Loading...
1/*
2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
6 * reworked by rmk.
7 *
8 * bit 0 is the LSB of an "unsigned long" quantity.
9 *
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
15 */
16
17#ifndef __ASM_ARM_BITOPS_H
18#define __ASM_ARM_BITOPS_H
19
20#ifdef __KERNEL__
21
22#ifndef _LINUX_BITOPS_H
23#error only <linux/bitops.h> can be included directly
24#endif
25
26#include <linux/compiler.h>
27#include <linux/irqflags.h>
28
29#define smp_mb__before_clear_bit() smp_mb()
30#define smp_mb__after_clear_bit() smp_mb()
31
32/*
33 * These functions are the basis of our bit ops.
34 *
35 * First, the atomic bitops. These use native endian.
36 */
37static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
38{
39 unsigned long flags;
40 unsigned long mask = 1UL << (bit & 31);
41
42 p += bit >> 5;
43
44 raw_local_irq_save(flags);
45 *p |= mask;
46 raw_local_irq_restore(flags);
47}
48
49static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
50{
51 unsigned long flags;
52 unsigned long mask = 1UL << (bit & 31);
53
54 p += bit >> 5;
55
56 raw_local_irq_save(flags);
57 *p &= ~mask;
58 raw_local_irq_restore(flags);
59}
60
61static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
62{
63 unsigned long flags;
64 unsigned long mask = 1UL << (bit & 31);
65
66 p += bit >> 5;
67
68 raw_local_irq_save(flags);
69 *p ^= mask;
70 raw_local_irq_restore(flags);
71}
72
73static inline int
74____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
75{
76 unsigned long flags;
77 unsigned int res;
78 unsigned long mask = 1UL << (bit & 31);
79
80 p += bit >> 5;
81
82 raw_local_irq_save(flags);
83 res = *p;
84 *p = res | mask;
85 raw_local_irq_restore(flags);
86
87 return (res & mask) != 0;
88}
89
90static inline int
91____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
92{
93 unsigned long flags;
94 unsigned int res;
95 unsigned long mask = 1UL << (bit & 31);
96
97 p += bit >> 5;
98
99 raw_local_irq_save(flags);
100 res = *p;
101 *p = res & ~mask;
102 raw_local_irq_restore(flags);
103
104 return (res & mask) != 0;
105}
106
107static inline int
108____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109{
110 unsigned long flags;
111 unsigned int res;
112 unsigned long mask = 1UL << (bit & 31);
113
114 p += bit >> 5;
115
116 raw_local_irq_save(flags);
117 res = *p;
118 *p = res ^ mask;
119 raw_local_irq_restore(flags);
120
121 return (res & mask) != 0;
122}
123
124#include <asm-generic/bitops/non-atomic.h>
125
126/*
127 * A note about Endian-ness.
128 * -------------------------
129 *
130 * When the ARM is put into big endian mode via CR15, the processor
131 * merely swaps the order of bytes within words, thus:
132 *
133 * ------------ physical data bus bits -----------
134 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
135 * little byte 3 byte 2 byte 1 byte 0
136 * big byte 0 byte 1 byte 2 byte 3
137 *
138 * This means that reading a 32-bit word at address 0 returns the same
139 * value irrespective of the endian mode bit.
140 *
141 * Peripheral devices should be connected with the data bus reversed in
142 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
143 * available from http://www.arm.com/.
144 *
145 * The following assumes that the data bus connectivity for big endian
146 * mode has been followed.
147 *
148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149 */
150
151/*
152 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
153 */
154extern void _set_bit(int nr, volatile unsigned long * p);
155extern void _clear_bit(int nr, volatile unsigned long * p);
156extern void _change_bit(int nr, volatile unsigned long * p);
157extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159extern int _test_and_change_bit(int nr, volatile unsigned long * p);
160
161/*
162 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
163 */
164extern int _find_first_zero_bit_le(const void * p, unsigned size);
165extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
168
169/*
170 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171 */
172extern int _find_first_zero_bit_be(const void * p, unsigned size);
173extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
176
177#ifndef CONFIG_SMP
178/*
179 * The __* form of bitops are non-atomic and may be reordered.
180 */
181#define ATOMIC_BITOP(name,nr,p) \
182 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183#else
184#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
185#endif
186
187/*
188 * Native endian atomic definitions.
189 */
190#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
191#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
192#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
193#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
194#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
195#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
196
197#ifndef __ARMEB__
198/*
199 * These are the little endian, atomic definitions.
200 */
201#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
202#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
203#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
204#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
205
206#else
207/*
208 * These are the big endian, atomic definitions.
209 */
210#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
211#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
212#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
213#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
214
215#endif
216
217#if __LINUX_ARM_ARCH__ < 5
218
219#include <asm-generic/bitops/ffz.h>
220#include <asm-generic/bitops/__fls.h>
221#include <asm-generic/bitops/__ffs.h>
222#include <asm-generic/bitops/fls.h>
223#include <asm-generic/bitops/ffs.h>
224
225#else
226
227static inline int constant_fls(int x)
228{
229 int r = 32;
230
231 if (!x)
232 return 0;
233 if (!(x & 0xffff0000u)) {
234 x <<= 16;
235 r -= 16;
236 }
237 if (!(x & 0xff000000u)) {
238 x <<= 8;
239 r -= 8;
240 }
241 if (!(x & 0xf0000000u)) {
242 x <<= 4;
243 r -= 4;
244 }
245 if (!(x & 0xc0000000u)) {
246 x <<= 2;
247 r -= 2;
248 }
249 if (!(x & 0x80000000u)) {
250 x <<= 1;
251 r -= 1;
252 }
253 return r;
254}
255
256/*
257 * On ARMv5 and above those functions can be implemented around
258 * the clz instruction for much better code efficiency.
259 */
260
261static inline int fls(int x)
262{
263 int ret;
264
265 if (__builtin_constant_p(x))
266 return constant_fls(x);
267
268 asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
269 ret = 32 - ret;
270 return ret;
271}
272
273#define __fls(x) (fls(x) - 1)
274#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
275#define __ffs(x) (ffs(x) - 1)
276#define ffz(x) __ffs( ~(x) )
277
278#endif
279
280#include <asm-generic/bitops/fls64.h>
281
282#include <asm-generic/bitops/sched.h>
283#include <asm-generic/bitops/hweight.h>
284#include <asm-generic/bitops/lock.h>
285
286#ifdef __ARMEB__
287
288static inline int find_first_zero_bit_le(const void *p, unsigned size)
289{
290 return _find_first_zero_bit_le(p, size);
291}
292#define find_first_zero_bit_le find_first_zero_bit_le
293
294static inline int find_next_zero_bit_le(const void *p, int size, int offset)
295{
296 return _find_next_zero_bit_le(p, size, offset);
297}
298#define find_next_zero_bit_le find_next_zero_bit_le
299
300static inline int find_next_bit_le(const void *p, int size, int offset)
301{
302 return _find_next_bit_le(p, size, offset);
303}
304#define find_next_bit_le find_next_bit_le
305
306#endif
307
308#include <asm-generic/bitops/le.h>
309
310/*
311 * Ext2 is defined to use little-endian byte ordering.
312 */
313#include <asm-generic/bitops/ext2-atomic-setbit.h>
314
315#endif /* __KERNEL__ */
316
317#endif /* _ARM_BITOPS_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright 1995, Russell King.
4 * Various bits and pieces copyrights include:
5 * Linus Torvalds (test_bit).
6 * Big endian support: Copyright 2001, Nicolas Pitre
7 * reworked by rmk.
8 *
9 * bit 0 is the LSB of an "unsigned long" quantity.
10 *
11 * Please note that the code in this file should never be included
12 * from user space. Many of these are not implemented in assembler
13 * since they would be too costly. Also, they require privileged
14 * instructions (which are not available from user mode) to ensure
15 * that they are atomic.
16 */
17
18#ifndef __ASM_ARM_BITOPS_H
19#define __ASM_ARM_BITOPS_H
20
21#ifdef __KERNEL__
22
23#ifndef _LINUX_BITOPS_H
24#error only <linux/bitops.h> can be included directly
25#endif
26
27#include <linux/compiler.h>
28#include <linux/irqflags.h>
29#include <asm/barrier.h>
30
31/*
32 * These functions are the basis of our bit ops.
33 *
34 * First, the atomic bitops. These use native endian.
35 */
36static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
37{
38 unsigned long flags;
39 unsigned long mask = BIT_MASK(bit);
40
41 p += BIT_WORD(bit);
42
43 raw_local_irq_save(flags);
44 *p |= mask;
45 raw_local_irq_restore(flags);
46}
47
48static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
49{
50 unsigned long flags;
51 unsigned long mask = BIT_MASK(bit);
52
53 p += BIT_WORD(bit);
54
55 raw_local_irq_save(flags);
56 *p &= ~mask;
57 raw_local_irq_restore(flags);
58}
59
60static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
61{
62 unsigned long flags;
63 unsigned long mask = BIT_MASK(bit);
64
65 p += BIT_WORD(bit);
66
67 raw_local_irq_save(flags);
68 *p ^= mask;
69 raw_local_irq_restore(flags);
70}
71
72static inline int
73____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
74{
75 unsigned long flags;
76 unsigned int res;
77 unsigned long mask = BIT_MASK(bit);
78
79 p += BIT_WORD(bit);
80
81 raw_local_irq_save(flags);
82 res = *p;
83 *p = res | mask;
84 raw_local_irq_restore(flags);
85
86 return (res & mask) != 0;
87}
88
89static inline int
90____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
91{
92 unsigned long flags;
93 unsigned int res;
94 unsigned long mask = BIT_MASK(bit);
95
96 p += BIT_WORD(bit);
97
98 raw_local_irq_save(flags);
99 res = *p;
100 *p = res & ~mask;
101 raw_local_irq_restore(flags);
102
103 return (res & mask) != 0;
104}
105
106static inline int
107____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
108{
109 unsigned long flags;
110 unsigned int res;
111 unsigned long mask = BIT_MASK(bit);
112
113 p += BIT_WORD(bit);
114
115 raw_local_irq_save(flags);
116 res = *p;
117 *p = res ^ mask;
118 raw_local_irq_restore(flags);
119
120 return (res & mask) != 0;
121}
122
123#include <asm-generic/bitops/non-atomic.h>
124
125/*
126 * A note about Endian-ness.
127 * -------------------------
128 *
129 * When the ARM is put into big endian mode via CR15, the processor
130 * merely swaps the order of bytes within words, thus:
131 *
132 * ------------ physical data bus bits -----------
133 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
134 * little byte 3 byte 2 byte 1 byte 0
135 * big byte 0 byte 1 byte 2 byte 3
136 *
137 * This means that reading a 32-bit word at address 0 returns the same
138 * value irrespective of the endian mode bit.
139 *
140 * Peripheral devices should be connected with the data bus reversed in
141 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
142 * available from http://www.arm.com/.
143 *
144 * The following assumes that the data bus connectivity for big endian
145 * mode has been followed.
146 *
147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
148 */
149
150/*
151 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
152 */
153extern void _set_bit(int nr, volatile unsigned long * p);
154extern void _clear_bit(int nr, volatile unsigned long * p);
155extern void _change_bit(int nr, volatile unsigned long * p);
156extern int _test_and_set_bit(int nr, volatile unsigned long * p);
157extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
158extern int _test_and_change_bit(int nr, volatile unsigned long * p);
159
160/*
161 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
162 */
163unsigned long _find_first_zero_bit_le(const unsigned long *p, unsigned long size);
164unsigned long _find_next_zero_bit_le(const unsigned long *p,
165 unsigned long size, unsigned long offset);
166unsigned long _find_first_bit_le(const unsigned long *p, unsigned long size);
167unsigned long _find_next_bit_le(const unsigned long *p, unsigned long size, unsigned long offset);
168
169/*
170 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171 */
172unsigned long _find_first_zero_bit_be(const unsigned long *p, unsigned long size);
173unsigned long _find_next_zero_bit_be(const unsigned long *p,
174 unsigned long size, unsigned long offset);
175unsigned long _find_first_bit_be(const unsigned long *p, unsigned long size);
176unsigned long _find_next_bit_be(const unsigned long *p, unsigned long size, unsigned long offset);
177
178#ifndef CONFIG_SMP
179/*
180 * The __* form of bitops are non-atomic and may be reordered.
181 */
182#define ATOMIC_BITOP(name,nr,p) \
183 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
184#else
185#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
186#endif
187
188/*
189 * Native endian atomic definitions.
190 */
191#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
192#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
193#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
194#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
195#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
196#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
197
198#ifndef __ARMEB__
199/*
200 * These are the little endian, atomic definitions.
201 */
202#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
203#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
204#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
205#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
206
207#else
208/*
209 * These are the big endian, atomic definitions.
210 */
211#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
212#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
213#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
214#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
215
216#endif
217
218#if __LINUX_ARM_ARCH__ < 5
219
220#include <asm-generic/bitops/__fls.h>
221#include <asm-generic/bitops/__ffs.h>
222#include <asm-generic/bitops/fls.h>
223#include <asm-generic/bitops/ffs.h>
224
225#else
226
227/*
228 * On ARMv5 and above, the gcc built-ins may rely on the clz instruction
229 * and produce optimal inlined code in all cases. On ARMv7 it is even
230 * better by also using the rbit instruction.
231 */
232#include <asm-generic/bitops/builtin-__fls.h>
233#include <asm-generic/bitops/builtin-__ffs.h>
234#include <asm-generic/bitops/builtin-fls.h>
235#include <asm-generic/bitops/builtin-ffs.h>
236
237#endif
238
239#include <asm-generic/bitops/ffz.h>
240
241#include <asm-generic/bitops/fls64.h>
242
243#include <asm-generic/bitops/sched.h>
244#include <asm-generic/bitops/hweight.h>
245#include <asm-generic/bitops/lock.h>
246
247#ifdef __ARMEB__
248
249static inline int find_first_zero_bit_le(const void *p, unsigned size)
250{
251 return _find_first_zero_bit_le(p, size);
252}
253#define find_first_zero_bit_le find_first_zero_bit_le
254
255static inline int find_next_zero_bit_le(const void *p, int size, int offset)
256{
257 return _find_next_zero_bit_le(p, size, offset);
258}
259#define find_next_zero_bit_le find_next_zero_bit_le
260
261static inline int find_next_bit_le(const void *p, int size, int offset)
262{
263 return _find_next_bit_le(p, size, offset);
264}
265#define find_next_bit_le find_next_bit_le
266
267#endif
268
269#include <asm-generic/bitops/le.h>
270
271/*
272 * Ext2 is defined to use little-endian byte ordering.
273 */
274#include <asm-generic/bitops/ext2-atomic-setbit.h>
275
276#endif /* __KERNEL__ */
277
278#endif /* _ARM_BITOPS_H */