Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2017 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap_btree.h"
  17#include "xfs_trace.h"
  18#include "xfs_rmap.h"
  19#include "xfs_alloc.h"
  20#include "xfs_bit.h"
  21#include <linux/fsmap.h>
  22#include "xfs_fsmap.h"
  23#include "xfs_refcount.h"
  24#include "xfs_refcount_btree.h"
  25#include "xfs_alloc_btree.h"
  26#include "xfs_rtbitmap.h"
  27#include "xfs_ag.h"
  28#include "xfs_rtgroup.h"
  29
  30/* Convert an xfs_fsmap to an fsmap. */
  31static void
  32xfs_fsmap_from_internal(
  33	struct fsmap		*dest,
  34	struct xfs_fsmap	*src)
  35{
  36	dest->fmr_device = src->fmr_device;
  37	dest->fmr_flags = src->fmr_flags;
  38	dest->fmr_physical = BBTOB(src->fmr_physical);
  39	dest->fmr_owner = src->fmr_owner;
  40	dest->fmr_offset = BBTOB(src->fmr_offset);
  41	dest->fmr_length = BBTOB(src->fmr_length);
  42	dest->fmr_reserved[0] = 0;
  43	dest->fmr_reserved[1] = 0;
  44	dest->fmr_reserved[2] = 0;
  45}
  46
  47/* Convert an fsmap to an xfs_fsmap. */
  48static void
  49xfs_fsmap_to_internal(
  50	struct xfs_fsmap	*dest,
  51	struct fsmap		*src)
  52{
  53	dest->fmr_device = src->fmr_device;
  54	dest->fmr_flags = src->fmr_flags;
  55	dest->fmr_physical = BTOBBT(src->fmr_physical);
  56	dest->fmr_owner = src->fmr_owner;
  57	dest->fmr_offset = BTOBBT(src->fmr_offset);
  58	dest->fmr_length = BTOBBT(src->fmr_length);
  59}
  60
  61/* Convert an fsmap owner into an rmapbt owner. */
  62static int
  63xfs_fsmap_owner_to_rmap(
  64	struct xfs_rmap_irec	*dest,
  65	const struct xfs_fsmap	*src)
  66{
  67	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
  68		dest->rm_owner = src->fmr_owner;
  69		return 0;
  70	}
  71
  72	switch (src->fmr_owner) {
  73	case 0:			/* "lowest owner id possible" */
  74	case -1ULL:		/* "highest owner id possible" */
  75		dest->rm_owner = src->fmr_owner;
  76		break;
  77	case XFS_FMR_OWN_FREE:
  78		dest->rm_owner = XFS_RMAP_OWN_NULL;
  79		break;
  80	case XFS_FMR_OWN_UNKNOWN:
  81		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
  82		break;
  83	case XFS_FMR_OWN_FS:
  84		dest->rm_owner = XFS_RMAP_OWN_FS;
  85		break;
  86	case XFS_FMR_OWN_LOG:
  87		dest->rm_owner = XFS_RMAP_OWN_LOG;
  88		break;
  89	case XFS_FMR_OWN_AG:
  90		dest->rm_owner = XFS_RMAP_OWN_AG;
  91		break;
  92	case XFS_FMR_OWN_INOBT:
  93		dest->rm_owner = XFS_RMAP_OWN_INOBT;
  94		break;
  95	case XFS_FMR_OWN_INODES:
  96		dest->rm_owner = XFS_RMAP_OWN_INODES;
  97		break;
  98	case XFS_FMR_OWN_REFC:
  99		dest->rm_owner = XFS_RMAP_OWN_REFC;
 100		break;
 101	case XFS_FMR_OWN_COW:
 102		dest->rm_owner = XFS_RMAP_OWN_COW;
 103		break;
 104	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
 105		/* fall through */
 106	default:
 107		return -EINVAL;
 108	}
 109	return 0;
 110}
 111
 112/* Convert an rmapbt owner into an fsmap owner. */
 113static int
 114xfs_fsmap_owner_from_frec(
 115	struct xfs_fsmap		*dest,
 116	const struct xfs_fsmap_irec	*frec)
 117{
 118	dest->fmr_flags = 0;
 119	if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) {
 120		dest->fmr_owner = frec->owner;
 121		return 0;
 122	}
 123	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
 124
 125	switch (frec->owner) {
 126	case XFS_RMAP_OWN_FS:
 127		dest->fmr_owner = XFS_FMR_OWN_FS;
 128		break;
 129	case XFS_RMAP_OWN_LOG:
 130		dest->fmr_owner = XFS_FMR_OWN_LOG;
 131		break;
 132	case XFS_RMAP_OWN_AG:
 133		dest->fmr_owner = XFS_FMR_OWN_AG;
 134		break;
 135	case XFS_RMAP_OWN_INOBT:
 136		dest->fmr_owner = XFS_FMR_OWN_INOBT;
 137		break;
 138	case XFS_RMAP_OWN_INODES:
 139		dest->fmr_owner = XFS_FMR_OWN_INODES;
 140		break;
 141	case XFS_RMAP_OWN_REFC:
 142		dest->fmr_owner = XFS_FMR_OWN_REFC;
 143		break;
 144	case XFS_RMAP_OWN_COW:
 145		dest->fmr_owner = XFS_FMR_OWN_COW;
 146		break;
 147	case XFS_RMAP_OWN_NULL:	/* "free" */
 148		dest->fmr_owner = XFS_FMR_OWN_FREE;
 149		break;
 150	default:
 151		ASSERT(0);
 152		return -EFSCORRUPTED;
 153	}
 154	return 0;
 155}
 156
 157/* getfsmap query state */
 158struct xfs_getfsmap_info {
 159	struct xfs_fsmap_head	*head;
 160	struct fsmap		*fsmap_recs;	/* mapping records */
 161	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
 162	struct xfs_group	*group;		/* group info, if applicable */
 163	xfs_daddr_t		next_daddr;	/* next daddr we expect */
 164	/* daddr of low fsmap key when we're using the rtbitmap */
 165	xfs_daddr_t		low_daddr;
 166	/* daddr of high fsmap key, or the last daddr on the device */
 167	xfs_daddr_t		end_daddr;
 168	u64			missing_owner;	/* owner of holes */
 169	u32			dev;		/* device id */
 170	/*
 171	 * Low rmap key for the query.  If low.rm_blockcount is nonzero, this
 172	 * is the second (or later) call to retrieve the recordset in pieces.
 173	 * xfs_getfsmap_rec_before_start will compare all records retrieved
 174	 * by the rmapbt query to filter out any records that start before
 175	 * the last record.
 176	 */
 177	struct xfs_rmap_irec	low;
 178	struct xfs_rmap_irec	high;		/* high rmap key */
 179	bool			last;		/* last extent? */
 180};
 181
 182/* Associate a device with a getfsmap handler. */
 183struct xfs_getfsmap_dev {
 184	u32			dev;
 185	int			(*fn)(struct xfs_trans *tp,
 186				      const struct xfs_fsmap *keys,
 187				      struct xfs_getfsmap_info *info);
 188	sector_t		nr_sectors;
 189};
 190
 191/* Compare two getfsmap device handlers. */
 192static int
 193xfs_getfsmap_dev_compare(
 194	const void			*p1,
 195	const void			*p2)
 196{
 197	const struct xfs_getfsmap_dev	*d1 = p1;
 198	const struct xfs_getfsmap_dev	*d2 = p2;
 199
 200	return d1->dev - d2->dev;
 201}
 202
 203/* Decide if this mapping is shared. */
 204STATIC int
 205xfs_getfsmap_is_shared(
 206	struct xfs_trans		*tp,
 207	struct xfs_getfsmap_info	*info,
 208	const struct xfs_fsmap_irec	*frec,
 209	bool				*stat)
 210{
 211	struct xfs_mount		*mp = tp->t_mountp;
 212	struct xfs_btree_cur		*cur;
 213	xfs_agblock_t			fbno;
 214	xfs_extlen_t			flen;
 215	int				error;
 216
 217	*stat = false;
 218	if (!xfs_has_reflink(mp))
 219		return 0;
 220	/* rt files will have no perag structure */
 221	if (!info->group)
 222		return 0;
 223
 224	/* Are there any shared blocks here? */
 225	flen = 0;
 226	cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
 227			to_perag(info->group));
 228
 229	error = xfs_refcount_find_shared(cur, frec->rec_key,
 230			XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen,
 231			false);
 232
 233	xfs_btree_del_cursor(cur, error);
 234	if (error)
 235		return error;
 236
 237	*stat = flen > 0;
 238	return 0;
 239}
 240
 241static inline void
 242xfs_getfsmap_format(
 243	struct xfs_mount		*mp,
 244	struct xfs_fsmap		*xfm,
 245	struct xfs_getfsmap_info	*info)
 246{
 247	struct fsmap			*rec;
 248
 249	trace_xfs_getfsmap_mapping(mp, xfm);
 250
 251	rec = &info->fsmap_recs[info->head->fmh_entries++];
 252	xfs_fsmap_from_internal(rec, xfm);
 253}
 254
 255static inline bool
 256xfs_getfsmap_frec_before_start(
 257	struct xfs_getfsmap_info	*info,
 258	const struct xfs_fsmap_irec	*frec)
 259{
 260	if (info->low_daddr != XFS_BUF_DADDR_NULL)
 261		return frec->start_daddr < info->low_daddr;
 262	if (info->low.rm_blockcount) {
 263		struct xfs_rmap_irec	rec = {
 264			.rm_startblock	= frec->rec_key,
 265			.rm_owner	= frec->owner,
 266			.rm_flags	= frec->rm_flags,
 267		};
 268
 269		return xfs_rmap_compare(&rec, &info->low) < 0;
 270	}
 271
 272	return false;
 273}
 274
 275/*
 276 * Format a reverse mapping for getfsmap, having translated rm_startblock
 277 * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the
 278 * length could be larger than rm_blockcount in struct xfs_rmap_irec.
 279 */
 280STATIC int
 281xfs_getfsmap_helper(
 282	struct xfs_trans		*tp,
 283	struct xfs_getfsmap_info	*info,
 284	const struct xfs_fsmap_irec	*frec)
 285{
 286	struct xfs_fsmap		fmr;
 287	struct xfs_mount		*mp = tp->t_mountp;
 288	bool				shared;
 289	int				error = 0;
 290
 291	if (fatal_signal_pending(current))
 292		return -EINTR;
 293
 294	/*
 295	 * Filter out records that start before our startpoint, if the
 296	 * caller requested that.
 297	 */
 298	if (xfs_getfsmap_frec_before_start(info, frec))
 299		goto out;
 300
 301	/* Are we just counting mappings? */
 302	if (info->head->fmh_count == 0) {
 303		if (info->head->fmh_entries == UINT_MAX)
 304			return -ECANCELED;
 305
 306		if (frec->start_daddr > info->next_daddr)
 307			info->head->fmh_entries++;
 308
 309		if (info->last)
 310			return 0;
 311
 312		info->head->fmh_entries++;
 313		goto out;
 314	}
 315
 316	/*
 317	 * If the record starts past the last physical block we saw,
 318	 * then we've found a gap.  Report the gap as being owned by
 319	 * whatever the caller specified is the missing owner.
 320	 */
 321	if (frec->start_daddr > info->next_daddr) {
 322		if (info->head->fmh_entries >= info->head->fmh_count)
 323			return -ECANCELED;
 324
 325		fmr.fmr_device = info->dev;
 326		fmr.fmr_physical = info->next_daddr;
 327		fmr.fmr_owner = info->missing_owner;
 328		fmr.fmr_offset = 0;
 329		fmr.fmr_length = frec->start_daddr - info->next_daddr;
 330		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
 331		xfs_getfsmap_format(mp, &fmr, info);
 332	}
 333
 334	if (info->last)
 335		goto out;
 336
 337	/* Fill out the extent we found */
 338	if (info->head->fmh_entries >= info->head->fmh_count)
 339		return -ECANCELED;
 340
 341	trace_xfs_fsmap_mapping(mp, info->dev,
 342			info->group ? info->group->xg_gno : NULLAGNUMBER,
 343			frec);
 344
 345	fmr.fmr_device = info->dev;
 346	fmr.fmr_physical = frec->start_daddr;
 347	error = xfs_fsmap_owner_from_frec(&fmr, frec);
 348	if (error)
 349		return error;
 350	fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset);
 351	fmr.fmr_length = frec->len_daddr;
 352	if (frec->rm_flags & XFS_RMAP_UNWRITTEN)
 353		fmr.fmr_flags |= FMR_OF_PREALLOC;
 354	if (frec->rm_flags & XFS_RMAP_ATTR_FORK)
 355		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
 356	if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK)
 357		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
 358	if (fmr.fmr_flags == 0) {
 359		error = xfs_getfsmap_is_shared(tp, info, frec, &shared);
 360		if (error)
 361			return error;
 362		if (shared)
 363			fmr.fmr_flags |= FMR_OF_SHARED;
 364	}
 365
 366	xfs_getfsmap_format(mp, &fmr, info);
 367out:
 368	info->next_daddr = max(info->next_daddr,
 369			       frec->start_daddr + frec->len_daddr);
 370	return 0;
 371}
 372
 373static inline int
 374xfs_getfsmap_group_helper(
 375	struct xfs_getfsmap_info	*info,
 376	struct xfs_trans		*tp,
 377	struct xfs_group		*xg,
 378	xfs_agblock_t			startblock,
 379	xfs_extlen_t			blockcount,
 380	struct xfs_fsmap_irec		*frec)
 381{
 382	/*
 383	 * For an info->last query, we're looking for a gap between the last
 384	 * mapping emitted and the high key specified by userspace.  If the
 385	 * user's query spans less than 1 fsblock, then info->high and
 386	 * info->low will have the same rm_startblock, which causes rec_daddr
 387	 * and next_daddr to be the same.  Therefore, use the end_daddr that
 388	 * we calculated from userspace's high key to synthesize the record.
 389	 * Note that if the btree query found a mapping, there won't be a gap.
 390	 */
 391	if (info->last)
 392		frec->start_daddr = info->end_daddr + 1;
 393	else
 394		frec->start_daddr = xfs_gbno_to_daddr(xg, startblock);
 395
 396	frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount);
 397	return xfs_getfsmap_helper(tp, info, frec);
 398}
 399
 400/* Transform a rmapbt irec into a fsmap */
 401STATIC int
 402xfs_getfsmap_rmapbt_helper(
 403	struct xfs_btree_cur		*cur,
 404	const struct xfs_rmap_irec	*rec,
 405	void				*priv)
 406{
 407	struct xfs_fsmap_irec		frec = {
 408		.owner			= rec->rm_owner,
 409		.offset			= rec->rm_offset,
 410		.rm_flags		= rec->rm_flags,
 411		.rec_key		= rec->rm_startblock,
 412	};
 413	struct xfs_getfsmap_info	*info = priv;
 414
 415	return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
 416			rec->rm_startblock, rec->rm_blockcount, &frec);
 417}
 418
 419/* Transform a bnobt irec into a fsmap */
 420STATIC int
 421xfs_getfsmap_datadev_bnobt_helper(
 422	struct xfs_btree_cur		*cur,
 423	const struct xfs_alloc_rec_incore *rec,
 424	void				*priv)
 425{
 426	struct xfs_fsmap_irec		frec = {
 427		.owner			= XFS_RMAP_OWN_NULL, /* "free" */
 428		.rec_key		= rec->ar_startblock,
 429	};
 430	struct xfs_getfsmap_info	*info = priv;
 431
 432	return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
 433			rec->ar_startblock, rec->ar_blockcount, &frec);
 434}
 435
 436/* Set rmap flags based on the getfsmap flags */
 437static void
 438xfs_getfsmap_set_irec_flags(
 439	struct xfs_rmap_irec	*irec,
 440	const struct xfs_fsmap	*fmr)
 441{
 442	irec->rm_flags = 0;
 443	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
 444		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
 445	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
 446		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
 447	if (fmr->fmr_flags & FMR_OF_PREALLOC)
 448		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
 449}
 450
 451static inline bool
 452rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
 453{
 454	if (!xfs_has_reflink(mp))
 455		return true;
 456	if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
 457		return true;
 458	if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
 459			   XFS_RMAP_UNWRITTEN))
 460		return true;
 461	return false;
 462}
 463
 464/* Execute a getfsmap query against the regular data device. */
 465STATIC int
 466__xfs_getfsmap_datadev(
 467	struct xfs_trans		*tp,
 468	const struct xfs_fsmap		*keys,
 469	struct xfs_getfsmap_info	*info,
 470	int				(*query_fn)(struct xfs_trans *,
 471						    struct xfs_getfsmap_info *,
 472						    struct xfs_btree_cur **,
 473						    void *),
 474	void				*priv)
 475{
 476	struct xfs_mount		*mp = tp->t_mountp;
 477	struct xfs_perag		*pag = NULL;
 478	struct xfs_btree_cur		*bt_cur = NULL;
 479	xfs_fsblock_t			start_fsb;
 480	xfs_fsblock_t			end_fsb;
 481	xfs_agnumber_t			start_ag, end_ag;
 482	uint64_t			eofs;
 483	int				error = 0;
 484
 485	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 486	if (keys[0].fmr_physical >= eofs)
 487		return 0;
 488	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
 489	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
 490
 491	/*
 492	 * Convert the fsmap low/high keys to AG based keys.  Initialize
 493	 * low to the fsmap low key and max out the high key to the end
 494	 * of the AG.
 495	 */
 496	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
 497	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
 498	if (error)
 499		return error;
 500	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
 501	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
 502
 503	/* Adjust the low key if we are continuing from where we left off. */
 504	if (info->low.rm_blockcount == 0) {
 505		/* No previous record from which to continue */
 506	} else if (rmap_not_shareable(mp, &info->low)) {
 507		/* Last record seen was an unshareable extent */
 508		info->low.rm_owner = 0;
 509		info->low.rm_offset = 0;
 510
 511		start_fsb += info->low.rm_blockcount;
 512		if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
 513			return 0;
 514	} else {
 515		/* Last record seen was a shareable file data extent */
 516		info->low.rm_offset += info->low.rm_blockcount;
 517	}
 518	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
 519
 520	info->high.rm_startblock = -1U;
 521	info->high.rm_owner = ULLONG_MAX;
 522	info->high.rm_offset = ULLONG_MAX;
 523	info->high.rm_blockcount = 0;
 524	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
 525
 526	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
 527	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
 528
 529	while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) {
 530		/*
 531		 * Set the AG high key from the fsmap high key if this
 532		 * is the last AG that we're querying.
 533		 */
 534		info->group = pag_group(pag);
 535		if (pag_agno(pag) == end_ag) {
 536			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
 537					end_fsb);
 538			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
 539					keys[1].fmr_offset);
 540			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
 541			if (error)
 542				break;
 543			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
 544		}
 545
 546		if (bt_cur) {
 547			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
 548			bt_cur = NULL;
 549			xfs_trans_brelse(tp, info->agf_bp);
 550			info->agf_bp = NULL;
 551		}
 552
 553		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
 554		if (error)
 555			break;
 556
 557		trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag),
 558				&info->low);
 559		trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag),
 560				&info->high);
 561
 562		error = query_fn(tp, info, &bt_cur, priv);
 563		if (error)
 564			break;
 565
 566		/*
 567		 * Set the AG low key to the start of the AG prior to
 568		 * moving on to the next AG.
 569		 */
 570		if (pag_agno(pag) == start_ag)
 571			memset(&info->low, 0, sizeof(info->low));
 572
 573		/*
 574		 * If this is the last AG, report any gap at the end of it
 575		 * before we drop the reference to the perag when the loop
 576		 * terminates.
 577		 */
 578		if (pag_agno(pag) == end_ag) {
 579			info->last = true;
 580			error = query_fn(tp, info, &bt_cur, priv);
 581			if (error)
 582				break;
 583		}
 584		info->group = NULL;
 585	}
 586
 587	if (bt_cur)
 588		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
 589							 XFS_BTREE_NOERROR);
 590	if (info->agf_bp) {
 591		xfs_trans_brelse(tp, info->agf_bp);
 592		info->agf_bp = NULL;
 593	}
 594	if (info->group) {
 595		xfs_perag_rele(pag);
 596		info->group = NULL;
 597	} else if (pag) {
 598		/* loop termination case */
 599		xfs_perag_rele(pag);
 600	}
 601
 602	return error;
 603}
 604
 605/* Actually query the rmap btree. */
 606STATIC int
 607xfs_getfsmap_datadev_rmapbt_query(
 608	struct xfs_trans		*tp,
 609	struct xfs_getfsmap_info	*info,
 610	struct xfs_btree_cur		**curpp,
 611	void				*priv)
 612{
 613	/* Report any gap at the end of the last AG. */
 614	if (info->last)
 615		return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info);
 616
 617	/* Allocate cursor for this AG and query_range it. */
 618	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
 619			to_perag(info->group));
 620	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
 621			xfs_getfsmap_rmapbt_helper, info);
 622}
 623
 624/* Execute a getfsmap query against the regular data device rmapbt. */
 625STATIC int
 626xfs_getfsmap_datadev_rmapbt(
 627	struct xfs_trans		*tp,
 628	const struct xfs_fsmap		*keys,
 629	struct xfs_getfsmap_info	*info)
 630{
 631	info->missing_owner = XFS_FMR_OWN_FREE;
 632	return __xfs_getfsmap_datadev(tp, keys, info,
 633			xfs_getfsmap_datadev_rmapbt_query, NULL);
 634}
 635
 636/* Actually query the bno btree. */
 637STATIC int
 638xfs_getfsmap_datadev_bnobt_query(
 639	struct xfs_trans		*tp,
 640	struct xfs_getfsmap_info	*info,
 641	struct xfs_btree_cur		**curpp,
 642	void				*priv)
 643{
 644	struct xfs_alloc_rec_incore	*key = priv;
 645
 646	/* Report any gap at the end of the last AG. */
 647	if (info->last)
 648		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
 649
 650	/* Allocate cursor for this AG and query_range it. */
 651	*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
 652			to_perag(info->group));
 653	key->ar_startblock = info->low.rm_startblock;
 654	key[1].ar_startblock = info->high.rm_startblock;
 655	return xfs_alloc_query_range(*curpp, key, &key[1],
 656			xfs_getfsmap_datadev_bnobt_helper, info);
 657}
 658
 659/* Execute a getfsmap query against the regular data device's bnobt. */
 660STATIC int
 661xfs_getfsmap_datadev_bnobt(
 662	struct xfs_trans		*tp,
 663	const struct xfs_fsmap		*keys,
 664	struct xfs_getfsmap_info	*info)
 665{
 666	struct xfs_alloc_rec_incore	akeys[2];
 667
 668	memset(akeys, 0, sizeof(akeys));
 669	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
 670	return __xfs_getfsmap_datadev(tp, keys, info,
 671			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
 672}
 673
 674/* Execute a getfsmap query against the log device. */
 675STATIC int
 676xfs_getfsmap_logdev(
 677	struct xfs_trans		*tp,
 678	const struct xfs_fsmap		*keys,
 679	struct xfs_getfsmap_info	*info)
 680{
 681	struct xfs_fsmap_irec		frec = {
 682		.start_daddr		= 0,
 683		.rec_key		= 0,
 684		.owner			= XFS_RMAP_OWN_LOG,
 685	};
 686	struct xfs_mount		*mp = tp->t_mountp;
 687	xfs_fsblock_t			start_fsb, end_fsb;
 688	uint64_t			eofs;
 689
 690	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 691	if (keys[0].fmr_physical >= eofs)
 692		return 0;
 693	start_fsb = XFS_BB_TO_FSBT(mp,
 694				keys[0].fmr_physical + keys[0].fmr_length);
 695	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
 696
 697	/* Adjust the low key if we are continuing from where we left off. */
 698	if (keys[0].fmr_length > 0)
 699		info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
 700
 701	trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb);
 702	trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb);
 703
 704	if (start_fsb > 0)
 705		return 0;
 706
 707	/* Fabricate an rmap entry for the external log device. */
 708	frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 709	return xfs_getfsmap_helper(tp, info, &frec);
 710}
 711
 712#ifdef CONFIG_XFS_RT
 713/* Transform a rtbitmap "record" into a fsmap */
 714STATIC int
 715xfs_getfsmap_rtdev_rtbitmap_helper(
 716	struct xfs_rtgroup		*rtg,
 717	struct xfs_trans		*tp,
 718	const struct xfs_rtalloc_rec	*rec,
 719	void				*priv)
 720{
 721	struct xfs_fsmap_irec		frec = {
 722		.owner			= XFS_RMAP_OWN_NULL, /* "free" */
 723	};
 724	struct xfs_mount		*mp = rtg_mount(rtg);
 725	struct xfs_getfsmap_info	*info = priv;
 726	xfs_rtblock_t			start_rtb =
 727				xfs_rtx_to_rtb(rtg, rec->ar_startext);
 728	uint64_t			rtbcount =
 729				xfs_rtbxlen_to_blen(mp, rec->ar_extcount);
 730
 731	/*
 732	 * For an info->last query, we're looking for a gap between the last
 733	 * mapping emitted and the high key specified by userspace.  If the
 734	 * user's query spans less than 1 fsblock, then info->high and
 735	 * info->low will have the same rm_startblock, which causes rec_daddr
 736	 * and next_daddr to be the same.  Therefore, use the end_daddr that
 737	 * we calculated from userspace's high key to synthesize the record.
 738	 * Note that if the btree query found a mapping, there won't be a gap.
 739	 */
 740	if (info->last)
 741		frec.start_daddr = info->end_daddr + 1;
 742	else
 743		frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb);
 744
 745	frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount);
 746	return xfs_getfsmap_helper(tp, info, &frec);
 747}
 748
 749/* Execute a getfsmap query against the realtime device rtbitmap. */
 750STATIC int
 751xfs_getfsmap_rtdev_rtbitmap(
 752	struct xfs_trans		*tp,
 753	const struct xfs_fsmap		*keys,
 754	struct xfs_getfsmap_info	*info)
 755{
 756	struct xfs_mount		*mp = tp->t_mountp;
 757	xfs_rtblock_t			start_rtbno, end_rtbno;
 758	xfs_rtxnum_t			start_rtx, end_rtx;
 759	xfs_rgnumber_t			start_rgno, end_rgno;
 760	struct xfs_rtgroup		*rtg = NULL;
 761	uint64_t			eofs;
 762	int				error;
 763
 764	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
 765	if (keys[0].fmr_physical >= eofs)
 766		return 0;
 767
 768	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
 769
 770	/* Adjust the low key if we are continuing from where we left off. */
 771	start_rtbno = xfs_daddr_to_rtb(mp,
 772			keys[0].fmr_physical + keys[0].fmr_length);
 773	if (keys[0].fmr_length > 0) {
 774		info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno);
 775		if (info->low_daddr >= eofs)
 776			return 0;
 777	}
 778	start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
 779	start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
 780
 781	end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
 782	end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
 783
 784	trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno);
 785	trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno);
 786
 787	end_rtx = -1ULL;
 788
 789	while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
 790		if (rtg_rgno(rtg) == end_rgno)
 791			end_rtx = xfs_rtb_to_rtx(mp,
 792					end_rtbno + mp->m_sb.sb_rextsize - 1);
 793
 794		info->group = rtg_group(rtg);
 795		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 796		error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx,
 797				xfs_getfsmap_rtdev_rtbitmap_helper, info);
 798		if (error)
 799			break;
 800
 801		/*
 802		 * Report any gaps at the end of the rtbitmap by simulating a
 803		 * zero-length free extent starting at the rtx after the end
 804		 * of the query range.
 805		 */
 806		if (rtg_rgno(rtg) == end_rgno) {
 807			struct xfs_rtalloc_rec	ahigh = {
 808				.ar_startext	= min(end_rtx + 1,
 809						      rtg->rtg_extents),
 810			};
 811
 812			info->last = true;
 813			error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp,
 814					&ahigh, info);
 815			if (error)
 816				break;
 817		}
 818
 819		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 820		info->group = NULL;
 821		start_rtx = 0;
 822	}
 823
 824	/* loop termination case */
 825	if (rtg) {
 826		if (info->group) {
 827			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 828			info->group = NULL;
 829		}
 830		xfs_rtgroup_rele(rtg);
 831	}
 832
 833	return error;
 834}
 835#endif /* CONFIG_XFS_RT */
 836
 837/* Do we recognize the device? */
 838STATIC bool
 839xfs_getfsmap_is_valid_device(
 840	struct xfs_mount	*mp,
 841	struct xfs_fsmap	*fm)
 842{
 843	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
 844	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
 845		return true;
 846	if (mp->m_logdev_targp &&
 847	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
 848		return true;
 849	if (mp->m_rtdev_targp &&
 850	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
 851		return true;
 852	return false;
 853}
 854
 855/* Ensure that the low key is less than the high key. */
 856STATIC bool
 857xfs_getfsmap_check_keys(
 858	struct xfs_fsmap		*low_key,
 859	struct xfs_fsmap		*high_key)
 860{
 861	if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
 862		if (low_key->fmr_offset)
 863			return false;
 864	}
 865	if (high_key->fmr_flags != -1U &&
 866	    (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
 867				    FMR_OF_EXTENT_MAP))) {
 868		if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
 869			return false;
 870	}
 871	if (high_key->fmr_length && high_key->fmr_length != -1ULL)
 872		return false;
 873
 874	if (low_key->fmr_device > high_key->fmr_device)
 875		return false;
 876	if (low_key->fmr_device < high_key->fmr_device)
 877		return true;
 878
 879	if (low_key->fmr_physical > high_key->fmr_physical)
 880		return false;
 881	if (low_key->fmr_physical < high_key->fmr_physical)
 882		return true;
 883
 884	if (low_key->fmr_owner > high_key->fmr_owner)
 885		return false;
 886	if (low_key->fmr_owner < high_key->fmr_owner)
 887		return true;
 888
 889	if (low_key->fmr_offset > high_key->fmr_offset)
 890		return false;
 891	if (low_key->fmr_offset < high_key->fmr_offset)
 892		return true;
 893
 894	return false;
 895}
 896
 897/*
 898 * There are only two devices if we didn't configure RT devices at build time.
 899 */
 900#ifdef CONFIG_XFS_RT
 901#define XFS_GETFSMAP_DEVS	3
 902#else
 903#define XFS_GETFSMAP_DEVS	2
 904#endif /* CONFIG_XFS_RT */
 905
 906/*
 907 * Get filesystem's extents as described in head, and format for output. Fills
 908 * in the supplied records array until there are no more reverse mappings to
 909 * return or head.fmh_entries == head.fmh_count.  In the second case, this
 910 * function returns -ECANCELED to indicate that more records would have been
 911 * returned.
 912 *
 913 * Key to Confusion
 914 * ----------------
 915 * There are multiple levels of keys and counters at work here:
 916 * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
 917 *				   these reflect fs-wide sector addrs.
 918 * dkeys			-- fmh_keys used to query each device;
 919 *				   these are fmh_keys but w/ the low key
 920 *				   bumped up by fmr_length.
 921 * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
 922 *				   is how we detect gaps in the fsmap
 923				   records and report them.
 924 * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
 925 *				   dkeys; used to query the metadata.
 926 */
 927STATIC int
 928xfs_getfsmap(
 929	struct xfs_mount		*mp,
 930	struct xfs_fsmap_head		*head,
 931	struct fsmap			*fsmap_recs)
 932{
 933	struct xfs_trans		*tp = NULL;
 934	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
 935	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
 936	struct xfs_getfsmap_info	info = {
 937		.fsmap_recs		= fsmap_recs,
 938		.head			= head,
 939	};
 940	bool				use_rmap;
 941	int				i;
 942	int				error = 0;
 943
 944	if (head->fmh_iflags & ~FMH_IF_VALID)
 945		return -EINVAL;
 946	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
 947	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
 948		return -EINVAL;
 949	if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
 950		return -EINVAL;
 951
 952	use_rmap = xfs_has_rmapbt(mp) &&
 953		   has_capability_noaudit(current, CAP_SYS_ADMIN);
 954	head->fmh_entries = 0;
 955
 956	/* Set up our device handlers. */
 957	memset(handlers, 0, sizeof(handlers));
 958	handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 959	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
 960	if (use_rmap)
 961		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
 962	else
 963		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
 964	if (mp->m_logdev_targp != mp->m_ddev_targp) {
 965		handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
 966						       mp->m_sb.sb_logblocks);
 967		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
 968		handlers[1].fn = xfs_getfsmap_logdev;
 969	}
 970#ifdef CONFIG_XFS_RT
 971	if (mp->m_rtdev_targp) {
 972		handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
 973		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
 974		handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
 975	}
 976#endif /* CONFIG_XFS_RT */
 977
 978	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
 979			xfs_getfsmap_dev_compare);
 980
 981	/*
 982	 * To continue where we left off, we allow userspace to use the
 983	 * last mapping from a previous call as the low key of the next.
 984	 * This is identified by a non-zero length in the low key. We
 985	 * have to increment the low key in this scenario to ensure we
 986	 * don't return the same mapping again, and instead return the
 987	 * very next mapping.
 988	 *
 989	 * If the low key mapping refers to file data, the same physical
 990	 * blocks could be mapped to several other files/offsets.
 991	 * According to rmapbt record ordering, the minimal next
 992	 * possible record for the block range is the next starting
 993	 * offset in the same inode. Therefore, each fsmap backend bumps
 994	 * the file offset to continue the search appropriately.  For
 995	 * all other low key mapping types (attr blocks, metadata), each
 996	 * fsmap backend bumps the physical offset as there can be no
 997	 * other mapping for the same physical block range.
 998	 */
 999	dkeys[0] = head->fmh_keys[0];
1000	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
1001
1002	info.next_daddr = head->fmh_keys[0].fmr_physical +
1003			  head->fmh_keys[0].fmr_length;
1004
1005	/* For each device we support... */
1006	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
1007		/* Is this device within the range the user asked for? */
1008		if (!handlers[i].fn)
1009			continue;
1010		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
1011			continue;
1012		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
1013			break;
1014
1015		/*
1016		 * If this device number matches the high key, we have to pass
1017		 * the high key to the handler to limit the query results, and
1018		 * set the end_daddr so that we can synthesize records at the
1019		 * end of the query range or device.
1020		 */
1021		if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
1022			dkeys[1] = head->fmh_keys[1];
1023			info.end_daddr = min(handlers[i].nr_sectors - 1,
1024					     dkeys[1].fmr_physical);
1025		} else {
1026			info.end_daddr = handlers[i].nr_sectors - 1;
1027		}
1028
1029		/*
1030		 * If the device number exceeds the low key, zero out the low
1031		 * key so that we get everything from the beginning.
1032		 */
1033		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
1034			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
1035
1036		/*
1037		 * Grab an empty transaction so that we can use its recursive
1038		 * buffer locking abilities to detect cycles in the rmapbt
1039		 * without deadlocking.
1040		 */
1041		error = xfs_trans_alloc_empty(mp, &tp);
1042		if (error)
1043			break;
1044
1045		info.dev = handlers[i].dev;
1046		info.last = false;
1047		info.group = NULL;
1048		info.low_daddr = XFS_BUF_DADDR_NULL;
1049		info.low.rm_blockcount = 0;
1050		error = handlers[i].fn(tp, dkeys, &info);
1051		if (error)
1052			break;
1053		xfs_trans_cancel(tp);
1054		tp = NULL;
1055		info.next_daddr = 0;
1056	}
1057
1058	if (tp)
1059		xfs_trans_cancel(tp);
1060	head->fmh_oflags = FMH_OF_DEV_T;
1061	return error;
1062}
1063
1064int
1065xfs_ioc_getfsmap(
1066	struct xfs_inode	*ip,
1067	struct fsmap_head	__user *arg)
1068{
1069	struct xfs_fsmap_head	xhead = {0};
1070	struct fsmap_head	head;
1071	struct fsmap		*recs;
1072	unsigned int		count;
1073	__u32			last_flags = 0;
1074	bool			done = false;
1075	int			error;
1076
1077	if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
1078		return -EFAULT;
1079	if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
1080	    memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
1081		       sizeof(head.fmh_keys[0].fmr_reserved)) ||
1082	    memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
1083		       sizeof(head.fmh_keys[1].fmr_reserved)))
1084		return -EINVAL;
1085
1086	/*
1087	 * Use an internal memory buffer so that we don't have to copy fsmap
1088	 * data to userspace while holding locks.  Start by trying to allocate
1089	 * up to 128k for the buffer, but fall back to a single page if needed.
1090	 */
1091	count = min_t(unsigned int, head.fmh_count,
1092			131072 / sizeof(struct fsmap));
1093	recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1094	if (!recs) {
1095		count = min_t(unsigned int, head.fmh_count,
1096				PAGE_SIZE / sizeof(struct fsmap));
1097		recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1098		if (!recs)
1099			return -ENOMEM;
1100	}
1101
1102	xhead.fmh_iflags = head.fmh_iflags;
1103	xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
1104	xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
1105
1106	trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1107	trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
1108
1109	head.fmh_entries = 0;
1110	do {
1111		struct fsmap __user	*user_recs;
1112		struct fsmap		*last_rec;
1113
1114		user_recs = &arg->fmh_recs[head.fmh_entries];
1115		xhead.fmh_entries = 0;
1116		xhead.fmh_count = min_t(unsigned int, count,
1117					head.fmh_count - head.fmh_entries);
1118
1119		/* Run query, record how many entries we got. */
1120		error = xfs_getfsmap(ip->i_mount, &xhead, recs);
1121		switch (error) {
1122		case 0:
1123			/*
1124			 * There are no more records in the result set.  Copy
1125			 * whatever we got to userspace and break out.
1126			 */
1127			done = true;
1128			break;
1129		case -ECANCELED:
1130			/*
1131			 * The internal memory buffer is full.  Copy whatever
1132			 * records we got to userspace and go again if we have
1133			 * not yet filled the userspace buffer.
1134			 */
1135			error = 0;
1136			break;
1137		default:
1138			goto out_free;
1139		}
1140		head.fmh_entries += xhead.fmh_entries;
1141		head.fmh_oflags = xhead.fmh_oflags;
1142
1143		/*
1144		 * If the caller wanted a record count or there aren't any
1145		 * new records to return, we're done.
1146		 */
1147		if (head.fmh_count == 0 || xhead.fmh_entries == 0)
1148			break;
1149
1150		/* Copy all the records we got out to userspace. */
1151		if (copy_to_user(user_recs, recs,
1152				 xhead.fmh_entries * sizeof(struct fsmap))) {
1153			error = -EFAULT;
1154			goto out_free;
1155		}
1156
1157		/* Remember the last record flags we copied to userspace. */
1158		last_rec = &recs[xhead.fmh_entries - 1];
1159		last_flags = last_rec->fmr_flags;
1160
1161		/* Set up the low key for the next iteration. */
1162		xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
1163		trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1164	} while (!done && head.fmh_entries < head.fmh_count);
1165
1166	/*
1167	 * If there are no more records in the query result set and we're not
1168	 * in counting mode, mark the last record returned with the LAST flag.
1169	 */
1170	if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
1171		struct fsmap __user	*user_rec;
1172
1173		last_flags |= FMR_OF_LAST;
1174		user_rec = &arg->fmh_recs[head.fmh_entries - 1];
1175
1176		if (copy_to_user(&user_rec->fmr_flags, &last_flags,
1177					sizeof(last_flags))) {
1178			error = -EFAULT;
1179			goto out_free;
1180		}
1181	}
1182
1183	/* copy back header */
1184	if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
1185		error = -EFAULT;
1186		goto out_free;
1187	}
1188
1189out_free:
1190	kvfree(recs);
1191	return error;
1192}