Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
 
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
 
  25#include <linux/vmalloc.h>
 
 
  26
  27#include <asm/memory.h>
  28#include <asm/highmem.h>
  29#include <asm/cacheflush.h>
  30#include <asm/tlbflush.h>
  31#include <asm/sizes.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/dma-contiguous.h>
  37
 
  38#include "mm.h"
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/*
  41 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  42 * is either exclusively owned by the CPU (and therefore may be accessed
  43 * by it) or exclusively owned by the DMA device.  These helper functions
  44 * represent the transitions between these two ownership states.
  45 *
  46 * Note, however, that on later ARMs, this notion does not work due to
  47 * speculative prefetches.  We model our approach on the assumption that
  48 * the CPU does do speculative prefetches, which means we clean caches
  49 * before transfers and delay cache invalidation until transfer completion.
  50 *
  51 */
  52static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  53		size_t, enum dma_data_direction);
  54static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  55		size_t, enum dma_data_direction);
  56
  57/**
  58 * arm_dma_map_page - map a portion of a page for streaming DMA
  59 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  60 * @page: page that buffer resides in
  61 * @offset: offset into page for start of buffer
  62 * @size: size of buffer to map
  63 * @dir: DMA transfer direction
  64 *
  65 * Ensure that any data held in the cache is appropriately discarded
  66 * or written back.
  67 *
  68 * The device owns this memory once this call has completed.  The CPU
  69 * can regain ownership by calling dma_unmap_page().
  70 */
  71static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  72	     unsigned long offset, size_t size, enum dma_data_direction dir,
  73	     struct dma_attrs *attrs)
  74{
  75	if (!arch_is_coherent())
  76		__dma_page_cpu_to_dev(page, offset, size, dir);
  77	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  78}
  79
  80/**
  81 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  82 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  83 * @handle: DMA address of buffer
  84 * @size: size of buffer (same as passed to dma_map_page)
  85 * @dir: DMA transfer direction (same as passed to dma_map_page)
  86 *
  87 * Unmap a page streaming mode DMA translation.  The handle and size
  88 * must match what was provided in the previous dma_map_page() call.
  89 * All other usages are undefined.
  90 *
  91 * After this call, reads by the CPU to the buffer are guaranteed to see
  92 * whatever the device wrote there.
  93 */
  94static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  95		size_t size, enum dma_data_direction dir,
  96		struct dma_attrs *attrs)
  97{
  98	if (!arch_is_coherent())
  99		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 100				      handle & ~PAGE_MASK, size, dir);
 101}
 102
 103static void arm_dma_sync_single_for_cpu(struct device *dev,
 104		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 105{
 106	unsigned int offset = handle & (PAGE_SIZE - 1);
 107	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 108	if (!arch_is_coherent())
 109		__dma_page_dev_to_cpu(page, offset, size, dir);
 110}
 111
 112static void arm_dma_sync_single_for_device(struct device *dev,
 113		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 114{
 115	unsigned int offset = handle & (PAGE_SIZE - 1);
 116	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 117	if (!arch_is_coherent())
 118		__dma_page_cpu_to_dev(page, offset, size, dir);
 119}
 120
 121static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
 122
 123struct dma_map_ops arm_dma_ops = {
 124	.alloc			= arm_dma_alloc,
 125	.free			= arm_dma_free,
 126	.mmap			= arm_dma_mmap,
 127	.map_page		= arm_dma_map_page,
 128	.unmap_page		= arm_dma_unmap_page,
 129	.map_sg			= arm_dma_map_sg,
 130	.unmap_sg		= arm_dma_unmap_sg,
 131	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 132	.sync_single_for_device	= arm_dma_sync_single_for_device,
 133	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 134	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 135	.set_dma_mask		= arm_dma_set_mask,
 136};
 137EXPORT_SYMBOL(arm_dma_ops);
 138
 139static u64 get_coherent_dma_mask(struct device *dev)
 140{
 141	u64 mask = (u64)arm_dma_limit;
 142
 143	if (dev) {
 144		mask = dev->coherent_dma_mask;
 145
 146		/*
 147		 * Sanity check the DMA mask - it must be non-zero, and
 148		 * must be able to be satisfied by a DMA allocation.
 149		 */
 150		if (mask == 0) {
 151			dev_warn(dev, "coherent DMA mask is unset\n");
 152			return 0;
 153		}
 154
 155		if ((~mask) & (u64)arm_dma_limit) {
 156			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 157				 "than system GFP_DMA mask %#llx\n",
 158				 mask, (u64)arm_dma_limit);
 159			return 0;
 160		}
 161	}
 162
 163	return mask;
 164}
 165
 166static void __dma_clear_buffer(struct page *page, size_t size)
 167{
 168	void *ptr;
 169	/*
 170	 * Ensure that the allocated pages are zeroed, and that any data
 171	 * lurking in the kernel direct-mapped region is invalidated.
 172	 */
 173	ptr = page_address(page);
 174	if (ptr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175		memset(ptr, 0, size);
 176		dmac_flush_range(ptr, ptr + size);
 177		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 178	}
 179}
 180
 181/*
 182 * Allocate a DMA buffer for 'dev' of size 'size' using the
 183 * specified gfp mask.  Note that 'size' must be page aligned.
 184 */
 185static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 186{
 187	unsigned long order = get_order(size);
 188	struct page *page, *p, *e;
 189
 190	page = alloc_pages(gfp, order);
 191	if (!page)
 192		return NULL;
 193
 194	/*
 195	 * Now split the huge page and free the excess pages
 196	 */
 197	split_page(page, order);
 198	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 199		__free_page(p);
 200
 201	__dma_clear_buffer(page, size);
 202
 203	return page;
 204}
 205
 206/*
 207 * Free a DMA buffer.  'size' must be page aligned.
 208 */
 209static void __dma_free_buffer(struct page *page, size_t size)
 210{
 211	struct page *e = page + (size >> PAGE_SHIFT);
 212
 213	while (page < e) {
 214		__free_page(page);
 215		page++;
 216	}
 217}
 218
 219#ifdef CONFIG_MMU
 220
 221#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
 222#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
 223
 224/*
 225 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
 226 */
 227static pte_t **consistent_pte;
 228
 229#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
 230
 231static unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
 232
 233void __init init_consistent_dma_size(unsigned long size)
 234{
 235	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
 236
 237	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
 238	BUG_ON(base < VMALLOC_END);
 239
 240	/* Grow region to accommodate specified size  */
 241	if (base < consistent_base)
 242		consistent_base = base;
 243}
 244
 245#include "vmregion.h"
 246
 247static struct arm_vmregion_head consistent_head = {
 248	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
 249	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
 250	.vm_end		= CONSISTENT_END,
 251};
 252
 253#ifdef CONFIG_HUGETLB_PAGE
 254#error ARM Coherent DMA allocator does not (yet) support huge TLB
 255#endif
 256
 257/*
 258 * Initialise the consistent memory allocation.
 259 */
 260static int __init consistent_init(void)
 261{
 262	int ret = 0;
 263	pgd_t *pgd;
 264	pud_t *pud;
 265	pmd_t *pmd;
 266	pte_t *pte;
 267	int i = 0;
 268	unsigned long base = consistent_base;
 269	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
 270
 271	if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
 272		return 0;
 273
 274	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
 275	if (!consistent_pte) {
 276		pr_err("%s: no memory\n", __func__);
 277		return -ENOMEM;
 278	}
 279
 280	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
 281	consistent_head.vm_start = base;
 282
 283	do {
 284		pgd = pgd_offset(&init_mm, base);
 285
 286		pud = pud_alloc(&init_mm, pgd, base);
 287		if (!pud) {
 288			pr_err("%s: no pud tables\n", __func__);
 289			ret = -ENOMEM;
 290			break;
 291		}
 292
 293		pmd = pmd_alloc(&init_mm, pud, base);
 294		if (!pmd) {
 295			pr_err("%s: no pmd tables\n", __func__);
 296			ret = -ENOMEM;
 297			break;
 298		}
 299		WARN_ON(!pmd_none(*pmd));
 300
 301		pte = pte_alloc_kernel(pmd, base);
 302		if (!pte) {
 303			pr_err("%s: no pte tables\n", __func__);
 304			ret = -ENOMEM;
 305			break;
 306		}
 307
 308		consistent_pte[i++] = pte;
 309		base += PMD_SIZE;
 310	} while (base < CONSISTENT_END);
 311
 312	return ret;
 313}
 314core_initcall(consistent_init);
 315
 316static void *__alloc_from_contiguous(struct device *dev, size_t size,
 317				     pgprot_t prot, struct page **ret_page);
 
 
 318
 319static struct arm_vmregion_head coherent_head = {
 320	.vm_lock	= __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
 321	.vm_list	= LIST_HEAD_INIT(coherent_head.vm_list),
 322};
 323
 324static size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
 
 
 
 325
 326static int __init early_coherent_pool(char *p)
 327{
 328	coherent_pool_size = memparse(p, &p);
 329	return 0;
 330}
 331early_param("coherent_pool", early_coherent_pool);
 332
 333/*
 334 * Initialise the coherent pool for atomic allocations.
 335 */
 336static int __init coherent_init(void)
 337{
 338	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 339	size_t size = coherent_pool_size;
 340	struct page *page;
 341	void *ptr;
 342
 343	if (!IS_ENABLED(CONFIG_CMA))
 344		return 0;
 345
 346	ptr = __alloc_from_contiguous(NULL, size, prot, &page);
 
 
 
 
 
 
 
 
 
 
 347	if (ptr) {
 348		coherent_head.vm_start = (unsigned long) ptr;
 349		coherent_head.vm_end = (unsigned long) ptr + size;
 350		printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 351		       (unsigned)size / 1024);
 
 
 
 
 
 
 
 
 
 352		return 0;
 353	}
 354	printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 355	       (unsigned)size / 1024);
 
 
 
 
 
 356	return -ENOMEM;
 357}
 358/*
 359 * CMA is activated by core_initcall, so we must be called after it.
 360 */
 361postcore_initcall(coherent_init);
 362
 
 363struct dma_contig_early_reserve {
 364	phys_addr_t base;
 365	unsigned long size;
 366};
 367
 368static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 369
 370static int dma_mmu_remap_num __initdata;
 371
 
 372void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 373{
 374	dma_mmu_remap[dma_mmu_remap_num].base = base;
 375	dma_mmu_remap[dma_mmu_remap_num].size = size;
 376	dma_mmu_remap_num++;
 377}
 
 378
 379void __init dma_contiguous_remap(void)
 380{
 381	int i;
 382	for (i = 0; i < dma_mmu_remap_num; i++) {
 383		phys_addr_t start = dma_mmu_remap[i].base;
 384		phys_addr_t end = start + dma_mmu_remap[i].size;
 385		struct map_desc map;
 386		unsigned long addr;
 387
 388		if (end > arm_lowmem_limit)
 389			end = arm_lowmem_limit;
 390		if (start >= end)
 391			return;
 392
 393		map.pfn = __phys_to_pfn(start);
 394		map.virtual = __phys_to_virt(start);
 395		map.length = end - start;
 396		map.type = MT_MEMORY_DMA_READY;
 397
 398		/*
 399		 * Clear previous low-memory mapping
 
 
 
 
 
 
 400		 */
 401		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 402		     addr += PMD_SIZE)
 403			pmd_clear(pmd_off_k(addr));
 404
 405		iotable_init(&map, 1);
 406	}
 407}
 408
 409static void *
 410__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 411	const void *caller)
 412{
 413	struct arm_vmregion *c;
 414	size_t align;
 415	int bit;
 416
 417	if (!consistent_pte) {
 418		pr_err("%s: not initialised\n", __func__);
 419		dump_stack();
 420		return NULL;
 421	}
 422
 423	/*
 424	 * Align the virtual region allocation - maximum alignment is
 425	 * a section size, minimum is a page size.  This helps reduce
 426	 * fragmentation of the DMA space, and also prevents allocations
 427	 * smaller than a section from crossing a section boundary.
 428	 */
 429	bit = fls(size - 1);
 430	if (bit > SECTION_SHIFT)
 431		bit = SECTION_SHIFT;
 432	align = 1 << bit;
 433
 434	/*
 435	 * Allocate a virtual address in the consistent mapping region.
 436	 */
 437	c = arm_vmregion_alloc(&consistent_head, align, size,
 438			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
 439	if (c) {
 440		pte_t *pte;
 441		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
 442		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 443
 444		pte = consistent_pte[idx] + off;
 445		c->priv = page;
 446
 447		do {
 448			BUG_ON(!pte_none(*pte));
 449
 450			set_pte_ext(pte, mk_pte(page, prot), 0);
 451			page++;
 452			pte++;
 453			off++;
 454			if (off >= PTRS_PER_PTE) {
 455				off = 0;
 456				pte = consistent_pte[++idx];
 457			}
 458		} while (size -= PAGE_SIZE);
 459
 460		dsb();
 461
 462		return (void *)c->vm_start;
 463	}
 464	return NULL;
 465}
 466
 467static void __dma_free_remap(void *cpu_addr, size_t size)
 468{
 469	struct arm_vmregion *c;
 470	unsigned long addr;
 471	pte_t *ptep;
 472	int idx;
 473	u32 off;
 474
 475	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
 476	if (!c) {
 477		pr_err("%s: trying to free invalid coherent area: %p\n",
 478		       __func__, cpu_addr);
 479		dump_stack();
 480		return;
 481	}
 482
 483	if ((c->vm_end - c->vm_start) != size) {
 484		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
 485		       __func__, c->vm_end - c->vm_start, size);
 486		dump_stack();
 487		size = c->vm_end - c->vm_start;
 488	}
 489
 490	idx = CONSISTENT_PTE_INDEX(c->vm_start);
 491	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 492	ptep = consistent_pte[idx] + off;
 493	addr = c->vm_start;
 494	do {
 495		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
 496
 497		ptep++;
 498		addr += PAGE_SIZE;
 499		off++;
 500		if (off >= PTRS_PER_PTE) {
 501			off = 0;
 502			ptep = consistent_pte[++idx];
 503		}
 504
 505		if (pte_none(pte) || !pte_present(pte))
 506			pr_crit("%s: bad page in kernel page table\n",
 507				__func__);
 508	} while (size -= PAGE_SIZE);
 509
 510	flush_tlb_kernel_range(c->vm_start, c->vm_end);
 511
 512	arm_vmregion_free(&consistent_head, c);
 513}
 
 514
 515static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 516			    void *data)
 517{
 518	struct page *page = virt_to_page(addr);
 519	pgprot_t prot = *(pgprot_t *)data;
 520
 521	set_pte_ext(pte, mk_pte(page, prot), 0);
 522	return 0;
 523}
 524
 525static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 526{
 527	unsigned long start = (unsigned long) page_address(page);
 528	unsigned end = start + size;
 529
 530	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 531	dsb();
 532	flush_tlb_kernel_range(start, end);
 533}
 534
 535static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 536				 pgprot_t prot, struct page **ret_page,
 537				 const void *caller)
 538{
 539	struct page *page;
 540	void *ptr;
 541	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 542	if (!page)
 543		return NULL;
 
 
 544
 545	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 546	if (!ptr) {
 547		__dma_free_buffer(page, size);
 548		return NULL;
 549	}
 550
 
 551	*ret_page = page;
 552	return ptr;
 553}
 554
 555static void *__alloc_from_pool(struct device *dev, size_t size,
 556			       struct page **ret_page, const void *caller)
 557{
 558	struct arm_vmregion *c;
 559	size_t align;
 560
 561	if (!coherent_head.vm_start) {
 562		printk(KERN_ERR "%s: coherent pool not initialised!\n",
 563		       __func__);
 564		dump_stack();
 565		return NULL;
 566	}
 567
 568	/*
 569	 * Align the region allocation - allocations from pool are rather
 570	 * small, so align them to their order in pages, minimum is a page
 571	 * size. This helps reduce fragmentation of the DMA space.
 572	 */
 573	align = PAGE_SIZE << get_order(size);
 574	c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
 575	if (c) {
 576		void *ptr = (void *)c->vm_start;
 577		struct page *page = virt_to_page(ptr);
 578		*ret_page = page;
 579		return ptr;
 580	}
 581	return NULL;
 
 582}
 583
 584static int __free_from_pool(void *cpu_addr, size_t size)
 585{
 586	unsigned long start = (unsigned long)cpu_addr;
 587	unsigned long end = start + size;
 588	struct arm_vmregion *c;
 589
 590	if (start < coherent_head.vm_start || end > coherent_head.vm_end)
 
 
 591		return 0;
 592
 593	c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
 594
 595	if ((c->vm_end - c->vm_start) != size) {
 596		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
 597		       __func__, c->vm_end - c->vm_start, size);
 598		dump_stack();
 599		size = c->vm_end - c->vm_start;
 600	}
 601
 602	arm_vmregion_free(&coherent_head, c);
 603	return 1;
 604}
 605
 606static void *__alloc_from_contiguous(struct device *dev, size_t size,
 607				     pgprot_t prot, struct page **ret_page)
 
 
 608{
 609	unsigned long order = get_order(size);
 610	size_t count = size >> PAGE_SHIFT;
 611	struct page *page;
 
 612
 613	page = dma_alloc_from_contiguous(dev, count, order);
 614	if (!page)
 615		return NULL;
 616
 617	__dma_clear_buffer(page, size);
 618	__dma_remap(page, size, prot);
 
 
 619
 
 
 
 
 
 
 
 
 
 
 
 
 620	*ret_page = page;
 621	return page_address(page);
 622}
 623
 624static void __free_from_contiguous(struct device *dev, struct page *page,
 625				   size_t size)
 626{
 627	__dma_remap(page, size, pgprot_kernel);
 
 
 
 
 
 628	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 629}
 630
 631static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 632{
 633	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 634			    pgprot_writecombine(prot) :
 635			    pgprot_dmacoherent(prot);
 636	return prot;
 637}
 638
 639#define nommu() 0
 640
 641#else	/* !CONFIG_MMU */
 642
 643#define nommu() 1
 644
 645#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
 646#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
 647#define __alloc_from_pool(dev, size, ret_page, c)		NULL
 648#define __alloc_from_contiguous(dev, size, prot, ret)		NULL
 649#define __free_from_pool(cpu_addr, size)			0
 650#define __free_from_contiguous(dev, page, size)			do { } while (0)
 651#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 652
 653#endif	/* CONFIG_MMU */
 654
 655static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 656				   struct page **ret_page)
 657{
 658	struct page *page;
 659	page = __dma_alloc_buffer(dev, size, gfp);
 
 660	if (!page)
 661		return NULL;
 662
 663	*ret_page = page;
 664	return page_address(page);
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 670			 gfp_t gfp, pgprot_t prot, const void *caller)
 
 671{
 672	u64 mask = get_coherent_dma_mask(dev);
 673	struct page *page;
 674	void *addr;
 
 
 
 
 
 
 
 
 
 
 
 675
 676#ifdef CONFIG_DMA_API_DEBUG
 677	u64 limit = (mask + 1) & ~mask;
 678	if (limit && size >= limit) {
 679		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 680			size, mask);
 681		return NULL;
 682	}
 683#endif
 684
 685	if (!mask)
 
 
 686		return NULL;
 687
 688	if (mask < 0xffffffffULL)
 689		gfp |= GFP_DMA;
 690
 691	/*
 692	 * Following is a work-around (a.k.a. hack) to prevent pages
 693	 * with __GFP_COMP being passed to split_page() which cannot
 694	 * handle them.  The real problem is that this flag probably
 695	 * should be 0 on ARM as it is not supported on this
 696	 * platform; see CONFIG_HUGETLBFS.
 697	 */
 698	gfp &= ~(__GFP_COMP);
 699
 700	*handle = DMA_ERROR_CODE;
 701	size = PAGE_ALIGN(size);
 702
 703	if (arch_is_coherent() || nommu())
 704		addr = __alloc_simple_buffer(dev, size, gfp, &page);
 705	else if (!IS_ENABLED(CONFIG_CMA))
 706		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 707	else if (gfp & GFP_ATOMIC)
 708		addr = __alloc_from_pool(dev, size, &page, caller);
 
 
 
 
 709	else
 710		addr = __alloc_from_contiguous(dev, size, prot, &page);
 711
 712	if (addr)
 713		*handle = pfn_to_dma(dev, page_to_pfn(page));
 714
 715	return addr;
 716}
 717
 718/*
 719 * Allocate DMA-coherent memory space and return both the kernel remapped
 720 * virtual and bus address for that space.
 721 */
 722void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 723		    gfp_t gfp, struct dma_attrs *attrs)
 724{
 725	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 726	void *memory;
 727
 728	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 729		return memory;
 730
 731	return __dma_alloc(dev, size, handle, gfp, prot,
 732			   __builtin_return_address(0));
 733}
 734
 735/*
 736 * Create userspace mapping for the DMA-coherent memory.
 737 */
 738int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 739		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 740		 struct dma_attrs *attrs)
 741{
 742	int ret = -ENXIO;
 743#ifdef CONFIG_MMU
 744	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 745	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 746
 747	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 748		return ret;
 749
 750	ret = remap_pfn_range(vma, vma->vm_start,
 751			      pfn + vma->vm_pgoff,
 752			      vma->vm_end - vma->vm_start,
 753			      vma->vm_page_prot);
 754#endif	/* CONFIG_MMU */
 
 755
 756	return ret;
 757}
 758
 759/*
 760 * Free a buffer as defined by the above mapping.
 761 */
 762void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 763		  dma_addr_t handle, struct dma_attrs *attrs)
 764{
 765	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 
 
 
 
 
 
 
 
 766
 767	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 
 768		return;
 769
 770	size = PAGE_ALIGN(size);
 771
 772	if (arch_is_coherent() || nommu()) {
 773		__dma_free_buffer(page, size);
 774	} else if (!IS_ENABLED(CONFIG_CMA)) {
 775		__dma_free_remap(cpu_addr, size);
 776		__dma_free_buffer(page, size);
 777	} else {
 778		if (__free_from_pool(cpu_addr, size))
 779			return;
 780		/*
 781		 * Non-atomic allocations cannot be freed with IRQs disabled
 782		 */
 783		WARN_ON(irqs_disabled());
 784		__free_from_contiguous(dev, page, size);
 785	}
 786}
 787
 788static void dma_cache_maint_page(struct page *page, unsigned long offset,
 789	size_t size, enum dma_data_direction dir,
 790	void (*op)(const void *, size_t, int))
 791{
 
 
 
 
 
 
 792	/*
 793	 * A single sg entry may refer to multiple physically contiguous
 794	 * pages.  But we still need to process highmem pages individually.
 795	 * If highmem is not configured then the bulk of this loop gets
 796	 * optimized out.
 797	 */
 798	size_t left = size;
 799	do {
 800		size_t len = left;
 801		void *vaddr;
 802
 
 
 803		if (PageHighMem(page)) {
 804			if (len + offset > PAGE_SIZE) {
 805				if (offset >= PAGE_SIZE) {
 806					page += offset / PAGE_SIZE;
 807					offset %= PAGE_SIZE;
 808				}
 809				len = PAGE_SIZE - offset;
 810			}
 811			vaddr = kmap_high_get(page);
 812			if (vaddr) {
 813				vaddr += offset;
 814				op(vaddr, len, dir);
 815				kunmap_high(page);
 816			} else if (cache_is_vipt()) {
 817				/* unmapped pages might still be cached */
 818				vaddr = kmap_atomic(page);
 819				op(vaddr + offset, len, dir);
 820				kunmap_atomic(vaddr);
 
 
 
 
 
 
 821			}
 822		} else {
 823			vaddr = page_address(page) + offset;
 824			op(vaddr, len, dir);
 825		}
 826		offset = 0;
 827		page++;
 828		left -= len;
 829	} while (left);
 830}
 831
 832/*
 833 * Make an area consistent for devices.
 834 * Note: Drivers should NOT use this function directly, as it will break
 835 * platforms with CONFIG_DMABOUNCE.
 836 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 837 */
 838static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 839	size_t size, enum dma_data_direction dir)
 840{
 841	unsigned long paddr;
 842
 843	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 844
 845	paddr = page_to_phys(page) + off;
 846	if (dir == DMA_FROM_DEVICE) {
 847		outer_inv_range(paddr, paddr + size);
 848	} else {
 849		outer_clean_range(paddr, paddr + size);
 850	}
 851	/* FIXME: non-speculating: flush on bidirectional mappings? */
 852}
 853
 854static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 855	size_t size, enum dma_data_direction dir)
 856{
 857	unsigned long paddr = page_to_phys(page) + off;
 858
 859	/* FIXME: non-speculating: not required */
 860	/* don't bother invalidating if DMA to device */
 861	if (dir != DMA_TO_DEVICE)
 862		outer_inv_range(paddr, paddr + size);
 863
 864	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
 865
 866	/*
 867	 * Mark the D-cache clean for this page to avoid extra flushing.
 868	 */
 869	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
 870		set_bit(PG_dcache_clean, &page->flags);
 871}
 872
 873/**
 874 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 875 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 876 * @sg: list of buffers
 877 * @nents: number of buffers to map
 878 * @dir: DMA transfer direction
 879 *
 880 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 881 * This is the scatter-gather version of the dma_map_single interface.
 882 * Here the scatter gather list elements are each tagged with the
 883 * appropriate dma address and length.  They are obtained via
 884 * sg_dma_{address,length}.
 885 *
 886 * Device ownership issues as mentioned for dma_map_single are the same
 887 * here.
 888 */
 889int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 890		enum dma_data_direction dir, struct dma_attrs *attrs)
 891{
 892	struct dma_map_ops *ops = get_dma_ops(dev);
 893	struct scatterlist *s;
 894	int i, j;
 895
 896	for_each_sg(sg, s, nents, i) {
 897#ifdef CONFIG_NEED_SG_DMA_LENGTH
 898		s->dma_length = s->length;
 899#endif
 900		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 901						s->length, dir, attrs);
 902		if (dma_mapping_error(dev, s->dma_address))
 903			goto bad_mapping;
 904	}
 905	return nents;
 906
 907 bad_mapping:
 908	for_each_sg(sg, s, i, j)
 909		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 910	return 0;
 911}
 912
 913/**
 914 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 915 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 916 * @sg: list of buffers
 917 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 918 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 919 *
 920 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 921 * rules concerning calls here are the same as for dma_unmap_single().
 922 */
 923void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 924		enum dma_data_direction dir, struct dma_attrs *attrs)
 925{
 926	struct dma_map_ops *ops = get_dma_ops(dev);
 927	struct scatterlist *s;
 928
 929	int i;
 930
 931	for_each_sg(sg, s, nents, i)
 932		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 933}
 934
 935/**
 936 * arm_dma_sync_sg_for_cpu
 937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 938 * @sg: list of buffers
 939 * @nents: number of buffers to map (returned from dma_map_sg)
 940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 941 */
 942void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 943			int nents, enum dma_data_direction dir)
 944{
 945	struct dma_map_ops *ops = get_dma_ops(dev);
 946	struct scatterlist *s;
 947	int i;
 948
 949	for_each_sg(sg, s, nents, i)
 950		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 951					 dir);
 952}
 953
 954/**
 955 * arm_dma_sync_sg_for_device
 956 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 957 * @sg: list of buffers
 958 * @nents: number of buffers to map (returned from dma_map_sg)
 959 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 960 */
 961void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 962			int nents, enum dma_data_direction dir)
 963{
 964	struct dma_map_ops *ops = get_dma_ops(dev);
 965	struct scatterlist *s;
 966	int i;
 967
 968	for_each_sg(sg, s, nents, i)
 969		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 970					    dir);
 
 
 
 
 
 
 
 
 971}
 972
 973/*
 974 * Return whether the given device DMA address mask can be supported
 975 * properly.  For example, if your device can only drive the low 24-bits
 976 * during bus mastering, then you would pass 0x00ffffff as the mask
 977 * to this function.
 978 */
 979int dma_supported(struct device *dev, u64 mask)
 980{
 981	if (mask < (u64)arm_dma_limit)
 982		return 0;
 983	return 1;
 984}
 985EXPORT_SYMBOL(dma_supported);
 986
 987static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
 988{
 989	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
 990		return -EIO;
 991
 992	*dev->dma_mask = dma_mask;
 993
 994	return 0;
 995}
 996
 997#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 998
 999static int __init dma_debug_do_init(void)
1000{
1001#ifdef CONFIG_MMU
1002	arm_vmregion_create_proc("dma-mappings", &consistent_head);
1003#endif
1004	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1005	return 0;
 
 
 
1006}
1007fs_initcall(dma_debug_do_init);
1008
1009#ifdef CONFIG_ARM_DMA_USE_IOMMU
1010
1011/* IOMMU */
1012
 
 
1013static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1014				      size_t size)
1015{
1016	unsigned int order = get_order(size);
1017	unsigned int align = 0;
1018	unsigned int count, start;
 
1019	unsigned long flags;
 
 
1020
1021	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1022		 (1 << mapping->order) - 1) >> mapping->order;
1023
1024	if (order > mapping->order)
1025		align = (1 << (order - mapping->order)) - 1;
1026
1027	spin_lock_irqsave(&mapping->lock, flags);
1028	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1029					   count, align);
1030	if (start > mapping->bits) {
1031		spin_unlock_irqrestore(&mapping->lock, flags);
1032		return DMA_ERROR_CODE;
 
 
 
 
1033	}
1034
1035	bitmap_set(mapping->bitmap, start, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036	spin_unlock_irqrestore(&mapping->lock, flags);
1037
1038	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
 
 
 
1039}
1040
1041static inline void __free_iova(struct dma_iommu_mapping *mapping,
1042			       dma_addr_t addr, size_t size)
1043{
1044	unsigned int start = (addr - mapping->base) >>
1045			     (mapping->order + PAGE_SHIFT);
1046	unsigned int count = ((size >> PAGE_SHIFT) +
1047			      (1 << mapping->order) - 1) >> mapping->order;
1048	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	spin_lock_irqsave(&mapping->lock, flags);
1051	bitmap_clear(mapping->bitmap, start, count);
1052	spin_unlock_irqrestore(&mapping->lock, flags);
1053}
1054
1055static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 
 
 
 
1056{
1057	struct page **pages;
1058	int count = size >> PAGE_SHIFT;
1059	int array_size = count * sizeof(struct page *);
1060	int i = 0;
 
1061
1062	if (array_size <= PAGE_SIZE)
1063		pages = kzalloc(array_size, gfp);
1064	else
1065		pages = vzalloc(array_size);
1066	if (!pages)
1067		return NULL;
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	while (count) {
1070		int j, order = __fls(count);
1071
1072		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1073		while (!pages[i] && order)
1074			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1075		if (!pages[i])
1076			goto error;
1077
1078		if (order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079			split_page(pages[i], order);
1080		j = 1 << order;
1081		while (--j)
1082			pages[i + j] = pages[i] + j;
 
1083
1084		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1085		i += 1 << order;
1086		count -= 1 << order;
1087	}
1088
1089	return pages;
1090error:
1091	while (--i)
1092		if (pages[i])
1093			__free_pages(pages[i], 0);
1094	if (array_size <= PAGE_SIZE)
1095		kfree(pages);
1096	else
1097		vfree(pages);
1098	return NULL;
1099}
1100
1101static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
 
1102{
1103	int count = size >> PAGE_SHIFT;
1104	int array_size = count * sizeof(struct page *);
1105	int i;
1106	for (i = 0; i < count; i++)
1107		if (pages[i])
1108			__free_pages(pages[i], 0);
1109	if (array_size <= PAGE_SIZE)
1110		kfree(pages);
1111	else
1112		vfree(pages);
1113	return 0;
1114}
1115
1116/*
1117 * Create a CPU mapping for a specified pages
1118 */
1119static void *
1120__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
1121{
1122	struct arm_vmregion *c;
1123	size_t align;
1124	size_t count = size >> PAGE_SHIFT;
1125	int bit;
1126
1127	if (!consistent_pte[0]) {
1128		pr_err("%s: not initialised\n", __func__);
1129		dump_stack();
1130		return NULL;
 
 
1131	}
1132
1133	/*
1134	 * Align the virtual region allocation - maximum alignment is
1135	 * a section size, minimum is a page size.  This helps reduce
1136	 * fragmentation of the DMA space, and also prevents allocations
1137	 * smaller than a section from crossing a section boundary.
1138	 */
1139	bit = fls(size - 1);
1140	if (bit > SECTION_SHIFT)
1141		bit = SECTION_SHIFT;
1142	align = 1 << bit;
1143
1144	/*
1145	 * Allocate a virtual address in the consistent mapping region.
1146	 */
1147	c = arm_vmregion_alloc(&consistent_head, align, size,
1148			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
1149	if (c) {
1150		pte_t *pte;
1151		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
1152		int i = 0;
1153		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1154
1155		pte = consistent_pte[idx] + off;
1156		c->priv = pages;
1157
1158		do {
1159			BUG_ON(!pte_none(*pte));
1160
1161			set_pte_ext(pte, mk_pte(pages[i], prot), 0);
1162			pte++;
1163			off++;
1164			i++;
1165			if (off >= PTRS_PER_PTE) {
1166				off = 0;
1167				pte = consistent_pte[++idx];
1168			}
1169		} while (i < count);
1170
1171		dsb();
1172
1173		return (void *)c->vm_start;
1174	}
1175	return NULL;
1176}
1177
1178/*
1179 * Create a mapping in device IO address space for specified pages
1180 */
1181static dma_addr_t
1182__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1183{
1184	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1185	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186	dma_addr_t dma_addr, iova;
1187	int i, ret = DMA_ERROR_CODE;
1188
1189	dma_addr = __alloc_iova(mapping, size);
1190	if (dma_addr == DMA_ERROR_CODE)
1191		return dma_addr;
1192
1193	iova = dma_addr;
1194	for (i = 0; i < count; ) {
 
 
1195		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1196		phys_addr_t phys = page_to_phys(pages[i]);
1197		unsigned int len, j;
1198
1199		for (j = i + 1; j < count; j++, next_pfn++)
1200			if (page_to_pfn(pages[j]) != next_pfn)
1201				break;
1202
1203		len = (j - i) << PAGE_SHIFT;
1204		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 
 
1205		if (ret < 0)
1206			goto fail;
1207		iova += len;
1208		i = j;
1209	}
1210	return dma_addr;
1211fail:
1212	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1213	__free_iova(mapping, dma_addr, size);
1214	return DMA_ERROR_CODE;
1215}
1216
1217static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1218{
1219	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1220
1221	/*
1222	 * add optional in-page offset from iova to size and align
1223	 * result to page size
1224	 */
1225	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1226	iova &= PAGE_MASK;
1227
1228	iommu_unmap(mapping->domain, iova, size);
1229	__free_iova(mapping, iova, size);
1230	return 0;
1231}
1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1234	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1235{
1236	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1237	struct page **pages;
1238	void *addr = NULL;
 
1239
1240	*handle = DMA_ERROR_CODE;
1241	size = PAGE_ALIGN(size);
1242
1243	pages = __iommu_alloc_buffer(dev, size, gfp);
 
 
 
 
1244	if (!pages)
1245		return NULL;
1246
1247	*handle = __iommu_create_mapping(dev, pages, size);
1248	if (*handle == DMA_ERROR_CODE)
1249		goto err_buffer;
1250
1251	addr = __iommu_alloc_remap(pages, size, gfp, prot);
 
 
 
 
1252	if (!addr)
1253		goto err_mapping;
1254
1255	return addr;
1256
1257err_mapping:
1258	__iommu_remove_mapping(dev, *handle, size);
1259err_buffer:
1260	__iommu_free_buffer(dev, pages, size);
1261	return NULL;
1262}
1263
1264static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1265		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1266		    struct dma_attrs *attrs)
1267{
1268	struct arm_vmregion *c;
1269
1270	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1271	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1272
1273	if (c) {
1274		struct page **pages = c->priv;
1275
1276		unsigned long uaddr = vma->vm_start;
1277		unsigned long usize = vma->vm_end - vma->vm_start;
1278		int i = 0;
1279
1280		do {
1281			int ret;
1282
1283			ret = vm_insert_page(vma, uaddr, pages[i++]);
1284			if (ret) {
1285				pr_err("Remapping memory, error: %d\n", ret);
1286				return ret;
1287			}
1288
1289			uaddr += PAGE_SIZE;
1290			usize -= PAGE_SIZE;
1291		} while (usize > 0);
1292	}
1293	return 0;
1294}
1295
1296/*
1297 * free a page as defined by the above mapping.
1298 * Must not be called with IRQs disabled.
1299 */
1300void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1301			  dma_addr_t handle, struct dma_attrs *attrs)
1302{
1303	struct arm_vmregion *c;
 
1304	size = PAGE_ALIGN(size);
1305
1306	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1307	if (c) {
1308		struct page **pages = c->priv;
1309		__dma_free_remap(cpu_addr, size);
1310		__iommu_remove_mapping(dev, handle, size);
1311		__iommu_free_buffer(dev, pages, size);
1312	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313}
1314
1315/*
1316 * Map a part of the scatter-gather list into contiguous io address space
1317 */
1318static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1319			  size_t size, dma_addr_t *handle,
1320			  enum dma_data_direction dir)
1321{
1322	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1323	dma_addr_t iova, iova_base;
1324	int ret = 0;
1325	unsigned int count;
1326	struct scatterlist *s;
 
1327
1328	size = PAGE_ALIGN(size);
1329	*handle = DMA_ERROR_CODE;
1330
1331	iova_base = iova = __alloc_iova(mapping, size);
1332	if (iova == DMA_ERROR_CODE)
1333		return -ENOMEM;
1334
1335	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1336		phys_addr_t phys = page_to_phys(sg_page(s));
1337		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1338
1339		if (!arch_is_coherent())
1340			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1341
1342		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 
 
 
1343		if (ret < 0)
1344			goto fail;
1345		count += len >> PAGE_SHIFT;
1346		iova += len;
1347	}
1348	*handle = iova_base;
1349
1350	return 0;
1351fail:
1352	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1353	__free_iova(mapping, iova_base, size);
1354	return ret;
1355}
1356
1357/**
1358 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1359 * @dev: valid struct device pointer
1360 * @sg: list of buffers
1361 * @nents: number of buffers to map
1362 * @dir: DMA transfer direction
1363 *
1364 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1365 * The scatter gather list elements are merged together (if possible) and
1366 * tagged with the appropriate dma address and length. They are obtained via
1367 * sg_dma_{address,length}.
1368 */
1369int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1370		     enum dma_data_direction dir, struct dma_attrs *attrs)
1371{
1372	struct scatterlist *s = sg, *dma = sg, *start = sg;
1373	int i, count = 0;
1374	unsigned int offset = s->offset;
1375	unsigned int size = s->offset + s->length;
1376	unsigned int max = dma_get_max_seg_size(dev);
1377
1378	for (i = 1; i < nents; i++) {
1379		s = sg_next(s);
1380
1381		s->dma_address = DMA_ERROR_CODE;
1382		s->dma_length = 0;
1383
1384		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1385			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1386			    dir) < 0)
 
1387				goto bad_mapping;
1388
1389			dma->dma_address += offset;
1390			dma->dma_length = size - offset;
1391
1392			size = offset = s->offset;
1393			start = s;
1394			dma = sg_next(dma);
1395			count += 1;
1396		}
1397		size += s->length;
1398	}
1399	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
 
1400		goto bad_mapping;
1401
1402	dma->dma_address += offset;
1403	dma->dma_length = size - offset;
1404
1405	return count+1;
1406
1407bad_mapping:
1408	for_each_sg(sg, s, count, i)
1409		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1410	return 0;
 
 
1411}
1412
1413/**
1414 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1415 * @dev: valid struct device pointer
1416 * @sg: list of buffers
1417 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1418 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1419 *
1420 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1421 * rules concerning calls here are the same as for dma_unmap_single().
1422 */
1423void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1424			enum dma_data_direction dir, struct dma_attrs *attrs)
 
 
1425{
1426	struct scatterlist *s;
1427	int i;
1428
1429	for_each_sg(sg, s, nents, i) {
1430		if (sg_dma_len(s))
1431			__iommu_remove_mapping(dev, sg_dma_address(s),
1432					       sg_dma_len(s));
1433		if (!arch_is_coherent())
1434			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1435					      s->length, dir);
1436	}
1437}
1438
1439/**
1440 * arm_iommu_sync_sg_for_cpu
1441 * @dev: valid struct device pointer
1442 * @sg: list of buffers
1443 * @nents: number of buffers to map (returned from dma_map_sg)
1444 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1445 */
1446void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 
1447			int nents, enum dma_data_direction dir)
1448{
1449	struct scatterlist *s;
1450	int i;
1451
 
 
 
1452	for_each_sg(sg, s, nents, i)
1453		if (!arch_is_coherent())
1454			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1455
1456}
1457
1458/**
1459 * arm_iommu_sync_sg_for_device
1460 * @dev: valid struct device pointer
1461 * @sg: list of buffers
1462 * @nents: number of buffers to map (returned from dma_map_sg)
1463 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1464 */
1465void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
1466			int nents, enum dma_data_direction dir)
1467{
1468	struct scatterlist *s;
1469	int i;
1470
 
 
 
1471	for_each_sg(sg, s, nents, i)
1472		if (!arch_is_coherent())
1473			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1474}
1475
1476
1477/**
1478 * arm_iommu_map_page
1479 * @dev: valid struct device pointer
1480 * @page: page that buffer resides in
1481 * @offset: offset into page for start of buffer
1482 * @size: size of buffer to map
1483 * @dir: DMA transfer direction
1484 *
1485 * IOMMU aware version of arm_dma_map_page()
1486 */
1487static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1488	     unsigned long offset, size_t size, enum dma_data_direction dir,
1489	     struct dma_attrs *attrs)
1490{
1491	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1492	dma_addr_t dma_addr;
1493	int ret, len = PAGE_ALIGN(size + offset);
1494
1495	if (!arch_is_coherent())
1496		__dma_page_cpu_to_dev(page, offset, size, dir);
1497
1498	dma_addr = __alloc_iova(mapping, len);
1499	if (dma_addr == DMA_ERROR_CODE)
1500		return dma_addr;
1501
1502	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
 
 
 
1503	if (ret < 0)
1504		goto fail;
1505
1506	return dma_addr + offset;
1507fail:
1508	__free_iova(mapping, dma_addr, len);
1509	return DMA_ERROR_CODE;
1510}
1511
1512/**
1513 * arm_iommu_unmap_page
1514 * @dev: valid struct device pointer
1515 * @handle: DMA address of buffer
1516 * @size: size of buffer (same as passed to dma_map_page)
1517 * @dir: DMA transfer direction (same as passed to dma_map_page)
1518 *
1519 * IOMMU aware version of arm_dma_unmap_page()
1520 */
1521static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1522		size_t size, enum dma_data_direction dir,
1523		struct dma_attrs *attrs)
1524{
1525	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1526	dma_addr_t iova = handle & PAGE_MASK;
1527	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1528	int offset = handle & ~PAGE_MASK;
1529	int len = PAGE_ALIGN(size + offset);
1530
1531	if (!iova)
1532		return;
1533
1534	if (!arch_is_coherent())
 
1535		__dma_page_dev_to_cpu(page, offset, size, dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536
1537	iommu_unmap(mapping->domain, iova, len);
1538	__free_iova(mapping, iova, len);
1539}
1540
1541static void arm_iommu_sync_single_for_cpu(struct device *dev,
1542		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1543{
1544	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1545	dma_addr_t iova = handle & PAGE_MASK;
1546	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1547	unsigned int offset = handle & ~PAGE_MASK;
1548
1549	if (!iova)
1550		return;
1551
1552	if (!arch_is_coherent())
1553		__dma_page_dev_to_cpu(page, offset, size, dir);
1554}
1555
1556static void arm_iommu_sync_single_for_device(struct device *dev,
1557		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1558{
1559	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1560	dma_addr_t iova = handle & PAGE_MASK;
1561	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1562	unsigned int offset = handle & ~PAGE_MASK;
1563
1564	if (!iova)
1565		return;
1566
 
1567	__dma_page_cpu_to_dev(page, offset, size, dir);
1568}
1569
1570struct dma_map_ops iommu_ops = {
1571	.alloc		= arm_iommu_alloc_attrs,
1572	.free		= arm_iommu_free_attrs,
1573	.mmap		= arm_iommu_mmap_attrs,
 
1574
1575	.map_page		= arm_iommu_map_page,
1576	.unmap_page		= arm_iommu_unmap_page,
1577	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1578	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1579
1580	.map_sg			= arm_iommu_map_sg,
1581	.unmap_sg		= arm_iommu_unmap_sg,
1582	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1583	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
 
 
 
1584};
1585
1586/**
1587 * arm_iommu_create_mapping
1588 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1589 * @base: start address of the valid IO address space
1590 * @size: size of the valid IO address space
1591 * @order: accuracy of the IO addresses allocations
1592 *
1593 * Creates a mapping structure which holds information about used/unused
1594 * IO address ranges, which is required to perform memory allocation and
1595 * mapping with IOMMU aware functions.
1596 *
1597 * The client device need to be attached to the mapping with
1598 * arm_iommu_attach_device function.
1599 */
1600struct dma_iommu_mapping *
1601arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1602			 int order)
1603{
1604	unsigned int count = size >> (PAGE_SHIFT + order);
1605	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1606	struct dma_iommu_mapping *mapping;
 
1607	int err = -ENOMEM;
1608
1609	if (!count)
 
 
 
 
1610		return ERR_PTR(-EINVAL);
1611
 
 
 
 
 
1612	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1613	if (!mapping)
1614		goto err;
1615
1616	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617	if (!mapping->bitmap)
 
 
1618		goto err2;
1619
 
 
 
 
 
 
1620	mapping->base = base;
1621	mapping->bits = BITS_PER_BYTE * bitmap_size;
1622	mapping->order = order;
1623	spin_lock_init(&mapping->lock);
1624
1625	mapping->domain = iommu_domain_alloc(bus);
1626	if (!mapping->domain)
1627		goto err3;
 
 
1628
1629	kref_init(&mapping->kref);
1630	return mapping;
 
 
1631err3:
1632	kfree(mapping->bitmap);
1633err2:
1634	kfree(mapping);
1635err:
1636	return ERR_PTR(err);
1637}
 
1638
1639static void release_iommu_mapping(struct kref *kref)
1640{
 
1641	struct dma_iommu_mapping *mapping =
1642		container_of(kref, struct dma_iommu_mapping, kref);
1643
1644	iommu_domain_free(mapping->domain);
1645	kfree(mapping->bitmap);
 
 
1646	kfree(mapping);
1647}
1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1650{
1651	if (mapping)
1652		kref_put(&mapping->kref, release_iommu_mapping);
1653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 *	arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device,
1662 * this replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version. More than one client might be attached to
1664 * the same io address space mapping.
 
 
1665 */
1666int arm_iommu_attach_device(struct device *dev,
1667			    struct dma_iommu_mapping *mapping)
1668{
1669	int err;
1670
1671	err = iommu_attach_device(mapping->domain, dev);
1672	if (err)
1673		return err;
1674
1675	kref_get(&mapping->kref);
1676	dev->archdata.mapping = mapping;
1677	set_dma_ops(dev, &iommu_ops);
1678
1679	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1680	return 0;
1681}
 
1682
1683#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/page.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
 
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/xen/xen-ops.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
  58
  59#define NORMAL	    0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109	/*
 110	 * Ensure that the allocated pages are zeroed, and that any data
 111	 * lurking in the kernel direct-mapped region is invalidated.
 112	 */
 113	if (PageHighMem(page)) {
 114		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 115		phys_addr_t end = base + size;
 116		while (size > 0) {
 117			void *ptr = kmap_atomic(page);
 118			memset(ptr, 0, PAGE_SIZE);
 119			if (coherent_flag != COHERENT)
 120				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 121			kunmap_atomic(ptr);
 122			page++;
 123			size -= PAGE_SIZE;
 124		}
 125		if (coherent_flag != COHERENT)
 126			outer_flush_range(base, end);
 127	} else {
 128		void *ptr = page_address(page);
 129		memset(ptr, 0, size);
 130		if (coherent_flag != COHERENT) {
 131			dmac_flush_range(ptr, ptr + size);
 132			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 133		}
 134	}
 135}
 136
 137/*
 138 * Allocate a DMA buffer for 'dev' of size 'size' using the
 139 * specified gfp mask.  Note that 'size' must be page aligned.
 140 */
 141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 142				       gfp_t gfp, int coherent_flag)
 143{
 144	unsigned long order = get_order(size);
 145	struct page *page, *p, *e;
 146
 147	page = alloc_pages(gfp, order);
 148	if (!page)
 149		return NULL;
 150
 151	/*
 152	 * Now split the huge page and free the excess pages
 153	 */
 154	split_page(page, order);
 155	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 156		__free_page(p);
 157
 158	__dma_clear_buffer(page, size, coherent_flag);
 159
 160	return page;
 161}
 162
 163/*
 164 * Free a DMA buffer.  'size' must be page aligned.
 165 */
 166static void __dma_free_buffer(struct page *page, size_t size)
 167{
 168	struct page *e = page + (size >> PAGE_SHIFT);
 169
 170	while (page < e) {
 171		__free_page(page);
 172		page++;
 173	}
 174}
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
 177				     pgprot_t prot, struct page **ret_page,
 178				     const void *caller, bool want_vaddr,
 179				     int coherent_flag, gfp_t gfp);
 180
 181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 182				 pgprot_t prot, struct page **ret_page,
 183				 const void *caller, bool want_vaddr);
 
 184
 185#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 186static struct gen_pool *atomic_pool __ro_after_init;
 187
 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 189
 190static int __init early_coherent_pool(char *p)
 191{
 192	atomic_pool_size = memparse(p, &p);
 193	return 0;
 194}
 195early_param("coherent_pool", early_coherent_pool);
 196
 197/*
 198 * Initialise the coherent pool for atomic allocations.
 199 */
 200static int __init atomic_pool_init(void)
 201{
 202	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 203	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 204	struct page *page;
 205	void *ptr;
 206
 207	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 208	if (!atomic_pool)
 209		goto out;
 210	/*
 211	 * The atomic pool is only used for non-coherent allocations
 212	 * so we must pass NORMAL for coherent_flag.
 213	 */
 214	if (dev_get_cma_area(NULL))
 215		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 216				      &page, atomic_pool_init, true, NORMAL,
 217				      GFP_KERNEL);
 218	else
 219		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 220					   &page, atomic_pool_init, true);
 221	if (ptr) {
 222		int ret;
 223
 224		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 225					page_to_phys(page),
 226					atomic_pool_size, -1);
 227		if (ret)
 228			goto destroy_genpool;
 229
 230		gen_pool_set_algo(atomic_pool,
 231				gen_pool_first_fit_order_align,
 232				NULL);
 233		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 234		       atomic_pool_size / 1024);
 235		return 0;
 236	}
 237
 238destroy_genpool:
 239	gen_pool_destroy(atomic_pool);
 240	atomic_pool = NULL;
 241out:
 242	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 243	       atomic_pool_size / 1024);
 244	return -ENOMEM;
 245}
 246/*
 247 * CMA is activated by core_initcall, so we must be called after it.
 248 */
 249postcore_initcall(atomic_pool_init);
 250
 251#ifdef CONFIG_CMA_AREAS
 252struct dma_contig_early_reserve {
 253	phys_addr_t base;
 254	unsigned long size;
 255};
 256
 257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 258
 259static int dma_mmu_remap_num __initdata;
 260
 261#ifdef CONFIG_DMA_CMA
 262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 263{
 264	dma_mmu_remap[dma_mmu_remap_num].base = base;
 265	dma_mmu_remap[dma_mmu_remap_num].size = size;
 266	dma_mmu_remap_num++;
 267}
 268#endif
 269
 270void __init dma_contiguous_remap(void)
 271{
 272	int i;
 273	for (i = 0; i < dma_mmu_remap_num; i++) {
 274		phys_addr_t start = dma_mmu_remap[i].base;
 275		phys_addr_t end = start + dma_mmu_remap[i].size;
 276		struct map_desc map;
 277		unsigned long addr;
 278
 279		if (end > arm_lowmem_limit)
 280			end = arm_lowmem_limit;
 281		if (start >= end)
 282			continue;
 283
 284		map.pfn = __phys_to_pfn(start);
 285		map.virtual = __phys_to_virt(start);
 286		map.length = end - start;
 287		map.type = MT_MEMORY_DMA_READY;
 288
 289		/*
 290		 * Clear previous low-memory mapping to ensure that the
 291		 * TLB does not see any conflicting entries, then flush
 292		 * the TLB of the old entries before creating new mappings.
 293		 *
 294		 * This ensures that any speculatively loaded TLB entries
 295		 * (even though they may be rare) can not cause any problems,
 296		 * and ensures that this code is architecturally compliant.
 297		 */
 298		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 299		     addr += PMD_SIZE)
 300			pmd_clear(pmd_off_k(addr));
 301
 302		flush_tlb_kernel_range(__phys_to_virt(start),
 303				       __phys_to_virt(end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304
 305		iotable_init(&map, 1);
 
 
 
 
 306	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307}
 308#endif
 309
 310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 311{
 312	struct page *page = virt_to_page((void *)addr);
 313	pgprot_t prot = *(pgprot_t *)data;
 314
 315	set_pte_ext(pte, mk_pte(page, prot), 0);
 316	return 0;
 317}
 318
 319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 320{
 321	unsigned long start = (unsigned long) page_address(page);
 322	unsigned end = start + size;
 323
 324	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 
 325	flush_tlb_kernel_range(start, end);
 326}
 327
 328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 329				 pgprot_t prot, struct page **ret_page,
 330				 const void *caller, bool want_vaddr)
 331{
 332	struct page *page;
 333	void *ptr = NULL;
 334	/*
 335	 * __alloc_remap_buffer is only called when the device is
 336	 * non-coherent
 337	 */
 338	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 339	if (!page)
 340		return NULL;
 341	if (!want_vaddr)
 342		goto out;
 343
 344	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 345	if (!ptr) {
 346		__dma_free_buffer(page, size);
 347		return NULL;
 348	}
 349
 350 out:
 351	*ret_page = page;
 352	return ptr;
 353}
 354
 355static void *__alloc_from_pool(size_t size, struct page **ret_page)
 
 356{
 357	unsigned long val;
 358	void *ptr = NULL;
 359
 360	if (!atomic_pool) {
 361		WARN(1, "coherent pool not initialised!\n");
 
 
 362		return NULL;
 363	}
 364
 365	val = gen_pool_alloc(atomic_pool, size);
 366	if (val) {
 367		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 368
 369		*ret_page = phys_to_page(phys);
 370		ptr = (void *)val;
 
 
 
 
 
 
 371	}
 372
 373	return ptr;
 374}
 375
 376static bool __in_atomic_pool(void *start, size_t size)
 377{
 378	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 379}
 
 380
 381static int __free_from_pool(void *start, size_t size)
 382{
 383	if (!__in_atomic_pool(start, size))
 384		return 0;
 385
 386	gen_pool_free(atomic_pool, (unsigned long)start, size);
 387
 
 
 
 
 
 
 
 
 388	return 1;
 389}
 390
 391static void *__alloc_from_contiguous(struct device *dev, size_t size,
 392				     pgprot_t prot, struct page **ret_page,
 393				     const void *caller, bool want_vaddr,
 394				     int coherent_flag, gfp_t gfp)
 395{
 396	unsigned long order = get_order(size);
 397	size_t count = size >> PAGE_SHIFT;
 398	struct page *page;
 399	void *ptr = NULL;
 400
 401	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 402	if (!page)
 403		return NULL;
 404
 405	__dma_clear_buffer(page, size, coherent_flag);
 406
 407	if (!want_vaddr)
 408		goto out;
 409
 410	if (PageHighMem(page)) {
 411		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 412		if (!ptr) {
 413			dma_release_from_contiguous(dev, page, count);
 414			return NULL;
 415		}
 416	} else {
 417		__dma_remap(page, size, prot);
 418		ptr = page_address(page);
 419	}
 420
 421 out:
 422	*ret_page = page;
 423	return ptr;
 424}
 425
 426static void __free_from_contiguous(struct device *dev, struct page *page,
 427				   void *cpu_addr, size_t size, bool want_vaddr)
 428{
 429	if (want_vaddr) {
 430		if (PageHighMem(page))
 431			dma_common_free_remap(cpu_addr, size);
 432		else
 433			__dma_remap(page, size, PAGE_KERNEL);
 434	}
 435	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 436}
 437
 438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 439{
 440	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 441			pgprot_writecombine(prot) :
 442			pgprot_dmacoherent(prot);
 443	return prot;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 447				   struct page **ret_page)
 448{
 449	struct page *page;
 450	/* __alloc_simple_buffer is only called when the device is coherent */
 451	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 452	if (!page)
 453		return NULL;
 454
 455	*ret_page = page;
 456	return page_address(page);
 457}
 458
 459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 460				    struct page **ret_page)
 461{
 462	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 463				     ret_page);
 464}
 465
 466static void simple_allocator_free(struct arm_dma_free_args *args)
 467{
 468	__dma_free_buffer(args->page, args->size);
 469}
 470
 471static struct arm_dma_allocator simple_allocator = {
 472	.alloc = simple_allocator_alloc,
 473	.free = simple_allocator_free,
 474};
 475
 476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 477				 struct page **ret_page)
 478{
 479	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 480				       ret_page, args->caller,
 481				       args->want_vaddr, args->coherent_flag,
 482				       args->gfp);
 483}
 484
 485static void cma_allocator_free(struct arm_dma_free_args *args)
 486{
 487	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 488			       args->size, args->want_vaddr);
 489}
 490
 491static struct arm_dma_allocator cma_allocator = {
 492	.alloc = cma_allocator_alloc,
 493	.free = cma_allocator_free,
 494};
 495
 496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 497				  struct page **ret_page)
 498{
 499	return __alloc_from_pool(args->size, ret_page);
 500}
 501
 502static void pool_allocator_free(struct arm_dma_free_args *args)
 503{
 504	__free_from_pool(args->cpu_addr, args->size);
 505}
 506
 507static struct arm_dma_allocator pool_allocator = {
 508	.alloc = pool_allocator_alloc,
 509	.free = pool_allocator_free,
 510};
 511
 512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 513				   struct page **ret_page)
 514{
 515	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 516				    args->prot, ret_page, args->caller,
 517				    args->want_vaddr);
 518}
 519
 520static void remap_allocator_free(struct arm_dma_free_args *args)
 521{
 522	if (args->want_vaddr)
 523		dma_common_free_remap(args->cpu_addr, args->size);
 524
 525	__dma_free_buffer(args->page, args->size);
 526}
 527
 528static struct arm_dma_allocator remap_allocator = {
 529	.alloc = remap_allocator_alloc,
 530	.free = remap_allocator_free,
 531};
 532
 533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 534			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 535			 unsigned long attrs, const void *caller)
 536{
 537	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 538	struct page *page = NULL;
 539	void *addr;
 540	bool allowblock, cma;
 541	struct arm_dma_buffer *buf;
 542	struct arm_dma_alloc_args args = {
 543		.dev = dev,
 544		.size = PAGE_ALIGN(size),
 545		.gfp = gfp,
 546		.prot = prot,
 547		.caller = caller,
 548		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 549		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 550	};
 551
 552#ifdef CONFIG_DMA_API_DEBUG
 553	u64 limit = (mask + 1) & ~mask;
 554	if (limit && size >= limit) {
 555		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 556			size, mask);
 557		return NULL;
 558	}
 559#endif
 560
 561	buf = kzalloc(sizeof(*buf),
 562		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 563	if (!buf)
 564		return NULL;
 565
 566	if (mask < 0xffffffffULL)
 567		gfp |= GFP_DMA;
 568
 569	args.gfp = gfp;
 
 
 
 
 
 
 
 
 
 
 570
 571	*handle = DMA_MAPPING_ERROR;
 572	allowblock = gfpflags_allow_blocking(gfp);
 573	cma = allowblock ? dev_get_cma_area(dev) : NULL;
 574
 575	if (cma)
 576		buf->allocator = &cma_allocator;
 577	else if (is_coherent)
 578		buf->allocator = &simple_allocator;
 579	else if (allowblock)
 580		buf->allocator = &remap_allocator;
 581	else
 582		buf->allocator = &pool_allocator;
 583
 584	addr = buf->allocator->alloc(&args, &page);
 
 585
 586	if (page) {
 587		unsigned long flags;
 588
 589		*handle = phys_to_dma(dev, page_to_phys(page));
 590		buf->virt = args.want_vaddr ? addr : page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591
 592		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 593		list_add(&buf->list, &arm_dma_bufs);
 594		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 595	} else {
 596		kfree(buf);
 597	}
 598
 599	return args.want_vaddr ? addr : page;
 600}
 601
 602/*
 603 * Free a buffer as defined by the above mapping.
 604 */
 605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 606			   dma_addr_t handle, unsigned long attrs,
 607			   bool is_coherent)
 608{
 609	struct page *page = phys_to_page(dma_to_phys(dev, handle));
 610	struct arm_dma_buffer *buf;
 611	struct arm_dma_free_args args = {
 612		.dev = dev,
 613		.size = PAGE_ALIGN(size),
 614		.cpu_addr = cpu_addr,
 615		.page = page,
 616		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 617	};
 618
 619	buf = arm_dma_buffer_find(cpu_addr);
 620	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 621		return;
 622
 623	buf->allocator->free(&args);
 624	kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625}
 626
 627static void dma_cache_maint_page(struct page *page, unsigned long offset,
 628	size_t size, enum dma_data_direction dir,
 629	void (*op)(const void *, size_t, int))
 630{
 631	unsigned long pfn;
 632	size_t left = size;
 633
 634	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 635	offset %= PAGE_SIZE;
 636
 637	/*
 638	 * A single sg entry may refer to multiple physically contiguous
 639	 * pages.  But we still need to process highmem pages individually.
 640	 * If highmem is not configured then the bulk of this loop gets
 641	 * optimized out.
 642	 */
 
 643	do {
 644		size_t len = left;
 645		void *vaddr;
 646
 647		page = pfn_to_page(pfn);
 648
 649		if (PageHighMem(page)) {
 650			if (len + offset > PAGE_SIZE)
 
 
 
 
 651				len = PAGE_SIZE - offset;
 652
 653			if (cache_is_vipt_nonaliasing()) {
 
 
 
 
 
 
 654				vaddr = kmap_atomic(page);
 655				op(vaddr + offset, len, dir);
 656				kunmap_atomic(vaddr);
 657			} else {
 658				vaddr = kmap_high_get(page);
 659				if (vaddr) {
 660					op(vaddr + offset, len, dir);
 661					kunmap_high(page);
 662				}
 663			}
 664		} else {
 665			vaddr = page_address(page) + offset;
 666			op(vaddr, len, dir);
 667		}
 668		offset = 0;
 669		pfn++;
 670		left -= len;
 671	} while (left);
 672}
 673
 674/*
 675 * Make an area consistent for devices.
 676 * Note: Drivers should NOT use this function directly.
 
 677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 678 */
 679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 680	size_t size, enum dma_data_direction dir)
 681{
 682	phys_addr_t paddr;
 683
 684	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 685
 686	paddr = page_to_phys(page) + off;
 687	if (dir == DMA_FROM_DEVICE) {
 688		outer_inv_range(paddr, paddr + size);
 689	} else {
 690		outer_clean_range(paddr, paddr + size);
 691	}
 692	/* FIXME: non-speculating: flush on bidirectional mappings? */
 693}
 694
 695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 696	size_t size, enum dma_data_direction dir)
 697{
 698	phys_addr_t paddr = page_to_phys(page) + off;
 699
 700	/* FIXME: non-speculating: not required */
 701	/* in any case, don't bother invalidating if DMA to device */
 702	if (dir != DMA_TO_DEVICE) {
 703		outer_inv_range(paddr, paddr + size);
 704
 705		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 706	}
 707
 708	/*
 709	 * Mark the D-cache clean for these pages to avoid extra flushing.
 710	 */
 711	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 712		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
 713		size_t offset = offset_in_folio(folio, paddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714
 715		for (;;) {
 716			size_t sz = folio_size(folio) - offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717
 718			if (size < sz)
 719				break;
 720			if (!offset)
 721				set_bit(PG_dcache_clean, &folio->flags);
 722			offset = 0;
 723			size -= sz;
 724			if (!size)
 725				break;
 726			folio = folio_next(folio);
 727		}
 728	}
 729}
 730
 731#ifdef CONFIG_ARM_DMA_USE_IOMMU
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
 734{
 735	int prot = 0;
 
 
 
 736
 737	if (attrs & DMA_ATTR_PRIVILEGED)
 738		prot |= IOMMU_PRIV;
 
 
 739
 740	switch (dir) {
 741	case DMA_BIDIRECTIONAL:
 742		return prot | IOMMU_READ | IOMMU_WRITE;
 743	case DMA_TO_DEVICE:
 744		return prot | IOMMU_READ;
 745	case DMA_FROM_DEVICE:
 746		return prot | IOMMU_WRITE;
 747	default:
 748		return prot;
 749	}
 750}
 
 
 
 751
 752/* IOMMU */
 753
 754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
 755
 756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 757				      size_t size)
 758{
 759	unsigned int order = get_order(size);
 760	unsigned int align = 0;
 761	unsigned int count, start;
 762	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 763	unsigned long flags;
 764	dma_addr_t iova;
 765	int i;
 766
 767	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 768		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 769
 770	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 771	align = (1 << order) - 1;
 772
 773	spin_lock_irqsave(&mapping->lock, flags);
 774	for (i = 0; i < mapping->nr_bitmaps; i++) {
 775		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 776				mapping->bits, 0, count, align);
 777
 778		if (start > mapping->bits)
 779			continue;
 780
 781		bitmap_set(mapping->bitmaps[i], start, count);
 782		break;
 783	}
 784
 785	/*
 786	 * No unused range found. Try to extend the existing mapping
 787	 * and perform a second attempt to reserve an IO virtual
 788	 * address range of size bytes.
 789	 */
 790	if (i == mapping->nr_bitmaps) {
 791		if (extend_iommu_mapping(mapping)) {
 792			spin_unlock_irqrestore(&mapping->lock, flags);
 793			return DMA_MAPPING_ERROR;
 794		}
 795
 796		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 797				mapping->bits, 0, count, align);
 798
 799		if (start > mapping->bits) {
 800			spin_unlock_irqrestore(&mapping->lock, flags);
 801			return DMA_MAPPING_ERROR;
 802		}
 803
 804		bitmap_set(mapping->bitmaps[i], start, count);
 805	}
 806	spin_unlock_irqrestore(&mapping->lock, flags);
 807
 808	iova = mapping->base + (mapping_size * i);
 809	iova += start << PAGE_SHIFT;
 810
 811	return iova;
 812}
 813
 814static inline void __free_iova(struct dma_iommu_mapping *mapping,
 815			       dma_addr_t addr, size_t size)
 816{
 817	unsigned int start, count;
 818	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 
 
 819	unsigned long flags;
 820	dma_addr_t bitmap_base;
 821	u32 bitmap_index;
 822
 823	if (!size)
 824		return;
 825
 826	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
 827	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
 828
 829	bitmap_base = mapping->base + mapping_size * bitmap_index;
 830
 831	start = (addr - bitmap_base) >>	PAGE_SHIFT;
 832
 833	if (addr + size > bitmap_base + mapping_size) {
 834		/*
 835		 * The address range to be freed reaches into the iova
 836		 * range of the next bitmap. This should not happen as
 837		 * we don't allow this in __alloc_iova (at the
 838		 * moment).
 839		 */
 840		BUG();
 841	} else
 842		count = size >> PAGE_SHIFT;
 843
 844	spin_lock_irqsave(&mapping->lock, flags);
 845	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
 846	spin_unlock_irqrestore(&mapping->lock, flags);
 847}
 848
 849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
 850static const int iommu_order_array[] = { 9, 8, 4, 0 };
 851
 852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 853					  gfp_t gfp, unsigned long attrs,
 854					  int coherent_flag)
 855{
 856	struct page **pages;
 857	int count = size >> PAGE_SHIFT;
 858	int array_size = count * sizeof(struct page *);
 859	int i = 0;
 860	int order_idx = 0;
 861
 862	pages = kvzalloc(array_size, GFP_KERNEL);
 
 
 
 863	if (!pages)
 864		return NULL;
 865
 866	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
 867	{
 868		unsigned long order = get_order(size);
 869		struct page *page;
 870
 871		page = dma_alloc_from_contiguous(dev, count, order,
 872						 gfp & __GFP_NOWARN);
 873		if (!page)
 874			goto error;
 875
 876		__dma_clear_buffer(page, size, coherent_flag);
 877
 878		for (i = 0; i < count; i++)
 879			pages[i] = page + i;
 880
 881		return pages;
 882	}
 883
 884	/* Go straight to 4K chunks if caller says it's OK. */
 885	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 886		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
 887
 888	/*
 889	 * IOMMU can map any pages, so himem can also be used here
 890	 */
 891	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 892
 893	while (count) {
 894		int j, order;
 895
 896		order = iommu_order_array[order_idx];
 
 
 
 
 897
 898		/* Drop down when we get small */
 899		if (__fls(count) < order) {
 900			order_idx++;
 901			continue;
 902		}
 903
 904		if (order) {
 905			/* See if it's easy to allocate a high-order chunk */
 906			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
 907
 908			/* Go down a notch at first sign of pressure */
 909			if (!pages[i]) {
 910				order_idx++;
 911				continue;
 912			}
 913		} else {
 914			pages[i] = alloc_pages(gfp, 0);
 915			if (!pages[i])
 916				goto error;
 917		}
 918
 919		if (order) {
 920			split_page(pages[i], order);
 921			j = 1 << order;
 922			while (--j)
 923				pages[i + j] = pages[i] + j;
 924		}
 925
 926		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
 927		i += 1 << order;
 928		count -= 1 << order;
 929	}
 930
 931	return pages;
 932error:
 933	while (i--)
 934		if (pages[i])
 935			__free_pages(pages[i], 0);
 936	kvfree(pages);
 
 
 
 937	return NULL;
 938}
 939
 940static int __iommu_free_buffer(struct device *dev, struct page **pages,
 941			       size_t size, unsigned long attrs)
 942{
 943	int count = size >> PAGE_SHIFT;
 
 944	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945
 946	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
 947		dma_release_from_contiguous(dev, pages[0], count);
 948	} else {
 949		for (i = 0; i < count; i++)
 950			if (pages[i])
 951				__free_pages(pages[i], 0);
 952	}
 953
 954	kvfree(pages);
 955	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 957
 958/*
 959 * Create a mapping in device IO address space for specified pages
 960 */
 961static dma_addr_t
 962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
 963		       unsigned long attrs)
 964{
 965	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
 966	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 967	dma_addr_t dma_addr, iova;
 968	int i;
 969
 970	dma_addr = __alloc_iova(mapping, size);
 971	if (dma_addr == DMA_MAPPING_ERROR)
 972		return dma_addr;
 973
 974	iova = dma_addr;
 975	for (i = 0; i < count; ) {
 976		int ret;
 977
 978		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 979		phys_addr_t phys = page_to_phys(pages[i]);
 980		unsigned int len, j;
 981
 982		for (j = i + 1; j < count; j++, next_pfn++)
 983			if (page_to_pfn(pages[j]) != next_pfn)
 984				break;
 985
 986		len = (j - i) << PAGE_SHIFT;
 987		ret = iommu_map(mapping->domain, iova, phys, len,
 988				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
 989				GFP_KERNEL);
 990		if (ret < 0)
 991			goto fail;
 992		iova += len;
 993		i = j;
 994	}
 995	return dma_addr;
 996fail:
 997	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 998	__free_iova(mapping, dma_addr, size);
 999	return DMA_MAPPING_ERROR;
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
1004	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006	/*
1007	 * add optional in-page offset from iova to size and align
1008	 * result to page size
1009	 */
1010	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011	iova &= PAGE_MASK;
1012
1013	iommu_unmap(mapping->domain, iova, size);
1014	__free_iova(mapping, iova, size);
1015	return 0;
1016}
1017
1018static struct page **__atomic_get_pages(void *addr)
1019{
1020	struct page *page;
1021	phys_addr_t phys;
1022
1023	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024	page = phys_to_page(phys);
1025
1026	return (struct page **)page;
1027}
1028
1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030{
1031	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032		return __atomic_get_pages(cpu_addr);
1033
1034	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035		return cpu_addr;
1036
1037	return dma_common_find_pages(cpu_addr);
1038}
1039
1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041				  dma_addr_t *handle, int coherent_flag,
1042				  unsigned long attrs)
1043{
1044	struct page *page;
1045	void *addr;
1046
1047	if (coherent_flag  == COHERENT)
1048		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049	else
1050		addr = __alloc_from_pool(size, &page);
1051	if (!addr)
1052		return NULL;
1053
1054	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1055	if (*handle == DMA_MAPPING_ERROR)
1056		goto err_mapping;
1057
1058	return addr;
1059
1060err_mapping:
1061	__free_from_pool(addr, size);
1062	return NULL;
1063}
1064
1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066			dma_addr_t handle, size_t size, int coherent_flag)
1067{
1068	__iommu_remove_mapping(dev, handle, size);
1069	if (coherent_flag == COHERENT)
1070		__dma_free_buffer(virt_to_page(cpu_addr), size);
1071	else
1072		__free_from_pool(cpu_addr, size);
1073}
1074
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077{
1078	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079	struct page **pages;
1080	void *addr = NULL;
1081	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083	*handle = DMA_MAPPING_ERROR;
1084	size = PAGE_ALIGN(size);
1085
1086	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1087		return __iommu_alloc_simple(dev, size, gfp, handle,
1088					    coherent_flag, attrs);
1089
1090	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091	if (!pages)
1092		return NULL;
1093
1094	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1095	if (*handle == DMA_MAPPING_ERROR)
1096		goto err_buffer;
1097
1098	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099		return pages;
1100
1101	addr = dma_common_pages_remap(pages, size, prot,
1102				   __builtin_return_address(0));
1103	if (!addr)
1104		goto err_mapping;
1105
1106	return addr;
1107
1108err_mapping:
1109	__iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
1111	__iommu_free_buffer(dev, pages, size, attrs);
1112	return NULL;
1113}
1114
1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117		    unsigned long attrs)
1118{
1119	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121	int err;
 
1122
1123	if (!pages)
1124		return -ENXIO;
1125
1126	if (vma->vm_pgoff >= nr_pages)
1127		return -ENXIO;
 
1128
1129	if (!dev->dma_coherent)
1130		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132	err = vm_map_pages(vma, pages, nr_pages);
1133	if (err)
1134		pr_err("Remapping memory failed: %d\n", err);
 
 
1135
1136	return err;
 
 
 
 
1137}
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144	dma_addr_t handle, unsigned long attrs)
1145{
1146	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147	struct page **pages;
1148	size = PAGE_ALIGN(size);
1149
1150	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152		return;
 
 
 
1153	}
1154
1155	pages = __iommu_get_pages(cpu_addr, attrs);
1156	if (!pages) {
1157		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158		return;
1159	}
1160
1161	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162		dma_common_free_remap(cpu_addr, size);
1163
1164	__iommu_remove_mapping(dev, handle, size);
1165	__iommu_free_buffer(dev, pages, size, attrs);
1166}
1167
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169				 void *cpu_addr, dma_addr_t dma_addr,
1170				 size_t size, unsigned long attrs)
1171{
1172	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175	if (!pages)
1176		return -ENXIO;
1177
1178	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179					 GFP_KERNEL);
1180}
1181
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186			  size_t size, dma_addr_t *handle,
1187			  enum dma_data_direction dir, unsigned long attrs)
1188{
1189	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190	dma_addr_t iova, iova_base;
1191	int ret = 0;
1192	unsigned int count;
1193	struct scatterlist *s;
1194	int prot;
1195
1196	size = PAGE_ALIGN(size);
1197	*handle = DMA_MAPPING_ERROR;
1198
1199	iova_base = iova = __alloc_iova(mapping, size);
1200	if (iova == DMA_MAPPING_ERROR)
1201		return -ENOMEM;
1202
1203	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204		phys_addr_t phys = page_to_phys(sg_page(s));
1205		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210		prot = __dma_info_to_prot(dir, attrs);
1211
1212		ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213				GFP_KERNEL);
1214		if (ret < 0)
1215			goto fail;
1216		count += len >> PAGE_SHIFT;
1217		iova += len;
1218	}
1219	*handle = iova_base;
1220
1221	return 0;
1222fail:
1223	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224	__free_iova(mapping, iova_base, size);
1225	return ret;
1226}
1227
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241		int nents, enum dma_data_direction dir, unsigned long attrs)
1242{
1243	struct scatterlist *s = sg, *dma = sg, *start = sg;
1244	int i, count = 0, ret;
1245	unsigned int offset = s->offset;
1246	unsigned int size = s->offset + s->length;
1247	unsigned int max = dma_get_max_seg_size(dev);
1248
1249	for (i = 1; i < nents; i++) {
1250		s = sg_next(s);
1251
 
1252		s->dma_length = 0;
1253
1254		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255			ret = __map_sg_chunk(dev, start, size,
1256					     &dma->dma_address, dir, attrs);
1257			if (ret < 0)
1258				goto bad_mapping;
1259
1260			dma->dma_address += offset;
1261			dma->dma_length = size - offset;
1262
1263			size = offset = s->offset;
1264			start = s;
1265			dma = sg_next(dma);
1266			count += 1;
1267		}
1268		size += s->length;
1269	}
1270	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271	if (ret < 0)
1272		goto bad_mapping;
1273
1274	dma->dma_address += offset;
1275	dma->dma_length = size - offset;
1276
1277	return count+1;
1278
1279bad_mapping:
1280	for_each_sg(sg, s, count, i)
1281		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282	if (ret == -ENOMEM)
1283		return ret;
1284	return -EINVAL;
1285}
1286
1287/**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
1296 */
1297static void arm_iommu_unmap_sg(struct device *dev,
1298			       struct scatterlist *sg, int nents,
1299			       enum dma_data_direction dir,
1300			       unsigned long attrs)
1301{
1302	struct scatterlist *s;
1303	int i;
1304
1305	for_each_sg(sg, s, nents, i) {
1306		if (sg_dma_len(s))
1307			__iommu_remove_mapping(dev, sg_dma_address(s),
1308					       sg_dma_len(s));
1309		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1310			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1311					      s->length, dir);
1312	}
1313}
1314
1315/**
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323			struct scatterlist *sg,
1324			int nents, enum dma_data_direction dir)
1325{
1326	struct scatterlist *s;
1327	int i;
1328
1329	if (dev->dma_coherent)
1330		return;
1331
1332	for_each_sg(sg, s, nents, i)
1333		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
 
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345			struct scatterlist *sg,
1346			int nents, enum dma_data_direction dir)
1347{
1348	struct scatterlist *s;
1349	int i;
1350
1351	if (dev->dma_coherent)
1352		return;
1353
1354	for_each_sg(sg, s, nents, i)
1355		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
 
1356}
1357
 
1358/**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369	     unsigned long offset, size_t size, enum dma_data_direction dir,
1370	     unsigned long attrs)
1371{
1372	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373	dma_addr_t dma_addr;
1374	int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377		__dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379	dma_addr = __alloc_iova(mapping, len);
1380	if (dma_addr == DMA_MAPPING_ERROR)
1381		return dma_addr;
1382
1383	prot = __dma_info_to_prot(dir, attrs);
1384
1385	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386			prot, GFP_KERNEL);
1387	if (ret < 0)
1388		goto fail;
1389
1390	return dma_addr + offset;
1391fail:
1392	__free_iova(mapping, dma_addr, len);
1393	return DMA_MAPPING_ERROR;
1394}
1395
1396/**
1397 * arm_iommu_unmap_page
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1407{
1408	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409	dma_addr_t iova = handle & PAGE_MASK;
1410	struct page *page;
1411	int offset = handle & ~PAGE_MASK;
1412	int len = PAGE_ALIGN(size + offset);
1413
1414	if (!iova)
1415		return;
1416
1417	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419		__dma_page_dev_to_cpu(page, offset, size, dir);
1420	}
1421
1422	iommu_unmap(mapping->domain, iova, len);
1423	__free_iova(mapping, iova, len);
1424}
1425
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434		phys_addr_t phys_addr, size_t size,
1435		enum dma_data_direction dir, unsigned long attrs)
1436{
1437	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438	dma_addr_t dma_addr;
1439	int ret, prot;
1440	phys_addr_t addr = phys_addr & PAGE_MASK;
1441	unsigned int offset = phys_addr & ~PAGE_MASK;
1442	size_t len = PAGE_ALIGN(size + offset);
1443
1444	dma_addr = __alloc_iova(mapping, len);
1445	if (dma_addr == DMA_MAPPING_ERROR)
1446		return dma_addr;
1447
1448	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451	if (ret < 0)
1452		goto fail;
1453
1454	return dma_addr + offset;
1455fail:
1456	__free_iova(mapping, dma_addr, len);
1457	return DMA_MAPPING_ERROR;
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468		size_t size, enum dma_data_direction dir,
1469		unsigned long attrs)
1470{
1471	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472	dma_addr_t iova = dma_handle & PAGE_MASK;
1473	unsigned int offset = dma_handle & ~PAGE_MASK;
1474	size_t len = PAGE_ALIGN(size + offset);
1475
1476	if (!iova)
1477		return;
1478
1479	iommu_unmap(mapping->domain, iova, len);
1480	__free_iova(mapping, iova, len);
1481}
1482
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
1486	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487	dma_addr_t iova = handle & PAGE_MASK;
1488	struct page *page;
1489	unsigned int offset = handle & ~PAGE_MASK;
1490
1491	if (dev->dma_coherent || !iova)
1492		return;
1493
1494	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495	__dma_page_dev_to_cpu(page, offset, size, dir);
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
1501	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502	dma_addr_t iova = handle & PAGE_MASK;
1503	struct page *page;
1504	unsigned int offset = handle & ~PAGE_MASK;
1505
1506	if (dev->dma_coherent || !iova)
1507		return;
1508
1509	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510	__dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
1513static const struct dma_map_ops iommu_ops = {
1514	.alloc		= arm_iommu_alloc_attrs,
1515	.free		= arm_iommu_free_attrs,
1516	.mmap		= arm_iommu_mmap_attrs,
1517	.get_sgtable	= arm_iommu_get_sgtable,
1518
1519	.map_page		= arm_iommu_map_page,
1520	.unmap_page		= arm_iommu_unmap_page,
1521	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1522	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1523
1524	.map_sg			= arm_iommu_map_sg,
1525	.unmap_sg		= arm_iommu_unmap_sg,
1526	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1527	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1528
1529	.map_resource		= arm_iommu_map_resource,
1530	.unmap_resource		= arm_iommu_unmap_resource,
1531};
1532
1533/**
1534 * arm_iommu_create_mapping
1535 * @dev: pointer to the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
 
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
1547arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size)
 
1548{
1549	unsigned int bits = size >> PAGE_SHIFT;
1550	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551	struct dma_iommu_mapping *mapping;
1552	int extensions = 1;
1553	int err = -ENOMEM;
1554
1555	/* currently only 32-bit DMA address space is supported */
1556	if (size > DMA_BIT_MASK(32) + 1)
1557		return ERR_PTR(-ERANGE);
1558
1559	if (!bitmap_size)
1560		return ERR_PTR(-EINVAL);
1561
1562	if (bitmap_size > PAGE_SIZE) {
1563		extensions = bitmap_size / PAGE_SIZE;
1564		bitmap_size = PAGE_SIZE;
1565	}
1566
1567	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568	if (!mapping)
1569		goto err;
1570
1571	mapping->bitmap_size = bitmap_size;
1572	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573				   GFP_KERNEL);
1574	if (!mapping->bitmaps)
1575		goto err2;
1576
1577	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578	if (!mapping->bitmaps[0])
1579		goto err3;
1580
1581	mapping->nr_bitmaps = 1;
1582	mapping->extensions = extensions;
1583	mapping->base = base;
1584	mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586	spin_lock_init(&mapping->lock);
1587
1588	mapping->domain = iommu_paging_domain_alloc(dev);
1589	if (IS_ERR(mapping->domain)) {
1590		err = PTR_ERR(mapping->domain);
1591		goto err4;
1592	}
1593
1594	kref_init(&mapping->kref);
1595	return mapping;
1596err4:
1597	kfree(mapping->bitmaps[0]);
1598err3:
1599	kfree(mapping->bitmaps);
1600err2:
1601	kfree(mapping);
1602err:
1603	return ERR_PTR(err);
1604}
1605EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1606
1607static void release_iommu_mapping(struct kref *kref)
1608{
1609	int i;
1610	struct dma_iommu_mapping *mapping =
1611		container_of(kref, struct dma_iommu_mapping, kref);
1612
1613	iommu_domain_free(mapping->domain);
1614	for (i = 0; i < mapping->nr_bitmaps; i++)
1615		kfree(mapping->bitmaps[i]);
1616	kfree(mapping->bitmaps);
1617	kfree(mapping);
1618}
1619
1620static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1621{
1622	int next_bitmap;
1623
1624	if (mapping->nr_bitmaps >= mapping->extensions)
1625		return -EINVAL;
1626
1627	next_bitmap = mapping->nr_bitmaps;
1628	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1629						GFP_ATOMIC);
1630	if (!mapping->bitmaps[next_bitmap])
1631		return -ENOMEM;
1632
1633	mapping->nr_bitmaps++;
1634
1635	return 0;
1636}
1637
1638void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1639{
1640	if (mapping)
1641		kref_put(&mapping->kref, release_iommu_mapping);
1642}
1643EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1644
1645static int __arm_iommu_attach_device(struct device *dev,
1646				     struct dma_iommu_mapping *mapping)
1647{
1648	int err;
1649
1650	err = iommu_attach_device(mapping->domain, dev);
1651	if (err)
1652		return err;
1653
1654	kref_get(&mapping->kref);
1655	to_dma_iommu_mapping(dev) = mapping;
1656
1657	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1658	return 0;
1659}
1660
1661/**
1662 * arm_iommu_attach_device
1663 * @dev: valid struct device pointer
1664 * @mapping: io address space mapping structure (returned from
1665 *	arm_iommu_create_mapping)
1666 *
1667 * Attaches specified io address space mapping to the provided device.
1668 * This replaces the dma operations (dma_map_ops pointer) with the
1669 * IOMMU aware version.
1670 *
1671 * More than one client might be attached to the same io address space
1672 * mapping.
1673 */
1674int arm_iommu_attach_device(struct device *dev,
1675			    struct dma_iommu_mapping *mapping)
1676{
1677	int err;
1678
1679	err = __arm_iommu_attach_device(dev, mapping);
1680	if (err)
1681		return err;
1682
 
 
1683	set_dma_ops(dev, &iommu_ops);
 
 
1684	return 0;
1685}
1686EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1687
1688/**
1689 * arm_iommu_detach_device
1690 * @dev: valid struct device pointer
1691 *
1692 * Detaches the provided device from a previously attached map.
1693 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1694 */
1695void arm_iommu_detach_device(struct device *dev)
1696{
1697	struct dma_iommu_mapping *mapping;
1698
1699	mapping = to_dma_iommu_mapping(dev);
1700	if (!mapping) {
1701		dev_warn(dev, "Not attached\n");
1702		return;
1703	}
1704
1705	iommu_detach_device(mapping->domain, dev);
1706	kref_put(&mapping->kref, release_iommu_mapping);
1707	to_dma_iommu_mapping(dev) = NULL;
1708	set_dma_ops(dev, NULL);
1709
1710	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1711}
1712EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1713
1714static void arm_setup_iommu_dma_ops(struct device *dev)
1715{
1716	struct dma_iommu_mapping *mapping;
1717	u64 dma_base = 0, size = 1ULL << 32;
1718
1719	if (dev->dma_range_map) {
1720		dma_base = dma_range_map_min(dev->dma_range_map);
1721		size = dma_range_map_max(dev->dma_range_map) - dma_base;
1722	}
1723	mapping = arm_iommu_create_mapping(dev, dma_base, size);
1724	if (IS_ERR(mapping)) {
1725		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1726				size, dev_name(dev));
1727		return;
1728	}
1729
1730	if (__arm_iommu_attach_device(dev, mapping)) {
1731		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1732				dev_name(dev));
1733		arm_iommu_release_mapping(mapping);
1734		return;
1735	}
1736
1737	set_dma_ops(dev, &iommu_ops);
1738}
1739
1740static void arm_teardown_iommu_dma_ops(struct device *dev)
1741{
1742	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1743
1744	if (!mapping)
1745		return;
1746
1747	arm_iommu_detach_device(dev);
1748	arm_iommu_release_mapping(mapping);
1749}
1750
1751#else
1752
1753static void arm_setup_iommu_dma_ops(struct device *dev)
1754{
1755}
1756
1757static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1758
1759#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1760
1761void arch_setup_dma_ops(struct device *dev, bool coherent)
1762{
1763	/*
1764	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1765	 * notifier we can't just assign coherent to the ->dma_coherent flag
1766	 * here, but instead have to make sure we only set but never clear it
1767	 * for now.
1768	 */
1769	if (coherent)
1770		dev->dma_coherent = true;
1771
1772	/*
1773	 * Don't override the dma_ops if they have already been set. Ideally
1774	 * this should be the only location where dma_ops are set, remove this
1775	 * check when all other callers of set_dma_ops will have disappeared.
1776	 */
1777	if (dev->dma_ops)
1778		return;
1779
1780	if (device_iommu_mapped(dev))
1781		arm_setup_iommu_dma_ops(dev);
1782
1783	xen_setup_dma_ops(dev);
1784	dev->archdata.dma_ops_setup = true;
1785}
1786
1787void arch_teardown_dma_ops(struct device *dev)
1788{
1789	if (!dev->archdata.dma_ops_setup)
1790		return;
1791
1792	arm_teardown_iommu_dma_ops(dev);
1793	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1794	set_dma_ops(dev, NULL);
1795}
1796
1797void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1798		enum dma_data_direction dir)
1799{
1800	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1801			      size, dir);
1802}
1803
1804void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1805		enum dma_data_direction dir)
1806{
1807	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1808			      size, dir);
1809}
1810
1811void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1812		gfp_t gfp, unsigned long attrs)
1813{
1814	return __dma_alloc(dev, size, dma_handle, gfp,
1815			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1816			   attrs, __builtin_return_address(0));
1817}
1818
1819void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1820		dma_addr_t dma_handle, unsigned long attrs)
1821{
1822	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1823}