Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.5.6
 
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
 
 
  29#include <linux/module.h>
  30#include <linux/kernel.h>
 
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/proc_fs.h>
  35#include <linux/pci.h>
  36#include <linux/pci_hotplug.h>
  37#include "../pci.h"
  38#include "cpqphp.h"
  39#include "cpqphp_nvram.h"
  40
  41
  42u8 cpqhp_nic_irq;
  43u8 cpqhp_disk_irq;
  44
  45static u16 unused_IRQ;
  46
  47/*
  48 * detect_HRT_floating_pointer
  49 *
  50 * find the Hot Plug Resource Table in the specified region of memory.
  51 *
  52 */
  53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  54{
  55	void __iomem *fp;
  56	void __iomem *endp;
  57	u8 temp1, temp2, temp3, temp4;
  58	int status = 0;
  59
  60	endp = (end - sizeof(struct hrt) + 1);
  61
  62	for (fp = begin; fp <= endp; fp += 16) {
  63		temp1 = readb(fp + SIG0);
  64		temp2 = readb(fp + SIG1);
  65		temp3 = readb(fp + SIG2);
  66		temp4 = readb(fp + SIG3);
  67		if (temp1 == '$' &&
  68		    temp2 == 'H' &&
  69		    temp3 == 'R' &&
  70		    temp4 == 'T') {
  71			status = 1;
  72			break;
  73		}
  74	}
  75
  76	if (!status)
  77		fp = NULL;
  78
  79	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  80	return fp;
  81}
  82
  83
  84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
  85{
  86	unsigned char bus;
  87	struct pci_bus *child;
  88	int num;
  89
 
 
  90	if (func->pci_dev == NULL)
  91		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
 
 
  92
  93	/* No pci device, we need to create it then */
  94	if (func->pci_dev == NULL) {
  95		dbg("INFO: pci_dev still null\n");
  96
  97		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  98		if (num)
  99			pci_bus_add_devices(ctrl->pci_dev->bus);
 100
 101		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
 
 
 102		if (func->pci_dev == NULL) {
 103			dbg("ERROR: pci_dev still null\n");
 104			return 0;
 105		}
 106	}
 107
 108	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 109		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
 110		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
 111		pci_do_scan_bus(child);
 
 112	}
 113
 114	pci_dev_put(func->pci_dev);
 115
 
 
 116	return 0;
 117}
 118
 119
 120int cpqhp_unconfigure_device(struct pci_func* func)
 121{
 122	int j;
 123
 124	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 125
 126	for (j=0; j<8 ; j++) {
 127		struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
 
 
 
 
 128		if (temp) {
 129			pci_dev_put(temp);
 130			pci_stop_and_remove_bus_device(temp);
 131		}
 132	}
 
 133	return 0;
 134}
 135
 136static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
 137{
 138	u32 vendID = 0;
 139
 140	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
 141		return -1;
 142	if (vendID == 0xffffffff)
 143		return -1;
 144	return pci_bus_read_config_dword (bus, devfn, offset, value);
 145}
 146
 147
 148/*
 149 * cpqhp_set_irq
 150 *
 151 * @bus_num: bus number of PCI device
 152 * @dev_num: device number of PCI device
 153 * @slot: pointer to u8 where slot number will be returned
 154 */
 155int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 156{
 157	int rc = 0;
 158
 159	if (cpqhp_legacy_mode) {
 160		struct pci_dev *fakedev;
 161		struct pci_bus *fakebus;
 162		u16 temp_word;
 163
 164		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 165		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 166		if (!fakedev || !fakebus) {
 167			kfree(fakedev);
 168			kfree(fakebus);
 169			return -ENOMEM;
 170		}
 171
 172		fakedev->devfn = dev_num << 3;
 173		fakedev->bus = fakebus;
 174		fakebus->number = bus_num;
 175		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 176		    __func__, dev_num, bus_num, int_pin, irq_num);
 177		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 178		kfree(fakedev);
 179		kfree(fakebus);
 180		dbg("%s: rc %d\n", __func__, rc);
 181		if (!rc)
 182			return !rc;
 183
 184		/* set the Edge Level Control Register (ELCR) */
 185		temp_word = inb(0x4d0);
 186		temp_word |= inb(0x4d1) << 8;
 187
 188		temp_word |= 0x01 << irq_num;
 189
 190		/* This should only be for x86 as it sets the Edge Level
 191		 * Control Register
 192		 */
 193		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
 194		0xFF00) >> 8), 0x4d1); rc = 0; }
 
 
 195
 196	return rc;
 197}
 198
 199
 200static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
 201{
 202	u16 tdevice;
 203	u32 work;
 204	u8 tbus;
 205
 206	ctrl->pci_bus->number = bus_num;
 207
 208	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 209		/* Scan for access first */
 210		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 
 
 
 211			continue;
 212		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 213		/* Yep we got one. Not a bridge ? */
 214		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 215			*dev_num = tdevice;
 216			dbg("found it !\n");
 217			return 0;
 218		}
 219	}
 220	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 221		/* Scan for access first */
 222		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 223			continue;
 224		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
 225		/* Yep we got one. bridge ? */
 226		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 227			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
 228			/* XXX: no recursion, wtf? */
 229			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
 230			return 0;
 231		}
 232	}
 233
 234	return -1;
 
 235}
 236
 237
 238static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 239{
 240	int loop, len;
 241	u32 work;
 242	u8 tbus, tdevice, tslot;
 243
 244	len = cpqhp_routing_table_length();
 245	for (loop = 0; loop < len; ++loop) {
 246		tbus = cpqhp_routing_table->slots[loop].bus;
 247		tdevice = cpqhp_routing_table->slots[loop].devfn;
 248		tslot = cpqhp_routing_table->slots[loop].slot;
 249
 250		if (tslot == slot) {
 251			*bus_num = tbus;
 252			*dev_num = tdevice;
 253			ctrl->pci_bus->number = tbus;
 254			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 255			if (!nobridge || (work == 0xffffffff))
 256				return 0;
 257
 258			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 259			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 260			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 261
 262			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 263				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 264				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 265				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 266					*bus_num = tbus;
 267					return 0;
 268				}
 269			} else
 270				return 0;
 271		}
 272	}
 273	return -1;
 274}
 275
 276
 277int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
 278{
 279	/* plain (bridges allowed) */
 280	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 281}
 282
 283
 284/* More PCI configuration routines; this time centered around hotplug
 285 * controller
 286 */
 287
 288
 289/*
 290 * cpqhp_save_config
 291 *
 292 * Reads configuration for all slots in a PCI bus and saves info.
 293 *
 294 * Note:  For non-hot plug busses, the slot # saved is the device #
 295 *
 296 * returns 0 if success
 297 */
 298int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 299{
 300	long rc;
 301	u8 class_code;
 302	u8 header_type;
 303	u32 ID;
 304	u8 secondary_bus;
 305	struct pci_func *new_slot;
 306	int sub_bus;
 307	int FirstSupported;
 308	int LastSupported;
 309	int max_functions;
 310	int function;
 311	u8 DevError;
 312	int device = 0;
 313	int cloop = 0;
 314	int stop_it;
 315	int index;
 
 316
 317	/* Decide which slots are supported */
 318
 319	if (is_hot_plug) {
 320		/*
 321		 * is_hot_plug is the slot mask
 322		 */
 323		FirstSupported = is_hot_plug >> 4;
 324		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 325	} else {
 326		FirstSupported = 0;
 327		LastSupported = 0x1F;
 328	}
 329
 330	/* Save PCI configuration space for all devices in supported slots */
 331	ctrl->pci_bus->number = busnumber;
 332	for (device = FirstSupported; device <= LastSupported; device++) {
 333		ID = 0xFFFFFFFF;
 334		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 335
 336		if (ID == 0xFFFFFFFF) {
 337			if (is_hot_plug) {
 338				/* Setup slot structure with entry for empty
 339				 * slot
 340				 */
 341				new_slot = cpqhp_slot_create(busnumber);
 342				if (new_slot == NULL)
 343					return 1;
 344
 345				new_slot->bus = (u8) busnumber;
 346				new_slot->device = (u8) device;
 347				new_slot->function = 0;
 348				new_slot->is_a_board = 0;
 349				new_slot->presence_save = 0;
 350				new_slot->switch_save = 0;
 351			}
 352			continue;
 353		}
 354
 355		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 356		if (rc)
 357			return rc;
 358
 359		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 360		if (rc)
 361			return rc;
 362
 363		/* If multi-function device, set max_functions to 8 */
 364		if (header_type & 0x80)
 365			max_functions = 8;
 366		else
 367			max_functions = 1;
 368
 369		function = 0;
 370
 371		do {
 372			DevError = 0;
 373			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 374				/* Recurse the subordinate bus
 375				 * get the subordinate bus number
 376				 */
 377				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 378				if (rc) {
 379					return rc;
 380				} else {
 381					sub_bus = (int) secondary_bus;
 382
 383					/* Save secondary bus cfg spc
 384					 * with this recursive call.
 385					 */
 386					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 387					if (rc)
 388						return rc;
 389					ctrl->pci_bus->number = busnumber;
 390				}
 391			}
 392
 393			index = 0;
 394			new_slot = cpqhp_slot_find(busnumber, device, index++);
 395			while (new_slot &&
 396			       (new_slot->function != (u8) function))
 397				new_slot = cpqhp_slot_find(busnumber, device, index++);
 398
 399			if (!new_slot) {
 400				/* Setup slot structure. */
 401				new_slot = cpqhp_slot_create(busnumber);
 402				if (new_slot == NULL)
 403					return 1;
 404			}
 405
 406			new_slot->bus = (u8) busnumber;
 407			new_slot->device = (u8) device;
 408			new_slot->function = (u8) function;
 409			new_slot->is_a_board = 1;
 410			new_slot->switch_save = 0x10;
 411			/* In case of unsupported board */
 412			new_slot->status = DevError;
 413			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
 
 
 414
 415			for (cloop = 0; cloop < 0x20; cloop++) {
 416				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
 417				if (rc)
 418					return rc;
 419			}
 420
 421			pci_dev_put(new_slot->pci_dev);
 422
 423			function++;
 424
 425			stop_it = 0;
 426
 427			/* this loop skips to the next present function
 428			 * reading in Class Code and Header type.
 429			 */
 430			while ((function < max_functions) && (!stop_it)) {
 431				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 432				if (ID == 0xFFFFFFFF) {
 433					function++;
 434					continue;
 435				}
 436				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 437				if (rc)
 438					return rc;
 439
 440				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 441				if (rc)
 442					return rc;
 443
 444				stop_it++;
 445			}
 446
 447		} while (function < max_functions);
 448	}			/* End of FOR loop */
 449
 450	return 0;
 451}
 452
 453
 454/*
 455 * cpqhp_save_slot_config
 456 *
 457 * Saves configuration info for all PCI devices in a given slot
 458 * including subordinate busses.
 459 *
 460 * returns 0 if success
 461 */
 462int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
 463{
 464	long rc;
 465	u8 class_code;
 466	u8 header_type;
 467	u32 ID;
 468	u8 secondary_bus;
 469	int sub_bus;
 470	int max_functions;
 471	int function = 0;
 472	int cloop = 0;
 473	int stop_it;
 474
 475	ID = 0xFFFFFFFF;
 476
 477	ctrl->pci_bus->number = new_slot->bus;
 478	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 479
 480	if (ID == 0xFFFFFFFF)
 481		return 2;
 482
 483	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 484	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 485
 486	if (header_type & 0x80)	/* Multi-function device */
 487		max_functions = 8;
 488	else
 489		max_functions = 1;
 490
 491	while (function < max_functions) {
 492		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 493			/*  Recurse the subordinate bus */
 494			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 495
 496			sub_bus = (int) secondary_bus;
 497
 498			/* Save the config headers for the secondary
 499			 * bus.
 500			 */
 501			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 502			if (rc)
 503				return(rc);
 504			ctrl->pci_bus->number = new_slot->bus;
 505
 506		}
 507
 508		new_slot->status = 0;
 509
 510		for (cloop = 0; cloop < 0x20; cloop++)
 511			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
 512
 513		function++;
 514
 515		stop_it = 0;
 516
 517		/* this loop skips to the next present function
 518		 * reading in the Class Code and the Header type.
 519		 */
 520		while ((function < max_functions) && (!stop_it)) {
 521			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 522
 523			if (ID == 0xFFFFFFFF)
 524				function++;
 525			else {
 526				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 527				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 528				stop_it++;
 529			}
 530		}
 531
 532	}
 533
 534	return 0;
 535}
 536
 537
 538/*
 539 * cpqhp_save_base_addr_length
 540 *
 541 * Saves the length of all base address registers for the
 542 * specified slot.  this is for hot plug REPLACE
 543 *
 544 * returns 0 if success
 545 */
 546int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
 547{
 548	u8 cloop;
 549	u8 header_type;
 550	u8 secondary_bus;
 551	u8 type;
 552	int sub_bus;
 553	u32 temp_register;
 554	u32 base;
 555	u32 rc;
 556	struct pci_func *next;
 557	int index = 0;
 558	struct pci_bus *pci_bus = ctrl->pci_bus;
 559	unsigned int devfn;
 560
 561	func = cpqhp_slot_find(func->bus, func->device, index++);
 562
 563	while (func != NULL) {
 564		pci_bus->number = func->bus;
 565		devfn = PCI_DEVFN(func->device, func->function);
 566
 567		/* Check for Bridge */
 568		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 569
 570		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 571			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 572
 573			sub_bus = (int) secondary_bus;
 574
 575			next = cpqhp_slot_list[sub_bus];
 576
 577			while (next != NULL) {
 578				rc = cpqhp_save_base_addr_length(ctrl, next);
 579				if (rc)
 580					return rc;
 581
 582				next = next->next;
 583			}
 584			pci_bus->number = func->bus;
 585
 586			/* FIXME: this loop is duplicated in the non-bridge
 587			 * case.  The two could be rolled together Figure out
 588			 * IO and memory base lengths
 589			 */
 590			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 591				temp_register = 0xFFFFFFFF;
 592				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 593				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
 594				/* If this register is implemented */
 595				if (base) {
 596					if (base & 0x01L) {
 597						/* IO base
 598						 * set base = amount of IO space
 599						 * requested
 600						 */
 601						base = base & 0xFFFFFFFE;
 602						base = (~base) + 1;
 603
 604						type = 1;
 605					} else {
 606						/* memory base */
 607						base = base & 0xFFFFFFF0;
 608						base = (~base) + 1;
 609
 610						type = 0;
 611					}
 612				} else {
 613					base = 0x0L;
 614					type = 0;
 615				}
 616
 617				/* Save information in slot structure */
 618				func->base_length[(cloop - 0x10) >> 2] =
 619				base;
 620				func->base_type[(cloop - 0x10) >> 2] = type;
 621
 622			}	/* End of base register loop */
 623
 624		} else if ((header_type & 0x7F) == 0x00) {
 625			/* Figure out IO and memory base lengths */
 626			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 627				temp_register = 0xFFFFFFFF;
 628				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 629				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
 630
 631				/* If this register is implemented */
 632				if (base) {
 633					if (base & 0x01L) {
 634						/* IO base
 635						 * base = amount of IO space
 636						 * requested
 637						 */
 638						base = base & 0xFFFFFFFE;
 639						base = (~base) + 1;
 640
 641						type = 1;
 642					} else {
 643						/* memory base
 644						 * base = amount of memory
 645						 * space requested
 646						 */
 647						base = base & 0xFFFFFFF0;
 648						base = (~base) + 1;
 649
 650						type = 0;
 651					}
 652				} else {
 653					base = 0x0L;
 654					type = 0;
 655				}
 656
 657				/* Save information in slot structure */
 658				func->base_length[(cloop - 0x10) >> 2] = base;
 659				func->base_type[(cloop - 0x10) >> 2] = type;
 660
 661			}	/* End of base register loop */
 662
 663		} else {	  /* Some other unknown header type */
 664		}
 665
 666		/* find the next device in this slot */
 667		func = cpqhp_slot_find(func->bus, func->device, index++);
 668	}
 669
 670	return(0);
 671}
 672
 673
 674/*
 675 * cpqhp_save_used_resources
 676 *
 677 * Stores used resource information for existing boards.  this is
 678 * for boards that were in the system when this driver was loaded.
 679 * this function is for hot plug ADD
 680 *
 681 * returns 0 if success
 682 */
 683int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
 684{
 685	u8 cloop;
 686	u8 header_type;
 687	u8 secondary_bus;
 688	u8 temp_byte;
 689	u8 b_base;
 690	u8 b_length;
 691	u16 command;
 692	u16 save_command;
 693	u16 w_base;
 694	u16 w_length;
 695	u32 temp_register;
 696	u32 save_base;
 697	u32 base;
 698	int index = 0;
 699	struct pci_resource *mem_node;
 700	struct pci_resource *p_mem_node;
 701	struct pci_resource *io_node;
 702	struct pci_resource *bus_node;
 703	struct pci_bus *pci_bus = ctrl->pci_bus;
 704	unsigned int devfn;
 705
 706	func = cpqhp_slot_find(func->bus, func->device, index++);
 707
 708	while ((func != NULL) && func->is_a_board) {
 709		pci_bus->number = func->bus;
 710		devfn = PCI_DEVFN(func->device, func->function);
 711
 712		/* Save the command register */
 713		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 714
 715		/* disable card */
 716		command = 0x00;
 717		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 718
 719		/* Check for Bridge */
 720		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 721
 722		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 723			/* Clear Bridge Control Register */
 724			command = 0x00;
 725			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 726			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 727			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 728
 729			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 730			if (!bus_node)
 731				return -ENOMEM;
 732
 733			bus_node->base = secondary_bus;
 734			bus_node->length = temp_byte - secondary_bus + 1;
 735
 736			bus_node->next = func->bus_head;
 737			func->bus_head = bus_node;
 738
 739			/* Save IO base and Limit registers */
 740			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 741			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 742
 743			if ((b_base <= b_length) && (save_command & 0x01)) {
 744				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 745				if (!io_node)
 746					return -ENOMEM;
 747
 748				io_node->base = (b_base & 0xF0) << 8;
 749				io_node->length = (b_length - b_base + 0x10) << 8;
 750
 751				io_node->next = func->io_head;
 752				func->io_head = io_node;
 753			}
 754
 755			/* Save memory base and Limit registers */
 756			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 757			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 758
 759			if ((w_base <= w_length) && (save_command & 0x02)) {
 760				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 761				if (!mem_node)
 762					return -ENOMEM;
 763
 764				mem_node->base = w_base << 16;
 765				mem_node->length = (w_length - w_base + 0x10) << 16;
 766
 767				mem_node->next = func->mem_head;
 768				func->mem_head = mem_node;
 769			}
 770
 771			/* Save prefetchable memory base and Limit registers */
 772			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 773			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 774
 775			if ((w_base <= w_length) && (save_command & 0x02)) {
 776				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 777				if (!p_mem_node)
 778					return -ENOMEM;
 779
 780				p_mem_node->base = w_base << 16;
 781				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 782
 783				p_mem_node->next = func->p_mem_head;
 784				func->p_mem_head = p_mem_node;
 785			}
 786			/* Figure out IO and memory base lengths */
 787			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 788				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
 789
 790				temp_register = 0xFFFFFFFF;
 791				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 792				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 793
 794				temp_register = base;
 795
 796				/* If this register is implemented */
 797				if (base) {
 798					if (((base & 0x03L) == 0x01)
 799					    && (save_command & 0x01)) {
 800						/* IO base
 801						 * set temp_register = amount
 802						 * of IO space requested
 803						 */
 804						temp_register = base & 0xFFFFFFFE;
 805						temp_register = (~temp_register) + 1;
 806
 807						io_node = kmalloc(sizeof(*io_node),
 808								GFP_KERNEL);
 809						if (!io_node)
 810							return -ENOMEM;
 811
 812						io_node->base =
 813						save_base & (~0x03L);
 814						io_node->length = temp_register;
 815
 816						io_node->next = func->io_head;
 817						func->io_head = io_node;
 818					} else
 819						if (((base & 0x0BL) == 0x08)
 820						    && (save_command & 0x02)) {
 821						/* prefetchable memory base */
 822						temp_register = base & 0xFFFFFFF0;
 823						temp_register = (~temp_register) + 1;
 824
 825						p_mem_node = kmalloc(sizeof(*p_mem_node),
 826								GFP_KERNEL);
 827						if (!p_mem_node)
 828							return -ENOMEM;
 829
 830						p_mem_node->base = save_base & (~0x0FL);
 831						p_mem_node->length = temp_register;
 832
 833						p_mem_node->next = func->p_mem_head;
 834						func->p_mem_head = p_mem_node;
 835					} else
 836						if (((base & 0x0BL) == 0x00)
 837						    && (save_command & 0x02)) {
 838						/* prefetchable memory base */
 839						temp_register = base & 0xFFFFFFF0;
 840						temp_register = (~temp_register) + 1;
 841
 842						mem_node = kmalloc(sizeof(*mem_node),
 843								GFP_KERNEL);
 844						if (!mem_node)
 845							return -ENOMEM;
 846
 847						mem_node->base = save_base & (~0x0FL);
 848						mem_node->length = temp_register;
 849
 850						mem_node->next = func->mem_head;
 851						func->mem_head = mem_node;
 852					} else
 853						return(1);
 854				}
 855			}	/* End of base register loop */
 856		/* Standard header */
 857		} else if ((header_type & 0x7F) == 0x00) {
 858			/* Figure out IO and memory base lengths */
 859			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 860				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 861
 862				temp_register = 0xFFFFFFFF;
 863				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 864				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 865
 866				temp_register = base;
 867
 868				/* If this register is implemented */
 869				if (base) {
 870					if (((base & 0x03L) == 0x01)
 871					    && (save_command & 0x01)) {
 872						/* IO base
 873						 * set temp_register = amount
 874						 * of IO space requested
 875						 */
 876						temp_register = base & 0xFFFFFFFE;
 877						temp_register = (~temp_register) + 1;
 878
 879						io_node = kmalloc(sizeof(*io_node),
 880								GFP_KERNEL);
 881						if (!io_node)
 882							return -ENOMEM;
 883
 884						io_node->base = save_base & (~0x01L);
 885						io_node->length = temp_register;
 886
 887						io_node->next = func->io_head;
 888						func->io_head = io_node;
 889					} else
 890						if (((base & 0x0BL) == 0x08)
 891						    && (save_command & 0x02)) {
 892						/* prefetchable memory base */
 893						temp_register = base & 0xFFFFFFF0;
 894						temp_register = (~temp_register) + 1;
 895
 896						p_mem_node = kmalloc(sizeof(*p_mem_node),
 897								GFP_KERNEL);
 898						if (!p_mem_node)
 899							return -ENOMEM;
 900
 901						p_mem_node->base = save_base & (~0x0FL);
 902						p_mem_node->length = temp_register;
 903
 904						p_mem_node->next = func->p_mem_head;
 905						func->p_mem_head = p_mem_node;
 906					} else
 907						if (((base & 0x0BL) == 0x00)
 908						    && (save_command & 0x02)) {
 909						/* prefetchable memory base */
 910						temp_register = base & 0xFFFFFFF0;
 911						temp_register = (~temp_register) + 1;
 912
 913						mem_node = kmalloc(sizeof(*mem_node),
 914								GFP_KERNEL);
 915						if (!mem_node)
 916							return -ENOMEM;
 917
 918						mem_node->base = save_base & (~0x0FL);
 919						mem_node->length = temp_register;
 920
 921						mem_node->next = func->mem_head;
 922						func->mem_head = mem_node;
 923					} else
 924						return(1);
 925				}
 926			}	/* End of base register loop */
 927		}
 928
 929		/* find the next device in this slot */
 930		func = cpqhp_slot_find(func->bus, func->device, index++);
 931	}
 932
 933	return 0;
 934}
 935
 936
 937/*
 938 * cpqhp_configure_board
 939 *
 940 * Copies saved configuration information to one slot.
 941 * this is called recursively for bridge devices.
 942 * this is for hot plug REPLACE!
 943 *
 944 * returns 0 if success
 945 */
 946int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
 947{
 948	int cloop;
 949	u8 header_type;
 950	u8 secondary_bus;
 951	int sub_bus;
 952	struct pci_func *next;
 953	u32 temp;
 954	u32 rc;
 955	int index = 0;
 956	struct pci_bus *pci_bus = ctrl->pci_bus;
 957	unsigned int devfn;
 958
 959	func = cpqhp_slot_find(func->bus, func->device, index++);
 960
 961	while (func != NULL) {
 962		pci_bus->number = func->bus;
 963		devfn = PCI_DEVFN(func->device, func->function);
 964
 965		/* Start at the top of config space so that the control
 966		 * registers are programmed last
 967		 */
 968		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 969			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 970
 971		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 972
 973		/* If this is a bridge device, restore subordinate devices */
 974		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 975			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 976
 977			sub_bus = (int) secondary_bus;
 978
 979			next = cpqhp_slot_list[sub_bus];
 980
 981			while (next != NULL) {
 982				rc = cpqhp_configure_board(ctrl, next);
 983				if (rc)
 984					return rc;
 985
 986				next = next->next;
 987			}
 988		} else {
 989
 990			/* Check all the base Address Registers to make sure
 991			 * they are the same.  If not, the board is different.
 992			 */
 993
 994			for (cloop = 16; cloop < 40; cloop += 4) {
 995				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
 996
 997				if (temp != func->config_space[cloop >> 2]) {
 998					dbg("Config space compare failure!!! offset = %x\n", cloop);
 999					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1000					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1001					return 1;
1002				}
1003			}
1004		}
1005
1006		func->configured = 1;
1007
1008		func = cpqhp_slot_find(func->bus, func->device, index++);
1009	}
1010
1011	return 0;
1012}
1013
1014
1015/*
1016 * cpqhp_valid_replace
1017 *
1018 * this function checks to see if a board is the same as the
1019 * one it is replacing.  this check will detect if the device's
1020 * vendor or device id's are the same
1021 *
1022 * returns 0 if the board is the same nonzero otherwise
1023 */
1024int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1025{
1026	u8 cloop;
1027	u8 header_type;
1028	u8 secondary_bus;
1029	u8 type;
1030	u32 temp_register = 0;
1031	u32 base;
1032	u32 rc;
1033	struct pci_func *next;
1034	int index = 0;
1035	struct pci_bus *pci_bus = ctrl->pci_bus;
1036	unsigned int devfn;
1037
1038	if (!func->is_a_board)
1039		return(ADD_NOT_SUPPORTED);
1040
1041	func = cpqhp_slot_find(func->bus, func->device, index++);
1042
1043	while (func != NULL) {
1044		pci_bus->number = func->bus;
1045		devfn = PCI_DEVFN(func->device, func->function);
1046
1047		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1048
1049		/* No adapter present */
1050		if (temp_register == 0xFFFFFFFF)
1051			return(NO_ADAPTER_PRESENT);
1052
1053		if (temp_register != func->config_space[0])
1054			return(ADAPTER_NOT_SAME);
1055
1056		/* Check for same revision number and class code */
1057		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1058
1059		/* Adapter not the same */
1060		if (temp_register != func->config_space[0x08 >> 2])
1061			return(ADAPTER_NOT_SAME);
1062
1063		/* Check for Bridge */
1064		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1065
1066		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1067			/* In order to continue checking, we must program the
1068			 * bus registers in the bridge to respond to accesses
1069			 * for its subordinate bus(es)
1070			 */
1071
1072			temp_register = func->config_space[0x18 >> 2];
1073			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1074
1075			secondary_bus = (temp_register >> 8) & 0xFF;
1076
1077			next = cpqhp_slot_list[secondary_bus];
1078
1079			while (next != NULL) {
1080				rc = cpqhp_valid_replace(ctrl, next);
1081				if (rc)
1082					return rc;
1083
1084				next = next->next;
1085			}
1086
1087		}
1088		/* Check to see if it is a standard config header */
1089		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1090			/* Check subsystem vendor and ID */
1091			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1092
1093			if (temp_register != func->config_space[0x2C >> 2]) {
1094				/* If it's a SMART-2 and the register isn't
1095				 * filled in, ignore the difference because
1096				 * they just have an old rev of the firmware
1097				 */
1098				if (!((func->config_space[0] == 0xAE100E11)
1099				      && (temp_register == 0x00L)))
1100					return(ADAPTER_NOT_SAME);
1101			}
1102			/* Figure out IO and memory base lengths */
1103			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1104				temp_register = 0xFFFFFFFF;
1105				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1106				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1107
1108				/* If this register is implemented */
1109				if (base) {
1110					if (base & 0x01L) {
1111						/* IO base
1112						 * set base = amount of IO
1113						 * space requested
1114						 */
1115						base = base & 0xFFFFFFFE;
1116						base = (~base) + 1;
1117
1118						type = 1;
1119					} else {
1120						/* memory base */
1121						base = base & 0xFFFFFFF0;
1122						base = (~base) + 1;
1123
1124						type = 0;
1125					}
1126				} else {
1127					base = 0x0L;
1128					type = 0;
1129				}
1130
1131				/* Check information in slot structure */
1132				if (func->base_length[(cloop - 0x10) >> 2] != base)
1133					return(ADAPTER_NOT_SAME);
1134
1135				if (func->base_type[(cloop - 0x10) >> 2] != type)
1136					return(ADAPTER_NOT_SAME);
1137
1138			}	/* End of base register loop */
1139
1140		}		/* End of (type 0 config space) else */
1141		else {
1142			/* this is not a type 0 or 1 config space header so
1143			 * we don't know how to do it
1144			 */
1145			return(DEVICE_TYPE_NOT_SUPPORTED);
1146		}
1147
1148		/* Get the next function */
1149		func = cpqhp_slot_find(func->bus, func->device, index++);
1150	}
1151
1152
1153	return 0;
1154}
1155
1156
1157/*
1158 * cpqhp_find_available_resources
1159 *
1160 * Finds available memory, IO, and IRQ resources for programming
1161 * devices which may be added to the system
1162 * this function is for hot plug ADD!
1163 *
1164 * returns 0 if success
1165 */
1166int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1167{
1168	u8 temp;
1169	u8 populated_slot;
1170	u8 bridged_slot;
1171	void __iomem *one_slot;
1172	void __iomem *rom_resource_table;
1173	struct pci_func *func = NULL;
1174	int i = 10, index;
1175	u32 temp_dword, rc;
1176	struct pci_resource *mem_node;
1177	struct pci_resource *p_mem_node;
1178	struct pci_resource *io_node;
1179	struct pci_resource *bus_node;
1180
1181	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1182	dbg("rom_resource_table = %p\n", rom_resource_table);
1183
1184	if (rom_resource_table == NULL)
1185		return -ENODEV;
1186
1187	/* Sum all resources and setup resource maps */
1188	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1189	dbg("unused_IRQ = %x\n", unused_IRQ);
1190
1191	temp = 0;
1192	while (unused_IRQ) {
1193		if (unused_IRQ & 1) {
1194			cpqhp_disk_irq = temp;
1195			break;
1196		}
1197		unused_IRQ = unused_IRQ >> 1;
1198		temp++;
1199	}
1200
1201	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1202	unused_IRQ = unused_IRQ >> 1;
1203	temp++;
1204
1205	while (unused_IRQ) {
1206		if (unused_IRQ & 1) {
1207			cpqhp_nic_irq = temp;
1208			break;
1209		}
1210		unused_IRQ = unused_IRQ >> 1;
1211		temp++;
1212	}
1213
1214	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1215	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1216
1217	temp = 0;
1218
1219	if (!cpqhp_nic_irq)
1220		cpqhp_nic_irq = ctrl->cfgspc_irq;
1221
1222	if (!cpqhp_disk_irq)
1223		cpqhp_disk_irq = ctrl->cfgspc_irq;
1224
1225	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1226
1227	rc = compaq_nvram_load(rom_start, ctrl);
1228	if (rc)
1229		return rc;
1230
1231	one_slot = rom_resource_table + sizeof (struct hrt);
1232
1233	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1234	dbg("number_of_entries = %d\n", i);
1235
1236	if (!readb(one_slot + SECONDARY_BUS))
1237		return 1;
1238
1239	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1240
1241	while (i && readb(one_slot + SECONDARY_BUS)) {
1242		u8 dev_func = readb(one_slot + DEV_FUNC);
1243		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1244		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1245		u8 max_bus = readb(one_slot + MAX_BUS);
1246		u16 io_base = readw(one_slot + IO_BASE);
1247		u16 io_length = readw(one_slot + IO_LENGTH);
1248		u16 mem_base = readw(one_slot + MEM_BASE);
1249		u16 mem_length = readw(one_slot + MEM_LENGTH);
1250		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1251		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1252
1253		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1254		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1255		    primary_bus, secondary_bus, max_bus);
1256
1257		/* If this entry isn't for our controller's bus, ignore it */
1258		if (primary_bus != ctrl->bus) {
1259			i--;
1260			one_slot += sizeof (struct slot_rt);
1261			continue;
1262		}
1263		/* find out if this entry is for an occupied slot */
1264		ctrl->pci_bus->number = primary_bus;
1265		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1266		dbg("temp_D_word = %x\n", temp_dword);
1267
1268		if (temp_dword != 0xFFFFFFFF) {
1269			index = 0;
1270			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1271
1272			while (func && (func->function != (dev_func & 0x07))) {
1273				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1274				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1275			}
1276
1277			/* If we can't find a match, skip this table entry */
1278			if (!func) {
1279				i--;
1280				one_slot += sizeof (struct slot_rt);
1281				continue;
1282			}
1283			/* this may not work and shouldn't be used */
1284			if (secondary_bus != primary_bus)
1285				bridged_slot = 1;
1286			else
1287				bridged_slot = 0;
1288
1289			populated_slot = 1;
1290		} else {
1291			populated_slot = 0;
1292			bridged_slot = 0;
1293		}
1294
1295
1296		/* If we've got a valid IO base, use it */
1297
1298		temp_dword = io_base + io_length;
1299
1300		if ((io_base) && (temp_dword < 0x10000)) {
1301			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1302			if (!io_node)
1303				return -ENOMEM;
1304
1305			io_node->base = io_base;
1306			io_node->length = io_length;
1307
1308			dbg("found io_node(base, length) = %x, %x\n",
1309					io_node->base, io_node->length);
1310			dbg("populated slot =%d \n", populated_slot);
1311			if (!populated_slot) {
1312				io_node->next = ctrl->io_head;
1313				ctrl->io_head = io_node;
1314			} else {
1315				io_node->next = func->io_head;
1316				func->io_head = io_node;
1317			}
1318		}
1319
1320		/* If we've got a valid memory base, use it */
1321		temp_dword = mem_base + mem_length;
1322		if ((mem_base) && (temp_dword < 0x10000)) {
1323			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1324			if (!mem_node)
1325				return -ENOMEM;
1326
1327			mem_node->base = mem_base << 16;
1328
1329			mem_node->length = mem_length << 16;
1330
1331			dbg("found mem_node(base, length) = %x, %x\n",
1332					mem_node->base, mem_node->length);
1333			dbg("populated slot =%d \n", populated_slot);
1334			if (!populated_slot) {
1335				mem_node->next = ctrl->mem_head;
1336				ctrl->mem_head = mem_node;
1337			} else {
1338				mem_node->next = func->mem_head;
1339				func->mem_head = mem_node;
1340			}
1341		}
1342
1343		/* If we've got a valid prefetchable memory base, and
1344		 * the base + length isn't greater than 0xFFFF
1345		 */
1346		temp_dword = pre_mem_base + pre_mem_length;
1347		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1348			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1349			if (!p_mem_node)
1350				return -ENOMEM;
1351
1352			p_mem_node->base = pre_mem_base << 16;
1353
1354			p_mem_node->length = pre_mem_length << 16;
1355			dbg("found p_mem_node(base, length) = %x, %x\n",
1356					p_mem_node->base, p_mem_node->length);
1357			dbg("populated slot =%d \n", populated_slot);
1358
1359			if (!populated_slot) {
1360				p_mem_node->next = ctrl->p_mem_head;
1361				ctrl->p_mem_head = p_mem_node;
1362			} else {
1363				p_mem_node->next = func->p_mem_head;
1364				func->p_mem_head = p_mem_node;
1365			}
1366		}
1367
1368		/* If we've got a valid bus number, use it
1369		 * The second condition is to ignore bus numbers on
1370		 * populated slots that don't have PCI-PCI bridges
1371		 */
1372		if (secondary_bus && (secondary_bus != primary_bus)) {
1373			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1374			if (!bus_node)
1375				return -ENOMEM;
1376
1377			bus_node->base = secondary_bus;
1378			bus_node->length = max_bus - secondary_bus + 1;
1379			dbg("found bus_node(base, length) = %x, %x\n",
1380					bus_node->base, bus_node->length);
1381			dbg("populated slot =%d \n", populated_slot);
1382			if (!populated_slot) {
1383				bus_node->next = ctrl->bus_head;
1384				ctrl->bus_head = bus_node;
1385			} else {
1386				bus_node->next = func->bus_head;
1387				func->bus_head = bus_node;
1388			}
1389		}
1390
1391		i--;
1392		one_slot += sizeof (struct slot_rt);
1393	}
1394
1395	/* If all of the following fail, we don't have any resources for
1396	 * hot plug add
1397	 */
1398	rc = 1;
1399	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1400	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1401	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1402	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1403
1404	return rc;
1405}
1406
1407
1408/*
1409 * cpqhp_return_board_resources
1410 *
1411 * this routine returns all resources allocated to a board to
1412 * the available pool.
1413 *
1414 * returns 0 if success
1415 */
1416int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1417{
1418	int rc = 0;
1419	struct pci_resource *node;
1420	struct pci_resource *t_node;
1421	dbg("%s\n", __func__);
1422
1423	if (!func)
1424		return 1;
1425
1426	node = func->io_head;
1427	func->io_head = NULL;
1428	while (node) {
1429		t_node = node->next;
1430		return_resource(&(resources->io_head), node);
1431		node = t_node;
1432	}
1433
1434	node = func->mem_head;
1435	func->mem_head = NULL;
1436	while (node) {
1437		t_node = node->next;
1438		return_resource(&(resources->mem_head), node);
1439		node = t_node;
1440	}
1441
1442	node = func->p_mem_head;
1443	func->p_mem_head = NULL;
1444	while (node) {
1445		t_node = node->next;
1446		return_resource(&(resources->p_mem_head), node);
1447		node = t_node;
1448	}
1449
1450	node = func->bus_head;
1451	func->bus_head = NULL;
1452	while (node) {
1453		t_node = node->next;
1454		return_resource(&(resources->bus_head), node);
1455		node = t_node;
1456	}
1457
1458	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1459	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1460	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1461	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1462
1463	return rc;
1464}
1465
1466
1467/*
1468 * cpqhp_destroy_resource_list
1469 *
1470 * Puts node back in the resource list pointed to by head
1471 */
1472void cpqhp_destroy_resource_list (struct resource_lists * resources)
1473{
1474	struct pci_resource *res, *tres;
1475
1476	res = resources->io_head;
1477	resources->io_head = NULL;
1478
1479	while (res) {
1480		tres = res;
1481		res = res->next;
1482		kfree(tres);
1483	}
1484
1485	res = resources->mem_head;
1486	resources->mem_head = NULL;
1487
1488	while (res) {
1489		tres = res;
1490		res = res->next;
1491		kfree(tres);
1492	}
1493
1494	res = resources->p_mem_head;
1495	resources->p_mem_head = NULL;
1496
1497	while (res) {
1498		tres = res;
1499		res = res->next;
1500		kfree(tres);
1501	}
1502
1503	res = resources->bus_head;
1504	resources->bus_head = NULL;
1505
1506	while (res) {
1507		tres = res;
1508		res = res->next;
1509		kfree(tres);
1510	}
1511}
1512
1513
1514/*
1515 * cpqhp_destroy_board_resources
1516 *
1517 * Puts node back in the resource list pointed to by head
1518 */
1519void cpqhp_destroy_board_resources (struct pci_func * func)
1520{
1521	struct pci_resource *res, *tres;
1522
1523	res = func->io_head;
1524	func->io_head = NULL;
1525
1526	while (res) {
1527		tres = res;
1528		res = res->next;
1529		kfree(tres);
1530	}
1531
1532	res = func->mem_head;
1533	func->mem_head = NULL;
1534
1535	while (res) {
1536		tres = res;
1537		res = res->next;
1538		kfree(tres);
1539	}
1540
1541	res = func->p_mem_head;
1542	func->p_mem_head = NULL;
1543
1544	while (res) {
1545		tres = res;
1546		res = res->next;
1547		kfree(tres);
1548	}
1549
1550	res = func->bus_head;
1551	func->bus_head = NULL;
1552
1553	while (res) {
1554		tres = res;
1555		res = res->next;
1556		kfree(tres);
1557	}
1558}
1559
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
  15#define pr_fmt(fmt) "cpqphp: " fmt
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/printk.h>
  20#include <linux/types.h>
  21#include <linux/slab.h>
  22#include <linux/workqueue.h>
  23#include <linux/proc_fs.h>
  24#include <linux/pci.h>
  25#include <linux/pci_hotplug.h>
  26#include "../pci.h"
  27#include "cpqphp.h"
  28#include "cpqphp_nvram.h"
  29
  30
  31u8 cpqhp_nic_irq;
  32u8 cpqhp_disk_irq;
  33
  34static u16 unused_IRQ;
  35
  36/*
  37 * detect_HRT_floating_pointer
  38 *
  39 * find the Hot Plug Resource Table in the specified region of memory.
  40 *
  41 */
  42static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  43{
  44	void __iomem *fp;
  45	void __iomem *endp;
  46	u8 temp1, temp2, temp3, temp4;
  47	int status = 0;
  48
  49	endp = (end - sizeof(struct hrt) + 1);
  50
  51	for (fp = begin; fp <= endp; fp += 16) {
  52		temp1 = readb(fp + SIG0);
  53		temp2 = readb(fp + SIG1);
  54		temp3 = readb(fp + SIG2);
  55		temp4 = readb(fp + SIG3);
  56		if (temp1 == '$' &&
  57		    temp2 == 'H' &&
  58		    temp3 == 'R' &&
  59		    temp4 == 'T') {
  60			status = 1;
  61			break;
  62		}
  63	}
  64
  65	if (!status)
  66		fp = NULL;
  67
  68	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  69	return fp;
  70}
  71
  72
  73int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
  74{
 
  75	struct pci_bus *child;
  76	int num;
  77
  78	pci_lock_rescan_remove();
  79
  80	if (func->pci_dev == NULL)
  81		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  82							PCI_DEVFN(func->device,
  83							func->function));
  84
  85	/* No pci device, we need to create it then */
  86	if (func->pci_dev == NULL) {
  87		dbg("INFO: pci_dev still null\n");
  88
  89		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  90		if (num)
  91			pci_bus_add_devices(ctrl->pci_dev->bus);
  92
  93		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  94							PCI_DEVFN(func->device,
  95							func->function));
  96		if (func->pci_dev == NULL) {
  97			dbg("ERROR: pci_dev still null\n");
  98			goto out;
  99		}
 100	}
 101
 102	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 103		pci_hp_add_bridge(func->pci_dev);
 104		child = func->pci_dev->subordinate;
 105		if (child)
 106			pci_bus_add_devices(child);
 107	}
 108
 109	pci_dev_put(func->pci_dev);
 110
 111 out:
 112	pci_unlock_rescan_remove();
 113	return 0;
 114}
 115
 116
 117int cpqhp_unconfigure_device(struct pci_func *func)
 118{
 119	int j;
 120
 121	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 122
 123	pci_lock_rescan_remove();
 124	for (j = 0; j < 8 ; j++) {
 125		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
 126							func->bus,
 127							PCI_DEVFN(func->device,
 128							j));
 129		if (temp) {
 130			pci_dev_put(temp);
 131			pci_stop_and_remove_bus_device(temp);
 132		}
 133	}
 134	pci_unlock_rescan_remove();
 135	return 0;
 136}
 137
 
 
 
 
 
 
 
 
 
 
 
 
 138/*
 139 * cpqhp_set_irq
 140 *
 141 * @bus_num: bus number of PCI device
 142 * @dev_num: device number of PCI device
 143 * @slot: pointer to u8 where slot number will be returned
 144 */
 145int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 146{
 147	int rc = 0;
 148
 149	if (cpqhp_legacy_mode) {
 150		struct pci_dev *fakedev;
 151		struct pci_bus *fakebus;
 152		u16 temp_word;
 153
 154		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 155		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 156		if (!fakedev || !fakebus) {
 157			kfree(fakedev);
 158			kfree(fakebus);
 159			return -ENOMEM;
 160		}
 161
 162		fakedev->devfn = dev_num << 3;
 163		fakedev->bus = fakebus;
 164		fakebus->number = bus_num;
 165		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 166		    __func__, dev_num, bus_num, int_pin, irq_num);
 167		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 168		kfree(fakedev);
 169		kfree(fakebus);
 170		dbg("%s: rc %d\n", __func__, rc);
 171		if (!rc)
 172			return !rc;
 173
 174		/* set the Edge Level Control Register (ELCR) */
 175		temp_word = inb(0x4d0);
 176		temp_word |= inb(0x4d1) << 8;
 177
 178		temp_word |= 0x01 << irq_num;
 179
 180		/* This should only be for x86 as it sets the Edge Level
 181		 * Control Register
 182		 */
 183		outb((u8)(temp_word & 0xFF), 0x4d0);
 184		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
 185		rc = 0;
 186	}
 187
 188	return rc;
 189}
 190
 191
 192static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
 193{
 194	u16 tdevice;
 195	u32 work;
 196	int ret = -1;
 197
 198	ctrl->pci_bus->number = bus_num;
 199
 200	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 201		/* Scan for access first */
 202		if (!pci_bus_read_dev_vendor_id(ctrl->pci_bus, tdevice, &work, 0))
 203			continue;
 204		ret = pci_bus_read_config_dword(ctrl->pci_bus, tdevice, PCI_CLASS_REVISION, &work);
 205		if (ret)
 206			continue;
 207		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 208		/* Yep we got one. Not a bridge ? */
 209		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 210			*dev_num = tdevice;
 211			dbg("found it !\n");
 212			return 0;
 213		} else {
 214			/*
 215			 * XXX: Code whose debug printout indicated
 216			 * recursion to buses underneath bridges might be
 217			 * necessary was removed because it never did
 218			 * any recursion.
 219			 */
 220			ret = 0;
 221			pr_warn("missing feature: bridge scan recursion not implemented\n");
 
 
 
 
 222		}
 223	}
 224
 225
 226	return ret;
 227}
 228
 229
 230static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 231{
 232	int loop, len;
 233	u32 work;
 234	u8 tbus, tdevice, tslot;
 235
 236	len = cpqhp_routing_table_length();
 237	for (loop = 0; loop < len; ++loop) {
 238		tbus = cpqhp_routing_table->slots[loop].bus;
 239		tdevice = cpqhp_routing_table->slots[loop].devfn;
 240		tslot = cpqhp_routing_table->slots[loop].slot;
 241
 242		if (tslot == slot) {
 243			*bus_num = tbus;
 244			*dev_num = tdevice;
 245			ctrl->pci_bus->number = tbus;
 246			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 247			if (!nobridge || PCI_POSSIBLE_ERROR(work))
 248				return 0;
 249
 250			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 251			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 252			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 253
 254			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 255				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 256				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 257				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 258					*bus_num = tbus;
 259					return 0;
 260				}
 261			} else
 262				return 0;
 263		}
 264	}
 265	return -1;
 266}
 267
 268
 269int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
 270{
 271	/* plain (bridges allowed) */
 272	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 273}
 274
 275
 276/* More PCI configuration routines; this time centered around hotplug
 277 * controller
 278 */
 279
 280
 281/*
 282 * cpqhp_save_config
 283 *
 284 * Reads configuration for all slots in a PCI bus and saves info.
 285 *
 286 * Note:  For non-hot plug buses, the slot # saved is the device #
 287 *
 288 * returns 0 if success
 289 */
 290int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 291{
 292	long rc;
 293	u8 class_code;
 294	u8 header_type;
 295	u32 ID;
 296	u8 secondary_bus;
 297	struct pci_func *new_slot;
 298	int sub_bus;
 299	int FirstSupported;
 300	int LastSupported;
 301	int max_functions;
 302	int function;
 303	u8 DevError;
 304	int device = 0;
 305	int cloop = 0;
 306	int stop_it;
 307	int index;
 308	u16 devfn;
 309
 310	/* Decide which slots are supported */
 311
 312	if (is_hot_plug) {
 313		/*
 314		 * is_hot_plug is the slot mask
 315		 */
 316		FirstSupported = is_hot_plug >> 4;
 317		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 318	} else {
 319		FirstSupported = 0;
 320		LastSupported = 0x1F;
 321	}
 322
 323	/* Save PCI configuration space for all devices in supported slots */
 324	ctrl->pci_bus->number = busnumber;
 325	for (device = FirstSupported; device <= LastSupported; device++) {
 326		ID = 0xFFFFFFFF;
 327		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 328
 329		if (ID == 0xFFFFFFFF) {
 330			if (is_hot_plug) {
 331				/* Setup slot structure with entry for empty
 332				 * slot
 333				 */
 334				new_slot = cpqhp_slot_create(busnumber);
 335				if (new_slot == NULL)
 336					return 1;
 337
 338				new_slot->bus = (u8) busnumber;
 339				new_slot->device = (u8) device;
 340				new_slot->function = 0;
 341				new_slot->is_a_board = 0;
 342				new_slot->presence_save = 0;
 343				new_slot->switch_save = 0;
 344			}
 345			continue;
 346		}
 347
 348		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 349		if (rc)
 350			return rc;
 351
 352		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 353		if (rc)
 354			return rc;
 355
 356		/* If multi-function device, set max_functions to 8 */
 357		if (header_type & PCI_HEADER_TYPE_MFD)
 358			max_functions = 8;
 359		else
 360			max_functions = 1;
 361
 362		function = 0;
 363
 364		do {
 365			DevError = 0;
 366			if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 367				/* Recurse the subordinate bus
 368				 * get the subordinate bus number
 369				 */
 370				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 371				if (rc) {
 372					return rc;
 373				} else {
 374					sub_bus = (int) secondary_bus;
 375
 376					/* Save secondary bus cfg spc
 377					 * with this recursive call.
 378					 */
 379					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 380					if (rc)
 381						return rc;
 382					ctrl->pci_bus->number = busnumber;
 383				}
 384			}
 385
 386			index = 0;
 387			new_slot = cpqhp_slot_find(busnumber, device, index++);
 388			while (new_slot &&
 389			       (new_slot->function != (u8) function))
 390				new_slot = cpqhp_slot_find(busnumber, device, index++);
 391
 392			if (!new_slot) {
 393				/* Setup slot structure. */
 394				new_slot = cpqhp_slot_create(busnumber);
 395				if (new_slot == NULL)
 396					return 1;
 397			}
 398
 399			new_slot->bus = (u8) busnumber;
 400			new_slot->device = (u8) device;
 401			new_slot->function = (u8) function;
 402			new_slot->is_a_board = 1;
 403			new_slot->switch_save = 0x10;
 404			/* In case of unsupported board */
 405			new_slot->status = DevError;
 406			devfn = (new_slot->device << 3) | new_slot->function;
 407			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
 408							new_slot->bus, devfn);
 409
 410			for (cloop = 0; cloop < 0x20; cloop++) {
 411				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 412				if (rc)
 413					return rc;
 414			}
 415
 416			pci_dev_put(new_slot->pci_dev);
 417
 418			function++;
 419
 420			stop_it = 0;
 421
 422			/* this loop skips to the next present function
 423			 * reading in Class Code and Header type.
 424			 */
 425			while ((function < max_functions) && (!stop_it)) {
 426				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 427				if (ID == 0xFFFFFFFF) {
 428					function++;
 429					continue;
 430				}
 431				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 432				if (rc)
 433					return rc;
 434
 435				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 436				if (rc)
 437					return rc;
 438
 439				stop_it++;
 440			}
 441
 442		} while (function < max_functions);
 443	}			/* End of FOR loop */
 444
 445	return 0;
 446}
 447
 448
 449/*
 450 * cpqhp_save_slot_config
 451 *
 452 * Saves configuration info for all PCI devices in a given slot
 453 * including subordinate buses.
 454 *
 455 * returns 0 if success
 456 */
 457int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
 458{
 459	long rc;
 460	u8 class_code;
 461	u8 header_type;
 462	u32 ID;
 463	u8 secondary_bus;
 464	int sub_bus;
 465	int max_functions;
 466	int function = 0;
 467	int cloop;
 468	int stop_it;
 469
 470	ID = 0xFFFFFFFF;
 471
 472	ctrl->pci_bus->number = new_slot->bus;
 473	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 474
 475	if (ID == 0xFFFFFFFF)
 476		return 2;
 477
 478	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 479	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 480
 481	if (header_type & PCI_HEADER_TYPE_MFD)
 482		max_functions = 8;
 483	else
 484		max_functions = 1;
 485
 486	while (function < max_functions) {
 487		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 488			/*  Recurse the subordinate bus */
 489			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 490
 491			sub_bus = (int) secondary_bus;
 492
 493			/* Save the config headers for the secondary
 494			 * bus.
 495			 */
 496			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 497			if (rc)
 498				return(rc);
 499			ctrl->pci_bus->number = new_slot->bus;
 500
 501		}
 502
 503		new_slot->status = 0;
 504
 505		for (cloop = 0; cloop < 0x20; cloop++)
 506			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 507
 508		function++;
 509
 510		stop_it = 0;
 511
 512		/* this loop skips to the next present function
 513		 * reading in the Class Code and the Header type.
 514		 */
 515		while ((function < max_functions) && (!stop_it)) {
 516			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 517
 518			if (ID == 0xFFFFFFFF)
 519				function++;
 520			else {
 521				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 522				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 523				stop_it++;
 524			}
 525		}
 526
 527	}
 528
 529	return 0;
 530}
 531
 532
 533/*
 534 * cpqhp_save_base_addr_length
 535 *
 536 * Saves the length of all base address registers for the
 537 * specified slot.  this is for hot plug REPLACE
 538 *
 539 * returns 0 if success
 540 */
 541int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
 542{
 543	u8 cloop;
 544	u8 header_type;
 545	u8 secondary_bus;
 546	u8 type;
 547	int sub_bus;
 548	u32 temp_register;
 549	u32 base;
 550	u32 rc;
 551	struct pci_func *next;
 552	int index = 0;
 553	struct pci_bus *pci_bus = ctrl->pci_bus;
 554	unsigned int devfn;
 555
 556	func = cpqhp_slot_find(func->bus, func->device, index++);
 557
 558	while (func != NULL) {
 559		pci_bus->number = func->bus;
 560		devfn = PCI_DEVFN(func->device, func->function);
 561
 562		/* Check for Bridge */
 563		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 564
 565		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 566			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 567
 568			sub_bus = (int) secondary_bus;
 569
 570			next = cpqhp_slot_list[sub_bus];
 571
 572			while (next != NULL) {
 573				rc = cpqhp_save_base_addr_length(ctrl, next);
 574				if (rc)
 575					return rc;
 576
 577				next = next->next;
 578			}
 579			pci_bus->number = func->bus;
 580
 581			/* FIXME: this loop is duplicated in the non-bridge
 582			 * case.  The two could be rolled together Figure out
 583			 * IO and memory base lengths
 584			 */
 585			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 586				temp_register = 0xFFFFFFFF;
 587				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 588				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 589				/* If this register is implemented */
 590				if (base) {
 591					if (base & 0x01L) {
 592						/* IO base
 593						 * set base = amount of IO space
 594						 * requested
 595						 */
 596						base = base & 0xFFFFFFFE;
 597						base = (~base) + 1;
 598
 599						type = 1;
 600					} else {
 601						/* memory base */
 602						base = base & 0xFFFFFFF0;
 603						base = (~base) + 1;
 604
 605						type = 0;
 606					}
 607				} else {
 608					base = 0x0L;
 609					type = 0;
 610				}
 611
 612				/* Save information in slot structure */
 613				func->base_length[(cloop - 0x10) >> 2] =
 614				base;
 615				func->base_type[(cloop - 0x10) >> 2] = type;
 616
 617			}	/* End of base register loop */
 618
 619		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 620			/* Figure out IO and memory base lengths */
 621			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 622				temp_register = 0xFFFFFFFF;
 623				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 624				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 625
 626				/* If this register is implemented */
 627				if (base) {
 628					if (base & 0x01L) {
 629						/* IO base
 630						 * base = amount of IO space
 631						 * requested
 632						 */
 633						base = base & 0xFFFFFFFE;
 634						base = (~base) + 1;
 635
 636						type = 1;
 637					} else {
 638						/* memory base
 639						 * base = amount of memory
 640						 * space requested
 641						 */
 642						base = base & 0xFFFFFFF0;
 643						base = (~base) + 1;
 644
 645						type = 0;
 646					}
 647				} else {
 648					base = 0x0L;
 649					type = 0;
 650				}
 651
 652				/* Save information in slot structure */
 653				func->base_length[(cloop - 0x10) >> 2] = base;
 654				func->base_type[(cloop - 0x10) >> 2] = type;
 655
 656			}	/* End of base register loop */
 657
 658		} else {	  /* Some other unknown header type */
 659		}
 660
 661		/* find the next device in this slot */
 662		func = cpqhp_slot_find(func->bus, func->device, index++);
 663	}
 664
 665	return(0);
 666}
 667
 668
 669/*
 670 * cpqhp_save_used_resources
 671 *
 672 * Stores used resource information for existing boards.  this is
 673 * for boards that were in the system when this driver was loaded.
 674 * this function is for hot plug ADD
 675 *
 676 * returns 0 if success
 677 */
 678int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
 679{
 680	u8 cloop;
 681	u8 header_type;
 682	u8 secondary_bus;
 683	u8 temp_byte;
 684	u8 b_base;
 685	u8 b_length;
 686	u16 command;
 687	u16 save_command;
 688	u16 w_base;
 689	u16 w_length;
 690	u32 temp_register;
 691	u32 save_base;
 692	u32 base;
 693	int index = 0;
 694	struct pci_resource *mem_node;
 695	struct pci_resource *p_mem_node;
 696	struct pci_resource *io_node;
 697	struct pci_resource *bus_node;
 698	struct pci_bus *pci_bus = ctrl->pci_bus;
 699	unsigned int devfn;
 700
 701	func = cpqhp_slot_find(func->bus, func->device, index++);
 702
 703	while ((func != NULL) && func->is_a_board) {
 704		pci_bus->number = func->bus;
 705		devfn = PCI_DEVFN(func->device, func->function);
 706
 707		/* Save the command register */
 708		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 709
 710		/* disable card */
 711		command = 0x00;
 712		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 713
 714		/* Check for Bridge */
 715		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 716
 717		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 718			/* Clear Bridge Control Register */
 719			command = 0x00;
 720			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 721			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 722			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 723
 724			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 725			if (!bus_node)
 726				return -ENOMEM;
 727
 728			bus_node->base = secondary_bus;
 729			bus_node->length = temp_byte - secondary_bus + 1;
 730
 731			bus_node->next = func->bus_head;
 732			func->bus_head = bus_node;
 733
 734			/* Save IO base and Limit registers */
 735			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 736			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 737
 738			if ((b_base <= b_length) && (save_command & 0x01)) {
 739				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 740				if (!io_node)
 741					return -ENOMEM;
 742
 743				io_node->base = (b_base & 0xF0) << 8;
 744				io_node->length = (b_length - b_base + 0x10) << 8;
 745
 746				io_node->next = func->io_head;
 747				func->io_head = io_node;
 748			}
 749
 750			/* Save memory base and Limit registers */
 751			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 752			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 753
 754			if ((w_base <= w_length) && (save_command & 0x02)) {
 755				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 756				if (!mem_node)
 757					return -ENOMEM;
 758
 759				mem_node->base = w_base << 16;
 760				mem_node->length = (w_length - w_base + 0x10) << 16;
 761
 762				mem_node->next = func->mem_head;
 763				func->mem_head = mem_node;
 764			}
 765
 766			/* Save prefetchable memory base and Limit registers */
 767			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 768			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 769
 770			if ((w_base <= w_length) && (save_command & 0x02)) {
 771				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 772				if (!p_mem_node)
 773					return -ENOMEM;
 774
 775				p_mem_node->base = w_base << 16;
 776				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 777
 778				p_mem_node->next = func->p_mem_head;
 779				func->p_mem_head = p_mem_node;
 780			}
 781			/* Figure out IO and memory base lengths */
 782			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 783				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 784
 785				temp_register = 0xFFFFFFFF;
 786				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 787				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 788
 789				temp_register = base;
 790
 791				/* If this register is implemented */
 792				if (base) {
 793					if (((base & 0x03L) == 0x01)
 794					    && (save_command & 0x01)) {
 795						/* IO base
 796						 * set temp_register = amount
 797						 * of IO space requested
 798						 */
 799						temp_register = base & 0xFFFFFFFE;
 800						temp_register = (~temp_register) + 1;
 801
 802						io_node = kmalloc(sizeof(*io_node),
 803								GFP_KERNEL);
 804						if (!io_node)
 805							return -ENOMEM;
 806
 807						io_node->base =
 808						save_base & (~0x03L);
 809						io_node->length = temp_register;
 810
 811						io_node->next = func->io_head;
 812						func->io_head = io_node;
 813					} else
 814						if (((base & 0x0BL) == 0x08)
 815						    && (save_command & 0x02)) {
 816						/* prefetchable memory base */
 817						temp_register = base & 0xFFFFFFF0;
 818						temp_register = (~temp_register) + 1;
 819
 820						p_mem_node = kmalloc(sizeof(*p_mem_node),
 821								GFP_KERNEL);
 822						if (!p_mem_node)
 823							return -ENOMEM;
 824
 825						p_mem_node->base = save_base & (~0x0FL);
 826						p_mem_node->length = temp_register;
 827
 828						p_mem_node->next = func->p_mem_head;
 829						func->p_mem_head = p_mem_node;
 830					} else
 831						if (((base & 0x0BL) == 0x00)
 832						    && (save_command & 0x02)) {
 833						/* prefetchable memory base */
 834						temp_register = base & 0xFFFFFFF0;
 835						temp_register = (~temp_register) + 1;
 836
 837						mem_node = kmalloc(sizeof(*mem_node),
 838								GFP_KERNEL);
 839						if (!mem_node)
 840							return -ENOMEM;
 841
 842						mem_node->base = save_base & (~0x0FL);
 843						mem_node->length = temp_register;
 844
 845						mem_node->next = func->mem_head;
 846						func->mem_head = mem_node;
 847					} else
 848						return(1);
 849				}
 850			}	/* End of base register loop */
 851		/* Standard header */
 852		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 853			/* Figure out IO and memory base lengths */
 854			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 855				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 856
 857				temp_register = 0xFFFFFFFF;
 858				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 859				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 860
 861				temp_register = base;
 862
 863				/* If this register is implemented */
 864				if (base) {
 865					if (((base & 0x03L) == 0x01)
 866					    && (save_command & 0x01)) {
 867						/* IO base
 868						 * set temp_register = amount
 869						 * of IO space requested
 870						 */
 871						temp_register = base & 0xFFFFFFFE;
 872						temp_register = (~temp_register) + 1;
 873
 874						io_node = kmalloc(sizeof(*io_node),
 875								GFP_KERNEL);
 876						if (!io_node)
 877							return -ENOMEM;
 878
 879						io_node->base = save_base & (~0x01L);
 880						io_node->length = temp_register;
 881
 882						io_node->next = func->io_head;
 883						func->io_head = io_node;
 884					} else
 885						if (((base & 0x0BL) == 0x08)
 886						    && (save_command & 0x02)) {
 887						/* prefetchable memory base */
 888						temp_register = base & 0xFFFFFFF0;
 889						temp_register = (~temp_register) + 1;
 890
 891						p_mem_node = kmalloc(sizeof(*p_mem_node),
 892								GFP_KERNEL);
 893						if (!p_mem_node)
 894							return -ENOMEM;
 895
 896						p_mem_node->base = save_base & (~0x0FL);
 897						p_mem_node->length = temp_register;
 898
 899						p_mem_node->next = func->p_mem_head;
 900						func->p_mem_head = p_mem_node;
 901					} else
 902						if (((base & 0x0BL) == 0x00)
 903						    && (save_command & 0x02)) {
 904						/* prefetchable memory base */
 905						temp_register = base & 0xFFFFFFF0;
 906						temp_register = (~temp_register) + 1;
 907
 908						mem_node = kmalloc(sizeof(*mem_node),
 909								GFP_KERNEL);
 910						if (!mem_node)
 911							return -ENOMEM;
 912
 913						mem_node->base = save_base & (~0x0FL);
 914						mem_node->length = temp_register;
 915
 916						mem_node->next = func->mem_head;
 917						func->mem_head = mem_node;
 918					} else
 919						return(1);
 920				}
 921			}	/* End of base register loop */
 922		}
 923
 924		/* find the next device in this slot */
 925		func = cpqhp_slot_find(func->bus, func->device, index++);
 926	}
 927
 928	return 0;
 929}
 930
 931
 932/*
 933 * cpqhp_configure_board
 934 *
 935 * Copies saved configuration information to one slot.
 936 * this is called recursively for bridge devices.
 937 * this is for hot plug REPLACE!
 938 *
 939 * returns 0 if success
 940 */
 941int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
 942{
 943	int cloop;
 944	u8 header_type;
 945	u8 secondary_bus;
 946	int sub_bus;
 947	struct pci_func *next;
 948	u32 temp;
 949	u32 rc;
 950	int index = 0;
 951	struct pci_bus *pci_bus = ctrl->pci_bus;
 952	unsigned int devfn;
 953
 954	func = cpqhp_slot_find(func->bus, func->device, index++);
 955
 956	while (func != NULL) {
 957		pci_bus->number = func->bus;
 958		devfn = PCI_DEVFN(func->device, func->function);
 959
 960		/* Start at the top of config space so that the control
 961		 * registers are programmed last
 962		 */
 963		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 964			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 965
 966		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 967
 968		/* If this is a bridge device, restore subordinate devices */
 969		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 970			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 971
 972			sub_bus = (int) secondary_bus;
 973
 974			next = cpqhp_slot_list[sub_bus];
 975
 976			while (next != NULL) {
 977				rc = cpqhp_configure_board(ctrl, next);
 978				if (rc)
 979					return rc;
 980
 981				next = next->next;
 982			}
 983		} else {
 984
 985			/* Check all the base Address Registers to make sure
 986			 * they are the same.  If not, the board is different.
 987			 */
 988
 989			for (cloop = 16; cloop < 40; cloop += 4) {
 990				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
 991
 992				if (temp != func->config_space[cloop >> 2]) {
 993					dbg("Config space compare failure!!! offset = %x\n", cloop);
 994					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
 995					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
 996					return 1;
 997				}
 998			}
 999		}
1000
1001		func->configured = 1;
1002
1003		func = cpqhp_slot_find(func->bus, func->device, index++);
1004	}
1005
1006	return 0;
1007}
1008
1009
1010/*
1011 * cpqhp_valid_replace
1012 *
1013 * this function checks to see if a board is the same as the
1014 * one it is replacing.  this check will detect if the device's
1015 * vendor or device id's are the same
1016 *
1017 * returns 0 if the board is the same nonzero otherwise
1018 */
1019int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1020{
1021	u8 cloop;
1022	u8 header_type;
1023	u8 secondary_bus;
1024	u8 type;
1025	u32 temp_register = 0;
1026	u32 base;
1027	u32 rc;
1028	struct pci_func *next;
1029	int index = 0;
1030	struct pci_bus *pci_bus = ctrl->pci_bus;
1031	unsigned int devfn;
1032
1033	if (!func->is_a_board)
1034		return(ADD_NOT_SUPPORTED);
1035
1036	func = cpqhp_slot_find(func->bus, func->device, index++);
1037
1038	while (func != NULL) {
1039		pci_bus->number = func->bus;
1040		devfn = PCI_DEVFN(func->device, func->function);
1041
1042		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1043
1044		/* No adapter present */
1045		if (temp_register == 0xFFFFFFFF)
1046			return(NO_ADAPTER_PRESENT);
1047
1048		if (temp_register != func->config_space[0])
1049			return(ADAPTER_NOT_SAME);
1050
1051		/* Check for same revision number and class code */
1052		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1053
1054		/* Adapter not the same */
1055		if (temp_register != func->config_space[0x08 >> 2])
1056			return(ADAPTER_NOT_SAME);
1057
1058		/* Check for Bridge */
1059		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1060
1061		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1062			/* In order to continue checking, we must program the
1063			 * bus registers in the bridge to respond to accesses
1064			 * for its subordinate bus(es)
1065			 */
1066
1067			temp_register = func->config_space[0x18 >> 2];
1068			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1069
1070			secondary_bus = (temp_register >> 8) & 0xFF;
1071
1072			next = cpqhp_slot_list[secondary_bus];
1073
1074			while (next != NULL) {
1075				rc = cpqhp_valid_replace(ctrl, next);
1076				if (rc)
1077					return rc;
1078
1079				next = next->next;
1080			}
1081
1082		}
1083		/* Check to see if it is a standard config header */
1084		else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1085			/* Check subsystem vendor and ID */
1086			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1087
1088			if (temp_register != func->config_space[0x2C >> 2]) {
1089				/* If it's a SMART-2 and the register isn't
1090				 * filled in, ignore the difference because
1091				 * they just have an old rev of the firmware
1092				 */
1093				if (!((func->config_space[0] == 0xAE100E11)
1094				      && (temp_register == 0x00L)))
1095					return(ADAPTER_NOT_SAME);
1096			}
1097			/* Figure out IO and memory base lengths */
1098			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1099				temp_register = 0xFFFFFFFF;
1100				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1101				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1102
1103				/* If this register is implemented */
1104				if (base) {
1105					if (base & 0x01L) {
1106						/* IO base
1107						 * set base = amount of IO
1108						 * space requested
1109						 */
1110						base = base & 0xFFFFFFFE;
1111						base = (~base) + 1;
1112
1113						type = 1;
1114					} else {
1115						/* memory base */
1116						base = base & 0xFFFFFFF0;
1117						base = (~base) + 1;
1118
1119						type = 0;
1120					}
1121				} else {
1122					base = 0x0L;
1123					type = 0;
1124				}
1125
1126				/* Check information in slot structure */
1127				if (func->base_length[(cloop - 0x10) >> 2] != base)
1128					return(ADAPTER_NOT_SAME);
1129
1130				if (func->base_type[(cloop - 0x10) >> 2] != type)
1131					return(ADAPTER_NOT_SAME);
1132
1133			}	/* End of base register loop */
1134
1135		}		/* End of (type 0 config space) else */
1136		else {
1137			/* this is not a type 0 or 1 config space header so
1138			 * we don't know how to do it
1139			 */
1140			return(DEVICE_TYPE_NOT_SUPPORTED);
1141		}
1142
1143		/* Get the next function */
1144		func = cpqhp_slot_find(func->bus, func->device, index++);
1145	}
1146
1147
1148	return 0;
1149}
1150
1151
1152/*
1153 * cpqhp_find_available_resources
1154 *
1155 * Finds available memory, IO, and IRQ resources for programming
1156 * devices which may be added to the system
1157 * this function is for hot plug ADD!
1158 *
1159 * returns 0 if success
1160 */
1161int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1162{
1163	u8 temp;
1164	u8 populated_slot;
1165	u8 bridged_slot;
1166	void __iomem *one_slot;
1167	void __iomem *rom_resource_table;
1168	struct pci_func *func = NULL;
1169	int i = 10, index;
1170	u32 temp_dword, rc;
1171	struct pci_resource *mem_node;
1172	struct pci_resource *p_mem_node;
1173	struct pci_resource *io_node;
1174	struct pci_resource *bus_node;
1175
1176	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1177	dbg("rom_resource_table = %p\n", rom_resource_table);
1178
1179	if (rom_resource_table == NULL)
1180		return -ENODEV;
1181
1182	/* Sum all resources and setup resource maps */
1183	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1184	dbg("unused_IRQ = %x\n", unused_IRQ);
1185
1186	temp = 0;
1187	while (unused_IRQ) {
1188		if (unused_IRQ & 1) {
1189			cpqhp_disk_irq = temp;
1190			break;
1191		}
1192		unused_IRQ = unused_IRQ >> 1;
1193		temp++;
1194	}
1195
1196	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1197	unused_IRQ = unused_IRQ >> 1;
1198	temp++;
1199
1200	while (unused_IRQ) {
1201		if (unused_IRQ & 1) {
1202			cpqhp_nic_irq = temp;
1203			break;
1204		}
1205		unused_IRQ = unused_IRQ >> 1;
1206		temp++;
1207	}
1208
1209	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1210	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1211
1212	temp = 0;
1213
1214	if (!cpqhp_nic_irq)
1215		cpqhp_nic_irq = ctrl->cfgspc_irq;
1216
1217	if (!cpqhp_disk_irq)
1218		cpqhp_disk_irq = ctrl->cfgspc_irq;
1219
1220	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1221
1222	rc = compaq_nvram_load(rom_start, ctrl);
1223	if (rc)
1224		return rc;
1225
1226	one_slot = rom_resource_table + sizeof(struct hrt);
1227
1228	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1229	dbg("number_of_entries = %d\n", i);
1230
1231	if (!readb(one_slot + SECONDARY_BUS))
1232		return 1;
1233
1234	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1235
1236	while (i && readb(one_slot + SECONDARY_BUS)) {
1237		u8 dev_func = readb(one_slot + DEV_FUNC);
1238		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1239		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1240		u8 max_bus = readb(one_slot + MAX_BUS);
1241		u16 io_base = readw(one_slot + IO_BASE);
1242		u16 io_length = readw(one_slot + IO_LENGTH);
1243		u16 mem_base = readw(one_slot + MEM_BASE);
1244		u16 mem_length = readw(one_slot + MEM_LENGTH);
1245		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1246		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1247
1248		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1249		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1250		    primary_bus, secondary_bus, max_bus);
1251
1252		/* If this entry isn't for our controller's bus, ignore it */
1253		if (primary_bus != ctrl->bus) {
1254			i--;
1255			one_slot += sizeof(struct slot_rt);
1256			continue;
1257		}
1258		/* find out if this entry is for an occupied slot */
1259		ctrl->pci_bus->number = primary_bus;
1260		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1261		dbg("temp_D_word = %x\n", temp_dword);
1262
1263		if (temp_dword != 0xFFFFFFFF) {
1264			index = 0;
1265			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1266
1267			while (func && (func->function != (dev_func & 0x07))) {
1268				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1269				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1270			}
1271
1272			/* If we can't find a match, skip this table entry */
1273			if (!func) {
1274				i--;
1275				one_slot += sizeof(struct slot_rt);
1276				continue;
1277			}
1278			/* this may not work and shouldn't be used */
1279			if (secondary_bus != primary_bus)
1280				bridged_slot = 1;
1281			else
1282				bridged_slot = 0;
1283
1284			populated_slot = 1;
1285		} else {
1286			populated_slot = 0;
1287			bridged_slot = 0;
1288		}
1289
1290
1291		/* If we've got a valid IO base, use it */
1292
1293		temp_dword = io_base + io_length;
1294
1295		if ((io_base) && (temp_dword < 0x10000)) {
1296			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1297			if (!io_node)
1298				return -ENOMEM;
1299
1300			io_node->base = io_base;
1301			io_node->length = io_length;
1302
1303			dbg("found io_node(base, length) = %x, %x\n",
1304					io_node->base, io_node->length);
1305			dbg("populated slot =%d \n", populated_slot);
1306			if (!populated_slot) {
1307				io_node->next = ctrl->io_head;
1308				ctrl->io_head = io_node;
1309			} else {
1310				io_node->next = func->io_head;
1311				func->io_head = io_node;
1312			}
1313		}
1314
1315		/* If we've got a valid memory base, use it */
1316		temp_dword = mem_base + mem_length;
1317		if ((mem_base) && (temp_dword < 0x10000)) {
1318			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1319			if (!mem_node)
1320				return -ENOMEM;
1321
1322			mem_node->base = mem_base << 16;
1323
1324			mem_node->length = mem_length << 16;
1325
1326			dbg("found mem_node(base, length) = %x, %x\n",
1327					mem_node->base, mem_node->length);
1328			dbg("populated slot =%d \n", populated_slot);
1329			if (!populated_slot) {
1330				mem_node->next = ctrl->mem_head;
1331				ctrl->mem_head = mem_node;
1332			} else {
1333				mem_node->next = func->mem_head;
1334				func->mem_head = mem_node;
1335			}
1336		}
1337
1338		/* If we've got a valid prefetchable memory base, and
1339		 * the base + length isn't greater than 0xFFFF
1340		 */
1341		temp_dword = pre_mem_base + pre_mem_length;
1342		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1343			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1344			if (!p_mem_node)
1345				return -ENOMEM;
1346
1347			p_mem_node->base = pre_mem_base << 16;
1348
1349			p_mem_node->length = pre_mem_length << 16;
1350			dbg("found p_mem_node(base, length) = %x, %x\n",
1351					p_mem_node->base, p_mem_node->length);
1352			dbg("populated slot =%d \n", populated_slot);
1353
1354			if (!populated_slot) {
1355				p_mem_node->next = ctrl->p_mem_head;
1356				ctrl->p_mem_head = p_mem_node;
1357			} else {
1358				p_mem_node->next = func->p_mem_head;
1359				func->p_mem_head = p_mem_node;
1360			}
1361		}
1362
1363		/* If we've got a valid bus number, use it
1364		 * The second condition is to ignore bus numbers on
1365		 * populated slots that don't have PCI-PCI bridges
1366		 */
1367		if (secondary_bus && (secondary_bus != primary_bus)) {
1368			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1369			if (!bus_node)
1370				return -ENOMEM;
1371
1372			bus_node->base = secondary_bus;
1373			bus_node->length = max_bus - secondary_bus + 1;
1374			dbg("found bus_node(base, length) = %x, %x\n",
1375					bus_node->base, bus_node->length);
1376			dbg("populated slot =%d \n", populated_slot);
1377			if (!populated_slot) {
1378				bus_node->next = ctrl->bus_head;
1379				ctrl->bus_head = bus_node;
1380			} else {
1381				bus_node->next = func->bus_head;
1382				func->bus_head = bus_node;
1383			}
1384		}
1385
1386		i--;
1387		one_slot += sizeof(struct slot_rt);
1388	}
1389
1390	/* If all of the following fail, we don't have any resources for
1391	 * hot plug add
1392	 */
1393	rc = 1;
1394	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1395	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1396	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1397	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1398
1399	return rc;
1400}
1401
1402
1403/*
1404 * cpqhp_return_board_resources
1405 *
1406 * this routine returns all resources allocated to a board to
1407 * the available pool.
1408 *
1409 * returns 0 if success
1410 */
1411int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1412{
1413	int rc = 0;
1414	struct pci_resource *node;
1415	struct pci_resource *t_node;
1416	dbg("%s\n", __func__);
1417
1418	if (!func)
1419		return 1;
1420
1421	node = func->io_head;
1422	func->io_head = NULL;
1423	while (node) {
1424		t_node = node->next;
1425		return_resource(&(resources->io_head), node);
1426		node = t_node;
1427	}
1428
1429	node = func->mem_head;
1430	func->mem_head = NULL;
1431	while (node) {
1432		t_node = node->next;
1433		return_resource(&(resources->mem_head), node);
1434		node = t_node;
1435	}
1436
1437	node = func->p_mem_head;
1438	func->p_mem_head = NULL;
1439	while (node) {
1440		t_node = node->next;
1441		return_resource(&(resources->p_mem_head), node);
1442		node = t_node;
1443	}
1444
1445	node = func->bus_head;
1446	func->bus_head = NULL;
1447	while (node) {
1448		t_node = node->next;
1449		return_resource(&(resources->bus_head), node);
1450		node = t_node;
1451	}
1452
1453	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1454	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1455	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1456	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1457
1458	return rc;
1459}
1460
1461
1462/*
1463 * cpqhp_destroy_resource_list
1464 *
1465 * Puts node back in the resource list pointed to by head
1466 */
1467void cpqhp_destroy_resource_list(struct resource_lists *resources)
1468{
1469	struct pci_resource *res, *tres;
1470
1471	res = resources->io_head;
1472	resources->io_head = NULL;
1473
1474	while (res) {
1475		tres = res;
1476		res = res->next;
1477		kfree(tres);
1478	}
1479
1480	res = resources->mem_head;
1481	resources->mem_head = NULL;
1482
1483	while (res) {
1484		tres = res;
1485		res = res->next;
1486		kfree(tres);
1487	}
1488
1489	res = resources->p_mem_head;
1490	resources->p_mem_head = NULL;
1491
1492	while (res) {
1493		tres = res;
1494		res = res->next;
1495		kfree(tres);
1496	}
1497
1498	res = resources->bus_head;
1499	resources->bus_head = NULL;
1500
1501	while (res) {
1502		tres = res;
1503		res = res->next;
1504		kfree(tres);
1505	}
1506}
1507
1508
1509/*
1510 * cpqhp_destroy_board_resources
1511 *
1512 * Puts node back in the resource list pointed to by head
1513 */
1514void cpqhp_destroy_board_resources(struct pci_func *func)
1515{
1516	struct pci_resource *res, *tres;
1517
1518	res = func->io_head;
1519	func->io_head = NULL;
1520
1521	while (res) {
1522		tres = res;
1523		res = res->next;
1524		kfree(tres);
1525	}
1526
1527	res = func->mem_head;
1528	func->mem_head = NULL;
1529
1530	while (res) {
1531		tres = res;
1532		res = res->next;
1533		kfree(tres);
1534	}
1535
1536	res = func->p_mem_head;
1537	func->p_mem_head = NULL;
1538
1539	while (res) {
1540		tres = res;
1541		res = res->next;
1542		kfree(tres);
1543	}
1544
1545	res = func->bus_head;
1546	func->bus_head = NULL;
1547
1548	while (res) {
1549		tres = res;
1550		res = res->next;
1551		kfree(tres);
1552	}
1553}