Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_ecn __read_mostly = 2;
85EXPORT_SYMBOL(sysctl_tcp_ecn);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 1;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94int sysctl_tcp_frto __read_mostly = 2;
95int sysctl_tcp_frto_response __read_mostly;
96int sysctl_tcp_nometrics_save __read_mostly;
97
98int sysctl_tcp_thin_dupack __read_mostly;
99
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
102int sysctl_tcp_early_retrans __read_mostly = 2;
103
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
111#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
113#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117
118#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127/* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131{
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174}
175
176static void tcp_incr_quickack(struct sock *sk)
177{
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185}
186
187static void tcp_enter_quickack_mode(struct sock *sk)
188{
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199static inline bool tcp_in_quickack_mode(const struct sock *sk)
200{
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204}
205
206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207{
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213{
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219{
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224{
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 case INET_ECN_NOT_ECT:
230 /* Funny extension: if ECT is not set on a segment,
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
235 tcp_enter_quickack_mode((struct sock *)tp);
236 break;
237 case INET_ECN_CE:
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 /* fallinto */
240 default:
241 tp->ecn_flags |= TCP_ECN_SEEN;
242 }
243}
244
245static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
246{
247 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
248 tp->ecn_flags &= ~TCP_ECN_OK;
249}
250
251static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
252{
253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
254 tp->ecn_flags &= ~TCP_ECN_OK;
255}
256
257static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
258{
259 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
260 return true;
261 return false;
262}
263
264/* Buffer size and advertised window tuning.
265 *
266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
267 */
268
269static void tcp_fixup_sndbuf(struct sock *sk)
270{
271 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
272
273 sndmem *= TCP_INIT_CWND;
274 if (sk->sk_sndbuf < sndmem)
275 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
276}
277
278/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
279 *
280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
281 * forward and advertised in receiver window (tp->rcv_wnd) and
282 * "application buffer", required to isolate scheduling/application
283 * latencies from network.
284 * window_clamp is maximal advertised window. It can be less than
285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
286 * is reserved for "application" buffer. The less window_clamp is
287 * the smoother our behaviour from viewpoint of network, but the lower
288 * throughput and the higher sensitivity of the connection to losses. 8)
289 *
290 * rcv_ssthresh is more strict window_clamp used at "slow start"
291 * phase to predict further behaviour of this connection.
292 * It is used for two goals:
293 * - to enforce header prediction at sender, even when application
294 * requires some significant "application buffer". It is check #1.
295 * - to prevent pruning of receive queue because of misprediction
296 * of receiver window. Check #2.
297 *
298 * The scheme does not work when sender sends good segments opening
299 * window and then starts to feed us spaghetti. But it should work
300 * in common situations. Otherwise, we have to rely on queue collapsing.
301 */
302
303/* Slow part of check#2. */
304static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
305{
306 struct tcp_sock *tp = tcp_sk(sk);
307 /* Optimize this! */
308 int truesize = tcp_win_from_space(skb->truesize) >> 1;
309 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
310
311 while (tp->rcv_ssthresh <= window) {
312 if (truesize <= skb->len)
313 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
314
315 truesize >>= 1;
316 window >>= 1;
317 }
318 return 0;
319}
320
321static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
322{
323 struct tcp_sock *tp = tcp_sk(sk);
324
325 /* Check #1 */
326 if (tp->rcv_ssthresh < tp->window_clamp &&
327 (int)tp->rcv_ssthresh < tcp_space(sk) &&
328 !sk_under_memory_pressure(sk)) {
329 int incr;
330
331 /* Check #2. Increase window, if skb with such overhead
332 * will fit to rcvbuf in future.
333 */
334 if (tcp_win_from_space(skb->truesize) <= skb->len)
335 incr = 2 * tp->advmss;
336 else
337 incr = __tcp_grow_window(sk, skb);
338
339 if (incr) {
340 incr = max_t(int, incr, 2 * skb->len);
341 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
342 tp->window_clamp);
343 inet_csk(sk)->icsk_ack.quick |= 1;
344 }
345 }
346}
347
348/* 3. Tuning rcvbuf, when connection enters established state. */
349
350static void tcp_fixup_rcvbuf(struct sock *sk)
351{
352 u32 mss = tcp_sk(sk)->advmss;
353 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
354 int rcvmem;
355
356 /* Limit to 10 segments if mss <= 1460,
357 * or 14600/mss segments, with a minimum of two segments.
358 */
359 if (mss > 1460)
360 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
361
362 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
363 while (tcp_win_from_space(rcvmem) < mss)
364 rcvmem += 128;
365
366 rcvmem *= icwnd;
367
368 if (sk->sk_rcvbuf < rcvmem)
369 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
370}
371
372/* 4. Try to fixup all. It is made immediately after connection enters
373 * established state.
374 */
375static void tcp_init_buffer_space(struct sock *sk)
376{
377 struct tcp_sock *tp = tcp_sk(sk);
378 int maxwin;
379
380 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
381 tcp_fixup_rcvbuf(sk);
382 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
383 tcp_fixup_sndbuf(sk);
384
385 tp->rcvq_space.space = tp->rcv_wnd;
386
387 maxwin = tcp_full_space(sk);
388
389 if (tp->window_clamp >= maxwin) {
390 tp->window_clamp = maxwin;
391
392 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
393 tp->window_clamp = max(maxwin -
394 (maxwin >> sysctl_tcp_app_win),
395 4 * tp->advmss);
396 }
397
398 /* Force reservation of one segment. */
399 if (sysctl_tcp_app_win &&
400 tp->window_clamp > 2 * tp->advmss &&
401 tp->window_clamp + tp->advmss > maxwin)
402 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
403
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
405 tp->snd_cwnd_stamp = tcp_time_stamp;
406}
407
408/* 5. Recalculate window clamp after socket hit its memory bounds. */
409static void tcp_clamp_window(struct sock *sk)
410{
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct inet_connection_sock *icsk = inet_csk(sk);
413
414 icsk->icsk_ack.quick = 0;
415
416 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
417 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
418 !sk_under_memory_pressure(sk) &&
419 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
420 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
421 sysctl_tcp_rmem[2]);
422 }
423 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
424 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
425}
426
427/* Initialize RCV_MSS value.
428 * RCV_MSS is an our guess about MSS used by the peer.
429 * We haven't any direct information about the MSS.
430 * It's better to underestimate the RCV_MSS rather than overestimate.
431 * Overestimations make us ACKing less frequently than needed.
432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
433 */
434void tcp_initialize_rcv_mss(struct sock *sk)
435{
436 const struct tcp_sock *tp = tcp_sk(sk);
437 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
438
439 hint = min(hint, tp->rcv_wnd / 2);
440 hint = min(hint, TCP_MSS_DEFAULT);
441 hint = max(hint, TCP_MIN_MSS);
442
443 inet_csk(sk)->icsk_ack.rcv_mss = hint;
444}
445EXPORT_SYMBOL(tcp_initialize_rcv_mss);
446
447/* Receiver "autotuning" code.
448 *
449 * The algorithm for RTT estimation w/o timestamps is based on
450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
452 *
453 * More detail on this code can be found at
454 * <http://staff.psc.edu/jheffner/>,
455 * though this reference is out of date. A new paper
456 * is pending.
457 */
458static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
459{
460 u32 new_sample = tp->rcv_rtt_est.rtt;
461 long m = sample;
462
463 if (m == 0)
464 m = 1;
465
466 if (new_sample != 0) {
467 /* If we sample in larger samples in the non-timestamp
468 * case, we could grossly overestimate the RTT especially
469 * with chatty applications or bulk transfer apps which
470 * are stalled on filesystem I/O.
471 *
472 * Also, since we are only going for a minimum in the
473 * non-timestamp case, we do not smooth things out
474 * else with timestamps disabled convergence takes too
475 * long.
476 */
477 if (!win_dep) {
478 m -= (new_sample >> 3);
479 new_sample += m;
480 } else {
481 m <<= 3;
482 if (m < new_sample)
483 new_sample = m;
484 }
485 } else {
486 /* No previous measure. */
487 new_sample = m << 3;
488 }
489
490 if (tp->rcv_rtt_est.rtt != new_sample)
491 tp->rcv_rtt_est.rtt = new_sample;
492}
493
494static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
495{
496 if (tp->rcv_rtt_est.time == 0)
497 goto new_measure;
498 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
499 return;
500 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
501
502new_measure:
503 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
504 tp->rcv_rtt_est.time = tcp_time_stamp;
505}
506
507static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
508 const struct sk_buff *skb)
509{
510 struct tcp_sock *tp = tcp_sk(sk);
511 if (tp->rx_opt.rcv_tsecr &&
512 (TCP_SKB_CB(skb)->end_seq -
513 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
514 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
515}
516
517/*
518 * This function should be called every time data is copied to user space.
519 * It calculates the appropriate TCP receive buffer space.
520 */
521void tcp_rcv_space_adjust(struct sock *sk)
522{
523 struct tcp_sock *tp = tcp_sk(sk);
524 int time;
525 int space;
526
527 if (tp->rcvq_space.time == 0)
528 goto new_measure;
529
530 time = tcp_time_stamp - tp->rcvq_space.time;
531 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
532 return;
533
534 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
535
536 space = max(tp->rcvq_space.space, space);
537
538 if (tp->rcvq_space.space != space) {
539 int rcvmem;
540
541 tp->rcvq_space.space = space;
542
543 if (sysctl_tcp_moderate_rcvbuf &&
544 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
545 int new_clamp = space;
546
547 /* Receive space grows, normalize in order to
548 * take into account packet headers and sk_buff
549 * structure overhead.
550 */
551 space /= tp->advmss;
552 if (!space)
553 space = 1;
554 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
555 while (tcp_win_from_space(rcvmem) < tp->advmss)
556 rcvmem += 128;
557 space *= rcvmem;
558 space = min(space, sysctl_tcp_rmem[2]);
559 if (space > sk->sk_rcvbuf) {
560 sk->sk_rcvbuf = space;
561
562 /* Make the window clamp follow along. */
563 tp->window_clamp = new_clamp;
564 }
565 }
566 }
567
568new_measure:
569 tp->rcvq_space.seq = tp->copied_seq;
570 tp->rcvq_space.time = tcp_time_stamp;
571}
572
573/* There is something which you must keep in mind when you analyze the
574 * behavior of the tp->ato delayed ack timeout interval. When a
575 * connection starts up, we want to ack as quickly as possible. The
576 * problem is that "good" TCP's do slow start at the beginning of data
577 * transmission. The means that until we send the first few ACK's the
578 * sender will sit on his end and only queue most of his data, because
579 * he can only send snd_cwnd unacked packets at any given time. For
580 * each ACK we send, he increments snd_cwnd and transmits more of his
581 * queue. -DaveM
582 */
583static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
584{
585 struct tcp_sock *tp = tcp_sk(sk);
586 struct inet_connection_sock *icsk = inet_csk(sk);
587 u32 now;
588
589 inet_csk_schedule_ack(sk);
590
591 tcp_measure_rcv_mss(sk, skb);
592
593 tcp_rcv_rtt_measure(tp);
594
595 now = tcp_time_stamp;
596
597 if (!icsk->icsk_ack.ato) {
598 /* The _first_ data packet received, initialize
599 * delayed ACK engine.
600 */
601 tcp_incr_quickack(sk);
602 icsk->icsk_ack.ato = TCP_ATO_MIN;
603 } else {
604 int m = now - icsk->icsk_ack.lrcvtime;
605
606 if (m <= TCP_ATO_MIN / 2) {
607 /* The fastest case is the first. */
608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
609 } else if (m < icsk->icsk_ack.ato) {
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
611 if (icsk->icsk_ack.ato > icsk->icsk_rto)
612 icsk->icsk_ack.ato = icsk->icsk_rto;
613 } else if (m > icsk->icsk_rto) {
614 /* Too long gap. Apparently sender failed to
615 * restart window, so that we send ACKs quickly.
616 */
617 tcp_incr_quickack(sk);
618 sk_mem_reclaim(sk);
619 }
620 }
621 icsk->icsk_ack.lrcvtime = now;
622
623 TCP_ECN_check_ce(tp, skb);
624
625 if (skb->len >= 128)
626 tcp_grow_window(sk, skb);
627}
628
629/* Called to compute a smoothed rtt estimate. The data fed to this
630 * routine either comes from timestamps, or from segments that were
631 * known _not_ to have been retransmitted [see Karn/Partridge
632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
633 * piece by Van Jacobson.
634 * NOTE: the next three routines used to be one big routine.
635 * To save cycles in the RFC 1323 implementation it was better to break
636 * it up into three procedures. -- erics
637 */
638static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
639{
640 struct tcp_sock *tp = tcp_sk(sk);
641 long m = mrtt; /* RTT */
642
643 /* The following amusing code comes from Jacobson's
644 * article in SIGCOMM '88. Note that rtt and mdev
645 * are scaled versions of rtt and mean deviation.
646 * This is designed to be as fast as possible
647 * m stands for "measurement".
648 *
649 * On a 1990 paper the rto value is changed to:
650 * RTO = rtt + 4 * mdev
651 *
652 * Funny. This algorithm seems to be very broken.
653 * These formulae increase RTO, when it should be decreased, increase
654 * too slowly, when it should be increased quickly, decrease too quickly
655 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
656 * does not matter how to _calculate_ it. Seems, it was trap
657 * that VJ failed to avoid. 8)
658 */
659 if (m == 0)
660 m = 1;
661 if (tp->srtt != 0) {
662 m -= (tp->srtt >> 3); /* m is now error in rtt est */
663 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
664 if (m < 0) {
665 m = -m; /* m is now abs(error) */
666 m -= (tp->mdev >> 2); /* similar update on mdev */
667 /* This is similar to one of Eifel findings.
668 * Eifel blocks mdev updates when rtt decreases.
669 * This solution is a bit different: we use finer gain
670 * for mdev in this case (alpha*beta).
671 * Like Eifel it also prevents growth of rto,
672 * but also it limits too fast rto decreases,
673 * happening in pure Eifel.
674 */
675 if (m > 0)
676 m >>= 3;
677 } else {
678 m -= (tp->mdev >> 2); /* similar update on mdev */
679 }
680 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
681 if (tp->mdev > tp->mdev_max) {
682 tp->mdev_max = tp->mdev;
683 if (tp->mdev_max > tp->rttvar)
684 tp->rttvar = tp->mdev_max;
685 }
686 if (after(tp->snd_una, tp->rtt_seq)) {
687 if (tp->mdev_max < tp->rttvar)
688 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
689 tp->rtt_seq = tp->snd_nxt;
690 tp->mdev_max = tcp_rto_min(sk);
691 }
692 } else {
693 /* no previous measure. */
694 tp->srtt = m << 3; /* take the measured time to be rtt */
695 tp->mdev = m << 1; /* make sure rto = 3*rtt */
696 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
697 tp->rtt_seq = tp->snd_nxt;
698 }
699}
700
701/* Calculate rto without backoff. This is the second half of Van Jacobson's
702 * routine referred to above.
703 */
704static inline void tcp_set_rto(struct sock *sk)
705{
706 const struct tcp_sock *tp = tcp_sk(sk);
707 /* Old crap is replaced with new one. 8)
708 *
709 * More seriously:
710 * 1. If rtt variance happened to be less 50msec, it is hallucination.
711 * It cannot be less due to utterly erratic ACK generation made
712 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
713 * to do with delayed acks, because at cwnd>2 true delack timeout
714 * is invisible. Actually, Linux-2.4 also generates erratic
715 * ACKs in some circumstances.
716 */
717 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
718
719 /* 2. Fixups made earlier cannot be right.
720 * If we do not estimate RTO correctly without them,
721 * all the algo is pure shit and should be replaced
722 * with correct one. It is exactly, which we pretend to do.
723 */
724
725 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
726 * guarantees that rto is higher.
727 */
728 tcp_bound_rto(sk);
729}
730
731/* Save metrics learned by this TCP session.
732 This function is called only, when TCP finishes successfully
733 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
734 */
735void tcp_update_metrics(struct sock *sk)
736{
737 struct tcp_sock *tp = tcp_sk(sk);
738 struct dst_entry *dst = __sk_dst_get(sk);
739
740 if (sysctl_tcp_nometrics_save)
741 return;
742
743 dst_confirm(dst);
744
745 if (dst && (dst->flags & DST_HOST)) {
746 const struct inet_connection_sock *icsk = inet_csk(sk);
747 int m;
748 unsigned long rtt;
749
750 if (icsk->icsk_backoff || !tp->srtt) {
751 /* This session failed to estimate rtt. Why?
752 * Probably, no packets returned in time.
753 * Reset our results.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT)))
756 dst_metric_set(dst, RTAX_RTT, 0);
757 return;
758 }
759
760 rtt = dst_metric_rtt(dst, RTAX_RTT);
761 m = rtt - tp->srtt;
762
763 /* If newly calculated rtt larger than stored one,
764 * store new one. Otherwise, use EWMA. Remember,
765 * rtt overestimation is always better than underestimation.
766 */
767 if (!(dst_metric_locked(dst, RTAX_RTT))) {
768 if (m <= 0)
769 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
770 else
771 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
772 }
773
774 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
775 unsigned long var;
776 if (m < 0)
777 m = -m;
778
779 /* Scale deviation to rttvar fixed point */
780 m >>= 1;
781 if (m < tp->mdev)
782 m = tp->mdev;
783
784 var = dst_metric_rtt(dst, RTAX_RTTVAR);
785 if (m >= var)
786 var = m;
787 else
788 var -= (var - m) >> 2;
789
790 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
791 }
792
793 if (tcp_in_initial_slowstart(tp)) {
794 /* Slow start still did not finish. */
795 if (dst_metric(dst, RTAX_SSTHRESH) &&
796 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
799 if (!dst_metric_locked(dst, RTAX_CWND) &&
800 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
802 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
803 icsk->icsk_ca_state == TCP_CA_Open) {
804 /* Cong. avoidance phase, cwnd is reliable. */
805 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
806 dst_metric_set(dst, RTAX_SSTHRESH,
807 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_cwnd) >> 1);
812 } else {
813 /* Else slow start did not finish, cwnd is non-sense,
814 ssthresh may be also invalid.
815 */
816 if (!dst_metric_locked(dst, RTAX_CWND))
817 dst_metric_set(dst, RTAX_CWND,
818 (dst_metric(dst, RTAX_CWND) +
819 tp->snd_ssthresh) >> 1);
820 if (dst_metric(dst, RTAX_SSTHRESH) &&
821 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
822 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
823 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
824 }
825
826 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
827 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
828 tp->reordering != sysctl_tcp_reordering)
829 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
830 }
831 }
832}
833
834__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
835{
836 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
837
838 if (!cwnd)
839 cwnd = TCP_INIT_CWND;
840 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
841}
842
843/* Set slow start threshold and cwnd not falling to slow start */
844void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
845{
846 struct tcp_sock *tp = tcp_sk(sk);
847 const struct inet_connection_sock *icsk = inet_csk(sk);
848
849 tp->prior_ssthresh = 0;
850 tp->bytes_acked = 0;
851 if (icsk->icsk_ca_state < TCP_CA_CWR) {
852 tp->undo_marker = 0;
853 if (set_ssthresh)
854 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
855 tp->snd_cwnd = min(tp->snd_cwnd,
856 tcp_packets_in_flight(tp) + 1U);
857 tp->snd_cwnd_cnt = 0;
858 tp->high_seq = tp->snd_nxt;
859 tp->snd_cwnd_stamp = tcp_time_stamp;
860 TCP_ECN_queue_cwr(tp);
861
862 tcp_set_ca_state(sk, TCP_CA_CWR);
863 }
864}
865
866/*
867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
868 * disables it when reordering is detected
869 */
870static void tcp_disable_fack(struct tcp_sock *tp)
871{
872 /* RFC3517 uses different metric in lost marker => reset on change */
873 if (tcp_is_fack(tp))
874 tp->lost_skb_hint = NULL;
875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876}
877
878/* Take a notice that peer is sending D-SACKs */
879static void tcp_dsack_seen(struct tcp_sock *tp)
880{
881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882}
883
884/* Initialize metrics on socket. */
885
886static void tcp_init_metrics(struct sock *sk)
887{
888 struct tcp_sock *tp = tcp_sk(sk);
889 struct dst_entry *dst = __sk_dst_get(sk);
890
891 if (dst == NULL)
892 goto reset;
893
894 dst_confirm(dst);
895
896 if (dst_metric_locked(dst, RTAX_CWND))
897 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
898 if (dst_metric(dst, RTAX_SSTHRESH)) {
899 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
900 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
901 tp->snd_ssthresh = tp->snd_cwnd_clamp;
902 } else {
903 /* ssthresh may have been reduced unnecessarily during.
904 * 3WHS. Restore it back to its initial default.
905 */
906 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
907 }
908 if (dst_metric(dst, RTAX_REORDERING) &&
909 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
910 tcp_disable_fack(tp);
911 tcp_disable_early_retrans(tp);
912 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913 }
914
915 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916 goto reset;
917
918 /* Initial rtt is determined from SYN,SYN-ACK.
919 * The segment is small and rtt may appear much
920 * less than real one. Use per-dst memory
921 * to make it more realistic.
922 *
923 * A bit of theory. RTT is time passed after "normal" sized packet
924 * is sent until it is ACKed. In normal circumstances sending small
925 * packets force peer to delay ACKs and calculation is correct too.
926 * The algorithm is adaptive and, provided we follow specs, it
927 * NEVER underestimate RTT. BUT! If peer tries to make some clever
928 * tricks sort of "quick acks" for time long enough to decrease RTT
929 * to low value, and then abruptly stops to do it and starts to delay
930 * ACKs, wait for troubles.
931 */
932 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934 tp->rtt_seq = tp->snd_nxt;
935 }
936 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939 }
940 tcp_set_rto(sk);
941reset:
942 if (tp->srtt == 0) {
943 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
944 * 3WHS. This is most likely due to retransmission,
945 * including spurious one. Reset the RTO back to 3secs
946 * from the more aggressive 1sec to avoid more spurious
947 * retransmission.
948 */
949 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951 }
952 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953 * retransmitted. In light of RFC6298 more aggressive 1sec
954 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955 * retransmission has occurred.
956 */
957 if (tp->total_retrans > 1)
958 tp->snd_cwnd = 1;
959 else
960 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961 tp->snd_cwnd_stamp = tcp_time_stamp;
962}
963
964static void tcp_update_reordering(struct sock *sk, const int metric,
965 const int ts)
966{
967 struct tcp_sock *tp = tcp_sk(sk);
968 if (metric > tp->reordering) {
969 int mib_idx;
970
971 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973 /* This exciting event is worth to be remembered. 8) */
974 if (ts)
975 mib_idx = LINUX_MIB_TCPTSREORDER;
976 else if (tcp_is_reno(tp))
977 mib_idx = LINUX_MIB_TCPRENOREORDER;
978 else if (tcp_is_fack(tp))
979 mib_idx = LINUX_MIB_TCPFACKREORDER;
980 else
981 mib_idx = LINUX_MIB_TCPSACKREORDER;
982
983 NET_INC_STATS_BH(sock_net(sk), mib_idx);
984#if FASTRETRANS_DEBUG > 1
985 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
986 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987 tp->reordering,
988 tp->fackets_out,
989 tp->sacked_out,
990 tp->undo_marker ? tp->undo_retrans : 0);
991#endif
992 tcp_disable_fack(tp);
993 }
994
995 if (metric > 0)
996 tcp_disable_early_retrans(tp);
997}
998
999/* This must be called before lost_out is incremented */
1000static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002 if ((tp->retransmit_skb_hint == NULL) ||
1003 before(TCP_SKB_CB(skb)->seq,
1004 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005 tp->retransmit_skb_hint = skb;
1006
1007 if (!tp->lost_out ||
1008 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1010}
1011
1012static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013{
1014 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015 tcp_verify_retransmit_hint(tp, skb);
1016
1017 tp->lost_out += tcp_skb_pcount(skb);
1018 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019 }
1020}
1021
1022static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023 struct sk_buff *skb)
1024{
1025 tcp_verify_retransmit_hint(tp, skb);
1026
1027 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028 tp->lost_out += tcp_skb_pcount(skb);
1029 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030 }
1031}
1032
1033/* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag InFlight Description
1041 * 0 1 - orig segment is in flight.
1042 * S 0 - nothing flies, orig reached receiver.
1043 * L 0 - nothing flies, orig lost by net.
1044 * R 2 - both orig and retransmit are in flight.
1045 * L|R 1 - orig is lost, retransmit is in flight.
1046 * S|R 1 - orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 * but it is equivalent to plain S and code short-curcuits it to S.
1049 * L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054 * 3. Loss detection event of two flavors:
1055 * A. Scoreboard estimator decided the packet is lost.
1056 * A'. Reno "three dupacks" marks head of queue lost.
1057 * A''. Its FACK modification, head until snd.fack is lost.
1058 * B. SACK arrives sacking SND.NXT at the moment, when the
1059 * segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 * ever retransmitted -> reordering. Alas, we cannot use it
1073 * when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 * for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment. Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 * <- outs wnd -> <- wrapzone ->
1102 * u e n u_w e_w s n_w
1103 * | | | | | | |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->| |<--------...
1106 * ...---- >2^31 ------>| |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116 * again, D-SACK block must not to go across snd_una (for the same reason as
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1126 */
1127static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128 u32 start_seq, u32 end_seq)
1129{
1130 /* Too far in future, or reversed (interpretation is ambiguous) */
1131 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132 return false;
1133
1134 /* Nasty start_seq wrap-around check (see comments above) */
1135 if (!before(start_seq, tp->snd_nxt))
1136 return false;
1137
1138 /* In outstanding window? ...This is valid exit for D-SACKs too.
1139 * start_seq == snd_una is non-sensical (see comments above)
1140 */
1141 if (after(start_seq, tp->snd_una))
1142 return true;
1143
1144 if (!is_dsack || !tp->undo_marker)
1145 return false;
1146
1147 /* ...Then it's D-SACK, and must reside below snd_una completely */
1148 if (after(end_seq, tp->snd_una))
1149 return false;
1150
1151 if (!before(start_seq, tp->undo_marker))
1152 return true;
1153
1154 /* Too old */
1155 if (!after(end_seq, tp->undo_marker))
1156 return false;
1157
1158 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1159 * start_seq < undo_marker and end_seq >= undo_marker.
1160 */
1161 return !before(start_seq, end_seq - tp->max_window);
1162}
1163
1164/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1166 * for reordering! Ugly, but should help.
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1172 */
1173static void tcp_mark_lost_retrans(struct sock *sk)
1174{
1175 const struct inet_connection_sock *icsk = inet_csk(sk);
1176 struct tcp_sock *tp = tcp_sk(sk);
1177 struct sk_buff *skb;
1178 int cnt = 0;
1179 u32 new_low_seq = tp->snd_nxt;
1180 u32 received_upto = tcp_highest_sack_seq(tp);
1181
1182 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183 !after(received_upto, tp->lost_retrans_low) ||
1184 icsk->icsk_ca_state != TCP_CA_Recovery)
1185 return;
1186
1187 tcp_for_write_queue(skb, sk) {
1188 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190 if (skb == tcp_send_head(sk))
1191 break;
1192 if (cnt == tp->retrans_out)
1193 break;
1194 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195 continue;
1196
1197 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198 continue;
1199
1200 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1201 * constraint here (see above) but figuring out that at
1202 * least tp->reordering SACK blocks reside between ack_seq
1203 * and received_upto is not easy task to do cheaply with
1204 * the available datastructures.
1205 *
1206 * Whether FACK should check here for tp->reordering segs
1207 * in-between one could argue for either way (it would be
1208 * rather simple to implement as we could count fack_count
1209 * during the walk and do tp->fackets_out - fack_count).
1210 */
1211 if (after(received_upto, ack_seq)) {
1212 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213 tp->retrans_out -= tcp_skb_pcount(skb);
1214
1215 tcp_skb_mark_lost_uncond_verify(tp, skb);
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217 } else {
1218 if (before(ack_seq, new_low_seq))
1219 new_low_seq = ack_seq;
1220 cnt += tcp_skb_pcount(skb);
1221 }
1222 }
1223
1224 if (tp->retrans_out)
1225 tp->lost_retrans_low = new_low_seq;
1226}
1227
1228static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229 struct tcp_sack_block_wire *sp, int num_sacks,
1230 u32 prior_snd_una)
1231{
1232 struct tcp_sock *tp = tcp_sk(sk);
1233 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235 bool dup_sack = false;
1236
1237 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238 dup_sack = true;
1239 tcp_dsack_seen(tp);
1240 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241 } else if (num_sacks > 1) {
1242 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244
1245 if (!after(end_seq_0, end_seq_1) &&
1246 !before(start_seq_0, start_seq_1)) {
1247 dup_sack = true;
1248 tcp_dsack_seen(tp);
1249 NET_INC_STATS_BH(sock_net(sk),
1250 LINUX_MIB_TCPDSACKOFORECV);
1251 }
1252 }
1253
1254 /* D-SACK for already forgotten data... Do dumb counting. */
1255 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256 !after(end_seq_0, prior_snd_una) &&
1257 after(end_seq_0, tp->undo_marker))
1258 tp->undo_retrans--;
1259
1260 return dup_sack;
1261}
1262
1263struct tcp_sacktag_state {
1264 int reord;
1265 int fack_count;
1266 int flag;
1267};
1268
1269/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
1274 *
1275 * FIXME: this could be merged to shift decision code
1276 */
1277static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278 u32 start_seq, u32 end_seq)
1279{
1280 int err;
1281 bool in_sack;
1282 unsigned int pkt_len;
1283 unsigned int mss;
1284
1285 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290 mss = tcp_skb_mss(skb);
1291 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293 if (!in_sack) {
1294 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295 if (pkt_len < mss)
1296 pkt_len = mss;
1297 } else {
1298 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299 if (pkt_len < mss)
1300 return -EINVAL;
1301 }
1302
1303 /* Round if necessary so that SACKs cover only full MSSes
1304 * and/or the remaining small portion (if present)
1305 */
1306 if (pkt_len > mss) {
1307 unsigned int new_len = (pkt_len / mss) * mss;
1308 if (!in_sack && new_len < pkt_len) {
1309 new_len += mss;
1310 if (new_len > skb->len)
1311 return 0;
1312 }
1313 pkt_len = new_len;
1314 }
1315 err = tcp_fragment(sk, skb, pkt_len, mss);
1316 if (err < 0)
1317 return err;
1318 }
1319
1320 return in_sack;
1321}
1322
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325 struct tcp_sacktag_state *state, u8 sacked,
1326 u32 start_seq, u32 end_seq,
1327 bool dup_sack, int pcount)
1328{
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 int fack_count = state->fack_count;
1331
1332 /* Account D-SACK for retransmitted packet. */
1333 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334 if (tp->undo_marker && tp->undo_retrans &&
1335 after(end_seq, tp->undo_marker))
1336 tp->undo_retrans--;
1337 if (sacked & TCPCB_SACKED_ACKED)
1338 state->reord = min(fack_count, state->reord);
1339 }
1340
1341 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342 if (!after(end_seq, tp->snd_una))
1343 return sacked;
1344
1345 if (!(sacked & TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
1352 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 tp->lost_out -= pcount;
1354 tp->retrans_out -= pcount;
1355 }
1356 } else {
1357 if (!(sacked & TCPCB_RETRANS)) {
1358 /* New sack for not retransmitted frame,
1359 * which was in hole. It is reordering.
1360 */
1361 if (before(start_seq,
1362 tcp_highest_sack_seq(tp)))
1363 state->reord = min(fack_count,
1364 state->reord);
1365
1366 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367 if (!after(end_seq, tp->frto_highmark))
1368 state->flag |= FLAG_ONLY_ORIG_SACKED;
1369 }
1370
1371 if (sacked & TCPCB_LOST) {
1372 sacked &= ~TCPCB_LOST;
1373 tp->lost_out -= pcount;
1374 }
1375 }
1376
1377 sacked |= TCPCB_SACKED_ACKED;
1378 state->flag |= FLAG_DATA_SACKED;
1379 tp->sacked_out += pcount;
1380
1381 fack_count += pcount;
1382
1383 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386 tp->lost_cnt_hint += pcount;
1387
1388 if (fack_count > tp->fackets_out)
1389 tp->fackets_out = fack_count;
1390 }
1391
1392 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1393 * frames and clear it. undo_retrans is decreased above, L|R frames
1394 * are accounted above as well.
1395 */
1396 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397 sacked &= ~TCPCB_SACKED_RETRANS;
1398 tp->retrans_out -= pcount;
1399 }
1400
1401 return sacked;
1402}
1403
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408 struct tcp_sacktag_state *state,
1409 unsigned int pcount, int shifted, int mss,
1410 bool dup_sack)
1411{
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1415 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1416
1417 BUG_ON(!pcount);
1418
1419 /* Adjust counters and hints for the newly sacked sequence
1420 * range but discard the return value since prev is already
1421 * marked. We must tag the range first because the seq
1422 * advancement below implicitly advances
1423 * tcp_highest_sack_seq() when skb is highest_sack.
1424 */
1425 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426 start_seq, end_seq, dup_sack, pcount);
1427
1428 if (skb == tp->lost_skb_hint)
1429 tp->lost_cnt_hint += pcount;
1430
1431 TCP_SKB_CB(prev)->end_seq += shifted;
1432 TCP_SKB_CB(skb)->seq += shifted;
1433
1434 skb_shinfo(prev)->gso_segs += pcount;
1435 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436 skb_shinfo(skb)->gso_segs -= pcount;
1437
1438 /* When we're adding to gso_segs == 1, gso_size will be zero,
1439 * in theory this shouldn't be necessary but as long as DSACK
1440 * code can come after this skb later on it's better to keep
1441 * setting gso_size to something.
1442 */
1443 if (!skb_shinfo(prev)->gso_size) {
1444 skb_shinfo(prev)->gso_size = mss;
1445 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446 }
1447
1448 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449 if (skb_shinfo(skb)->gso_segs <= 1) {
1450 skb_shinfo(skb)->gso_size = 0;
1451 skb_shinfo(skb)->gso_type = 0;
1452 }
1453
1454 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457 if (skb->len > 0) {
1458 BUG_ON(!tcp_skb_pcount(skb));
1459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460 return false;
1461 }
1462
1463 /* Whole SKB was eaten :-) */
1464
1465 if (skb == tp->retransmit_skb_hint)
1466 tp->retransmit_skb_hint = prev;
1467 if (skb == tp->scoreboard_skb_hint)
1468 tp->scoreboard_skb_hint = prev;
1469 if (skb == tp->lost_skb_hint) {
1470 tp->lost_skb_hint = prev;
1471 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472 }
1473
1474 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1475 if (skb == tcp_highest_sack(sk))
1476 tcp_advance_highest_sack(sk, skb);
1477
1478 tcp_unlink_write_queue(skb, sk);
1479 sk_wmem_free_skb(sk, skb);
1480
1481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
1483 return true;
1484}
1485
1486/* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
1489static int tcp_skb_seglen(const struct sk_buff *skb)
1490{
1491 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492}
1493
1494/* Shifting pages past head area doesn't work */
1495static int skb_can_shift(const struct sk_buff *skb)
1496{
1497 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498}
1499
1500/* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 struct tcp_sacktag_state *state,
1505 u32 start_seq, u32 end_seq,
1506 bool dup_sack)
1507{
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct sk_buff *prev;
1510 int mss;
1511 int pcount = 0;
1512 int len;
1513 int in_sack;
1514
1515 if (!sk_can_gso(sk))
1516 goto fallback;
1517
1518 /* Normally R but no L won't result in plain S */
1519 if (!dup_sack &&
1520 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521 goto fallback;
1522 if (!skb_can_shift(skb))
1523 goto fallback;
1524 /* This frame is about to be dropped (was ACKed). */
1525 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 goto fallback;
1527
1528 /* Can only happen with delayed DSACK + discard craziness */
1529 if (unlikely(skb == tcp_write_queue_head(sk)))
1530 goto fallback;
1531 prev = tcp_write_queue_prev(sk, skb);
1532
1533 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 goto fallback;
1535
1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539 if (in_sack) {
1540 len = skb->len;
1541 pcount = tcp_skb_pcount(skb);
1542 mss = tcp_skb_seglen(skb);
1543
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1546 */
1547 if (mss != tcp_skb_seglen(prev))
1548 goto fallback;
1549 } else {
1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 goto noop;
1552 /* CHECKME: This is non-MSS split case only?, this will
1553 * cause skipped skbs due to advancing loop btw, original
1554 * has that feature too
1555 */
1556 if (tcp_skb_pcount(skb) <= 1)
1557 goto noop;
1558
1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 if (!in_sack) {
1561 /* TODO: head merge to next could be attempted here
1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 * though it might not be worth of the additional hassle
1564 *
1565 * ...we can probably just fallback to what was done
1566 * previously. We could try merging non-SACKed ones
1567 * as well but it probably isn't going to buy off
1568 * because later SACKs might again split them, and
1569 * it would make skb timestamp tracking considerably
1570 * harder problem.
1571 */
1572 goto fallback;
1573 }
1574
1575 len = end_seq - TCP_SKB_CB(skb)->seq;
1576 BUG_ON(len < 0);
1577 BUG_ON(len > skb->len);
1578
1579 /* MSS boundaries should be honoured or else pcount will
1580 * severely break even though it makes things bit trickier.
1581 * Optimize common case to avoid most of the divides
1582 */
1583 mss = tcp_skb_mss(skb);
1584
1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 * drop this restriction as unnecessary
1587 */
1588 if (mss != tcp_skb_seglen(prev))
1589 goto fallback;
1590
1591 if (len == mss) {
1592 pcount = 1;
1593 } else if (len < mss) {
1594 goto noop;
1595 } else {
1596 pcount = len / mss;
1597 len = pcount * mss;
1598 }
1599 }
1600
1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 goto fallback;
1604
1605 if (!skb_shift(prev, skb, len))
1606 goto fallback;
1607 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608 goto out;
1609
1610 /* Hole filled allows collapsing with the next as well, this is very
1611 * useful when hole on every nth skb pattern happens
1612 */
1613 if (prev == tcp_write_queue_tail(sk))
1614 goto out;
1615 skb = tcp_write_queue_next(sk, prev);
1616
1617 if (!skb_can_shift(skb) ||
1618 (skb == tcp_send_head(sk)) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 (mss != tcp_skb_seglen(skb)))
1621 goto out;
1622
1623 len = skb->len;
1624 if (skb_shift(prev, skb, len)) {
1625 pcount += tcp_skb_pcount(skb);
1626 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627 }
1628
1629out:
1630 state->fack_count += pcount;
1631 return prev;
1632
1633noop:
1634 return skb;
1635
1636fallback:
1637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638 return NULL;
1639}
1640
1641static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 struct tcp_sack_block *next_dup,
1643 struct tcp_sacktag_state *state,
1644 u32 start_seq, u32 end_seq,
1645 bool dup_sack_in)
1646{
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct sk_buff *tmp;
1649
1650 tcp_for_write_queue_from(skb, sk) {
1651 int in_sack = 0;
1652 bool dup_sack = dup_sack_in;
1653
1654 if (skb == tcp_send_head(sk))
1655 break;
1656
1657 /* queue is in-order => we can short-circuit the walk early */
1658 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 break;
1660
1661 if ((next_dup != NULL) &&
1662 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 in_sack = tcp_match_skb_to_sack(sk, skb,
1664 next_dup->start_seq,
1665 next_dup->end_seq);
1666 if (in_sack > 0)
1667 dup_sack = true;
1668 }
1669
1670 /* skb reference here is a bit tricky to get right, since
1671 * shifting can eat and free both this skb and the next,
1672 * so not even _safe variant of the loop is enough.
1673 */
1674 if (in_sack <= 0) {
1675 tmp = tcp_shift_skb_data(sk, skb, state,
1676 start_seq, end_seq, dup_sack);
1677 if (tmp != NULL) {
1678 if (tmp != skb) {
1679 skb = tmp;
1680 continue;
1681 }
1682
1683 in_sack = 0;
1684 } else {
1685 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 start_seq,
1687 end_seq);
1688 }
1689 }
1690
1691 if (unlikely(in_sack < 0))
1692 break;
1693
1694 if (in_sack) {
1695 TCP_SKB_CB(skb)->sacked =
1696 tcp_sacktag_one(sk,
1697 state,
1698 TCP_SKB_CB(skb)->sacked,
1699 TCP_SKB_CB(skb)->seq,
1700 TCP_SKB_CB(skb)->end_seq,
1701 dup_sack,
1702 tcp_skb_pcount(skb));
1703
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1707 }
1708
1709 state->fack_count += tcp_skb_pcount(skb);
1710 }
1711 return skb;
1712}
1713
1714/* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718 struct tcp_sacktag_state *state,
1719 u32 skip_to_seq)
1720{
1721 tcp_for_write_queue_from(skb, sk) {
1722 if (skb == tcp_send_head(sk))
1723 break;
1724
1725 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726 break;
1727
1728 state->fack_count += tcp_skb_pcount(skb);
1729 }
1730 return skb;
1731}
1732
1733static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 struct sock *sk,
1735 struct tcp_sack_block *next_dup,
1736 struct tcp_sacktag_state *state,
1737 u32 skip_to_seq)
1738{
1739 if (next_dup == NULL)
1740 return skb;
1741
1742 if (before(next_dup->start_seq, skip_to_seq)) {
1743 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 next_dup->start_seq, next_dup->end_seq,
1746 1);
1747 }
1748
1749 return skb;
1750}
1751
1752static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753{
1754 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755}
1756
1757static int
1758tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759 u32 prior_snd_una)
1760{
1761 const struct inet_connection_sock *icsk = inet_csk(sk);
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 TCP_SKB_CB(ack_skb)->sacked);
1765 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766 struct tcp_sack_block sp[TCP_NUM_SACKS];
1767 struct tcp_sack_block *cache;
1768 struct tcp_sacktag_state state;
1769 struct sk_buff *skb;
1770 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771 int used_sacks;
1772 bool found_dup_sack = false;
1773 int i, j;
1774 int first_sack_index;
1775
1776 state.flag = 0;
1777 state.reord = tp->packets_out;
1778
1779 if (!tp->sacked_out) {
1780 if (WARN_ON(tp->fackets_out))
1781 tp->fackets_out = 0;
1782 tcp_highest_sack_reset(sk);
1783 }
1784
1785 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786 num_sacks, prior_snd_una);
1787 if (found_dup_sack)
1788 state.flag |= FLAG_DSACKING_ACK;
1789
1790 /* Eliminate too old ACKs, but take into
1791 * account more or less fresh ones, they can
1792 * contain valid SACK info.
1793 */
1794 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 return 0;
1796
1797 if (!tp->packets_out)
1798 goto out;
1799
1800 used_sacks = 0;
1801 first_sack_index = 0;
1802 for (i = 0; i < num_sacks; i++) {
1803 bool dup_sack = !i && found_dup_sack;
1804
1805 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808 if (!tcp_is_sackblock_valid(tp, dup_sack,
1809 sp[used_sacks].start_seq,
1810 sp[used_sacks].end_seq)) {
1811 int mib_idx;
1812
1813 if (dup_sack) {
1814 if (!tp->undo_marker)
1815 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816 else
1817 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818 } else {
1819 /* Don't count olds caused by ACK reordering */
1820 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821 !after(sp[used_sacks].end_seq, tp->snd_una))
1822 continue;
1823 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824 }
1825
1826 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827 if (i == 0)
1828 first_sack_index = -1;
1829 continue;
1830 }
1831
1832 /* Ignore very old stuff early */
1833 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834 continue;
1835
1836 used_sacks++;
1837 }
1838
1839 /* order SACK blocks to allow in order walk of the retrans queue */
1840 for (i = used_sacks - 1; i > 0; i--) {
1841 for (j = 0; j < i; j++) {
1842 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843 swap(sp[j], sp[j + 1]);
1844
1845 /* Track where the first SACK block goes to */
1846 if (j == first_sack_index)
1847 first_sack_index = j + 1;
1848 }
1849 }
1850 }
1851
1852 skb = tcp_write_queue_head(sk);
1853 state.fack_count = 0;
1854 i = 0;
1855
1856 if (!tp->sacked_out) {
1857 /* It's already past, so skip checking against it */
1858 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859 } else {
1860 cache = tp->recv_sack_cache;
1861 /* Skip empty blocks in at head of the cache */
1862 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863 !cache->end_seq)
1864 cache++;
1865 }
1866
1867 while (i < used_sacks) {
1868 u32 start_seq = sp[i].start_seq;
1869 u32 end_seq = sp[i].end_seq;
1870 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871 struct tcp_sack_block *next_dup = NULL;
1872
1873 if (found_dup_sack && ((i + 1) == first_sack_index))
1874 next_dup = &sp[i + 1];
1875
1876 /* Skip too early cached blocks */
1877 while (tcp_sack_cache_ok(tp, cache) &&
1878 !before(start_seq, cache->end_seq))
1879 cache++;
1880
1881 /* Can skip some work by looking recv_sack_cache? */
1882 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883 after(end_seq, cache->start_seq)) {
1884
1885 /* Head todo? */
1886 if (before(start_seq, cache->start_seq)) {
1887 skb = tcp_sacktag_skip(skb, sk, &state,
1888 start_seq);
1889 skb = tcp_sacktag_walk(skb, sk, next_dup,
1890 &state,
1891 start_seq,
1892 cache->start_seq,
1893 dup_sack);
1894 }
1895
1896 /* Rest of the block already fully processed? */
1897 if (!after(end_seq, cache->end_seq))
1898 goto advance_sp;
1899
1900 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901 &state,
1902 cache->end_seq);
1903
1904 /* ...tail remains todo... */
1905 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906 /* ...but better entrypoint exists! */
1907 skb = tcp_highest_sack(sk);
1908 if (skb == NULL)
1909 break;
1910 state.fack_count = tp->fackets_out;
1911 cache++;
1912 goto walk;
1913 }
1914
1915 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916 /* Check overlap against next cached too (past this one already) */
1917 cache++;
1918 continue;
1919 }
1920
1921 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922 skb = tcp_highest_sack(sk);
1923 if (skb == NULL)
1924 break;
1925 state.fack_count = tp->fackets_out;
1926 }
1927 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929walk:
1930 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931 start_seq, end_seq, dup_sack);
1932
1933advance_sp:
1934 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935 * due to in-order walk
1936 */
1937 if (after(end_seq, tp->frto_highmark))
1938 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940 i++;
1941 }
1942
1943 /* Clear the head of the cache sack blocks so we can skip it next time */
1944 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945 tp->recv_sack_cache[i].start_seq = 0;
1946 tp->recv_sack_cache[i].end_seq = 0;
1947 }
1948 for (j = 0; j < used_sacks; j++)
1949 tp->recv_sack_cache[i++] = sp[j];
1950
1951 tcp_mark_lost_retrans(sk);
1952
1953 tcp_verify_left_out(tp);
1954
1955 if ((state.reord < tp->fackets_out) &&
1956 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960out:
1961
1962#if FASTRETRANS_DEBUG > 0
1963 WARN_ON((int)tp->sacked_out < 0);
1964 WARN_ON((int)tp->lost_out < 0);
1965 WARN_ON((int)tp->retrans_out < 0);
1966 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967#endif
1968 return state.flag;
1969}
1970
1971/* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973 */
1974static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975{
1976 u32 holes;
1977
1978 holes = max(tp->lost_out, 1U);
1979 holes = min(holes, tp->packets_out);
1980
1981 if ((tp->sacked_out + holes) > tp->packets_out) {
1982 tp->sacked_out = tp->packets_out - holes;
1983 return true;
1984 }
1985 return false;
1986}
1987
1988/* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
1992static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993{
1994 struct tcp_sock *tp = tcp_sk(sk);
1995 if (tcp_limit_reno_sacked(tp))
1996 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997}
1998
1999/* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
2001static void tcp_add_reno_sack(struct sock *sk)
2002{
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 tp->sacked_out++;
2005 tcp_check_reno_reordering(sk, 0);
2006 tcp_verify_left_out(tp);
2007}
2008
2009/* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
2011static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012{
2013 struct tcp_sock *tp = tcp_sk(sk);
2014
2015 if (acked > 0) {
2016 /* One ACK acked hole. The rest eat duplicate ACKs. */
2017 if (acked - 1 >= tp->sacked_out)
2018 tp->sacked_out = 0;
2019 else
2020 tp->sacked_out -= acked - 1;
2021 }
2022 tcp_check_reno_reordering(sk, acked);
2023 tcp_verify_left_out(tp);
2024}
2025
2026static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027{
2028 tp->sacked_out = 0;
2029}
2030
2031static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032{
2033 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034}
2035
2036/* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
2039bool tcp_use_frto(struct sock *sk)
2040{
2041 const struct tcp_sock *tp = tcp_sk(sk);
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct sk_buff *skb;
2044
2045 if (!sysctl_tcp_frto)
2046 return false;
2047
2048 /* MTU probe and F-RTO won't really play nicely along currently */
2049 if (icsk->icsk_mtup.probe_size)
2050 return false;
2051
2052 if (tcp_is_sackfrto(tp))
2053 return true;
2054
2055 /* Avoid expensive walking of rexmit queue if possible */
2056 if (tp->retrans_out > 1)
2057 return false;
2058
2059 skb = tcp_write_queue_head(sk);
2060 if (tcp_skb_is_last(sk, skb))
2061 return true;
2062 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2063 tcp_for_write_queue_from(skb, sk) {
2064 if (skb == tcp_send_head(sk))
2065 break;
2066 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067 return false;
2068 /* Short-circuit when first non-SACKed skb has been checked */
2069 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070 break;
2071 }
2072 return true;
2073}
2074
2075/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 * "Reduce ssthresh if it has not yet been made inside this window."
2086 */
2087void tcp_enter_frto(struct sock *sk)
2088{
2089 const struct inet_connection_sock *icsk = inet_csk(sk);
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 struct sk_buff *skb;
2092
2093 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094 tp->snd_una == tp->high_seq ||
2095 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096 !icsk->icsk_retransmits)) {
2097 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 /* Our state is too optimistic in ssthresh() call because cwnd
2099 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100 * recovery has not yet completed. Pattern would be this: RTO,
2101 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102 * up here twice).
2103 * RFC4138 should be more specific on what to do, even though
2104 * RTO is quite unlikely to occur after the first Cumulative ACK
2105 * due to back-off and complexity of triggering events ...
2106 */
2107 if (tp->frto_counter) {
2108 u32 stored_cwnd;
2109 stored_cwnd = tp->snd_cwnd;
2110 tp->snd_cwnd = 2;
2111 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 tp->snd_cwnd = stored_cwnd;
2113 } else {
2114 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115 }
2116 /* ... in theory, cong.control module could do "any tricks" in
2117 * ssthresh(), which means that ca_state, lost bits and lost_out
2118 * counter would have to be faked before the call occurs. We
2119 * consider that too expensive, unlikely and hacky, so modules
2120 * using these in ssthresh() must deal these incompatibility
2121 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122 */
2123 tcp_ca_event(sk, CA_EVENT_FRTO);
2124 }
2125
2126 tp->undo_marker = tp->snd_una;
2127 tp->undo_retrans = 0;
2128
2129 skb = tcp_write_queue_head(sk);
2130 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131 tp->undo_marker = 0;
2132 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134 tp->retrans_out -= tcp_skb_pcount(skb);
2135 }
2136 tcp_verify_left_out(tp);
2137
2138 /* Too bad if TCP was application limited */
2139 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2142 * The last condition is necessary at least in tp->frto_counter case.
2143 */
2144 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146 after(tp->high_seq, tp->snd_una)) {
2147 tp->frto_highmark = tp->high_seq;
2148 } else {
2149 tp->frto_highmark = tp->snd_nxt;
2150 }
2151 tcp_set_ca_state(sk, TCP_CA_Disorder);
2152 tp->high_seq = tp->snd_nxt;
2153 tp->frto_counter = 1;
2154}
2155
2156/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
2160static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161{
2162 struct tcp_sock *tp = tcp_sk(sk);
2163 struct sk_buff *skb;
2164
2165 tp->lost_out = 0;
2166 tp->retrans_out = 0;
2167 if (tcp_is_reno(tp))
2168 tcp_reset_reno_sack(tp);
2169
2170 tcp_for_write_queue(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173
2174 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175 /*
2176 * Count the retransmission made on RTO correctly (only when
2177 * waiting for the first ACK and did not get it)...
2178 */
2179 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180 /* For some reason this R-bit might get cleared? */
2181 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182 tp->retrans_out += tcp_skb_pcount(skb);
2183 /* ...enter this if branch just for the first segment */
2184 flag |= FLAG_DATA_ACKED;
2185 } else {
2186 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187 tp->undo_marker = 0;
2188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 }
2190
2191 /* Marking forward transmissions that were made after RTO lost
2192 * can cause unnecessary retransmissions in some scenarios,
2193 * SACK blocks will mitigate that in some but not in all cases.
2194 * We used to not mark them but it was causing break-ups with
2195 * receivers that do only in-order receival.
2196 *
2197 * TODO: we could detect presence of such receiver and select
2198 * different behavior per flow.
2199 */
2200 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202 tp->lost_out += tcp_skb_pcount(skb);
2203 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 }
2205 }
2206 tcp_verify_left_out(tp);
2207
2208 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209 tp->snd_cwnd_cnt = 0;
2210 tp->snd_cwnd_stamp = tcp_time_stamp;
2211 tp->frto_counter = 0;
2212 tp->bytes_acked = 0;
2213
2214 tp->reordering = min_t(unsigned int, tp->reordering,
2215 sysctl_tcp_reordering);
2216 tcp_set_ca_state(sk, TCP_CA_Loss);
2217 tp->high_seq = tp->snd_nxt;
2218 TCP_ECN_queue_cwr(tp);
2219
2220 tcp_clear_all_retrans_hints(tp);
2221}
2222
2223static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224{
2225 tp->retrans_out = 0;
2226 tp->lost_out = 0;
2227
2228 tp->undo_marker = 0;
2229 tp->undo_retrans = 0;
2230}
2231
2232void tcp_clear_retrans(struct tcp_sock *tp)
2233{
2234 tcp_clear_retrans_partial(tp);
2235
2236 tp->fackets_out = 0;
2237 tp->sacked_out = 0;
2238}
2239
2240/* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
2244void tcp_enter_loss(struct sock *sk, int how)
2245{
2246 const struct inet_connection_sock *icsk = inet_csk(sk);
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 struct sk_buff *skb;
2249
2250 /* Reduce ssthresh if it has not yet been made inside this window. */
2251 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2252 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255 tcp_ca_event(sk, CA_EVENT_LOSS);
2256 }
2257 tp->snd_cwnd = 1;
2258 tp->snd_cwnd_cnt = 0;
2259 tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261 tp->bytes_acked = 0;
2262 tcp_clear_retrans_partial(tp);
2263
2264 if (tcp_is_reno(tp))
2265 tcp_reset_reno_sack(tp);
2266
2267 if (!how) {
2268 /* Push undo marker, if it was plain RTO and nothing
2269 * was retransmitted. */
2270 tp->undo_marker = tp->snd_una;
2271 } else {
2272 tp->sacked_out = 0;
2273 tp->fackets_out = 0;
2274 }
2275 tcp_clear_all_retrans_hints(tp);
2276
2277 tcp_for_write_queue(skb, sk) {
2278 if (skb == tcp_send_head(sk))
2279 break;
2280
2281 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282 tp->undo_marker = 0;
2283 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287 tp->lost_out += tcp_skb_pcount(skb);
2288 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289 }
2290 }
2291 tcp_verify_left_out(tp);
2292
2293 tp->reordering = min_t(unsigned int, tp->reordering,
2294 sysctl_tcp_reordering);
2295 tcp_set_ca_state(sk, TCP_CA_Loss);
2296 tp->high_seq = tp->snd_nxt;
2297 TCP_ECN_queue_cwr(tp);
2298 /* Abort F-RTO algorithm if one is in progress */
2299 tp->frto_counter = 0;
2300}
2301
2302/* If ACK arrived pointing to a remembered SACK, it means that our
2303 * remembered SACKs do not reflect real state of receiver i.e.
2304 * receiver _host_ is heavily congested (or buggy).
2305 *
2306 * Do processing similar to RTO timeout.
2307 */
2308static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309{
2310 if (flag & FLAG_SACK_RENEGING) {
2311 struct inet_connection_sock *icsk = inet_csk(sk);
2312 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2313
2314 tcp_enter_loss(sk, 1);
2315 icsk->icsk_retransmits++;
2316 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318 icsk->icsk_rto, TCP_RTO_MAX);
2319 return true;
2320 }
2321 return false;
2322}
2323
2324static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325{
2326 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327}
2328
2329/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * that purpose).
2332 *
2333 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334 * segments up to the highest received SACK block so far and holes in
2335 * between them.
2336 *
2337 * With reordering, holes may still be in flight, so RFC3517 recovery
2338 * uses pure sacked_out (total number of SACKed segments) even though
2339 * it violates the RFC that uses duplicate ACKs, often these are equal
2340 * but when e.g. out-of-window ACKs or packet duplication occurs,
2341 * they differ. Since neither occurs due to loss, TCP should really
2342 * ignore them.
2343 */
2344static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345{
2346 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347}
2348
2349static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350{
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 unsigned long delay;
2353
2354 /* Delay early retransmit and entering fast recovery for
2355 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356 * available, or RTO is scheduled to fire first.
2357 */
2358 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2359 return false;
2360
2361 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2362 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363 return false;
2364
2365 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366 tp->early_retrans_delayed = 1;
2367 return true;
2368}
2369
2370static inline int tcp_skb_timedout(const struct sock *sk,
2371 const struct sk_buff *skb)
2372{
2373 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374}
2375
2376static inline int tcp_head_timedout(const struct sock *sk)
2377{
2378 const struct tcp_sock *tp = tcp_sk(sk);
2379
2380 return tp->packets_out &&
2381 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382}
2383
2384/* Linux NewReno/SACK/FACK/ECN state machine.
2385 * --------------------------------------
2386 *
2387 * "Open" Normal state, no dubious events, fast path.
2388 * "Disorder" In all the respects it is "Open",
2389 * but requires a bit more attention. It is entered when
2390 * we see some SACKs or dupacks. It is split of "Open"
2391 * mainly to move some processing from fast path to slow one.
2392 * "CWR" CWND was reduced due to some Congestion Notification event.
2393 * It can be ECN, ICMP source quench, local device congestion.
2394 * "Recovery" CWND was reduced, we are fast-retransmitting.
2395 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2396 *
2397 * tcp_fastretrans_alert() is entered:
2398 * - each incoming ACK, if state is not "Open"
2399 * - when arrived ACK is unusual, namely:
2400 * * SACK
2401 * * Duplicate ACK.
2402 * * ECN ECE.
2403 *
2404 * Counting packets in flight is pretty simple.
2405 *
2406 * in_flight = packets_out - left_out + retrans_out
2407 *
2408 * packets_out is SND.NXT-SND.UNA counted in packets.
2409 *
2410 * retrans_out is number of retransmitted segments.
2411 *
2412 * left_out is number of segments left network, but not ACKed yet.
2413 *
2414 * left_out = sacked_out + lost_out
2415 *
2416 * sacked_out: Packets, which arrived to receiver out of order
2417 * and hence not ACKed. With SACKs this number is simply
2418 * amount of SACKed data. Even without SACKs
2419 * it is easy to give pretty reliable estimate of this number,
2420 * counting duplicate ACKs.
2421 *
2422 * lost_out: Packets lost by network. TCP has no explicit
2423 * "loss notification" feedback from network (for now).
2424 * It means that this number can be only _guessed_.
2425 * Actually, it is the heuristics to predict lossage that
2426 * distinguishes different algorithms.
2427 *
2428 * F.e. after RTO, when all the queue is considered as lost,
2429 * lost_out = packets_out and in_flight = retrans_out.
2430 *
2431 * Essentially, we have now two algorithms counting
2432 * lost packets.
2433 *
2434 * FACK: It is the simplest heuristics. As soon as we decided
2435 * that something is lost, we decide that _all_ not SACKed
2436 * packets until the most forward SACK are lost. I.e.
2437 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438 * It is absolutely correct estimate, if network does not reorder
2439 * packets. And it loses any connection to reality when reordering
2440 * takes place. We use FACK by default until reordering
2441 * is suspected on the path to this destination.
2442 *
2443 * NewReno: when Recovery is entered, we assume that one segment
2444 * is lost (classic Reno). While we are in Recovery and
2445 * a partial ACK arrives, we assume that one more packet
2446 * is lost (NewReno). This heuristics are the same in NewReno
2447 * and SACK.
2448 *
2449 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2450 * deflation etc. CWND is real congestion window, never inflated, changes
2451 * only according to classic VJ rules.
2452 *
2453 * Really tricky (and requiring careful tuning) part of algorithm
2454 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455 * The first determines the moment _when_ we should reduce CWND and,
2456 * hence, slow down forward transmission. In fact, it determines the moment
2457 * when we decide that hole is caused by loss, rather than by a reorder.
2458 *
2459 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460 * holes, caused by lost packets.
2461 *
2462 * And the most logically complicated part of algorithm is undo
2463 * heuristics. We detect false retransmits due to both too early
2464 * fast retransmit (reordering) and underestimated RTO, analyzing
2465 * timestamps and D-SACKs. When we detect that some segments were
2466 * retransmitted by mistake and CWND reduction was wrong, we undo
2467 * window reduction and abort recovery phase. This logic is hidden
2468 * inside several functions named tcp_try_undo_<something>.
2469 */
2470
2471/* This function decides, when we should leave Disordered state
2472 * and enter Recovery phase, reducing congestion window.
2473 *
2474 * Main question: may we further continue forward transmission
2475 * with the same cwnd?
2476 */
2477static bool tcp_time_to_recover(struct sock *sk, int flag)
2478{
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 __u32 packets_out;
2481
2482 /* Do not perform any recovery during F-RTO algorithm */
2483 if (tp->frto_counter)
2484 return false;
2485
2486 /* Trick#1: The loss is proven. */
2487 if (tp->lost_out)
2488 return true;
2489
2490 /* Not-A-Trick#2 : Classic rule... */
2491 if (tcp_dupack_heuristics(tp) > tp->reordering)
2492 return true;
2493
2494 /* Trick#3 : when we use RFC2988 timer restart, fast
2495 * retransmit can be triggered by timeout of queue head.
2496 */
2497 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498 return true;
2499
2500 /* Trick#4: It is still not OK... But will it be useful to delay
2501 * recovery more?
2502 */
2503 packets_out = tp->packets_out;
2504 if (packets_out <= tp->reordering &&
2505 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506 !tcp_may_send_now(sk)) {
2507 /* We have nothing to send. This connection is limited
2508 * either by receiver window or by application.
2509 */
2510 return true;
2511 }
2512
2513 /* If a thin stream is detected, retransmit after first
2514 * received dupack. Employ only if SACK is supported in order
2515 * to avoid possible corner-case series of spurious retransmissions
2516 * Use only if there are no unsent data.
2517 */
2518 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520 tcp_is_sack(tp) && !tcp_send_head(sk))
2521 return true;
2522
2523 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2524 * retransmissions due to small network reorderings, we implement
2525 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526 * interval if appropriate.
2527 */
2528 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530 !tcp_may_send_now(sk))
2531 return !tcp_pause_early_retransmit(sk, flag);
2532
2533 return false;
2534}
2535
2536/* New heuristics: it is possible only after we switched to restart timer
2537 * each time when something is ACKed. Hence, we can detect timed out packets
2538 * during fast retransmit without falling to slow start.
2539 *
2540 * Usefulness of this as is very questionable, since we should know which of
2541 * the segments is the next to timeout which is relatively expensive to find
2542 * in general case unless we add some data structure just for that. The
2543 * current approach certainly won't find the right one too often and when it
2544 * finally does find _something_ it usually marks large part of the window
2545 * right away (because a retransmission with a larger timestamp blocks the
2546 * loop from advancing). -ij
2547 */
2548static void tcp_timeout_skbs(struct sock *sk)
2549{
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb;
2552
2553 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554 return;
2555
2556 skb = tp->scoreboard_skb_hint;
2557 if (tp->scoreboard_skb_hint == NULL)
2558 skb = tcp_write_queue_head(sk);
2559
2560 tcp_for_write_queue_from(skb, sk) {
2561 if (skb == tcp_send_head(sk))
2562 break;
2563 if (!tcp_skb_timedout(sk, skb))
2564 break;
2565
2566 tcp_skb_mark_lost(tp, skb);
2567 }
2568
2569 tp->scoreboard_skb_hint = skb;
2570
2571 tcp_verify_left_out(tp);
2572}
2573
2574/* Detect loss in event "A" above by marking head of queue up as lost.
2575 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578 * the maximum SACKed segments to pass before reaching this limit.
2579 */
2580static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581{
2582 struct tcp_sock *tp = tcp_sk(sk);
2583 struct sk_buff *skb;
2584 int cnt, oldcnt;
2585 int err;
2586 unsigned int mss;
2587 /* Use SACK to deduce losses of new sequences sent during recovery */
2588 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2589
2590 WARN_ON(packets > tp->packets_out);
2591 if (tp->lost_skb_hint) {
2592 skb = tp->lost_skb_hint;
2593 cnt = tp->lost_cnt_hint;
2594 /* Head already handled? */
2595 if (mark_head && skb != tcp_write_queue_head(sk))
2596 return;
2597 } else {
2598 skb = tcp_write_queue_head(sk);
2599 cnt = 0;
2600 }
2601
2602 tcp_for_write_queue_from(skb, sk) {
2603 if (skb == tcp_send_head(sk))
2604 break;
2605 /* TODO: do this better */
2606 /* this is not the most efficient way to do this... */
2607 tp->lost_skb_hint = skb;
2608 tp->lost_cnt_hint = cnt;
2609
2610 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611 break;
2612
2613 oldcnt = cnt;
2614 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616 cnt += tcp_skb_pcount(skb);
2617
2618 if (cnt > packets) {
2619 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621 (oldcnt >= packets))
2622 break;
2623
2624 mss = skb_shinfo(skb)->gso_size;
2625 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626 if (err < 0)
2627 break;
2628 cnt = packets;
2629 }
2630
2631 tcp_skb_mark_lost(tp, skb);
2632
2633 if (mark_head)
2634 break;
2635 }
2636 tcp_verify_left_out(tp);
2637}
2638
2639/* Account newly detected lost packet(s) */
2640
2641static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642{
2643 struct tcp_sock *tp = tcp_sk(sk);
2644
2645 if (tcp_is_reno(tp)) {
2646 tcp_mark_head_lost(sk, 1, 1);
2647 } else if (tcp_is_fack(tp)) {
2648 int lost = tp->fackets_out - tp->reordering;
2649 if (lost <= 0)
2650 lost = 1;
2651 tcp_mark_head_lost(sk, lost, 0);
2652 } else {
2653 int sacked_upto = tp->sacked_out - tp->reordering;
2654 if (sacked_upto >= 0)
2655 tcp_mark_head_lost(sk, sacked_upto, 0);
2656 else if (fast_rexmit)
2657 tcp_mark_head_lost(sk, 1, 1);
2658 }
2659
2660 tcp_timeout_skbs(sk);
2661}
2662
2663/* CWND moderation, preventing bursts due to too big ACKs
2664 * in dubious situations.
2665 */
2666static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2667{
2668 tp->snd_cwnd = min(tp->snd_cwnd,
2669 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670 tp->snd_cwnd_stamp = tcp_time_stamp;
2671}
2672
2673/* Lower bound on congestion window is slow start threshold
2674 * unless congestion avoidance choice decides to overide it.
2675 */
2676static inline u32 tcp_cwnd_min(const struct sock *sk)
2677{
2678 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2679
2680 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681}
2682
2683/* Decrease cwnd each second ack. */
2684static void tcp_cwnd_down(struct sock *sk, int flag)
2685{
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 int decr = tp->snd_cwnd_cnt + 1;
2688
2689 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691 tp->snd_cwnd_cnt = decr & 1;
2692 decr >>= 1;
2693
2694 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695 tp->snd_cwnd -= decr;
2696
2697 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698 tp->snd_cwnd_stamp = tcp_time_stamp;
2699 }
2700}
2701
2702/* Nothing was retransmitted or returned timestamp is less
2703 * than timestamp of the first retransmission.
2704 */
2705static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706{
2707 return !tp->retrans_stamp ||
2708 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710}
2711
2712/* Undo procedures. */
2713
2714#if FASTRETRANS_DEBUG > 1
2715static void DBGUNDO(struct sock *sk, const char *msg)
2716{
2717 struct tcp_sock *tp = tcp_sk(sk);
2718 struct inet_sock *inet = inet_sk(sk);
2719
2720 if (sk->sk_family == AF_INET) {
2721 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722 msg,
2723 &inet->inet_daddr, ntohs(inet->inet_dport),
2724 tp->snd_cwnd, tcp_left_out(tp),
2725 tp->snd_ssthresh, tp->prior_ssthresh,
2726 tp->packets_out);
2727 }
2728#if IS_ENABLED(CONFIG_IPV6)
2729 else if (sk->sk_family == AF_INET6) {
2730 struct ipv6_pinfo *np = inet6_sk(sk);
2731 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732 msg,
2733 &np->daddr, ntohs(inet->inet_dport),
2734 tp->snd_cwnd, tcp_left_out(tp),
2735 tp->snd_ssthresh, tp->prior_ssthresh,
2736 tp->packets_out);
2737 }
2738#endif
2739}
2740#else
2741#define DBGUNDO(x...) do { } while (0)
2742#endif
2743
2744static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745{
2746 struct tcp_sock *tp = tcp_sk(sk);
2747
2748 if (tp->prior_ssthresh) {
2749 const struct inet_connection_sock *icsk = inet_csk(sk);
2750
2751 if (icsk->icsk_ca_ops->undo_cwnd)
2752 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753 else
2754 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755
2756 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757 tp->snd_ssthresh = tp->prior_ssthresh;
2758 TCP_ECN_withdraw_cwr(tp);
2759 }
2760 } else {
2761 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762 }
2763 tp->snd_cwnd_stamp = tcp_time_stamp;
2764}
2765
2766static inline int tcp_may_undo(const struct tcp_sock *tp)
2767{
2768 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769}
2770
2771/* People celebrate: "We love our President!" */
2772static bool tcp_try_undo_recovery(struct sock *sk)
2773{
2774 struct tcp_sock *tp = tcp_sk(sk);
2775
2776 if (tcp_may_undo(tp)) {
2777 int mib_idx;
2778
2779 /* Happy end! We did not retransmit anything
2780 * or our original transmission succeeded.
2781 */
2782 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783 tcp_undo_cwr(sk, true);
2784 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786 else
2787 mib_idx = LINUX_MIB_TCPFULLUNDO;
2788
2789 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790 tp->undo_marker = 0;
2791 }
2792 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793 /* Hold old state until something *above* high_seq
2794 * is ACKed. For Reno it is MUST to prevent false
2795 * fast retransmits (RFC2582). SACK TCP is safe. */
2796 tcp_moderate_cwnd(tp);
2797 return true;
2798 }
2799 tcp_set_ca_state(sk, TCP_CA_Open);
2800 return false;
2801}
2802
2803/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804static void tcp_try_undo_dsack(struct sock *sk)
2805{
2806 struct tcp_sock *tp = tcp_sk(sk);
2807
2808 if (tp->undo_marker && !tp->undo_retrans) {
2809 DBGUNDO(sk, "D-SACK");
2810 tcp_undo_cwr(sk, true);
2811 tp->undo_marker = 0;
2812 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2813 }
2814}
2815
2816/* We can clear retrans_stamp when there are no retransmissions in the
2817 * window. It would seem that it is trivially available for us in
2818 * tp->retrans_out, however, that kind of assumptions doesn't consider
2819 * what will happen if errors occur when sending retransmission for the
2820 * second time. ...It could the that such segment has only
2821 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822 * the head skb is enough except for some reneging corner cases that
2823 * are not worth the effort.
2824 *
2825 * Main reason for all this complexity is the fact that connection dying
2826 * time now depends on the validity of the retrans_stamp, in particular,
2827 * that successive retransmissions of a segment must not advance
2828 * retrans_stamp under any conditions.
2829 */
2830static bool tcp_any_retrans_done(const struct sock *sk)
2831{
2832 const struct tcp_sock *tp = tcp_sk(sk);
2833 struct sk_buff *skb;
2834
2835 if (tp->retrans_out)
2836 return true;
2837
2838 skb = tcp_write_queue_head(sk);
2839 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2840 return true;
2841
2842 return false;
2843}
2844
2845/* Undo during fast recovery after partial ACK. */
2846
2847static int tcp_try_undo_partial(struct sock *sk, int acked)
2848{
2849 struct tcp_sock *tp = tcp_sk(sk);
2850 /* Partial ACK arrived. Force Hoe's retransmit. */
2851 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852
2853 if (tcp_may_undo(tp)) {
2854 /* Plain luck! Hole if filled with delayed
2855 * packet, rather than with a retransmit.
2856 */
2857 if (!tcp_any_retrans_done(sk))
2858 tp->retrans_stamp = 0;
2859
2860 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2861
2862 DBGUNDO(sk, "Hoe");
2863 tcp_undo_cwr(sk, false);
2864 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865
2866 /* So... Do not make Hoe's retransmit yet.
2867 * If the first packet was delayed, the rest
2868 * ones are most probably delayed as well.
2869 */
2870 failed = 0;
2871 }
2872 return failed;
2873}
2874
2875/* Undo during loss recovery after partial ACK. */
2876static bool tcp_try_undo_loss(struct sock *sk)
2877{
2878 struct tcp_sock *tp = tcp_sk(sk);
2879
2880 if (tcp_may_undo(tp)) {
2881 struct sk_buff *skb;
2882 tcp_for_write_queue(skb, sk) {
2883 if (skb == tcp_send_head(sk))
2884 break;
2885 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886 }
2887
2888 tcp_clear_all_retrans_hints(tp);
2889
2890 DBGUNDO(sk, "partial loss");
2891 tp->lost_out = 0;
2892 tcp_undo_cwr(sk, true);
2893 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894 inet_csk(sk)->icsk_retransmits = 0;
2895 tp->undo_marker = 0;
2896 if (tcp_is_sack(tp))
2897 tcp_set_ca_state(sk, TCP_CA_Open);
2898 return true;
2899 }
2900 return false;
2901}
2902
2903static inline void tcp_complete_cwr(struct sock *sk)
2904{
2905 struct tcp_sock *tp = tcp_sk(sk);
2906
2907 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908 if (tp->undo_marker) {
2909 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911 tp->snd_cwnd_stamp = tcp_time_stamp;
2912 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913 /* PRR algorithm. */
2914 tp->snd_cwnd = tp->snd_ssthresh;
2915 tp->snd_cwnd_stamp = tcp_time_stamp;
2916 }
2917 }
2918 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919}
2920
2921static void tcp_try_keep_open(struct sock *sk)
2922{
2923 struct tcp_sock *tp = tcp_sk(sk);
2924 int state = TCP_CA_Open;
2925
2926 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927 state = TCP_CA_Disorder;
2928
2929 if (inet_csk(sk)->icsk_ca_state != state) {
2930 tcp_set_ca_state(sk, state);
2931 tp->high_seq = tp->snd_nxt;
2932 }
2933}
2934
2935static void tcp_try_to_open(struct sock *sk, int flag)
2936{
2937 struct tcp_sock *tp = tcp_sk(sk);
2938
2939 tcp_verify_left_out(tp);
2940
2941 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942 tp->retrans_stamp = 0;
2943
2944 if (flag & FLAG_ECE)
2945 tcp_enter_cwr(sk, 1);
2946
2947 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948 tcp_try_keep_open(sk);
2949 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950 tcp_moderate_cwnd(tp);
2951 } else {
2952 tcp_cwnd_down(sk, flag);
2953 }
2954}
2955
2956static void tcp_mtup_probe_failed(struct sock *sk)
2957{
2958 struct inet_connection_sock *icsk = inet_csk(sk);
2959
2960 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961 icsk->icsk_mtup.probe_size = 0;
2962}
2963
2964static void tcp_mtup_probe_success(struct sock *sk)
2965{
2966 struct tcp_sock *tp = tcp_sk(sk);
2967 struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969 /* FIXME: breaks with very large cwnd */
2970 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971 tp->snd_cwnd = tp->snd_cwnd *
2972 tcp_mss_to_mtu(sk, tp->mss_cache) /
2973 icsk->icsk_mtup.probe_size;
2974 tp->snd_cwnd_cnt = 0;
2975 tp->snd_cwnd_stamp = tcp_time_stamp;
2976 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977
2978 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979 icsk->icsk_mtup.probe_size = 0;
2980 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2981}
2982
2983/* Do a simple retransmit without using the backoff mechanisms in
2984 * tcp_timer. This is used for path mtu discovery.
2985 * The socket is already locked here.
2986 */
2987void tcp_simple_retransmit(struct sock *sk)
2988{
2989 const struct inet_connection_sock *icsk = inet_csk(sk);
2990 struct tcp_sock *tp = tcp_sk(sk);
2991 struct sk_buff *skb;
2992 unsigned int mss = tcp_current_mss(sk);
2993 u32 prior_lost = tp->lost_out;
2994
2995 tcp_for_write_queue(skb, sk) {
2996 if (skb == tcp_send_head(sk))
2997 break;
2998 if (tcp_skb_seglen(skb) > mss &&
2999 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002 tp->retrans_out -= tcp_skb_pcount(skb);
3003 }
3004 tcp_skb_mark_lost_uncond_verify(tp, skb);
3005 }
3006 }
3007
3008 tcp_clear_retrans_hints_partial(tp);
3009
3010 if (prior_lost == tp->lost_out)
3011 return;
3012
3013 if (tcp_is_reno(tp))
3014 tcp_limit_reno_sacked(tp);
3015
3016 tcp_verify_left_out(tp);
3017
3018 /* Don't muck with the congestion window here.
3019 * Reason is that we do not increase amount of _data_
3020 * in network, but units changed and effective
3021 * cwnd/ssthresh really reduced now.
3022 */
3023 if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024 tp->high_seq = tp->snd_nxt;
3025 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026 tp->prior_ssthresh = 0;
3027 tp->undo_marker = 0;
3028 tcp_set_ca_state(sk, TCP_CA_Loss);
3029 }
3030 tcp_xmit_retransmit_queue(sk);
3031}
3032EXPORT_SYMBOL(tcp_simple_retransmit);
3033
3034/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035 * (proportional rate reduction with slow start reduction bound) as described in
3036 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037 * It computes the number of packets to send (sndcnt) based on packets newly
3038 * delivered:
3039 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3040 * cwnd reductions across a full RTT.
3041 * 2) If packets in flight is lower than ssthresh (such as due to excess
3042 * losses and/or application stalls), do not perform any further cwnd
3043 * reductions, but instead slow start up to ssthresh.
3044 */
3045static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046 int fast_rexmit, int flag)
3047{
3048 struct tcp_sock *tp = tcp_sk(sk);
3049 int sndcnt = 0;
3050 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3051
3052 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054 tp->prior_cwnd - 1;
3055 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056 } else {
3057 sndcnt = min_t(int, delta,
3058 max_t(int, tp->prr_delivered - tp->prr_out,
3059 newly_acked_sacked) + 1);
3060 }
3061
3062 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3064}
3065
3066static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3067{
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 int mib_idx;
3070
3071 if (tcp_is_reno(tp))
3072 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073 else
3074 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3075
3076 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3077
3078 tp->high_seq = tp->snd_nxt;
3079 tp->prior_ssthresh = 0;
3080 tp->undo_marker = tp->snd_una;
3081 tp->undo_retrans = tp->retrans_out;
3082
3083 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084 if (!ece_ack)
3085 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087 TCP_ECN_queue_cwr(tp);
3088 }
3089
3090 tp->bytes_acked = 0;
3091 tp->snd_cwnd_cnt = 0;
3092 tp->prior_cwnd = tp->snd_cwnd;
3093 tp->prr_delivered = 0;
3094 tp->prr_out = 0;
3095 tcp_set_ca_state(sk, TCP_CA_Recovery);
3096}
3097
3098/* Process an event, which can update packets-in-flight not trivially.
3099 * Main goal of this function is to calculate new estimate for left_out,
3100 * taking into account both packets sitting in receiver's buffer and
3101 * packets lost by network.
3102 *
3103 * Besides that it does CWND reduction, when packet loss is detected
3104 * and changes state of machine.
3105 *
3106 * It does _not_ decide what to send, it is made in function
3107 * tcp_xmit_retransmit_queue().
3108 */
3109static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110 int prior_sacked, bool is_dupack,
3111 int flag)
3112{
3113 struct inet_connection_sock *icsk = inet_csk(sk);
3114 struct tcp_sock *tp = tcp_sk(sk);
3115 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3116 (tcp_fackets_out(tp) > tp->reordering));
3117 int newly_acked_sacked = 0;
3118 int fast_rexmit = 0;
3119
3120 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3121 tp->sacked_out = 0;
3122 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3123 tp->fackets_out = 0;
3124
3125 /* Now state machine starts.
3126 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3127 if (flag & FLAG_ECE)
3128 tp->prior_ssthresh = 0;
3129
3130 /* B. In all the states check for reneging SACKs. */
3131 if (tcp_check_sack_reneging(sk, flag))
3132 return;
3133
3134 /* C. Check consistency of the current state. */
3135 tcp_verify_left_out(tp);
3136
3137 /* D. Check state exit conditions. State can be terminated
3138 * when high_seq is ACKed. */
3139 if (icsk->icsk_ca_state == TCP_CA_Open) {
3140 WARN_ON(tp->retrans_out != 0);
3141 tp->retrans_stamp = 0;
3142 } else if (!before(tp->snd_una, tp->high_seq)) {
3143 switch (icsk->icsk_ca_state) {
3144 case TCP_CA_Loss:
3145 icsk->icsk_retransmits = 0;
3146 if (tcp_try_undo_recovery(sk))
3147 return;
3148 break;
3149
3150 case TCP_CA_CWR:
3151 /* CWR is to be held something *above* high_seq
3152 * is ACKed for CWR bit to reach receiver. */
3153 if (tp->snd_una != tp->high_seq) {
3154 tcp_complete_cwr(sk);
3155 tcp_set_ca_state(sk, TCP_CA_Open);
3156 }
3157 break;
3158
3159 case TCP_CA_Recovery:
3160 if (tcp_is_reno(tp))
3161 tcp_reset_reno_sack(tp);
3162 if (tcp_try_undo_recovery(sk))
3163 return;
3164 tcp_complete_cwr(sk);
3165 break;
3166 }
3167 }
3168
3169 /* E. Process state. */
3170 switch (icsk->icsk_ca_state) {
3171 case TCP_CA_Recovery:
3172 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3173 if (tcp_is_reno(tp) && is_dupack)
3174 tcp_add_reno_sack(sk);
3175 } else
3176 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3177 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3178 break;
3179 case TCP_CA_Loss:
3180 if (flag & FLAG_DATA_ACKED)
3181 icsk->icsk_retransmits = 0;
3182 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3183 tcp_reset_reno_sack(tp);
3184 if (!tcp_try_undo_loss(sk)) {
3185 tcp_moderate_cwnd(tp);
3186 tcp_xmit_retransmit_queue(sk);
3187 return;
3188 }
3189 if (icsk->icsk_ca_state != TCP_CA_Open)
3190 return;
3191 /* Loss is undone; fall through to processing in Open state. */
3192 default:
3193 if (tcp_is_reno(tp)) {
3194 if (flag & FLAG_SND_UNA_ADVANCED)
3195 tcp_reset_reno_sack(tp);
3196 if (is_dupack)
3197 tcp_add_reno_sack(sk);
3198 }
3199 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3200
3201 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3202 tcp_try_undo_dsack(sk);
3203
3204 if (!tcp_time_to_recover(sk, flag)) {
3205 tcp_try_to_open(sk, flag);
3206 return;
3207 }
3208
3209 /* MTU probe failure: don't reduce cwnd */
3210 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3211 icsk->icsk_mtup.probe_size &&
3212 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3213 tcp_mtup_probe_failed(sk);
3214 /* Restores the reduction we did in tcp_mtup_probe() */
3215 tp->snd_cwnd++;
3216 tcp_simple_retransmit(sk);
3217 return;
3218 }
3219
3220 /* Otherwise enter Recovery state */
3221 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3222 fast_rexmit = 1;
3223 }
3224
3225 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3226 tcp_update_scoreboard(sk, fast_rexmit);
3227 tp->prr_delivered += newly_acked_sacked;
3228 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3229 tcp_xmit_retransmit_queue(sk);
3230}
3231
3232void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3233{
3234 tcp_rtt_estimator(sk, seq_rtt);
3235 tcp_set_rto(sk);
3236 inet_csk(sk)->icsk_backoff = 0;
3237}
3238EXPORT_SYMBOL(tcp_valid_rtt_meas);
3239
3240/* Read draft-ietf-tcplw-high-performance before mucking
3241 * with this code. (Supersedes RFC1323)
3242 */
3243static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3244{
3245 /* RTTM Rule: A TSecr value received in a segment is used to
3246 * update the averaged RTT measurement only if the segment
3247 * acknowledges some new data, i.e., only if it advances the
3248 * left edge of the send window.
3249 *
3250 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3251 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3252 *
3253 * Changed: reset backoff as soon as we see the first valid sample.
3254 * If we do not, we get strongly overestimated rto. With timestamps
3255 * samples are accepted even from very old segments: f.e., when rtt=1
3256 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3257 * answer arrives rto becomes 120 seconds! If at least one of segments
3258 * in window is lost... Voila. --ANK (010210)
3259 */
3260 struct tcp_sock *tp = tcp_sk(sk);
3261
3262 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3263}
3264
3265static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3266{
3267 /* We don't have a timestamp. Can only use
3268 * packets that are not retransmitted to determine
3269 * rtt estimates. Also, we must not reset the
3270 * backoff for rto until we get a non-retransmitted
3271 * packet. This allows us to deal with a situation
3272 * where the network delay has increased suddenly.
3273 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3274 */
3275
3276 if (flag & FLAG_RETRANS_DATA_ACKED)
3277 return;
3278
3279 tcp_valid_rtt_meas(sk, seq_rtt);
3280}
3281
3282static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3283 const s32 seq_rtt)
3284{
3285 const struct tcp_sock *tp = tcp_sk(sk);
3286 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3287 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3288 tcp_ack_saw_tstamp(sk, flag);
3289 else if (seq_rtt >= 0)
3290 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3291}
3292
3293static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3294{
3295 const struct inet_connection_sock *icsk = inet_csk(sk);
3296 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3297 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3298}
3299
3300/* Restart timer after forward progress on connection.
3301 * RFC2988 recommends to restart timer to now+rto.
3302 */
3303void tcp_rearm_rto(struct sock *sk)
3304{
3305 struct tcp_sock *tp = tcp_sk(sk);
3306
3307 if (!tp->packets_out) {
3308 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3309 } else {
3310 u32 rto = inet_csk(sk)->icsk_rto;
3311 /* Offset the time elapsed after installing regular RTO */
3312 if (tp->early_retrans_delayed) {
3313 struct sk_buff *skb = tcp_write_queue_head(sk);
3314 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3315 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3316 /* delta may not be positive if the socket is locked
3317 * when the delayed ER timer fires and is rescheduled.
3318 */
3319 if (delta > 0)
3320 rto = delta;
3321 }
3322 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3323 TCP_RTO_MAX);
3324 }
3325 tp->early_retrans_delayed = 0;
3326}
3327
3328/* This function is called when the delayed ER timer fires. TCP enters
3329 * fast recovery and performs fast-retransmit.
3330 */
3331void tcp_resume_early_retransmit(struct sock *sk)
3332{
3333 struct tcp_sock *tp = tcp_sk(sk);
3334
3335 tcp_rearm_rto(sk);
3336
3337 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3338 if (!tp->do_early_retrans)
3339 return;
3340
3341 tcp_enter_recovery(sk, false);
3342 tcp_update_scoreboard(sk, 1);
3343 tcp_xmit_retransmit_queue(sk);
3344}
3345
3346/* If we get here, the whole TSO packet has not been acked. */
3347static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3348{
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 u32 packets_acked;
3351
3352 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3353
3354 packets_acked = tcp_skb_pcount(skb);
3355 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356 return 0;
3357 packets_acked -= tcp_skb_pcount(skb);
3358
3359 if (packets_acked) {
3360 BUG_ON(tcp_skb_pcount(skb) == 0);
3361 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3362 }
3363
3364 return packets_acked;
3365}
3366
3367/* Remove acknowledged frames from the retransmission queue. If our packet
3368 * is before the ack sequence we can discard it as it's confirmed to have
3369 * arrived at the other end.
3370 */
3371static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3372 u32 prior_snd_una)
3373{
3374 struct tcp_sock *tp = tcp_sk(sk);
3375 const struct inet_connection_sock *icsk = inet_csk(sk);
3376 struct sk_buff *skb;
3377 u32 now = tcp_time_stamp;
3378 int fully_acked = true;
3379 int flag = 0;
3380 u32 pkts_acked = 0;
3381 u32 reord = tp->packets_out;
3382 u32 prior_sacked = tp->sacked_out;
3383 s32 seq_rtt = -1;
3384 s32 ca_seq_rtt = -1;
3385 ktime_t last_ackt = net_invalid_timestamp();
3386
3387 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3388 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3389 u32 acked_pcount;
3390 u8 sacked = scb->sacked;
3391
3392 /* Determine how many packets and what bytes were acked, tso and else */
3393 if (after(scb->end_seq, tp->snd_una)) {
3394 if (tcp_skb_pcount(skb) == 1 ||
3395 !after(tp->snd_una, scb->seq))
3396 break;
3397
3398 acked_pcount = tcp_tso_acked(sk, skb);
3399 if (!acked_pcount)
3400 break;
3401
3402 fully_acked = false;
3403 } else {
3404 acked_pcount = tcp_skb_pcount(skb);
3405 }
3406
3407 if (sacked & TCPCB_RETRANS) {
3408 if (sacked & TCPCB_SACKED_RETRANS)
3409 tp->retrans_out -= acked_pcount;
3410 flag |= FLAG_RETRANS_DATA_ACKED;
3411 ca_seq_rtt = -1;
3412 seq_rtt = -1;
3413 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3414 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3415 } else {
3416 ca_seq_rtt = now - scb->when;
3417 last_ackt = skb->tstamp;
3418 if (seq_rtt < 0) {
3419 seq_rtt = ca_seq_rtt;
3420 }
3421 if (!(sacked & TCPCB_SACKED_ACKED))
3422 reord = min(pkts_acked, reord);
3423 }
3424
3425 if (sacked & TCPCB_SACKED_ACKED)
3426 tp->sacked_out -= acked_pcount;
3427 if (sacked & TCPCB_LOST)
3428 tp->lost_out -= acked_pcount;
3429
3430 tp->packets_out -= acked_pcount;
3431 pkts_acked += acked_pcount;
3432
3433 /* Initial outgoing SYN's get put onto the write_queue
3434 * just like anything else we transmit. It is not
3435 * true data, and if we misinform our callers that
3436 * this ACK acks real data, we will erroneously exit
3437 * connection startup slow start one packet too
3438 * quickly. This is severely frowned upon behavior.
3439 */
3440 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3441 flag |= FLAG_DATA_ACKED;
3442 } else {
3443 flag |= FLAG_SYN_ACKED;
3444 tp->retrans_stamp = 0;
3445 }
3446
3447 if (!fully_acked)
3448 break;
3449
3450 tcp_unlink_write_queue(skb, sk);
3451 sk_wmem_free_skb(sk, skb);
3452 tp->scoreboard_skb_hint = NULL;
3453 if (skb == tp->retransmit_skb_hint)
3454 tp->retransmit_skb_hint = NULL;
3455 if (skb == tp->lost_skb_hint)
3456 tp->lost_skb_hint = NULL;
3457 }
3458
3459 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3460 tp->snd_up = tp->snd_una;
3461
3462 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3463 flag |= FLAG_SACK_RENEGING;
3464
3465 if (flag & FLAG_ACKED) {
3466 const struct tcp_congestion_ops *ca_ops
3467 = inet_csk(sk)->icsk_ca_ops;
3468
3469 if (unlikely(icsk->icsk_mtup.probe_size &&
3470 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3471 tcp_mtup_probe_success(sk);
3472 }
3473
3474 tcp_ack_update_rtt(sk, flag, seq_rtt);
3475 tcp_rearm_rto(sk);
3476
3477 if (tcp_is_reno(tp)) {
3478 tcp_remove_reno_sacks(sk, pkts_acked);
3479 } else {
3480 int delta;
3481
3482 /* Non-retransmitted hole got filled? That's reordering */
3483 if (reord < prior_fackets)
3484 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3485
3486 delta = tcp_is_fack(tp) ? pkts_acked :
3487 prior_sacked - tp->sacked_out;
3488 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3489 }
3490
3491 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3492
3493 if (ca_ops->pkts_acked) {
3494 s32 rtt_us = -1;
3495
3496 /* Is the ACK triggering packet unambiguous? */
3497 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3498 /* High resolution needed and available? */
3499 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3500 !ktime_equal(last_ackt,
3501 net_invalid_timestamp()))
3502 rtt_us = ktime_us_delta(ktime_get_real(),
3503 last_ackt);
3504 else if (ca_seq_rtt >= 0)
3505 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3506 }
3507
3508 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3509 }
3510 }
3511
3512#if FASTRETRANS_DEBUG > 0
3513 WARN_ON((int)tp->sacked_out < 0);
3514 WARN_ON((int)tp->lost_out < 0);
3515 WARN_ON((int)tp->retrans_out < 0);
3516 if (!tp->packets_out && tcp_is_sack(tp)) {
3517 icsk = inet_csk(sk);
3518 if (tp->lost_out) {
3519 pr_debug("Leak l=%u %d\n",
3520 tp->lost_out, icsk->icsk_ca_state);
3521 tp->lost_out = 0;
3522 }
3523 if (tp->sacked_out) {
3524 pr_debug("Leak s=%u %d\n",
3525 tp->sacked_out, icsk->icsk_ca_state);
3526 tp->sacked_out = 0;
3527 }
3528 if (tp->retrans_out) {
3529 pr_debug("Leak r=%u %d\n",
3530 tp->retrans_out, icsk->icsk_ca_state);
3531 tp->retrans_out = 0;
3532 }
3533 }
3534#endif
3535 return flag;
3536}
3537
3538static void tcp_ack_probe(struct sock *sk)
3539{
3540 const struct tcp_sock *tp = tcp_sk(sk);
3541 struct inet_connection_sock *icsk = inet_csk(sk);
3542
3543 /* Was it a usable window open? */
3544
3545 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3546 icsk->icsk_backoff = 0;
3547 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3548 /* Socket must be waked up by subsequent tcp_data_snd_check().
3549 * This function is not for random using!
3550 */
3551 } else {
3552 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3553 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3554 TCP_RTO_MAX);
3555 }
3556}
3557
3558static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3559{
3560 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3561 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3562}
3563
3564static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3565{
3566 const struct tcp_sock *tp = tcp_sk(sk);
3567 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3568 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3569}
3570
3571/* Check that window update is acceptable.
3572 * The function assumes that snd_una<=ack<=snd_next.
3573 */
3574static inline int tcp_may_update_window(const struct tcp_sock *tp,
3575 const u32 ack, const u32 ack_seq,
3576 const u32 nwin)
3577{
3578 return after(ack, tp->snd_una) ||
3579 after(ack_seq, tp->snd_wl1) ||
3580 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3581}
3582
3583/* Update our send window.
3584 *
3585 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3586 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3587 */
3588static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3589 u32 ack_seq)
3590{
3591 struct tcp_sock *tp = tcp_sk(sk);
3592 int flag = 0;
3593 u32 nwin = ntohs(tcp_hdr(skb)->window);
3594
3595 if (likely(!tcp_hdr(skb)->syn))
3596 nwin <<= tp->rx_opt.snd_wscale;
3597
3598 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3599 flag |= FLAG_WIN_UPDATE;
3600 tcp_update_wl(tp, ack_seq);
3601
3602 if (tp->snd_wnd != nwin) {
3603 tp->snd_wnd = nwin;
3604
3605 /* Note, it is the only place, where
3606 * fast path is recovered for sending TCP.
3607 */
3608 tp->pred_flags = 0;
3609 tcp_fast_path_check(sk);
3610
3611 if (nwin > tp->max_window) {
3612 tp->max_window = nwin;
3613 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3614 }
3615 }
3616 }
3617
3618 tp->snd_una = ack;
3619
3620 return flag;
3621}
3622
3623/* A very conservative spurious RTO response algorithm: reduce cwnd and
3624 * continue in congestion avoidance.
3625 */
3626static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3627{
3628 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3629 tp->snd_cwnd_cnt = 0;
3630 tp->bytes_acked = 0;
3631 TCP_ECN_queue_cwr(tp);
3632 tcp_moderate_cwnd(tp);
3633}
3634
3635/* A conservative spurious RTO response algorithm: reduce cwnd using
3636 * rate halving and continue in congestion avoidance.
3637 */
3638static void tcp_ratehalving_spur_to_response(struct sock *sk)
3639{
3640 tcp_enter_cwr(sk, 0);
3641}
3642
3643static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3644{
3645 if (flag & FLAG_ECE)
3646 tcp_ratehalving_spur_to_response(sk);
3647 else
3648 tcp_undo_cwr(sk, true);
3649}
3650
3651/* F-RTO spurious RTO detection algorithm (RFC4138)
3652 *
3653 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3654 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3655 * window (but not to or beyond highest sequence sent before RTO):
3656 * On First ACK, send two new segments out.
3657 * On Second ACK, RTO was likely spurious. Do spurious response (response
3658 * algorithm is not part of the F-RTO detection algorithm
3659 * given in RFC4138 but can be selected separately).
3660 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3661 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3662 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3663 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3664 *
3665 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3666 * original window even after we transmit two new data segments.
3667 *
3668 * SACK version:
3669 * on first step, wait until first cumulative ACK arrives, then move to
3670 * the second step. In second step, the next ACK decides.
3671 *
3672 * F-RTO is implemented (mainly) in four functions:
3673 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3674 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3675 * called when tcp_use_frto() showed green light
3676 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3677 * - tcp_enter_frto_loss() is called if there is not enough evidence
3678 * to prove that the RTO is indeed spurious. It transfers the control
3679 * from F-RTO to the conventional RTO recovery
3680 */
3681static bool tcp_process_frto(struct sock *sk, int flag)
3682{
3683 struct tcp_sock *tp = tcp_sk(sk);
3684
3685 tcp_verify_left_out(tp);
3686
3687 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3688 if (flag & FLAG_DATA_ACKED)
3689 inet_csk(sk)->icsk_retransmits = 0;
3690
3691 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3692 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3693 tp->undo_marker = 0;
3694
3695 if (!before(tp->snd_una, tp->frto_highmark)) {
3696 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3697 return true;
3698 }
3699
3700 if (!tcp_is_sackfrto(tp)) {
3701 /* RFC4138 shortcoming in step 2; should also have case c):
3702 * ACK isn't duplicate nor advances window, e.g., opposite dir
3703 * data, winupdate
3704 */
3705 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3706 return true;
3707
3708 if (!(flag & FLAG_DATA_ACKED)) {
3709 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3710 flag);
3711 return true;
3712 }
3713 } else {
3714 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3715 /* Prevent sending of new data. */
3716 tp->snd_cwnd = min(tp->snd_cwnd,
3717 tcp_packets_in_flight(tp));
3718 return true;
3719 }
3720
3721 if ((tp->frto_counter >= 2) &&
3722 (!(flag & FLAG_FORWARD_PROGRESS) ||
3723 ((flag & FLAG_DATA_SACKED) &&
3724 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3725 /* RFC4138 shortcoming (see comment above) */
3726 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3727 (flag & FLAG_NOT_DUP))
3728 return true;
3729
3730 tcp_enter_frto_loss(sk, 3, flag);
3731 return true;
3732 }
3733 }
3734
3735 if (tp->frto_counter == 1) {
3736 /* tcp_may_send_now needs to see updated state */
3737 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3738 tp->frto_counter = 2;
3739
3740 if (!tcp_may_send_now(sk))
3741 tcp_enter_frto_loss(sk, 2, flag);
3742
3743 return true;
3744 } else {
3745 switch (sysctl_tcp_frto_response) {
3746 case 2:
3747 tcp_undo_spur_to_response(sk, flag);
3748 break;
3749 case 1:
3750 tcp_conservative_spur_to_response(tp);
3751 break;
3752 default:
3753 tcp_ratehalving_spur_to_response(sk);
3754 break;
3755 }
3756 tp->frto_counter = 0;
3757 tp->undo_marker = 0;
3758 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3759 }
3760 return false;
3761}
3762
3763/* This routine deals with incoming acks, but not outgoing ones. */
3764static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3765{
3766 struct inet_connection_sock *icsk = inet_csk(sk);
3767 struct tcp_sock *tp = tcp_sk(sk);
3768 u32 prior_snd_una = tp->snd_una;
3769 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3770 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3771 bool is_dupack = false;
3772 u32 prior_in_flight;
3773 u32 prior_fackets;
3774 int prior_packets;
3775 int prior_sacked = tp->sacked_out;
3776 int pkts_acked = 0;
3777 bool frto_cwnd = false;
3778
3779 /* If the ack is older than previous acks
3780 * then we can probably ignore it.
3781 */
3782 if (before(ack, prior_snd_una))
3783 goto old_ack;
3784
3785 /* If the ack includes data we haven't sent yet, discard
3786 * this segment (RFC793 Section 3.9).
3787 */
3788 if (after(ack, tp->snd_nxt))
3789 goto invalid_ack;
3790
3791 if (tp->early_retrans_delayed)
3792 tcp_rearm_rto(sk);
3793
3794 if (after(ack, prior_snd_una))
3795 flag |= FLAG_SND_UNA_ADVANCED;
3796
3797 if (sysctl_tcp_abc) {
3798 if (icsk->icsk_ca_state < TCP_CA_CWR)
3799 tp->bytes_acked += ack - prior_snd_una;
3800 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3801 /* we assume just one segment left network */
3802 tp->bytes_acked += min(ack - prior_snd_una,
3803 tp->mss_cache);
3804 }
3805
3806 prior_fackets = tp->fackets_out;
3807 prior_in_flight = tcp_packets_in_flight(tp);
3808
3809 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3810 /* Window is constant, pure forward advance.
3811 * No more checks are required.
3812 * Note, we use the fact that SND.UNA>=SND.WL2.
3813 */
3814 tcp_update_wl(tp, ack_seq);
3815 tp->snd_una = ack;
3816 flag |= FLAG_WIN_UPDATE;
3817
3818 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3819
3820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3821 } else {
3822 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3823 flag |= FLAG_DATA;
3824 else
3825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3826
3827 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3828
3829 if (TCP_SKB_CB(skb)->sacked)
3830 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3831
3832 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3833 flag |= FLAG_ECE;
3834
3835 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3836 }
3837
3838 /* We passed data and got it acked, remove any soft error
3839 * log. Something worked...
3840 */
3841 sk->sk_err_soft = 0;
3842 icsk->icsk_probes_out = 0;
3843 tp->rcv_tstamp = tcp_time_stamp;
3844 prior_packets = tp->packets_out;
3845 if (!prior_packets)
3846 goto no_queue;
3847
3848 /* See if we can take anything off of the retransmit queue. */
3849 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3850
3851 pkts_acked = prior_packets - tp->packets_out;
3852
3853 if (tp->frto_counter)
3854 frto_cwnd = tcp_process_frto(sk, flag);
3855 /* Guarantee sacktag reordering detection against wrap-arounds */
3856 if (before(tp->frto_highmark, tp->snd_una))
3857 tp->frto_highmark = 0;
3858
3859 if (tcp_ack_is_dubious(sk, flag)) {
3860 /* Advance CWND, if state allows this. */
3861 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862 tcp_may_raise_cwnd(sk, flag))
3863 tcp_cong_avoid(sk, ack, prior_in_flight);
3864 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3866 is_dupack, flag);
3867 } else {
3868 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869 tcp_cong_avoid(sk, ack, prior_in_flight);
3870 }
3871
3872 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3873 dst_confirm(__sk_dst_get(sk));
3874
3875 return 1;
3876
3877no_queue:
3878 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3879 if (flag & FLAG_DSACKING_ACK)
3880 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3881 is_dupack, flag);
3882 /* If this ack opens up a zero window, clear backoff. It was
3883 * being used to time the probes, and is probably far higher than
3884 * it needs to be for normal retransmission.
3885 */
3886 if (tcp_send_head(sk))
3887 tcp_ack_probe(sk);
3888 return 1;
3889
3890invalid_ack:
3891 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3892 return -1;
3893
3894old_ack:
3895 /* If data was SACKed, tag it and see if we should send more data.
3896 * If data was DSACKed, see if we can undo a cwnd reduction.
3897 */
3898 if (TCP_SKB_CB(skb)->sacked) {
3899 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3900 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3901 is_dupack, flag);
3902 }
3903
3904 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3905 return 0;
3906}
3907
3908/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3909 * But, this can also be called on packets in the established flow when
3910 * the fast version below fails.
3911 */
3912void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3913 const u8 **hvpp, int estab)
3914{
3915 const unsigned char *ptr;
3916 const struct tcphdr *th = tcp_hdr(skb);
3917 int length = (th->doff * 4) - sizeof(struct tcphdr);
3918
3919 ptr = (const unsigned char *)(th + 1);
3920 opt_rx->saw_tstamp = 0;
3921
3922 while (length > 0) {
3923 int opcode = *ptr++;
3924 int opsize;
3925
3926 switch (opcode) {
3927 case TCPOPT_EOL:
3928 return;
3929 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3930 length--;
3931 continue;
3932 default:
3933 opsize = *ptr++;
3934 if (opsize < 2) /* "silly options" */
3935 return;
3936 if (opsize > length)
3937 return; /* don't parse partial options */
3938 switch (opcode) {
3939 case TCPOPT_MSS:
3940 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3941 u16 in_mss = get_unaligned_be16(ptr);
3942 if (in_mss) {
3943 if (opt_rx->user_mss &&
3944 opt_rx->user_mss < in_mss)
3945 in_mss = opt_rx->user_mss;
3946 opt_rx->mss_clamp = in_mss;
3947 }
3948 }
3949 break;
3950 case TCPOPT_WINDOW:
3951 if (opsize == TCPOLEN_WINDOW && th->syn &&
3952 !estab && sysctl_tcp_window_scaling) {
3953 __u8 snd_wscale = *(__u8 *)ptr;
3954 opt_rx->wscale_ok = 1;
3955 if (snd_wscale > 14) {
3956 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3957 __func__,
3958 snd_wscale);
3959 snd_wscale = 14;
3960 }
3961 opt_rx->snd_wscale = snd_wscale;
3962 }
3963 break;
3964 case TCPOPT_TIMESTAMP:
3965 if ((opsize == TCPOLEN_TIMESTAMP) &&
3966 ((estab && opt_rx->tstamp_ok) ||
3967 (!estab && sysctl_tcp_timestamps))) {
3968 opt_rx->saw_tstamp = 1;
3969 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3970 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3971 }
3972 break;
3973 case TCPOPT_SACK_PERM:
3974 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3975 !estab && sysctl_tcp_sack) {
3976 opt_rx->sack_ok = TCP_SACK_SEEN;
3977 tcp_sack_reset(opt_rx);
3978 }
3979 break;
3980
3981 case TCPOPT_SACK:
3982 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3983 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3984 opt_rx->sack_ok) {
3985 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3986 }
3987 break;
3988#ifdef CONFIG_TCP_MD5SIG
3989 case TCPOPT_MD5SIG:
3990 /*
3991 * The MD5 Hash has already been
3992 * checked (see tcp_v{4,6}_do_rcv()).
3993 */
3994 break;
3995#endif
3996 case TCPOPT_COOKIE:
3997 /* This option is variable length.
3998 */
3999 switch (opsize) {
4000 case TCPOLEN_COOKIE_BASE:
4001 /* not yet implemented */
4002 break;
4003 case TCPOLEN_COOKIE_PAIR:
4004 /* not yet implemented */
4005 break;
4006 case TCPOLEN_COOKIE_MIN+0:
4007 case TCPOLEN_COOKIE_MIN+2:
4008 case TCPOLEN_COOKIE_MIN+4:
4009 case TCPOLEN_COOKIE_MIN+6:
4010 case TCPOLEN_COOKIE_MAX:
4011 /* 16-bit multiple */
4012 opt_rx->cookie_plus = opsize;
4013 *hvpp = ptr;
4014 break;
4015 default:
4016 /* ignore option */
4017 break;
4018 }
4019 break;
4020 }
4021
4022 ptr += opsize-2;
4023 length -= opsize;
4024 }
4025 }
4026}
4027EXPORT_SYMBOL(tcp_parse_options);
4028
4029static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4030{
4031 const __be32 *ptr = (const __be32 *)(th + 1);
4032
4033 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4034 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4035 tp->rx_opt.saw_tstamp = 1;
4036 ++ptr;
4037 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4038 ++ptr;
4039 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4040 return true;
4041 }
4042 return false;
4043}
4044
4045/* Fast parse options. This hopes to only see timestamps.
4046 * If it is wrong it falls back on tcp_parse_options().
4047 */
4048static bool tcp_fast_parse_options(const struct sk_buff *skb,
4049 const struct tcphdr *th,
4050 struct tcp_sock *tp, const u8 **hvpp)
4051{
4052 /* In the spirit of fast parsing, compare doff directly to constant
4053 * values. Because equality is used, short doff can be ignored here.
4054 */
4055 if (th->doff == (sizeof(*th) / 4)) {
4056 tp->rx_opt.saw_tstamp = 0;
4057 return false;
4058 } else if (tp->rx_opt.tstamp_ok &&
4059 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4060 if (tcp_parse_aligned_timestamp(tp, th))
4061 return true;
4062 }
4063 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4064 return true;
4065}
4066
4067#ifdef CONFIG_TCP_MD5SIG
4068/*
4069 * Parse MD5 Signature option
4070 */
4071const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4072{
4073 int length = (th->doff << 2) - sizeof(*th);
4074 const u8 *ptr = (const u8 *)(th + 1);
4075
4076 /* If the TCP option is too short, we can short cut */
4077 if (length < TCPOLEN_MD5SIG)
4078 return NULL;
4079
4080 while (length > 0) {
4081 int opcode = *ptr++;
4082 int opsize;
4083
4084 switch(opcode) {
4085 case TCPOPT_EOL:
4086 return NULL;
4087 case TCPOPT_NOP:
4088 length--;
4089 continue;
4090 default:
4091 opsize = *ptr++;
4092 if (opsize < 2 || opsize > length)
4093 return NULL;
4094 if (opcode == TCPOPT_MD5SIG)
4095 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4096 }
4097 ptr += opsize - 2;
4098 length -= opsize;
4099 }
4100 return NULL;
4101}
4102EXPORT_SYMBOL(tcp_parse_md5sig_option);
4103#endif
4104
4105static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4106{
4107 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4108 tp->rx_opt.ts_recent_stamp = get_seconds();
4109}
4110
4111static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4112{
4113 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4114 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4115 * extra check below makes sure this can only happen
4116 * for pure ACK frames. -DaveM
4117 *
4118 * Not only, also it occurs for expired timestamps.
4119 */
4120
4121 if (tcp_paws_check(&tp->rx_opt, 0))
4122 tcp_store_ts_recent(tp);
4123 }
4124}
4125
4126/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4127 *
4128 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4129 * it can pass through stack. So, the following predicate verifies that
4130 * this segment is not used for anything but congestion avoidance or
4131 * fast retransmit. Moreover, we even are able to eliminate most of such
4132 * second order effects, if we apply some small "replay" window (~RTO)
4133 * to timestamp space.
4134 *
4135 * All these measures still do not guarantee that we reject wrapped ACKs
4136 * on networks with high bandwidth, when sequence space is recycled fastly,
4137 * but it guarantees that such events will be very rare and do not affect
4138 * connection seriously. This doesn't look nice, but alas, PAWS is really
4139 * buggy extension.
4140 *
4141 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4142 * states that events when retransmit arrives after original data are rare.
4143 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4144 * the biggest problem on large power networks even with minor reordering.
4145 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4146 * up to bandwidth of 18Gigabit/sec. 8) ]
4147 */
4148
4149static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4150{
4151 const struct tcp_sock *tp = tcp_sk(sk);
4152 const struct tcphdr *th = tcp_hdr(skb);
4153 u32 seq = TCP_SKB_CB(skb)->seq;
4154 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4155
4156 return (/* 1. Pure ACK with correct sequence number. */
4157 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4158
4159 /* 2. ... and duplicate ACK. */
4160 ack == tp->snd_una &&
4161
4162 /* 3. ... and does not update window. */
4163 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4164
4165 /* 4. ... and sits in replay window. */
4166 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4167}
4168
4169static inline int tcp_paws_discard(const struct sock *sk,
4170 const struct sk_buff *skb)
4171{
4172 const struct tcp_sock *tp = tcp_sk(sk);
4173
4174 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4175 !tcp_disordered_ack(sk, skb);
4176}
4177
4178/* Check segment sequence number for validity.
4179 *
4180 * Segment controls are considered valid, if the segment
4181 * fits to the window after truncation to the window. Acceptability
4182 * of data (and SYN, FIN, of course) is checked separately.
4183 * See tcp_data_queue(), for example.
4184 *
4185 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4186 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4187 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4188 * (borrowed from freebsd)
4189 */
4190
4191static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4192{
4193 return !before(end_seq, tp->rcv_wup) &&
4194 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4195}
4196
4197/* When we get a reset we do this. */
4198static void tcp_reset(struct sock *sk)
4199{
4200 /* We want the right error as BSD sees it (and indeed as we do). */
4201 switch (sk->sk_state) {
4202 case TCP_SYN_SENT:
4203 sk->sk_err = ECONNREFUSED;
4204 break;
4205 case TCP_CLOSE_WAIT:
4206 sk->sk_err = EPIPE;
4207 break;
4208 case TCP_CLOSE:
4209 return;
4210 default:
4211 sk->sk_err = ECONNRESET;
4212 }
4213 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4214 smp_wmb();
4215
4216 if (!sock_flag(sk, SOCK_DEAD))
4217 sk->sk_error_report(sk);
4218
4219 tcp_done(sk);
4220}
4221
4222/*
4223 * Process the FIN bit. This now behaves as it is supposed to work
4224 * and the FIN takes effect when it is validly part of sequence
4225 * space. Not before when we get holes.
4226 *
4227 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4228 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4229 * TIME-WAIT)
4230 *
4231 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4232 * close and we go into CLOSING (and later onto TIME-WAIT)
4233 *
4234 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4235 */
4236static void tcp_fin(struct sock *sk)
4237{
4238 struct tcp_sock *tp = tcp_sk(sk);
4239
4240 inet_csk_schedule_ack(sk);
4241
4242 sk->sk_shutdown |= RCV_SHUTDOWN;
4243 sock_set_flag(sk, SOCK_DONE);
4244
4245 switch (sk->sk_state) {
4246 case TCP_SYN_RECV:
4247 case TCP_ESTABLISHED:
4248 /* Move to CLOSE_WAIT */
4249 tcp_set_state(sk, TCP_CLOSE_WAIT);
4250 inet_csk(sk)->icsk_ack.pingpong = 1;
4251 break;
4252
4253 case TCP_CLOSE_WAIT:
4254 case TCP_CLOSING:
4255 /* Received a retransmission of the FIN, do
4256 * nothing.
4257 */
4258 break;
4259 case TCP_LAST_ACK:
4260 /* RFC793: Remain in the LAST-ACK state. */
4261 break;
4262
4263 case TCP_FIN_WAIT1:
4264 /* This case occurs when a simultaneous close
4265 * happens, we must ack the received FIN and
4266 * enter the CLOSING state.
4267 */
4268 tcp_send_ack(sk);
4269 tcp_set_state(sk, TCP_CLOSING);
4270 break;
4271 case TCP_FIN_WAIT2:
4272 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4273 tcp_send_ack(sk);
4274 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4275 break;
4276 default:
4277 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4278 * cases we should never reach this piece of code.
4279 */
4280 pr_err("%s: Impossible, sk->sk_state=%d\n",
4281 __func__, sk->sk_state);
4282 break;
4283 }
4284
4285 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4286 * Probably, we should reset in this case. For now drop them.
4287 */
4288 __skb_queue_purge(&tp->out_of_order_queue);
4289 if (tcp_is_sack(tp))
4290 tcp_sack_reset(&tp->rx_opt);
4291 sk_mem_reclaim(sk);
4292
4293 if (!sock_flag(sk, SOCK_DEAD)) {
4294 sk->sk_state_change(sk);
4295
4296 /* Do not send POLL_HUP for half duplex close. */
4297 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4298 sk->sk_state == TCP_CLOSE)
4299 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4300 else
4301 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4302 }
4303}
4304
4305static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4306 u32 end_seq)
4307{
4308 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4309 if (before(seq, sp->start_seq))
4310 sp->start_seq = seq;
4311 if (after(end_seq, sp->end_seq))
4312 sp->end_seq = end_seq;
4313 return true;
4314 }
4315 return false;
4316}
4317
4318static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320 struct tcp_sock *tp = tcp_sk(sk);
4321
4322 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4323 int mib_idx;
4324
4325 if (before(seq, tp->rcv_nxt))
4326 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4327 else
4328 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4329
4330 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4331
4332 tp->rx_opt.dsack = 1;
4333 tp->duplicate_sack[0].start_seq = seq;
4334 tp->duplicate_sack[0].end_seq = end_seq;
4335 }
4336}
4337
4338static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4339{
4340 struct tcp_sock *tp = tcp_sk(sk);
4341
4342 if (!tp->rx_opt.dsack)
4343 tcp_dsack_set(sk, seq, end_seq);
4344 else
4345 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4346}
4347
4348static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4349{
4350 struct tcp_sock *tp = tcp_sk(sk);
4351
4352 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4353 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4355 tcp_enter_quickack_mode(sk);
4356
4357 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4358 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4359
4360 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4361 end_seq = tp->rcv_nxt;
4362 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4363 }
4364 }
4365
4366 tcp_send_ack(sk);
4367}
4368
4369/* These routines update the SACK block as out-of-order packets arrive or
4370 * in-order packets close up the sequence space.
4371 */
4372static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4373{
4374 int this_sack;
4375 struct tcp_sack_block *sp = &tp->selective_acks[0];
4376 struct tcp_sack_block *swalk = sp + 1;
4377
4378 /* See if the recent change to the first SACK eats into
4379 * or hits the sequence space of other SACK blocks, if so coalesce.
4380 */
4381 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4382 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4383 int i;
4384
4385 /* Zap SWALK, by moving every further SACK up by one slot.
4386 * Decrease num_sacks.
4387 */
4388 tp->rx_opt.num_sacks--;
4389 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4390 sp[i] = sp[i + 1];
4391 continue;
4392 }
4393 this_sack++, swalk++;
4394 }
4395}
4396
4397static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398{
4399 struct tcp_sock *tp = tcp_sk(sk);
4400 struct tcp_sack_block *sp = &tp->selective_acks[0];
4401 int cur_sacks = tp->rx_opt.num_sacks;
4402 int this_sack;
4403
4404 if (!cur_sacks)
4405 goto new_sack;
4406
4407 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408 if (tcp_sack_extend(sp, seq, end_seq)) {
4409 /* Rotate this_sack to the first one. */
4410 for (; this_sack > 0; this_sack--, sp--)
4411 swap(*sp, *(sp - 1));
4412 if (cur_sacks > 1)
4413 tcp_sack_maybe_coalesce(tp);
4414 return;
4415 }
4416 }
4417
4418 /* Could not find an adjacent existing SACK, build a new one,
4419 * put it at the front, and shift everyone else down. We
4420 * always know there is at least one SACK present already here.
4421 *
4422 * If the sack array is full, forget about the last one.
4423 */
4424 if (this_sack >= TCP_NUM_SACKS) {
4425 this_sack--;
4426 tp->rx_opt.num_sacks--;
4427 sp--;
4428 }
4429 for (; this_sack > 0; this_sack--, sp--)
4430 *sp = *(sp - 1);
4431
4432new_sack:
4433 /* Build the new head SACK, and we're done. */
4434 sp->start_seq = seq;
4435 sp->end_seq = end_seq;
4436 tp->rx_opt.num_sacks++;
4437}
4438
4439/* RCV.NXT advances, some SACKs should be eaten. */
4440
4441static void tcp_sack_remove(struct tcp_sock *tp)
4442{
4443 struct tcp_sack_block *sp = &tp->selective_acks[0];
4444 int num_sacks = tp->rx_opt.num_sacks;
4445 int this_sack;
4446
4447 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4448 if (skb_queue_empty(&tp->out_of_order_queue)) {
4449 tp->rx_opt.num_sacks = 0;
4450 return;
4451 }
4452
4453 for (this_sack = 0; this_sack < num_sacks;) {
4454 /* Check if the start of the sack is covered by RCV.NXT. */
4455 if (!before(tp->rcv_nxt, sp->start_seq)) {
4456 int i;
4457
4458 /* RCV.NXT must cover all the block! */
4459 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4460
4461 /* Zap this SACK, by moving forward any other SACKS. */
4462 for (i=this_sack+1; i < num_sacks; i++)
4463 tp->selective_acks[i-1] = tp->selective_acks[i];
4464 num_sacks--;
4465 continue;
4466 }
4467 this_sack++;
4468 sp++;
4469 }
4470 tp->rx_opt.num_sacks = num_sacks;
4471}
4472
4473/* This one checks to see if we can put data from the
4474 * out_of_order queue into the receive_queue.
4475 */
4476static void tcp_ofo_queue(struct sock *sk)
4477{
4478 struct tcp_sock *tp = tcp_sk(sk);
4479 __u32 dsack_high = tp->rcv_nxt;
4480 struct sk_buff *skb;
4481
4482 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4483 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4484 break;
4485
4486 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4487 __u32 dsack = dsack_high;
4488 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4489 dsack_high = TCP_SKB_CB(skb)->end_seq;
4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4491 }
4492
4493 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4494 SOCK_DEBUG(sk, "ofo packet was already received\n");
4495 __skb_unlink(skb, &tp->out_of_order_queue);
4496 __kfree_skb(skb);
4497 continue;
4498 }
4499 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4500 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4501 TCP_SKB_CB(skb)->end_seq);
4502
4503 __skb_unlink(skb, &tp->out_of_order_queue);
4504 __skb_queue_tail(&sk->sk_receive_queue, skb);
4505 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4506 if (tcp_hdr(skb)->fin)
4507 tcp_fin(sk);
4508 }
4509}
4510
4511static bool tcp_prune_ofo_queue(struct sock *sk);
4512static int tcp_prune_queue(struct sock *sk);
4513
4514static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4515{
4516 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4517 !sk_rmem_schedule(sk, size)) {
4518
4519 if (tcp_prune_queue(sk) < 0)
4520 return -1;
4521
4522 if (!sk_rmem_schedule(sk, size)) {
4523 if (!tcp_prune_ofo_queue(sk))
4524 return -1;
4525
4526 if (!sk_rmem_schedule(sk, size))
4527 return -1;
4528 }
4529 }
4530 return 0;
4531}
4532
4533/**
4534 * tcp_try_coalesce - try to merge skb to prior one
4535 * @sk: socket
4536 * @to: prior buffer
4537 * @from: buffer to add in queue
4538 * @fragstolen: pointer to boolean
4539 *
4540 * Before queueing skb @from after @to, try to merge them
4541 * to reduce overall memory use and queue lengths, if cost is small.
4542 * Packets in ofo or receive queues can stay a long time.
4543 * Better try to coalesce them right now to avoid future collapses.
4544 * Returns true if caller should free @from instead of queueing it
4545 */
4546static bool tcp_try_coalesce(struct sock *sk,
4547 struct sk_buff *to,
4548 struct sk_buff *from,
4549 bool *fragstolen)
4550{
4551 int delta;
4552
4553 *fragstolen = false;
4554
4555 if (tcp_hdr(from)->fin)
4556 return false;
4557
4558 /* Its possible this segment overlaps with prior segment in queue */
4559 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4560 return false;
4561
4562 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4563 return false;
4564
4565 atomic_add(delta, &sk->sk_rmem_alloc);
4566 sk_mem_charge(sk, delta);
4567 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4568 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4569 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4570 return true;
4571}
4572
4573static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4574{
4575 struct tcp_sock *tp = tcp_sk(sk);
4576 struct sk_buff *skb1;
4577 u32 seq, end_seq;
4578
4579 TCP_ECN_check_ce(tp, skb);
4580
4581 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4582 /* TODO: should increment a counter */
4583 __kfree_skb(skb);
4584 return;
4585 }
4586
4587 /* Disable header prediction. */
4588 tp->pred_flags = 0;
4589 inet_csk_schedule_ack(sk);
4590
4591 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4592 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4593
4594 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4595 if (!skb1) {
4596 /* Initial out of order segment, build 1 SACK. */
4597 if (tcp_is_sack(tp)) {
4598 tp->rx_opt.num_sacks = 1;
4599 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4600 tp->selective_acks[0].end_seq =
4601 TCP_SKB_CB(skb)->end_seq;
4602 }
4603 __skb_queue_head(&tp->out_of_order_queue, skb);
4604 goto end;
4605 }
4606
4607 seq = TCP_SKB_CB(skb)->seq;
4608 end_seq = TCP_SKB_CB(skb)->end_seq;
4609
4610 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4611 bool fragstolen;
4612
4613 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4614 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4615 } else {
4616 kfree_skb_partial(skb, fragstolen);
4617 skb = NULL;
4618 }
4619
4620 if (!tp->rx_opt.num_sacks ||
4621 tp->selective_acks[0].end_seq != seq)
4622 goto add_sack;
4623
4624 /* Common case: data arrive in order after hole. */
4625 tp->selective_acks[0].end_seq = end_seq;
4626 goto end;
4627 }
4628
4629 /* Find place to insert this segment. */
4630 while (1) {
4631 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4632 break;
4633 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4634 skb1 = NULL;
4635 break;
4636 }
4637 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4638 }
4639
4640 /* Do skb overlap to previous one? */
4641 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4642 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4643 /* All the bits are present. Drop. */
4644 __kfree_skb(skb);
4645 skb = NULL;
4646 tcp_dsack_set(sk, seq, end_seq);
4647 goto add_sack;
4648 }
4649 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4650 /* Partial overlap. */
4651 tcp_dsack_set(sk, seq,
4652 TCP_SKB_CB(skb1)->end_seq);
4653 } else {
4654 if (skb_queue_is_first(&tp->out_of_order_queue,
4655 skb1))
4656 skb1 = NULL;
4657 else
4658 skb1 = skb_queue_prev(
4659 &tp->out_of_order_queue,
4660 skb1);
4661 }
4662 }
4663 if (!skb1)
4664 __skb_queue_head(&tp->out_of_order_queue, skb);
4665 else
4666 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4667
4668 /* And clean segments covered by new one as whole. */
4669 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4670 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4671
4672 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4673 break;
4674 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4676 end_seq);
4677 break;
4678 }
4679 __skb_unlink(skb1, &tp->out_of_order_queue);
4680 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4681 TCP_SKB_CB(skb1)->end_seq);
4682 __kfree_skb(skb1);
4683 }
4684
4685add_sack:
4686 if (tcp_is_sack(tp))
4687 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4688end:
4689 if (skb)
4690 skb_set_owner_r(skb, sk);
4691}
4692
4693static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4694 bool *fragstolen)
4695{
4696 int eaten;
4697 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4698
4699 __skb_pull(skb, hdrlen);
4700 eaten = (tail &&
4701 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4702 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4703 if (!eaten) {
4704 __skb_queue_tail(&sk->sk_receive_queue, skb);
4705 skb_set_owner_r(skb, sk);
4706 }
4707 return eaten;
4708}
4709
4710int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4711{
4712 struct sk_buff *skb;
4713 struct tcphdr *th;
4714 bool fragstolen;
4715
4716 if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4717 goto err;
4718
4719 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4720 if (!skb)
4721 goto err;
4722
4723 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4724 skb_reset_transport_header(skb);
4725 memset(th, 0, sizeof(*th));
4726
4727 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4728 goto err_free;
4729
4730 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4731 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4732 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4733
4734 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4735 WARN_ON_ONCE(fragstolen); /* should not happen */
4736 __kfree_skb(skb);
4737 }
4738 return size;
4739
4740err_free:
4741 kfree_skb(skb);
4742err:
4743 return -ENOMEM;
4744}
4745
4746static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4747{
4748 const struct tcphdr *th = tcp_hdr(skb);
4749 struct tcp_sock *tp = tcp_sk(sk);
4750 int eaten = -1;
4751 bool fragstolen = false;
4752
4753 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4754 goto drop;
4755
4756 skb_dst_drop(skb);
4757 __skb_pull(skb, th->doff * 4);
4758
4759 TCP_ECN_accept_cwr(tp, skb);
4760
4761 tp->rx_opt.dsack = 0;
4762
4763 /* Queue data for delivery to the user.
4764 * Packets in sequence go to the receive queue.
4765 * Out of sequence packets to the out_of_order_queue.
4766 */
4767 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4768 if (tcp_receive_window(tp) == 0)
4769 goto out_of_window;
4770
4771 /* Ok. In sequence. In window. */
4772 if (tp->ucopy.task == current &&
4773 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4774 sock_owned_by_user(sk) && !tp->urg_data) {
4775 int chunk = min_t(unsigned int, skb->len,
4776 tp->ucopy.len);
4777
4778 __set_current_state(TASK_RUNNING);
4779
4780 local_bh_enable();
4781 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4782 tp->ucopy.len -= chunk;
4783 tp->copied_seq += chunk;
4784 eaten = (chunk == skb->len);
4785 tcp_rcv_space_adjust(sk);
4786 }
4787 local_bh_disable();
4788 }
4789
4790 if (eaten <= 0) {
4791queue_and_out:
4792 if (eaten < 0 &&
4793 tcp_try_rmem_schedule(sk, skb->truesize))
4794 goto drop;
4795
4796 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4797 }
4798 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4799 if (skb->len)
4800 tcp_event_data_recv(sk, skb);
4801 if (th->fin)
4802 tcp_fin(sk);
4803
4804 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4805 tcp_ofo_queue(sk);
4806
4807 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4808 * gap in queue is filled.
4809 */
4810 if (skb_queue_empty(&tp->out_of_order_queue))
4811 inet_csk(sk)->icsk_ack.pingpong = 0;
4812 }
4813
4814 if (tp->rx_opt.num_sacks)
4815 tcp_sack_remove(tp);
4816
4817 tcp_fast_path_check(sk);
4818
4819 if (eaten > 0)
4820 kfree_skb_partial(skb, fragstolen);
4821 else if (!sock_flag(sk, SOCK_DEAD))
4822 sk->sk_data_ready(sk, 0);
4823 return;
4824 }
4825
4826 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4827 /* A retransmit, 2nd most common case. Force an immediate ack. */
4828 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4829 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4830
4831out_of_window:
4832 tcp_enter_quickack_mode(sk);
4833 inet_csk_schedule_ack(sk);
4834drop:
4835 __kfree_skb(skb);
4836 return;
4837 }
4838
4839 /* Out of window. F.e. zero window probe. */
4840 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4841 goto out_of_window;
4842
4843 tcp_enter_quickack_mode(sk);
4844
4845 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4846 /* Partial packet, seq < rcv_next < end_seq */
4847 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4848 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4849 TCP_SKB_CB(skb)->end_seq);
4850
4851 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4852
4853 /* If window is closed, drop tail of packet. But after
4854 * remembering D-SACK for its head made in previous line.
4855 */
4856 if (!tcp_receive_window(tp))
4857 goto out_of_window;
4858 goto queue_and_out;
4859 }
4860
4861 tcp_data_queue_ofo(sk, skb);
4862}
4863
4864static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4865 struct sk_buff_head *list)
4866{
4867 struct sk_buff *next = NULL;
4868
4869 if (!skb_queue_is_last(list, skb))
4870 next = skb_queue_next(list, skb);
4871
4872 __skb_unlink(skb, list);
4873 __kfree_skb(skb);
4874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876 return next;
4877}
4878
4879/* Collapse contiguous sequence of skbs head..tail with
4880 * sequence numbers start..end.
4881 *
4882 * If tail is NULL, this means until the end of the list.
4883 *
4884 * Segments with FIN/SYN are not collapsed (only because this
4885 * simplifies code)
4886 */
4887static void
4888tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4889 struct sk_buff *head, struct sk_buff *tail,
4890 u32 start, u32 end)
4891{
4892 struct sk_buff *skb, *n;
4893 bool end_of_skbs;
4894
4895 /* First, check that queue is collapsible and find
4896 * the point where collapsing can be useful. */
4897 skb = head;
4898restart:
4899 end_of_skbs = true;
4900 skb_queue_walk_from_safe(list, skb, n) {
4901 if (skb == tail)
4902 break;
4903 /* No new bits? It is possible on ofo queue. */
4904 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4905 skb = tcp_collapse_one(sk, skb, list);
4906 if (!skb)
4907 break;
4908 goto restart;
4909 }
4910
4911 /* The first skb to collapse is:
4912 * - not SYN/FIN and
4913 * - bloated or contains data before "start" or
4914 * overlaps to the next one.
4915 */
4916 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4917 (tcp_win_from_space(skb->truesize) > skb->len ||
4918 before(TCP_SKB_CB(skb)->seq, start))) {
4919 end_of_skbs = false;
4920 break;
4921 }
4922
4923 if (!skb_queue_is_last(list, skb)) {
4924 struct sk_buff *next = skb_queue_next(list, skb);
4925 if (next != tail &&
4926 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4927 end_of_skbs = false;
4928 break;
4929 }
4930 }
4931
4932 /* Decided to skip this, advance start seq. */
4933 start = TCP_SKB_CB(skb)->end_seq;
4934 }
4935 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4936 return;
4937
4938 while (before(start, end)) {
4939 struct sk_buff *nskb;
4940 unsigned int header = skb_headroom(skb);
4941 int copy = SKB_MAX_ORDER(header, 0);
4942
4943 /* Too big header? This can happen with IPv6. */
4944 if (copy < 0)
4945 return;
4946 if (end - start < copy)
4947 copy = end - start;
4948 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4949 if (!nskb)
4950 return;
4951
4952 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4953 skb_set_network_header(nskb, (skb_network_header(skb) -
4954 skb->head));
4955 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4956 skb->head));
4957 skb_reserve(nskb, header);
4958 memcpy(nskb->head, skb->head, header);
4959 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4960 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4961 __skb_queue_before(list, skb, nskb);
4962 skb_set_owner_r(nskb, sk);
4963
4964 /* Copy data, releasing collapsed skbs. */
4965 while (copy > 0) {
4966 int offset = start - TCP_SKB_CB(skb)->seq;
4967 int size = TCP_SKB_CB(skb)->end_seq - start;
4968
4969 BUG_ON(offset < 0);
4970 if (size > 0) {
4971 size = min(copy, size);
4972 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4973 BUG();
4974 TCP_SKB_CB(nskb)->end_seq += size;
4975 copy -= size;
4976 start += size;
4977 }
4978 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4979 skb = tcp_collapse_one(sk, skb, list);
4980 if (!skb ||
4981 skb == tail ||
4982 tcp_hdr(skb)->syn ||
4983 tcp_hdr(skb)->fin)
4984 return;
4985 }
4986 }
4987 }
4988}
4989
4990/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4991 * and tcp_collapse() them until all the queue is collapsed.
4992 */
4993static void tcp_collapse_ofo_queue(struct sock *sk)
4994{
4995 struct tcp_sock *tp = tcp_sk(sk);
4996 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4997 struct sk_buff *head;
4998 u32 start, end;
4999
5000 if (skb == NULL)
5001 return;
5002
5003 start = TCP_SKB_CB(skb)->seq;
5004 end = TCP_SKB_CB(skb)->end_seq;
5005 head = skb;
5006
5007 for (;;) {
5008 struct sk_buff *next = NULL;
5009
5010 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5011 next = skb_queue_next(&tp->out_of_order_queue, skb);
5012 skb = next;
5013
5014 /* Segment is terminated when we see gap or when
5015 * we are at the end of all the queue. */
5016 if (!skb ||
5017 after(TCP_SKB_CB(skb)->seq, end) ||
5018 before(TCP_SKB_CB(skb)->end_seq, start)) {
5019 tcp_collapse(sk, &tp->out_of_order_queue,
5020 head, skb, start, end);
5021 head = skb;
5022 if (!skb)
5023 break;
5024 /* Start new segment */
5025 start = TCP_SKB_CB(skb)->seq;
5026 end = TCP_SKB_CB(skb)->end_seq;
5027 } else {
5028 if (before(TCP_SKB_CB(skb)->seq, start))
5029 start = TCP_SKB_CB(skb)->seq;
5030 if (after(TCP_SKB_CB(skb)->end_seq, end))
5031 end = TCP_SKB_CB(skb)->end_seq;
5032 }
5033 }
5034}
5035
5036/*
5037 * Purge the out-of-order queue.
5038 * Return true if queue was pruned.
5039 */
5040static bool tcp_prune_ofo_queue(struct sock *sk)
5041{
5042 struct tcp_sock *tp = tcp_sk(sk);
5043 bool res = false;
5044
5045 if (!skb_queue_empty(&tp->out_of_order_queue)) {
5046 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5047 __skb_queue_purge(&tp->out_of_order_queue);
5048
5049 /* Reset SACK state. A conforming SACK implementation will
5050 * do the same at a timeout based retransmit. When a connection
5051 * is in a sad state like this, we care only about integrity
5052 * of the connection not performance.
5053 */
5054 if (tp->rx_opt.sack_ok)
5055 tcp_sack_reset(&tp->rx_opt);
5056 sk_mem_reclaim(sk);
5057 res = true;
5058 }
5059 return res;
5060}
5061
5062/* Reduce allocated memory if we can, trying to get
5063 * the socket within its memory limits again.
5064 *
5065 * Return less than zero if we should start dropping frames
5066 * until the socket owning process reads some of the data
5067 * to stabilize the situation.
5068 */
5069static int tcp_prune_queue(struct sock *sk)
5070{
5071 struct tcp_sock *tp = tcp_sk(sk);
5072
5073 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5074
5075 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5076
5077 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5078 tcp_clamp_window(sk);
5079 else if (sk_under_memory_pressure(sk))
5080 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5081
5082 tcp_collapse_ofo_queue(sk);
5083 if (!skb_queue_empty(&sk->sk_receive_queue))
5084 tcp_collapse(sk, &sk->sk_receive_queue,
5085 skb_peek(&sk->sk_receive_queue),
5086 NULL,
5087 tp->copied_seq, tp->rcv_nxt);
5088 sk_mem_reclaim(sk);
5089
5090 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5091 return 0;
5092
5093 /* Collapsing did not help, destructive actions follow.
5094 * This must not ever occur. */
5095
5096 tcp_prune_ofo_queue(sk);
5097
5098 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099 return 0;
5100
5101 /* If we are really being abused, tell the caller to silently
5102 * drop receive data on the floor. It will get retransmitted
5103 * and hopefully then we'll have sufficient space.
5104 */
5105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5106
5107 /* Massive buffer overcommit. */
5108 tp->pred_flags = 0;
5109 return -1;
5110}
5111
5112/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5113 * As additional protections, we do not touch cwnd in retransmission phases,
5114 * and if application hit its sndbuf limit recently.
5115 */
5116void tcp_cwnd_application_limited(struct sock *sk)
5117{
5118 struct tcp_sock *tp = tcp_sk(sk);
5119
5120 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5121 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5122 /* Limited by application or receiver window. */
5123 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5124 u32 win_used = max(tp->snd_cwnd_used, init_win);
5125 if (win_used < tp->snd_cwnd) {
5126 tp->snd_ssthresh = tcp_current_ssthresh(sk);
5127 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5128 }
5129 tp->snd_cwnd_used = 0;
5130 }
5131 tp->snd_cwnd_stamp = tcp_time_stamp;
5132}
5133
5134static bool tcp_should_expand_sndbuf(const struct sock *sk)
5135{
5136 const struct tcp_sock *tp = tcp_sk(sk);
5137
5138 /* If the user specified a specific send buffer setting, do
5139 * not modify it.
5140 */
5141 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5142 return false;
5143
5144 /* If we are under global TCP memory pressure, do not expand. */
5145 if (sk_under_memory_pressure(sk))
5146 return false;
5147
5148 /* If we are under soft global TCP memory pressure, do not expand. */
5149 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5150 return false;
5151
5152 /* If we filled the congestion window, do not expand. */
5153 if (tp->packets_out >= tp->snd_cwnd)
5154 return false;
5155
5156 return true;
5157}
5158
5159/* When incoming ACK allowed to free some skb from write_queue,
5160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5161 * on the exit from tcp input handler.
5162 *
5163 * PROBLEM: sndbuf expansion does not work well with largesend.
5164 */
5165static void tcp_new_space(struct sock *sk)
5166{
5167 struct tcp_sock *tp = tcp_sk(sk);
5168
5169 if (tcp_should_expand_sndbuf(sk)) {
5170 int sndmem = SKB_TRUESIZE(max_t(u32,
5171 tp->rx_opt.mss_clamp,
5172 tp->mss_cache) +
5173 MAX_TCP_HEADER);
5174 int demanded = max_t(unsigned int, tp->snd_cwnd,
5175 tp->reordering + 1);
5176 sndmem *= 2 * demanded;
5177 if (sndmem > sk->sk_sndbuf)
5178 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5179 tp->snd_cwnd_stamp = tcp_time_stamp;
5180 }
5181
5182 sk->sk_write_space(sk);
5183}
5184
5185static void tcp_check_space(struct sock *sk)
5186{
5187 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5188 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5189 if (sk->sk_socket &&
5190 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5191 tcp_new_space(sk);
5192 }
5193}
5194
5195static inline void tcp_data_snd_check(struct sock *sk)
5196{
5197 tcp_push_pending_frames(sk);
5198 tcp_check_space(sk);
5199}
5200
5201/*
5202 * Check if sending an ack is needed.
5203 */
5204static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5205{
5206 struct tcp_sock *tp = tcp_sk(sk);
5207
5208 /* More than one full frame received... */
5209 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5210 /* ... and right edge of window advances far enough.
5211 * (tcp_recvmsg() will send ACK otherwise). Or...
5212 */
5213 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5214 /* We ACK each frame or... */
5215 tcp_in_quickack_mode(sk) ||
5216 /* We have out of order data. */
5217 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5218 /* Then ack it now */
5219 tcp_send_ack(sk);
5220 } else {
5221 /* Else, send delayed ack. */
5222 tcp_send_delayed_ack(sk);
5223 }
5224}
5225
5226static inline void tcp_ack_snd_check(struct sock *sk)
5227{
5228 if (!inet_csk_ack_scheduled(sk)) {
5229 /* We sent a data segment already. */
5230 return;
5231 }
5232 __tcp_ack_snd_check(sk, 1);
5233}
5234
5235/*
5236 * This routine is only called when we have urgent data
5237 * signaled. Its the 'slow' part of tcp_urg. It could be
5238 * moved inline now as tcp_urg is only called from one
5239 * place. We handle URGent data wrong. We have to - as
5240 * BSD still doesn't use the correction from RFC961.
5241 * For 1003.1g we should support a new option TCP_STDURG to permit
5242 * either form (or just set the sysctl tcp_stdurg).
5243 */
5244
5245static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5246{
5247 struct tcp_sock *tp = tcp_sk(sk);
5248 u32 ptr = ntohs(th->urg_ptr);
5249
5250 if (ptr && !sysctl_tcp_stdurg)
5251 ptr--;
5252 ptr += ntohl(th->seq);
5253
5254 /* Ignore urgent data that we've already seen and read. */
5255 if (after(tp->copied_seq, ptr))
5256 return;
5257
5258 /* Do not replay urg ptr.
5259 *
5260 * NOTE: interesting situation not covered by specs.
5261 * Misbehaving sender may send urg ptr, pointing to segment,
5262 * which we already have in ofo queue. We are not able to fetch
5263 * such data and will stay in TCP_URG_NOTYET until will be eaten
5264 * by recvmsg(). Seems, we are not obliged to handle such wicked
5265 * situations. But it is worth to think about possibility of some
5266 * DoSes using some hypothetical application level deadlock.
5267 */
5268 if (before(ptr, tp->rcv_nxt))
5269 return;
5270
5271 /* Do we already have a newer (or duplicate) urgent pointer? */
5272 if (tp->urg_data && !after(ptr, tp->urg_seq))
5273 return;
5274
5275 /* Tell the world about our new urgent pointer. */
5276 sk_send_sigurg(sk);
5277
5278 /* We may be adding urgent data when the last byte read was
5279 * urgent. To do this requires some care. We cannot just ignore
5280 * tp->copied_seq since we would read the last urgent byte again
5281 * as data, nor can we alter copied_seq until this data arrives
5282 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5283 *
5284 * NOTE. Double Dutch. Rendering to plain English: author of comment
5285 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5286 * and expect that both A and B disappear from stream. This is _wrong_.
5287 * Though this happens in BSD with high probability, this is occasional.
5288 * Any application relying on this is buggy. Note also, that fix "works"
5289 * only in this artificial test. Insert some normal data between A and B and we will
5290 * decline of BSD again. Verdict: it is better to remove to trap
5291 * buggy users.
5292 */
5293 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5294 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5295 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5296 tp->copied_seq++;
5297 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5298 __skb_unlink(skb, &sk->sk_receive_queue);
5299 __kfree_skb(skb);
5300 }
5301 }
5302
5303 tp->urg_data = TCP_URG_NOTYET;
5304 tp->urg_seq = ptr;
5305
5306 /* Disable header prediction. */
5307 tp->pred_flags = 0;
5308}
5309
5310/* This is the 'fast' part of urgent handling. */
5311static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5312{
5313 struct tcp_sock *tp = tcp_sk(sk);
5314
5315 /* Check if we get a new urgent pointer - normally not. */
5316 if (th->urg)
5317 tcp_check_urg(sk, th);
5318
5319 /* Do we wait for any urgent data? - normally not... */
5320 if (tp->urg_data == TCP_URG_NOTYET) {
5321 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5322 th->syn;
5323
5324 /* Is the urgent pointer pointing into this packet? */
5325 if (ptr < skb->len) {
5326 u8 tmp;
5327 if (skb_copy_bits(skb, ptr, &tmp, 1))
5328 BUG();
5329 tp->urg_data = TCP_URG_VALID | tmp;
5330 if (!sock_flag(sk, SOCK_DEAD))
5331 sk->sk_data_ready(sk, 0);
5332 }
5333 }
5334}
5335
5336static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5337{
5338 struct tcp_sock *tp = tcp_sk(sk);
5339 int chunk = skb->len - hlen;
5340 int err;
5341
5342 local_bh_enable();
5343 if (skb_csum_unnecessary(skb))
5344 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5345 else
5346 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5347 tp->ucopy.iov);
5348
5349 if (!err) {
5350 tp->ucopy.len -= chunk;
5351 tp->copied_seq += chunk;
5352 tcp_rcv_space_adjust(sk);
5353 }
5354
5355 local_bh_disable();
5356 return err;
5357}
5358
5359static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5360 struct sk_buff *skb)
5361{
5362 __sum16 result;
5363
5364 if (sock_owned_by_user(sk)) {
5365 local_bh_enable();
5366 result = __tcp_checksum_complete(skb);
5367 local_bh_disable();
5368 } else {
5369 result = __tcp_checksum_complete(skb);
5370 }
5371 return result;
5372}
5373
5374static inline int tcp_checksum_complete_user(struct sock *sk,
5375 struct sk_buff *skb)
5376{
5377 return !skb_csum_unnecessary(skb) &&
5378 __tcp_checksum_complete_user(sk, skb);
5379}
5380
5381#ifdef CONFIG_NET_DMA
5382static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5383 int hlen)
5384{
5385 struct tcp_sock *tp = tcp_sk(sk);
5386 int chunk = skb->len - hlen;
5387 int dma_cookie;
5388 bool copied_early = false;
5389
5390 if (tp->ucopy.wakeup)
5391 return false;
5392
5393 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5394 tp->ucopy.dma_chan = net_dma_find_channel();
5395
5396 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5397
5398 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5399 skb, hlen,
5400 tp->ucopy.iov, chunk,
5401 tp->ucopy.pinned_list);
5402
5403 if (dma_cookie < 0)
5404 goto out;
5405
5406 tp->ucopy.dma_cookie = dma_cookie;
5407 copied_early = true;
5408
5409 tp->ucopy.len -= chunk;
5410 tp->copied_seq += chunk;
5411 tcp_rcv_space_adjust(sk);
5412
5413 if ((tp->ucopy.len == 0) ||
5414 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5415 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5416 tp->ucopy.wakeup = 1;
5417 sk->sk_data_ready(sk, 0);
5418 }
5419 } else if (chunk > 0) {
5420 tp->ucopy.wakeup = 1;
5421 sk->sk_data_ready(sk, 0);
5422 }
5423out:
5424 return copied_early;
5425}
5426#endif /* CONFIG_NET_DMA */
5427
5428/* Does PAWS and seqno based validation of an incoming segment, flags will
5429 * play significant role here.
5430 */
5431static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5432 const struct tcphdr *th, int syn_inerr)
5433{
5434 const u8 *hash_location;
5435 struct tcp_sock *tp = tcp_sk(sk);
5436
5437 /* RFC1323: H1. Apply PAWS check first. */
5438 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5439 tp->rx_opt.saw_tstamp &&
5440 tcp_paws_discard(sk, skb)) {
5441 if (!th->rst) {
5442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5443 tcp_send_dupack(sk, skb);
5444 goto discard;
5445 }
5446 /* Reset is accepted even if it did not pass PAWS. */
5447 }
5448
5449 /* Step 1: check sequence number */
5450 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5451 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5452 * (RST) segments are validated by checking their SEQ-fields."
5453 * And page 69: "If an incoming segment is not acceptable,
5454 * an acknowledgment should be sent in reply (unless the RST
5455 * bit is set, if so drop the segment and return)".
5456 */
5457 if (!th->rst)
5458 tcp_send_dupack(sk, skb);
5459 goto discard;
5460 }
5461
5462 /* Step 2: check RST bit */
5463 if (th->rst) {
5464 tcp_reset(sk);
5465 goto discard;
5466 }
5467
5468 /* ts_recent update must be made after we are sure that the packet
5469 * is in window.
5470 */
5471 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5472
5473 /* step 3: check security and precedence [ignored] */
5474
5475 /* step 4: Check for a SYN in window. */
5476 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5477 if (syn_inerr)
5478 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5480 tcp_reset(sk);
5481 return -1;
5482 }
5483
5484 return 1;
5485
5486discard:
5487 __kfree_skb(skb);
5488 return 0;
5489}
5490
5491/*
5492 * TCP receive function for the ESTABLISHED state.
5493 *
5494 * It is split into a fast path and a slow path. The fast path is
5495 * disabled when:
5496 * - A zero window was announced from us - zero window probing
5497 * is only handled properly in the slow path.
5498 * - Out of order segments arrived.
5499 * - Urgent data is expected.
5500 * - There is no buffer space left
5501 * - Unexpected TCP flags/window values/header lengths are received
5502 * (detected by checking the TCP header against pred_flags)
5503 * - Data is sent in both directions. Fast path only supports pure senders
5504 * or pure receivers (this means either the sequence number or the ack
5505 * value must stay constant)
5506 * - Unexpected TCP option.
5507 *
5508 * When these conditions are not satisfied it drops into a standard
5509 * receive procedure patterned after RFC793 to handle all cases.
5510 * The first three cases are guaranteed by proper pred_flags setting,
5511 * the rest is checked inline. Fast processing is turned on in
5512 * tcp_data_queue when everything is OK.
5513 */
5514int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5515 const struct tcphdr *th, unsigned int len)
5516{
5517 struct tcp_sock *tp = tcp_sk(sk);
5518 int res;
5519
5520 /*
5521 * Header prediction.
5522 * The code loosely follows the one in the famous
5523 * "30 instruction TCP receive" Van Jacobson mail.
5524 *
5525 * Van's trick is to deposit buffers into socket queue
5526 * on a device interrupt, to call tcp_recv function
5527 * on the receive process context and checksum and copy
5528 * the buffer to user space. smart...
5529 *
5530 * Our current scheme is not silly either but we take the
5531 * extra cost of the net_bh soft interrupt processing...
5532 * We do checksum and copy also but from device to kernel.
5533 */
5534
5535 tp->rx_opt.saw_tstamp = 0;
5536
5537 /* pred_flags is 0xS?10 << 16 + snd_wnd
5538 * if header_prediction is to be made
5539 * 'S' will always be tp->tcp_header_len >> 2
5540 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5541 * turn it off (when there are holes in the receive
5542 * space for instance)
5543 * PSH flag is ignored.
5544 */
5545
5546 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5547 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5548 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5549 int tcp_header_len = tp->tcp_header_len;
5550
5551 /* Timestamp header prediction: tcp_header_len
5552 * is automatically equal to th->doff*4 due to pred_flags
5553 * match.
5554 */
5555
5556 /* Check timestamp */
5557 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5558 /* No? Slow path! */
5559 if (!tcp_parse_aligned_timestamp(tp, th))
5560 goto slow_path;
5561
5562 /* If PAWS failed, check it more carefully in slow path */
5563 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5564 goto slow_path;
5565
5566 /* DO NOT update ts_recent here, if checksum fails
5567 * and timestamp was corrupted part, it will result
5568 * in a hung connection since we will drop all
5569 * future packets due to the PAWS test.
5570 */
5571 }
5572
5573 if (len <= tcp_header_len) {
5574 /* Bulk data transfer: sender */
5575 if (len == tcp_header_len) {
5576 /* Predicted packet is in window by definition.
5577 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5578 * Hence, check seq<=rcv_wup reduces to:
5579 */
5580 if (tcp_header_len ==
5581 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5582 tp->rcv_nxt == tp->rcv_wup)
5583 tcp_store_ts_recent(tp);
5584
5585 /* We know that such packets are checksummed
5586 * on entry.
5587 */
5588 tcp_ack(sk, skb, 0);
5589 __kfree_skb(skb);
5590 tcp_data_snd_check(sk);
5591 return 0;
5592 } else { /* Header too small */
5593 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5594 goto discard;
5595 }
5596 } else {
5597 int eaten = 0;
5598 int copied_early = 0;
5599 bool fragstolen = false;
5600
5601 if (tp->copied_seq == tp->rcv_nxt &&
5602 len - tcp_header_len <= tp->ucopy.len) {
5603#ifdef CONFIG_NET_DMA
5604 if (tp->ucopy.task == current &&
5605 sock_owned_by_user(sk) &&
5606 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5607 copied_early = 1;
5608 eaten = 1;
5609 }
5610#endif
5611 if (tp->ucopy.task == current &&
5612 sock_owned_by_user(sk) && !copied_early) {
5613 __set_current_state(TASK_RUNNING);
5614
5615 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5616 eaten = 1;
5617 }
5618 if (eaten) {
5619 /* Predicted packet is in window by definition.
5620 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5621 * Hence, check seq<=rcv_wup reduces to:
5622 */
5623 if (tcp_header_len ==
5624 (sizeof(struct tcphdr) +
5625 TCPOLEN_TSTAMP_ALIGNED) &&
5626 tp->rcv_nxt == tp->rcv_wup)
5627 tcp_store_ts_recent(tp);
5628
5629 tcp_rcv_rtt_measure_ts(sk, skb);
5630
5631 __skb_pull(skb, tcp_header_len);
5632 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5633 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5634 }
5635 if (copied_early)
5636 tcp_cleanup_rbuf(sk, skb->len);
5637 }
5638 if (!eaten) {
5639 if (tcp_checksum_complete_user(sk, skb))
5640 goto csum_error;
5641
5642 /* Predicted packet is in window by definition.
5643 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5644 * Hence, check seq<=rcv_wup reduces to:
5645 */
5646 if (tcp_header_len ==
5647 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5648 tp->rcv_nxt == tp->rcv_wup)
5649 tcp_store_ts_recent(tp);
5650
5651 tcp_rcv_rtt_measure_ts(sk, skb);
5652
5653 if ((int)skb->truesize > sk->sk_forward_alloc)
5654 goto step5;
5655
5656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5657
5658 /* Bulk data transfer: receiver */
5659 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5660 &fragstolen);
5661 }
5662
5663 tcp_event_data_recv(sk, skb);
5664
5665 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5666 /* Well, only one small jumplet in fast path... */
5667 tcp_ack(sk, skb, FLAG_DATA);
5668 tcp_data_snd_check(sk);
5669 if (!inet_csk_ack_scheduled(sk))
5670 goto no_ack;
5671 }
5672
5673 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5674 __tcp_ack_snd_check(sk, 0);
5675no_ack:
5676#ifdef CONFIG_NET_DMA
5677 if (copied_early)
5678 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5679 else
5680#endif
5681 if (eaten)
5682 kfree_skb_partial(skb, fragstolen);
5683 else
5684 sk->sk_data_ready(sk, 0);
5685 return 0;
5686 }
5687 }
5688
5689slow_path:
5690 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5691 goto csum_error;
5692
5693 /*
5694 * Standard slow path.
5695 */
5696
5697 res = tcp_validate_incoming(sk, skb, th, 1);
5698 if (res <= 0)
5699 return -res;
5700
5701step5:
5702 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5703 goto discard;
5704
5705 tcp_rcv_rtt_measure_ts(sk, skb);
5706
5707 /* Process urgent data. */
5708 tcp_urg(sk, skb, th);
5709
5710 /* step 7: process the segment text */
5711 tcp_data_queue(sk, skb);
5712
5713 tcp_data_snd_check(sk);
5714 tcp_ack_snd_check(sk);
5715 return 0;
5716
5717csum_error:
5718 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5719
5720discard:
5721 __kfree_skb(skb);
5722 return 0;
5723}
5724EXPORT_SYMBOL(tcp_rcv_established);
5725
5726void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5727{
5728 struct tcp_sock *tp = tcp_sk(sk);
5729 struct inet_connection_sock *icsk = inet_csk(sk);
5730
5731 tcp_set_state(sk, TCP_ESTABLISHED);
5732
5733 if (skb != NULL)
5734 security_inet_conn_established(sk, skb);
5735
5736 /* Make sure socket is routed, for correct metrics. */
5737 icsk->icsk_af_ops->rebuild_header(sk);
5738
5739 tcp_init_metrics(sk);
5740
5741 tcp_init_congestion_control(sk);
5742
5743 /* Prevent spurious tcp_cwnd_restart() on first data
5744 * packet.
5745 */
5746 tp->lsndtime = tcp_time_stamp;
5747
5748 tcp_init_buffer_space(sk);
5749
5750 if (sock_flag(sk, SOCK_KEEPOPEN))
5751 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5752
5753 if (!tp->rx_opt.snd_wscale)
5754 __tcp_fast_path_on(tp, tp->snd_wnd);
5755 else
5756 tp->pred_flags = 0;
5757
5758 if (!sock_flag(sk, SOCK_DEAD)) {
5759 sk->sk_state_change(sk);
5760 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5761 }
5762}
5763
5764static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5765 const struct tcphdr *th, unsigned int len)
5766{
5767 const u8 *hash_location;
5768 struct inet_connection_sock *icsk = inet_csk(sk);
5769 struct tcp_sock *tp = tcp_sk(sk);
5770 struct tcp_cookie_values *cvp = tp->cookie_values;
5771 int saved_clamp = tp->rx_opt.mss_clamp;
5772
5773 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5774
5775 if (th->ack) {
5776 /* rfc793:
5777 * "If the state is SYN-SENT then
5778 * first check the ACK bit
5779 * If the ACK bit is set
5780 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5781 * a reset (unless the RST bit is set, if so drop
5782 * the segment and return)"
5783 *
5784 * We do not send data with SYN, so that RFC-correct
5785 * test reduces to:
5786 */
5787 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5788 goto reset_and_undo;
5789
5790 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5791 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5792 tcp_time_stamp)) {
5793 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5794 goto reset_and_undo;
5795 }
5796
5797 /* Now ACK is acceptable.
5798 *
5799 * "If the RST bit is set
5800 * If the ACK was acceptable then signal the user "error:
5801 * connection reset", drop the segment, enter CLOSED state,
5802 * delete TCB, and return."
5803 */
5804
5805 if (th->rst) {
5806 tcp_reset(sk);
5807 goto discard;
5808 }
5809
5810 /* rfc793:
5811 * "fifth, if neither of the SYN or RST bits is set then
5812 * drop the segment and return."
5813 *
5814 * See note below!
5815 * --ANK(990513)
5816 */
5817 if (!th->syn)
5818 goto discard_and_undo;
5819
5820 /* rfc793:
5821 * "If the SYN bit is on ...
5822 * are acceptable then ...
5823 * (our SYN has been ACKed), change the connection
5824 * state to ESTABLISHED..."
5825 */
5826
5827 TCP_ECN_rcv_synack(tp, th);
5828
5829 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5830 tcp_ack(sk, skb, FLAG_SLOWPATH);
5831
5832 /* Ok.. it's good. Set up sequence numbers and
5833 * move to established.
5834 */
5835 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5836 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5837
5838 /* RFC1323: The window in SYN & SYN/ACK segments is
5839 * never scaled.
5840 */
5841 tp->snd_wnd = ntohs(th->window);
5842 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5843
5844 if (!tp->rx_opt.wscale_ok) {
5845 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5846 tp->window_clamp = min(tp->window_clamp, 65535U);
5847 }
5848
5849 if (tp->rx_opt.saw_tstamp) {
5850 tp->rx_opt.tstamp_ok = 1;
5851 tp->tcp_header_len =
5852 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5854 tcp_store_ts_recent(tp);
5855 } else {
5856 tp->tcp_header_len = sizeof(struct tcphdr);
5857 }
5858
5859 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5860 tcp_enable_fack(tp);
5861
5862 tcp_mtup_init(sk);
5863 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5864 tcp_initialize_rcv_mss(sk);
5865
5866 /* Remember, tcp_poll() does not lock socket!
5867 * Change state from SYN-SENT only after copied_seq
5868 * is initialized. */
5869 tp->copied_seq = tp->rcv_nxt;
5870
5871 if (cvp != NULL &&
5872 cvp->cookie_pair_size > 0 &&
5873 tp->rx_opt.cookie_plus > 0) {
5874 int cookie_size = tp->rx_opt.cookie_plus
5875 - TCPOLEN_COOKIE_BASE;
5876 int cookie_pair_size = cookie_size
5877 + cvp->cookie_desired;
5878
5879 /* A cookie extension option was sent and returned.
5880 * Note that each incoming SYNACK replaces the
5881 * Responder cookie. The initial exchange is most
5882 * fragile, as protection against spoofing relies
5883 * entirely upon the sequence and timestamp (above).
5884 * This replacement strategy allows the correct pair to
5885 * pass through, while any others will be filtered via
5886 * Responder verification later.
5887 */
5888 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5889 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5890 hash_location, cookie_size);
5891 cvp->cookie_pair_size = cookie_pair_size;
5892 }
5893 }
5894
5895 smp_mb();
5896
5897 tcp_finish_connect(sk, skb);
5898
5899 if (sk->sk_write_pending ||
5900 icsk->icsk_accept_queue.rskq_defer_accept ||
5901 icsk->icsk_ack.pingpong) {
5902 /* Save one ACK. Data will be ready after
5903 * several ticks, if write_pending is set.
5904 *
5905 * It may be deleted, but with this feature tcpdumps
5906 * look so _wonderfully_ clever, that I was not able
5907 * to stand against the temptation 8) --ANK
5908 */
5909 inet_csk_schedule_ack(sk);
5910 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5911 tcp_enter_quickack_mode(sk);
5912 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5913 TCP_DELACK_MAX, TCP_RTO_MAX);
5914
5915discard:
5916 __kfree_skb(skb);
5917 return 0;
5918 } else {
5919 tcp_send_ack(sk);
5920 }
5921 return -1;
5922 }
5923
5924 /* No ACK in the segment */
5925
5926 if (th->rst) {
5927 /* rfc793:
5928 * "If the RST bit is set
5929 *
5930 * Otherwise (no ACK) drop the segment and return."
5931 */
5932
5933 goto discard_and_undo;
5934 }
5935
5936 /* PAWS check. */
5937 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5938 tcp_paws_reject(&tp->rx_opt, 0))
5939 goto discard_and_undo;
5940
5941 if (th->syn) {
5942 /* We see SYN without ACK. It is attempt of
5943 * simultaneous connect with crossed SYNs.
5944 * Particularly, it can be connect to self.
5945 */
5946 tcp_set_state(sk, TCP_SYN_RECV);
5947
5948 if (tp->rx_opt.saw_tstamp) {
5949 tp->rx_opt.tstamp_ok = 1;
5950 tcp_store_ts_recent(tp);
5951 tp->tcp_header_len =
5952 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5953 } else {
5954 tp->tcp_header_len = sizeof(struct tcphdr);
5955 }
5956
5957 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5958 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5959
5960 /* RFC1323: The window in SYN & SYN/ACK segments is
5961 * never scaled.
5962 */
5963 tp->snd_wnd = ntohs(th->window);
5964 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5965 tp->max_window = tp->snd_wnd;
5966
5967 TCP_ECN_rcv_syn(tp, th);
5968
5969 tcp_mtup_init(sk);
5970 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5971 tcp_initialize_rcv_mss(sk);
5972
5973 tcp_send_synack(sk);
5974#if 0
5975 /* Note, we could accept data and URG from this segment.
5976 * There are no obstacles to make this.
5977 *
5978 * However, if we ignore data in ACKless segments sometimes,
5979 * we have no reasons to accept it sometimes.
5980 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5981 * is not flawless. So, discard packet for sanity.
5982 * Uncomment this return to process the data.
5983 */
5984 return -1;
5985#else
5986 goto discard;
5987#endif
5988 }
5989 /* "fifth, if neither of the SYN or RST bits is set then
5990 * drop the segment and return."
5991 */
5992
5993discard_and_undo:
5994 tcp_clear_options(&tp->rx_opt);
5995 tp->rx_opt.mss_clamp = saved_clamp;
5996 goto discard;
5997
5998reset_and_undo:
5999 tcp_clear_options(&tp->rx_opt);
6000 tp->rx_opt.mss_clamp = saved_clamp;
6001 return 1;
6002}
6003
6004/*
6005 * This function implements the receiving procedure of RFC 793 for
6006 * all states except ESTABLISHED and TIME_WAIT.
6007 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6008 * address independent.
6009 */
6010
6011int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6012 const struct tcphdr *th, unsigned int len)
6013{
6014 struct tcp_sock *tp = tcp_sk(sk);
6015 struct inet_connection_sock *icsk = inet_csk(sk);
6016 int queued = 0;
6017 int res;
6018
6019 tp->rx_opt.saw_tstamp = 0;
6020
6021 switch (sk->sk_state) {
6022 case TCP_CLOSE:
6023 goto discard;
6024
6025 case TCP_LISTEN:
6026 if (th->ack)
6027 return 1;
6028
6029 if (th->rst)
6030 goto discard;
6031
6032 if (th->syn) {
6033 if (th->fin)
6034 goto discard;
6035 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6036 return 1;
6037
6038 /* Now we have several options: In theory there is
6039 * nothing else in the frame. KA9Q has an option to
6040 * send data with the syn, BSD accepts data with the
6041 * syn up to the [to be] advertised window and
6042 * Solaris 2.1 gives you a protocol error. For now
6043 * we just ignore it, that fits the spec precisely
6044 * and avoids incompatibilities. It would be nice in
6045 * future to drop through and process the data.
6046 *
6047 * Now that TTCP is starting to be used we ought to
6048 * queue this data.
6049 * But, this leaves one open to an easy denial of
6050 * service attack, and SYN cookies can't defend
6051 * against this problem. So, we drop the data
6052 * in the interest of security over speed unless
6053 * it's still in use.
6054 */
6055 kfree_skb(skb);
6056 return 0;
6057 }
6058 goto discard;
6059
6060 case TCP_SYN_SENT:
6061 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6062 if (queued >= 0)
6063 return queued;
6064
6065 /* Do step6 onward by hand. */
6066 tcp_urg(sk, skb, th);
6067 __kfree_skb(skb);
6068 tcp_data_snd_check(sk);
6069 return 0;
6070 }
6071
6072 res = tcp_validate_incoming(sk, skb, th, 0);
6073 if (res <= 0)
6074 return -res;
6075
6076 /* step 5: check the ACK field */
6077 if (th->ack) {
6078 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6079
6080 switch (sk->sk_state) {
6081 case TCP_SYN_RECV:
6082 if (acceptable) {
6083 tp->copied_seq = tp->rcv_nxt;
6084 smp_mb();
6085 tcp_set_state(sk, TCP_ESTABLISHED);
6086 sk->sk_state_change(sk);
6087
6088 /* Note, that this wakeup is only for marginal
6089 * crossed SYN case. Passively open sockets
6090 * are not waked up, because sk->sk_sleep ==
6091 * NULL and sk->sk_socket == NULL.
6092 */
6093 if (sk->sk_socket)
6094 sk_wake_async(sk,
6095 SOCK_WAKE_IO, POLL_OUT);
6096
6097 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6098 tp->snd_wnd = ntohs(th->window) <<
6099 tp->rx_opt.snd_wscale;
6100 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6101
6102 if (tp->rx_opt.tstamp_ok)
6103 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6104
6105 /* Make sure socket is routed, for
6106 * correct metrics.
6107 */
6108 icsk->icsk_af_ops->rebuild_header(sk);
6109
6110 tcp_init_metrics(sk);
6111
6112 tcp_init_congestion_control(sk);
6113
6114 /* Prevent spurious tcp_cwnd_restart() on
6115 * first data packet.
6116 */
6117 tp->lsndtime = tcp_time_stamp;
6118
6119 tcp_mtup_init(sk);
6120 tcp_initialize_rcv_mss(sk);
6121 tcp_init_buffer_space(sk);
6122 tcp_fast_path_on(tp);
6123 } else {
6124 return 1;
6125 }
6126 break;
6127
6128 case TCP_FIN_WAIT1:
6129 if (tp->snd_una == tp->write_seq) {
6130 tcp_set_state(sk, TCP_FIN_WAIT2);
6131 sk->sk_shutdown |= SEND_SHUTDOWN;
6132 dst_confirm(__sk_dst_get(sk));
6133
6134 if (!sock_flag(sk, SOCK_DEAD))
6135 /* Wake up lingering close() */
6136 sk->sk_state_change(sk);
6137 else {
6138 int tmo;
6139
6140 if (tp->linger2 < 0 ||
6141 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6142 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6143 tcp_done(sk);
6144 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6145 return 1;
6146 }
6147
6148 tmo = tcp_fin_time(sk);
6149 if (tmo > TCP_TIMEWAIT_LEN) {
6150 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6151 } else if (th->fin || sock_owned_by_user(sk)) {
6152 /* Bad case. We could lose such FIN otherwise.
6153 * It is not a big problem, but it looks confusing
6154 * and not so rare event. We still can lose it now,
6155 * if it spins in bh_lock_sock(), but it is really
6156 * marginal case.
6157 */
6158 inet_csk_reset_keepalive_timer(sk, tmo);
6159 } else {
6160 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6161 goto discard;
6162 }
6163 }
6164 }
6165 break;
6166
6167 case TCP_CLOSING:
6168 if (tp->snd_una == tp->write_seq) {
6169 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6170 goto discard;
6171 }
6172 break;
6173
6174 case TCP_LAST_ACK:
6175 if (tp->snd_una == tp->write_seq) {
6176 tcp_update_metrics(sk);
6177 tcp_done(sk);
6178 goto discard;
6179 }
6180 break;
6181 }
6182 } else
6183 goto discard;
6184
6185 /* step 6: check the URG bit */
6186 tcp_urg(sk, skb, th);
6187
6188 /* step 7: process the segment text */
6189 switch (sk->sk_state) {
6190 case TCP_CLOSE_WAIT:
6191 case TCP_CLOSING:
6192 case TCP_LAST_ACK:
6193 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6194 break;
6195 case TCP_FIN_WAIT1:
6196 case TCP_FIN_WAIT2:
6197 /* RFC 793 says to queue data in these states,
6198 * RFC 1122 says we MUST send a reset.
6199 * BSD 4.4 also does reset.
6200 */
6201 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6202 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6203 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6205 tcp_reset(sk);
6206 return 1;
6207 }
6208 }
6209 /* Fall through */
6210 case TCP_ESTABLISHED:
6211 tcp_data_queue(sk, skb);
6212 queued = 1;
6213 break;
6214 }
6215
6216 /* tcp_data could move socket to TIME-WAIT */
6217 if (sk->sk_state != TCP_CLOSE) {
6218 tcp_data_snd_check(sk);
6219 tcp_ack_snd_check(sk);
6220 }
6221
6222 if (!queued) {
6223discard:
6224 __kfree_skb(skb);
6225 }
6226 return 0;
6227}
6228EXPORT_SYMBOL(tcp_rcv_state_process);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/proto_memory.h>
76#include <net/inet_common.h>
77#include <linux/ipsec.h>
78#include <linux/unaligned.h>
79#include <linux/errqueue.h>
80#include <trace/events/tcp.h>
81#include <linux/jump_label_ratelimit.h>
82#include <net/busy_poll.h>
83#include <net/mptcp.h>
84
85int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87#define FLAG_DATA 0x01 /* Incoming frame contained data. */
88#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92#define FLAG_DATA_SACKED 0x20 /* New SACK. */
93#define FLAG_ECE 0x40 /* ECE in this ACK */
94#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104#define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105
106#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113
114#define REXMIT_NONE 0 /* no loss recovery to do */
115#define REXMIT_LOST 1 /* retransmit packets marked lost */
116#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
117
118#if IS_ENABLED(CONFIG_TLS_DEVICE)
119static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120
121void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 void (*cad)(struct sock *sk, u32 ack_seq))
123{
124 icsk->icsk_clean_acked = cad;
125 static_branch_deferred_inc(&clean_acked_data_enabled);
126}
127EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128
129void clean_acked_data_disable(struct inet_connection_sock *icsk)
130{
131 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 icsk->icsk_clean_acked = NULL;
133}
134EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135
136void clean_acked_data_flush(void)
137{
138 static_key_deferred_flush(&clean_acked_data_enabled);
139}
140EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141#endif
142
143#ifdef CONFIG_CGROUP_BPF
144static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145{
146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 struct bpf_sock_ops_kern sock_ops;
152
153 if (likely(!unknown_opt && !parse_all_opt))
154 return;
155
156 /* The skb will be handled in the
157 * bpf_skops_established() or
158 * bpf_skops_write_hdr_opt().
159 */
160 switch (sk->sk_state) {
161 case TCP_SYN_RECV:
162 case TCP_SYN_SENT:
163 case TCP_LISTEN:
164 return;
165 }
166
167 sock_owned_by_me(sk);
168
169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 sock_ops.is_fullsock = 1;
172 sock_ops.sk = sk;
173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174
175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176}
177
178static void bpf_skops_established(struct sock *sk, int bpf_op,
179 struct sk_buff *skb)
180{
181 struct bpf_sock_ops_kern sock_ops;
182
183 sock_owned_by_me(sk);
184
185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 sock_ops.op = bpf_op;
187 sock_ops.is_fullsock = 1;
188 sock_ops.sk = sk;
189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 if (skb)
191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192
193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194}
195#else
196static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197{
198}
199
200static void bpf_skops_established(struct sock *sk, int bpf_op,
201 struct sk_buff *skb)
202{
203}
204#endif
205
206static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 unsigned int len)
208{
209 struct net_device *dev;
210
211 rcu_read_lock();
212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 if (!dev || len >= READ_ONCE(dev->mtu))
214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 dev ? dev->name : "Unknown driver");
216 rcu_read_unlock();
217}
218
219/* Adapt the MSS value used to make delayed ack decision to the
220 * real world.
221 */
222static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223{
224 struct inet_connection_sock *icsk = inet_csk(sk);
225 const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 unsigned int len;
227
228 icsk->icsk_ack.last_seg_size = 0;
229
230 /* skb->len may jitter because of SACKs, even if peer
231 * sends good full-sized frames.
232 */
233 len = skb_shinfo(skb)->gso_size ? : skb->len;
234 if (len >= icsk->icsk_ack.rcv_mss) {
235 /* Note: divides are still a bit expensive.
236 * For the moment, only adjust scaling_ratio
237 * when we update icsk_ack.rcv_mss.
238 */
239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
242
243 do_div(val, skb->truesize);
244 tcp_sk(sk)->scaling_ratio = val ? val : 1;
245
246 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
247 struct tcp_sock *tp = tcp_sk(sk);
248
249 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
250 tcp_set_window_clamp(sk, val);
251
252 if (tp->window_clamp < tp->rcvq_space.space)
253 tp->rcvq_space.space = tp->window_clamp;
254 }
255 }
256 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
257 tcp_sk(sk)->advmss);
258 /* Account for possibly-removed options */
259 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
260 tcp_gro_dev_warn, sk, skb, len);
261 /* If the skb has a len of exactly 1*MSS and has the PSH bit
262 * set then it is likely the end of an application write. So
263 * more data may not be arriving soon, and yet the data sender
264 * may be waiting for an ACK if cwnd-bound or using TX zero
265 * copy. So we set ICSK_ACK_PUSHED here so that
266 * tcp_cleanup_rbuf() will send an ACK immediately if the app
267 * reads all of the data and is not ping-pong. If len > MSS
268 * then this logic does not matter (and does not hurt) because
269 * tcp_cleanup_rbuf() will always ACK immediately if the app
270 * reads data and there is more than an MSS of unACKed data.
271 */
272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 } else {
275 /* Otherwise, we make more careful check taking into account,
276 * that SACKs block is variable.
277 *
278 * "len" is invariant segment length, including TCP header.
279 */
280 len += skb->data - skb_transport_header(skb);
281 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
282 /* If PSH is not set, packet should be
283 * full sized, provided peer TCP is not badly broken.
284 * This observation (if it is correct 8)) allows
285 * to handle super-low mtu links fairly.
286 */
287 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
288 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
289 /* Subtract also invariant (if peer is RFC compliant),
290 * tcp header plus fixed timestamp option length.
291 * Resulting "len" is MSS free of SACK jitter.
292 */
293 len -= tcp_sk(sk)->tcp_header_len;
294 icsk->icsk_ack.last_seg_size = len;
295 if (len == lss) {
296 icsk->icsk_ack.rcv_mss = len;
297 return;
298 }
299 }
300 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
301 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
303 }
304}
305
306static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
307{
308 struct inet_connection_sock *icsk = inet_csk(sk);
309 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
310
311 if (quickacks == 0)
312 quickacks = 2;
313 quickacks = min(quickacks, max_quickacks);
314 if (quickacks > icsk->icsk_ack.quick)
315 icsk->icsk_ack.quick = quickacks;
316}
317
318static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
319{
320 struct inet_connection_sock *icsk = inet_csk(sk);
321
322 tcp_incr_quickack(sk, max_quickacks);
323 inet_csk_exit_pingpong_mode(sk);
324 icsk->icsk_ack.ato = TCP_ATO_MIN;
325}
326
327/* Send ACKs quickly, if "quick" count is not exhausted
328 * and the session is not interactive.
329 */
330
331static bool tcp_in_quickack_mode(struct sock *sk)
332{
333 const struct inet_connection_sock *icsk = inet_csk(sk);
334 const struct dst_entry *dst = __sk_dst_get(sk);
335
336 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
337 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
338}
339
340static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
341{
342 if (tp->ecn_flags & TCP_ECN_OK)
343 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
344}
345
346static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
347{
348 if (tcp_hdr(skb)->cwr) {
349 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
350
351 /* If the sender is telling us it has entered CWR, then its
352 * cwnd may be very low (even just 1 packet), so we should ACK
353 * immediately.
354 */
355 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
356 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
357 }
358}
359
360static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
361{
362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363}
364
365static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
366{
367 struct tcp_sock *tp = tcp_sk(sk);
368
369 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
370 case INET_ECN_NOT_ECT:
371 /* Funny extension: if ECT is not set on a segment,
372 * and we already seen ECT on a previous segment,
373 * it is probably a retransmit.
374 */
375 if (tp->ecn_flags & TCP_ECN_SEEN)
376 tcp_enter_quickack_mode(sk, 2);
377 break;
378 case INET_ECN_CE:
379 if (tcp_ca_needs_ecn(sk))
380 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
381
382 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
383 /* Better not delay acks, sender can have a very low cwnd */
384 tcp_enter_quickack_mode(sk, 2);
385 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
386 }
387 tp->ecn_flags |= TCP_ECN_SEEN;
388 break;
389 default:
390 if (tcp_ca_needs_ecn(sk))
391 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
392 tp->ecn_flags |= TCP_ECN_SEEN;
393 break;
394 }
395}
396
397static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
398{
399 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
400 __tcp_ecn_check_ce(sk, skb);
401}
402
403static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
404{
405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
406 tp->ecn_flags &= ~TCP_ECN_OK;
407}
408
409static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
410{
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413}
414
415static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
416{
417 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
418 return true;
419 return false;
420}
421
422/* Buffer size and advertised window tuning.
423 *
424 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
425 */
426
427static void tcp_sndbuf_expand(struct sock *sk)
428{
429 const struct tcp_sock *tp = tcp_sk(sk);
430 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
431 int sndmem, per_mss;
432 u32 nr_segs;
433
434 /* Worst case is non GSO/TSO : each frame consumes one skb
435 * and skb->head is kmalloced using power of two area of memory
436 */
437 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
438 MAX_TCP_HEADER +
439 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
440
441 per_mss = roundup_pow_of_two(per_mss) +
442 SKB_DATA_ALIGN(sizeof(struct sk_buff));
443
444 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
445 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
446
447 /* Fast Recovery (RFC 5681 3.2) :
448 * Cubic needs 1.7 factor, rounded to 2 to include
449 * extra cushion (application might react slowly to EPOLLOUT)
450 */
451 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
452 sndmem *= nr_segs * per_mss;
453
454 if (sk->sk_sndbuf < sndmem)
455 WRITE_ONCE(sk->sk_sndbuf,
456 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
457}
458
459/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
460 *
461 * All tcp_full_space() is split to two parts: "network" buffer, allocated
462 * forward and advertised in receiver window (tp->rcv_wnd) and
463 * "application buffer", required to isolate scheduling/application
464 * latencies from network.
465 * window_clamp is maximal advertised window. It can be less than
466 * tcp_full_space(), in this case tcp_full_space() - window_clamp
467 * is reserved for "application" buffer. The less window_clamp is
468 * the smoother our behaviour from viewpoint of network, but the lower
469 * throughput and the higher sensitivity of the connection to losses. 8)
470 *
471 * rcv_ssthresh is more strict window_clamp used at "slow start"
472 * phase to predict further behaviour of this connection.
473 * It is used for two goals:
474 * - to enforce header prediction at sender, even when application
475 * requires some significant "application buffer". It is check #1.
476 * - to prevent pruning of receive queue because of misprediction
477 * of receiver window. Check #2.
478 *
479 * The scheme does not work when sender sends good segments opening
480 * window and then starts to feed us spaghetti. But it should work
481 * in common situations. Otherwise, we have to rely on queue collapsing.
482 */
483
484/* Slow part of check#2. */
485static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
486 unsigned int skbtruesize)
487{
488 const struct tcp_sock *tp = tcp_sk(sk);
489 /* Optimize this! */
490 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
491 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
492
493 while (tp->rcv_ssthresh <= window) {
494 if (truesize <= skb->len)
495 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
496
497 truesize >>= 1;
498 window >>= 1;
499 }
500 return 0;
501}
502
503/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
504 * can play nice with us, as sk_buff and skb->head might be either
505 * freed or shared with up to MAX_SKB_FRAGS segments.
506 * Only give a boost to drivers using page frag(s) to hold the frame(s),
507 * and if no payload was pulled in skb->head before reaching us.
508 */
509static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
510{
511 u32 truesize = skb->truesize;
512
513 if (adjust && !skb_headlen(skb)) {
514 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
515 /* paranoid check, some drivers might be buggy */
516 if (unlikely((int)truesize < (int)skb->len))
517 truesize = skb->truesize;
518 }
519 return truesize;
520}
521
522static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
523 bool adjust)
524{
525 struct tcp_sock *tp = tcp_sk(sk);
526 int room;
527
528 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
529
530 if (room <= 0)
531 return;
532
533 /* Check #1 */
534 if (!tcp_under_memory_pressure(sk)) {
535 unsigned int truesize = truesize_adjust(adjust, skb);
536 int incr;
537
538 /* Check #2. Increase window, if skb with such overhead
539 * will fit to rcvbuf in future.
540 */
541 if (tcp_win_from_space(sk, truesize) <= skb->len)
542 incr = 2 * tp->advmss;
543 else
544 incr = __tcp_grow_window(sk, skb, truesize);
545
546 if (incr) {
547 incr = max_t(int, incr, 2 * skb->len);
548 tp->rcv_ssthresh += min(room, incr);
549 inet_csk(sk)->icsk_ack.quick |= 1;
550 }
551 } else {
552 /* Under pressure:
553 * Adjust rcv_ssthresh according to reserved mem
554 */
555 tcp_adjust_rcv_ssthresh(sk);
556 }
557}
558
559/* 3. Try to fixup all. It is made immediately after connection enters
560 * established state.
561 */
562static void tcp_init_buffer_space(struct sock *sk)
563{
564 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
565 struct tcp_sock *tp = tcp_sk(sk);
566 int maxwin;
567
568 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
569 tcp_sndbuf_expand(sk);
570
571 tcp_mstamp_refresh(tp);
572 tp->rcvq_space.time = tp->tcp_mstamp;
573 tp->rcvq_space.seq = tp->copied_seq;
574
575 maxwin = tcp_full_space(sk);
576
577 if (tp->window_clamp >= maxwin) {
578 WRITE_ONCE(tp->window_clamp, maxwin);
579
580 if (tcp_app_win && maxwin > 4 * tp->advmss)
581 WRITE_ONCE(tp->window_clamp,
582 max(maxwin - (maxwin >> tcp_app_win),
583 4 * tp->advmss));
584 }
585
586 /* Force reservation of one segment. */
587 if (tcp_app_win &&
588 tp->window_clamp > 2 * tp->advmss &&
589 tp->window_clamp + tp->advmss > maxwin)
590 WRITE_ONCE(tp->window_clamp,
591 max(2 * tp->advmss, maxwin - tp->advmss));
592
593 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
594 tp->snd_cwnd_stamp = tcp_jiffies32;
595 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
596 (u32)TCP_INIT_CWND * tp->advmss);
597}
598
599/* 4. Recalculate window clamp after socket hit its memory bounds. */
600static void tcp_clamp_window(struct sock *sk)
601{
602 struct tcp_sock *tp = tcp_sk(sk);
603 struct inet_connection_sock *icsk = inet_csk(sk);
604 struct net *net = sock_net(sk);
605 int rmem2;
606
607 icsk->icsk_ack.quick = 0;
608 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
609
610 if (sk->sk_rcvbuf < rmem2 &&
611 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
612 !tcp_under_memory_pressure(sk) &&
613 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
614 WRITE_ONCE(sk->sk_rcvbuf,
615 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
616 }
617 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
618 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
619}
620
621/* Initialize RCV_MSS value.
622 * RCV_MSS is an our guess about MSS used by the peer.
623 * We haven't any direct information about the MSS.
624 * It's better to underestimate the RCV_MSS rather than overestimate.
625 * Overestimations make us ACKing less frequently than needed.
626 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
627 */
628void tcp_initialize_rcv_mss(struct sock *sk)
629{
630 const struct tcp_sock *tp = tcp_sk(sk);
631 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
632
633 hint = min(hint, tp->rcv_wnd / 2);
634 hint = min(hint, TCP_MSS_DEFAULT);
635 hint = max(hint, TCP_MIN_MSS);
636
637 inet_csk(sk)->icsk_ack.rcv_mss = hint;
638}
639EXPORT_SYMBOL(tcp_initialize_rcv_mss);
640
641/* Receiver "autotuning" code.
642 *
643 * The algorithm for RTT estimation w/o timestamps is based on
644 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
645 * <https://public.lanl.gov/radiant/pubs.html#DRS>
646 *
647 * More detail on this code can be found at
648 * <http://staff.psc.edu/jheffner/>,
649 * though this reference is out of date. A new paper
650 * is pending.
651 */
652static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
653{
654 u32 new_sample = tp->rcv_rtt_est.rtt_us;
655 long m = sample;
656
657 if (new_sample != 0) {
658 /* If we sample in larger samples in the non-timestamp
659 * case, we could grossly overestimate the RTT especially
660 * with chatty applications or bulk transfer apps which
661 * are stalled on filesystem I/O.
662 *
663 * Also, since we are only going for a minimum in the
664 * non-timestamp case, we do not smooth things out
665 * else with timestamps disabled convergence takes too
666 * long.
667 */
668 if (!win_dep) {
669 m -= (new_sample >> 3);
670 new_sample += m;
671 } else {
672 m <<= 3;
673 if (m < new_sample)
674 new_sample = m;
675 }
676 } else {
677 /* No previous measure. */
678 new_sample = m << 3;
679 }
680
681 tp->rcv_rtt_est.rtt_us = new_sample;
682}
683
684static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
685{
686 u32 delta_us;
687
688 if (tp->rcv_rtt_est.time == 0)
689 goto new_measure;
690 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
691 return;
692 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
693 if (!delta_us)
694 delta_us = 1;
695 tcp_rcv_rtt_update(tp, delta_us, 1);
696
697new_measure:
698 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
699 tp->rcv_rtt_est.time = tp->tcp_mstamp;
700}
701
702static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
703{
704 u32 delta, delta_us;
705
706 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
707 if (tp->tcp_usec_ts)
708 return delta;
709
710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
711 if (!delta)
712 delta = 1;
713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714 return delta_us;
715 }
716 return -1;
717}
718
719static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
720 const struct sk_buff *skb)
721{
722 struct tcp_sock *tp = tcp_sk(sk);
723
724 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
725 return;
726 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
727
728 if (TCP_SKB_CB(skb)->end_seq -
729 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
730 s32 delta = tcp_rtt_tsopt_us(tp);
731
732 if (delta >= 0)
733 tcp_rcv_rtt_update(tp, delta, 0);
734 }
735}
736
737/*
738 * This function should be called every time data is copied to user space.
739 * It calculates the appropriate TCP receive buffer space.
740 */
741void tcp_rcv_space_adjust(struct sock *sk)
742{
743 struct tcp_sock *tp = tcp_sk(sk);
744 u32 copied;
745 int time;
746
747 trace_tcp_rcv_space_adjust(sk);
748
749 tcp_mstamp_refresh(tp);
750 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
751 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
752 return;
753
754 /* Number of bytes copied to user in last RTT */
755 copied = tp->copied_seq - tp->rcvq_space.seq;
756 if (copied <= tp->rcvq_space.space)
757 goto new_measure;
758
759 /* A bit of theory :
760 * copied = bytes received in previous RTT, our base window
761 * To cope with packet losses, we need a 2x factor
762 * To cope with slow start, and sender growing its cwin by 100 %
763 * every RTT, we need a 4x factor, because the ACK we are sending
764 * now is for the next RTT, not the current one :
765 * <prev RTT . ><current RTT .. ><next RTT .... >
766 */
767
768 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
769 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
770 u64 rcvwin, grow;
771 int rcvbuf;
772
773 /* minimal window to cope with packet losses, assuming
774 * steady state. Add some cushion because of small variations.
775 */
776 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
777
778 /* Accommodate for sender rate increase (eg. slow start) */
779 grow = rcvwin * (copied - tp->rcvq_space.space);
780 do_div(grow, tp->rcvq_space.space);
781 rcvwin += (grow << 1);
782
783 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
784 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
785 if (rcvbuf > sk->sk_rcvbuf) {
786 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
787
788 /* Make the window clamp follow along. */
789 WRITE_ONCE(tp->window_clamp,
790 tcp_win_from_space(sk, rcvbuf));
791 }
792 }
793 tp->rcvq_space.space = copied;
794
795new_measure:
796 tp->rcvq_space.seq = tp->copied_seq;
797 tp->rcvq_space.time = tp->tcp_mstamp;
798}
799
800static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
801{
802#if IS_ENABLED(CONFIG_IPV6)
803 struct inet_connection_sock *icsk = inet_csk(sk);
804
805 if (skb->protocol == htons(ETH_P_IPV6))
806 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
807#endif
808}
809
810/* There is something which you must keep in mind when you analyze the
811 * behavior of the tp->ato delayed ack timeout interval. When a
812 * connection starts up, we want to ack as quickly as possible. The
813 * problem is that "good" TCP's do slow start at the beginning of data
814 * transmission. The means that until we send the first few ACK's the
815 * sender will sit on his end and only queue most of his data, because
816 * he can only send snd_cwnd unacked packets at any given time. For
817 * each ACK we send, he increments snd_cwnd and transmits more of his
818 * queue. -DaveM
819 */
820static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
821{
822 struct tcp_sock *tp = tcp_sk(sk);
823 struct inet_connection_sock *icsk = inet_csk(sk);
824 u32 now;
825
826 inet_csk_schedule_ack(sk);
827
828 tcp_measure_rcv_mss(sk, skb);
829
830 tcp_rcv_rtt_measure(tp);
831
832 now = tcp_jiffies32;
833
834 if (!icsk->icsk_ack.ato) {
835 /* The _first_ data packet received, initialize
836 * delayed ACK engine.
837 */
838 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
839 icsk->icsk_ack.ato = TCP_ATO_MIN;
840 } else {
841 int m = now - icsk->icsk_ack.lrcvtime;
842
843 if (m <= TCP_ATO_MIN / 2) {
844 /* The fastest case is the first. */
845 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
846 } else if (m < icsk->icsk_ack.ato) {
847 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
848 if (icsk->icsk_ack.ato > icsk->icsk_rto)
849 icsk->icsk_ack.ato = icsk->icsk_rto;
850 } else if (m > icsk->icsk_rto) {
851 /* Too long gap. Apparently sender failed to
852 * restart window, so that we send ACKs quickly.
853 */
854 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
855 }
856 }
857 icsk->icsk_ack.lrcvtime = now;
858 tcp_save_lrcv_flowlabel(sk, skb);
859
860 tcp_ecn_check_ce(sk, skb);
861
862 if (skb->len >= 128)
863 tcp_grow_window(sk, skb, true);
864}
865
866/* Called to compute a smoothed rtt estimate. The data fed to this
867 * routine either comes from timestamps, or from segments that were
868 * known _not_ to have been retransmitted [see Karn/Partridge
869 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
870 * piece by Van Jacobson.
871 * NOTE: the next three routines used to be one big routine.
872 * To save cycles in the RFC 1323 implementation it was better to break
873 * it up into three procedures. -- erics
874 */
875static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
876{
877 struct tcp_sock *tp = tcp_sk(sk);
878 long m = mrtt_us; /* RTT */
879 u32 srtt = tp->srtt_us;
880
881 /* The following amusing code comes from Jacobson's
882 * article in SIGCOMM '88. Note that rtt and mdev
883 * are scaled versions of rtt and mean deviation.
884 * This is designed to be as fast as possible
885 * m stands for "measurement".
886 *
887 * On a 1990 paper the rto value is changed to:
888 * RTO = rtt + 4 * mdev
889 *
890 * Funny. This algorithm seems to be very broken.
891 * These formulae increase RTO, when it should be decreased, increase
892 * too slowly, when it should be increased quickly, decrease too quickly
893 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
894 * does not matter how to _calculate_ it. Seems, it was trap
895 * that VJ failed to avoid. 8)
896 */
897 if (srtt != 0) {
898 m -= (srtt >> 3); /* m is now error in rtt est */
899 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
900 if (m < 0) {
901 m = -m; /* m is now abs(error) */
902 m -= (tp->mdev_us >> 2); /* similar update on mdev */
903 /* This is similar to one of Eifel findings.
904 * Eifel blocks mdev updates when rtt decreases.
905 * This solution is a bit different: we use finer gain
906 * for mdev in this case (alpha*beta).
907 * Like Eifel it also prevents growth of rto,
908 * but also it limits too fast rto decreases,
909 * happening in pure Eifel.
910 */
911 if (m > 0)
912 m >>= 3;
913 } else {
914 m -= (tp->mdev_us >> 2); /* similar update on mdev */
915 }
916 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
917 if (tp->mdev_us > tp->mdev_max_us) {
918 tp->mdev_max_us = tp->mdev_us;
919 if (tp->mdev_max_us > tp->rttvar_us)
920 tp->rttvar_us = tp->mdev_max_us;
921 }
922 if (after(tp->snd_una, tp->rtt_seq)) {
923 if (tp->mdev_max_us < tp->rttvar_us)
924 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
925 tp->rtt_seq = tp->snd_nxt;
926 tp->mdev_max_us = tcp_rto_min_us(sk);
927
928 tcp_bpf_rtt(sk, mrtt_us, srtt);
929 }
930 } else {
931 /* no previous measure. */
932 srtt = m << 3; /* take the measured time to be rtt */
933 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
934 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
935 tp->mdev_max_us = tp->rttvar_us;
936 tp->rtt_seq = tp->snd_nxt;
937
938 tcp_bpf_rtt(sk, mrtt_us, srtt);
939 }
940 tp->srtt_us = max(1U, srtt);
941}
942
943static void tcp_update_pacing_rate(struct sock *sk)
944{
945 const struct tcp_sock *tp = tcp_sk(sk);
946 u64 rate;
947
948 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
949 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
950
951 /* current rate is (cwnd * mss) / srtt
952 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
953 * In Congestion Avoidance phase, set it to 120 % the current rate.
954 *
955 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
956 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
957 * end of slow start and should slow down.
958 */
959 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
960 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
961 else
962 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
963
964 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
965
966 if (likely(tp->srtt_us))
967 do_div(rate, tp->srtt_us);
968
969 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
970 * without any lock. We want to make sure compiler wont store
971 * intermediate values in this location.
972 */
973 WRITE_ONCE(sk->sk_pacing_rate,
974 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
975}
976
977/* Calculate rto without backoff. This is the second half of Van Jacobson's
978 * routine referred to above.
979 */
980static void tcp_set_rto(struct sock *sk)
981{
982 const struct tcp_sock *tp = tcp_sk(sk);
983 /* Old crap is replaced with new one. 8)
984 *
985 * More seriously:
986 * 1. If rtt variance happened to be less 50msec, it is hallucination.
987 * It cannot be less due to utterly erratic ACK generation made
988 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
989 * to do with delayed acks, because at cwnd>2 true delack timeout
990 * is invisible. Actually, Linux-2.4 also generates erratic
991 * ACKs in some circumstances.
992 */
993 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
994
995 /* 2. Fixups made earlier cannot be right.
996 * If we do not estimate RTO correctly without them,
997 * all the algo is pure shit and should be replaced
998 * with correct one. It is exactly, which we pretend to do.
999 */
1000
1001 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1002 * guarantees that rto is higher.
1003 */
1004 tcp_bound_rto(sk);
1005}
1006
1007__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1008{
1009 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1010
1011 if (!cwnd)
1012 cwnd = TCP_INIT_CWND;
1013 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1014}
1015
1016struct tcp_sacktag_state {
1017 /* Timestamps for earliest and latest never-retransmitted segment
1018 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1019 * but congestion control should still get an accurate delay signal.
1020 */
1021 u64 first_sackt;
1022 u64 last_sackt;
1023 u32 reord;
1024 u32 sack_delivered;
1025 int flag;
1026 unsigned int mss_now;
1027 struct rate_sample *rate;
1028};
1029
1030/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1031 * and spurious retransmission information if this DSACK is unlikely caused by
1032 * sender's action:
1033 * - DSACKed sequence range is larger than maximum receiver's window.
1034 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1035 */
1036static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1037 u32 end_seq, struct tcp_sacktag_state *state)
1038{
1039 u32 seq_len, dup_segs = 1;
1040
1041 if (!before(start_seq, end_seq))
1042 return 0;
1043
1044 seq_len = end_seq - start_seq;
1045 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1046 if (seq_len > tp->max_window)
1047 return 0;
1048 if (seq_len > tp->mss_cache)
1049 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1050 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1051 state->flag |= FLAG_DSACK_TLP;
1052
1053 tp->dsack_dups += dup_segs;
1054 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1055 if (tp->dsack_dups > tp->total_retrans)
1056 return 0;
1057
1058 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1059 /* We increase the RACK ordering window in rounds where we receive
1060 * DSACKs that may have been due to reordering causing RACK to trigger
1061 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1062 * without having seen reordering, or that match TLP probes (TLP
1063 * is timer-driven, not triggered by RACK).
1064 */
1065 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1066 tp->rack.dsack_seen = 1;
1067
1068 state->flag |= FLAG_DSACKING_ACK;
1069 /* A spurious retransmission is delivered */
1070 state->sack_delivered += dup_segs;
1071
1072 return dup_segs;
1073}
1074
1075/* It's reordering when higher sequence was delivered (i.e. sacked) before
1076 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1077 * distance is approximated in full-mss packet distance ("reordering").
1078 */
1079static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1080 const int ts)
1081{
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 const u32 mss = tp->mss_cache;
1084 u32 fack, metric;
1085
1086 fack = tcp_highest_sack_seq(tp);
1087 if (!before(low_seq, fack))
1088 return;
1089
1090 metric = fack - low_seq;
1091 if ((metric > tp->reordering * mss) && mss) {
1092#if FASTRETRANS_DEBUG > 1
1093 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1094 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1095 tp->reordering,
1096 0,
1097 tp->sacked_out,
1098 tp->undo_marker ? tp->undo_retrans : 0);
1099#endif
1100 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1101 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1102 }
1103
1104 /* This exciting event is worth to be remembered. 8) */
1105 tp->reord_seen++;
1106 NET_INC_STATS(sock_net(sk),
1107 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1108}
1109
1110 /* This must be called before lost_out or retrans_out are updated
1111 * on a new loss, because we want to know if all skbs previously
1112 * known to be lost have already been retransmitted, indicating
1113 * that this newly lost skb is our next skb to retransmit.
1114 */
1115static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1116{
1117 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1118 (tp->retransmit_skb_hint &&
1119 before(TCP_SKB_CB(skb)->seq,
1120 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1121 tp->retransmit_skb_hint = skb;
1122}
1123
1124/* Sum the number of packets on the wire we have marked as lost, and
1125 * notify the congestion control module that the given skb was marked lost.
1126 */
1127static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1128{
1129 tp->lost += tcp_skb_pcount(skb);
1130}
1131
1132void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1133{
1134 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1135 struct tcp_sock *tp = tcp_sk(sk);
1136
1137 if (sacked & TCPCB_SACKED_ACKED)
1138 return;
1139
1140 tcp_verify_retransmit_hint(tp, skb);
1141 if (sacked & TCPCB_LOST) {
1142 if (sacked & TCPCB_SACKED_RETRANS) {
1143 /* Account for retransmits that are lost again */
1144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1145 tp->retrans_out -= tcp_skb_pcount(skb);
1146 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1147 tcp_skb_pcount(skb));
1148 tcp_notify_skb_loss_event(tp, skb);
1149 }
1150 } else {
1151 tp->lost_out += tcp_skb_pcount(skb);
1152 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1153 tcp_notify_skb_loss_event(tp, skb);
1154 }
1155}
1156
1157/* Updates the delivered and delivered_ce counts */
1158static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1159 bool ece_ack)
1160{
1161 tp->delivered += delivered;
1162 if (ece_ack)
1163 tp->delivered_ce += delivered;
1164}
1165
1166/* This procedure tags the retransmission queue when SACKs arrive.
1167 *
1168 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1169 * Packets in queue with these bits set are counted in variables
1170 * sacked_out, retrans_out and lost_out, correspondingly.
1171 *
1172 * Valid combinations are:
1173 * Tag InFlight Description
1174 * 0 1 - orig segment is in flight.
1175 * S 0 - nothing flies, orig reached receiver.
1176 * L 0 - nothing flies, orig lost by net.
1177 * R 2 - both orig and retransmit are in flight.
1178 * L|R 1 - orig is lost, retransmit is in flight.
1179 * S|R 1 - orig reached receiver, retrans is still in flight.
1180 * (L|S|R is logically valid, it could occur when L|R is sacked,
1181 * but it is equivalent to plain S and code short-circuits it to S.
1182 * L|S is logically invalid, it would mean -1 packet in flight 8))
1183 *
1184 * These 6 states form finite state machine, controlled by the following events:
1185 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1186 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1187 * 3. Loss detection event of two flavors:
1188 * A. Scoreboard estimator decided the packet is lost.
1189 * A'. Reno "three dupacks" marks head of queue lost.
1190 * B. SACK arrives sacking SND.NXT at the moment, when the
1191 * segment was retransmitted.
1192 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1193 *
1194 * It is pleasant to note, that state diagram turns out to be commutative,
1195 * so that we are allowed not to be bothered by order of our actions,
1196 * when multiple events arrive simultaneously. (see the function below).
1197 *
1198 * Reordering detection.
1199 * --------------------
1200 * Reordering metric is maximal distance, which a packet can be displaced
1201 * in packet stream. With SACKs we can estimate it:
1202 *
1203 * 1. SACK fills old hole and the corresponding segment was not
1204 * ever retransmitted -> reordering. Alas, we cannot use it
1205 * when segment was retransmitted.
1206 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1207 * for retransmitted and already SACKed segment -> reordering..
1208 * Both of these heuristics are not used in Loss state, when we cannot
1209 * account for retransmits accurately.
1210 *
1211 * SACK block validation.
1212 * ----------------------
1213 *
1214 * SACK block range validation checks that the received SACK block fits to
1215 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1216 * Note that SND.UNA is not included to the range though being valid because
1217 * it means that the receiver is rather inconsistent with itself reporting
1218 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1219 * perfectly valid, however, in light of RFC2018 which explicitly states
1220 * that "SACK block MUST reflect the newest segment. Even if the newest
1221 * segment is going to be discarded ...", not that it looks very clever
1222 * in case of head skb. Due to potentional receiver driven attacks, we
1223 * choose to avoid immediate execution of a walk in write queue due to
1224 * reneging and defer head skb's loss recovery to standard loss recovery
1225 * procedure that will eventually trigger (nothing forbids us doing this).
1226 *
1227 * Implements also blockage to start_seq wrap-around. Problem lies in the
1228 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1229 * there's no guarantee that it will be before snd_nxt (n). The problem
1230 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1231 * wrap (s_w):
1232 *
1233 * <- outs wnd -> <- wrapzone ->
1234 * u e n u_w e_w s n_w
1235 * | | | | | | |
1236 * |<------------+------+----- TCP seqno space --------------+---------->|
1237 * ...-- <2^31 ->| |<--------...
1238 * ...---- >2^31 ------>| |<--------...
1239 *
1240 * Current code wouldn't be vulnerable but it's better still to discard such
1241 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1242 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1243 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1244 * equal to the ideal case (infinite seqno space without wrap caused issues).
1245 *
1246 * With D-SACK the lower bound is extended to cover sequence space below
1247 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1248 * again, D-SACK block must not to go across snd_una (for the same reason as
1249 * for the normal SACK blocks, explained above). But there all simplicity
1250 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1251 * fully below undo_marker they do not affect behavior in anyway and can
1252 * therefore be safely ignored. In rare cases (which are more or less
1253 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1254 * fragmentation and packet reordering past skb's retransmission. To consider
1255 * them correctly, the acceptable range must be extended even more though
1256 * the exact amount is rather hard to quantify. However, tp->max_window can
1257 * be used as an exaggerated estimate.
1258 */
1259static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1260 u32 start_seq, u32 end_seq)
1261{
1262 /* Too far in future, or reversed (interpretation is ambiguous) */
1263 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1264 return false;
1265
1266 /* Nasty start_seq wrap-around check (see comments above) */
1267 if (!before(start_seq, tp->snd_nxt))
1268 return false;
1269
1270 /* In outstanding window? ...This is valid exit for D-SACKs too.
1271 * start_seq == snd_una is non-sensical (see comments above)
1272 */
1273 if (after(start_seq, tp->snd_una))
1274 return true;
1275
1276 if (!is_dsack || !tp->undo_marker)
1277 return false;
1278
1279 /* ...Then it's D-SACK, and must reside below snd_una completely */
1280 if (after(end_seq, tp->snd_una))
1281 return false;
1282
1283 if (!before(start_seq, tp->undo_marker))
1284 return true;
1285
1286 /* Too old */
1287 if (!after(end_seq, tp->undo_marker))
1288 return false;
1289
1290 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1291 * start_seq < undo_marker and end_seq >= undo_marker.
1292 */
1293 return !before(start_seq, end_seq - tp->max_window);
1294}
1295
1296static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1297 struct tcp_sack_block_wire *sp, int num_sacks,
1298 u32 prior_snd_una, struct tcp_sacktag_state *state)
1299{
1300 struct tcp_sock *tp = tcp_sk(sk);
1301 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1302 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1303 u32 dup_segs;
1304
1305 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1307 } else if (num_sacks > 1) {
1308 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1309 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1310
1311 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1312 return false;
1313 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1314 } else {
1315 return false;
1316 }
1317
1318 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1319 if (!dup_segs) { /* Skip dubious DSACK */
1320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1321 return false;
1322 }
1323
1324 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1325
1326 /* D-SACK for already forgotten data... Do dumb counting. */
1327 if (tp->undo_marker && tp->undo_retrans > 0 &&
1328 !after(end_seq_0, prior_snd_una) &&
1329 after(end_seq_0, tp->undo_marker))
1330 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1331
1332 return true;
1333}
1334
1335/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1336 * the incoming SACK may not exactly match but we can find smaller MSS
1337 * aligned portion of it that matches. Therefore we might need to fragment
1338 * which may fail and creates some hassle (caller must handle error case
1339 * returns).
1340 *
1341 * FIXME: this could be merged to shift decision code
1342 */
1343static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1344 u32 start_seq, u32 end_seq)
1345{
1346 int err;
1347 bool in_sack;
1348 unsigned int pkt_len;
1349 unsigned int mss;
1350
1351 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1352 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1353
1354 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1355 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1356 mss = tcp_skb_mss(skb);
1357 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358
1359 if (!in_sack) {
1360 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1361 if (pkt_len < mss)
1362 pkt_len = mss;
1363 } else {
1364 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1365 if (pkt_len < mss)
1366 return -EINVAL;
1367 }
1368
1369 /* Round if necessary so that SACKs cover only full MSSes
1370 * and/or the remaining small portion (if present)
1371 */
1372 if (pkt_len > mss) {
1373 unsigned int new_len = (pkt_len / mss) * mss;
1374 if (!in_sack && new_len < pkt_len)
1375 new_len += mss;
1376 pkt_len = new_len;
1377 }
1378
1379 if (pkt_len >= skb->len && !in_sack)
1380 return 0;
1381
1382 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1383 pkt_len, mss, GFP_ATOMIC);
1384 if (err < 0)
1385 return err;
1386 }
1387
1388 return in_sack;
1389}
1390
1391/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1392static u8 tcp_sacktag_one(struct sock *sk,
1393 struct tcp_sacktag_state *state, u8 sacked,
1394 u32 start_seq, u32 end_seq,
1395 int dup_sack, int pcount,
1396 u64 xmit_time)
1397{
1398 struct tcp_sock *tp = tcp_sk(sk);
1399
1400 /* Account D-SACK for retransmitted packet. */
1401 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1402 if (tp->undo_marker && tp->undo_retrans > 0 &&
1403 after(end_seq, tp->undo_marker))
1404 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1405 if ((sacked & TCPCB_SACKED_ACKED) &&
1406 before(start_seq, state->reord))
1407 state->reord = start_seq;
1408 }
1409
1410 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1411 if (!after(end_seq, tp->snd_una))
1412 return sacked;
1413
1414 if (!(sacked & TCPCB_SACKED_ACKED)) {
1415 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1416
1417 if (sacked & TCPCB_SACKED_RETRANS) {
1418 /* If the segment is not tagged as lost,
1419 * we do not clear RETRANS, believing
1420 * that retransmission is still in flight.
1421 */
1422 if (sacked & TCPCB_LOST) {
1423 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1424 tp->lost_out -= pcount;
1425 tp->retrans_out -= pcount;
1426 }
1427 } else {
1428 if (!(sacked & TCPCB_RETRANS)) {
1429 /* New sack for not retransmitted frame,
1430 * which was in hole. It is reordering.
1431 */
1432 if (before(start_seq,
1433 tcp_highest_sack_seq(tp)) &&
1434 before(start_seq, state->reord))
1435 state->reord = start_seq;
1436
1437 if (!after(end_seq, tp->high_seq))
1438 state->flag |= FLAG_ORIG_SACK_ACKED;
1439 if (state->first_sackt == 0)
1440 state->first_sackt = xmit_time;
1441 state->last_sackt = xmit_time;
1442 }
1443
1444 if (sacked & TCPCB_LOST) {
1445 sacked &= ~TCPCB_LOST;
1446 tp->lost_out -= pcount;
1447 }
1448 }
1449
1450 sacked |= TCPCB_SACKED_ACKED;
1451 state->flag |= FLAG_DATA_SACKED;
1452 tp->sacked_out += pcount;
1453 /* Out-of-order packets delivered */
1454 state->sack_delivered += pcount;
1455
1456 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1457 if (tp->lost_skb_hint &&
1458 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1459 tp->lost_cnt_hint += pcount;
1460 }
1461
1462 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1463 * frames and clear it. undo_retrans is decreased above, L|R frames
1464 * are accounted above as well.
1465 */
1466 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1467 sacked &= ~TCPCB_SACKED_RETRANS;
1468 tp->retrans_out -= pcount;
1469 }
1470
1471 return sacked;
1472}
1473
1474/* Shift newly-SACKed bytes from this skb to the immediately previous
1475 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1476 */
1477static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1478 struct sk_buff *skb,
1479 struct tcp_sacktag_state *state,
1480 unsigned int pcount, int shifted, int mss,
1481 bool dup_sack)
1482{
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1485 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1486
1487 BUG_ON(!pcount);
1488
1489 /* Adjust counters and hints for the newly sacked sequence
1490 * range but discard the return value since prev is already
1491 * marked. We must tag the range first because the seq
1492 * advancement below implicitly advances
1493 * tcp_highest_sack_seq() when skb is highest_sack.
1494 */
1495 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1496 start_seq, end_seq, dup_sack, pcount,
1497 tcp_skb_timestamp_us(skb));
1498 tcp_rate_skb_delivered(sk, skb, state->rate);
1499
1500 if (skb == tp->lost_skb_hint)
1501 tp->lost_cnt_hint += pcount;
1502
1503 TCP_SKB_CB(prev)->end_seq += shifted;
1504 TCP_SKB_CB(skb)->seq += shifted;
1505
1506 tcp_skb_pcount_add(prev, pcount);
1507 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1508 tcp_skb_pcount_add(skb, -pcount);
1509
1510 /* When we're adding to gso_segs == 1, gso_size will be zero,
1511 * in theory this shouldn't be necessary but as long as DSACK
1512 * code can come after this skb later on it's better to keep
1513 * setting gso_size to something.
1514 */
1515 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1516 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1517
1518 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1519 if (tcp_skb_pcount(skb) <= 1)
1520 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1521
1522 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1523 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1524
1525 if (skb->len > 0) {
1526 BUG_ON(!tcp_skb_pcount(skb));
1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1528 return false;
1529 }
1530
1531 /* Whole SKB was eaten :-) */
1532
1533 if (skb == tp->retransmit_skb_hint)
1534 tp->retransmit_skb_hint = prev;
1535 if (skb == tp->lost_skb_hint) {
1536 tp->lost_skb_hint = prev;
1537 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1538 }
1539
1540 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1541 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1542 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1543 TCP_SKB_CB(prev)->end_seq++;
1544
1545 if (skb == tcp_highest_sack(sk))
1546 tcp_advance_highest_sack(sk, skb);
1547
1548 tcp_skb_collapse_tstamp(prev, skb);
1549 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1550 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1551
1552 tcp_rtx_queue_unlink_and_free(skb, sk);
1553
1554 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1555
1556 return true;
1557}
1558
1559/* I wish gso_size would have a bit more sane initialization than
1560 * something-or-zero which complicates things
1561 */
1562static int tcp_skb_seglen(const struct sk_buff *skb)
1563{
1564 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1565}
1566
1567/* Shifting pages past head area doesn't work */
1568static int skb_can_shift(const struct sk_buff *skb)
1569{
1570 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1571}
1572
1573int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1574 int pcount, int shiftlen)
1575{
1576 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1577 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1578 * to make sure not storing more than 65535 * 8 bytes per skb,
1579 * even if current MSS is bigger.
1580 */
1581 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1582 return 0;
1583 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1584 return 0;
1585 return skb_shift(to, from, shiftlen);
1586}
1587
1588/* Try collapsing SACK blocks spanning across multiple skbs to a single
1589 * skb.
1590 */
1591static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1592 struct tcp_sacktag_state *state,
1593 u32 start_seq, u32 end_seq,
1594 bool dup_sack)
1595{
1596 struct tcp_sock *tp = tcp_sk(sk);
1597 struct sk_buff *prev;
1598 int mss;
1599 int pcount = 0;
1600 int len;
1601 int in_sack;
1602
1603 /* Normally R but no L won't result in plain S */
1604 if (!dup_sack &&
1605 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1606 goto fallback;
1607 if (!skb_can_shift(skb))
1608 goto fallback;
1609 /* This frame is about to be dropped (was ACKed). */
1610 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1611 goto fallback;
1612
1613 /* Can only happen with delayed DSACK + discard craziness */
1614 prev = skb_rb_prev(skb);
1615 if (!prev)
1616 goto fallback;
1617
1618 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1619 goto fallback;
1620
1621 if (!tcp_skb_can_collapse(prev, skb))
1622 goto fallback;
1623
1624 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1625 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1626
1627 if (in_sack) {
1628 len = skb->len;
1629 pcount = tcp_skb_pcount(skb);
1630 mss = tcp_skb_seglen(skb);
1631
1632 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1633 * drop this restriction as unnecessary
1634 */
1635 if (mss != tcp_skb_seglen(prev))
1636 goto fallback;
1637 } else {
1638 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1639 goto noop;
1640 /* CHECKME: This is non-MSS split case only?, this will
1641 * cause skipped skbs due to advancing loop btw, original
1642 * has that feature too
1643 */
1644 if (tcp_skb_pcount(skb) <= 1)
1645 goto noop;
1646
1647 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1648 if (!in_sack) {
1649 /* TODO: head merge to next could be attempted here
1650 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1651 * though it might not be worth of the additional hassle
1652 *
1653 * ...we can probably just fallback to what was done
1654 * previously. We could try merging non-SACKed ones
1655 * as well but it probably isn't going to buy off
1656 * because later SACKs might again split them, and
1657 * it would make skb timestamp tracking considerably
1658 * harder problem.
1659 */
1660 goto fallback;
1661 }
1662
1663 len = end_seq - TCP_SKB_CB(skb)->seq;
1664 BUG_ON(len < 0);
1665 BUG_ON(len > skb->len);
1666
1667 /* MSS boundaries should be honoured or else pcount will
1668 * severely break even though it makes things bit trickier.
1669 * Optimize common case to avoid most of the divides
1670 */
1671 mss = tcp_skb_mss(skb);
1672
1673 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1674 * drop this restriction as unnecessary
1675 */
1676 if (mss != tcp_skb_seglen(prev))
1677 goto fallback;
1678
1679 if (len == mss) {
1680 pcount = 1;
1681 } else if (len < mss) {
1682 goto noop;
1683 } else {
1684 pcount = len / mss;
1685 len = pcount * mss;
1686 }
1687 }
1688
1689 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1690 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1691 goto fallback;
1692
1693 if (!tcp_skb_shift(prev, skb, pcount, len))
1694 goto fallback;
1695 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1696 goto out;
1697
1698 /* Hole filled allows collapsing with the next as well, this is very
1699 * useful when hole on every nth skb pattern happens
1700 */
1701 skb = skb_rb_next(prev);
1702 if (!skb)
1703 goto out;
1704
1705 if (!skb_can_shift(skb) ||
1706 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1707 (mss != tcp_skb_seglen(skb)))
1708 goto out;
1709
1710 if (!tcp_skb_can_collapse(prev, skb))
1711 goto out;
1712 len = skb->len;
1713 pcount = tcp_skb_pcount(skb);
1714 if (tcp_skb_shift(prev, skb, pcount, len))
1715 tcp_shifted_skb(sk, prev, skb, state, pcount,
1716 len, mss, 0);
1717
1718out:
1719 return prev;
1720
1721noop:
1722 return skb;
1723
1724fallback:
1725 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1726 return NULL;
1727}
1728
1729static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1730 struct tcp_sack_block *next_dup,
1731 struct tcp_sacktag_state *state,
1732 u32 start_seq, u32 end_seq,
1733 bool dup_sack_in)
1734{
1735 struct tcp_sock *tp = tcp_sk(sk);
1736 struct sk_buff *tmp;
1737
1738 skb_rbtree_walk_from(skb) {
1739 int in_sack = 0;
1740 bool dup_sack = dup_sack_in;
1741
1742 /* queue is in-order => we can short-circuit the walk early */
1743 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1744 break;
1745
1746 if (next_dup &&
1747 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1748 in_sack = tcp_match_skb_to_sack(sk, skb,
1749 next_dup->start_seq,
1750 next_dup->end_seq);
1751 if (in_sack > 0)
1752 dup_sack = true;
1753 }
1754
1755 /* skb reference here is a bit tricky to get right, since
1756 * shifting can eat and free both this skb and the next,
1757 * so not even _safe variant of the loop is enough.
1758 */
1759 if (in_sack <= 0) {
1760 tmp = tcp_shift_skb_data(sk, skb, state,
1761 start_seq, end_seq, dup_sack);
1762 if (tmp) {
1763 if (tmp != skb) {
1764 skb = tmp;
1765 continue;
1766 }
1767
1768 in_sack = 0;
1769 } else {
1770 in_sack = tcp_match_skb_to_sack(sk, skb,
1771 start_seq,
1772 end_seq);
1773 }
1774 }
1775
1776 if (unlikely(in_sack < 0))
1777 break;
1778
1779 if (in_sack) {
1780 TCP_SKB_CB(skb)->sacked =
1781 tcp_sacktag_one(sk,
1782 state,
1783 TCP_SKB_CB(skb)->sacked,
1784 TCP_SKB_CB(skb)->seq,
1785 TCP_SKB_CB(skb)->end_seq,
1786 dup_sack,
1787 tcp_skb_pcount(skb),
1788 tcp_skb_timestamp_us(skb));
1789 tcp_rate_skb_delivered(sk, skb, state->rate);
1790 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1791 list_del_init(&skb->tcp_tsorted_anchor);
1792
1793 if (!before(TCP_SKB_CB(skb)->seq,
1794 tcp_highest_sack_seq(tp)))
1795 tcp_advance_highest_sack(sk, skb);
1796 }
1797 }
1798 return skb;
1799}
1800
1801static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1802{
1803 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1804 struct sk_buff *skb;
1805
1806 while (*p) {
1807 parent = *p;
1808 skb = rb_to_skb(parent);
1809 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1810 p = &parent->rb_left;
1811 continue;
1812 }
1813 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1814 p = &parent->rb_right;
1815 continue;
1816 }
1817 return skb;
1818 }
1819 return NULL;
1820}
1821
1822static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1823 u32 skip_to_seq)
1824{
1825 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1826 return skb;
1827
1828 return tcp_sacktag_bsearch(sk, skip_to_seq);
1829}
1830
1831static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1832 struct sock *sk,
1833 struct tcp_sack_block *next_dup,
1834 struct tcp_sacktag_state *state,
1835 u32 skip_to_seq)
1836{
1837 if (!next_dup)
1838 return skb;
1839
1840 if (before(next_dup->start_seq, skip_to_seq)) {
1841 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1842 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1843 next_dup->start_seq, next_dup->end_seq,
1844 1);
1845 }
1846
1847 return skb;
1848}
1849
1850static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1851{
1852 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1853}
1854
1855static int
1856tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1857 u32 prior_snd_una, struct tcp_sacktag_state *state)
1858{
1859 struct tcp_sock *tp = tcp_sk(sk);
1860 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1861 TCP_SKB_CB(ack_skb)->sacked);
1862 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1863 struct tcp_sack_block sp[TCP_NUM_SACKS];
1864 struct tcp_sack_block *cache;
1865 struct sk_buff *skb;
1866 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1867 int used_sacks;
1868 bool found_dup_sack = false;
1869 int i, j;
1870 int first_sack_index;
1871
1872 state->flag = 0;
1873 state->reord = tp->snd_nxt;
1874
1875 if (!tp->sacked_out)
1876 tcp_highest_sack_reset(sk);
1877
1878 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1879 num_sacks, prior_snd_una, state);
1880
1881 /* Eliminate too old ACKs, but take into
1882 * account more or less fresh ones, they can
1883 * contain valid SACK info.
1884 */
1885 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1886 return 0;
1887
1888 if (!tp->packets_out)
1889 goto out;
1890
1891 used_sacks = 0;
1892 first_sack_index = 0;
1893 for (i = 0; i < num_sacks; i++) {
1894 bool dup_sack = !i && found_dup_sack;
1895
1896 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1897 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1898
1899 if (!tcp_is_sackblock_valid(tp, dup_sack,
1900 sp[used_sacks].start_seq,
1901 sp[used_sacks].end_seq)) {
1902 int mib_idx;
1903
1904 if (dup_sack) {
1905 if (!tp->undo_marker)
1906 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1907 else
1908 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1909 } else {
1910 /* Don't count olds caused by ACK reordering */
1911 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1912 !after(sp[used_sacks].end_seq, tp->snd_una))
1913 continue;
1914 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1915 }
1916
1917 NET_INC_STATS(sock_net(sk), mib_idx);
1918 if (i == 0)
1919 first_sack_index = -1;
1920 continue;
1921 }
1922
1923 /* Ignore very old stuff early */
1924 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1925 if (i == 0)
1926 first_sack_index = -1;
1927 continue;
1928 }
1929
1930 used_sacks++;
1931 }
1932
1933 /* order SACK blocks to allow in order walk of the retrans queue */
1934 for (i = used_sacks - 1; i > 0; i--) {
1935 for (j = 0; j < i; j++) {
1936 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1937 swap(sp[j], sp[j + 1]);
1938
1939 /* Track where the first SACK block goes to */
1940 if (j == first_sack_index)
1941 first_sack_index = j + 1;
1942 }
1943 }
1944 }
1945
1946 state->mss_now = tcp_current_mss(sk);
1947 skb = NULL;
1948 i = 0;
1949
1950 if (!tp->sacked_out) {
1951 /* It's already past, so skip checking against it */
1952 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1953 } else {
1954 cache = tp->recv_sack_cache;
1955 /* Skip empty blocks in at head of the cache */
1956 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1957 !cache->end_seq)
1958 cache++;
1959 }
1960
1961 while (i < used_sacks) {
1962 u32 start_seq = sp[i].start_seq;
1963 u32 end_seq = sp[i].end_seq;
1964 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1965 struct tcp_sack_block *next_dup = NULL;
1966
1967 if (found_dup_sack && ((i + 1) == first_sack_index))
1968 next_dup = &sp[i + 1];
1969
1970 /* Skip too early cached blocks */
1971 while (tcp_sack_cache_ok(tp, cache) &&
1972 !before(start_seq, cache->end_seq))
1973 cache++;
1974
1975 /* Can skip some work by looking recv_sack_cache? */
1976 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1977 after(end_seq, cache->start_seq)) {
1978
1979 /* Head todo? */
1980 if (before(start_seq, cache->start_seq)) {
1981 skb = tcp_sacktag_skip(skb, sk, start_seq);
1982 skb = tcp_sacktag_walk(skb, sk, next_dup,
1983 state,
1984 start_seq,
1985 cache->start_seq,
1986 dup_sack);
1987 }
1988
1989 /* Rest of the block already fully processed? */
1990 if (!after(end_seq, cache->end_seq))
1991 goto advance_sp;
1992
1993 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1994 state,
1995 cache->end_seq);
1996
1997 /* ...tail remains todo... */
1998 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1999 /* ...but better entrypoint exists! */
2000 skb = tcp_highest_sack(sk);
2001 if (!skb)
2002 break;
2003 cache++;
2004 goto walk;
2005 }
2006
2007 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2008 /* Check overlap against next cached too (past this one already) */
2009 cache++;
2010 continue;
2011 }
2012
2013 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2014 skb = tcp_highest_sack(sk);
2015 if (!skb)
2016 break;
2017 }
2018 skb = tcp_sacktag_skip(skb, sk, start_seq);
2019
2020walk:
2021 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2022 start_seq, end_seq, dup_sack);
2023
2024advance_sp:
2025 i++;
2026 }
2027
2028 /* Clear the head of the cache sack blocks so we can skip it next time */
2029 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2030 tp->recv_sack_cache[i].start_seq = 0;
2031 tp->recv_sack_cache[i].end_seq = 0;
2032 }
2033 for (j = 0; j < used_sacks; j++)
2034 tp->recv_sack_cache[i++] = sp[j];
2035
2036 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2037 tcp_check_sack_reordering(sk, state->reord, 0);
2038
2039 tcp_verify_left_out(tp);
2040out:
2041
2042#if FASTRETRANS_DEBUG > 0
2043 WARN_ON((int)tp->sacked_out < 0);
2044 WARN_ON((int)tp->lost_out < 0);
2045 WARN_ON((int)tp->retrans_out < 0);
2046 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2047#endif
2048 return state->flag;
2049}
2050
2051/* Limits sacked_out so that sum with lost_out isn't ever larger than
2052 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2053 */
2054static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2055{
2056 u32 holes;
2057
2058 holes = max(tp->lost_out, 1U);
2059 holes = min(holes, tp->packets_out);
2060
2061 if ((tp->sacked_out + holes) > tp->packets_out) {
2062 tp->sacked_out = tp->packets_out - holes;
2063 return true;
2064 }
2065 return false;
2066}
2067
2068/* If we receive more dupacks than we expected counting segments
2069 * in assumption of absent reordering, interpret this as reordering.
2070 * The only another reason could be bug in receiver TCP.
2071 */
2072static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2073{
2074 struct tcp_sock *tp = tcp_sk(sk);
2075
2076 if (!tcp_limit_reno_sacked(tp))
2077 return;
2078
2079 tp->reordering = min_t(u32, tp->packets_out + addend,
2080 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2081 tp->reord_seen++;
2082 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2083}
2084
2085/* Emulate SACKs for SACKless connection: account for a new dupack. */
2086
2087static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2088{
2089 if (num_dupack) {
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 u32 prior_sacked = tp->sacked_out;
2092 s32 delivered;
2093
2094 tp->sacked_out += num_dupack;
2095 tcp_check_reno_reordering(sk, 0);
2096 delivered = tp->sacked_out - prior_sacked;
2097 if (delivered > 0)
2098 tcp_count_delivered(tp, delivered, ece_ack);
2099 tcp_verify_left_out(tp);
2100 }
2101}
2102
2103/* Account for ACK, ACKing some data in Reno Recovery phase. */
2104
2105static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2106{
2107 struct tcp_sock *tp = tcp_sk(sk);
2108
2109 if (acked > 0) {
2110 /* One ACK acked hole. The rest eat duplicate ACKs. */
2111 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2112 ece_ack);
2113 if (acked - 1 >= tp->sacked_out)
2114 tp->sacked_out = 0;
2115 else
2116 tp->sacked_out -= acked - 1;
2117 }
2118 tcp_check_reno_reordering(sk, acked);
2119 tcp_verify_left_out(tp);
2120}
2121
2122static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2123{
2124 tp->sacked_out = 0;
2125}
2126
2127void tcp_clear_retrans(struct tcp_sock *tp)
2128{
2129 tp->retrans_out = 0;
2130 tp->lost_out = 0;
2131 tp->undo_marker = 0;
2132 tp->undo_retrans = -1;
2133 tp->sacked_out = 0;
2134 tp->rto_stamp = 0;
2135 tp->total_rto = 0;
2136 tp->total_rto_recoveries = 0;
2137 tp->total_rto_time = 0;
2138}
2139
2140static inline void tcp_init_undo(struct tcp_sock *tp)
2141{
2142 tp->undo_marker = tp->snd_una;
2143
2144 /* Retransmission still in flight may cause DSACKs later. */
2145 /* First, account for regular retransmits in flight: */
2146 tp->undo_retrans = tp->retrans_out;
2147 /* Next, account for TLP retransmits in flight: */
2148 if (tp->tlp_high_seq && tp->tlp_retrans)
2149 tp->undo_retrans++;
2150 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2151 if (!tp->undo_retrans)
2152 tp->undo_retrans = -1;
2153}
2154
2155static bool tcp_is_rack(const struct sock *sk)
2156{
2157 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2158 TCP_RACK_LOSS_DETECTION;
2159}
2160
2161/* If we detect SACK reneging, forget all SACK information
2162 * and reset tags completely, otherwise preserve SACKs. If receiver
2163 * dropped its ofo queue, we will know this due to reneging detection.
2164 */
2165static void tcp_timeout_mark_lost(struct sock *sk)
2166{
2167 struct tcp_sock *tp = tcp_sk(sk);
2168 struct sk_buff *skb, *head;
2169 bool is_reneg; /* is receiver reneging on SACKs? */
2170
2171 head = tcp_rtx_queue_head(sk);
2172 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2173 if (is_reneg) {
2174 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2175 tp->sacked_out = 0;
2176 /* Mark SACK reneging until we recover from this loss event. */
2177 tp->is_sack_reneg = 1;
2178 } else if (tcp_is_reno(tp)) {
2179 tcp_reset_reno_sack(tp);
2180 }
2181
2182 skb = head;
2183 skb_rbtree_walk_from(skb) {
2184 if (is_reneg)
2185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2186 else if (tcp_is_rack(sk) && skb != head &&
2187 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2188 continue; /* Don't mark recently sent ones lost yet */
2189 tcp_mark_skb_lost(sk, skb);
2190 }
2191 tcp_verify_left_out(tp);
2192 tcp_clear_all_retrans_hints(tp);
2193}
2194
2195/* Enter Loss state. */
2196void tcp_enter_loss(struct sock *sk)
2197{
2198 const struct inet_connection_sock *icsk = inet_csk(sk);
2199 struct tcp_sock *tp = tcp_sk(sk);
2200 struct net *net = sock_net(sk);
2201 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2202 u8 reordering;
2203
2204 tcp_timeout_mark_lost(sk);
2205
2206 /* Reduce ssthresh if it has not yet been made inside this window. */
2207 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2208 !after(tp->high_seq, tp->snd_una) ||
2209 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2210 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2211 tp->prior_cwnd = tcp_snd_cwnd(tp);
2212 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2213 tcp_ca_event(sk, CA_EVENT_LOSS);
2214 tcp_init_undo(tp);
2215 }
2216 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2217 tp->snd_cwnd_cnt = 0;
2218 tp->snd_cwnd_stamp = tcp_jiffies32;
2219
2220 /* Timeout in disordered state after receiving substantial DUPACKs
2221 * suggests that the degree of reordering is over-estimated.
2222 */
2223 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2224 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2225 tp->sacked_out >= reordering)
2226 tp->reordering = min_t(unsigned int, tp->reordering,
2227 reordering);
2228
2229 tcp_set_ca_state(sk, TCP_CA_Loss);
2230 tp->high_seq = tp->snd_nxt;
2231 tp->tlp_high_seq = 0;
2232 tcp_ecn_queue_cwr(tp);
2233
2234 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2235 * loss recovery is underway except recurring timeout(s) on
2236 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2237 */
2238 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2239 (new_recovery || icsk->icsk_retransmits) &&
2240 !inet_csk(sk)->icsk_mtup.probe_size;
2241}
2242
2243/* If ACK arrived pointing to a remembered SACK, it means that our
2244 * remembered SACKs do not reflect real state of receiver i.e.
2245 * receiver _host_ is heavily congested (or buggy).
2246 *
2247 * To avoid big spurious retransmission bursts due to transient SACK
2248 * scoreboard oddities that look like reneging, we give the receiver a
2249 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2250 * restore sanity to the SACK scoreboard. If the apparent reneging
2251 * persists until this RTO then we'll clear the SACK scoreboard.
2252 */
2253static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2254{
2255 if (*ack_flag & FLAG_SACK_RENEGING &&
2256 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2257 struct tcp_sock *tp = tcp_sk(sk);
2258 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2259 msecs_to_jiffies(10));
2260
2261 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2262 delay, TCP_RTO_MAX);
2263 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2264 return true;
2265 }
2266 return false;
2267}
2268
2269/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2270 * counter when SACK is enabled (without SACK, sacked_out is used for
2271 * that purpose).
2272 *
2273 * With reordering, holes may still be in flight, so RFC3517 recovery
2274 * uses pure sacked_out (total number of SACKed segments) even though
2275 * it violates the RFC that uses duplicate ACKs, often these are equal
2276 * but when e.g. out-of-window ACKs or packet duplication occurs,
2277 * they differ. Since neither occurs due to loss, TCP should really
2278 * ignore them.
2279 */
2280static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2281{
2282 return tp->sacked_out + 1;
2283}
2284
2285/* Linux NewReno/SACK/ECN state machine.
2286 * --------------------------------------
2287 *
2288 * "Open" Normal state, no dubious events, fast path.
2289 * "Disorder" In all the respects it is "Open",
2290 * but requires a bit more attention. It is entered when
2291 * we see some SACKs or dupacks. It is split of "Open"
2292 * mainly to move some processing from fast path to slow one.
2293 * "CWR" CWND was reduced due to some Congestion Notification event.
2294 * It can be ECN, ICMP source quench, local device congestion.
2295 * "Recovery" CWND was reduced, we are fast-retransmitting.
2296 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2297 *
2298 * tcp_fastretrans_alert() is entered:
2299 * - each incoming ACK, if state is not "Open"
2300 * - when arrived ACK is unusual, namely:
2301 * * SACK
2302 * * Duplicate ACK.
2303 * * ECN ECE.
2304 *
2305 * Counting packets in flight is pretty simple.
2306 *
2307 * in_flight = packets_out - left_out + retrans_out
2308 *
2309 * packets_out is SND.NXT-SND.UNA counted in packets.
2310 *
2311 * retrans_out is number of retransmitted segments.
2312 *
2313 * left_out is number of segments left network, but not ACKed yet.
2314 *
2315 * left_out = sacked_out + lost_out
2316 *
2317 * sacked_out: Packets, which arrived to receiver out of order
2318 * and hence not ACKed. With SACKs this number is simply
2319 * amount of SACKed data. Even without SACKs
2320 * it is easy to give pretty reliable estimate of this number,
2321 * counting duplicate ACKs.
2322 *
2323 * lost_out: Packets lost by network. TCP has no explicit
2324 * "loss notification" feedback from network (for now).
2325 * It means that this number can be only _guessed_.
2326 * Actually, it is the heuristics to predict lossage that
2327 * distinguishes different algorithms.
2328 *
2329 * F.e. after RTO, when all the queue is considered as lost,
2330 * lost_out = packets_out and in_flight = retrans_out.
2331 *
2332 * Essentially, we have now a few algorithms detecting
2333 * lost packets.
2334 *
2335 * If the receiver supports SACK:
2336 *
2337 * RFC6675/3517: It is the conventional algorithm. A packet is
2338 * considered lost if the number of higher sequence packets
2339 * SACKed is greater than or equal the DUPACK thoreshold
2340 * (reordering). This is implemented in tcp_mark_head_lost and
2341 * tcp_update_scoreboard.
2342 *
2343 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2344 * (2017-) that checks timing instead of counting DUPACKs.
2345 * Essentially a packet is considered lost if it's not S/ACKed
2346 * after RTT + reordering_window, where both metrics are
2347 * dynamically measured and adjusted. This is implemented in
2348 * tcp_rack_mark_lost.
2349 *
2350 * If the receiver does not support SACK:
2351 *
2352 * NewReno (RFC6582): in Recovery we assume that one segment
2353 * is lost (classic Reno). While we are in Recovery and
2354 * a partial ACK arrives, we assume that one more packet
2355 * is lost (NewReno). This heuristics are the same in NewReno
2356 * and SACK.
2357 *
2358 * Really tricky (and requiring careful tuning) part of algorithm
2359 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2360 * The first determines the moment _when_ we should reduce CWND and,
2361 * hence, slow down forward transmission. In fact, it determines the moment
2362 * when we decide that hole is caused by loss, rather than by a reorder.
2363 *
2364 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2365 * holes, caused by lost packets.
2366 *
2367 * And the most logically complicated part of algorithm is undo
2368 * heuristics. We detect false retransmits due to both too early
2369 * fast retransmit (reordering) and underestimated RTO, analyzing
2370 * timestamps and D-SACKs. When we detect that some segments were
2371 * retransmitted by mistake and CWND reduction was wrong, we undo
2372 * window reduction and abort recovery phase. This logic is hidden
2373 * inside several functions named tcp_try_undo_<something>.
2374 */
2375
2376/* This function decides, when we should leave Disordered state
2377 * and enter Recovery phase, reducing congestion window.
2378 *
2379 * Main question: may we further continue forward transmission
2380 * with the same cwnd?
2381 */
2382static bool tcp_time_to_recover(struct sock *sk, int flag)
2383{
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 /* Trick#1: The loss is proven. */
2387 if (tp->lost_out)
2388 return true;
2389
2390 /* Not-A-Trick#2 : Classic rule... */
2391 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2392 return true;
2393
2394 return false;
2395}
2396
2397/* Detect loss in event "A" above by marking head of queue up as lost.
2398 * For RFC3517 SACK, a segment is considered lost if it
2399 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2400 * the maximum SACKed segments to pass before reaching this limit.
2401 */
2402static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2403{
2404 struct tcp_sock *tp = tcp_sk(sk);
2405 struct sk_buff *skb;
2406 int cnt;
2407 /* Use SACK to deduce losses of new sequences sent during recovery */
2408 const u32 loss_high = tp->snd_nxt;
2409
2410 WARN_ON(packets > tp->packets_out);
2411 skb = tp->lost_skb_hint;
2412 if (skb) {
2413 /* Head already handled? */
2414 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2415 return;
2416 cnt = tp->lost_cnt_hint;
2417 } else {
2418 skb = tcp_rtx_queue_head(sk);
2419 cnt = 0;
2420 }
2421
2422 skb_rbtree_walk_from(skb) {
2423 /* TODO: do this better */
2424 /* this is not the most efficient way to do this... */
2425 tp->lost_skb_hint = skb;
2426 tp->lost_cnt_hint = cnt;
2427
2428 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2429 break;
2430
2431 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2432 cnt += tcp_skb_pcount(skb);
2433
2434 if (cnt > packets)
2435 break;
2436
2437 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2438 tcp_mark_skb_lost(sk, skb);
2439
2440 if (mark_head)
2441 break;
2442 }
2443 tcp_verify_left_out(tp);
2444}
2445
2446/* Account newly detected lost packet(s) */
2447
2448static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2449{
2450 struct tcp_sock *tp = tcp_sk(sk);
2451
2452 if (tcp_is_sack(tp)) {
2453 int sacked_upto = tp->sacked_out - tp->reordering;
2454 if (sacked_upto >= 0)
2455 tcp_mark_head_lost(sk, sacked_upto, 0);
2456 else if (fast_rexmit)
2457 tcp_mark_head_lost(sk, 1, 1);
2458 }
2459}
2460
2461static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2462{
2463 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2464 before(tp->rx_opt.rcv_tsecr, when);
2465}
2466
2467/* skb is spurious retransmitted if the returned timestamp echo
2468 * reply is prior to the skb transmission time
2469 */
2470static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2471 const struct sk_buff *skb)
2472{
2473 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2474 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2475}
2476
2477/* Nothing was retransmitted or returned timestamp is less
2478 * than timestamp of the first retransmission.
2479 */
2480static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2481{
2482 const struct sock *sk = (const struct sock *)tp;
2483
2484 if (tp->retrans_stamp &&
2485 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2486 return true; /* got echoed TS before first retransmission */
2487
2488 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2489 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2490 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2491 * retrans_stamp even if we had retransmitted the SYN.
2492 */
2493 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2494 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2495 return true; /* nothing was retransmitted */
2496
2497 return false;
2498}
2499
2500/* Undo procedures. */
2501
2502/* We can clear retrans_stamp when there are no retransmissions in the
2503 * window. It would seem that it is trivially available for us in
2504 * tp->retrans_out, however, that kind of assumptions doesn't consider
2505 * what will happen if errors occur when sending retransmission for the
2506 * second time. ...It could the that such segment has only
2507 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2508 * the head skb is enough except for some reneging corner cases that
2509 * are not worth the effort.
2510 *
2511 * Main reason for all this complexity is the fact that connection dying
2512 * time now depends on the validity of the retrans_stamp, in particular,
2513 * that successive retransmissions of a segment must not advance
2514 * retrans_stamp under any conditions.
2515 */
2516static bool tcp_any_retrans_done(const struct sock *sk)
2517{
2518 const struct tcp_sock *tp = tcp_sk(sk);
2519 struct sk_buff *skb;
2520
2521 if (tp->retrans_out)
2522 return true;
2523
2524 skb = tcp_rtx_queue_head(sk);
2525 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2526 return true;
2527
2528 return false;
2529}
2530
2531/* If loss recovery is finished and there are no retransmits out in the
2532 * network, then we clear retrans_stamp so that upon the next loss recovery
2533 * retransmits_timed_out() and timestamp-undo are using the correct value.
2534 */
2535static void tcp_retrans_stamp_cleanup(struct sock *sk)
2536{
2537 if (!tcp_any_retrans_done(sk))
2538 tcp_sk(sk)->retrans_stamp = 0;
2539}
2540
2541static void DBGUNDO(struct sock *sk, const char *msg)
2542{
2543#if FASTRETRANS_DEBUG > 1
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 struct inet_sock *inet = inet_sk(sk);
2546
2547 if (sk->sk_family == AF_INET) {
2548 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2549 msg,
2550 &inet->inet_daddr, ntohs(inet->inet_dport),
2551 tcp_snd_cwnd(tp), tcp_left_out(tp),
2552 tp->snd_ssthresh, tp->prior_ssthresh,
2553 tp->packets_out);
2554 }
2555#if IS_ENABLED(CONFIG_IPV6)
2556 else if (sk->sk_family == AF_INET6) {
2557 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2558 msg,
2559 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2560 tcp_snd_cwnd(tp), tcp_left_out(tp),
2561 tp->snd_ssthresh, tp->prior_ssthresh,
2562 tp->packets_out);
2563 }
2564#endif
2565#endif
2566}
2567
2568static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2569{
2570 struct tcp_sock *tp = tcp_sk(sk);
2571
2572 if (unmark_loss) {
2573 struct sk_buff *skb;
2574
2575 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2576 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2577 }
2578 tp->lost_out = 0;
2579 tcp_clear_all_retrans_hints(tp);
2580 }
2581
2582 if (tp->prior_ssthresh) {
2583 const struct inet_connection_sock *icsk = inet_csk(sk);
2584
2585 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2586
2587 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2588 tp->snd_ssthresh = tp->prior_ssthresh;
2589 tcp_ecn_withdraw_cwr(tp);
2590 }
2591 }
2592 tp->snd_cwnd_stamp = tcp_jiffies32;
2593 tp->undo_marker = 0;
2594 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2595}
2596
2597static inline bool tcp_may_undo(const struct tcp_sock *tp)
2598{
2599 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2600}
2601
2602static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2603{
2604 struct tcp_sock *tp = tcp_sk(sk);
2605
2606 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2607 /* Hold old state until something *above* high_seq
2608 * is ACKed. For Reno it is MUST to prevent false
2609 * fast retransmits (RFC2582). SACK TCP is safe. */
2610 if (!tcp_any_retrans_done(sk))
2611 tp->retrans_stamp = 0;
2612 return true;
2613 }
2614 return false;
2615}
2616
2617/* People celebrate: "We love our President!" */
2618static bool tcp_try_undo_recovery(struct sock *sk)
2619{
2620 struct tcp_sock *tp = tcp_sk(sk);
2621
2622 if (tcp_may_undo(tp)) {
2623 int mib_idx;
2624
2625 /* Happy end! We did not retransmit anything
2626 * or our original transmission succeeded.
2627 */
2628 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2629 tcp_undo_cwnd_reduction(sk, false);
2630 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2631 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2632 else
2633 mib_idx = LINUX_MIB_TCPFULLUNDO;
2634
2635 NET_INC_STATS(sock_net(sk), mib_idx);
2636 } else if (tp->rack.reo_wnd_persist) {
2637 tp->rack.reo_wnd_persist--;
2638 }
2639 if (tcp_is_non_sack_preventing_reopen(sk))
2640 return true;
2641 tcp_set_ca_state(sk, TCP_CA_Open);
2642 tp->is_sack_reneg = 0;
2643 return false;
2644}
2645
2646/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2647static bool tcp_try_undo_dsack(struct sock *sk)
2648{
2649 struct tcp_sock *tp = tcp_sk(sk);
2650
2651 if (tp->undo_marker && !tp->undo_retrans) {
2652 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2653 tp->rack.reo_wnd_persist + 1);
2654 DBGUNDO(sk, "D-SACK");
2655 tcp_undo_cwnd_reduction(sk, false);
2656 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2657 return true;
2658 }
2659 return false;
2660}
2661
2662/* Undo during loss recovery after partial ACK or using F-RTO. */
2663static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2664{
2665 struct tcp_sock *tp = tcp_sk(sk);
2666
2667 if (frto_undo || tcp_may_undo(tp)) {
2668 tcp_undo_cwnd_reduction(sk, true);
2669
2670 DBGUNDO(sk, "partial loss");
2671 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2672 if (frto_undo)
2673 NET_INC_STATS(sock_net(sk),
2674 LINUX_MIB_TCPSPURIOUSRTOS);
2675 inet_csk(sk)->icsk_retransmits = 0;
2676 if (tcp_is_non_sack_preventing_reopen(sk))
2677 return true;
2678 if (frto_undo || tcp_is_sack(tp)) {
2679 tcp_set_ca_state(sk, TCP_CA_Open);
2680 tp->is_sack_reneg = 0;
2681 }
2682 return true;
2683 }
2684 return false;
2685}
2686
2687/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2688 * It computes the number of packets to send (sndcnt) based on packets newly
2689 * delivered:
2690 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2691 * cwnd reductions across a full RTT.
2692 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2693 * But when SND_UNA is acked without further losses,
2694 * slow starts cwnd up to ssthresh to speed up the recovery.
2695 */
2696static void tcp_init_cwnd_reduction(struct sock *sk)
2697{
2698 struct tcp_sock *tp = tcp_sk(sk);
2699
2700 tp->high_seq = tp->snd_nxt;
2701 tp->tlp_high_seq = 0;
2702 tp->snd_cwnd_cnt = 0;
2703 tp->prior_cwnd = tcp_snd_cwnd(tp);
2704 tp->prr_delivered = 0;
2705 tp->prr_out = 0;
2706 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2707 tcp_ecn_queue_cwr(tp);
2708}
2709
2710void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2711{
2712 struct tcp_sock *tp = tcp_sk(sk);
2713 int sndcnt = 0;
2714 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2715
2716 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2717 return;
2718
2719 tp->prr_delivered += newly_acked_sacked;
2720 if (delta < 0) {
2721 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2722 tp->prior_cwnd - 1;
2723 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2724 } else {
2725 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2726 newly_acked_sacked);
2727 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2728 sndcnt++;
2729 sndcnt = min(delta, sndcnt);
2730 }
2731 /* Force a fast retransmit upon entering fast recovery */
2732 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2733 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2734}
2735
2736static inline void tcp_end_cwnd_reduction(struct sock *sk)
2737{
2738 struct tcp_sock *tp = tcp_sk(sk);
2739
2740 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2741 return;
2742
2743 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2744 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2745 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2746 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2747 tp->snd_cwnd_stamp = tcp_jiffies32;
2748 }
2749 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2750}
2751
2752/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2753void tcp_enter_cwr(struct sock *sk)
2754{
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 tp->prior_ssthresh = 0;
2758 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2759 tp->undo_marker = 0;
2760 tcp_init_cwnd_reduction(sk);
2761 tcp_set_ca_state(sk, TCP_CA_CWR);
2762 }
2763}
2764EXPORT_SYMBOL(tcp_enter_cwr);
2765
2766static void tcp_try_keep_open(struct sock *sk)
2767{
2768 struct tcp_sock *tp = tcp_sk(sk);
2769 int state = TCP_CA_Open;
2770
2771 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2772 state = TCP_CA_Disorder;
2773
2774 if (inet_csk(sk)->icsk_ca_state != state) {
2775 tcp_set_ca_state(sk, state);
2776 tp->high_seq = tp->snd_nxt;
2777 }
2778}
2779
2780static void tcp_try_to_open(struct sock *sk, int flag)
2781{
2782 struct tcp_sock *tp = tcp_sk(sk);
2783
2784 tcp_verify_left_out(tp);
2785
2786 if (!tcp_any_retrans_done(sk))
2787 tp->retrans_stamp = 0;
2788
2789 if (flag & FLAG_ECE)
2790 tcp_enter_cwr(sk);
2791
2792 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2793 tcp_try_keep_open(sk);
2794 }
2795}
2796
2797static void tcp_mtup_probe_failed(struct sock *sk)
2798{
2799 struct inet_connection_sock *icsk = inet_csk(sk);
2800
2801 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2802 icsk->icsk_mtup.probe_size = 0;
2803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2804}
2805
2806static void tcp_mtup_probe_success(struct sock *sk)
2807{
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 struct inet_connection_sock *icsk = inet_csk(sk);
2810 u64 val;
2811
2812 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2813
2814 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2815 do_div(val, icsk->icsk_mtup.probe_size);
2816 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2817 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2818
2819 tp->snd_cwnd_cnt = 0;
2820 tp->snd_cwnd_stamp = tcp_jiffies32;
2821 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2822
2823 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2824 icsk->icsk_mtup.probe_size = 0;
2825 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2827}
2828
2829/* Sometimes we deduce that packets have been dropped due to reasons other than
2830 * congestion, like path MTU reductions or failed client TFO attempts. In these
2831 * cases we call this function to retransmit as many packets as cwnd allows,
2832 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2833 * non-zero value (and may do so in a later calling context due to TSQ), we
2834 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2835 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2836 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2837 * prematurely).
2838 */
2839static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2840{
2841 const struct inet_connection_sock *icsk = inet_csk(sk);
2842 struct tcp_sock *tp = tcp_sk(sk);
2843
2844 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2845 tp->high_seq = tp->snd_nxt;
2846 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2847 tp->prior_ssthresh = 0;
2848 tp->undo_marker = 0;
2849 tcp_set_ca_state(sk, TCP_CA_Loss);
2850 }
2851 tcp_xmit_retransmit_queue(sk);
2852}
2853
2854/* Do a simple retransmit without using the backoff mechanisms in
2855 * tcp_timer. This is used for path mtu discovery.
2856 * The socket is already locked here.
2857 */
2858void tcp_simple_retransmit(struct sock *sk)
2859{
2860 struct tcp_sock *tp = tcp_sk(sk);
2861 struct sk_buff *skb;
2862 int mss;
2863
2864 /* A fastopen SYN request is stored as two separate packets within
2865 * the retransmit queue, this is done by tcp_send_syn_data().
2866 * As a result simply checking the MSS of the frames in the queue
2867 * will not work for the SYN packet.
2868 *
2869 * Us being here is an indication of a path MTU issue so we can
2870 * assume that the fastopen SYN was lost and just mark all the
2871 * frames in the retransmit queue as lost. We will use an MSS of
2872 * -1 to mark all frames as lost, otherwise compute the current MSS.
2873 */
2874 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2875 mss = -1;
2876 else
2877 mss = tcp_current_mss(sk);
2878
2879 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2880 if (tcp_skb_seglen(skb) > mss)
2881 tcp_mark_skb_lost(sk, skb);
2882 }
2883
2884 tcp_clear_retrans_hints_partial(tp);
2885
2886 if (!tp->lost_out)
2887 return;
2888
2889 if (tcp_is_reno(tp))
2890 tcp_limit_reno_sacked(tp);
2891
2892 tcp_verify_left_out(tp);
2893
2894 /* Don't muck with the congestion window here.
2895 * Reason is that we do not increase amount of _data_
2896 * in network, but units changed and effective
2897 * cwnd/ssthresh really reduced now.
2898 */
2899 tcp_non_congestion_loss_retransmit(sk);
2900}
2901EXPORT_SYMBOL(tcp_simple_retransmit);
2902
2903void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2904{
2905 struct tcp_sock *tp = tcp_sk(sk);
2906 int mib_idx;
2907
2908 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2909 tcp_retrans_stamp_cleanup(sk);
2910
2911 if (tcp_is_reno(tp))
2912 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2913 else
2914 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2915
2916 NET_INC_STATS(sock_net(sk), mib_idx);
2917
2918 tp->prior_ssthresh = 0;
2919 tcp_init_undo(tp);
2920
2921 if (!tcp_in_cwnd_reduction(sk)) {
2922 if (!ece_ack)
2923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924 tcp_init_cwnd_reduction(sk);
2925 }
2926 tcp_set_ca_state(sk, TCP_CA_Recovery);
2927}
2928
2929static void tcp_update_rto_time(struct tcp_sock *tp)
2930{
2931 if (tp->rto_stamp) {
2932 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2933 tp->rto_stamp = 0;
2934 }
2935}
2936
2937/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2938 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2939 */
2940static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2941 int *rexmit)
2942{
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 bool recovered = !before(tp->snd_una, tp->high_seq);
2945
2946 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2947 tcp_try_undo_loss(sk, false))
2948 return;
2949
2950 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2951 /* Step 3.b. A timeout is spurious if not all data are
2952 * lost, i.e., never-retransmitted data are (s)acked.
2953 */
2954 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2955 tcp_try_undo_loss(sk, true))
2956 return;
2957
2958 if (after(tp->snd_nxt, tp->high_seq)) {
2959 if (flag & FLAG_DATA_SACKED || num_dupack)
2960 tp->frto = 0; /* Step 3.a. loss was real */
2961 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2962 tp->high_seq = tp->snd_nxt;
2963 /* Step 2.b. Try send new data (but deferred until cwnd
2964 * is updated in tcp_ack()). Otherwise fall back to
2965 * the conventional recovery.
2966 */
2967 if (!tcp_write_queue_empty(sk) &&
2968 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2969 *rexmit = REXMIT_NEW;
2970 return;
2971 }
2972 tp->frto = 0;
2973 }
2974 }
2975
2976 if (recovered) {
2977 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2978 tcp_try_undo_recovery(sk);
2979 return;
2980 }
2981 if (tcp_is_reno(tp)) {
2982 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2983 * delivered. Lower inflight to clock out (re)transmissions.
2984 */
2985 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2986 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2987 else if (flag & FLAG_SND_UNA_ADVANCED)
2988 tcp_reset_reno_sack(tp);
2989 }
2990 *rexmit = REXMIT_LOST;
2991}
2992
2993static bool tcp_force_fast_retransmit(struct sock *sk)
2994{
2995 struct tcp_sock *tp = tcp_sk(sk);
2996
2997 return after(tcp_highest_sack_seq(tp),
2998 tp->snd_una + tp->reordering * tp->mss_cache);
2999}
3000
3001/* Undo during fast recovery after partial ACK. */
3002static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3003 bool *do_lost)
3004{
3005 struct tcp_sock *tp = tcp_sk(sk);
3006
3007 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3008 /* Plain luck! Hole if filled with delayed
3009 * packet, rather than with a retransmit. Check reordering.
3010 */
3011 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3012
3013 /* We are getting evidence that the reordering degree is higher
3014 * than we realized. If there are no retransmits out then we
3015 * can undo. Otherwise we clock out new packets but do not
3016 * mark more packets lost or retransmit more.
3017 */
3018 if (tp->retrans_out)
3019 return true;
3020
3021 if (!tcp_any_retrans_done(sk))
3022 tp->retrans_stamp = 0;
3023
3024 DBGUNDO(sk, "partial recovery");
3025 tcp_undo_cwnd_reduction(sk, true);
3026 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3027 tcp_try_keep_open(sk);
3028 } else {
3029 /* Partial ACK arrived. Force fast retransmit. */
3030 *do_lost = tcp_force_fast_retransmit(sk);
3031 }
3032 return false;
3033}
3034
3035static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3036{
3037 struct tcp_sock *tp = tcp_sk(sk);
3038
3039 if (tcp_rtx_queue_empty(sk))
3040 return;
3041
3042 if (unlikely(tcp_is_reno(tp))) {
3043 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3044 } else if (tcp_is_rack(sk)) {
3045 u32 prior_retrans = tp->retrans_out;
3046
3047 if (tcp_rack_mark_lost(sk))
3048 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3049 if (prior_retrans > tp->retrans_out)
3050 *ack_flag |= FLAG_LOST_RETRANS;
3051 }
3052}
3053
3054/* Process an event, which can update packets-in-flight not trivially.
3055 * Main goal of this function is to calculate new estimate for left_out,
3056 * taking into account both packets sitting in receiver's buffer and
3057 * packets lost by network.
3058 *
3059 * Besides that it updates the congestion state when packet loss or ECN
3060 * is detected. But it does not reduce the cwnd, it is done by the
3061 * congestion control later.
3062 *
3063 * It does _not_ decide what to send, it is made in function
3064 * tcp_xmit_retransmit_queue().
3065 */
3066static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3067 int num_dupack, int *ack_flag, int *rexmit)
3068{
3069 struct inet_connection_sock *icsk = inet_csk(sk);
3070 struct tcp_sock *tp = tcp_sk(sk);
3071 int fast_rexmit = 0, flag = *ack_flag;
3072 bool ece_ack = flag & FLAG_ECE;
3073 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3074 tcp_force_fast_retransmit(sk));
3075
3076 if (!tp->packets_out && tp->sacked_out)
3077 tp->sacked_out = 0;
3078
3079 /* Now state machine starts.
3080 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3081 if (ece_ack)
3082 tp->prior_ssthresh = 0;
3083
3084 /* B. In all the states check for reneging SACKs. */
3085 if (tcp_check_sack_reneging(sk, ack_flag))
3086 return;
3087
3088 /* C. Check consistency of the current state. */
3089 tcp_verify_left_out(tp);
3090
3091 /* D. Check state exit conditions. State can be terminated
3092 * when high_seq is ACKed. */
3093 if (icsk->icsk_ca_state == TCP_CA_Open) {
3094 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3095 tp->retrans_stamp = 0;
3096 } else if (!before(tp->snd_una, tp->high_seq)) {
3097 switch (icsk->icsk_ca_state) {
3098 case TCP_CA_CWR:
3099 /* CWR is to be held something *above* high_seq
3100 * is ACKed for CWR bit to reach receiver. */
3101 if (tp->snd_una != tp->high_seq) {
3102 tcp_end_cwnd_reduction(sk);
3103 tcp_set_ca_state(sk, TCP_CA_Open);
3104 }
3105 break;
3106
3107 case TCP_CA_Recovery:
3108 if (tcp_is_reno(tp))
3109 tcp_reset_reno_sack(tp);
3110 if (tcp_try_undo_recovery(sk))
3111 return;
3112 tcp_end_cwnd_reduction(sk);
3113 break;
3114 }
3115 }
3116
3117 /* E. Process state. */
3118 switch (icsk->icsk_ca_state) {
3119 case TCP_CA_Recovery:
3120 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3121 if (tcp_is_reno(tp))
3122 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3123 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3124 return;
3125
3126 if (tcp_try_undo_dsack(sk))
3127 tcp_try_to_open(sk, flag);
3128
3129 tcp_identify_packet_loss(sk, ack_flag);
3130 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3131 if (!tcp_time_to_recover(sk, flag))
3132 return;
3133 /* Undo reverts the recovery state. If loss is evident,
3134 * starts a new recovery (e.g. reordering then loss);
3135 */
3136 tcp_enter_recovery(sk, ece_ack);
3137 }
3138 break;
3139 case TCP_CA_Loss:
3140 tcp_process_loss(sk, flag, num_dupack, rexmit);
3141 if (icsk->icsk_ca_state != TCP_CA_Loss)
3142 tcp_update_rto_time(tp);
3143 tcp_identify_packet_loss(sk, ack_flag);
3144 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3145 (*ack_flag & FLAG_LOST_RETRANS)))
3146 return;
3147 /* Change state if cwnd is undone or retransmits are lost */
3148 fallthrough;
3149 default:
3150 if (tcp_is_reno(tp)) {
3151 if (flag & FLAG_SND_UNA_ADVANCED)
3152 tcp_reset_reno_sack(tp);
3153 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3154 }
3155
3156 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3157 tcp_try_undo_dsack(sk);
3158
3159 tcp_identify_packet_loss(sk, ack_flag);
3160 if (!tcp_time_to_recover(sk, flag)) {
3161 tcp_try_to_open(sk, flag);
3162 return;
3163 }
3164
3165 /* MTU probe failure: don't reduce cwnd */
3166 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3167 icsk->icsk_mtup.probe_size &&
3168 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3169 tcp_mtup_probe_failed(sk);
3170 /* Restores the reduction we did in tcp_mtup_probe() */
3171 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3172 tcp_simple_retransmit(sk);
3173 return;
3174 }
3175
3176 /* Otherwise enter Recovery state */
3177 tcp_enter_recovery(sk, ece_ack);
3178 fast_rexmit = 1;
3179 }
3180
3181 if (!tcp_is_rack(sk) && do_lost)
3182 tcp_update_scoreboard(sk, fast_rexmit);
3183 *rexmit = REXMIT_LOST;
3184}
3185
3186static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3187{
3188 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3189 struct tcp_sock *tp = tcp_sk(sk);
3190
3191 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3192 /* If the remote keeps returning delayed ACKs, eventually
3193 * the min filter would pick it up and overestimate the
3194 * prop. delay when it expires. Skip suspected delayed ACKs.
3195 */
3196 return;
3197 }
3198 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3199 rtt_us ? : jiffies_to_usecs(1));
3200}
3201
3202static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3203 long seq_rtt_us, long sack_rtt_us,
3204 long ca_rtt_us, struct rate_sample *rs)
3205{
3206 const struct tcp_sock *tp = tcp_sk(sk);
3207
3208 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3209 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3210 * Karn's algorithm forbids taking RTT if some retransmitted data
3211 * is acked (RFC6298).
3212 */
3213 if (seq_rtt_us < 0)
3214 seq_rtt_us = sack_rtt_us;
3215
3216 /* RTTM Rule: A TSecr value received in a segment is used to
3217 * update the averaged RTT measurement only if the segment
3218 * acknowledges some new data, i.e., only if it advances the
3219 * left edge of the send window.
3220 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3221 */
3222 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3223 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3224 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3225
3226 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3227 if (seq_rtt_us < 0)
3228 return false;
3229
3230 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3231 * always taken together with ACK, SACK, or TS-opts. Any negative
3232 * values will be skipped with the seq_rtt_us < 0 check above.
3233 */
3234 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3235 tcp_rtt_estimator(sk, seq_rtt_us);
3236 tcp_set_rto(sk);
3237
3238 /* RFC6298: only reset backoff on valid RTT measurement. */
3239 inet_csk(sk)->icsk_backoff = 0;
3240 return true;
3241}
3242
3243/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3244void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3245{
3246 struct rate_sample rs;
3247 long rtt_us = -1L;
3248
3249 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3250 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3251
3252 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3253}
3254
3255
3256static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3257{
3258 const struct inet_connection_sock *icsk = inet_csk(sk);
3259
3260 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3261 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3262}
3263
3264/* Restart timer after forward progress on connection.
3265 * RFC2988 recommends to restart timer to now+rto.
3266 */
3267void tcp_rearm_rto(struct sock *sk)
3268{
3269 const struct inet_connection_sock *icsk = inet_csk(sk);
3270 struct tcp_sock *tp = tcp_sk(sk);
3271
3272 /* If the retrans timer is currently being used by Fast Open
3273 * for SYN-ACK retrans purpose, stay put.
3274 */
3275 if (rcu_access_pointer(tp->fastopen_rsk))
3276 return;
3277
3278 if (!tp->packets_out) {
3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3280 } else {
3281 u32 rto = inet_csk(sk)->icsk_rto;
3282 /* Offset the time elapsed after installing regular RTO */
3283 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3284 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3285 s64 delta_us = tcp_rto_delta_us(sk);
3286 /* delta_us may not be positive if the socket is locked
3287 * when the retrans timer fires and is rescheduled.
3288 */
3289 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3290 }
3291 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3292 TCP_RTO_MAX);
3293 }
3294}
3295
3296/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3297static void tcp_set_xmit_timer(struct sock *sk)
3298{
3299 if (!tcp_schedule_loss_probe(sk, true))
3300 tcp_rearm_rto(sk);
3301}
3302
3303/* If we get here, the whole TSO packet has not been acked. */
3304static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3305{
3306 struct tcp_sock *tp = tcp_sk(sk);
3307 u32 packets_acked;
3308
3309 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3310
3311 packets_acked = tcp_skb_pcount(skb);
3312 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3313 return 0;
3314 packets_acked -= tcp_skb_pcount(skb);
3315
3316 if (packets_acked) {
3317 BUG_ON(tcp_skb_pcount(skb) == 0);
3318 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3319 }
3320
3321 return packets_acked;
3322}
3323
3324static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3325 const struct sk_buff *ack_skb, u32 prior_snd_una)
3326{
3327 const struct skb_shared_info *shinfo;
3328
3329 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3330 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3331 return;
3332
3333 shinfo = skb_shinfo(skb);
3334 if (!before(shinfo->tskey, prior_snd_una) &&
3335 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3336 tcp_skb_tsorted_save(skb) {
3337 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3338 } tcp_skb_tsorted_restore(skb);
3339 }
3340}
3341
3342/* Remove acknowledged frames from the retransmission queue. If our packet
3343 * is before the ack sequence we can discard it as it's confirmed to have
3344 * arrived at the other end.
3345 */
3346static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3347 u32 prior_fack, u32 prior_snd_una,
3348 struct tcp_sacktag_state *sack, bool ece_ack)
3349{
3350 const struct inet_connection_sock *icsk = inet_csk(sk);
3351 u64 first_ackt, last_ackt;
3352 struct tcp_sock *tp = tcp_sk(sk);
3353 u32 prior_sacked = tp->sacked_out;
3354 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3355 struct sk_buff *skb, *next;
3356 bool fully_acked = true;
3357 long sack_rtt_us = -1L;
3358 long seq_rtt_us = -1L;
3359 long ca_rtt_us = -1L;
3360 u32 pkts_acked = 0;
3361 bool rtt_update;
3362 int flag = 0;
3363
3364 first_ackt = 0;
3365
3366 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3367 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3368 const u32 start_seq = scb->seq;
3369 u8 sacked = scb->sacked;
3370 u32 acked_pcount;
3371
3372 /* Determine how many packets and what bytes were acked, tso and else */
3373 if (after(scb->end_seq, tp->snd_una)) {
3374 if (tcp_skb_pcount(skb) == 1 ||
3375 !after(tp->snd_una, scb->seq))
3376 break;
3377
3378 acked_pcount = tcp_tso_acked(sk, skb);
3379 if (!acked_pcount)
3380 break;
3381 fully_acked = false;
3382 } else {
3383 acked_pcount = tcp_skb_pcount(skb);
3384 }
3385
3386 if (unlikely(sacked & TCPCB_RETRANS)) {
3387 if (sacked & TCPCB_SACKED_RETRANS)
3388 tp->retrans_out -= acked_pcount;
3389 flag |= FLAG_RETRANS_DATA_ACKED;
3390 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3391 last_ackt = tcp_skb_timestamp_us(skb);
3392 WARN_ON_ONCE(last_ackt == 0);
3393 if (!first_ackt)
3394 first_ackt = last_ackt;
3395
3396 if (before(start_seq, reord))
3397 reord = start_seq;
3398 if (!after(scb->end_seq, tp->high_seq))
3399 flag |= FLAG_ORIG_SACK_ACKED;
3400 }
3401
3402 if (sacked & TCPCB_SACKED_ACKED) {
3403 tp->sacked_out -= acked_pcount;
3404 } else if (tcp_is_sack(tp)) {
3405 tcp_count_delivered(tp, acked_pcount, ece_ack);
3406 if (!tcp_skb_spurious_retrans(tp, skb))
3407 tcp_rack_advance(tp, sacked, scb->end_seq,
3408 tcp_skb_timestamp_us(skb));
3409 }
3410 if (sacked & TCPCB_LOST)
3411 tp->lost_out -= acked_pcount;
3412
3413 tp->packets_out -= acked_pcount;
3414 pkts_acked += acked_pcount;
3415 tcp_rate_skb_delivered(sk, skb, sack->rate);
3416
3417 /* Initial outgoing SYN's get put onto the write_queue
3418 * just like anything else we transmit. It is not
3419 * true data, and if we misinform our callers that
3420 * this ACK acks real data, we will erroneously exit
3421 * connection startup slow start one packet too
3422 * quickly. This is severely frowned upon behavior.
3423 */
3424 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3425 flag |= FLAG_DATA_ACKED;
3426 } else {
3427 flag |= FLAG_SYN_ACKED;
3428 tp->retrans_stamp = 0;
3429 }
3430
3431 if (!fully_acked)
3432 break;
3433
3434 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3435
3436 next = skb_rb_next(skb);
3437 if (unlikely(skb == tp->retransmit_skb_hint))
3438 tp->retransmit_skb_hint = NULL;
3439 if (unlikely(skb == tp->lost_skb_hint))
3440 tp->lost_skb_hint = NULL;
3441 tcp_highest_sack_replace(sk, skb, next);
3442 tcp_rtx_queue_unlink_and_free(skb, sk);
3443 }
3444
3445 if (!skb)
3446 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3447
3448 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3449 tp->snd_up = tp->snd_una;
3450
3451 if (skb) {
3452 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3453 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3454 flag |= FLAG_SACK_RENEGING;
3455 }
3456
3457 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3458 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3459 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3460
3461 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3462 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3463 sack->rate->prior_delivered + 1 == tp->delivered &&
3464 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3465 /* Conservatively mark a delayed ACK. It's typically
3466 * from a lone runt packet over the round trip to
3467 * a receiver w/o out-of-order or CE events.
3468 */
3469 flag |= FLAG_ACK_MAYBE_DELAYED;
3470 }
3471 }
3472 if (sack->first_sackt) {
3473 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3474 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3475 }
3476 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3477 ca_rtt_us, sack->rate);
3478
3479 if (flag & FLAG_ACKED) {
3480 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3481 if (unlikely(icsk->icsk_mtup.probe_size &&
3482 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3483 tcp_mtup_probe_success(sk);
3484 }
3485
3486 if (tcp_is_reno(tp)) {
3487 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3488
3489 /* If any of the cumulatively ACKed segments was
3490 * retransmitted, non-SACK case cannot confirm that
3491 * progress was due to original transmission due to
3492 * lack of TCPCB_SACKED_ACKED bits even if some of
3493 * the packets may have been never retransmitted.
3494 */
3495 if (flag & FLAG_RETRANS_DATA_ACKED)
3496 flag &= ~FLAG_ORIG_SACK_ACKED;
3497 } else {
3498 int delta;
3499
3500 /* Non-retransmitted hole got filled? That's reordering */
3501 if (before(reord, prior_fack))
3502 tcp_check_sack_reordering(sk, reord, 0);
3503
3504 delta = prior_sacked - tp->sacked_out;
3505 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3506 }
3507 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3508 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3509 tcp_skb_timestamp_us(skb))) {
3510 /* Do not re-arm RTO if the sack RTT is measured from data sent
3511 * after when the head was last (re)transmitted. Otherwise the
3512 * timeout may continue to extend in loss recovery.
3513 */
3514 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3515 }
3516
3517 if (icsk->icsk_ca_ops->pkts_acked) {
3518 struct ack_sample sample = { .pkts_acked = pkts_acked,
3519 .rtt_us = sack->rate->rtt_us };
3520
3521 sample.in_flight = tp->mss_cache *
3522 (tp->delivered - sack->rate->prior_delivered);
3523 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3524 }
3525
3526#if FASTRETRANS_DEBUG > 0
3527 WARN_ON((int)tp->sacked_out < 0);
3528 WARN_ON((int)tp->lost_out < 0);
3529 WARN_ON((int)tp->retrans_out < 0);
3530 if (!tp->packets_out && tcp_is_sack(tp)) {
3531 icsk = inet_csk(sk);
3532 if (tp->lost_out) {
3533 pr_debug("Leak l=%u %d\n",
3534 tp->lost_out, icsk->icsk_ca_state);
3535 tp->lost_out = 0;
3536 }
3537 if (tp->sacked_out) {
3538 pr_debug("Leak s=%u %d\n",
3539 tp->sacked_out, icsk->icsk_ca_state);
3540 tp->sacked_out = 0;
3541 }
3542 if (tp->retrans_out) {
3543 pr_debug("Leak r=%u %d\n",
3544 tp->retrans_out, icsk->icsk_ca_state);
3545 tp->retrans_out = 0;
3546 }
3547 }
3548#endif
3549 return flag;
3550}
3551
3552static void tcp_ack_probe(struct sock *sk)
3553{
3554 struct inet_connection_sock *icsk = inet_csk(sk);
3555 struct sk_buff *head = tcp_send_head(sk);
3556 const struct tcp_sock *tp = tcp_sk(sk);
3557
3558 /* Was it a usable window open? */
3559 if (!head)
3560 return;
3561 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3562 icsk->icsk_backoff = 0;
3563 icsk->icsk_probes_tstamp = 0;
3564 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3565 /* Socket must be waked up by subsequent tcp_data_snd_check().
3566 * This function is not for random using!
3567 */
3568 } else {
3569 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3570
3571 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3572 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3573 }
3574}
3575
3576static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3577{
3578 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3579 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3580}
3581
3582/* Decide wheather to run the increase function of congestion control. */
3583static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3584{
3585 /* If reordering is high then always grow cwnd whenever data is
3586 * delivered regardless of its ordering. Otherwise stay conservative
3587 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3588 * new SACK or ECE mark may first advance cwnd here and later reduce
3589 * cwnd in tcp_fastretrans_alert() based on more states.
3590 */
3591 if (tcp_sk(sk)->reordering >
3592 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3593 return flag & FLAG_FORWARD_PROGRESS;
3594
3595 return flag & FLAG_DATA_ACKED;
3596}
3597
3598/* The "ultimate" congestion control function that aims to replace the rigid
3599 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3600 * It's called toward the end of processing an ACK with precise rate
3601 * information. All transmission or retransmission are delayed afterwards.
3602 */
3603static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3604 int flag, const struct rate_sample *rs)
3605{
3606 const struct inet_connection_sock *icsk = inet_csk(sk);
3607
3608 if (icsk->icsk_ca_ops->cong_control) {
3609 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3610 return;
3611 }
3612
3613 if (tcp_in_cwnd_reduction(sk)) {
3614 /* Reduce cwnd if state mandates */
3615 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3616 } else if (tcp_may_raise_cwnd(sk, flag)) {
3617 /* Advance cwnd if state allows */
3618 tcp_cong_avoid(sk, ack, acked_sacked);
3619 }
3620 tcp_update_pacing_rate(sk);
3621}
3622
3623/* Check that window update is acceptable.
3624 * The function assumes that snd_una<=ack<=snd_next.
3625 */
3626static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3627 const u32 ack, const u32 ack_seq,
3628 const u32 nwin)
3629{
3630 return after(ack, tp->snd_una) ||
3631 after(ack_seq, tp->snd_wl1) ||
3632 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3633}
3634
3635static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3636{
3637#ifdef CONFIG_TCP_AO
3638 struct tcp_ao_info *ao;
3639
3640 if (!static_branch_unlikely(&tcp_ao_needed.key))
3641 return;
3642
3643 ao = rcu_dereference_protected(tp->ao_info,
3644 lockdep_sock_is_held((struct sock *)tp));
3645 if (ao && ack < tp->snd_una) {
3646 ao->snd_sne++;
3647 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3648 }
3649#endif
3650}
3651
3652/* If we update tp->snd_una, also update tp->bytes_acked */
3653static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3654{
3655 u32 delta = ack - tp->snd_una;
3656
3657 sock_owned_by_me((struct sock *)tp);
3658 tp->bytes_acked += delta;
3659 tcp_snd_sne_update(tp, ack);
3660 tp->snd_una = ack;
3661}
3662
3663static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3664{
3665#ifdef CONFIG_TCP_AO
3666 struct tcp_ao_info *ao;
3667
3668 if (!static_branch_unlikely(&tcp_ao_needed.key))
3669 return;
3670
3671 ao = rcu_dereference_protected(tp->ao_info,
3672 lockdep_sock_is_held((struct sock *)tp));
3673 if (ao && seq < tp->rcv_nxt) {
3674 ao->rcv_sne++;
3675 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3676 }
3677#endif
3678}
3679
3680/* If we update tp->rcv_nxt, also update tp->bytes_received */
3681static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3682{
3683 u32 delta = seq - tp->rcv_nxt;
3684
3685 sock_owned_by_me((struct sock *)tp);
3686 tp->bytes_received += delta;
3687 tcp_rcv_sne_update(tp, seq);
3688 WRITE_ONCE(tp->rcv_nxt, seq);
3689}
3690
3691/* Update our send window.
3692 *
3693 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3694 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3695 */
3696static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3697 u32 ack_seq)
3698{
3699 struct tcp_sock *tp = tcp_sk(sk);
3700 int flag = 0;
3701 u32 nwin = ntohs(tcp_hdr(skb)->window);
3702
3703 if (likely(!tcp_hdr(skb)->syn))
3704 nwin <<= tp->rx_opt.snd_wscale;
3705
3706 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3707 flag |= FLAG_WIN_UPDATE;
3708 tcp_update_wl(tp, ack_seq);
3709
3710 if (tp->snd_wnd != nwin) {
3711 tp->snd_wnd = nwin;
3712
3713 /* Note, it is the only place, where
3714 * fast path is recovered for sending TCP.
3715 */
3716 tp->pred_flags = 0;
3717 tcp_fast_path_check(sk);
3718
3719 if (!tcp_write_queue_empty(sk))
3720 tcp_slow_start_after_idle_check(sk);
3721
3722 if (nwin > tp->max_window) {
3723 tp->max_window = nwin;
3724 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3725 }
3726 }
3727 }
3728
3729 tcp_snd_una_update(tp, ack);
3730
3731 return flag;
3732}
3733
3734static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3735 u32 *last_oow_ack_time)
3736{
3737 /* Paired with the WRITE_ONCE() in this function. */
3738 u32 val = READ_ONCE(*last_oow_ack_time);
3739
3740 if (val) {
3741 s32 elapsed = (s32)(tcp_jiffies32 - val);
3742
3743 if (0 <= elapsed &&
3744 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3745 NET_INC_STATS(net, mib_idx);
3746 return true; /* rate-limited: don't send yet! */
3747 }
3748 }
3749
3750 /* Paired with the prior READ_ONCE() and with itself,
3751 * as we might be lockless.
3752 */
3753 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3754
3755 return false; /* not rate-limited: go ahead, send dupack now! */
3756}
3757
3758/* Return true if we're currently rate-limiting out-of-window ACKs and
3759 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3760 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3761 * attacks that send repeated SYNs or ACKs for the same connection. To
3762 * do this, we do not send a duplicate SYNACK or ACK if the remote
3763 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3764 */
3765bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3766 int mib_idx, u32 *last_oow_ack_time)
3767{
3768 /* Data packets without SYNs are not likely part of an ACK loop. */
3769 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3770 !tcp_hdr(skb)->syn)
3771 return false;
3772
3773 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3774}
3775
3776/* RFC 5961 7 [ACK Throttling] */
3777static void tcp_send_challenge_ack(struct sock *sk)
3778{
3779 struct tcp_sock *tp = tcp_sk(sk);
3780 struct net *net = sock_net(sk);
3781 u32 count, now, ack_limit;
3782
3783 /* First check our per-socket dupack rate limit. */
3784 if (__tcp_oow_rate_limited(net,
3785 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3786 &tp->last_oow_ack_time))
3787 return;
3788
3789 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3790 if (ack_limit == INT_MAX)
3791 goto send_ack;
3792
3793 /* Then check host-wide RFC 5961 rate limit. */
3794 now = jiffies / HZ;
3795 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3796 u32 half = (ack_limit + 1) >> 1;
3797
3798 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3799 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3800 get_random_u32_inclusive(half, ack_limit + half - 1));
3801 }
3802 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3803 if (count > 0) {
3804 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3805send_ack:
3806 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3807 tcp_send_ack(sk);
3808 }
3809}
3810
3811static void tcp_store_ts_recent(struct tcp_sock *tp)
3812{
3813 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3814 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3815}
3816
3817static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3818{
3819 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3820 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3821 * extra check below makes sure this can only happen
3822 * for pure ACK frames. -DaveM
3823 *
3824 * Not only, also it occurs for expired timestamps.
3825 */
3826
3827 if (tcp_paws_check(&tp->rx_opt, 0))
3828 tcp_store_ts_recent(tp);
3829 }
3830}
3831
3832/* This routine deals with acks during a TLP episode and ends an episode by
3833 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3834 */
3835static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3836{
3837 struct tcp_sock *tp = tcp_sk(sk);
3838
3839 if (before(ack, tp->tlp_high_seq))
3840 return;
3841
3842 if (!tp->tlp_retrans) {
3843 /* TLP of new data has been acknowledged */
3844 tp->tlp_high_seq = 0;
3845 } else if (flag & FLAG_DSACK_TLP) {
3846 /* This DSACK means original and TLP probe arrived; no loss */
3847 tp->tlp_high_seq = 0;
3848 } else if (after(ack, tp->tlp_high_seq)) {
3849 /* ACK advances: there was a loss, so reduce cwnd. Reset
3850 * tlp_high_seq in tcp_init_cwnd_reduction()
3851 */
3852 tcp_init_cwnd_reduction(sk);
3853 tcp_set_ca_state(sk, TCP_CA_CWR);
3854 tcp_end_cwnd_reduction(sk);
3855 tcp_try_keep_open(sk);
3856 NET_INC_STATS(sock_net(sk),
3857 LINUX_MIB_TCPLOSSPROBERECOVERY);
3858 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3859 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3860 /* Pure dupack: original and TLP probe arrived; no loss */
3861 tp->tlp_high_seq = 0;
3862 }
3863}
3864
3865static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3866{
3867 const struct inet_connection_sock *icsk = inet_csk(sk);
3868
3869 if (icsk->icsk_ca_ops->in_ack_event)
3870 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3871}
3872
3873/* Congestion control has updated the cwnd already. So if we're in
3874 * loss recovery then now we do any new sends (for FRTO) or
3875 * retransmits (for CA_Loss or CA_recovery) that make sense.
3876 */
3877static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3878{
3879 struct tcp_sock *tp = tcp_sk(sk);
3880
3881 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3882 return;
3883
3884 if (unlikely(rexmit == REXMIT_NEW)) {
3885 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3886 TCP_NAGLE_OFF);
3887 if (after(tp->snd_nxt, tp->high_seq))
3888 return;
3889 tp->frto = 0;
3890 }
3891 tcp_xmit_retransmit_queue(sk);
3892}
3893
3894/* Returns the number of packets newly acked or sacked by the current ACK */
3895static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3896{
3897 const struct net *net = sock_net(sk);
3898 struct tcp_sock *tp = tcp_sk(sk);
3899 u32 delivered;
3900
3901 delivered = tp->delivered - prior_delivered;
3902 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3903 if (flag & FLAG_ECE)
3904 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3905
3906 return delivered;
3907}
3908
3909/* This routine deals with incoming acks, but not outgoing ones. */
3910static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3911{
3912 struct inet_connection_sock *icsk = inet_csk(sk);
3913 struct tcp_sock *tp = tcp_sk(sk);
3914 struct tcp_sacktag_state sack_state;
3915 struct rate_sample rs = { .prior_delivered = 0 };
3916 u32 prior_snd_una = tp->snd_una;
3917 bool is_sack_reneg = tp->is_sack_reneg;
3918 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3919 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3920 int num_dupack = 0;
3921 int prior_packets = tp->packets_out;
3922 u32 delivered = tp->delivered;
3923 u32 lost = tp->lost;
3924 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3925 u32 prior_fack;
3926
3927 sack_state.first_sackt = 0;
3928 sack_state.rate = &rs;
3929 sack_state.sack_delivered = 0;
3930
3931 /* We very likely will need to access rtx queue. */
3932 prefetch(sk->tcp_rtx_queue.rb_node);
3933
3934 /* If the ack is older than previous acks
3935 * then we can probably ignore it.
3936 */
3937 if (before(ack, prior_snd_una)) {
3938 u32 max_window;
3939
3940 /* do not accept ACK for bytes we never sent. */
3941 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3942 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3943 if (before(ack, prior_snd_una - max_window)) {
3944 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3945 tcp_send_challenge_ack(sk);
3946 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3947 }
3948 goto old_ack;
3949 }
3950
3951 /* If the ack includes data we haven't sent yet, discard
3952 * this segment (RFC793 Section 3.9).
3953 */
3954 if (after(ack, tp->snd_nxt))
3955 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3956
3957 if (after(ack, prior_snd_una)) {
3958 flag |= FLAG_SND_UNA_ADVANCED;
3959 icsk->icsk_retransmits = 0;
3960
3961#if IS_ENABLED(CONFIG_TLS_DEVICE)
3962 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3963 if (icsk->icsk_clean_acked)
3964 icsk->icsk_clean_acked(sk, ack);
3965#endif
3966 }
3967
3968 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3969 rs.prior_in_flight = tcp_packets_in_flight(tp);
3970
3971 /* ts_recent update must be made after we are sure that the packet
3972 * is in window.
3973 */
3974 if (flag & FLAG_UPDATE_TS_RECENT)
3975 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3976
3977 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3978 FLAG_SND_UNA_ADVANCED) {
3979 /* Window is constant, pure forward advance.
3980 * No more checks are required.
3981 * Note, we use the fact that SND.UNA>=SND.WL2.
3982 */
3983 tcp_update_wl(tp, ack_seq);
3984 tcp_snd_una_update(tp, ack);
3985 flag |= FLAG_WIN_UPDATE;
3986
3987 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3988
3989 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3990 } else {
3991 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3992
3993 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3994 flag |= FLAG_DATA;
3995 else
3996 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3997
3998 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3999
4000 if (TCP_SKB_CB(skb)->sacked)
4001 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4002 &sack_state);
4003
4004 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
4005 flag |= FLAG_ECE;
4006 ack_ev_flags |= CA_ACK_ECE;
4007 }
4008
4009 if (sack_state.sack_delivered)
4010 tcp_count_delivered(tp, sack_state.sack_delivered,
4011 flag & FLAG_ECE);
4012
4013 if (flag & FLAG_WIN_UPDATE)
4014 ack_ev_flags |= CA_ACK_WIN_UPDATE;
4015
4016 tcp_in_ack_event(sk, ack_ev_flags);
4017 }
4018
4019 /* This is a deviation from RFC3168 since it states that:
4020 * "When the TCP data sender is ready to set the CWR bit after reducing
4021 * the congestion window, it SHOULD set the CWR bit only on the first
4022 * new data packet that it transmits."
4023 * We accept CWR on pure ACKs to be more robust
4024 * with widely-deployed TCP implementations that do this.
4025 */
4026 tcp_ecn_accept_cwr(sk, skb);
4027
4028 /* We passed data and got it acked, remove any soft error
4029 * log. Something worked...
4030 */
4031 WRITE_ONCE(sk->sk_err_soft, 0);
4032 icsk->icsk_probes_out = 0;
4033 tp->rcv_tstamp = tcp_jiffies32;
4034 if (!prior_packets)
4035 goto no_queue;
4036
4037 /* See if we can take anything off of the retransmit queue. */
4038 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4039 &sack_state, flag & FLAG_ECE);
4040
4041 tcp_rack_update_reo_wnd(sk, &rs);
4042
4043 if (tp->tlp_high_seq)
4044 tcp_process_tlp_ack(sk, ack, flag);
4045
4046 if (tcp_ack_is_dubious(sk, flag)) {
4047 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4048 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4049 num_dupack = 1;
4050 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4051 if (!(flag & FLAG_DATA))
4052 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4053 }
4054 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4055 &rexmit);
4056 }
4057
4058 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4059 if (flag & FLAG_SET_XMIT_TIMER)
4060 tcp_set_xmit_timer(sk);
4061
4062 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4063 sk_dst_confirm(sk);
4064
4065 delivered = tcp_newly_delivered(sk, delivered, flag);
4066 lost = tp->lost - lost; /* freshly marked lost */
4067 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4068 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4069 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4070 tcp_xmit_recovery(sk, rexmit);
4071 return 1;
4072
4073no_queue:
4074 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4075 if (flag & FLAG_DSACKING_ACK) {
4076 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4077 &rexmit);
4078 tcp_newly_delivered(sk, delivered, flag);
4079 }
4080 /* If this ack opens up a zero window, clear backoff. It was
4081 * being used to time the probes, and is probably far higher than
4082 * it needs to be for normal retransmission.
4083 */
4084 tcp_ack_probe(sk);
4085
4086 if (tp->tlp_high_seq)
4087 tcp_process_tlp_ack(sk, ack, flag);
4088 return 1;
4089
4090old_ack:
4091 /* If data was SACKed, tag it and see if we should send more data.
4092 * If data was DSACKed, see if we can undo a cwnd reduction.
4093 */
4094 if (TCP_SKB_CB(skb)->sacked) {
4095 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4096 &sack_state);
4097 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4098 &rexmit);
4099 tcp_newly_delivered(sk, delivered, flag);
4100 tcp_xmit_recovery(sk, rexmit);
4101 }
4102
4103 return 0;
4104}
4105
4106static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4107 bool syn, struct tcp_fastopen_cookie *foc,
4108 bool exp_opt)
4109{
4110 /* Valid only in SYN or SYN-ACK with an even length. */
4111 if (!foc || !syn || len < 0 || (len & 1))
4112 return;
4113
4114 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4115 len <= TCP_FASTOPEN_COOKIE_MAX)
4116 memcpy(foc->val, cookie, len);
4117 else if (len != 0)
4118 len = -1;
4119 foc->len = len;
4120 foc->exp = exp_opt;
4121}
4122
4123static bool smc_parse_options(const struct tcphdr *th,
4124 struct tcp_options_received *opt_rx,
4125 const unsigned char *ptr,
4126 int opsize)
4127{
4128#if IS_ENABLED(CONFIG_SMC)
4129 if (static_branch_unlikely(&tcp_have_smc)) {
4130 if (th->syn && !(opsize & 1) &&
4131 opsize >= TCPOLEN_EXP_SMC_BASE &&
4132 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4133 opt_rx->smc_ok = 1;
4134 return true;
4135 }
4136 }
4137#endif
4138 return false;
4139}
4140
4141/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4142 * value on success.
4143 */
4144u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4145{
4146 const unsigned char *ptr = (const unsigned char *)(th + 1);
4147 int length = (th->doff * 4) - sizeof(struct tcphdr);
4148 u16 mss = 0;
4149
4150 while (length > 0) {
4151 int opcode = *ptr++;
4152 int opsize;
4153
4154 switch (opcode) {
4155 case TCPOPT_EOL:
4156 return mss;
4157 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4158 length--;
4159 continue;
4160 default:
4161 if (length < 2)
4162 return mss;
4163 opsize = *ptr++;
4164 if (opsize < 2) /* "silly options" */
4165 return mss;
4166 if (opsize > length)
4167 return mss; /* fail on partial options */
4168 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4169 u16 in_mss = get_unaligned_be16(ptr);
4170
4171 if (in_mss) {
4172 if (user_mss && user_mss < in_mss)
4173 in_mss = user_mss;
4174 mss = in_mss;
4175 }
4176 }
4177 ptr += opsize - 2;
4178 length -= opsize;
4179 }
4180 }
4181 return mss;
4182}
4183EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4184
4185/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4186 * But, this can also be called on packets in the established flow when
4187 * the fast version below fails.
4188 */
4189void tcp_parse_options(const struct net *net,
4190 const struct sk_buff *skb,
4191 struct tcp_options_received *opt_rx, int estab,
4192 struct tcp_fastopen_cookie *foc)
4193{
4194 const unsigned char *ptr;
4195 const struct tcphdr *th = tcp_hdr(skb);
4196 int length = (th->doff * 4) - sizeof(struct tcphdr);
4197
4198 ptr = (const unsigned char *)(th + 1);
4199 opt_rx->saw_tstamp = 0;
4200 opt_rx->saw_unknown = 0;
4201
4202 while (length > 0) {
4203 int opcode = *ptr++;
4204 int opsize;
4205
4206 switch (opcode) {
4207 case TCPOPT_EOL:
4208 return;
4209 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4210 length--;
4211 continue;
4212 default:
4213 if (length < 2)
4214 return;
4215 opsize = *ptr++;
4216 if (opsize < 2) /* "silly options" */
4217 return;
4218 if (opsize > length)
4219 return; /* don't parse partial options */
4220 switch (opcode) {
4221 case TCPOPT_MSS:
4222 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4223 u16 in_mss = get_unaligned_be16(ptr);
4224 if (in_mss) {
4225 if (opt_rx->user_mss &&
4226 opt_rx->user_mss < in_mss)
4227 in_mss = opt_rx->user_mss;
4228 opt_rx->mss_clamp = in_mss;
4229 }
4230 }
4231 break;
4232 case TCPOPT_WINDOW:
4233 if (opsize == TCPOLEN_WINDOW && th->syn &&
4234 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4235 __u8 snd_wscale = *(__u8 *)ptr;
4236 opt_rx->wscale_ok = 1;
4237 if (snd_wscale > TCP_MAX_WSCALE) {
4238 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4239 __func__,
4240 snd_wscale,
4241 TCP_MAX_WSCALE);
4242 snd_wscale = TCP_MAX_WSCALE;
4243 }
4244 opt_rx->snd_wscale = snd_wscale;
4245 }
4246 break;
4247 case TCPOPT_TIMESTAMP:
4248 if ((opsize == TCPOLEN_TIMESTAMP) &&
4249 ((estab && opt_rx->tstamp_ok) ||
4250 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4251 opt_rx->saw_tstamp = 1;
4252 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4253 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4254 }
4255 break;
4256 case TCPOPT_SACK_PERM:
4257 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4258 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4259 opt_rx->sack_ok = TCP_SACK_SEEN;
4260 tcp_sack_reset(opt_rx);
4261 }
4262 break;
4263
4264 case TCPOPT_SACK:
4265 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4266 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4267 opt_rx->sack_ok) {
4268 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4269 }
4270 break;
4271#ifdef CONFIG_TCP_MD5SIG
4272 case TCPOPT_MD5SIG:
4273 /* The MD5 Hash has already been
4274 * checked (see tcp_v{4,6}_rcv()).
4275 */
4276 break;
4277#endif
4278#ifdef CONFIG_TCP_AO
4279 case TCPOPT_AO:
4280 /* TCP AO has already been checked
4281 * (see tcp_inbound_ao_hash()).
4282 */
4283 break;
4284#endif
4285 case TCPOPT_FASTOPEN:
4286 tcp_parse_fastopen_option(
4287 opsize - TCPOLEN_FASTOPEN_BASE,
4288 ptr, th->syn, foc, false);
4289 break;
4290
4291 case TCPOPT_EXP:
4292 /* Fast Open option shares code 254 using a
4293 * 16 bits magic number.
4294 */
4295 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4296 get_unaligned_be16(ptr) ==
4297 TCPOPT_FASTOPEN_MAGIC) {
4298 tcp_parse_fastopen_option(opsize -
4299 TCPOLEN_EXP_FASTOPEN_BASE,
4300 ptr + 2, th->syn, foc, true);
4301 break;
4302 }
4303
4304 if (smc_parse_options(th, opt_rx, ptr, opsize))
4305 break;
4306
4307 opt_rx->saw_unknown = 1;
4308 break;
4309
4310 default:
4311 opt_rx->saw_unknown = 1;
4312 }
4313 ptr += opsize-2;
4314 length -= opsize;
4315 }
4316 }
4317}
4318EXPORT_SYMBOL(tcp_parse_options);
4319
4320static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4321{
4322 const __be32 *ptr = (const __be32 *)(th + 1);
4323
4324 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4325 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4326 tp->rx_opt.saw_tstamp = 1;
4327 ++ptr;
4328 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4329 ++ptr;
4330 if (*ptr)
4331 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4332 else
4333 tp->rx_opt.rcv_tsecr = 0;
4334 return true;
4335 }
4336 return false;
4337}
4338
4339/* Fast parse options. This hopes to only see timestamps.
4340 * If it is wrong it falls back on tcp_parse_options().
4341 */
4342static bool tcp_fast_parse_options(const struct net *net,
4343 const struct sk_buff *skb,
4344 const struct tcphdr *th, struct tcp_sock *tp)
4345{
4346 /* In the spirit of fast parsing, compare doff directly to constant
4347 * values. Because equality is used, short doff can be ignored here.
4348 */
4349 if (th->doff == (sizeof(*th) / 4)) {
4350 tp->rx_opt.saw_tstamp = 0;
4351 return false;
4352 } else if (tp->rx_opt.tstamp_ok &&
4353 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4354 if (tcp_parse_aligned_timestamp(tp, th))
4355 return true;
4356 }
4357
4358 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4359 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4360 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4361
4362 return true;
4363}
4364
4365#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4366/*
4367 * Parse Signature options
4368 */
4369int tcp_do_parse_auth_options(const struct tcphdr *th,
4370 const u8 **md5_hash, const u8 **ao_hash)
4371{
4372 int length = (th->doff << 2) - sizeof(*th);
4373 const u8 *ptr = (const u8 *)(th + 1);
4374 unsigned int minlen = TCPOLEN_MD5SIG;
4375
4376 if (IS_ENABLED(CONFIG_TCP_AO))
4377 minlen = sizeof(struct tcp_ao_hdr) + 1;
4378
4379 *md5_hash = NULL;
4380 *ao_hash = NULL;
4381
4382 /* If not enough data remaining, we can short cut */
4383 while (length >= minlen) {
4384 int opcode = *ptr++;
4385 int opsize;
4386
4387 switch (opcode) {
4388 case TCPOPT_EOL:
4389 return 0;
4390 case TCPOPT_NOP:
4391 length--;
4392 continue;
4393 default:
4394 opsize = *ptr++;
4395 if (opsize < 2 || opsize > length)
4396 return -EINVAL;
4397 if (opcode == TCPOPT_MD5SIG) {
4398 if (opsize != TCPOLEN_MD5SIG)
4399 return -EINVAL;
4400 if (unlikely(*md5_hash || *ao_hash))
4401 return -EEXIST;
4402 *md5_hash = ptr;
4403 } else if (opcode == TCPOPT_AO) {
4404 if (opsize <= sizeof(struct tcp_ao_hdr))
4405 return -EINVAL;
4406 if (unlikely(*md5_hash || *ao_hash))
4407 return -EEXIST;
4408 *ao_hash = ptr;
4409 }
4410 }
4411 ptr += opsize - 2;
4412 length -= opsize;
4413 }
4414 return 0;
4415}
4416EXPORT_SYMBOL(tcp_do_parse_auth_options);
4417#endif
4418
4419/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4420 *
4421 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4422 * it can pass through stack. So, the following predicate verifies that
4423 * this segment is not used for anything but congestion avoidance or
4424 * fast retransmit. Moreover, we even are able to eliminate most of such
4425 * second order effects, if we apply some small "replay" window (~RTO)
4426 * to timestamp space.
4427 *
4428 * All these measures still do not guarantee that we reject wrapped ACKs
4429 * on networks with high bandwidth, when sequence space is recycled fastly,
4430 * but it guarantees that such events will be very rare and do not affect
4431 * connection seriously. This doesn't look nice, but alas, PAWS is really
4432 * buggy extension.
4433 *
4434 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4435 * states that events when retransmit arrives after original data are rare.
4436 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4437 * the biggest problem on large power networks even with minor reordering.
4438 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4439 * up to bandwidth of 18Gigabit/sec. 8) ]
4440 */
4441
4442/* Estimates max number of increments of remote peer TSval in
4443 * a replay window (based on our current RTO estimation).
4444 */
4445static u32 tcp_tsval_replay(const struct sock *sk)
4446{
4447 /* If we use usec TS resolution,
4448 * then expect the remote peer to use the same resolution.
4449 */
4450 if (tcp_sk(sk)->tcp_usec_ts)
4451 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4452
4453 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4454 * We know that some OS (including old linux) can use 1200 Hz.
4455 */
4456 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4457}
4458
4459static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4460{
4461 const struct tcp_sock *tp = tcp_sk(sk);
4462 const struct tcphdr *th = tcp_hdr(skb);
4463 u32 seq = TCP_SKB_CB(skb)->seq;
4464 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4465
4466 return /* 1. Pure ACK with correct sequence number. */
4467 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4468
4469 /* 2. ... and duplicate ACK. */
4470 ack == tp->snd_una &&
4471
4472 /* 3. ... and does not update window. */
4473 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4474
4475 /* 4. ... and sits in replay window. */
4476 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4477 tcp_tsval_replay(sk);
4478}
4479
4480static inline bool tcp_paws_discard(const struct sock *sk,
4481 const struct sk_buff *skb)
4482{
4483 const struct tcp_sock *tp = tcp_sk(sk);
4484
4485 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4486 !tcp_disordered_ack(sk, skb);
4487}
4488
4489/* Check segment sequence number for validity.
4490 *
4491 * Segment controls are considered valid, if the segment
4492 * fits to the window after truncation to the window. Acceptability
4493 * of data (and SYN, FIN, of course) is checked separately.
4494 * See tcp_data_queue(), for example.
4495 *
4496 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4497 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4498 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4499 * (borrowed from freebsd)
4500 */
4501
4502static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4503 u32 seq, u32 end_seq)
4504{
4505 if (before(end_seq, tp->rcv_wup))
4506 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4507
4508 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4509 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4510
4511 return SKB_NOT_DROPPED_YET;
4512}
4513
4514
4515void tcp_done_with_error(struct sock *sk, int err)
4516{
4517 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4518 WRITE_ONCE(sk->sk_err, err);
4519 smp_wmb();
4520
4521 tcp_write_queue_purge(sk);
4522 tcp_done(sk);
4523
4524 if (!sock_flag(sk, SOCK_DEAD))
4525 sk_error_report(sk);
4526}
4527EXPORT_SYMBOL(tcp_done_with_error);
4528
4529/* When we get a reset we do this. */
4530void tcp_reset(struct sock *sk, struct sk_buff *skb)
4531{
4532 int err;
4533
4534 trace_tcp_receive_reset(sk);
4535
4536 /* mptcp can't tell us to ignore reset pkts,
4537 * so just ignore the return value of mptcp_incoming_options().
4538 */
4539 if (sk_is_mptcp(sk))
4540 mptcp_incoming_options(sk, skb);
4541
4542 /* We want the right error as BSD sees it (and indeed as we do). */
4543 switch (sk->sk_state) {
4544 case TCP_SYN_SENT:
4545 err = ECONNREFUSED;
4546 break;
4547 case TCP_CLOSE_WAIT:
4548 err = EPIPE;
4549 break;
4550 case TCP_CLOSE:
4551 return;
4552 default:
4553 err = ECONNRESET;
4554 }
4555 tcp_done_with_error(sk, err);
4556}
4557
4558/*
4559 * Process the FIN bit. This now behaves as it is supposed to work
4560 * and the FIN takes effect when it is validly part of sequence
4561 * space. Not before when we get holes.
4562 *
4563 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4564 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4565 * TIME-WAIT)
4566 *
4567 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4568 * close and we go into CLOSING (and later onto TIME-WAIT)
4569 *
4570 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4571 */
4572void tcp_fin(struct sock *sk)
4573{
4574 struct tcp_sock *tp = tcp_sk(sk);
4575
4576 inet_csk_schedule_ack(sk);
4577
4578 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4579 sock_set_flag(sk, SOCK_DONE);
4580
4581 switch (sk->sk_state) {
4582 case TCP_SYN_RECV:
4583 case TCP_ESTABLISHED:
4584 /* Move to CLOSE_WAIT */
4585 tcp_set_state(sk, TCP_CLOSE_WAIT);
4586 inet_csk_enter_pingpong_mode(sk);
4587 break;
4588
4589 case TCP_CLOSE_WAIT:
4590 case TCP_CLOSING:
4591 /* Received a retransmission of the FIN, do
4592 * nothing.
4593 */
4594 break;
4595 case TCP_LAST_ACK:
4596 /* RFC793: Remain in the LAST-ACK state. */
4597 break;
4598
4599 case TCP_FIN_WAIT1:
4600 /* This case occurs when a simultaneous close
4601 * happens, we must ack the received FIN and
4602 * enter the CLOSING state.
4603 */
4604 tcp_send_ack(sk);
4605 tcp_set_state(sk, TCP_CLOSING);
4606 break;
4607 case TCP_FIN_WAIT2:
4608 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4609 tcp_send_ack(sk);
4610 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4611 break;
4612 default:
4613 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4614 * cases we should never reach this piece of code.
4615 */
4616 pr_err("%s: Impossible, sk->sk_state=%d\n",
4617 __func__, sk->sk_state);
4618 break;
4619 }
4620
4621 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4622 * Probably, we should reset in this case. For now drop them.
4623 */
4624 skb_rbtree_purge(&tp->out_of_order_queue);
4625 if (tcp_is_sack(tp))
4626 tcp_sack_reset(&tp->rx_opt);
4627
4628 if (!sock_flag(sk, SOCK_DEAD)) {
4629 sk->sk_state_change(sk);
4630
4631 /* Do not send POLL_HUP for half duplex close. */
4632 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4633 sk->sk_state == TCP_CLOSE)
4634 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4635 else
4636 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4637 }
4638}
4639
4640static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4641 u32 end_seq)
4642{
4643 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4644 if (before(seq, sp->start_seq))
4645 sp->start_seq = seq;
4646 if (after(end_seq, sp->end_seq))
4647 sp->end_seq = end_seq;
4648 return true;
4649 }
4650 return false;
4651}
4652
4653static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4654{
4655 struct tcp_sock *tp = tcp_sk(sk);
4656
4657 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4658 int mib_idx;
4659
4660 if (before(seq, tp->rcv_nxt))
4661 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4662 else
4663 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4664
4665 NET_INC_STATS(sock_net(sk), mib_idx);
4666
4667 tp->rx_opt.dsack = 1;
4668 tp->duplicate_sack[0].start_seq = seq;
4669 tp->duplicate_sack[0].end_seq = end_seq;
4670 }
4671}
4672
4673static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4674{
4675 struct tcp_sock *tp = tcp_sk(sk);
4676
4677 if (!tp->rx_opt.dsack)
4678 tcp_dsack_set(sk, seq, end_seq);
4679 else
4680 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4681}
4682
4683static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4684{
4685 /* When the ACK path fails or drops most ACKs, the sender would
4686 * timeout and spuriously retransmit the same segment repeatedly.
4687 * If it seems our ACKs are not reaching the other side,
4688 * based on receiving a duplicate data segment with new flowlabel
4689 * (suggesting the sender suffered an RTO), and we are not already
4690 * repathing due to our own RTO, then rehash the socket to repath our
4691 * packets.
4692 */
4693#if IS_ENABLED(CONFIG_IPV6)
4694 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4695 skb->protocol == htons(ETH_P_IPV6) &&
4696 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4697 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4698 sk_rethink_txhash(sk))
4699 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4700
4701 /* Save last flowlabel after a spurious retrans. */
4702 tcp_save_lrcv_flowlabel(sk, skb);
4703#endif
4704}
4705
4706static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4707{
4708 struct tcp_sock *tp = tcp_sk(sk);
4709
4710 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4711 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4712 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4713 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4714
4715 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4716 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4717
4718 tcp_rcv_spurious_retrans(sk, skb);
4719 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4720 end_seq = tp->rcv_nxt;
4721 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4722 }
4723 }
4724
4725 tcp_send_ack(sk);
4726}
4727
4728/* These routines update the SACK block as out-of-order packets arrive or
4729 * in-order packets close up the sequence space.
4730 */
4731static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4732{
4733 int this_sack;
4734 struct tcp_sack_block *sp = &tp->selective_acks[0];
4735 struct tcp_sack_block *swalk = sp + 1;
4736
4737 /* See if the recent change to the first SACK eats into
4738 * or hits the sequence space of other SACK blocks, if so coalesce.
4739 */
4740 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4741 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4742 int i;
4743
4744 /* Zap SWALK, by moving every further SACK up by one slot.
4745 * Decrease num_sacks.
4746 */
4747 tp->rx_opt.num_sacks--;
4748 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4749 sp[i] = sp[i + 1];
4750 continue;
4751 }
4752 this_sack++;
4753 swalk++;
4754 }
4755}
4756
4757void tcp_sack_compress_send_ack(struct sock *sk)
4758{
4759 struct tcp_sock *tp = tcp_sk(sk);
4760
4761 if (!tp->compressed_ack)
4762 return;
4763
4764 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4765 __sock_put(sk);
4766
4767 /* Since we have to send one ack finally,
4768 * substract one from tp->compressed_ack to keep
4769 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4770 */
4771 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4772 tp->compressed_ack - 1);
4773
4774 tp->compressed_ack = 0;
4775 tcp_send_ack(sk);
4776}
4777
4778/* Reasonable amount of sack blocks included in TCP SACK option
4779 * The max is 4, but this becomes 3 if TCP timestamps are there.
4780 * Given that SACK packets might be lost, be conservative and use 2.
4781 */
4782#define TCP_SACK_BLOCKS_EXPECTED 2
4783
4784static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4785{
4786 struct tcp_sock *tp = tcp_sk(sk);
4787 struct tcp_sack_block *sp = &tp->selective_acks[0];
4788 int cur_sacks = tp->rx_opt.num_sacks;
4789 int this_sack;
4790
4791 if (!cur_sacks)
4792 goto new_sack;
4793
4794 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4795 if (tcp_sack_extend(sp, seq, end_seq)) {
4796 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4797 tcp_sack_compress_send_ack(sk);
4798 /* Rotate this_sack to the first one. */
4799 for (; this_sack > 0; this_sack--, sp--)
4800 swap(*sp, *(sp - 1));
4801 if (cur_sacks > 1)
4802 tcp_sack_maybe_coalesce(tp);
4803 return;
4804 }
4805 }
4806
4807 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4808 tcp_sack_compress_send_ack(sk);
4809
4810 /* Could not find an adjacent existing SACK, build a new one,
4811 * put it at the front, and shift everyone else down. We
4812 * always know there is at least one SACK present already here.
4813 *
4814 * If the sack array is full, forget about the last one.
4815 */
4816 if (this_sack >= TCP_NUM_SACKS) {
4817 this_sack--;
4818 tp->rx_opt.num_sacks--;
4819 sp--;
4820 }
4821 for (; this_sack > 0; this_sack--, sp--)
4822 *sp = *(sp - 1);
4823
4824new_sack:
4825 /* Build the new head SACK, and we're done. */
4826 sp->start_seq = seq;
4827 sp->end_seq = end_seq;
4828 tp->rx_opt.num_sacks++;
4829}
4830
4831/* RCV.NXT advances, some SACKs should be eaten. */
4832
4833static void tcp_sack_remove(struct tcp_sock *tp)
4834{
4835 struct tcp_sack_block *sp = &tp->selective_acks[0];
4836 int num_sacks = tp->rx_opt.num_sacks;
4837 int this_sack;
4838
4839 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4840 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4841 tp->rx_opt.num_sacks = 0;
4842 return;
4843 }
4844
4845 for (this_sack = 0; this_sack < num_sacks;) {
4846 /* Check if the start of the sack is covered by RCV.NXT. */
4847 if (!before(tp->rcv_nxt, sp->start_seq)) {
4848 int i;
4849
4850 /* RCV.NXT must cover all the block! */
4851 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4852
4853 /* Zap this SACK, by moving forward any other SACKS. */
4854 for (i = this_sack+1; i < num_sacks; i++)
4855 tp->selective_acks[i-1] = tp->selective_acks[i];
4856 num_sacks--;
4857 continue;
4858 }
4859 this_sack++;
4860 sp++;
4861 }
4862 tp->rx_opt.num_sacks = num_sacks;
4863}
4864
4865/**
4866 * tcp_try_coalesce - try to merge skb to prior one
4867 * @sk: socket
4868 * @to: prior buffer
4869 * @from: buffer to add in queue
4870 * @fragstolen: pointer to boolean
4871 *
4872 * Before queueing skb @from after @to, try to merge them
4873 * to reduce overall memory use and queue lengths, if cost is small.
4874 * Packets in ofo or receive queues can stay a long time.
4875 * Better try to coalesce them right now to avoid future collapses.
4876 * Returns true if caller should free @from instead of queueing it
4877 */
4878static bool tcp_try_coalesce(struct sock *sk,
4879 struct sk_buff *to,
4880 struct sk_buff *from,
4881 bool *fragstolen)
4882{
4883 int delta;
4884
4885 *fragstolen = false;
4886
4887 /* Its possible this segment overlaps with prior segment in queue */
4888 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4889 return false;
4890
4891 if (!tcp_skb_can_collapse_rx(to, from))
4892 return false;
4893
4894 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4895 return false;
4896
4897 atomic_add(delta, &sk->sk_rmem_alloc);
4898 sk_mem_charge(sk, delta);
4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4900 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4901 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4902 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4903
4904 if (TCP_SKB_CB(from)->has_rxtstamp) {
4905 TCP_SKB_CB(to)->has_rxtstamp = true;
4906 to->tstamp = from->tstamp;
4907 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4908 }
4909
4910 return true;
4911}
4912
4913static bool tcp_ooo_try_coalesce(struct sock *sk,
4914 struct sk_buff *to,
4915 struct sk_buff *from,
4916 bool *fragstolen)
4917{
4918 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4919
4920 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4921 if (res) {
4922 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4923 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4924
4925 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4926 }
4927 return res;
4928}
4929
4930noinline_for_tracing static void
4931tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4932{
4933 sk_drops_add(sk, skb);
4934 sk_skb_reason_drop(sk, skb, reason);
4935}
4936
4937/* This one checks to see if we can put data from the
4938 * out_of_order queue into the receive_queue.
4939 */
4940static void tcp_ofo_queue(struct sock *sk)
4941{
4942 struct tcp_sock *tp = tcp_sk(sk);
4943 __u32 dsack_high = tp->rcv_nxt;
4944 bool fin, fragstolen, eaten;
4945 struct sk_buff *skb, *tail;
4946 struct rb_node *p;
4947
4948 p = rb_first(&tp->out_of_order_queue);
4949 while (p) {
4950 skb = rb_to_skb(p);
4951 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4952 break;
4953
4954 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4955 __u32 dsack = dsack_high;
4956 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4957 dsack_high = TCP_SKB_CB(skb)->end_seq;
4958 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4959 }
4960 p = rb_next(p);
4961 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4962
4963 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4964 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4965 continue;
4966 }
4967
4968 tail = skb_peek_tail(&sk->sk_receive_queue);
4969 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4970 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4971 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4972 if (!eaten)
4973 tcp_add_receive_queue(sk, skb);
4974 else
4975 kfree_skb_partial(skb, fragstolen);
4976
4977 if (unlikely(fin)) {
4978 tcp_fin(sk);
4979 /* tcp_fin() purges tp->out_of_order_queue,
4980 * so we must end this loop right now.
4981 */
4982 break;
4983 }
4984 }
4985}
4986
4987static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4988static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4989
4990static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4991 unsigned int size)
4992{
4993 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4994 !sk_rmem_schedule(sk, skb, size)) {
4995
4996 if (tcp_prune_queue(sk, skb) < 0)
4997 return -1;
4998
4999 while (!sk_rmem_schedule(sk, skb, size)) {
5000 if (!tcp_prune_ofo_queue(sk, skb))
5001 return -1;
5002 }
5003 }
5004 return 0;
5005}
5006
5007static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5008{
5009 struct tcp_sock *tp = tcp_sk(sk);
5010 struct rb_node **p, *parent;
5011 struct sk_buff *skb1;
5012 u32 seq, end_seq;
5013 bool fragstolen;
5014
5015 tcp_save_lrcv_flowlabel(sk, skb);
5016 tcp_ecn_check_ce(sk, skb);
5017
5018 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5020 sk->sk_data_ready(sk);
5021 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5022 return;
5023 }
5024
5025 /* Disable header prediction. */
5026 tp->pred_flags = 0;
5027 inet_csk_schedule_ack(sk);
5028
5029 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5030 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5031 seq = TCP_SKB_CB(skb)->seq;
5032 end_seq = TCP_SKB_CB(skb)->end_seq;
5033
5034 p = &tp->out_of_order_queue.rb_node;
5035 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5036 /* Initial out of order segment, build 1 SACK. */
5037 if (tcp_is_sack(tp)) {
5038 tp->rx_opt.num_sacks = 1;
5039 tp->selective_acks[0].start_seq = seq;
5040 tp->selective_acks[0].end_seq = end_seq;
5041 }
5042 rb_link_node(&skb->rbnode, NULL, p);
5043 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5044 tp->ooo_last_skb = skb;
5045 goto end;
5046 }
5047
5048 /* In the typical case, we are adding an skb to the end of the list.
5049 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5050 */
5051 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5052 skb, &fragstolen)) {
5053coalesce_done:
5054 /* For non sack flows, do not grow window to force DUPACK
5055 * and trigger fast retransmit.
5056 */
5057 if (tcp_is_sack(tp))
5058 tcp_grow_window(sk, skb, true);
5059 kfree_skb_partial(skb, fragstolen);
5060 skb = NULL;
5061 goto add_sack;
5062 }
5063 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5064 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5065 parent = &tp->ooo_last_skb->rbnode;
5066 p = &parent->rb_right;
5067 goto insert;
5068 }
5069
5070 /* Find place to insert this segment. Handle overlaps on the way. */
5071 parent = NULL;
5072 while (*p) {
5073 parent = *p;
5074 skb1 = rb_to_skb(parent);
5075 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5076 p = &parent->rb_left;
5077 continue;
5078 }
5079 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5080 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5081 /* All the bits are present. Drop. */
5082 NET_INC_STATS(sock_net(sk),
5083 LINUX_MIB_TCPOFOMERGE);
5084 tcp_drop_reason(sk, skb,
5085 SKB_DROP_REASON_TCP_OFOMERGE);
5086 skb = NULL;
5087 tcp_dsack_set(sk, seq, end_seq);
5088 goto add_sack;
5089 }
5090 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5091 /* Partial overlap. */
5092 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5093 } else {
5094 /* skb's seq == skb1's seq and skb covers skb1.
5095 * Replace skb1 with skb.
5096 */
5097 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5098 &tp->out_of_order_queue);
5099 tcp_dsack_extend(sk,
5100 TCP_SKB_CB(skb1)->seq,
5101 TCP_SKB_CB(skb1)->end_seq);
5102 NET_INC_STATS(sock_net(sk),
5103 LINUX_MIB_TCPOFOMERGE);
5104 tcp_drop_reason(sk, skb1,
5105 SKB_DROP_REASON_TCP_OFOMERGE);
5106 goto merge_right;
5107 }
5108 } else if (tcp_ooo_try_coalesce(sk, skb1,
5109 skb, &fragstolen)) {
5110 goto coalesce_done;
5111 }
5112 p = &parent->rb_right;
5113 }
5114insert:
5115 /* Insert segment into RB tree. */
5116 rb_link_node(&skb->rbnode, parent, p);
5117 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5118
5119merge_right:
5120 /* Remove other segments covered by skb. */
5121 while ((skb1 = skb_rb_next(skb)) != NULL) {
5122 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5123 break;
5124 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5125 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5126 end_seq);
5127 break;
5128 }
5129 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5130 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5131 TCP_SKB_CB(skb1)->end_seq);
5132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5133 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5134 }
5135 /* If there is no skb after us, we are the last_skb ! */
5136 if (!skb1)
5137 tp->ooo_last_skb = skb;
5138
5139add_sack:
5140 if (tcp_is_sack(tp))
5141 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5142end:
5143 if (skb) {
5144 /* For non sack flows, do not grow window to force DUPACK
5145 * and trigger fast retransmit.
5146 */
5147 if (tcp_is_sack(tp))
5148 tcp_grow_window(sk, skb, false);
5149 skb_condense(skb);
5150 skb_set_owner_r(skb, sk);
5151 }
5152}
5153
5154static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5155 bool *fragstolen)
5156{
5157 int eaten;
5158 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5159
5160 eaten = (tail &&
5161 tcp_try_coalesce(sk, tail,
5162 skb, fragstolen)) ? 1 : 0;
5163 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5164 if (!eaten) {
5165 tcp_add_receive_queue(sk, skb);
5166 skb_set_owner_r(skb, sk);
5167 }
5168 return eaten;
5169}
5170
5171int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5172{
5173 struct sk_buff *skb;
5174 int err = -ENOMEM;
5175 int data_len = 0;
5176 bool fragstolen;
5177
5178 if (size == 0)
5179 return 0;
5180
5181 if (size > PAGE_SIZE) {
5182 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5183
5184 data_len = npages << PAGE_SHIFT;
5185 size = data_len + (size & ~PAGE_MASK);
5186 }
5187 skb = alloc_skb_with_frags(size - data_len, data_len,
5188 PAGE_ALLOC_COSTLY_ORDER,
5189 &err, sk->sk_allocation);
5190 if (!skb)
5191 goto err;
5192
5193 skb_put(skb, size - data_len);
5194 skb->data_len = data_len;
5195 skb->len = size;
5196
5197 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5198 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5199 goto err_free;
5200 }
5201
5202 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5203 if (err)
5204 goto err_free;
5205
5206 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5207 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5208 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5209
5210 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5211 WARN_ON_ONCE(fragstolen); /* should not happen */
5212 __kfree_skb(skb);
5213 }
5214 return size;
5215
5216err_free:
5217 kfree_skb(skb);
5218err:
5219 return err;
5220
5221}
5222
5223void tcp_data_ready(struct sock *sk)
5224{
5225 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5226 sk->sk_data_ready(sk);
5227}
5228
5229static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5230{
5231 struct tcp_sock *tp = tcp_sk(sk);
5232 enum skb_drop_reason reason;
5233 bool fragstolen;
5234 int eaten;
5235
5236 /* If a subflow has been reset, the packet should not continue
5237 * to be processed, drop the packet.
5238 */
5239 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5240 __kfree_skb(skb);
5241 return;
5242 }
5243
5244 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5245 __kfree_skb(skb);
5246 return;
5247 }
5248 tcp_cleanup_skb(skb);
5249 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5250
5251 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5252 tp->rx_opt.dsack = 0;
5253
5254 /* Queue data for delivery to the user.
5255 * Packets in sequence go to the receive queue.
5256 * Out of sequence packets to the out_of_order_queue.
5257 */
5258 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5259 if (tcp_receive_window(tp) == 0) {
5260 /* Some stacks are known to send bare FIN packets
5261 * in a loop even if we send RWIN 0 in our ACK.
5262 * Accepting this FIN does not hurt memory pressure
5263 * because the FIN flag will simply be merged to the
5264 * receive queue tail skb in most cases.
5265 */
5266 if (!skb->len &&
5267 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5268 goto queue_and_out;
5269
5270 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5271 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5272 goto out_of_window;
5273 }
5274
5275 /* Ok. In sequence. In window. */
5276queue_and_out:
5277 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5278 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5279 inet_csk(sk)->icsk_ack.pending |=
5280 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5281 inet_csk_schedule_ack(sk);
5282 sk->sk_data_ready(sk);
5283
5284 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5285 reason = SKB_DROP_REASON_PROTO_MEM;
5286 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5287 goto drop;
5288 }
5289 sk_forced_mem_schedule(sk, skb->truesize);
5290 }
5291
5292 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5293 if (skb->len)
5294 tcp_event_data_recv(sk, skb);
5295 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5296 tcp_fin(sk);
5297
5298 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5299 tcp_ofo_queue(sk);
5300
5301 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5302 * gap in queue is filled.
5303 */
5304 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5305 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5306 }
5307
5308 if (tp->rx_opt.num_sacks)
5309 tcp_sack_remove(tp);
5310
5311 tcp_fast_path_check(sk);
5312
5313 if (eaten > 0)
5314 kfree_skb_partial(skb, fragstolen);
5315 if (!sock_flag(sk, SOCK_DEAD))
5316 tcp_data_ready(sk);
5317 return;
5318 }
5319
5320 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5321 tcp_rcv_spurious_retrans(sk, skb);
5322 /* A retransmit, 2nd most common case. Force an immediate ack. */
5323 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5324 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5325 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5326
5327out_of_window:
5328 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5329 inet_csk_schedule_ack(sk);
5330drop:
5331 tcp_drop_reason(sk, skb, reason);
5332 return;
5333 }
5334
5335 /* Out of window. F.e. zero window probe. */
5336 if (!before(TCP_SKB_CB(skb)->seq,
5337 tp->rcv_nxt + tcp_receive_window(tp))) {
5338 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5339 goto out_of_window;
5340 }
5341
5342 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5343 /* Partial packet, seq < rcv_next < end_seq */
5344 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5345
5346 /* If window is closed, drop tail of packet. But after
5347 * remembering D-SACK for its head made in previous line.
5348 */
5349 if (!tcp_receive_window(tp)) {
5350 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5351 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5352 goto out_of_window;
5353 }
5354 goto queue_and_out;
5355 }
5356
5357 tcp_data_queue_ofo(sk, skb);
5358}
5359
5360static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5361{
5362 if (list)
5363 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5364
5365 return skb_rb_next(skb);
5366}
5367
5368static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5369 struct sk_buff_head *list,
5370 struct rb_root *root)
5371{
5372 struct sk_buff *next = tcp_skb_next(skb, list);
5373
5374 if (list)
5375 __skb_unlink(skb, list);
5376 else
5377 rb_erase(&skb->rbnode, root);
5378
5379 __kfree_skb(skb);
5380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5381
5382 return next;
5383}
5384
5385/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5386void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5387{
5388 struct rb_node **p = &root->rb_node;
5389 struct rb_node *parent = NULL;
5390 struct sk_buff *skb1;
5391
5392 while (*p) {
5393 parent = *p;
5394 skb1 = rb_to_skb(parent);
5395 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5396 p = &parent->rb_left;
5397 else
5398 p = &parent->rb_right;
5399 }
5400 rb_link_node(&skb->rbnode, parent, p);
5401 rb_insert_color(&skb->rbnode, root);
5402}
5403
5404/* Collapse contiguous sequence of skbs head..tail with
5405 * sequence numbers start..end.
5406 *
5407 * If tail is NULL, this means until the end of the queue.
5408 *
5409 * Segments with FIN/SYN are not collapsed (only because this
5410 * simplifies code)
5411 */
5412static void
5413tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5414 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5415{
5416 struct sk_buff *skb = head, *n;
5417 struct sk_buff_head tmp;
5418 bool end_of_skbs;
5419
5420 /* First, check that queue is collapsible and find
5421 * the point where collapsing can be useful.
5422 */
5423restart:
5424 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5425 n = tcp_skb_next(skb, list);
5426
5427 if (!skb_frags_readable(skb))
5428 goto skip_this;
5429
5430 /* No new bits? It is possible on ofo queue. */
5431 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5432 skb = tcp_collapse_one(sk, skb, list, root);
5433 if (!skb)
5434 break;
5435 goto restart;
5436 }
5437
5438 /* The first skb to collapse is:
5439 * - not SYN/FIN and
5440 * - bloated or contains data before "start" or
5441 * overlaps to the next one and mptcp allow collapsing.
5442 */
5443 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5444 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5445 before(TCP_SKB_CB(skb)->seq, start))) {
5446 end_of_skbs = false;
5447 break;
5448 }
5449
5450 if (n && n != tail && skb_frags_readable(n) &&
5451 tcp_skb_can_collapse_rx(skb, n) &&
5452 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5453 end_of_skbs = false;
5454 break;
5455 }
5456
5457skip_this:
5458 /* Decided to skip this, advance start seq. */
5459 start = TCP_SKB_CB(skb)->end_seq;
5460 }
5461 if (end_of_skbs ||
5462 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5463 !skb_frags_readable(skb))
5464 return;
5465
5466 __skb_queue_head_init(&tmp);
5467
5468 while (before(start, end)) {
5469 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5470 struct sk_buff *nskb;
5471
5472 nskb = alloc_skb(copy, GFP_ATOMIC);
5473 if (!nskb)
5474 break;
5475
5476 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5477 skb_copy_decrypted(nskb, skb);
5478 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5479 if (list)
5480 __skb_queue_before(list, skb, nskb);
5481 else
5482 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5483 skb_set_owner_r(nskb, sk);
5484 mptcp_skb_ext_move(nskb, skb);
5485
5486 /* Copy data, releasing collapsed skbs. */
5487 while (copy > 0) {
5488 int offset = start - TCP_SKB_CB(skb)->seq;
5489 int size = TCP_SKB_CB(skb)->end_seq - start;
5490
5491 BUG_ON(offset < 0);
5492 if (size > 0) {
5493 size = min(copy, size);
5494 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5495 BUG();
5496 TCP_SKB_CB(nskb)->end_seq += size;
5497 copy -= size;
5498 start += size;
5499 }
5500 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5501 skb = tcp_collapse_one(sk, skb, list, root);
5502 if (!skb ||
5503 skb == tail ||
5504 !tcp_skb_can_collapse_rx(nskb, skb) ||
5505 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5506 !skb_frags_readable(skb))
5507 goto end;
5508 }
5509 }
5510 }
5511end:
5512 skb_queue_walk_safe(&tmp, skb, n)
5513 tcp_rbtree_insert(root, skb);
5514}
5515
5516/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5517 * and tcp_collapse() them until all the queue is collapsed.
5518 */
5519static void tcp_collapse_ofo_queue(struct sock *sk)
5520{
5521 struct tcp_sock *tp = tcp_sk(sk);
5522 u32 range_truesize, sum_tiny = 0;
5523 struct sk_buff *skb, *head;
5524 u32 start, end;
5525
5526 skb = skb_rb_first(&tp->out_of_order_queue);
5527new_range:
5528 if (!skb) {
5529 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5530 return;
5531 }
5532 start = TCP_SKB_CB(skb)->seq;
5533 end = TCP_SKB_CB(skb)->end_seq;
5534 range_truesize = skb->truesize;
5535
5536 for (head = skb;;) {
5537 skb = skb_rb_next(skb);
5538
5539 /* Range is terminated when we see a gap or when
5540 * we are at the queue end.
5541 */
5542 if (!skb ||
5543 after(TCP_SKB_CB(skb)->seq, end) ||
5544 before(TCP_SKB_CB(skb)->end_seq, start)) {
5545 /* Do not attempt collapsing tiny skbs */
5546 if (range_truesize != head->truesize ||
5547 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5548 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5549 head, skb, start, end);
5550 } else {
5551 sum_tiny += range_truesize;
5552 if (sum_tiny > sk->sk_rcvbuf >> 3)
5553 return;
5554 }
5555 goto new_range;
5556 }
5557
5558 range_truesize += skb->truesize;
5559 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5560 start = TCP_SKB_CB(skb)->seq;
5561 if (after(TCP_SKB_CB(skb)->end_seq, end))
5562 end = TCP_SKB_CB(skb)->end_seq;
5563 }
5564}
5565
5566/*
5567 * Clean the out-of-order queue to make room.
5568 * We drop high sequences packets to :
5569 * 1) Let a chance for holes to be filled.
5570 * This means we do not drop packets from ooo queue if their sequence
5571 * is before incoming packet sequence.
5572 * 2) not add too big latencies if thousands of packets sit there.
5573 * (But if application shrinks SO_RCVBUF, we could still end up
5574 * freeing whole queue here)
5575 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5576 *
5577 * Return true if queue has shrunk.
5578 */
5579static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5580{
5581 struct tcp_sock *tp = tcp_sk(sk);
5582 struct rb_node *node, *prev;
5583 bool pruned = false;
5584 int goal;
5585
5586 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5587 return false;
5588
5589 goal = sk->sk_rcvbuf >> 3;
5590 node = &tp->ooo_last_skb->rbnode;
5591
5592 do {
5593 struct sk_buff *skb = rb_to_skb(node);
5594
5595 /* If incoming skb would land last in ofo queue, stop pruning. */
5596 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5597 break;
5598 pruned = true;
5599 prev = rb_prev(node);
5600 rb_erase(node, &tp->out_of_order_queue);
5601 goal -= skb->truesize;
5602 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5603 tp->ooo_last_skb = rb_to_skb(prev);
5604 if (!prev || goal <= 0) {
5605 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5606 !tcp_under_memory_pressure(sk))
5607 break;
5608 goal = sk->sk_rcvbuf >> 3;
5609 }
5610 node = prev;
5611 } while (node);
5612
5613 if (pruned) {
5614 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5615 /* Reset SACK state. A conforming SACK implementation will
5616 * do the same at a timeout based retransmit. When a connection
5617 * is in a sad state like this, we care only about integrity
5618 * of the connection not performance.
5619 */
5620 if (tp->rx_opt.sack_ok)
5621 tcp_sack_reset(&tp->rx_opt);
5622 }
5623 return pruned;
5624}
5625
5626/* Reduce allocated memory if we can, trying to get
5627 * the socket within its memory limits again.
5628 *
5629 * Return less than zero if we should start dropping frames
5630 * until the socket owning process reads some of the data
5631 * to stabilize the situation.
5632 */
5633static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5634{
5635 struct tcp_sock *tp = tcp_sk(sk);
5636
5637 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5638
5639 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5640 tcp_clamp_window(sk);
5641 else if (tcp_under_memory_pressure(sk))
5642 tcp_adjust_rcv_ssthresh(sk);
5643
5644 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5645 return 0;
5646
5647 tcp_collapse_ofo_queue(sk);
5648 if (!skb_queue_empty(&sk->sk_receive_queue))
5649 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5650 skb_peek(&sk->sk_receive_queue),
5651 NULL,
5652 tp->copied_seq, tp->rcv_nxt);
5653
5654 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5655 return 0;
5656
5657 /* Collapsing did not help, destructive actions follow.
5658 * This must not ever occur. */
5659
5660 tcp_prune_ofo_queue(sk, in_skb);
5661
5662 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5663 return 0;
5664
5665 /* If we are really being abused, tell the caller to silently
5666 * drop receive data on the floor. It will get retransmitted
5667 * and hopefully then we'll have sufficient space.
5668 */
5669 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5670
5671 /* Massive buffer overcommit. */
5672 tp->pred_flags = 0;
5673 return -1;
5674}
5675
5676static bool tcp_should_expand_sndbuf(struct sock *sk)
5677{
5678 const struct tcp_sock *tp = tcp_sk(sk);
5679
5680 /* If the user specified a specific send buffer setting, do
5681 * not modify it.
5682 */
5683 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5684 return false;
5685
5686 /* If we are under global TCP memory pressure, do not expand. */
5687 if (tcp_under_memory_pressure(sk)) {
5688 int unused_mem = sk_unused_reserved_mem(sk);
5689
5690 /* Adjust sndbuf according to reserved mem. But make sure
5691 * it never goes below SOCK_MIN_SNDBUF.
5692 * See sk_stream_moderate_sndbuf() for more details.
5693 */
5694 if (unused_mem > SOCK_MIN_SNDBUF)
5695 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5696
5697 return false;
5698 }
5699
5700 /* If we are under soft global TCP memory pressure, do not expand. */
5701 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5702 return false;
5703
5704 /* If we filled the congestion window, do not expand. */
5705 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5706 return false;
5707
5708 return true;
5709}
5710
5711static void tcp_new_space(struct sock *sk)
5712{
5713 struct tcp_sock *tp = tcp_sk(sk);
5714
5715 if (tcp_should_expand_sndbuf(sk)) {
5716 tcp_sndbuf_expand(sk);
5717 tp->snd_cwnd_stamp = tcp_jiffies32;
5718 }
5719
5720 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5721}
5722
5723/* Caller made space either from:
5724 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5725 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5726 *
5727 * We might be able to generate EPOLLOUT to the application if:
5728 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5729 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5730 * small enough that tcp_stream_memory_free() decides it
5731 * is time to generate EPOLLOUT.
5732 */
5733void tcp_check_space(struct sock *sk)
5734{
5735 /* pairs with tcp_poll() */
5736 smp_mb();
5737 if (sk->sk_socket &&
5738 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5739 tcp_new_space(sk);
5740 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5741 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5742 }
5743}
5744
5745static inline void tcp_data_snd_check(struct sock *sk)
5746{
5747 tcp_push_pending_frames(sk);
5748 tcp_check_space(sk);
5749}
5750
5751/*
5752 * Check if sending an ack is needed.
5753 */
5754static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5755{
5756 struct tcp_sock *tp = tcp_sk(sk);
5757 unsigned long rtt, delay;
5758
5759 /* More than one full frame received... */
5760 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5761 /* ... and right edge of window advances far enough.
5762 * (tcp_recvmsg() will send ACK otherwise).
5763 * If application uses SO_RCVLOWAT, we want send ack now if
5764 * we have not received enough bytes to satisfy the condition.
5765 */
5766 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5767 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5768 /* We ACK each frame or... */
5769 tcp_in_quickack_mode(sk) ||
5770 /* Protocol state mandates a one-time immediate ACK */
5771 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5772 /* If we are running from __release_sock() in user context,
5773 * Defer the ack until tcp_release_cb().
5774 */
5775 if (sock_owned_by_user_nocheck(sk) &&
5776 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5777 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5778 return;
5779 }
5780send_now:
5781 tcp_send_ack(sk);
5782 return;
5783 }
5784
5785 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5786 tcp_send_delayed_ack(sk);
5787 return;
5788 }
5789
5790 if (!tcp_is_sack(tp) ||
5791 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5792 goto send_now;
5793
5794 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5795 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5796 tp->dup_ack_counter = 0;
5797 }
5798 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5799 tp->dup_ack_counter++;
5800 goto send_now;
5801 }
5802 tp->compressed_ack++;
5803 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5804 return;
5805
5806 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5807
5808 rtt = tp->rcv_rtt_est.rtt_us;
5809 if (tp->srtt_us && tp->srtt_us < rtt)
5810 rtt = tp->srtt_us;
5811
5812 delay = min_t(unsigned long,
5813 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5814 rtt * (NSEC_PER_USEC >> 3)/20);
5815 sock_hold(sk);
5816 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5817 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5818 HRTIMER_MODE_REL_PINNED_SOFT);
5819}
5820
5821static inline void tcp_ack_snd_check(struct sock *sk)
5822{
5823 if (!inet_csk_ack_scheduled(sk)) {
5824 /* We sent a data segment already. */
5825 return;
5826 }
5827 __tcp_ack_snd_check(sk, 1);
5828}
5829
5830/*
5831 * This routine is only called when we have urgent data
5832 * signaled. Its the 'slow' part of tcp_urg. It could be
5833 * moved inline now as tcp_urg is only called from one
5834 * place. We handle URGent data wrong. We have to - as
5835 * BSD still doesn't use the correction from RFC961.
5836 * For 1003.1g we should support a new option TCP_STDURG to permit
5837 * either form (or just set the sysctl tcp_stdurg).
5838 */
5839
5840static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5841{
5842 struct tcp_sock *tp = tcp_sk(sk);
5843 u32 ptr = ntohs(th->urg_ptr);
5844
5845 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5846 ptr--;
5847 ptr += ntohl(th->seq);
5848
5849 /* Ignore urgent data that we've already seen and read. */
5850 if (after(tp->copied_seq, ptr))
5851 return;
5852
5853 /* Do not replay urg ptr.
5854 *
5855 * NOTE: interesting situation not covered by specs.
5856 * Misbehaving sender may send urg ptr, pointing to segment,
5857 * which we already have in ofo queue. We are not able to fetch
5858 * such data and will stay in TCP_URG_NOTYET until will be eaten
5859 * by recvmsg(). Seems, we are not obliged to handle such wicked
5860 * situations. But it is worth to think about possibility of some
5861 * DoSes using some hypothetical application level deadlock.
5862 */
5863 if (before(ptr, tp->rcv_nxt))
5864 return;
5865
5866 /* Do we already have a newer (or duplicate) urgent pointer? */
5867 if (tp->urg_data && !after(ptr, tp->urg_seq))
5868 return;
5869
5870 /* Tell the world about our new urgent pointer. */
5871 sk_send_sigurg(sk);
5872
5873 /* We may be adding urgent data when the last byte read was
5874 * urgent. To do this requires some care. We cannot just ignore
5875 * tp->copied_seq since we would read the last urgent byte again
5876 * as data, nor can we alter copied_seq until this data arrives
5877 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5878 *
5879 * NOTE. Double Dutch. Rendering to plain English: author of comment
5880 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5881 * and expect that both A and B disappear from stream. This is _wrong_.
5882 * Though this happens in BSD with high probability, this is occasional.
5883 * Any application relying on this is buggy. Note also, that fix "works"
5884 * only in this artificial test. Insert some normal data between A and B and we will
5885 * decline of BSD again. Verdict: it is better to remove to trap
5886 * buggy users.
5887 */
5888 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5889 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5890 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5891 tp->copied_seq++;
5892 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5893 __skb_unlink(skb, &sk->sk_receive_queue);
5894 __kfree_skb(skb);
5895 }
5896 }
5897
5898 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5899 WRITE_ONCE(tp->urg_seq, ptr);
5900
5901 /* Disable header prediction. */
5902 tp->pred_flags = 0;
5903}
5904
5905/* This is the 'fast' part of urgent handling. */
5906static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5907{
5908 struct tcp_sock *tp = tcp_sk(sk);
5909
5910 /* Check if we get a new urgent pointer - normally not. */
5911 if (unlikely(th->urg))
5912 tcp_check_urg(sk, th);
5913
5914 /* Do we wait for any urgent data? - normally not... */
5915 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5916 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5917 th->syn;
5918
5919 /* Is the urgent pointer pointing into this packet? */
5920 if (ptr < skb->len) {
5921 u8 tmp;
5922 if (skb_copy_bits(skb, ptr, &tmp, 1))
5923 BUG();
5924 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5925 if (!sock_flag(sk, SOCK_DEAD))
5926 sk->sk_data_ready(sk);
5927 }
5928 }
5929}
5930
5931/* Accept RST for rcv_nxt - 1 after a FIN.
5932 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5933 * FIN is sent followed by a RST packet. The RST is sent with the same
5934 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5935 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5936 * ACKs on the closed socket. In addition middleboxes can drop either the
5937 * challenge ACK or a subsequent RST.
5938 */
5939static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5940{
5941 const struct tcp_sock *tp = tcp_sk(sk);
5942
5943 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5944 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5945 TCPF_CLOSING));
5946}
5947
5948/* Does PAWS and seqno based validation of an incoming segment, flags will
5949 * play significant role here.
5950 */
5951static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5952 const struct tcphdr *th, int syn_inerr)
5953{
5954 struct tcp_sock *tp = tcp_sk(sk);
5955 SKB_DR(reason);
5956
5957 /* RFC1323: H1. Apply PAWS check first. */
5958 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5959 tp->rx_opt.saw_tstamp &&
5960 tcp_paws_discard(sk, skb)) {
5961 if (!th->rst) {
5962 if (unlikely(th->syn))
5963 goto syn_challenge;
5964 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5965 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5966 LINUX_MIB_TCPACKSKIPPEDPAWS,
5967 &tp->last_oow_ack_time))
5968 tcp_send_dupack(sk, skb);
5969 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5970 goto discard;
5971 }
5972 /* Reset is accepted even if it did not pass PAWS. */
5973 }
5974
5975 /* Step 1: check sequence number */
5976 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5977 if (reason) {
5978 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5979 * (RST) segments are validated by checking their SEQ-fields."
5980 * And page 69: "If an incoming segment is not acceptable,
5981 * an acknowledgment should be sent in reply (unless the RST
5982 * bit is set, if so drop the segment and return)".
5983 */
5984 if (!th->rst) {
5985 if (th->syn)
5986 goto syn_challenge;
5987 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5988 LINUX_MIB_TCPACKSKIPPEDSEQ,
5989 &tp->last_oow_ack_time))
5990 tcp_send_dupack(sk, skb);
5991 } else if (tcp_reset_check(sk, skb)) {
5992 goto reset;
5993 }
5994 goto discard;
5995 }
5996
5997 /* Step 2: check RST bit */
5998 if (th->rst) {
5999 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6000 * FIN and SACK too if available):
6001 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6002 * the right-most SACK block,
6003 * then
6004 * RESET the connection
6005 * else
6006 * Send a challenge ACK
6007 */
6008 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6009 tcp_reset_check(sk, skb))
6010 goto reset;
6011
6012 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6013 struct tcp_sack_block *sp = &tp->selective_acks[0];
6014 int max_sack = sp[0].end_seq;
6015 int this_sack;
6016
6017 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6018 ++this_sack) {
6019 max_sack = after(sp[this_sack].end_seq,
6020 max_sack) ?
6021 sp[this_sack].end_seq : max_sack;
6022 }
6023
6024 if (TCP_SKB_CB(skb)->seq == max_sack)
6025 goto reset;
6026 }
6027
6028 /* Disable TFO if RST is out-of-order
6029 * and no data has been received
6030 * for current active TFO socket
6031 */
6032 if (tp->syn_fastopen && !tp->data_segs_in &&
6033 sk->sk_state == TCP_ESTABLISHED)
6034 tcp_fastopen_active_disable(sk);
6035 tcp_send_challenge_ack(sk);
6036 SKB_DR_SET(reason, TCP_RESET);
6037 goto discard;
6038 }
6039
6040 /* step 3: check security and precedence [ignored] */
6041
6042 /* step 4: Check for a SYN
6043 * RFC 5961 4.2 : Send a challenge ack
6044 */
6045 if (th->syn) {
6046 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6047 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6048 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6049 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6050 goto pass;
6051syn_challenge:
6052 if (syn_inerr)
6053 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6055 tcp_send_challenge_ack(sk);
6056 SKB_DR_SET(reason, TCP_INVALID_SYN);
6057 goto discard;
6058 }
6059
6060pass:
6061 bpf_skops_parse_hdr(sk, skb);
6062
6063 return true;
6064
6065discard:
6066 tcp_drop_reason(sk, skb, reason);
6067 return false;
6068
6069reset:
6070 tcp_reset(sk, skb);
6071 __kfree_skb(skb);
6072 return false;
6073}
6074
6075/*
6076 * TCP receive function for the ESTABLISHED state.
6077 *
6078 * It is split into a fast path and a slow path. The fast path is
6079 * disabled when:
6080 * - A zero window was announced from us - zero window probing
6081 * is only handled properly in the slow path.
6082 * - Out of order segments arrived.
6083 * - Urgent data is expected.
6084 * - There is no buffer space left
6085 * - Unexpected TCP flags/window values/header lengths are received
6086 * (detected by checking the TCP header against pred_flags)
6087 * - Data is sent in both directions. Fast path only supports pure senders
6088 * or pure receivers (this means either the sequence number or the ack
6089 * value must stay constant)
6090 * - Unexpected TCP option.
6091 *
6092 * When these conditions are not satisfied it drops into a standard
6093 * receive procedure patterned after RFC793 to handle all cases.
6094 * The first three cases are guaranteed by proper pred_flags setting,
6095 * the rest is checked inline. Fast processing is turned on in
6096 * tcp_data_queue when everything is OK.
6097 */
6098void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6099{
6100 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6101 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6102 struct tcp_sock *tp = tcp_sk(sk);
6103 unsigned int len = skb->len;
6104
6105 /* TCP congestion window tracking */
6106 trace_tcp_probe(sk, skb);
6107
6108 tcp_mstamp_refresh(tp);
6109 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6110 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6111 /*
6112 * Header prediction.
6113 * The code loosely follows the one in the famous
6114 * "30 instruction TCP receive" Van Jacobson mail.
6115 *
6116 * Van's trick is to deposit buffers into socket queue
6117 * on a device interrupt, to call tcp_recv function
6118 * on the receive process context and checksum and copy
6119 * the buffer to user space. smart...
6120 *
6121 * Our current scheme is not silly either but we take the
6122 * extra cost of the net_bh soft interrupt processing...
6123 * We do checksum and copy also but from device to kernel.
6124 */
6125
6126 tp->rx_opt.saw_tstamp = 0;
6127
6128 /* pred_flags is 0xS?10 << 16 + snd_wnd
6129 * if header_prediction is to be made
6130 * 'S' will always be tp->tcp_header_len >> 2
6131 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6132 * turn it off (when there are holes in the receive
6133 * space for instance)
6134 * PSH flag is ignored.
6135 */
6136
6137 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6138 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6139 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6140 int tcp_header_len = tp->tcp_header_len;
6141
6142 /* Timestamp header prediction: tcp_header_len
6143 * is automatically equal to th->doff*4 due to pred_flags
6144 * match.
6145 */
6146
6147 /* Check timestamp */
6148 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6149 /* No? Slow path! */
6150 if (!tcp_parse_aligned_timestamp(tp, th))
6151 goto slow_path;
6152
6153 /* If PAWS failed, check it more carefully in slow path */
6154 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6155 goto slow_path;
6156
6157 /* DO NOT update ts_recent here, if checksum fails
6158 * and timestamp was corrupted part, it will result
6159 * in a hung connection since we will drop all
6160 * future packets due to the PAWS test.
6161 */
6162 }
6163
6164 if (len <= tcp_header_len) {
6165 /* Bulk data transfer: sender */
6166 if (len == tcp_header_len) {
6167 /* Predicted packet is in window by definition.
6168 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6169 * Hence, check seq<=rcv_wup reduces to:
6170 */
6171 if (tcp_header_len ==
6172 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6173 tp->rcv_nxt == tp->rcv_wup)
6174 tcp_store_ts_recent(tp);
6175
6176 /* We know that such packets are checksummed
6177 * on entry.
6178 */
6179 tcp_ack(sk, skb, 0);
6180 __kfree_skb(skb);
6181 tcp_data_snd_check(sk);
6182 /* When receiving pure ack in fast path, update
6183 * last ts ecr directly instead of calling
6184 * tcp_rcv_rtt_measure_ts()
6185 */
6186 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6187 return;
6188 } else { /* Header too small */
6189 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6190 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6191 goto discard;
6192 }
6193 } else {
6194 int eaten = 0;
6195 bool fragstolen = false;
6196
6197 if (tcp_checksum_complete(skb))
6198 goto csum_error;
6199
6200 if ((int)skb->truesize > sk->sk_forward_alloc)
6201 goto step5;
6202
6203 /* Predicted packet is in window by definition.
6204 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6205 * Hence, check seq<=rcv_wup reduces to:
6206 */
6207 if (tcp_header_len ==
6208 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6209 tp->rcv_nxt == tp->rcv_wup)
6210 tcp_store_ts_recent(tp);
6211
6212 tcp_rcv_rtt_measure_ts(sk, skb);
6213
6214 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6215
6216 /* Bulk data transfer: receiver */
6217 tcp_cleanup_skb(skb);
6218 __skb_pull(skb, tcp_header_len);
6219 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6220
6221 tcp_event_data_recv(sk, skb);
6222
6223 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6224 /* Well, only one small jumplet in fast path... */
6225 tcp_ack(sk, skb, FLAG_DATA);
6226 tcp_data_snd_check(sk);
6227 if (!inet_csk_ack_scheduled(sk))
6228 goto no_ack;
6229 } else {
6230 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6231 }
6232
6233 __tcp_ack_snd_check(sk, 0);
6234no_ack:
6235 if (eaten)
6236 kfree_skb_partial(skb, fragstolen);
6237 tcp_data_ready(sk);
6238 return;
6239 }
6240 }
6241
6242slow_path:
6243 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6244 goto csum_error;
6245
6246 if (!th->ack && !th->rst && !th->syn) {
6247 reason = SKB_DROP_REASON_TCP_FLAGS;
6248 goto discard;
6249 }
6250
6251 /*
6252 * Standard slow path.
6253 */
6254
6255 if (!tcp_validate_incoming(sk, skb, th, 1))
6256 return;
6257
6258step5:
6259 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6260 if ((int)reason < 0) {
6261 reason = -reason;
6262 goto discard;
6263 }
6264 tcp_rcv_rtt_measure_ts(sk, skb);
6265
6266 /* Process urgent data. */
6267 tcp_urg(sk, skb, th);
6268
6269 /* step 7: process the segment text */
6270 tcp_data_queue(sk, skb);
6271
6272 tcp_data_snd_check(sk);
6273 tcp_ack_snd_check(sk);
6274 return;
6275
6276csum_error:
6277 reason = SKB_DROP_REASON_TCP_CSUM;
6278 trace_tcp_bad_csum(skb);
6279 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6280 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6281
6282discard:
6283 tcp_drop_reason(sk, skb, reason);
6284}
6285EXPORT_SYMBOL(tcp_rcv_established);
6286
6287void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6288{
6289 struct inet_connection_sock *icsk = inet_csk(sk);
6290 struct tcp_sock *tp = tcp_sk(sk);
6291
6292 tcp_mtup_init(sk);
6293 icsk->icsk_af_ops->rebuild_header(sk);
6294 tcp_init_metrics(sk);
6295
6296 /* Initialize the congestion window to start the transfer.
6297 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6298 * retransmitted. In light of RFC6298 more aggressive 1sec
6299 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6300 * retransmission has occurred.
6301 */
6302 if (tp->total_retrans > 1 && tp->undo_marker)
6303 tcp_snd_cwnd_set(tp, 1);
6304 else
6305 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6306 tp->snd_cwnd_stamp = tcp_jiffies32;
6307
6308 bpf_skops_established(sk, bpf_op, skb);
6309 /* Initialize congestion control unless BPF initialized it already: */
6310 if (!icsk->icsk_ca_initialized)
6311 tcp_init_congestion_control(sk);
6312 tcp_init_buffer_space(sk);
6313}
6314
6315void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6316{
6317 struct tcp_sock *tp = tcp_sk(sk);
6318 struct inet_connection_sock *icsk = inet_csk(sk);
6319
6320 tcp_ao_finish_connect(sk, skb);
6321 tcp_set_state(sk, TCP_ESTABLISHED);
6322 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6323
6324 if (skb) {
6325 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6326 security_inet_conn_established(sk, skb);
6327 sk_mark_napi_id(sk, skb);
6328 }
6329
6330 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6331
6332 /* Prevent spurious tcp_cwnd_restart() on first data
6333 * packet.
6334 */
6335 tp->lsndtime = tcp_jiffies32;
6336
6337 if (sock_flag(sk, SOCK_KEEPOPEN))
6338 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6339
6340 if (!tp->rx_opt.snd_wscale)
6341 __tcp_fast_path_on(tp, tp->snd_wnd);
6342 else
6343 tp->pred_flags = 0;
6344}
6345
6346static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6347 struct tcp_fastopen_cookie *cookie)
6348{
6349 struct tcp_sock *tp = tcp_sk(sk);
6350 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6351 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6352 bool syn_drop = false;
6353
6354 if (mss == tp->rx_opt.user_mss) {
6355 struct tcp_options_received opt;
6356
6357 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6358 tcp_clear_options(&opt);
6359 opt.user_mss = opt.mss_clamp = 0;
6360 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6361 mss = opt.mss_clamp;
6362 }
6363
6364 if (!tp->syn_fastopen) {
6365 /* Ignore an unsolicited cookie */
6366 cookie->len = -1;
6367 } else if (tp->total_retrans) {
6368 /* SYN timed out and the SYN-ACK neither has a cookie nor
6369 * acknowledges data. Presumably the remote received only
6370 * the retransmitted (regular) SYNs: either the original
6371 * SYN-data or the corresponding SYN-ACK was dropped.
6372 */
6373 syn_drop = (cookie->len < 0 && data);
6374 } else if (cookie->len < 0 && !tp->syn_data) {
6375 /* We requested a cookie but didn't get it. If we did not use
6376 * the (old) exp opt format then try so next time (try_exp=1).
6377 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6378 */
6379 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6380 }
6381
6382 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6383
6384 if (data) { /* Retransmit unacked data in SYN */
6385 if (tp->total_retrans)
6386 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6387 else
6388 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6389 skb_rbtree_walk_from(data)
6390 tcp_mark_skb_lost(sk, data);
6391 tcp_non_congestion_loss_retransmit(sk);
6392 NET_INC_STATS(sock_net(sk),
6393 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6394 return true;
6395 }
6396 tp->syn_data_acked = tp->syn_data;
6397 if (tp->syn_data_acked) {
6398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6399 /* SYN-data is counted as two separate packets in tcp_ack() */
6400 if (tp->delivered > 1)
6401 --tp->delivered;
6402 }
6403
6404 tcp_fastopen_add_skb(sk, synack);
6405
6406 return false;
6407}
6408
6409static void smc_check_reset_syn(struct tcp_sock *tp)
6410{
6411#if IS_ENABLED(CONFIG_SMC)
6412 if (static_branch_unlikely(&tcp_have_smc)) {
6413 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6414 tp->syn_smc = 0;
6415 }
6416#endif
6417}
6418
6419static void tcp_try_undo_spurious_syn(struct sock *sk)
6420{
6421 struct tcp_sock *tp = tcp_sk(sk);
6422 u32 syn_stamp;
6423
6424 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6425 * spurious if the ACK's timestamp option echo value matches the
6426 * original SYN timestamp.
6427 */
6428 syn_stamp = tp->retrans_stamp;
6429 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6430 syn_stamp == tp->rx_opt.rcv_tsecr)
6431 tp->undo_marker = 0;
6432}
6433
6434static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6435 const struct tcphdr *th)
6436{
6437 struct inet_connection_sock *icsk = inet_csk(sk);
6438 struct tcp_sock *tp = tcp_sk(sk);
6439 struct tcp_fastopen_cookie foc = { .len = -1 };
6440 int saved_clamp = tp->rx_opt.mss_clamp;
6441 bool fastopen_fail;
6442 SKB_DR(reason);
6443
6444 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6445 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6446 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6447
6448 if (th->ack) {
6449 /* rfc793:
6450 * "If the state is SYN-SENT then
6451 * first check the ACK bit
6452 * If the ACK bit is set
6453 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6454 * a reset (unless the RST bit is set, if so drop
6455 * the segment and return)"
6456 */
6457 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6458 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6459 /* Previous FIN/ACK or RST/ACK might be ignored. */
6460 if (icsk->icsk_retransmits == 0)
6461 inet_csk_reset_xmit_timer(sk,
6462 ICSK_TIME_RETRANS,
6463 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6464 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6465 goto reset_and_undo;
6466 }
6467
6468 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6469 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6470 tcp_time_stamp_ts(tp))) {
6471 NET_INC_STATS(sock_net(sk),
6472 LINUX_MIB_PAWSACTIVEREJECTED);
6473 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6474 goto reset_and_undo;
6475 }
6476
6477 /* Now ACK is acceptable.
6478 *
6479 * "If the RST bit is set
6480 * If the ACK was acceptable then signal the user "error:
6481 * connection reset", drop the segment, enter CLOSED state,
6482 * delete TCB, and return."
6483 */
6484
6485 if (th->rst) {
6486 tcp_reset(sk, skb);
6487consume:
6488 __kfree_skb(skb);
6489 return 0;
6490 }
6491
6492 /* rfc793:
6493 * "fifth, if neither of the SYN or RST bits is set then
6494 * drop the segment and return."
6495 *
6496 * See note below!
6497 * --ANK(990513)
6498 */
6499 if (!th->syn) {
6500 SKB_DR_SET(reason, TCP_FLAGS);
6501 goto discard_and_undo;
6502 }
6503 /* rfc793:
6504 * "If the SYN bit is on ...
6505 * are acceptable then ...
6506 * (our SYN has been ACKed), change the connection
6507 * state to ESTABLISHED..."
6508 */
6509
6510 tcp_ecn_rcv_synack(tp, th);
6511
6512 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6513 tcp_try_undo_spurious_syn(sk);
6514 tcp_ack(sk, skb, FLAG_SLOWPATH);
6515
6516 /* Ok.. it's good. Set up sequence numbers and
6517 * move to established.
6518 */
6519 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6520 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6521
6522 /* RFC1323: The window in SYN & SYN/ACK segments is
6523 * never scaled.
6524 */
6525 tp->snd_wnd = ntohs(th->window);
6526
6527 if (!tp->rx_opt.wscale_ok) {
6528 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6529 WRITE_ONCE(tp->window_clamp,
6530 min(tp->window_clamp, 65535U));
6531 }
6532
6533 if (tp->rx_opt.saw_tstamp) {
6534 tp->rx_opt.tstamp_ok = 1;
6535 tp->tcp_header_len =
6536 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6537 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6538 tcp_store_ts_recent(tp);
6539 } else {
6540 tp->tcp_header_len = sizeof(struct tcphdr);
6541 }
6542
6543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6544 tcp_initialize_rcv_mss(sk);
6545
6546 /* Remember, tcp_poll() does not lock socket!
6547 * Change state from SYN-SENT only after copied_seq
6548 * is initialized. */
6549 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6550
6551 smc_check_reset_syn(tp);
6552
6553 smp_mb();
6554
6555 tcp_finish_connect(sk, skb);
6556
6557 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6558 tcp_rcv_fastopen_synack(sk, skb, &foc);
6559
6560 if (!sock_flag(sk, SOCK_DEAD)) {
6561 sk->sk_state_change(sk);
6562 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6563 }
6564 if (fastopen_fail)
6565 return -1;
6566 if (sk->sk_write_pending ||
6567 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6568 inet_csk_in_pingpong_mode(sk)) {
6569 /* Save one ACK. Data will be ready after
6570 * several ticks, if write_pending is set.
6571 *
6572 * It may be deleted, but with this feature tcpdumps
6573 * look so _wonderfully_ clever, that I was not able
6574 * to stand against the temptation 8) --ANK
6575 */
6576 inet_csk_schedule_ack(sk);
6577 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6578 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6579 TCP_DELACK_MAX, TCP_RTO_MAX);
6580 goto consume;
6581 }
6582 tcp_send_ack(sk);
6583 return -1;
6584 }
6585
6586 /* No ACK in the segment */
6587
6588 if (th->rst) {
6589 /* rfc793:
6590 * "If the RST bit is set
6591 *
6592 * Otherwise (no ACK) drop the segment and return."
6593 */
6594 SKB_DR_SET(reason, TCP_RESET);
6595 goto discard_and_undo;
6596 }
6597
6598 /* PAWS check. */
6599 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6600 tcp_paws_reject(&tp->rx_opt, 0)) {
6601 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6602 goto discard_and_undo;
6603 }
6604 if (th->syn) {
6605 /* We see SYN without ACK. It is attempt of
6606 * simultaneous connect with crossed SYNs.
6607 * Particularly, it can be connect to self.
6608 */
6609#ifdef CONFIG_TCP_AO
6610 struct tcp_ao_info *ao;
6611
6612 ao = rcu_dereference_protected(tp->ao_info,
6613 lockdep_sock_is_held(sk));
6614 if (ao) {
6615 WRITE_ONCE(ao->risn, th->seq);
6616 ao->rcv_sne = 0;
6617 }
6618#endif
6619 tcp_set_state(sk, TCP_SYN_RECV);
6620
6621 if (tp->rx_opt.saw_tstamp) {
6622 tp->rx_opt.tstamp_ok = 1;
6623 tcp_store_ts_recent(tp);
6624 tp->tcp_header_len =
6625 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6626 } else {
6627 tp->tcp_header_len = sizeof(struct tcphdr);
6628 }
6629
6630 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6631 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6632 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6633
6634 /* RFC1323: The window in SYN & SYN/ACK segments is
6635 * never scaled.
6636 */
6637 tp->snd_wnd = ntohs(th->window);
6638 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6639 tp->max_window = tp->snd_wnd;
6640
6641 tcp_ecn_rcv_syn(tp, th);
6642
6643 tcp_mtup_init(sk);
6644 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6645 tcp_initialize_rcv_mss(sk);
6646
6647 tcp_send_synack(sk);
6648#if 0
6649 /* Note, we could accept data and URG from this segment.
6650 * There are no obstacles to make this (except that we must
6651 * either change tcp_recvmsg() to prevent it from returning data
6652 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6653 *
6654 * However, if we ignore data in ACKless segments sometimes,
6655 * we have no reasons to accept it sometimes.
6656 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6657 * is not flawless. So, discard packet for sanity.
6658 * Uncomment this return to process the data.
6659 */
6660 return -1;
6661#else
6662 goto consume;
6663#endif
6664 }
6665 /* "fifth, if neither of the SYN or RST bits is set then
6666 * drop the segment and return."
6667 */
6668
6669discard_and_undo:
6670 tcp_clear_options(&tp->rx_opt);
6671 tp->rx_opt.mss_clamp = saved_clamp;
6672 tcp_drop_reason(sk, skb, reason);
6673 return 0;
6674
6675reset_and_undo:
6676 tcp_clear_options(&tp->rx_opt);
6677 tp->rx_opt.mss_clamp = saved_clamp;
6678 /* we can reuse/return @reason to its caller to handle the exception */
6679 return reason;
6680}
6681
6682static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6683{
6684 struct tcp_sock *tp = tcp_sk(sk);
6685 struct request_sock *req;
6686
6687 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6688 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6689 */
6690 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6691 tcp_try_undo_recovery(sk);
6692
6693 tcp_update_rto_time(tp);
6694 inet_csk(sk)->icsk_retransmits = 0;
6695 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6696 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6697 * need to zero retrans_stamp here to prevent spurious
6698 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6699 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6700 * set entering CA_Recovery, for correct retransmits_timed_out() and
6701 * undo behavior.
6702 */
6703 tcp_retrans_stamp_cleanup(sk);
6704
6705 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6706 * we no longer need req so release it.
6707 */
6708 req = rcu_dereference_protected(tp->fastopen_rsk,
6709 lockdep_sock_is_held(sk));
6710 reqsk_fastopen_remove(sk, req, false);
6711
6712 /* Re-arm the timer because data may have been sent out.
6713 * This is similar to the regular data transmission case
6714 * when new data has just been ack'ed.
6715 *
6716 * (TFO) - we could try to be more aggressive and
6717 * retransmitting any data sooner based on when they
6718 * are sent out.
6719 */
6720 tcp_rearm_rto(sk);
6721}
6722
6723/*
6724 * This function implements the receiving procedure of RFC 793 for
6725 * all states except ESTABLISHED and TIME_WAIT.
6726 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6727 * address independent.
6728 */
6729
6730enum skb_drop_reason
6731tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6732{
6733 struct tcp_sock *tp = tcp_sk(sk);
6734 struct inet_connection_sock *icsk = inet_csk(sk);
6735 const struct tcphdr *th = tcp_hdr(skb);
6736 struct request_sock *req;
6737 int queued = 0;
6738 SKB_DR(reason);
6739
6740 switch (sk->sk_state) {
6741 case TCP_CLOSE:
6742 SKB_DR_SET(reason, TCP_CLOSE);
6743 goto discard;
6744
6745 case TCP_LISTEN:
6746 if (th->ack)
6747 return SKB_DROP_REASON_TCP_FLAGS;
6748
6749 if (th->rst) {
6750 SKB_DR_SET(reason, TCP_RESET);
6751 goto discard;
6752 }
6753 if (th->syn) {
6754 if (th->fin) {
6755 SKB_DR_SET(reason, TCP_FLAGS);
6756 goto discard;
6757 }
6758 /* It is possible that we process SYN packets from backlog,
6759 * so we need to make sure to disable BH and RCU right there.
6760 */
6761 rcu_read_lock();
6762 local_bh_disable();
6763 icsk->icsk_af_ops->conn_request(sk, skb);
6764 local_bh_enable();
6765 rcu_read_unlock();
6766
6767 consume_skb(skb);
6768 return 0;
6769 }
6770 SKB_DR_SET(reason, TCP_FLAGS);
6771 goto discard;
6772
6773 case TCP_SYN_SENT:
6774 tp->rx_opt.saw_tstamp = 0;
6775 tcp_mstamp_refresh(tp);
6776 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6777 if (queued >= 0)
6778 return queued;
6779
6780 /* Do step6 onward by hand. */
6781 tcp_urg(sk, skb, th);
6782 __kfree_skb(skb);
6783 tcp_data_snd_check(sk);
6784 return 0;
6785 }
6786
6787 tcp_mstamp_refresh(tp);
6788 tp->rx_opt.saw_tstamp = 0;
6789 req = rcu_dereference_protected(tp->fastopen_rsk,
6790 lockdep_sock_is_held(sk));
6791 if (req) {
6792 bool req_stolen;
6793
6794 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6795 sk->sk_state != TCP_FIN_WAIT1);
6796
6797 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6798 SKB_DR_SET(reason, TCP_FASTOPEN);
6799 goto discard;
6800 }
6801 }
6802
6803 if (!th->ack && !th->rst && !th->syn) {
6804 SKB_DR_SET(reason, TCP_FLAGS);
6805 goto discard;
6806 }
6807 if (!tcp_validate_incoming(sk, skb, th, 0))
6808 return 0;
6809
6810 /* step 5: check the ACK field */
6811 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6812 FLAG_UPDATE_TS_RECENT |
6813 FLAG_NO_CHALLENGE_ACK);
6814
6815 if ((int)reason <= 0) {
6816 if (sk->sk_state == TCP_SYN_RECV) {
6817 /* send one RST */
6818 if (!reason)
6819 return SKB_DROP_REASON_TCP_OLD_ACK;
6820 return -reason;
6821 }
6822 /* accept old ack during closing */
6823 if ((int)reason < 0) {
6824 tcp_send_challenge_ack(sk);
6825 reason = -reason;
6826 goto discard;
6827 }
6828 }
6829 SKB_DR_SET(reason, NOT_SPECIFIED);
6830 switch (sk->sk_state) {
6831 case TCP_SYN_RECV:
6832 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6833 if (!tp->srtt_us)
6834 tcp_synack_rtt_meas(sk, req);
6835
6836 if (req) {
6837 tcp_rcv_synrecv_state_fastopen(sk);
6838 } else {
6839 tcp_try_undo_spurious_syn(sk);
6840 tp->retrans_stamp = 0;
6841 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6842 skb);
6843 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6844 }
6845 tcp_ao_established(sk);
6846 smp_mb();
6847 tcp_set_state(sk, TCP_ESTABLISHED);
6848 sk->sk_state_change(sk);
6849
6850 /* Note, that this wakeup is only for marginal crossed SYN case.
6851 * Passively open sockets are not waked up, because
6852 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6853 */
6854 if (sk->sk_socket)
6855 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6856
6857 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6858 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6859 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6860
6861 if (tp->rx_opt.tstamp_ok)
6862 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6863
6864 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6865 tcp_update_pacing_rate(sk);
6866
6867 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6868 tp->lsndtime = tcp_jiffies32;
6869
6870 tcp_initialize_rcv_mss(sk);
6871 tcp_fast_path_on(tp);
6872 if (sk->sk_shutdown & SEND_SHUTDOWN)
6873 tcp_shutdown(sk, SEND_SHUTDOWN);
6874 break;
6875
6876 case TCP_FIN_WAIT1: {
6877 int tmo;
6878
6879 if (req)
6880 tcp_rcv_synrecv_state_fastopen(sk);
6881
6882 if (tp->snd_una != tp->write_seq)
6883 break;
6884
6885 tcp_set_state(sk, TCP_FIN_WAIT2);
6886 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6887
6888 sk_dst_confirm(sk);
6889
6890 if (!sock_flag(sk, SOCK_DEAD)) {
6891 /* Wake up lingering close() */
6892 sk->sk_state_change(sk);
6893 break;
6894 }
6895
6896 if (READ_ONCE(tp->linger2) < 0) {
6897 tcp_done(sk);
6898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6899 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6900 }
6901 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6902 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6903 /* Receive out of order FIN after close() */
6904 if (tp->syn_fastopen && th->fin)
6905 tcp_fastopen_active_disable(sk);
6906 tcp_done(sk);
6907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6908 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6909 }
6910
6911 tmo = tcp_fin_time(sk);
6912 if (tmo > TCP_TIMEWAIT_LEN) {
6913 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6914 } else if (th->fin || sock_owned_by_user(sk)) {
6915 /* Bad case. We could lose such FIN otherwise.
6916 * It is not a big problem, but it looks confusing
6917 * and not so rare event. We still can lose it now,
6918 * if it spins in bh_lock_sock(), but it is really
6919 * marginal case.
6920 */
6921 inet_csk_reset_keepalive_timer(sk, tmo);
6922 } else {
6923 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6924 goto consume;
6925 }
6926 break;
6927 }
6928
6929 case TCP_CLOSING:
6930 if (tp->snd_una == tp->write_seq) {
6931 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6932 goto consume;
6933 }
6934 break;
6935
6936 case TCP_LAST_ACK:
6937 if (tp->snd_una == tp->write_seq) {
6938 tcp_update_metrics(sk);
6939 tcp_done(sk);
6940 goto consume;
6941 }
6942 break;
6943 }
6944
6945 /* step 6: check the URG bit */
6946 tcp_urg(sk, skb, th);
6947
6948 /* step 7: process the segment text */
6949 switch (sk->sk_state) {
6950 case TCP_CLOSE_WAIT:
6951 case TCP_CLOSING:
6952 case TCP_LAST_ACK:
6953 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6954 /* If a subflow has been reset, the packet should not
6955 * continue to be processed, drop the packet.
6956 */
6957 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6958 goto discard;
6959 break;
6960 }
6961 fallthrough;
6962 case TCP_FIN_WAIT1:
6963 case TCP_FIN_WAIT2:
6964 /* RFC 793 says to queue data in these states,
6965 * RFC 1122 says we MUST send a reset.
6966 * BSD 4.4 also does reset.
6967 */
6968 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6969 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6970 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6971 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6972 tcp_reset(sk, skb);
6973 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6974 }
6975 }
6976 fallthrough;
6977 case TCP_ESTABLISHED:
6978 tcp_data_queue(sk, skb);
6979 queued = 1;
6980 break;
6981 }
6982
6983 /* tcp_data could move socket to TIME-WAIT */
6984 if (sk->sk_state != TCP_CLOSE) {
6985 tcp_data_snd_check(sk);
6986 tcp_ack_snd_check(sk);
6987 }
6988
6989 if (!queued) {
6990discard:
6991 tcp_drop_reason(sk, skb, reason);
6992 }
6993 return 0;
6994
6995consume:
6996 __kfree_skb(skb);
6997 return 0;
6998}
6999EXPORT_SYMBOL(tcp_rcv_state_process);
7000
7001static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7002{
7003 struct inet_request_sock *ireq = inet_rsk(req);
7004
7005 if (family == AF_INET)
7006 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7007 &ireq->ir_rmt_addr, port);
7008#if IS_ENABLED(CONFIG_IPV6)
7009 else if (family == AF_INET6)
7010 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7011 &ireq->ir_v6_rmt_addr, port);
7012#endif
7013}
7014
7015/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7016 *
7017 * If we receive a SYN packet with these bits set, it means a
7018 * network is playing bad games with TOS bits. In order to
7019 * avoid possible false congestion notifications, we disable
7020 * TCP ECN negotiation.
7021 *
7022 * Exception: tcp_ca wants ECN. This is required for DCTCP
7023 * congestion control: Linux DCTCP asserts ECT on all packets,
7024 * including SYN, which is most optimal solution; however,
7025 * others, such as FreeBSD do not.
7026 *
7027 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7028 * set, indicating the use of a future TCP extension (such as AccECN). See
7029 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7030 * extensions.
7031 */
7032static void tcp_ecn_create_request(struct request_sock *req,
7033 const struct sk_buff *skb,
7034 const struct sock *listen_sk,
7035 const struct dst_entry *dst)
7036{
7037 const struct tcphdr *th = tcp_hdr(skb);
7038 const struct net *net = sock_net(listen_sk);
7039 bool th_ecn = th->ece && th->cwr;
7040 bool ect, ecn_ok;
7041 u32 ecn_ok_dst;
7042
7043 if (!th_ecn)
7044 return;
7045
7046 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7047 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7048 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7049
7050 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7051 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7052 tcp_bpf_ca_needs_ecn((struct sock *)req))
7053 inet_rsk(req)->ecn_ok = 1;
7054}
7055
7056static void tcp_openreq_init(struct request_sock *req,
7057 const struct tcp_options_received *rx_opt,
7058 struct sk_buff *skb, const struct sock *sk)
7059{
7060 struct inet_request_sock *ireq = inet_rsk(req);
7061
7062 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7063 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7064 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7065 tcp_rsk(req)->snt_synack = 0;
7066 tcp_rsk(req)->last_oow_ack_time = 0;
7067 req->mss = rx_opt->mss_clamp;
7068 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7069 ireq->tstamp_ok = rx_opt->tstamp_ok;
7070 ireq->sack_ok = rx_opt->sack_ok;
7071 ireq->snd_wscale = rx_opt->snd_wscale;
7072 ireq->wscale_ok = rx_opt->wscale_ok;
7073 ireq->acked = 0;
7074 ireq->ecn_ok = 0;
7075 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7076 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7077 ireq->ir_mark = inet_request_mark(sk, skb);
7078#if IS_ENABLED(CONFIG_SMC)
7079 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7080 tcp_sk(sk)->smc_hs_congested(sk));
7081#endif
7082}
7083
7084/*
7085 * Return true if a syncookie should be sent
7086 */
7087static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7088{
7089 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7090 const char *msg = "Dropping request";
7091 struct net *net = sock_net(sk);
7092 bool want_cookie = false;
7093 u8 syncookies;
7094
7095 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7096
7097#ifdef CONFIG_SYN_COOKIES
7098 if (syncookies) {
7099 msg = "Sending cookies";
7100 want_cookie = true;
7101 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7102 } else
7103#endif
7104 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7105
7106 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7107 xchg(&queue->synflood_warned, 1) == 0) {
7108 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7109 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7110 proto, inet6_rcv_saddr(sk),
7111 sk->sk_num, msg);
7112 } else {
7113 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7114 proto, &sk->sk_rcv_saddr,
7115 sk->sk_num, msg);
7116 }
7117 }
7118
7119 return want_cookie;
7120}
7121
7122static void tcp_reqsk_record_syn(const struct sock *sk,
7123 struct request_sock *req,
7124 const struct sk_buff *skb)
7125{
7126 if (tcp_sk(sk)->save_syn) {
7127 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7128 struct saved_syn *saved_syn;
7129 u32 mac_hdrlen;
7130 void *base;
7131
7132 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7133 base = skb_mac_header(skb);
7134 mac_hdrlen = skb_mac_header_len(skb);
7135 len += mac_hdrlen;
7136 } else {
7137 base = skb_network_header(skb);
7138 mac_hdrlen = 0;
7139 }
7140
7141 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7142 GFP_ATOMIC);
7143 if (saved_syn) {
7144 saved_syn->mac_hdrlen = mac_hdrlen;
7145 saved_syn->network_hdrlen = skb_network_header_len(skb);
7146 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7147 memcpy(saved_syn->data, base, len);
7148 req->saved_syn = saved_syn;
7149 }
7150 }
7151}
7152
7153/* If a SYN cookie is required and supported, returns a clamped MSS value to be
7154 * used for SYN cookie generation.
7155 */
7156u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7157 const struct tcp_request_sock_ops *af_ops,
7158 struct sock *sk, struct tcphdr *th)
7159{
7160 struct tcp_sock *tp = tcp_sk(sk);
7161 u16 mss;
7162
7163 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7164 !inet_csk_reqsk_queue_is_full(sk))
7165 return 0;
7166
7167 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7168 return 0;
7169
7170 if (sk_acceptq_is_full(sk)) {
7171 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7172 return 0;
7173 }
7174
7175 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7176 if (!mss)
7177 mss = af_ops->mss_clamp;
7178
7179 return mss;
7180}
7181EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7182
7183int tcp_conn_request(struct request_sock_ops *rsk_ops,
7184 const struct tcp_request_sock_ops *af_ops,
7185 struct sock *sk, struct sk_buff *skb)
7186{
7187 struct tcp_fastopen_cookie foc = { .len = -1 };
7188 struct tcp_options_received tmp_opt;
7189 struct tcp_sock *tp = tcp_sk(sk);
7190 struct net *net = sock_net(sk);
7191 struct sock *fastopen_sk = NULL;
7192 struct request_sock *req;
7193 bool want_cookie = false;
7194 struct dst_entry *dst;
7195 struct flowi fl;
7196 u8 syncookies;
7197 u32 isn;
7198
7199#ifdef CONFIG_TCP_AO
7200 const struct tcp_ao_hdr *aoh;
7201#endif
7202
7203 isn = __this_cpu_read(tcp_tw_isn);
7204 if (isn) {
7205 /* TW buckets are converted to open requests without
7206 * limitations, they conserve resources and peer is
7207 * evidently real one.
7208 */
7209 __this_cpu_write(tcp_tw_isn, 0);
7210 } else {
7211 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7212
7213 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7214 want_cookie = tcp_syn_flood_action(sk,
7215 rsk_ops->slab_name);
7216 if (!want_cookie)
7217 goto drop;
7218 }
7219 }
7220
7221 if (sk_acceptq_is_full(sk)) {
7222 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7223 goto drop;
7224 }
7225
7226 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7227 if (!req)
7228 goto drop;
7229
7230 req->syncookie = want_cookie;
7231 tcp_rsk(req)->af_specific = af_ops;
7232 tcp_rsk(req)->ts_off = 0;
7233 tcp_rsk(req)->req_usec_ts = false;
7234#if IS_ENABLED(CONFIG_MPTCP)
7235 tcp_rsk(req)->is_mptcp = 0;
7236#endif
7237
7238 tcp_clear_options(&tmp_opt);
7239 tmp_opt.mss_clamp = af_ops->mss_clamp;
7240 tmp_opt.user_mss = tp->rx_opt.user_mss;
7241 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7242 want_cookie ? NULL : &foc);
7243
7244 if (want_cookie && !tmp_opt.saw_tstamp)
7245 tcp_clear_options(&tmp_opt);
7246
7247 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7248 tmp_opt.smc_ok = 0;
7249
7250 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7251 tcp_openreq_init(req, &tmp_opt, skb, sk);
7252 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7253
7254 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7255 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7256
7257 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7258 if (!dst)
7259 goto drop_and_free;
7260
7261 if (tmp_opt.tstamp_ok) {
7262 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7263 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7264 }
7265 if (!want_cookie && !isn) {
7266 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7267
7268 /* Kill the following clause, if you dislike this way. */
7269 if (!syncookies &&
7270 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7271 (max_syn_backlog >> 2)) &&
7272 !tcp_peer_is_proven(req, dst)) {
7273 /* Without syncookies last quarter of
7274 * backlog is filled with destinations,
7275 * proven to be alive.
7276 * It means that we continue to communicate
7277 * to destinations, already remembered
7278 * to the moment of synflood.
7279 */
7280 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7281 rsk_ops->family);
7282 goto drop_and_release;
7283 }
7284
7285 isn = af_ops->init_seq(skb);
7286 }
7287
7288 tcp_ecn_create_request(req, skb, sk, dst);
7289
7290 if (want_cookie) {
7291 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7292 if (!tmp_opt.tstamp_ok)
7293 inet_rsk(req)->ecn_ok = 0;
7294 }
7295
7296#ifdef CONFIG_TCP_AO
7297 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7298 goto drop_and_release; /* Invalid TCP options */
7299 if (aoh) {
7300 tcp_rsk(req)->used_tcp_ao = true;
7301 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7302 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7303
7304 } else {
7305 tcp_rsk(req)->used_tcp_ao = false;
7306 }
7307#endif
7308 tcp_rsk(req)->snt_isn = isn;
7309 tcp_rsk(req)->txhash = net_tx_rndhash();
7310 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7311 tcp_openreq_init_rwin(req, sk, dst);
7312 sk_rx_queue_set(req_to_sk(req), skb);
7313 if (!want_cookie) {
7314 tcp_reqsk_record_syn(sk, req, skb);
7315 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7316 }
7317 if (fastopen_sk) {
7318 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7319 &foc, TCP_SYNACK_FASTOPEN, skb);
7320 /* Add the child socket directly into the accept queue */
7321 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7322 reqsk_fastopen_remove(fastopen_sk, req, false);
7323 bh_unlock_sock(fastopen_sk);
7324 sock_put(fastopen_sk);
7325 goto drop_and_free;
7326 }
7327 sk->sk_data_ready(sk);
7328 bh_unlock_sock(fastopen_sk);
7329 sock_put(fastopen_sk);
7330 } else {
7331 tcp_rsk(req)->tfo_listener = false;
7332 if (!want_cookie) {
7333 req->timeout = tcp_timeout_init((struct sock *)req);
7334 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7335 req->timeout))) {
7336 reqsk_free(req);
7337 dst_release(dst);
7338 return 0;
7339 }
7340
7341 }
7342 af_ops->send_synack(sk, dst, &fl, req, &foc,
7343 !want_cookie ? TCP_SYNACK_NORMAL :
7344 TCP_SYNACK_COOKIE,
7345 skb);
7346 if (want_cookie) {
7347 reqsk_free(req);
7348 return 0;
7349 }
7350 }
7351 reqsk_put(req);
7352 return 0;
7353
7354drop_and_release:
7355 dst_release(dst);
7356drop_and_free:
7357 __reqsk_free(req);
7358drop:
7359 tcp_listendrop(sk);
7360 return 0;
7361}
7362EXPORT_SYMBOL(tcp_conn_request);