1938		return res;
1939	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1940		if (sas_phy_match_dev_addr(child, ex_phy)) {
1941			if (dev_is_expander(child->dev_type))
 
 
1942				res = sas_discover_bfs_by_root(child);
1943			break;
1944		}
1945	}
1946	return res;
1947}
1948
1949static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1950{
1951	if (old == new)
1952		return true;
1953
1954	/* treat device directed resets as flutter, if we went
1955	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1956	 */
1957	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1958	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1959		return true;
1960
1961	return false;
1962}
1963
1964static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1965			      bool last, int sibling)
1966{
1967	struct expander_device *ex = &dev->ex_dev;
1968	struct ex_phy *phy = &ex->ex_phy[phy_id];
1969	enum sas_device_type type = SAS_PHY_UNUSED;
1970	struct smp_disc_resp *disc_resp;
1971	u8 sas_addr[SAS_ADDR_SIZE];
1972	char msg[80] = "";
1973	int res;
1974
1975	if (!last)
1976		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1977
1978	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1979		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1980
1981	memset(sas_addr, 0, SAS_ADDR_SIZE);
1982	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1983	if (!disc_resp)
1984		return -ENOMEM;
1985
1986	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1987	switch (res) {
1988	case SMP_RESP_NO_PHY:
1989		phy->phy_state = PHY_NOT_PRESENT;
1990		sas_unregister_devs_sas_addr(dev, phy_id, last);
1991		goto out_free_resp;
1992	case SMP_RESP_PHY_VACANT:
1993		phy->phy_state = PHY_VACANT;
1994		sas_unregister_devs_sas_addr(dev, phy_id, last);
1995		goto out_free_resp;
1996	case SMP_RESP_FUNC_ACC:
1997		break;
1998	case -ECOMM:
1999		break;
2000	default:
2001		goto out_free_resp;
2002	}
2003
2004	if (res == 0)
2005		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
2006
2007	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
2010		/*
2011		 * Even though the PHY is empty, for convenience we update
2012		 * the PHY info, like negotiated linkrate.
2013		 */
2014		if (res == 0)
2015			sas_set_ex_phy(dev, phy_id, disc_resp);
2016		goto out_free_resp;
2017	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2018		   dev_type_flutter(type, phy->attached_dev_type)) {
2019		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2020		char *action = "";
2021
2022		sas_ex_phy_discover(dev, phy_id);
2023
2024		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2025			action = ", needs recovery";
2026		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2027			 SAS_ADDR(dev->sas_addr), phy_id, action);
2028		goto out_free_resp;
2029	}
2030
2031	/* we always have to delete the old device when we went here */
2032	pr_info("ex %016llx phy%02d replace %016llx\n",
2033		SAS_ADDR(dev->sas_addr), phy_id,
2034		SAS_ADDR(phy->attached_sas_addr));
2035	sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
2036
2037	res = sas_discover_new(dev, phy_id);
2038out_free_resp:
2039	kfree(disc_resp);
2040	return res;
2041}
2042
2043/**
2044 * sas_rediscover - revalidate the domain.
2045 * @dev:domain device to be detect.
2046 * @phy_id: the phy id will be detected.
2047 *
2048 * NOTE: this process _must_ quit (return) as soon as any connection
2049 * errors are encountered.  Connection recovery is done elsewhere.
2050 * Discover process only interrogates devices in order to discover the
2051 * domain.For plugging out, we un-register the device only when it is
2052 * the last phy in the port, for other phys in this port, we just delete it
2053 * from the port.For inserting, we do discovery when it is the
2054 * first phy,for other phys in this port, we add it to the port to
2055 * forming the wide-port.
2056 */
2057static int sas_rediscover(struct domain_device *dev, const int phy_id)
2058{
2059	struct expander_device *ex = &dev->ex_dev;
2060	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2061	int res = 0;
2062	int i;
2063	bool last = true;	/* is this the last phy of the port */
2064
2065	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2066		 SAS_ADDR(dev->sas_addr), phy_id);
2067
2068	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2069		for (i = 0; i < ex->num_phys; i++) {
2070			struct ex_phy *phy = &ex->ex_phy[i];
2071
2072			if (i == phy_id)
2073				continue;
2074			if (sas_phy_addr_match(phy, changed_phy)) {
 
 
 
2075				last = false;
2076				break;
2077			}
2078		}
2079		res = sas_rediscover_dev(dev, phy_id, last, i);
2080	} else
2081		res = sas_discover_new(dev, phy_id);
2082	return res;
2083}
2084
2085/**
2086 * sas_ex_revalidate_domain - revalidate the domain
2087 * @port_dev: port domain device.
2088 *
2089 * NOTE: this process _must_ quit (return) as soon as any connection
2090 * errors are encountered.  Connection recovery is done elsewhere.
2091 * Discover process only interrogates devices in order to discover the
2092 * domain.
2093 */
2094int sas_ex_revalidate_domain(struct domain_device *port_dev)
2095{
2096	int res;
2097	struct domain_device *dev = NULL;
2098
2099	res = sas_find_bcast_dev(port_dev, &dev);
2100	if (res == 0 && dev) {
2101		struct expander_device *ex = &dev->ex_dev;
2102		int i = 0, phy_id;
2103
2104		do {
2105			phy_id = -1;
2106			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2107			if (phy_id == -1)
2108				break;
2109			res = sas_rediscover(dev, phy_id);
2110			i = phy_id + 1;
2111		} while (i < ex->num_phys);
 
 
 
2112	}
2113	return res;
2114}
2115
2116int sas_find_attached_phy_id(struct expander_device *ex_dev,
2117			     struct domain_device *dev)
2118{
2119	struct ex_phy *phy;
2120	int phy_id;
 
2121
2122	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2123		phy = &ex_dev->ex_phy[phy_id];
2124		if (sas_phy_match_dev_addr(dev, phy))
2125			return phy_id;
2126	}
2127
2128	return -ENODEV;
2129}
2130EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2131
2132void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2133		struct sas_rphy *rphy)
2134{
2135	struct domain_device *dev;
2136	unsigned int rcvlen = 0;
2137	int ret = -EINVAL;
2138
2139	/* no rphy means no smp target support (ie aic94xx host) */
2140	if (!rphy)
2141		return sas_smp_host_handler(job, shost);
2142
2143	switch (rphy->identify.device_type) {
2144	case SAS_EDGE_EXPANDER_DEVICE:
2145	case SAS_FANOUT_EXPANDER_DEVICE:
2146		break;
2147	default:
2148		pr_err("%s: can we send a smp request to a device?\n",
2149		       __func__);
2150		goto out;
2151	}
2152
2153	dev = sas_find_dev_by_rphy(rphy);
2154	if (!dev) {
2155		pr_err("%s: fail to find a domain_device?\n", __func__);
2156		goto out;
2157	}
2158
2159	/* do we need to support multiple segments? */
2160	if (job->request_payload.sg_cnt > 1 ||
2161	    job->reply_payload.sg_cnt > 1) {
2162		pr_info("%s: multiple segments req %u, rsp %u\n",
2163			__func__, job->request_payload.payload_len,
2164			job->reply_payload.payload_len);
2165		goto out;
2166	}
2167
2168	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2169			job->reply_payload.sg_list);
2170	if (ret >= 0) {
2171		/* bsg_job_done() requires the length received  */
2172		rcvlen = job->reply_payload.payload_len - ret;
 
2173		ret = 0;
 
 
 
2174	}
2175
2176out:
2177	bsg_job_done(job, ret, rcvlen);
2178}