Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Instruction/Exception emulation
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/ktime.h>
  15#include <linux/kvm_host.h>
  16#include <linux/vmalloc.h>
  17#include <linux/fs.h>
  18#include <linux/memblock.h>
  19#include <linux/random.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/cacheops.h>
  23#include <asm/cpu-info.h>
  24#include <asm/mmu_context.h>
  25#include <asm/tlbflush.h>
  26#include <asm/inst.h>
  27
  28#undef CONFIG_MIPS_MT
  29#include <asm/r4kcache.h>
  30#define CONFIG_MIPS_MT
  31
  32#include "interrupt.h"
  33
  34#include "trace.h"
  35
  36/*
  37 * Compute the return address and do emulate branch simulation, if required.
  38 * This function should be called only in branch delay slot active.
  39 */
  40static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
  41				  unsigned long *out)
  42{
  43	unsigned int dspcontrol;
  44	union mips_instruction insn;
  45	struct kvm_vcpu_arch *arch = &vcpu->arch;
  46	long epc = instpc;
  47	long nextpc;
  48	int err;
  49
  50	if (epc & 3) {
  51		kvm_err("%s: unaligned epc\n", __func__);
  52		return -EINVAL;
  53	}
  54
  55	/* Read the instruction */
  56	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
  57	if (err)
  58		return err;
  59
  60	switch (insn.i_format.opcode) {
  61		/* jr and jalr are in r_format format. */
  62	case spec_op:
  63		switch (insn.r_format.func) {
  64		case jalr_op:
  65			arch->gprs[insn.r_format.rd] = epc + 8;
  66			fallthrough;
  67		case jr_op:
  68			nextpc = arch->gprs[insn.r_format.rs];
  69			break;
  70		default:
  71			return -EINVAL;
  72		}
  73		break;
  74
  75		/*
  76		 * This group contains:
  77		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
  78		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
  79		 */
  80	case bcond_op:
  81		switch (insn.i_format.rt) {
  82		case bltz_op:
  83		case bltzl_op:
  84			if ((long)arch->gprs[insn.i_format.rs] < 0)
  85				epc = epc + 4 + (insn.i_format.simmediate << 2);
  86			else
  87				epc += 8;
  88			nextpc = epc;
  89			break;
  90
  91		case bgez_op:
  92		case bgezl_op:
  93			if ((long)arch->gprs[insn.i_format.rs] >= 0)
  94				epc = epc + 4 + (insn.i_format.simmediate << 2);
  95			else
  96				epc += 8;
  97			nextpc = epc;
  98			break;
  99
 100		case bltzal_op:
 101		case bltzall_op:
 102			arch->gprs[31] = epc + 8;
 103			if ((long)arch->gprs[insn.i_format.rs] < 0)
 104				epc = epc + 4 + (insn.i_format.simmediate << 2);
 105			else
 106				epc += 8;
 107			nextpc = epc;
 108			break;
 109
 110		case bgezal_op:
 111		case bgezall_op:
 112			arch->gprs[31] = epc + 8;
 113			if ((long)arch->gprs[insn.i_format.rs] >= 0)
 114				epc = epc + 4 + (insn.i_format.simmediate << 2);
 115			else
 116				epc += 8;
 117			nextpc = epc;
 118			break;
 119		case bposge32_op:
 120			if (!cpu_has_dsp) {
 121				kvm_err("%s: DSP branch but not DSP ASE\n",
 122					__func__);
 123				return -EINVAL;
 124			}
 125
 126			dspcontrol = rddsp(0x01);
 127
 128			if (dspcontrol >= 32)
 129				epc = epc + 4 + (insn.i_format.simmediate << 2);
 130			else
 131				epc += 8;
 132			nextpc = epc;
 133			break;
 134		default:
 135			return -EINVAL;
 136		}
 137		break;
 138
 139		/* These are unconditional and in j_format. */
 140	case jal_op:
 141		arch->gprs[31] = instpc + 8;
 142		fallthrough;
 143	case j_op:
 144		epc += 4;
 145		epc >>= 28;
 146		epc <<= 28;
 147		epc |= (insn.j_format.target << 2);
 148		nextpc = epc;
 149		break;
 150
 151		/* These are conditional and in i_format. */
 152	case beq_op:
 153	case beql_op:
 154		if (arch->gprs[insn.i_format.rs] ==
 155		    arch->gprs[insn.i_format.rt])
 156			epc = epc + 4 + (insn.i_format.simmediate << 2);
 157		else
 158			epc += 8;
 159		nextpc = epc;
 160		break;
 161
 162	case bne_op:
 163	case bnel_op:
 164		if (arch->gprs[insn.i_format.rs] !=
 165		    arch->gprs[insn.i_format.rt])
 166			epc = epc + 4 + (insn.i_format.simmediate << 2);
 167		else
 168			epc += 8;
 169		nextpc = epc;
 170		break;
 171
 172	case blez_op:	/* POP06 */
 173#ifndef CONFIG_CPU_MIPSR6
 174	case blezl_op:	/* removed in R6 */
 175#endif
 176		if (insn.i_format.rt != 0)
 177			goto compact_branch;
 178		if ((long)arch->gprs[insn.i_format.rs] <= 0)
 179			epc = epc + 4 + (insn.i_format.simmediate << 2);
 180		else
 181			epc += 8;
 182		nextpc = epc;
 183		break;
 184
 185	case bgtz_op:	/* POP07 */
 186#ifndef CONFIG_CPU_MIPSR6
 187	case bgtzl_op:	/* removed in R6 */
 188#endif
 189		if (insn.i_format.rt != 0)
 190			goto compact_branch;
 191		if ((long)arch->gprs[insn.i_format.rs] > 0)
 192			epc = epc + 4 + (insn.i_format.simmediate << 2);
 193		else
 194			epc += 8;
 195		nextpc = epc;
 196		break;
 197
 198		/* And now the FPA/cp1 branch instructions. */
 199	case cop1_op:
 200		kvm_err("%s: unsupported cop1_op\n", __func__);
 201		return -EINVAL;
 202
 203#ifdef CONFIG_CPU_MIPSR6
 204	/* R6 added the following compact branches with forbidden slots */
 205	case blezl_op:	/* POP26 */
 206	case bgtzl_op:	/* POP27 */
 207		/* only rt == 0 isn't compact branch */
 208		if (insn.i_format.rt != 0)
 209			goto compact_branch;
 210		return -EINVAL;
 211	case pop10_op:
 212	case pop30_op:
 213		/* only rs == rt == 0 is reserved, rest are compact branches */
 214		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
 215			goto compact_branch;
 216		return -EINVAL;
 217	case pop66_op:
 218	case pop76_op:
 219		/* only rs == 0 isn't compact branch */
 220		if (insn.i_format.rs != 0)
 221			goto compact_branch;
 222		return -EINVAL;
 223compact_branch:
 224		/*
 225		 * If we've hit an exception on the forbidden slot, then
 226		 * the branch must not have been taken.
 227		 */
 228		epc += 8;
 229		nextpc = epc;
 230		break;
 231#else
 232compact_branch:
 233		/* Fall through - Compact branches not supported before R6 */
 234#endif
 235	default:
 236		return -EINVAL;
 237	}
 238
 239	*out = nextpc;
 240	return 0;
 241}
 242
 243enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
 244{
 245	int err;
 246
 247	if (cause & CAUSEF_BD) {
 248		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
 249					     &vcpu->arch.pc);
 250		if (err)
 251			return EMULATE_FAIL;
 252	} else {
 253		vcpu->arch.pc += 4;
 254	}
 255
 256	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 257
 258	return EMULATE_DONE;
 259}
 260
 261/**
 262 * kvm_get_badinstr() - Get bad instruction encoding.
 263 * @opc:	Guest pointer to faulting instruction.
 264 * @vcpu:	KVM VCPU information.
 265 *
 266 * Gets the instruction encoding of the faulting instruction, using the saved
 267 * BadInstr register value if it exists, otherwise falling back to reading guest
 268 * memory at @opc.
 269 *
 270 * Returns:	The instruction encoding of the faulting instruction.
 271 */
 272int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 273{
 274	if (cpu_has_badinstr) {
 275		*out = vcpu->arch.host_cp0_badinstr;
 276		return 0;
 277	} else {
 278		WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
 279		return -EINVAL;
 280	}
 281}
 282
 283/**
 284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
 285 * @opc:	Guest pointer to prior faulting instruction.
 286 * @vcpu:	KVM VCPU information.
 287 *
 288 * Gets the instruction encoding of the prior faulting instruction (the branch
 289 * containing the delay slot which faulted), using the saved BadInstrP register
 290 * value if it exists, otherwise falling back to reading guest memory at @opc.
 291 *
 292 * Returns:	The instruction encoding of the prior faulting instruction.
 293 */
 294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 295{
 296	if (cpu_has_badinstrp) {
 297		*out = vcpu->arch.host_cp0_badinstrp;
 298		return 0;
 299	} else {
 300		WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
 301		return -EINVAL;
 302	}
 303}
 304
 305/**
 306 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 307 * @vcpu:	Virtual CPU.
 308 *
 309 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 310 *		CP0_Cause.DC bit or the count_ctl.DC bit.
 311 *		0 otherwise (in which case CP0_Count timer is running).
 312 */
 313int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 314{
 315	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 316
 317	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 318		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 319}
 320
 321/**
 322 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 323 *
 324 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 325 *
 326 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 327 */
 328static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 329{
 330	s64 now_ns, periods;
 331	u64 delta;
 332
 333	now_ns = ktime_to_ns(now);
 334	delta = now_ns + vcpu->arch.count_dyn_bias;
 335
 336	if (delta >= vcpu->arch.count_period) {
 337		/* If delta is out of safe range the bias needs adjusting */
 338		periods = div64_s64(now_ns, vcpu->arch.count_period);
 339		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 340		/* Recalculate delta with new bias */
 341		delta = now_ns + vcpu->arch.count_dyn_bias;
 342	}
 343
 344	/*
 345	 * We've ensured that:
 346	 *   delta < count_period
 347	 *
 348	 * Therefore the intermediate delta*count_hz will never overflow since
 349	 * at the boundary condition:
 350	 *   delta = count_period
 351	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
 352	 *   delta * count_hz = NSEC_PER_SEC * 2^32
 353	 */
 354	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 355}
 356
 357/**
 358 * kvm_mips_count_time() - Get effective current time.
 359 * @vcpu:	Virtual CPU.
 360 *
 361 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 362 * except when the master disable bit is set in count_ctl, in which case it is
 363 * count_resume, i.e. the time that the count was disabled.
 364 *
 365 * Returns:	Effective monotonic ktime for CP0_Count.
 366 */
 367static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 368{
 369	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 370		return vcpu->arch.count_resume;
 371
 372	return ktime_get();
 373}
 374
 375/**
 376 * kvm_mips_read_count_running() - Read the current count value as if running.
 377 * @vcpu:	Virtual CPU.
 378 * @now:	Kernel time to read CP0_Count at.
 379 *
 380 * Returns the current guest CP0_Count register at time @now and handles if the
 381 * timer interrupt is pending and hasn't been handled yet.
 382 *
 383 * Returns:	The current value of the guest CP0_Count register.
 384 */
 385static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 386{
 387	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 388	ktime_t expires, threshold;
 389	u32 count, compare;
 390	int running;
 391
 392	/* Calculate the biased and scaled guest CP0_Count */
 393	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 394	compare = kvm_read_c0_guest_compare(cop0);
 395
 396	/*
 397	 * Find whether CP0_Count has reached the closest timer interrupt. If
 398	 * not, we shouldn't inject it.
 399	 */
 400	if ((s32)(count - compare) < 0)
 401		return count;
 402
 403	/*
 404	 * The CP0_Count we're going to return has already reached the closest
 405	 * timer interrupt. Quickly check if it really is a new interrupt by
 406	 * looking at whether the interval until the hrtimer expiry time is
 407	 * less than 1/4 of the timer period.
 408	 */
 409	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 410	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
 411	if (ktime_before(expires, threshold)) {
 412		/*
 413		 * Cancel it while we handle it so there's no chance of
 414		 * interference with the timeout handler.
 415		 */
 416		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 417
 418		/* Nothing should be waiting on the timeout */
 419		kvm_mips_callbacks->queue_timer_int(vcpu);
 420
 421		/*
 422		 * Restart the timer if it was running based on the expiry time
 423		 * we read, so that we don't push it back 2 periods.
 424		 */
 425		if (running) {
 426			expires = ktime_add_ns(expires,
 427					       vcpu->arch.count_period);
 428			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 429				      HRTIMER_MODE_ABS);
 430		}
 431	}
 432
 433	return count;
 434}
 435
 436/**
 437 * kvm_mips_read_count() - Read the current count value.
 438 * @vcpu:	Virtual CPU.
 439 *
 440 * Read the current guest CP0_Count value, taking into account whether the timer
 441 * is stopped.
 442 *
 443 * Returns:	The current guest CP0_Count value.
 444 */
 445u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
 446{
 447	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 448
 449	/* If count disabled just read static copy of count */
 450	if (kvm_mips_count_disabled(vcpu))
 451		return kvm_read_c0_guest_count(cop0);
 452
 453	return kvm_mips_read_count_running(vcpu, ktime_get());
 454}
 455
 456/**
 457 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 458 * @vcpu:	Virtual CPU.
 459 * @count:	Output pointer for CP0_Count value at point of freeze.
 460 *
 461 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 462 * at the point it was frozen. It is guaranteed that any pending interrupts at
 463 * the point it was frozen are handled, and none after that point.
 464 *
 465 * This is useful where the time/CP0_Count is needed in the calculation of the
 466 * new parameters.
 467 *
 468 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 469 *
 470 * Returns:	The ktime at the point of freeze.
 471 */
 472ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
 473{
 474	ktime_t now;
 475
 476	/* stop hrtimer before finding time */
 477	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 478	now = ktime_get();
 479
 480	/* find count at this point and handle pending hrtimer */
 481	*count = kvm_mips_read_count_running(vcpu, now);
 482
 483	return now;
 484}
 485
 486/**
 487 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 488 * @vcpu:	Virtual CPU.
 489 * @now:	ktime at point of resume.
 490 * @count:	CP0_Count at point of resume.
 491 *
 492 * Resumes the timer and updates the timer expiry based on @now and @count.
 493 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 494 * parameters need to be changed.
 495 *
 496 * It is guaranteed that a timer interrupt immediately after resume will be
 497 * handled, but not if CP_Compare is exactly at @count. That case is already
 498 * handled by kvm_mips_freeze_timer().
 499 *
 500 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 501 */
 502static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 503				    ktime_t now, u32 count)
 504{
 505	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 506	u32 compare;
 507	u64 delta;
 508	ktime_t expire;
 509
 510	/* Calculate timeout (wrap 0 to 2^32) */
 511	compare = kvm_read_c0_guest_compare(cop0);
 512	delta = (u64)(u32)(compare - count - 1) + 1;
 513	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 514	expire = ktime_add_ns(now, delta);
 515
 516	/* Update hrtimer to use new timeout */
 517	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 518	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 519}
 520
 521/**
 522 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
 523 * @vcpu:	Virtual CPU.
 524 * @before:	Time before Count was saved, lower bound of drift calculation.
 525 * @count:	CP0_Count at point of restore.
 526 * @min_drift:	Minimum amount of drift permitted before correction.
 527 *		Must be <= 0.
 528 *
 529 * Restores the timer from a particular @count, accounting for drift. This can
 530 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
 531 * to be used for a period of time, but the exact ktime corresponding to the
 532 * final Count that must be restored is not known.
 533 *
 534 * It is guaranteed that a timer interrupt immediately after restore will be
 535 * handled, but not if CP0_Compare is exactly at @count. That case should
 536 * already be handled when the hardware timer state is saved.
 537 *
 538 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
 539 * stopped).
 540 *
 541 * Returns:	Amount of correction to count_bias due to drift.
 542 */
 543int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
 544			     u32 count, int min_drift)
 545{
 546	ktime_t now, count_time;
 547	u32 now_count, before_count;
 548	u64 delta;
 549	int drift, ret = 0;
 550
 551	/* Calculate expected count at before */
 552	before_count = vcpu->arch.count_bias +
 553			kvm_mips_ktime_to_count(vcpu, before);
 554
 555	/*
 556	 * Detect significantly negative drift, where count is lower than
 557	 * expected. Some negative drift is expected when hardware counter is
 558	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
 559	 * time to jump forwards a little, within reason. If the drift is too
 560	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
 561	 */
 562	drift = count - before_count;
 563	if (drift < min_drift) {
 564		count_time = before;
 565		vcpu->arch.count_bias += drift;
 566		ret = drift;
 567		goto resume;
 568	}
 569
 570	/* Calculate expected count right now */
 571	now = ktime_get();
 572	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 573
 574	/*
 575	 * Detect positive drift, where count is higher than expected, and
 576	 * adjust the bias to avoid guest time going backwards.
 577	 */
 578	drift = count - now_count;
 579	if (drift > 0) {
 580		count_time = now;
 581		vcpu->arch.count_bias += drift;
 582		ret = drift;
 583		goto resume;
 584	}
 585
 586	/* Subtract nanosecond delta to find ktime when count was read */
 587	delta = (u64)(u32)(now_count - count);
 588	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 589	count_time = ktime_sub_ns(now, delta);
 590
 591resume:
 592	/* Resume using the calculated ktime */
 593	kvm_mips_resume_hrtimer(vcpu, count_time, count);
 594	return ret;
 595}
 596
 597/**
 598 * kvm_mips_write_count() - Modify the count and update timer.
 599 * @vcpu:	Virtual CPU.
 600 * @count:	Guest CP0_Count value to set.
 601 *
 602 * Sets the CP0_Count value and updates the timer accordingly.
 603 */
 604void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
 605{
 606	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 607	ktime_t now;
 608
 609	/* Calculate bias */
 610	now = kvm_mips_count_time(vcpu);
 611	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 612
 613	if (kvm_mips_count_disabled(vcpu))
 614		/* The timer's disabled, adjust the static count */
 615		kvm_write_c0_guest_count(cop0, count);
 616	else
 617		/* Update timeout */
 618		kvm_mips_resume_hrtimer(vcpu, now, count);
 619}
 620
 621/**
 622 * kvm_mips_init_count() - Initialise timer.
 623 * @vcpu:	Virtual CPU.
 624 * @count_hz:	Frequency of timer.
 625 *
 626 * Initialise the timer to the specified frequency, zero it, and set it going if
 627 * it's enabled.
 628 */
 629void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
 630{
 631	vcpu->arch.count_hz = count_hz;
 632	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 633	vcpu->arch.count_dyn_bias = 0;
 634
 635	/* Starting at 0 */
 636	kvm_mips_write_count(vcpu, 0);
 637}
 638
 639/**
 640 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 641 * @vcpu:	Virtual CPU.
 642 * @count_hz:	Frequency of CP0_Count timer in Hz.
 643 *
 644 * Change the frequency of the CP0_Count timer. This is done atomically so that
 645 * CP0_Count is continuous and no timer interrupt is lost.
 646 *
 647 * Returns:	-EINVAL if @count_hz is out of range.
 648 *		0 on success.
 649 */
 650int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 651{
 652	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 653	int dc;
 654	ktime_t now;
 655	u32 count;
 656
 657	/* ensure the frequency is in a sensible range... */
 658	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 659		return -EINVAL;
 660	/* ... and has actually changed */
 661	if (vcpu->arch.count_hz == count_hz)
 662		return 0;
 663
 664	/* Safely freeze timer so we can keep it continuous */
 665	dc = kvm_mips_count_disabled(vcpu);
 666	if (dc) {
 667		now = kvm_mips_count_time(vcpu);
 668		count = kvm_read_c0_guest_count(cop0);
 669	} else {
 670		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 671	}
 672
 673	/* Update the frequency */
 674	vcpu->arch.count_hz = count_hz;
 675	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 676	vcpu->arch.count_dyn_bias = 0;
 677
 678	/* Calculate adjusted bias so dynamic count is unchanged */
 679	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 680
 681	/* Update and resume hrtimer */
 682	if (!dc)
 683		kvm_mips_resume_hrtimer(vcpu, now, count);
 684	return 0;
 685}
 686
 687/**
 688 * kvm_mips_write_compare() - Modify compare and update timer.
 689 * @vcpu:	Virtual CPU.
 690 * @compare:	New CP0_Compare value.
 691 * @ack:	Whether to acknowledge timer interrupt.
 692 *
 693 * Update CP0_Compare to a new value and update the timeout.
 694 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 695 * any pending timer interrupt is preserved.
 696 */
 697void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
 698{
 699	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 700	int dc;
 701	u32 old_compare = kvm_read_c0_guest_compare(cop0);
 702	s32 delta = compare - old_compare;
 703	u32 cause;
 704	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
 705	u32 count;
 706
 707	/* if unchanged, must just be an ack */
 708	if (old_compare == compare) {
 709		if (!ack)
 710			return;
 711		kvm_mips_callbacks->dequeue_timer_int(vcpu);
 712		kvm_write_c0_guest_compare(cop0, compare);
 713		return;
 714	}
 715
 716	/*
 717	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
 718	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
 719	 *
 720	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
 721	 * set prior to it being written into the guest context. We disable
 722	 * preemption until the new value is written to prevent restore of a
 723	 * GTOffset corresponding to the old CP0_Compare value.
 724	 */
 725	if (delta > 0) {
 726		preempt_disable();
 727		write_c0_gtoffset(compare - read_c0_count());
 728		back_to_back_c0_hazard();
 729	}
 730
 731	/* freeze_hrtimer() takes care of timer interrupts <= count */
 732	dc = kvm_mips_count_disabled(vcpu);
 733	if (!dc)
 734		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 735
 736	if (ack)
 737		kvm_mips_callbacks->dequeue_timer_int(vcpu);
 738	else
 739		/*
 740		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
 741		 * preserve guest CP0_Cause.TI if we don't want to ack it.
 742		 */
 743		cause = kvm_read_c0_guest_cause(cop0);
 744
 745	kvm_write_c0_guest_compare(cop0, compare);
 746
 747	if (delta > 0)
 748		preempt_enable();
 749
 750	back_to_back_c0_hazard();
 751
 752	if (!ack && cause & CAUSEF_TI)
 753		kvm_write_c0_guest_cause(cop0, cause);
 754
 755	/* resume_hrtimer() takes care of timer interrupts > count */
 756	if (!dc)
 757		kvm_mips_resume_hrtimer(vcpu, now, count);
 758
 759	/*
 760	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
 761	 * until after the new CP0_Compare is written, otherwise new guest
 762	 * CP0_Count could hit new guest CP0_Compare.
 763	 */
 764	if (delta <= 0)
 765		write_c0_gtoffset(compare - read_c0_count());
 766}
 767
 768/**
 769 * kvm_mips_count_disable() - Disable count.
 770 * @vcpu:	Virtual CPU.
 771 *
 772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 773 * time will be handled but not after.
 774 *
 775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 776 * count_ctl.DC has been set (count disabled).
 777 *
 778 * Returns:	The time that the timer was stopped.
 779 */
 780static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 781{
 782	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 783	u32 count;
 784	ktime_t now;
 785
 786	/* Stop hrtimer */
 787	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 788
 789	/* Set the static count from the dynamic count, handling pending TI */
 790	now = ktime_get();
 791	count = kvm_mips_read_count_running(vcpu, now);
 792	kvm_write_c0_guest_count(cop0, count);
 793
 794	return now;
 795}
 796
 797/**
 798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 799 * @vcpu:	Virtual CPU.
 800 *
 801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 802 * before the final stop time will be handled if the timer isn't disabled by
 803 * count_ctl.DC, but not after.
 804 *
 805 * Assumes CP0_Cause.DC is clear (count enabled).
 806 */
 807void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 808{
 809	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 810
 811	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 812	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 813		kvm_mips_count_disable(vcpu);
 814}
 815
 816/**
 817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 818 * @vcpu:	Virtual CPU.
 819 *
 820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 821 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 822 * potentially before even returning, so the caller should be careful with
 823 * ordering of CP0_Cause modifications so as not to lose it.
 824 *
 825 * Assumes CP0_Cause.DC is set (count disabled).
 826 */
 827void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 828{
 829	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 830	u32 count;
 831
 832	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 833
 834	/*
 835	 * Set the dynamic count to match the static count.
 836	 * This starts the hrtimer if count_ctl.DC allows it.
 837	 * Otherwise it conveniently updates the biases.
 838	 */
 839	count = kvm_read_c0_guest_count(cop0);
 840	kvm_mips_write_count(vcpu, count);
 841}
 842
 843/**
 844 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 845 * @vcpu:	Virtual CPU.
 846 * @count_ctl:	Count control register new value.
 847 *
 848 * Set the count control KVM register. The timer is updated accordingly.
 849 *
 850 * Returns:	-EINVAL if reserved bits are set.
 851 *		0 on success.
 852 */
 853int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 854{
 855	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 856	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 857	s64 delta;
 858	ktime_t expire, now;
 859	u32 count, compare;
 860
 861	/* Only allow defined bits to be changed */
 862	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 863		return -EINVAL;
 864
 865	/* Apply new value */
 866	vcpu->arch.count_ctl = count_ctl;
 867
 868	/* Master CP0_Count disable */
 869	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 870		/* Is CP0_Cause.DC already disabling CP0_Count? */
 871		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 872			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 873				/* Just record the current time */
 874				vcpu->arch.count_resume = ktime_get();
 875		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 876			/* disable timer and record current time */
 877			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 878		} else {
 879			/*
 880			 * Calculate timeout relative to static count at resume
 881			 * time (wrap 0 to 2^32).
 882			 */
 883			count = kvm_read_c0_guest_count(cop0);
 884			compare = kvm_read_c0_guest_compare(cop0);
 885			delta = (u64)(u32)(compare - count - 1) + 1;
 886			delta = div_u64(delta * NSEC_PER_SEC,
 887					vcpu->arch.count_hz);
 888			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 889
 890			/* Handle pending interrupt */
 891			now = ktime_get();
 892			if (ktime_compare(now, expire) >= 0)
 893				/* Nothing should be waiting on the timeout */
 894				kvm_mips_callbacks->queue_timer_int(vcpu);
 895
 896			/* Resume hrtimer without changing bias */
 897			count = kvm_mips_read_count_running(vcpu, now);
 898			kvm_mips_resume_hrtimer(vcpu, now, count);
 899		}
 900	}
 901
 902	return 0;
 903}
 904
 905/**
 906 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 907 * @vcpu:		Virtual CPU.
 908 * @count_resume:	Count resume register new value.
 909 *
 910 * Set the count resume KVM register.
 911 *
 912 * Returns:	-EINVAL if out of valid range (0..now).
 913 *		0 on success.
 914 */
 915int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 916{
 917	/*
 918	 * It doesn't make sense for the resume time to be in the future, as it
 919	 * would be possible for the next interrupt to be more than a full
 920	 * period in the future.
 921	 */
 922	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 923		return -EINVAL;
 924
 925	vcpu->arch.count_resume = ns_to_ktime(count_resume);
 926	return 0;
 927}
 928
 929/**
 930 * kvm_mips_count_timeout() - Push timer forward on timeout.
 931 * @vcpu:	Virtual CPU.
 932 *
 933 * Handle an hrtimer event by push the hrtimer forward a period.
 934 *
 935 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 936 */
 937enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 938{
 939	/* Add the Count period to the current expiry time */
 940	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 941			       vcpu->arch.count_period);
 942	return HRTIMER_RESTART;
 943}
 944
 945enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 946{
 947	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 948		  vcpu->arch.pending_exceptions);
 949
 950	++vcpu->stat.wait_exits;
 951	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
 952	if (!vcpu->arch.pending_exceptions) {
 953		kvm_vz_lose_htimer(vcpu);
 954		vcpu->arch.wait = 1;
 955		kvm_vcpu_halt(vcpu);
 956
 957		/*
 958		 * We are runnable, then definitely go off to user space to
 959		 * check if any I/O interrupts are pending.
 960		 */
 961		if (kvm_arch_vcpu_runnable(vcpu))
 962			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 963	}
 964
 965	return EMULATE_DONE;
 966}
 967
 968enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
 969					     u32 cause,
 970					     struct kvm_vcpu *vcpu)
 971{
 972	int r;
 973	enum emulation_result er;
 974	u32 rt;
 975	struct kvm_run *run = vcpu->run;
 976	void *data = run->mmio.data;
 977	unsigned int imme;
 978	unsigned long curr_pc;
 979
 980	/*
 981	 * Update PC and hold onto current PC in case there is
 982	 * an error and we want to rollback the PC
 983	 */
 984	curr_pc = vcpu->arch.pc;
 985	er = update_pc(vcpu, cause);
 986	if (er == EMULATE_FAIL)
 987		return er;
 988
 989	rt = inst.i_format.rt;
 990
 991	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
 992						vcpu->arch.host_cp0_badvaddr);
 993	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
 994		goto out_fail;
 995
 996	switch (inst.i_format.opcode) {
 997#if defined(CONFIG_64BIT)
 998	case sd_op:
 999		run->mmio.len = 8;
1000		*(u64 *)data = vcpu->arch.gprs[rt];
1001
1002		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1003			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1004			  vcpu->arch.gprs[rt], *(u64 *)data);
1005		break;
1006#endif
1007
1008	case sw_op:
1009		run->mmio.len = 4;
1010		*(u32 *)data = vcpu->arch.gprs[rt];
1011
1012		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1013			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1014			  vcpu->arch.gprs[rt], *(u32 *)data);
1015		break;
1016
1017	case sh_op:
1018		run->mmio.len = 2;
1019		*(u16 *)data = vcpu->arch.gprs[rt];
1020
1021		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1022			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1023			  vcpu->arch.gprs[rt], *(u16 *)data);
1024		break;
1025
1026	case sb_op:
1027		run->mmio.len = 1;
1028		*(u8 *)data = vcpu->arch.gprs[rt];
1029
1030		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1031			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1032			  vcpu->arch.gprs[rt], *(u8 *)data);
1033		break;
1034
1035	case swl_op:
1036		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1037					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1038		run->mmio.len = 4;
1039		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1040		switch (imme) {
1041		case 0:
1042			*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1043					(vcpu->arch.gprs[rt] >> 24);
1044			break;
1045		case 1:
1046			*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1047					(vcpu->arch.gprs[rt] >> 16);
1048			break;
1049		case 2:
1050			*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1051					(vcpu->arch.gprs[rt] >> 8);
1052			break;
1053		case 3:
1054			*(u32 *)data = vcpu->arch.gprs[rt];
1055			break;
1056		default:
1057			break;
1058		}
1059
1060		kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1061			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1062			  vcpu->arch.gprs[rt], *(u32 *)data);
1063		break;
1064
1065	case swr_op:
1066		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1067					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1068		run->mmio.len = 4;
1069		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1070		switch (imme) {
1071		case 0:
1072			*(u32 *)data = vcpu->arch.gprs[rt];
1073			break;
1074		case 1:
1075			*(u32 *)data = ((*(u32 *)data) & 0xff) |
1076					(vcpu->arch.gprs[rt] << 8);
1077			break;
1078		case 2:
1079			*(u32 *)data = ((*(u32 *)data) & 0xffff) |
1080					(vcpu->arch.gprs[rt] << 16);
1081			break;
1082		case 3:
1083			*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1084					(vcpu->arch.gprs[rt] << 24);
1085			break;
1086		default:
1087			break;
1088		}
1089
1090		kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1091			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1092			  vcpu->arch.gprs[rt], *(u32 *)data);
1093		break;
1094
1095#if defined(CONFIG_64BIT)
1096	case sdl_op:
1097		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1098					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1099
1100		run->mmio.len = 8;
1101		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1102		switch (imme) {
1103		case 0:
1104			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1105					((vcpu->arch.gprs[rt] >> 56) & 0xff);
1106			break;
1107		case 1:
1108			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1109					((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1110			break;
1111		case 2:
1112			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1113					((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1114			break;
1115		case 3:
1116			*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1117					((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1118			break;
1119		case 4:
1120			*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1121					((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1122			break;
1123		case 5:
1124			*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1125					((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1126			break;
1127		case 6:
1128			*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1129					((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1130			break;
1131		case 7:
1132			*(u64 *)data = vcpu->arch.gprs[rt];
1133			break;
1134		default:
1135			break;
1136		}
1137
1138		kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1139			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1140			  vcpu->arch.gprs[rt], *(u64 *)data);
1141		break;
1142
1143	case sdr_op:
1144		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1145					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1146
1147		run->mmio.len = 8;
1148		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1149		switch (imme) {
1150		case 0:
1151			*(u64 *)data = vcpu->arch.gprs[rt];
1152			break;
1153		case 1:
1154			*(u64 *)data = ((*(u64 *)data) & 0xff) |
1155					(vcpu->arch.gprs[rt] << 8);
1156			break;
1157		case 2:
1158			*(u64 *)data = ((*(u64 *)data) & 0xffff) |
1159					(vcpu->arch.gprs[rt] << 16);
1160			break;
1161		case 3:
1162			*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1163					(vcpu->arch.gprs[rt] << 24);
1164			break;
1165		case 4:
1166			*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1167					(vcpu->arch.gprs[rt] << 32);
1168			break;
1169		case 5:
1170			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1171					(vcpu->arch.gprs[rt] << 40);
1172			break;
1173		case 6:
1174			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1175					(vcpu->arch.gprs[rt] << 48);
1176			break;
1177		case 7:
1178			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1179					(vcpu->arch.gprs[rt] << 56);
1180			break;
1181		default:
1182			break;
1183		}
1184
1185		kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1186			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1187			  vcpu->arch.gprs[rt], *(u64 *)data);
1188		break;
1189#endif
1190
1191#ifdef CONFIG_CPU_LOONGSON64
1192	case sdc2_op:
1193		rt = inst.loongson3_lsdc2_format.rt;
1194		switch (inst.loongson3_lsdc2_format.opcode1) {
1195		/*
1196		 * Loongson-3 overridden sdc2 instructions.
1197		 * opcode1              instruction
1198		 *   0x0          gssbx: store 1 bytes from GPR
1199		 *   0x1          gsshx: store 2 bytes from GPR
1200		 *   0x2          gsswx: store 4 bytes from GPR
1201		 *   0x3          gssdx: store 8 bytes from GPR
1202		 */
1203		case 0x0:
1204			run->mmio.len = 1;
1205			*(u8 *)data = vcpu->arch.gprs[rt];
1206
1207			kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1208				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1209				  vcpu->arch.gprs[rt], *(u8 *)data);
1210			break;
1211		case 0x1:
1212			run->mmio.len = 2;
1213			*(u16 *)data = vcpu->arch.gprs[rt];
1214
1215			kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1216				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1217				  vcpu->arch.gprs[rt], *(u16 *)data);
1218			break;
1219		case 0x2:
1220			run->mmio.len = 4;
1221			*(u32 *)data = vcpu->arch.gprs[rt];
1222
1223			kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1224				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1225				  vcpu->arch.gprs[rt], *(u32 *)data);
1226			break;
1227		case 0x3:
1228			run->mmio.len = 8;
1229			*(u64 *)data = vcpu->arch.gprs[rt];
1230
1231			kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1232				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1233				  vcpu->arch.gprs[rt], *(u64 *)data);
1234			break;
1235		default:
1236			kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1237				inst.word);
1238			break;
1239		}
1240		break;
1241#endif
1242	default:
1243		kvm_err("Store not yet supported (inst=0x%08x)\n",
1244			inst.word);
1245		goto out_fail;
1246	}
1247
1248	vcpu->mmio_needed = 1;
1249	run->mmio.is_write = 1;
1250	vcpu->mmio_is_write = 1;
1251
1252	r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1253			run->mmio.phys_addr, run->mmio.len, data);
1254
1255	if (!r) {
1256		vcpu->mmio_needed = 0;
1257		return EMULATE_DONE;
1258	}
1259
1260	return EMULATE_DO_MMIO;
1261
1262out_fail:
1263	/* Rollback PC if emulation was unsuccessful */
1264	vcpu->arch.pc = curr_pc;
1265	return EMULATE_FAIL;
1266}
1267
1268enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1269					    u32 cause, struct kvm_vcpu *vcpu)
1270{
1271	struct kvm_run *run = vcpu->run;
1272	int r;
1273	enum emulation_result er;
1274	unsigned long curr_pc;
1275	u32 op, rt;
1276	unsigned int imme;
1277
1278	rt = inst.i_format.rt;
1279	op = inst.i_format.opcode;
1280
1281	/*
1282	 * Find the resume PC now while we have safe and easy access to the
1283	 * prior branch instruction, and save it for
1284	 * kvm_mips_complete_mmio_load() to restore later.
1285	 */
1286	curr_pc = vcpu->arch.pc;
1287	er = update_pc(vcpu, cause);
1288	if (er == EMULATE_FAIL)
1289		return er;
1290	vcpu->arch.io_pc = vcpu->arch.pc;
1291	vcpu->arch.pc = curr_pc;
1292
1293	vcpu->arch.io_gpr = rt;
1294
1295	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1296						vcpu->arch.host_cp0_badvaddr);
1297	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1298		return EMULATE_FAIL;
1299
1300	vcpu->mmio_needed = 2;	/* signed */
1301	switch (op) {
1302#if defined(CONFIG_64BIT)
1303	case ld_op:
1304		run->mmio.len = 8;
1305		break;
1306
1307	case lwu_op:
1308		vcpu->mmio_needed = 1;	/* unsigned */
1309		fallthrough;
1310#endif
1311	case lw_op:
1312		run->mmio.len = 4;
1313		break;
1314
1315	case lhu_op:
1316		vcpu->mmio_needed = 1;	/* unsigned */
1317		fallthrough;
1318	case lh_op:
1319		run->mmio.len = 2;
1320		break;
1321
1322	case lbu_op:
1323		vcpu->mmio_needed = 1;	/* unsigned */
1324		fallthrough;
1325	case lb_op:
1326		run->mmio.len = 1;
1327		break;
1328
1329	case lwl_op:
1330		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1331					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1332
1333		run->mmio.len = 4;
1334		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1335		switch (imme) {
1336		case 0:
1337			vcpu->mmio_needed = 3;	/* 1 byte */
1338			break;
1339		case 1:
1340			vcpu->mmio_needed = 4;	/* 2 bytes */
1341			break;
1342		case 2:
1343			vcpu->mmio_needed = 5;	/* 3 bytes */
1344			break;
1345		case 3:
1346			vcpu->mmio_needed = 6;	/* 4 bytes */
1347			break;
1348		default:
1349			break;
1350		}
1351		break;
1352
1353	case lwr_op:
1354		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1355					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1356
1357		run->mmio.len = 4;
1358		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1359		switch (imme) {
1360		case 0:
1361			vcpu->mmio_needed = 7;	/* 4 bytes */
1362			break;
1363		case 1:
1364			vcpu->mmio_needed = 8;	/* 3 bytes */
1365			break;
1366		case 2:
1367			vcpu->mmio_needed = 9;	/* 2 bytes */
1368			break;
1369		case 3:
1370			vcpu->mmio_needed = 10;	/* 1 byte */
1371			break;
1372		default:
1373			break;
1374		}
1375		break;
1376
1377#if defined(CONFIG_64BIT)
1378	case ldl_op:
1379		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1380					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1381
1382		run->mmio.len = 8;
1383		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1384		switch (imme) {
1385		case 0:
1386			vcpu->mmio_needed = 11;	/* 1 byte */
1387			break;
1388		case 1:
1389			vcpu->mmio_needed = 12;	/* 2 bytes */
1390			break;
1391		case 2:
1392			vcpu->mmio_needed = 13;	/* 3 bytes */
1393			break;
1394		case 3:
1395			vcpu->mmio_needed = 14;	/* 4 bytes */
1396			break;
1397		case 4:
1398			vcpu->mmio_needed = 15;	/* 5 bytes */
1399			break;
1400		case 5:
1401			vcpu->mmio_needed = 16;	/* 6 bytes */
1402			break;
1403		case 6:
1404			vcpu->mmio_needed = 17;	/* 7 bytes */
1405			break;
1406		case 7:
1407			vcpu->mmio_needed = 18;	/* 8 bytes */
1408			break;
1409		default:
1410			break;
1411		}
1412		break;
1413
1414	case ldr_op:
1415		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1416					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1417
1418		run->mmio.len = 8;
1419		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1420		switch (imme) {
1421		case 0:
1422			vcpu->mmio_needed = 19;	/* 8 bytes */
1423			break;
1424		case 1:
1425			vcpu->mmio_needed = 20;	/* 7 bytes */
1426			break;
1427		case 2:
1428			vcpu->mmio_needed = 21;	/* 6 bytes */
1429			break;
1430		case 3:
1431			vcpu->mmio_needed = 22;	/* 5 bytes */
1432			break;
1433		case 4:
1434			vcpu->mmio_needed = 23;	/* 4 bytes */
1435			break;
1436		case 5:
1437			vcpu->mmio_needed = 24;	/* 3 bytes */
1438			break;
1439		case 6:
1440			vcpu->mmio_needed = 25;	/* 2 bytes */
1441			break;
1442		case 7:
1443			vcpu->mmio_needed = 26;	/* 1 byte */
1444			break;
1445		default:
1446			break;
1447		}
1448		break;
1449#endif
1450
1451#ifdef CONFIG_CPU_LOONGSON64
1452	case ldc2_op:
1453		rt = inst.loongson3_lsdc2_format.rt;
1454		switch (inst.loongson3_lsdc2_format.opcode1) {
1455		/*
1456		 * Loongson-3 overridden ldc2 instructions.
1457		 * opcode1              instruction
1458		 *   0x0          gslbx: store 1 bytes from GPR
1459		 *   0x1          gslhx: store 2 bytes from GPR
1460		 *   0x2          gslwx: store 4 bytes from GPR
1461		 *   0x3          gsldx: store 8 bytes from GPR
1462		 */
1463		case 0x0:
1464			run->mmio.len = 1;
1465			vcpu->mmio_needed = 27;	/* signed */
1466			break;
1467		case 0x1:
1468			run->mmio.len = 2;
1469			vcpu->mmio_needed = 28;	/* signed */
1470			break;
1471		case 0x2:
1472			run->mmio.len = 4;
1473			vcpu->mmio_needed = 29;	/* signed */
1474			break;
1475		case 0x3:
1476			run->mmio.len = 8;
1477			vcpu->mmio_needed = 30;	/* signed */
1478			break;
1479		default:
1480			kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
1481				inst.word);
1482			break;
1483		}
1484		break;
1485#endif
1486
1487	default:
1488		kvm_err("Load not yet supported (inst=0x%08x)\n",
1489			inst.word);
1490		vcpu->mmio_needed = 0;
1491		return EMULATE_FAIL;
1492	}
1493
1494	run->mmio.is_write = 0;
1495	vcpu->mmio_is_write = 0;
1496
1497	r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
1498			run->mmio.phys_addr, run->mmio.len, run->mmio.data);
1499
1500	if (!r) {
1501		kvm_mips_complete_mmio_load(vcpu);
1502		vcpu->mmio_needed = 0;
1503		return EMULATE_DONE;
1504	}
1505
1506	return EMULATE_DO_MMIO;
1507}
1508
1509enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
1510{
1511	struct kvm_run *run = vcpu->run;
1512	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1513	enum emulation_result er = EMULATE_DONE;
1514
1515	if (run->mmio.len > sizeof(*gpr)) {
1516		kvm_err("Bad MMIO length: %d", run->mmio.len);
1517		er = EMULATE_FAIL;
1518		goto done;
1519	}
1520
1521	/* Restore saved resume PC */
1522	vcpu->arch.pc = vcpu->arch.io_pc;
1523
1524	switch (run->mmio.len) {
1525	case 8:
1526		switch (vcpu->mmio_needed) {
1527		case 11:
1528			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
1529				(((*(s64 *)run->mmio.data) & 0xff) << 56);
1530			break;
1531		case 12:
1532			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
1533				(((*(s64 *)run->mmio.data) & 0xffff) << 48);
1534			break;
1535		case 13:
1536			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
1537				(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
1538			break;
1539		case 14:
1540			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
1541				(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
1542			break;
1543		case 15:
1544			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1545				(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
1546			break;
1547		case 16:
1548			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1549				(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
1550			break;
1551		case 17:
1552			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1553				(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
1554			break;
1555		case 18:
1556		case 19:
1557			*gpr = *(s64 *)run->mmio.data;
1558			break;
1559		case 20:
1560			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
1561				((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
1562			break;
1563		case 21:
1564			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
1565				((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
1566			break;
1567		case 22:
1568			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
1569				((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
1570			break;
1571		case 23:
1572			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
1573				((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
1574			break;
1575		case 24:
1576			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
1577				((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
1578			break;
1579		case 25:
1580			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
1581				((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
1582			break;
1583		case 26:
1584			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
1585				((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
1586			break;
1587		default:
1588			*gpr = *(s64 *)run->mmio.data;
1589		}
1590		break;
1591
1592	case 4:
1593		switch (vcpu->mmio_needed) {
1594		case 1:
1595			*gpr = *(u32 *)run->mmio.data;
1596			break;
1597		case 2:
1598			*gpr = *(s32 *)run->mmio.data;
1599			break;
1600		case 3:
1601			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1602				(((*(s32 *)run->mmio.data) & 0xff) << 24);
1603			break;
1604		case 4:
1605			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1606				(((*(s32 *)run->mmio.data) & 0xffff) << 16);
1607			break;
1608		case 5:
1609			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1610				(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
1611			break;
1612		case 6:
1613		case 7:
1614			*gpr = *(s32 *)run->mmio.data;
1615			break;
1616		case 8:
1617			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
1618				((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
1619			break;
1620		case 9:
1621			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
1622				((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
1623			break;
1624		case 10:
1625			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
1626				((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
1627			break;
1628		default:
1629			*gpr = *(s32 *)run->mmio.data;
1630		}
1631		break;
1632
1633	case 2:
1634		if (vcpu->mmio_needed == 1)
1635			*gpr = *(u16 *)run->mmio.data;
1636		else
1637			*gpr = *(s16 *)run->mmio.data;
1638
1639		break;
1640	case 1:
1641		if (vcpu->mmio_needed == 1)
1642			*gpr = *(u8 *)run->mmio.data;
1643		else
1644			*gpr = *(s8 *)run->mmio.data;
1645		break;
1646	}
1647
1648done:
1649	return er;
1650}