Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
 
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41	switch (fmt) {
  42	case UBIFS_SIMPLE_KEY_FMT:
  43		return "simple";
  44	default:
  45		return "unknown/invalid format";
  46	}
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51	switch (hash) {
  52	case UBIFS_KEY_HASH_R5:
  53		return "R5";
  54	case UBIFS_KEY_HASH_TEST:
  55		return "test";
  56	default:
  57		return "unknown/invalid name hash";
  58	}
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63	switch (type) {
  64	case UBIFS_INO_KEY:
  65		return "inode";
  66	case UBIFS_DENT_KEY:
  67		return "direntry";
  68	case UBIFS_XENT_KEY:
  69		return "xentry";
  70	case UBIFS_DATA_KEY:
  71		return "data";
  72	case UBIFS_TRUN_KEY:
  73		return "truncate";
  74	default:
  75		return "unknown/invalid key";
  76	}
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81	switch (type) {
  82	case UBIFS_ITYPE_REG:
  83		return "file";
  84	case UBIFS_ITYPE_DIR:
  85		return "dir";
  86	case UBIFS_ITYPE_LNK:
  87		return "symlink";
  88	case UBIFS_ITYPE_BLK:
  89		return "blkdev";
  90	case UBIFS_ITYPE_CHR:
  91		return "char dev";
  92	case UBIFS_ITYPE_FIFO:
  93		return "fifo";
  94	case UBIFS_ITYPE_SOCK:
  95		return "socket";
  96	default:
  97		return "unknown/invalid type";
  98	}
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102			     const union ubifs_key *key, char *buffer, int len)
 103{
 104	char *p = buffer;
 105	int type = key_type(c, key);
 106
 107	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108		switch (type) {
 109		case UBIFS_INO_KEY:
 110			len -= snprintf(p, len, "(%lu, %s)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type));
 113			break;
 114		case UBIFS_DENT_KEY:
 115		case UBIFS_XENT_KEY:
 116			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117					(unsigned long)key_inum(c, key),
 118					get_key_type(type), key_hash(c, key));
 119			break;
 120		case UBIFS_DATA_KEY:
 121			len -= snprintf(p, len, "(%lu, %s, %u)",
 122					(unsigned long)key_inum(c, key),
 123					get_key_type(type), key_block(c, key));
 124			break;
 125		case UBIFS_TRUN_KEY:
 126			len -= snprintf(p, len, "(%lu, %s)",
 127					(unsigned long)key_inum(c, key),
 128					get_key_type(type));
 129			break;
 130		default:
 131			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132					key->u32[0], key->u32[1]);
 133		}
 134	} else
 135		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136	ubifs_assert(len > 0);
 137	return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142	switch (type) {
 143	case UBIFS_PAD_NODE:
 144		return "padding node";
 145	case UBIFS_SB_NODE:
 146		return "superblock node";
 147	case UBIFS_MST_NODE:
 148		return "master node";
 149	case UBIFS_REF_NODE:
 150		return "reference node";
 151	case UBIFS_INO_NODE:
 152		return "inode node";
 153	case UBIFS_DENT_NODE:
 154		return "direntry node";
 155	case UBIFS_XENT_NODE:
 156		return "xentry node";
 157	case UBIFS_DATA_NODE:
 158		return "data node";
 159	case UBIFS_TRUN_NODE:
 160		return "truncate node";
 161	case UBIFS_IDX_NODE:
 162		return "indexing node";
 163	case UBIFS_CS_NODE:
 164		return "commit start node";
 165	case UBIFS_ORPH_NODE:
 166		return "orphan node";
 
 
 167	default:
 168		return "unknown node";
 169	}
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174	switch (type) {
 175	case UBIFS_NO_NODE_GROUP:
 176		return "no node group";
 177	case UBIFS_IN_NODE_GROUP:
 178		return "in node group";
 179	case UBIFS_LAST_OF_NODE_GROUP:
 180		return "last of node group";
 181	default:
 182		return "unknown";
 183	}
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188	switch (cmt_state) {
 189	case COMMIT_RESTING:
 190		return "commit resting";
 191	case COMMIT_BACKGROUND:
 192		return "background commit requested";
 193	case COMMIT_REQUIRED:
 194		return "commit required";
 195	case COMMIT_RUNNING_BACKGROUND:
 196		return "BACKGROUND commit running";
 197	case COMMIT_RUNNING_REQUIRED:
 198		return "commit running and required";
 199	case COMMIT_BROKEN:
 200		return "broken commit";
 201	default:
 202		return "unknown commit state";
 203	}
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208	switch (jhead) {
 209	case GCHD:
 210		return "0 (GC)";
 211	case BASEHD:
 212		return "1 (base)";
 213	case DATAHD:
 214		return "2 (data)";
 215	default:
 216		return "unknown journal head";
 217	}
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222	printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223	printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224	printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
 225	       dbg_ntype(ch->node_type));
 226	printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
 227	       dbg_gtype(ch->group_type));
 228	printk(KERN_ERR "\tsqnum          %llu\n",
 229	       (unsigned long long)le64_to_cpu(ch->sqnum));
 230	printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235	const struct ubifs_inode *ui = ubifs_inode(inode);
 236	struct qstr nm = { .name = NULL };
 237	union ubifs_key key;
 238	struct ubifs_dent_node *dent, *pdent = NULL;
 239	int count = 2;
 240
 241	printk(KERN_ERR "Dump in-memory inode:");
 242	printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
 243	printk(KERN_ERR "\tsize           %llu\n",
 244	       (unsigned long long)i_size_read(inode));
 245	printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
 246	printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
 247	printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
 248	printk(KERN_ERR "\tatime          %u.%u\n",
 249	       (unsigned int)inode->i_atime.tv_sec,
 250	       (unsigned int)inode->i_atime.tv_nsec);
 251	printk(KERN_ERR "\tmtime          %u.%u\n",
 252	       (unsigned int)inode->i_mtime.tv_sec,
 253	       (unsigned int)inode->i_mtime.tv_nsec);
 254	printk(KERN_ERR "\tctime          %u.%u\n",
 255	       (unsigned int)inode->i_ctime.tv_sec,
 256	       (unsigned int)inode->i_ctime.tv_nsec);
 257	printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258	printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
 259	printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
 260	printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
 261	printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
 262	printk(KERN_ERR "\txattr          %u\n", ui->xattr);
 263	printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
 264	printk(KERN_ERR "\tsynced_i_size  %llu\n",
 265	       (unsigned long long)ui->synced_i_size);
 266	printk(KERN_ERR "\tui_size        %llu\n",
 267	       (unsigned long long)ui->ui_size);
 268	printk(KERN_ERR "\tflags          %d\n", ui->flags);
 269	printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
 270	printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
 271	printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272	printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
 273
 274	if (!S_ISDIR(inode->i_mode))
 275		return;
 276
 277	printk(KERN_ERR "List of directory entries:\n");
 278	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280	lowest_dent_key(c, &key, inode->i_ino);
 281	while (1) {
 282		dent = ubifs_tnc_next_ent(c, &key, &nm);
 283		if (IS_ERR(dent)) {
 284			if (PTR_ERR(dent) != -ENOENT)
 285				printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
 286			break;
 287		}
 288
 289		printk(KERN_ERR "\t%d: %s (%s)\n",
 290		       count++, dent->name, get_dent_type(dent->type));
 
 
 291
 292		nm.name = dent->name;
 293		nm.len = le16_to_cpu(dent->nlen);
 294		kfree(pdent);
 295		pdent = dent;
 296		key_read(c, &dent->key, &key);
 297	}
 298	kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303	int i, n;
 304	union ubifs_key key;
 305	const struct ubifs_ch *ch = node;
 306	char key_buf[DBG_KEY_BUF_LEN];
 307
 308	if (dbg_is_tst_rcvry(c))
 309		return;
 310
 311	/* If the magic is incorrect, just hexdump the first bytes */
 312	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 313		printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 314		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 315			       (void *)node, UBIFS_CH_SZ, 1);
 316		return;
 317	}
 318
 
 
 
 
 
 
 
 319	spin_lock(&dbg_lock);
 320	dump_ch(node);
 321
 322	switch (ch->node_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323	case UBIFS_PAD_NODE:
 324	{
 325		const struct ubifs_pad_node *pad = node;
 326
 327		printk(KERN_ERR "\tpad_len        %u\n",
 328		       le32_to_cpu(pad->pad_len));
 329		break;
 330	}
 331	case UBIFS_SB_NODE:
 332	{
 333		const struct ubifs_sb_node *sup = node;
 334		unsigned int sup_flags = le32_to_cpu(sup->flags);
 335
 336		printk(KERN_ERR "\tkey_hash       %d (%s)\n",
 337		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 338		printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
 339		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 340		printk(KERN_ERR "\tflags          %#x\n", sup_flags);
 341		printk(KERN_ERR "\t  big_lpt      %u\n",
 342		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 343		printk(KERN_ERR "\t  space_fixup  %u\n",
 344		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 345		printk(KERN_ERR "\tmin_io_size    %u\n",
 346		       le32_to_cpu(sup->min_io_size));
 347		printk(KERN_ERR "\tleb_size       %u\n",
 348		       le32_to_cpu(sup->leb_size));
 349		printk(KERN_ERR "\tleb_cnt        %u\n",
 350		       le32_to_cpu(sup->leb_cnt));
 351		printk(KERN_ERR "\tmax_leb_cnt    %u\n",
 352		       le32_to_cpu(sup->max_leb_cnt));
 353		printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
 354		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 355		printk(KERN_ERR "\tlog_lebs       %u\n",
 356		       le32_to_cpu(sup->log_lebs));
 357		printk(KERN_ERR "\tlpt_lebs       %u\n",
 358		       le32_to_cpu(sup->lpt_lebs));
 359		printk(KERN_ERR "\torph_lebs      %u\n",
 360		       le32_to_cpu(sup->orph_lebs));
 361		printk(KERN_ERR "\tjhead_cnt      %u\n",
 362		       le32_to_cpu(sup->jhead_cnt));
 363		printk(KERN_ERR "\tfanout         %u\n",
 364		       le32_to_cpu(sup->fanout));
 365		printk(KERN_ERR "\tlsave_cnt      %u\n",
 366		       le32_to_cpu(sup->lsave_cnt));
 367		printk(KERN_ERR "\tdefault_compr  %u\n",
 368		       (int)le16_to_cpu(sup->default_compr));
 369		printk(KERN_ERR "\trp_size        %llu\n",
 370		       (unsigned long long)le64_to_cpu(sup->rp_size));
 371		printk(KERN_ERR "\trp_uid         %u\n",
 372		       le32_to_cpu(sup->rp_uid));
 373		printk(KERN_ERR "\trp_gid         %u\n",
 374		       le32_to_cpu(sup->rp_gid));
 375		printk(KERN_ERR "\tfmt_version    %u\n",
 376		       le32_to_cpu(sup->fmt_version));
 377		printk(KERN_ERR "\ttime_gran      %u\n",
 378		       le32_to_cpu(sup->time_gran));
 379		printk(KERN_ERR "\tUUID           %pUB\n",
 380		       sup->uuid);
 381		break;
 382	}
 383	case UBIFS_MST_NODE:
 384	{
 385		const struct ubifs_mst_node *mst = node;
 386
 387		printk(KERN_ERR "\thighest_inum   %llu\n",
 388		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 389		printk(KERN_ERR "\tcommit number  %llu\n",
 390		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 391		printk(KERN_ERR "\tflags          %#x\n",
 392		       le32_to_cpu(mst->flags));
 393		printk(KERN_ERR "\tlog_lnum       %u\n",
 394		       le32_to_cpu(mst->log_lnum));
 395		printk(KERN_ERR "\troot_lnum      %u\n",
 396		       le32_to_cpu(mst->root_lnum));
 397		printk(KERN_ERR "\troot_offs      %u\n",
 398		       le32_to_cpu(mst->root_offs));
 399		printk(KERN_ERR "\troot_len       %u\n",
 400		       le32_to_cpu(mst->root_len));
 401		printk(KERN_ERR "\tgc_lnum        %u\n",
 402		       le32_to_cpu(mst->gc_lnum));
 403		printk(KERN_ERR "\tihead_lnum     %u\n",
 404		       le32_to_cpu(mst->ihead_lnum));
 405		printk(KERN_ERR "\tihead_offs     %u\n",
 406		       le32_to_cpu(mst->ihead_offs));
 407		printk(KERN_ERR "\tindex_size     %llu\n",
 408		       (unsigned long long)le64_to_cpu(mst->index_size));
 409		printk(KERN_ERR "\tlpt_lnum       %u\n",
 410		       le32_to_cpu(mst->lpt_lnum));
 411		printk(KERN_ERR "\tlpt_offs       %u\n",
 412		       le32_to_cpu(mst->lpt_offs));
 413		printk(KERN_ERR "\tnhead_lnum     %u\n",
 414		       le32_to_cpu(mst->nhead_lnum));
 415		printk(KERN_ERR "\tnhead_offs     %u\n",
 416		       le32_to_cpu(mst->nhead_offs));
 417		printk(KERN_ERR "\tltab_lnum      %u\n",
 418		       le32_to_cpu(mst->ltab_lnum));
 419		printk(KERN_ERR "\tltab_offs      %u\n",
 420		       le32_to_cpu(mst->ltab_offs));
 421		printk(KERN_ERR "\tlsave_lnum     %u\n",
 422		       le32_to_cpu(mst->lsave_lnum));
 423		printk(KERN_ERR "\tlsave_offs     %u\n",
 424		       le32_to_cpu(mst->lsave_offs));
 425		printk(KERN_ERR "\tlscan_lnum     %u\n",
 426		       le32_to_cpu(mst->lscan_lnum));
 427		printk(KERN_ERR "\tleb_cnt        %u\n",
 428		       le32_to_cpu(mst->leb_cnt));
 429		printk(KERN_ERR "\tempty_lebs     %u\n",
 430		       le32_to_cpu(mst->empty_lebs));
 431		printk(KERN_ERR "\tidx_lebs       %u\n",
 432		       le32_to_cpu(mst->idx_lebs));
 433		printk(KERN_ERR "\ttotal_free     %llu\n",
 434		       (unsigned long long)le64_to_cpu(mst->total_free));
 435		printk(KERN_ERR "\ttotal_dirty    %llu\n",
 436		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 437		printk(KERN_ERR "\ttotal_used     %llu\n",
 438		       (unsigned long long)le64_to_cpu(mst->total_used));
 439		printk(KERN_ERR "\ttotal_dead     %llu\n",
 440		       (unsigned long long)le64_to_cpu(mst->total_dead));
 441		printk(KERN_ERR "\ttotal_dark     %llu\n",
 442		       (unsigned long long)le64_to_cpu(mst->total_dark));
 443		break;
 444	}
 445	case UBIFS_REF_NODE:
 446	{
 447		const struct ubifs_ref_node *ref = node;
 448
 449		printk(KERN_ERR "\tlnum           %u\n",
 450		       le32_to_cpu(ref->lnum));
 451		printk(KERN_ERR "\toffs           %u\n",
 452		       le32_to_cpu(ref->offs));
 453		printk(KERN_ERR "\tjhead          %u\n",
 454		       le32_to_cpu(ref->jhead));
 455		break;
 456	}
 457	case UBIFS_INO_NODE:
 458	{
 459		const struct ubifs_ino_node *ino = node;
 460
 461		key_read(c, &ino->key, &key);
 462		printk(KERN_ERR "\tkey            %s\n",
 463		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 464		printk(KERN_ERR "\tcreat_sqnum    %llu\n",
 465		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 466		printk(KERN_ERR "\tsize           %llu\n",
 467		       (unsigned long long)le64_to_cpu(ino->size));
 468		printk(KERN_ERR "\tnlink          %u\n",
 469		       le32_to_cpu(ino->nlink));
 470		printk(KERN_ERR "\tatime          %lld.%u\n",
 471		       (long long)le64_to_cpu(ino->atime_sec),
 472		       le32_to_cpu(ino->atime_nsec));
 473		printk(KERN_ERR "\tmtime          %lld.%u\n",
 474		       (long long)le64_to_cpu(ino->mtime_sec),
 475		       le32_to_cpu(ino->mtime_nsec));
 476		printk(KERN_ERR "\tctime          %lld.%u\n",
 477		       (long long)le64_to_cpu(ino->ctime_sec),
 478		       le32_to_cpu(ino->ctime_nsec));
 479		printk(KERN_ERR "\tuid            %u\n",
 480		       le32_to_cpu(ino->uid));
 481		printk(KERN_ERR "\tgid            %u\n",
 482		       le32_to_cpu(ino->gid));
 483		printk(KERN_ERR "\tmode           %u\n",
 484		       le32_to_cpu(ino->mode));
 485		printk(KERN_ERR "\tflags          %#x\n",
 486		       le32_to_cpu(ino->flags));
 487		printk(KERN_ERR "\txattr_cnt      %u\n",
 488		       le32_to_cpu(ino->xattr_cnt));
 489		printk(KERN_ERR "\txattr_size     %u\n",
 490		       le32_to_cpu(ino->xattr_size));
 491		printk(KERN_ERR "\txattr_names    %u\n",
 492		       le32_to_cpu(ino->xattr_names));
 493		printk(KERN_ERR "\tcompr_type     %#x\n",
 494		       (int)le16_to_cpu(ino->compr_type));
 495		printk(KERN_ERR "\tdata len       %u\n",
 496		       le32_to_cpu(ino->data_len));
 497		break;
 498	}
 499	case UBIFS_DENT_NODE:
 500	case UBIFS_XENT_NODE:
 501	{
 502		const struct ubifs_dent_node *dent = node;
 503		int nlen = le16_to_cpu(dent->nlen);
 504
 505		key_read(c, &dent->key, &key);
 506		printk(KERN_ERR "\tkey            %s\n",
 507		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 508		printk(KERN_ERR "\tinum           %llu\n",
 509		       (unsigned long long)le64_to_cpu(dent->inum));
 510		printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
 511		printk(KERN_ERR "\tnlen           %d\n", nlen);
 512		printk(KERN_ERR "\tname           ");
 513
 514		if (nlen > UBIFS_MAX_NLEN)
 515			printk(KERN_ERR "(bad name length, not printing, "
 516					  "bad or corrupted node)");
 517		else {
 518			for (i = 0; i < nlen && dent->name[i]; i++)
 519				printk(KERN_CONT "%c", dent->name[i]);
 
 520		}
 521		printk(KERN_CONT "\n");
 522
 523		break;
 524	}
 525	case UBIFS_DATA_NODE:
 526	{
 527		const struct ubifs_data_node *dn = node;
 528		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 529
 530		key_read(c, &dn->key, &key);
 531		printk(KERN_ERR "\tkey            %s\n",
 532		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 533		printk(KERN_ERR "\tsize           %u\n",
 534		       le32_to_cpu(dn->size));
 535		printk(KERN_ERR "\tcompr_typ      %d\n",
 536		       (int)le16_to_cpu(dn->compr_type));
 537		printk(KERN_ERR "\tdata size      %d\n",
 538		       dlen);
 539		printk(KERN_ERR "\tdata:\n");
 
 540		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 541			       (void *)&dn->data, dlen, 0);
 
 542		break;
 543	}
 544	case UBIFS_TRUN_NODE:
 545	{
 546		const struct ubifs_trun_node *trun = node;
 547
 548		printk(KERN_ERR "\tinum           %u\n",
 549		       le32_to_cpu(trun->inum));
 550		printk(KERN_ERR "\told_size       %llu\n",
 551		       (unsigned long long)le64_to_cpu(trun->old_size));
 552		printk(KERN_ERR "\tnew_size       %llu\n",
 553		       (unsigned long long)le64_to_cpu(trun->new_size));
 554		break;
 555	}
 556	case UBIFS_IDX_NODE:
 557	{
 558		const struct ubifs_idx_node *idx = node;
 
 
 
 
 
 
 
 
 559
 560		n = le16_to_cpu(idx->child_cnt);
 561		printk(KERN_ERR "\tchild_cnt      %d\n", n);
 562		printk(KERN_ERR "\tlevel          %d\n",
 563		       (int)le16_to_cpu(idx->level));
 564		printk(KERN_ERR "\tBranches:\n");
 565
 566		for (i = 0; i < n && i < c->fanout - 1; i++) {
 567			const struct ubifs_branch *br;
 568
 569			br = ubifs_idx_branch(c, idx, i);
 570			key_read(c, &br->key, &key);
 571			printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
 572			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 573			       le32_to_cpu(br->len),
 574			       dbg_snprintf_key(c, &key, key_buf,
 575						DBG_KEY_BUF_LEN));
 576		}
 577		break;
 578	}
 579	case UBIFS_CS_NODE:
 580		break;
 581	case UBIFS_ORPH_NODE:
 582	{
 583		const struct ubifs_orph_node *orph = node;
 584
 585		printk(KERN_ERR "\tcommit number  %llu\n",
 586		       (unsigned long long)
 587				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 588		printk(KERN_ERR "\tlast node flag %llu\n",
 589		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 590		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 591		printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
 592		for (i = 0; i < n; i++)
 593			printk(KERN_ERR "\t  ino %llu\n",
 594			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 595		break;
 596	}
 
 
 
 
 597	default:
 598		printk(KERN_ERR "node type %d was not recognized\n",
 599		       (int)ch->node_type);
 600	}
 
 
 601	spin_unlock(&dbg_lock);
 602}
 603
 604void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 605{
 606	spin_lock(&dbg_lock);
 607	printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
 608	       req->new_ino, req->dirtied_ino);
 609	printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 610	       req->new_ino_d, req->dirtied_ino_d);
 611	printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
 612	       req->new_page, req->dirtied_page);
 613	printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
 614	       req->new_dent, req->mod_dent);
 615	printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
 616	printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
 617	       req->data_growth, req->dd_growth);
 618	spin_unlock(&dbg_lock);
 619}
 620
 621void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 622{
 623	spin_lock(&dbg_lock);
 624	printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
 625	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 626	printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
 627	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 628	       lst->total_dirty);
 629	printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
 630	       "total_dead %lld\n", lst->total_used, lst->total_dark,
 631	       lst->total_dead);
 632	spin_unlock(&dbg_lock);
 633}
 634
 635void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 636{
 637	int i;
 638	struct rb_node *rb;
 639	struct ubifs_bud *bud;
 640	struct ubifs_gced_idx_leb *idx_gc;
 641	long long available, outstanding, free;
 642
 643	spin_lock(&c->space_lock);
 644	spin_lock(&dbg_lock);
 645	printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
 646	       "total budget sum %lld\n", current->pid,
 647	       bi->data_growth + bi->dd_growth,
 648	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 649	printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
 650	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
 651	       bi->idx_growth);
 652	printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
 653	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
 654	       bi->uncommitted_idx);
 655	printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 656	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 657	printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
 658	       bi->nospace, bi->nospace_rp);
 659	printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 660	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 661
 662	if (bi != &c->bi)
 663		/*
 664		 * If we are dumping saved budgeting data, do not print
 665		 * additional information which is about the current state, not
 666		 * the old one which corresponded to the saved budgeting data.
 667		 */
 668		goto out_unlock;
 669
 670	printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 671	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 672	printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 673	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 674	       atomic_long_read(&c->dirty_zn_cnt),
 675	       atomic_long_read(&c->clean_zn_cnt));
 676	printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
 677	       c->gc_lnum, c->ihead_lnum);
 678
 679	/* If we are in R/O mode, journal heads do not exist */
 680	if (c->jheads)
 681		for (i = 0; i < c->jhead_cnt; i++)
 682			printk(KERN_ERR "\tjhead %s\t LEB %d\n",
 683			       dbg_jhead(c->jheads[i].wbuf.jhead),
 684			       c->jheads[i].wbuf.lnum);
 685	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 686		bud = rb_entry(rb, struct ubifs_bud, rb);
 687		printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
 688	}
 689	list_for_each_entry(bud, &c->old_buds, list)
 690		printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
 691	list_for_each_entry(idx_gc, &c->idx_gc, list)
 692		printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
 693		       idx_gc->lnum, idx_gc->unmap);
 694	printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
 695
 696	/* Print budgeting predictions */
 697	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 698	outstanding = c->bi.data_growth + c->bi.dd_growth;
 699	free = ubifs_get_free_space_nolock(c);
 700	printk(KERN_ERR "Budgeting predictions:\n");
 701	printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
 702	       available, outstanding, free);
 703out_unlock:
 704	spin_unlock(&dbg_lock);
 705	spin_unlock(&c->space_lock);
 706}
 707
 708void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 709{
 710	int i, spc, dark = 0, dead = 0;
 711	struct rb_node *rb;
 712	struct ubifs_bud *bud;
 713
 714	spc = lp->free + lp->dirty;
 715	if (spc < c->dead_wm)
 716		dead = spc;
 717	else
 718		dark = ubifs_calc_dark(c, spc);
 719
 720	if (lp->flags & LPROPS_INDEX)
 721		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 722		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 723		       lp->dirty, c->leb_size - spc, spc, lp->flags);
 724	else
 725		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 726		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 727		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 728		       c->leb_size - spc, spc, dark, dead,
 729		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 730
 731	if (lp->flags & LPROPS_TAKEN) {
 732		if (lp->flags & LPROPS_INDEX)
 733			printk(KERN_CONT "index, taken");
 734		else
 735			printk(KERN_CONT "taken");
 736	} else {
 737		const char *s;
 738
 739		if (lp->flags & LPROPS_INDEX) {
 740			switch (lp->flags & LPROPS_CAT_MASK) {
 741			case LPROPS_DIRTY_IDX:
 742				s = "dirty index";
 743				break;
 744			case LPROPS_FRDI_IDX:
 745				s = "freeable index";
 746				break;
 747			default:
 748				s = "index";
 749			}
 750		} else {
 751			switch (lp->flags & LPROPS_CAT_MASK) {
 752			case LPROPS_UNCAT:
 753				s = "not categorized";
 754				break;
 755			case LPROPS_DIRTY:
 756				s = "dirty";
 757				break;
 758			case LPROPS_FREE:
 759				s = "free";
 760				break;
 761			case LPROPS_EMPTY:
 762				s = "empty";
 763				break;
 764			case LPROPS_FREEABLE:
 765				s = "freeable";
 766				break;
 767			default:
 768				s = NULL;
 769				break;
 770			}
 771		}
 772		printk(KERN_CONT "%s", s);
 773	}
 774
 775	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 776		bud = rb_entry(rb, struct ubifs_bud, rb);
 777		if (bud->lnum == lp->lnum) {
 778			int head = 0;
 779			for (i = 0; i < c->jhead_cnt; i++) {
 780				/*
 781				 * Note, if we are in R/O mode or in the middle
 782				 * of mounting/re-mounting, the write-buffers do
 783				 * not exist.
 784				 */
 785				if (c->jheads &&
 786				    lp->lnum == c->jheads[i].wbuf.lnum) {
 787					printk(KERN_CONT ", jhead %s",
 788					       dbg_jhead(i));
 789					head = 1;
 790				}
 791			}
 792			if (!head)
 793				printk(KERN_CONT ", bud of jhead %s",
 794				       dbg_jhead(bud->jhead));
 795		}
 796	}
 797	if (lp->lnum == c->gc_lnum)
 798		printk(KERN_CONT ", GC LEB");
 799	printk(KERN_CONT ")\n");
 800}
 801
 802void ubifs_dump_lprops(struct ubifs_info *c)
 803{
 804	int lnum, err;
 805	struct ubifs_lprops lp;
 806	struct ubifs_lp_stats lst;
 807
 808	printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
 809	       current->pid);
 810	ubifs_get_lp_stats(c, &lst);
 811	ubifs_dump_lstats(&lst);
 812
 813	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 814		err = ubifs_read_one_lp(c, lnum, &lp);
 815		if (err)
 816			ubifs_err("cannot read lprops for LEB %d", lnum);
 
 
 817
 818		ubifs_dump_lprop(c, &lp);
 819	}
 820	printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
 821	       current->pid);
 822}
 823
 824void ubifs_dump_lpt_info(struct ubifs_info *c)
 825{
 826	int i;
 827
 828	spin_lock(&dbg_lock);
 829	printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
 830	printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
 831	printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
 832	printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
 833	printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
 834	printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
 835	printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
 836	printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
 837	printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
 838	printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
 839	printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 840	printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 841	printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
 842	printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
 843	printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 844	printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 845	printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 846	printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
 847	printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
 848	printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 849	printk(KERN_ERR "\tLPT head is at %d:%d\n",
 850	       c->nhead_lnum, c->nhead_offs);
 851	printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
 852	       c->ltab_lnum, c->ltab_offs);
 853	if (c->big_lpt)
 854		printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
 855		       c->lsave_lnum, c->lsave_offs);
 856	for (i = 0; i < c->lpt_lebs; i++)
 857		printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
 858		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 859		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 860	spin_unlock(&dbg_lock);
 861}
 862
 863void ubifs_dump_sleb(const struct ubifs_info *c,
 864		     const struct ubifs_scan_leb *sleb, int offs)
 865{
 866	struct ubifs_scan_node *snod;
 867
 868	printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
 869	       current->pid, sleb->lnum, offs);
 870
 871	list_for_each_entry(snod, &sleb->nodes, list) {
 872		cond_resched();
 873		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
 874		       snod->offs, snod->len);
 875		ubifs_dump_node(c, snod->node);
 876	}
 877}
 878
 879void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 880{
 881	struct ubifs_scan_leb *sleb;
 882	struct ubifs_scan_node *snod;
 883	void *buf;
 884
 885	if (dbg_is_tst_rcvry(c))
 886		return;
 887
 888	printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
 889	       current->pid, lnum);
 890
 891	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 892	if (!buf) {
 893		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 894		return;
 895	}
 896
 897	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 898	if (IS_ERR(sleb)) {
 899		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 900		goto out;
 901	}
 902
 903	printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
 904	       sleb->nodes_cnt, sleb->endpt);
 905
 906	list_for_each_entry(snod, &sleb->nodes, list) {
 907		cond_resched();
 908		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
 909		       snod->offs, snod->len);
 910		ubifs_dump_node(c, snod->node);
 911	}
 912
 913	printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
 914	       current->pid, lnum);
 915	ubifs_scan_destroy(sleb);
 916
 917out:
 918	vfree(buf);
 919	return;
 920}
 921
 922void ubifs_dump_znode(const struct ubifs_info *c,
 923		      const struct ubifs_znode *znode)
 924{
 925	int n;
 926	const struct ubifs_zbranch *zbr;
 927	char key_buf[DBG_KEY_BUF_LEN];
 928
 929	spin_lock(&dbg_lock);
 930	if (znode->parent)
 931		zbr = &znode->parent->zbranch[znode->iip];
 932	else
 933		zbr = &c->zroot;
 934
 935	printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 936	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 937	       zbr->len, znode->parent, znode->iip, znode->level,
 938	       znode->child_cnt, znode->flags);
 939
 940	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 941		spin_unlock(&dbg_lock);
 942		return;
 943	}
 944
 945	printk(KERN_ERR "zbranches:\n");
 946	for (n = 0; n < znode->child_cnt; n++) {
 947		zbr = &znode->zbranch[n];
 948		if (znode->level > 0)
 949			printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
 950					  "%s\n", n, zbr->znode, zbr->lnum,
 951					  zbr->offs, zbr->len,
 952					  dbg_snprintf_key(c, &zbr->key,
 953							   key_buf,
 954							   DBG_KEY_BUF_LEN));
 955		else
 956			printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
 957					  "%s\n", n, zbr->znode, zbr->lnum,
 958					  zbr->offs, zbr->len,
 959					  dbg_snprintf_key(c, &zbr->key,
 960							   key_buf,
 961							   DBG_KEY_BUF_LEN));
 962	}
 963	spin_unlock(&dbg_lock);
 964}
 965
 966void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 967{
 968	int i;
 969
 970	printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
 971	       current->pid, cat, heap->cnt);
 972	for (i = 0; i < heap->cnt; i++) {
 973		struct ubifs_lprops *lprops = heap->arr[i];
 974
 975		printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
 976		       "flags %d\n", i, lprops->lnum, lprops->hpos,
 977		       lprops->free, lprops->dirty, lprops->flags);
 978	}
 979	printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
 980}
 981
 982void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 983		      struct ubifs_nnode *parent, int iip)
 984{
 985	int i;
 986
 987	printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
 988	printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
 989	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 990	printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
 991	       pnode->flags, iip, pnode->level, pnode->num);
 992	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 993		struct ubifs_lprops *lp = &pnode->lprops[i];
 994
 995		printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
 996		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 997	}
 998}
 999
1000void ubifs_dump_tnc(struct ubifs_info *c)
1001{
1002	struct ubifs_znode *znode;
1003	int level;
1004
1005	printk(KERN_ERR "\n");
1006	printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008	level = znode->level;
1009	printk(KERN_ERR "== Level %d ==\n", level);
1010	while (znode) {
1011		if (level != znode->level) {
1012			level = znode->level;
1013			printk(KERN_ERR "== Level %d ==\n", level);
 
 
 
 
1014		}
1015		ubifs_dump_znode(c, znode);
1016		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017	}
1018	printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019}
1020
1021static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022		      void *priv)
1023{
1024	ubifs_dump_znode(c, znode);
1025	return 0;
1026}
1027
1028/**
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1031 *
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1034 */
1035void ubifs_dump_index(struct ubifs_info *c)
1036{
1037	dbg_walk_index(c, NULL, dump_znode, NULL);
1038}
1039
1040/**
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1043 *
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1046 */
1047void dbg_save_space_info(struct ubifs_info *c)
1048{
1049	struct ubifs_debug_info *d = c->dbg;
1050	int freeable_cnt;
1051
1052	spin_lock(&c->space_lock);
1053	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057	/*
1058	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059	 * affects the free space calculations, and UBIFS might not know about
1060	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061	 * only when we read their lprops, and we do this only lazily, upon the
1062	 * need. So at any given point of time @c->freeable_cnt might be not
1063	 * exactly accurate.
1064	 *
1065	 * Just one example about the issue we hit when we did not zero
1066	 * @c->freeable_cnt.
1067	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068	 *    amount of free space in @d->saved_free
1069	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070	 *    information from flash, where we cache LEBs from various
1071	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1074	 *    -> 'ubifs_add_to_cat()').
1075	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076	 *    becomes %1.
1077	 * 4. We calculate the amount of free space when the re-mount is
1078	 *    finished in 'dbg_check_space_info()' and it does not match
1079	 *    @d->saved_free.
1080	 */
1081	freeable_cnt = c->freeable_cnt;
1082	c->freeable_cnt = 0;
1083	d->saved_free = ubifs_get_free_space_nolock(c);
1084	c->freeable_cnt = freeable_cnt;
1085	spin_unlock(&c->space_lock);
1086}
1087
1088/**
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1096 */
1097int dbg_check_space_info(struct ubifs_info *c)
1098{
1099	struct ubifs_debug_info *d = c->dbg;
1100	struct ubifs_lp_stats lst;
1101	long long free;
1102	int freeable_cnt;
1103
1104	spin_lock(&c->space_lock);
1105	freeable_cnt = c->freeable_cnt;
1106	c->freeable_cnt = 0;
1107	free = ubifs_get_free_space_nolock(c);
1108	c->freeable_cnt = freeable_cnt;
1109	spin_unlock(&c->space_lock);
1110
1111	if (free != d->saved_free) {
1112		ubifs_err("free space changed from %lld to %lld",
1113			  d->saved_free, free);
1114		goto out;
1115	}
1116
1117	return 0;
1118
1119out:
1120	ubifs_msg("saved lprops statistics dump");
1121	ubifs_dump_lstats(&d->saved_lst);
1122	ubifs_msg("saved budgeting info dump");
1123	ubifs_dump_budg(c, &d->saved_bi);
1124	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125	ubifs_msg("current lprops statistics dump");
1126	ubifs_get_lp_stats(c, &lst);
1127	ubifs_dump_lstats(&lst);
1128	ubifs_msg("current budgeting info dump");
1129	ubifs_dump_budg(c, &c->bi);
1130	dump_stack();
1131	return -EINVAL;
1132}
1133
1134/**
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1138 *
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1143 */
1144int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145{
1146	int err = 0;
1147	struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149	if (!dbg_is_chk_gen(c))
1150		return 0;
1151	if (!S_ISREG(inode->i_mode))
1152		return 0;
1153
1154	mutex_lock(&ui->ui_mutex);
1155	spin_lock(&ui->ui_lock);
1156	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158			  "is clean", ui->ui_size, ui->synced_i_size);
1159		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160			  inode->i_mode, i_size_read(inode));
1161		dump_stack();
1162		err = -EINVAL;
1163	}
1164	spin_unlock(&ui->ui_lock);
1165	mutex_unlock(&ui->ui_mutex);
1166	return err;
1167}
1168
1169/*
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1174 *
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1178 *
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1181 */
1182int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183{
1184	unsigned int nlink = 2;
1185	union ubifs_key key;
1186	struct ubifs_dent_node *dent, *pdent = NULL;
1187	struct qstr nm = { .name = NULL };
1188	loff_t size = UBIFS_INO_NODE_SZ;
1189
1190	if (!dbg_is_chk_gen(c))
1191		return 0;
1192
1193	if (!S_ISDIR(dir->i_mode))
1194		return 0;
1195
1196	lowest_dent_key(c, &key, dir->i_ino);
1197	while (1) {
1198		int err;
1199
1200		dent = ubifs_tnc_next_ent(c, &key, &nm);
1201		if (IS_ERR(dent)) {
1202			err = PTR_ERR(dent);
1203			if (err == -ENOENT)
1204				break;
 
1205			return err;
1206		}
1207
1208		nm.name = dent->name;
1209		nm.len = le16_to_cpu(dent->nlen);
1210		size += CALC_DENT_SIZE(nm.len);
1211		if (dent->type == UBIFS_ITYPE_DIR)
1212			nlink += 1;
1213		kfree(pdent);
1214		pdent = dent;
1215		key_read(c, &dent->key, &key);
1216	}
1217	kfree(pdent);
1218
1219	if (i_size_read(dir) != size) {
1220		ubifs_err("directory inode %lu has size %llu, "
1221			  "but calculated size is %llu", dir->i_ino,
1222			  (unsigned long long)i_size_read(dir),
1223			  (unsigned long long)size);
1224		ubifs_dump_inode(c, dir);
1225		dump_stack();
1226		return -EINVAL;
1227	}
1228	if (dir->i_nlink != nlink) {
1229		ubifs_err("directory inode %lu has nlink %u, but calculated "
1230			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231		ubifs_dump_inode(c, dir);
1232		dump_stack();
1233		return -EINVAL;
1234	}
1235
1236	return 0;
1237}
1238
1239/**
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1244 *
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1251 */
1252static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253			       struct ubifs_zbranch *zbr2)
1254{
1255	int err, nlen1, nlen2, cmp;
1256	struct ubifs_dent_node *dent1, *dent2;
1257	union ubifs_key key;
1258	char key_buf[DBG_KEY_BUF_LEN];
1259
1260	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262	if (!dent1)
1263		return -ENOMEM;
1264	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265	if (!dent2) {
1266		err = -ENOMEM;
1267		goto out_free;
1268	}
1269
1270	err = ubifs_tnc_read_node(c, zbr1, dent1);
1271	if (err)
1272		goto out_free;
1273	err = ubifs_validate_entry(c, dent1);
1274	if (err)
1275		goto out_free;
1276
1277	err = ubifs_tnc_read_node(c, zbr2, dent2);
1278	if (err)
1279		goto out_free;
1280	err = ubifs_validate_entry(c, dent2);
1281	if (err)
1282		goto out_free;
1283
1284	/* Make sure node keys are the same as in zbranch */
1285	err = 1;
1286	key_read(c, &dent1->key, &key);
1287	if (keys_cmp(c, &zbr1->key, &key)) {
1288		ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290						       DBG_KEY_BUF_LEN));
1291		ubifs_err("but it should have key %s according to tnc",
1292			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1293					   DBG_KEY_BUF_LEN));
1294		ubifs_dump_node(c, dent1);
1295		goto out_free;
1296	}
1297
1298	key_read(c, &dent2->key, &key);
1299	if (keys_cmp(c, &zbr2->key, &key)) {
1300		ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302						       DBG_KEY_BUF_LEN));
1303		ubifs_err("but it should have key %s according to tnc",
1304			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1305					   DBG_KEY_BUF_LEN));
1306		ubifs_dump_node(c, dent2);
1307		goto out_free;
1308	}
1309
1310	nlen1 = le16_to_cpu(dent1->nlen);
1311	nlen2 = le16_to_cpu(dent2->nlen);
1312
1313	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315		err = 0;
1316		goto out_free;
1317	}
1318	if (cmp == 0 && nlen1 == nlen2)
1319		ubifs_err("2 xent/dent nodes with the same name");
1320	else
1321		ubifs_err("bad order of colliding key %s",
1322			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325	ubifs_dump_node(c, dent1);
1326	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327	ubifs_dump_node(c, dent2);
1328
1329out_free:
1330	kfree(dent2);
1331	kfree(dent1);
1332	return err;
1333}
1334
1335/**
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1339 *
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1342 */
1343static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344{
1345	struct ubifs_znode *znode = zbr->znode;
1346	struct ubifs_znode *zp = znode->parent;
1347	int n, err, cmp;
1348
1349	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350		err = 1;
1351		goto out;
1352	}
1353	if (znode->level < 0) {
1354		err = 2;
1355		goto out;
1356	}
1357	if (znode->iip < 0 || znode->iip >= c->fanout) {
1358		err = 3;
1359		goto out;
1360	}
1361
1362	if (zbr->len == 0)
1363		/* Only dirty zbranch may have no on-flash nodes */
1364		if (!ubifs_zn_dirty(znode)) {
1365			err = 4;
1366			goto out;
1367		}
1368
1369	if (ubifs_zn_dirty(znode)) {
1370		/*
1371		 * If znode is dirty, its parent has to be dirty as well. The
1372		 * order of the operation is important, so we have to have
1373		 * memory barriers.
1374		 */
1375		smp_mb();
1376		if (zp && !ubifs_zn_dirty(zp)) {
1377			/*
1378			 * The dirty flag is atomic and is cleared outside the
1379			 * TNC mutex, so znode's dirty flag may now have
1380			 * been cleared. The child is always cleared before the
1381			 * parent, so we just need to check again.
1382			 */
1383			smp_mb();
1384			if (ubifs_zn_dirty(znode)) {
1385				err = 5;
1386				goto out;
1387			}
1388		}
1389	}
1390
1391	if (zp) {
1392		const union ubifs_key *min, *max;
1393
1394		if (znode->level != zp->level - 1) {
1395			err = 6;
1396			goto out;
1397		}
1398
1399		/* Make sure the 'parent' pointer in our znode is correct */
1400		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401		if (!err) {
1402			/* This zbranch does not exist in the parent */
1403			err = 7;
1404			goto out;
1405		}
1406
1407		if (znode->iip >= zp->child_cnt) {
1408			err = 8;
1409			goto out;
1410		}
1411
1412		if (znode->iip != n) {
1413			/* This may happen only in case of collisions */
1414			if (keys_cmp(c, &zp->zbranch[n].key,
1415				     &zp->zbranch[znode->iip].key)) {
1416				err = 9;
1417				goto out;
1418			}
1419			n = znode->iip;
1420		}
1421
1422		/*
1423		 * Make sure that the first key in our znode is greater than or
1424		 * equal to the key in the pointing zbranch.
1425		 */
1426		min = &zbr->key;
1427		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428		if (cmp == 1) {
1429			err = 10;
1430			goto out;
1431		}
1432
1433		if (n + 1 < zp->child_cnt) {
1434			max = &zp->zbranch[n + 1].key;
1435
1436			/*
1437			 * Make sure the last key in our znode is less or
1438			 * equivalent than the key in the zbranch which goes
1439			 * after our pointing zbranch.
1440			 */
1441			cmp = keys_cmp(c, max,
1442				&znode->zbranch[znode->child_cnt - 1].key);
1443			if (cmp == -1) {
1444				err = 11;
1445				goto out;
1446			}
1447		}
1448	} else {
1449		/* This may only be root znode */
1450		if (zbr != &c->zroot) {
1451			err = 12;
1452			goto out;
1453		}
1454	}
1455
1456	/*
1457	 * Make sure that next key is greater or equivalent then the previous
1458	 * one.
1459	 */
1460	for (n = 1; n < znode->child_cnt; n++) {
1461		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462			       &znode->zbranch[n].key);
1463		if (cmp > 0) {
1464			err = 13;
1465			goto out;
1466		}
1467		if (cmp == 0) {
1468			/* This can only be keys with colliding hash */
1469			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470				err = 14;
1471				goto out;
1472			}
1473
1474			if (znode->level != 0 || c->replaying)
1475				continue;
1476
1477			/*
1478			 * Colliding keys should follow binary order of
1479			 * corresponding xentry/dentry names.
1480			 */
1481			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482						  &znode->zbranch[n]);
1483			if (err < 0)
1484				return err;
1485			if (err) {
1486				err = 15;
1487				goto out;
1488			}
1489		}
1490	}
1491
1492	for (n = 0; n < znode->child_cnt; n++) {
1493		if (!znode->zbranch[n].znode &&
1494		    (znode->zbranch[n].lnum == 0 ||
1495		     znode->zbranch[n].len == 0)) {
1496			err = 16;
1497			goto out;
1498		}
1499
1500		if (znode->zbranch[n].lnum != 0 &&
1501		    znode->zbranch[n].len == 0) {
1502			err = 17;
1503			goto out;
1504		}
1505
1506		if (znode->zbranch[n].lnum == 0 &&
1507		    znode->zbranch[n].len != 0) {
1508			err = 18;
1509			goto out;
1510		}
1511
1512		if (znode->zbranch[n].lnum == 0 &&
1513		    znode->zbranch[n].offs != 0) {
1514			err = 19;
1515			goto out;
1516		}
1517
1518		if (znode->level != 0 && znode->zbranch[n].znode)
1519			if (znode->zbranch[n].znode->parent != znode) {
1520				err = 20;
1521				goto out;
1522			}
1523	}
1524
1525	return 0;
1526
1527out:
1528	ubifs_err("failed, error %d", err);
1529	ubifs_msg("dump of the znode");
1530	ubifs_dump_znode(c, znode);
1531	if (zp) {
1532		ubifs_msg("dump of the parent znode");
1533		ubifs_dump_znode(c, zp);
1534	}
1535	dump_stack();
1536	return -EINVAL;
1537}
1538
1539/**
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1543 *
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1546 */
1547int dbg_check_tnc(struct ubifs_info *c, int extra)
1548{
1549	struct ubifs_znode *znode;
1550	long clean_cnt = 0, dirty_cnt = 0;
1551	int err, last;
1552
1553	if (!dbg_is_chk_index(c))
1554		return 0;
1555
1556	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557	if (!c->zroot.znode)
1558		return 0;
1559
1560	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561	while (1) {
1562		struct ubifs_znode *prev;
1563		struct ubifs_zbranch *zbr;
1564
1565		if (!znode->parent)
1566			zbr = &c->zroot;
1567		else
1568			zbr = &znode->parent->zbranch[znode->iip];
1569
1570		err = dbg_check_znode(c, zbr);
1571		if (err)
1572			return err;
1573
1574		if (extra) {
1575			if (ubifs_zn_dirty(znode))
1576				dirty_cnt += 1;
1577			else
1578				clean_cnt += 1;
1579		}
1580
1581		prev = znode;
1582		znode = ubifs_tnc_postorder_next(znode);
1583		if (!znode)
1584			break;
1585
1586		/*
1587		 * If the last key of this znode is equivalent to the first key
1588		 * of the next znode (collision), then check order of the keys.
1589		 */
1590		last = prev->child_cnt - 1;
1591		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592		    !keys_cmp(c, &prev->zbranch[last].key,
1593			      &znode->zbranch[0].key)) {
1594			err = dbg_check_key_order(c, &prev->zbranch[last],
1595						  &znode->zbranch[0]);
1596			if (err < 0)
1597				return err;
1598			if (err) {
1599				ubifs_msg("first znode");
1600				ubifs_dump_znode(c, prev);
1601				ubifs_msg("second znode");
1602				ubifs_dump_znode(c, znode);
1603				return -EINVAL;
1604			}
1605		}
1606	}
1607
1608	if (extra) {
1609		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611				  atomic_long_read(&c->clean_zn_cnt),
1612				  clean_cnt);
1613			return -EINVAL;
1614		}
1615		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617				  atomic_long_read(&c->dirty_zn_cnt),
1618				  dirty_cnt);
1619			return -EINVAL;
1620		}
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1632 *
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1636 *
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1640 */
1641int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642		   dbg_znode_callback znode_cb, void *priv)
1643{
1644	int err;
1645	struct ubifs_zbranch *zbr;
1646	struct ubifs_znode *znode, *child;
1647
1648	mutex_lock(&c->tnc_mutex);
1649	/* If the root indexing node is not in TNC - pull it */
1650	if (!c->zroot.znode) {
1651		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652		if (IS_ERR(c->zroot.znode)) {
1653			err = PTR_ERR(c->zroot.znode);
1654			c->zroot.znode = NULL;
1655			goto out_unlock;
1656		}
1657	}
1658
1659	/*
1660	 * We are going to traverse the indexing tree in the postorder manner.
1661	 * Go down and find the leftmost indexing node where we are going to
1662	 * start from.
1663	 */
1664	znode = c->zroot.znode;
1665	while (znode->level > 0) {
1666		zbr = &znode->zbranch[0];
1667		child = zbr->znode;
1668		if (!child) {
1669			child = ubifs_load_znode(c, zbr, znode, 0);
1670			if (IS_ERR(child)) {
1671				err = PTR_ERR(child);
1672				goto out_unlock;
1673			}
1674			zbr->znode = child;
1675		}
1676
1677		znode = child;
1678	}
1679
1680	/* Iterate over all indexing nodes */
1681	while (1) {
1682		int idx;
1683
1684		cond_resched();
1685
1686		if (znode_cb) {
1687			err = znode_cb(c, znode, priv);
1688			if (err) {
1689				ubifs_err("znode checking function returned "
1690					  "error %d", err);
1691				ubifs_dump_znode(c, znode);
1692				goto out_dump;
1693			}
1694		}
1695		if (leaf_cb && znode->level == 0) {
1696			for (idx = 0; idx < znode->child_cnt; idx++) {
1697				zbr = &znode->zbranch[idx];
1698				err = leaf_cb(c, zbr, priv);
1699				if (err) {
1700					ubifs_err("leaf checking function "
1701						  "returned error %d, for leaf "
1702						  "at LEB %d:%d",
1703						  err, zbr->lnum, zbr->offs);
1704					goto out_dump;
1705				}
1706			}
1707		}
1708
1709		if (!znode->parent)
1710			break;
1711
1712		idx = znode->iip + 1;
1713		znode = znode->parent;
1714		if (idx < znode->child_cnt) {
1715			/* Switch to the next index in the parent */
1716			zbr = &znode->zbranch[idx];
1717			child = zbr->znode;
1718			if (!child) {
1719				child = ubifs_load_znode(c, zbr, znode, idx);
1720				if (IS_ERR(child)) {
1721					err = PTR_ERR(child);
1722					goto out_unlock;
1723				}
1724				zbr->znode = child;
1725			}
1726			znode = child;
1727		} else
1728			/*
1729			 * This is the last child, switch to the parent and
1730			 * continue.
1731			 */
1732			continue;
1733
1734		/* Go to the lowest leftmost znode in the new sub-tree */
1735		while (znode->level > 0) {
1736			zbr = &znode->zbranch[0];
1737			child = zbr->znode;
1738			if (!child) {
1739				child = ubifs_load_znode(c, zbr, znode, 0);
1740				if (IS_ERR(child)) {
1741					err = PTR_ERR(child);
1742					goto out_unlock;
1743				}
1744				zbr->znode = child;
1745			}
1746			znode = child;
1747		}
1748	}
1749
1750	mutex_unlock(&c->tnc_mutex);
1751	return 0;
1752
1753out_dump:
1754	if (znode->parent)
1755		zbr = &znode->parent->zbranch[znode->iip];
1756	else
1757		zbr = &c->zroot;
1758	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759	ubifs_dump_znode(c, znode);
1760out_unlock:
1761	mutex_unlock(&c->tnc_mutex);
1762	return err;
1763}
1764
1765/**
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1770 *
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1774 */
1775static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776{
1777	long long *idx_size = priv;
1778	int add;
1779
1780	add = ubifs_idx_node_sz(c, znode->child_cnt);
1781	add = ALIGN(add, 8);
1782	*idx_size += add;
1783	return 0;
1784}
1785
1786/**
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1790 *
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1794 */
1795int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796{
1797	int err;
1798	long long calc = 0;
1799
1800	if (!dbg_is_chk_index(c))
1801		return 0;
1802
1803	err = dbg_walk_index(c, NULL, add_size, &calc);
1804	if (err) {
1805		ubifs_err("error %d while walking the index", err);
1806		return err;
1807	}
1808
1809	if (calc != idx_size) {
1810		ubifs_err("index size check failed: calculated size is %lld, "
1811			  "should be %lld", calc, idx_size);
1812		dump_stack();
1813		return -EINVAL;
 
1814	}
1815
1816	return 0;
 
 
 
 
1817}
1818
1819/**
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 *              while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 *            inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 *             inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1838 */
1839struct fsck_inode {
1840	struct rb_node rb;
1841	ino_t inum;
1842	umode_t mode;
1843	unsigned int nlink;
1844	unsigned int xattr_cnt;
1845	int references;
1846	int calc_cnt;
1847	long long size;
1848	unsigned int xattr_sz;
1849	long long calc_sz;
1850	long long calc_xcnt;
1851	long long calc_xsz;
1852	unsigned int xattr_nms;
1853	long long calc_xnms;
1854};
1855
1856/**
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859 */
1860struct fsck_data {
1861	struct rb_root inodes;
1862};
1863
1864/**
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1869 *
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1873 */
1874static struct fsck_inode *add_inode(struct ubifs_info *c,
1875				    struct fsck_data *fsckd,
1876				    struct ubifs_ino_node *ino)
1877{
1878	struct rb_node **p, *parent = NULL;
1879	struct fsck_inode *fscki;
1880	ino_t inum = key_inum_flash(c, &ino->key);
1881	struct inode *inode;
1882	struct ubifs_inode *ui;
1883
1884	p = &fsckd->inodes.rb_node;
1885	while (*p) {
1886		parent = *p;
1887		fscki = rb_entry(parent, struct fsck_inode, rb);
1888		if (inum < fscki->inum)
1889			p = &(*p)->rb_left;
1890		else if (inum > fscki->inum)
1891			p = &(*p)->rb_right;
1892		else
1893			return fscki;
1894	}
1895
1896	if (inum > c->highest_inum) {
1897		ubifs_err("too high inode number, max. is %lu",
1898			  (unsigned long)c->highest_inum);
1899		return ERR_PTR(-EINVAL);
1900	}
1901
1902	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903	if (!fscki)
1904		return ERR_PTR(-ENOMEM);
1905
1906	inode = ilookup(c->vfs_sb, inum);
1907
1908	fscki->inum = inum;
1909	/*
1910	 * If the inode is present in the VFS inode cache, use it instead of
1911	 * the on-flash inode which might be out-of-date. E.g., the size might
1912	 * be out-of-date. If we do not do this, the following may happen, for
1913	 * example:
1914	 *   1. A power cut happens
1915	 *   2. We mount the file-system R/O, the replay process fixes up the
1916	 *      inode size in the VFS cache, but on on-flash.
1917	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918	 *      size.
1919	 */
1920	if (!inode) {
1921		fscki->nlink = le32_to_cpu(ino->nlink);
1922		fscki->size = le64_to_cpu(ino->size);
1923		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926		fscki->mode = le32_to_cpu(ino->mode);
1927	} else {
1928		ui = ubifs_inode(inode);
1929		fscki->nlink = inode->i_nlink;
1930		fscki->size = inode->i_size;
1931		fscki->xattr_cnt = ui->xattr_cnt;
1932		fscki->xattr_sz = ui->xattr_size;
1933		fscki->xattr_nms = ui->xattr_names;
1934		fscki->mode = inode->i_mode;
1935		iput(inode);
1936	}
1937
1938	if (S_ISDIR(fscki->mode)) {
1939		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940		fscki->calc_cnt = 2;
1941	}
1942
1943	rb_link_node(&fscki->rb, parent, p);
1944	rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946	return fscki;
1947}
1948
1949/**
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1953 *
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1957 */
1958static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959{
1960	struct rb_node *p;
1961	struct fsck_inode *fscki;
1962
1963	p = fsckd->inodes.rb_node;
1964	while (p) {
1965		fscki = rb_entry(p, struct fsck_inode, rb);
1966		if (inum < fscki->inum)
1967			p = p->rb_left;
1968		else if (inum > fscki->inum)
1969			p = p->rb_right;
1970		else
1971			return fscki;
1972	}
1973	return NULL;
1974}
1975
1976/**
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1981 *
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1986 */
1987static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988					 struct fsck_data *fsckd, ino_t inum)
1989{
1990	int n, err;
1991	union ubifs_key key;
1992	struct ubifs_znode *znode;
1993	struct ubifs_zbranch *zbr;
1994	struct ubifs_ino_node *ino;
1995	struct fsck_inode *fscki;
1996
1997	fscki = search_inode(fsckd, inum);
1998	if (fscki)
1999		return fscki;
2000
2001	ino_key_init(c, &key, inum);
2002	err = ubifs_lookup_level0(c, &key, &znode, &n);
2003	if (!err) {
2004		ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005		return ERR_PTR(-ENOENT);
2006	} else if (err < 0) {
2007		ubifs_err("error %d while looking up inode %lu",
2008			  err, (unsigned long)inum);
2009		return ERR_PTR(err);
2010	}
2011
2012	zbr = &znode->zbranch[n];
2013	if (zbr->len < UBIFS_INO_NODE_SZ) {
2014		ubifs_err("bad node %lu node length %d",
2015			  (unsigned long)inum, zbr->len);
2016		return ERR_PTR(-EINVAL);
2017	}
2018
2019	ino = kmalloc(zbr->len, GFP_NOFS);
2020	if (!ino)
2021		return ERR_PTR(-ENOMEM);
2022
2023	err = ubifs_tnc_read_node(c, zbr, ino);
2024	if (err) {
2025		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026			  zbr->lnum, zbr->offs, err);
2027		kfree(ino);
2028		return ERR_PTR(err);
2029	}
2030
2031	fscki = add_inode(c, fsckd, ino);
2032	kfree(ino);
2033	if (IS_ERR(fscki)) {
2034		ubifs_err("error %ld while adding inode %lu node",
2035			  PTR_ERR(fscki), (unsigned long)inum);
2036		return fscki;
2037	}
2038
2039	return fscki;
2040}
2041
2042/**
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2047 *
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2057 */
2058static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059		      void *priv)
2060{
2061	ino_t inum;
2062	void *node;
2063	struct ubifs_ch *ch;
2064	int err, type = key_type(c, &zbr->key);
2065	struct fsck_inode *fscki;
2066
2067	if (zbr->len < UBIFS_CH_SZ) {
2068		ubifs_err("bad leaf length %d (LEB %d:%d)",
2069			  zbr->len, zbr->lnum, zbr->offs);
2070		return -EINVAL;
2071	}
2072
2073	node = kmalloc(zbr->len, GFP_NOFS);
2074	if (!node)
2075		return -ENOMEM;
2076
2077	err = ubifs_tnc_read_node(c, zbr, node);
2078	if (err) {
2079		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080			  zbr->lnum, zbr->offs, err);
2081		goto out_free;
2082	}
2083
2084	/* If this is an inode node, add it to RB-tree of inodes */
2085	if (type == UBIFS_INO_KEY) {
2086		fscki = add_inode(c, priv, node);
2087		if (IS_ERR(fscki)) {
2088			err = PTR_ERR(fscki);
2089			ubifs_err("error %d while adding inode node", err);
2090			goto out_dump;
2091		}
2092		goto out;
2093	}
2094
2095	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096	    type != UBIFS_DATA_KEY) {
2097		ubifs_err("unexpected node type %d at LEB %d:%d",
2098			  type, zbr->lnum, zbr->offs);
2099		err = -EINVAL;
2100		goto out_free;
2101	}
2102
2103	ch = node;
2104	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105		ubifs_err("too high sequence number, max. is %llu",
2106			  c->max_sqnum);
2107		err = -EINVAL;
2108		goto out_dump;
2109	}
2110
2111	if (type == UBIFS_DATA_KEY) {
2112		long long blk_offs;
2113		struct ubifs_data_node *dn = node;
2114
 
 
2115		/*
2116		 * Search the inode node this data node belongs to and insert
2117		 * it to the RB-tree of inodes.
2118		 */
2119		inum = key_inum_flash(c, &dn->key);
2120		fscki = read_add_inode(c, priv, inum);
2121		if (IS_ERR(fscki)) {
2122			err = PTR_ERR(fscki);
2123			ubifs_err("error %d while processing data node and "
2124				  "trying to find inode node %lu",
2125				  err, (unsigned long)inum);
2126			goto out_dump;
2127		}
2128
2129		/* Make sure the data node is within inode size */
2130		blk_offs = key_block_flash(c, &dn->key);
2131		blk_offs <<= UBIFS_BLOCK_SHIFT;
2132		blk_offs += le32_to_cpu(dn->size);
2133		if (blk_offs > fscki->size) {
2134			ubifs_err("data node at LEB %d:%d is not within inode "
2135				  "size %lld", zbr->lnum, zbr->offs,
2136				  fscki->size);
2137			err = -EINVAL;
2138			goto out_dump;
2139		}
2140	} else {
2141		int nlen;
2142		struct ubifs_dent_node *dent = node;
2143		struct fsck_inode *fscki1;
2144
 
 
2145		err = ubifs_validate_entry(c, dent);
2146		if (err)
2147			goto out_dump;
2148
2149		/*
2150		 * Search the inode node this entry refers to and the parent
2151		 * inode node and insert them to the RB-tree of inodes.
2152		 */
2153		inum = le64_to_cpu(dent->inum);
2154		fscki = read_add_inode(c, priv, inum);
2155		if (IS_ERR(fscki)) {
2156			err = PTR_ERR(fscki);
2157			ubifs_err("error %d while processing entry node and "
2158				  "trying to find inode node %lu",
2159				  err, (unsigned long)inum);
2160			goto out_dump;
2161		}
2162
2163		/* Count how many direntries or xentries refers this inode */
2164		fscki->references += 1;
2165
2166		inum = key_inum_flash(c, &dent->key);
2167		fscki1 = read_add_inode(c, priv, inum);
2168		if (IS_ERR(fscki1)) {
2169			err = PTR_ERR(fscki1);
2170			ubifs_err("error %d while processing entry node and "
2171				  "trying to find parent inode node %lu",
2172				  err, (unsigned long)inum);
2173			goto out_dump;
2174		}
2175
2176		nlen = le16_to_cpu(dent->nlen);
2177		if (type == UBIFS_XENT_KEY) {
2178			fscki1->calc_xcnt += 1;
2179			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181			fscki1->calc_xnms += nlen;
2182		} else {
2183			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184			if (dent->type == UBIFS_ITYPE_DIR)
2185				fscki1->calc_cnt += 1;
2186		}
2187	}
2188
2189out:
2190	kfree(node);
2191	return 0;
2192
2193out_dump:
2194	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195	ubifs_dump_node(c, node);
2196out_free:
2197	kfree(node);
2198	return err;
2199}
2200
2201/**
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2204 */
2205static void free_inodes(struct fsck_data *fsckd)
2206{
2207	struct rb_node *this = fsckd->inodes.rb_node;
2208	struct fsck_inode *fscki;
2209
2210	while (this) {
2211		if (this->rb_left)
2212			this = this->rb_left;
2213		else if (this->rb_right)
2214			this = this->rb_right;
2215		else {
2216			fscki = rb_entry(this, struct fsck_inode, rb);
2217			this = rb_parent(this);
2218			if (this) {
2219				if (this->rb_left == &fscki->rb)
2220					this->rb_left = NULL;
2221				else
2222					this->rb_right = NULL;
2223			}
2224			kfree(fscki);
2225		}
2226	}
2227}
2228
2229/**
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2233 *
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2238 */
2239static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240{
2241	int n, err;
2242	union ubifs_key key;
2243	struct ubifs_znode *znode;
2244	struct ubifs_zbranch *zbr;
2245	struct ubifs_ino_node *ino;
2246	struct fsck_inode *fscki;
2247	struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249	while (this) {
2250		fscki = rb_entry(this, struct fsck_inode, rb);
2251		this = rb_next(this);
2252
2253		if (S_ISDIR(fscki->mode)) {
2254			/*
2255			 * Directories have to have exactly one reference (they
2256			 * cannot have hardlinks), although root inode is an
2257			 * exception.
2258			 */
2259			if (fscki->inum != UBIFS_ROOT_INO &&
2260			    fscki->references != 1) {
2261				ubifs_err("directory inode %lu has %d "
2262					  "direntries which refer it, but "
2263					  "should be 1",
2264					  (unsigned long)fscki->inum,
2265					  fscki->references);
2266				goto out_dump;
2267			}
2268			if (fscki->inum == UBIFS_ROOT_INO &&
2269			    fscki->references != 0) {
2270				ubifs_err("root inode %lu has non-zero (%d) "
2271					  "direntries which refer it",
2272					  (unsigned long)fscki->inum,
2273					  fscki->references);
2274				goto out_dump;
2275			}
2276			if (fscki->calc_sz != fscki->size) {
2277				ubifs_err("directory inode %lu size is %lld, "
2278					  "but calculated size is %lld",
2279					  (unsigned long)fscki->inum,
2280					  fscki->size, fscki->calc_sz);
2281				goto out_dump;
2282			}
2283			if (fscki->calc_cnt != fscki->nlink) {
2284				ubifs_err("directory inode %lu nlink is %d, "
2285					  "but calculated nlink is %d",
2286					  (unsigned long)fscki->inum,
2287					  fscki->nlink, fscki->calc_cnt);
2288				goto out_dump;
2289			}
2290		} else {
2291			if (fscki->references != fscki->nlink) {
2292				ubifs_err("inode %lu nlink is %d, but "
2293					  "calculated nlink is %d",
2294					  (unsigned long)fscki->inum,
2295					  fscki->nlink, fscki->references);
2296				goto out_dump;
2297			}
2298		}
2299		if (fscki->xattr_sz != fscki->calc_xsz) {
2300			ubifs_err("inode %lu has xattr size %u, but "
2301				  "calculated size is %lld",
2302				  (unsigned long)fscki->inum, fscki->xattr_sz,
2303				  fscki->calc_xsz);
2304			goto out_dump;
2305		}
2306		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307			ubifs_err("inode %lu has %u xattrs, but "
2308				  "calculated count is %lld",
2309				  (unsigned long)fscki->inum,
2310				  fscki->xattr_cnt, fscki->calc_xcnt);
2311			goto out_dump;
2312		}
2313		if (fscki->xattr_nms != fscki->calc_xnms) {
2314			ubifs_err("inode %lu has xattr names' size %u, but "
2315				  "calculated names' size is %lld",
2316				  (unsigned long)fscki->inum, fscki->xattr_nms,
2317				  fscki->calc_xnms);
2318			goto out_dump;
2319		}
2320	}
2321
2322	return 0;
2323
2324out_dump:
2325	/* Read the bad inode and dump it */
2326	ino_key_init(c, &key, fscki->inum);
2327	err = ubifs_lookup_level0(c, &key, &znode, &n);
2328	if (!err) {
2329		ubifs_err("inode %lu not found in index",
2330			  (unsigned long)fscki->inum);
2331		return -ENOENT;
2332	} else if (err < 0) {
2333		ubifs_err("error %d while looking up inode %lu",
2334			  err, (unsigned long)fscki->inum);
2335		return err;
2336	}
2337
2338	zbr = &znode->zbranch[n];
2339	ino = kmalloc(zbr->len, GFP_NOFS);
2340	if (!ino)
2341		return -ENOMEM;
2342
2343	err = ubifs_tnc_read_node(c, zbr, ino);
2344	if (err) {
2345		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346			  zbr->lnum, zbr->offs, err);
2347		kfree(ino);
2348		return err;
2349	}
2350
2351	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353	ubifs_dump_node(c, ino);
2354	kfree(ino);
2355	return -EINVAL;
2356}
2357
2358/**
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2361 *
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 *   inodes).
2366 *
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2370 */
2371int dbg_check_filesystem(struct ubifs_info *c)
2372{
2373	int err;
2374	struct fsck_data fsckd;
2375
2376	if (!dbg_is_chk_fs(c))
2377		return 0;
2378
2379	fsckd.inodes = RB_ROOT;
2380	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381	if (err)
2382		goto out_free;
2383
2384	err = check_inodes(c, &fsckd);
2385	if (err)
2386		goto out_free;
2387
2388	free_inodes(&fsckd);
2389	return 0;
2390
2391out_free:
2392	ubifs_err("file-system check failed with error %d", err);
2393	dump_stack();
2394	free_inodes(&fsckd);
2395	return err;
2396}
2397
2398/**
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402 *
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2405 */
2406int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407{
2408	struct list_head *cur;
2409	struct ubifs_scan_node *sa, *sb;
2410
2411	if (!dbg_is_chk_gen(c))
2412		return 0;
2413
2414	for (cur = head->next; cur->next != head; cur = cur->next) {
2415		ino_t inuma, inumb;
2416		uint32_t blka, blkb;
2417
2418		cond_resched();
2419		sa = container_of(cur, struct ubifs_scan_node, list);
2420		sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422		if (sa->type != UBIFS_DATA_NODE) {
2423			ubifs_err("bad node type %d", sa->type);
2424			ubifs_dump_node(c, sa->node);
2425			return -EINVAL;
2426		}
2427		if (sb->type != UBIFS_DATA_NODE) {
2428			ubifs_err("bad node type %d", sb->type);
2429			ubifs_dump_node(c, sb->node);
2430			return -EINVAL;
2431		}
2432
2433		inuma = key_inum(c, &sa->key);
2434		inumb = key_inum(c, &sb->key);
2435
2436		if (inuma < inumb)
2437			continue;
2438		if (inuma > inumb) {
2439			ubifs_err("larger inum %lu goes before inum %lu",
2440				  (unsigned long)inuma, (unsigned long)inumb);
2441			goto error_dump;
2442		}
2443
2444		blka = key_block(c, &sa->key);
2445		blkb = key_block(c, &sb->key);
2446
2447		if (blka > blkb) {
2448			ubifs_err("larger block %u goes before %u", blka, blkb);
2449			goto error_dump;
2450		}
2451		if (blka == blkb) {
2452			ubifs_err("two data nodes for the same block");
2453			goto error_dump;
2454		}
2455	}
2456
2457	return 0;
2458
2459error_dump:
2460	ubifs_dump_node(c, sa->node);
2461	ubifs_dump_node(c, sb->node);
2462	return -EINVAL;
2463}
2464
2465/**
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469 *
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2472 */
2473int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474{
2475	struct list_head *cur;
2476	struct ubifs_scan_node *sa, *sb;
2477
2478	if (!dbg_is_chk_gen(c))
2479		return 0;
2480
2481	for (cur = head->next; cur->next != head; cur = cur->next) {
2482		ino_t inuma, inumb;
2483		uint32_t hasha, hashb;
2484
2485		cond_resched();
2486		sa = container_of(cur, struct ubifs_scan_node, list);
2487		sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490		    sa->type != UBIFS_XENT_NODE) {
2491			ubifs_err("bad node type %d", sa->type);
2492			ubifs_dump_node(c, sa->node);
2493			return -EINVAL;
2494		}
2495		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496		    sa->type != UBIFS_XENT_NODE) {
2497			ubifs_err("bad node type %d", sb->type);
2498			ubifs_dump_node(c, sb->node);
2499			return -EINVAL;
2500		}
2501
2502		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503			ubifs_err("non-inode node goes before inode node");
2504			goto error_dump;
2505		}
2506
2507		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508			continue;
2509
2510		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511			/* Inode nodes are sorted in descending size order */
2512			if (sa->len < sb->len) {
2513				ubifs_err("smaller inode node goes first");
2514				goto error_dump;
2515			}
2516			continue;
2517		}
2518
2519		/*
2520		 * This is either a dentry or xentry, which should be sorted in
2521		 * ascending (parent ino, hash) order.
2522		 */
2523		inuma = key_inum(c, &sa->key);
2524		inumb = key_inum(c, &sb->key);
2525
2526		if (inuma < inumb)
2527			continue;
2528		if (inuma > inumb) {
2529			ubifs_err("larger inum %lu goes before inum %lu",
2530				  (unsigned long)inuma, (unsigned long)inumb);
2531			goto error_dump;
2532		}
2533
2534		hasha = key_block(c, &sa->key);
2535		hashb = key_block(c, &sb->key);
2536
2537		if (hasha > hashb) {
2538			ubifs_err("larger hash %u goes before %u",
2539				  hasha, hashb);
2540			goto error_dump;
2541		}
2542	}
2543
2544	return 0;
2545
2546error_dump:
2547	ubifs_msg("dumping first node");
2548	ubifs_dump_node(c, sa->node);
2549	ubifs_msg("dumping second node");
2550	ubifs_dump_node(c, sb->node);
2551	return -EINVAL;
2552	return 0;
2553}
2554
2555static inline int chance(unsigned int n, unsigned int out_of)
2556{
2557	return !!((random32() % out_of) + 1 <= n);
2558
2559}
2560
2561static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562{
2563	struct ubifs_debug_info *d = c->dbg;
2564
2565	ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567	if (!d->pc_cnt) {
2568		/* First call - decide delay to the power cut */
2569		if (chance(1, 2)) {
2570			unsigned long delay;
2571
2572			if (chance(1, 2)) {
2573				d->pc_delay = 1;
2574				/* Fail withing 1 minute */
2575				delay = random32() % 60000;
2576				d->pc_timeout = jiffies;
2577				d->pc_timeout += msecs_to_jiffies(delay);
2578				ubifs_warn("failing after %lums", delay);
2579			} else {
2580				d->pc_delay = 2;
2581				delay = random32() % 10000;
2582				/* Fail within 10000 operations */
2583				d->pc_cnt_max = delay;
2584				ubifs_warn("failing after %lu calls", delay);
2585			}
2586		}
2587
2588		d->pc_cnt += 1;
2589	}
2590
2591	/* Determine if failure delay has expired */
2592	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593			return 0;
2594	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595			return 0;
2596
2597	if (lnum == UBIFS_SB_LNUM) {
2598		if (write && chance(1, 2))
2599			return 0;
2600		if (chance(19, 20))
2601			return 0;
2602		ubifs_warn("failing in super block LEB %d", lnum);
2603	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604		if (chance(19, 20))
2605			return 0;
2606		ubifs_warn("failing in master LEB %d", lnum);
2607	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608		if (write && chance(99, 100))
2609			return 0;
2610		if (chance(399, 400))
2611			return 0;
2612		ubifs_warn("failing in log LEB %d", lnum);
2613	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614		if (write && chance(7, 8))
2615			return 0;
2616		if (chance(19, 20))
2617			return 0;
2618		ubifs_warn("failing in LPT LEB %d", lnum);
2619	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620		if (write && chance(1, 2))
2621			return 0;
2622		if (chance(9, 10))
2623			return 0;
2624		ubifs_warn("failing in orphan LEB %d", lnum);
2625	} else if (lnum == c->ihead_lnum) {
2626		if (chance(99, 100))
2627			return 0;
2628		ubifs_warn("failing in index head LEB %d", lnum);
2629	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630		if (chance(9, 10))
2631			return 0;
2632		ubifs_warn("failing in GC head LEB %d", lnum);
2633	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634		   !ubifs_search_bud(c, lnum)) {
2635		if (chance(19, 20))
2636			return 0;
2637		ubifs_warn("failing in non-bud LEB %d", lnum);
2638	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640		if (chance(999, 1000))
2641			return 0;
2642		ubifs_warn("failing in bud LEB %d commit running", lnum);
2643	} else {
2644		if (chance(9999, 10000))
2645			return 0;
2646		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647	}
2648
2649	d->pc_happened = 1;
2650	ubifs_warn("========== Power cut emulated ==========");
2651	dump_stack();
2652	return 1;
2653}
2654
2655static void cut_data(const void *buf, unsigned int len)
 
2656{
2657	unsigned int from, to, i, ffs = chance(1, 2);
2658	unsigned char *p = (void *)buf;
2659
2660	from = random32() % (len + 1);
2661	if (chance(1, 2))
2662		to = random32() % (len - from + 1);
2663	else
2664		to = len;
2665
2666	if (from < to)
2667		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668			   ffs ? "0xFFs" : "random data");
2669
2670	if (ffs)
2671		for (i = from; i < to; i++)
2672			p[i] = 0xFF;
2673	else
2674		for (i = from; i < to; i++)
2675			p[i] = random32() % 0x100;
 
2676}
2677
2678int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679		  int offs, int len)
2680{
2681	int err, failing;
2682
2683	if (c->dbg->pc_happened)
2684		return -EROFS;
2685
2686	failing = power_cut_emulated(c, lnum, 1);
2687	if (failing)
2688		cut_data(buf, len);
 
 
 
2689	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690	if (err)
2691		return err;
2692	if (failing)
2693		return -EROFS;
2694	return 0;
2695}
2696
2697int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698		   int len)
2699{
2700	int err;
2701
2702	if (c->dbg->pc_happened)
2703		return -EROFS;
2704	if (power_cut_emulated(c, lnum, 1))
2705		return -EROFS;
2706	err = ubi_leb_change(c->ubi, lnum, buf, len);
2707	if (err)
2708		return err;
2709	if (power_cut_emulated(c, lnum, 1))
2710		return -EROFS;
2711	return 0;
2712}
2713
2714int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715{
2716	int err;
2717
2718	if (c->dbg->pc_happened)
2719		return -EROFS;
2720	if (power_cut_emulated(c, lnum, 0))
2721		return -EROFS;
2722	err = ubi_leb_unmap(c->ubi, lnum);
2723	if (err)
2724		return err;
2725	if (power_cut_emulated(c, lnum, 0))
2726		return -EROFS;
2727	return 0;
2728}
2729
2730int dbg_leb_map(struct ubifs_info *c, int lnum)
2731{
2732	int err;
2733
2734	if (c->dbg->pc_happened)
2735		return -EROFS;
2736	if (power_cut_emulated(c, lnum, 0))
2737		return -EROFS;
2738	err = ubi_leb_map(c->ubi, lnum);
2739	if (err)
2740		return err;
2741	if (power_cut_emulated(c, lnum, 0))
2742		return -EROFS;
2743	return 0;
2744}
2745
2746/*
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2749 */
2750static struct dentry *dfs_rootdir;
2751
2752static int dfs_file_open(struct inode *inode, struct file *file)
2753{
2754	file->private_data = inode->i_private;
2755	return nonseekable_open(inode, file);
2756}
2757
2758/**
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2764 *
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2769 */
2770static int provide_user_output(int val, char __user *u, size_t count,
2771			       loff_t *ppos)
2772{
2773	char buf[3];
2774
2775	if (val)
2776		buf[0] = '1';
2777	else
2778		buf[0] = '0';
2779	buf[1] = '\n';
2780	buf[2] = 0x00;
2781
2782	return simple_read_from_buffer(u, count, ppos, buf, 2);
2783}
2784
2785static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786			     loff_t *ppos)
2787{
2788	struct dentry *dent = file->f_path.dentry;
2789	struct ubifs_info *c = file->private_data;
2790	struct ubifs_debug_info *d = c->dbg;
2791	int val;
2792
2793	if (dent == d->dfs_chk_gen)
2794		val = d->chk_gen;
2795	else if (dent == d->dfs_chk_index)
2796		val = d->chk_index;
2797	else if (dent == d->dfs_chk_orph)
2798		val = d->chk_orph;
2799	else if (dent == d->dfs_chk_lprops)
2800		val = d->chk_lprops;
2801	else if (dent == d->dfs_chk_fs)
2802		val = d->chk_fs;
2803	else if (dent == d->dfs_tst_rcvry)
2804		val = d->tst_rcvry;
 
 
2805	else
2806		return -EINVAL;
2807
2808	return provide_user_output(val, u, count, ppos);
2809}
2810
2811/**
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2815 *
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2819 */
2820static int interpret_user_input(const char __user *u, size_t count)
2821{
2822	size_t buf_size;
2823	char buf[8];
2824
2825	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826	if (copy_from_user(buf, u, buf_size))
2827		return -EFAULT;
2828
2829	if (buf[0] == '1')
2830		return 1;
2831	else if (buf[0] == '0')
2832		return 0;
2833
2834	return -EINVAL;
2835}
2836
2837static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838			      size_t count, loff_t *ppos)
2839{
2840	struct ubifs_info *c = file->private_data;
2841	struct ubifs_debug_info *d = c->dbg;
2842	struct dentry *dent = file->f_path.dentry;
2843	int val;
2844
2845	/*
2846	 * TODO: this is racy - the file-system might have already been
2847	 * unmounted and we'd oops in this case. The plan is to fix it with
2848	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851	 * superblocks and fine the one with the same UUID, and take the
2852	 * locking right.
2853	 *
2854	 * The other way to go suggested by Al Viro is to create a separate
2855	 * 'ubifs-debug' file-system instead.
2856	 */
2857	if (file->f_path.dentry == d->dfs_dump_lprops) {
2858		ubifs_dump_lprops(c);
2859		return count;
2860	}
2861	if (file->f_path.dentry == d->dfs_dump_budg) {
2862		ubifs_dump_budg(c, &c->bi);
2863		return count;
2864	}
2865	if (file->f_path.dentry == d->dfs_dump_tnc) {
2866		mutex_lock(&c->tnc_mutex);
2867		ubifs_dump_tnc(c);
2868		mutex_unlock(&c->tnc_mutex);
2869		return count;
2870	}
2871
2872	val = interpret_user_input(u, count);
2873	if (val < 0)
2874		return val;
2875
2876	if (dent == d->dfs_chk_gen)
2877		d->chk_gen = val;
2878	else if (dent == d->dfs_chk_index)
2879		d->chk_index = val;
2880	else if (dent == d->dfs_chk_orph)
2881		d->chk_orph = val;
2882	else if (dent == d->dfs_chk_lprops)
2883		d->chk_lprops = val;
2884	else if (dent == d->dfs_chk_fs)
2885		d->chk_fs = val;
2886	else if (dent == d->dfs_tst_rcvry)
2887		d->tst_rcvry = val;
 
 
2888	else
2889		return -EINVAL;
2890
2891	return count;
2892}
2893
2894static const struct file_operations dfs_fops = {
2895	.open = dfs_file_open,
2896	.read = dfs_file_read,
2897	.write = dfs_file_write,
2898	.owner = THIS_MODULE,
2899	.llseek = no_llseek,
2900};
2901
2902/**
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2905 *
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2908 *
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2913 */
2914int dbg_debugfs_init_fs(struct ubifs_info *c)
2915{
2916	int err, n;
2917	const char *fname;
2918	struct dentry *dent;
2919	struct ubifs_debug_info *d = c->dbg;
2920
2921	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2922		return 0;
2923
2924	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2925		     c->vi.ubi_num, c->vi.vol_id);
2926	if (n == UBIFS_DFS_DIR_LEN) {
2927		/* The array size is too small */
2928		fname = UBIFS_DFS_DIR_NAME;
2929		dent = ERR_PTR(-EINVAL);
2930		goto out;
2931	}
2932
2933	fname = d->dfs_dir_name;
2934	dent = debugfs_create_dir(fname, dfs_rootdir);
2935	if (IS_ERR_OR_NULL(dent))
2936		goto out;
2937	d->dfs_dir = dent;
2938
2939	fname = "dump_lprops";
2940	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2941	if (IS_ERR_OR_NULL(dent))
2942		goto out_remove;
2943	d->dfs_dump_lprops = dent;
2944
2945	fname = "dump_budg";
2946	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2947	if (IS_ERR_OR_NULL(dent))
2948		goto out_remove;
2949	d->dfs_dump_budg = dent;
2950
2951	fname = "dump_tnc";
2952	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2953	if (IS_ERR_OR_NULL(dent))
2954		goto out_remove;
2955	d->dfs_dump_tnc = dent;
2956
2957	fname = "chk_general";
2958	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2959				   &dfs_fops);
2960	if (IS_ERR_OR_NULL(dent))
2961		goto out_remove;
2962	d->dfs_chk_gen = dent;
2963
2964	fname = "chk_index";
2965	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2966				   &dfs_fops);
2967	if (IS_ERR_OR_NULL(dent))
2968		goto out_remove;
2969	d->dfs_chk_index = dent;
2970
2971	fname = "chk_orphans";
2972	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2973				   &dfs_fops);
2974	if (IS_ERR_OR_NULL(dent))
2975		goto out_remove;
2976	d->dfs_chk_orph = dent;
2977
2978	fname = "chk_lprops";
2979	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2980				   &dfs_fops);
2981	if (IS_ERR_OR_NULL(dent))
2982		goto out_remove;
2983	d->dfs_chk_lprops = dent;
2984
2985	fname = "chk_fs";
2986	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2987				   &dfs_fops);
2988	if (IS_ERR_OR_NULL(dent))
2989		goto out_remove;
2990	d->dfs_chk_fs = dent;
2991
2992	fname = "tst_recovery";
2993	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2994				   &dfs_fops);
2995	if (IS_ERR_OR_NULL(dent))
2996		goto out_remove;
2997	d->dfs_tst_rcvry = dent;
2998
2999	return 0;
3000
3001out_remove:
3002	debugfs_remove_recursive(d->dfs_dir);
3003out:
3004	err = dent ? PTR_ERR(dent) : -ENODEV;
3005	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3006		  fname, err);
3007	return err;
3008}
3009
3010/**
3011 * dbg_debugfs_exit_fs - remove all debugfs files.
3012 * @c: UBIFS file-system description object
3013 */
3014void dbg_debugfs_exit_fs(struct ubifs_info *c)
3015{
3016	if (IS_ENABLED(CONFIG_DEBUG_FS))
3017		debugfs_remove_recursive(c->dbg->dfs_dir);
3018}
3019
3020struct ubifs_global_debug_info ubifs_dbg;
3021
3022static struct dentry *dfs_chk_gen;
3023static struct dentry *dfs_chk_index;
3024static struct dentry *dfs_chk_orph;
3025static struct dentry *dfs_chk_lprops;
3026static struct dentry *dfs_chk_fs;
3027static struct dentry *dfs_tst_rcvry;
3028
3029static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3030				    size_t count, loff_t *ppos)
3031{
3032	struct dentry *dent = file->f_path.dentry;
3033	int val;
3034
3035	if (dent == dfs_chk_gen)
3036		val = ubifs_dbg.chk_gen;
3037	else if (dent == dfs_chk_index)
3038		val = ubifs_dbg.chk_index;
3039	else if (dent == dfs_chk_orph)
3040		val = ubifs_dbg.chk_orph;
3041	else if (dent == dfs_chk_lprops)
3042		val = ubifs_dbg.chk_lprops;
3043	else if (dent == dfs_chk_fs)
3044		val = ubifs_dbg.chk_fs;
3045	else if (dent == dfs_tst_rcvry)
3046		val = ubifs_dbg.tst_rcvry;
3047	else
3048		return -EINVAL;
3049
3050	return provide_user_output(val, u, count, ppos);
3051}
3052
3053static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3054				     size_t count, loff_t *ppos)
3055{
3056	struct dentry *dent = file->f_path.dentry;
3057	int val;
3058
3059	val = interpret_user_input(u, count);
3060	if (val < 0)
3061		return val;
3062
3063	if (dent == dfs_chk_gen)
3064		ubifs_dbg.chk_gen = val;
3065	else if (dent == dfs_chk_index)
3066		ubifs_dbg.chk_index = val;
3067	else if (dent == dfs_chk_orph)
3068		ubifs_dbg.chk_orph = val;
3069	else if (dent == dfs_chk_lprops)
3070		ubifs_dbg.chk_lprops = val;
3071	else if (dent == dfs_chk_fs)
3072		ubifs_dbg.chk_fs = val;
3073	else if (dent == dfs_tst_rcvry)
3074		ubifs_dbg.tst_rcvry = val;
3075	else
3076		return -EINVAL;
3077
3078	return count;
3079}
3080
3081static const struct file_operations dfs_global_fops = {
3082	.read = dfs_global_file_read,
3083	.write = dfs_global_file_write,
3084	.owner = THIS_MODULE,
3085	.llseek = no_llseek,
3086};
3087
3088/**
3089 * dbg_debugfs_init - initialize debugfs file-system.
3090 *
3091 * UBIFS uses debugfs file-system to expose various debugging knobs to
3092 * user-space. This function creates "ubifs" directory in the debugfs
3093 * file-system. Returns zero in case of success and a negative error code in
3094 * case of failure.
3095 */
3096int dbg_debugfs_init(void)
3097{
3098	int err;
3099	const char *fname;
3100	struct dentry *dent;
3101
3102	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3103		return 0;
3104
3105	fname = "ubifs";
3106	dent = debugfs_create_dir(fname, NULL);
3107	if (IS_ERR_OR_NULL(dent))
3108		goto out;
3109	dfs_rootdir = dent;
3110
3111	fname = "chk_general";
3112	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113				   &dfs_global_fops);
3114	if (IS_ERR_OR_NULL(dent))
3115		goto out_remove;
3116	dfs_chk_gen = dent;
3117
3118	fname = "chk_index";
3119	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120				   &dfs_global_fops);
3121	if (IS_ERR_OR_NULL(dent))
3122		goto out_remove;
3123	dfs_chk_index = dent;
3124
3125	fname = "chk_orphans";
3126	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127				   &dfs_global_fops);
3128	if (IS_ERR_OR_NULL(dent))
3129		goto out_remove;
3130	dfs_chk_orph = dent;
3131
3132	fname = "chk_lprops";
3133	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134				   &dfs_global_fops);
3135	if (IS_ERR_OR_NULL(dent))
3136		goto out_remove;
3137	dfs_chk_lprops = dent;
3138
3139	fname = "chk_fs";
3140	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141				   &dfs_global_fops);
3142	if (IS_ERR_OR_NULL(dent))
3143		goto out_remove;
3144	dfs_chk_fs = dent;
3145
3146	fname = "tst_recovery";
3147	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3148				   &dfs_global_fops);
3149	if (IS_ERR_OR_NULL(dent))
3150		goto out_remove;
3151	dfs_tst_rcvry = dent;
3152
3153	return 0;
3154
3155out_remove:
3156	debugfs_remove_recursive(dfs_rootdir);
3157out:
3158	err = dent ? PTR_ERR(dent) : -ENODEV;
3159	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3160		  fname, err);
3161	return err;
3162}
3163
3164/**
3165 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3166 */
3167void dbg_debugfs_exit(void)
3168{
3169	if (IS_ENABLED(CONFIG_DEBUG_FS))
3170		debugfs_remove_recursive(dfs_rootdir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3171}
3172
3173/**
3174 * ubifs_debugging_init - initialize UBIFS debugging.
3175 * @c: UBIFS file-system description object
3176 *
3177 * This function initializes debugging-related data for the file system.
3178 * Returns zero in case of success and a negative error code in case of
3179 * failure.
3180 */
3181int ubifs_debugging_init(struct ubifs_info *c)
3182{
3183	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3184	if (!c->dbg)
3185		return -ENOMEM;
3186
3187	return 0;
3188}
3189
3190/**
3191 * ubifs_debugging_exit - free debugging data.
3192 * @c: UBIFS file-system description object
3193 */
3194void ubifs_debugging_exit(struct ubifs_info *c)
3195{
3196	kfree(c->dbg);
3197}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int) inode_get_atime_sec(inode),
 241	       (unsigned int) inode_get_atime_nsec(inode));
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int) inode_get_mtime_sec(inode),
 244	       (unsigned int) inode_get_mtime_nsec(inode));
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int) inode_get_ctime_sec(inode),
 247	       (unsigned int) inode_get_ctime_nsec(inode));
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
 295{
 296	int i, n, type, safe_len, max_node_len, min_node_len;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 300
 
 
 
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	/* Skip dumping unknown type node */
 310	type = ch->node_type;
 311	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 312		pr_err("node type %d was not recognized\n", type);
 313		return;
 314	}
 315
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	if (c->ranges[type].max_len == 0) {
 320		max_node_len = min_node_len = c->ranges[type].len;
 321	} else {
 322		max_node_len = c->ranges[type].max_len;
 323		min_node_len = c->ranges[type].min_len;
 324	}
 325	safe_len = le32_to_cpu(ch->len);
 326	safe_len = safe_len > 0 ? safe_len : 0;
 327	safe_len = min3(safe_len, max_node_len, node_len);
 328	if (safe_len < min_node_len) {
 329		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
 330		       safe_len, dbg_ntype(type),
 331		       safe_len > UBIFS_CH_SZ ?
 332		       safe_len - (int)UBIFS_CH_SZ : 0);
 333		if (safe_len > UBIFS_CH_SZ)
 334			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 335				       (void *)node + UBIFS_CH_SZ,
 336				       safe_len - UBIFS_CH_SZ, 0);
 337		goto out_unlock;
 338	}
 339	if (safe_len != le32_to_cpu(ch->len))
 340		pr_err("\ttruncated node length      %d\n", safe_len);
 341
 342	switch (type) {
 343	case UBIFS_PAD_NODE:
 344	{
 345		const struct ubifs_pad_node *pad = node;
 346
 347		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 
 348		break;
 349	}
 350	case UBIFS_SB_NODE:
 351	{
 352		const struct ubifs_sb_node *sup = node;
 353		unsigned int sup_flags = le32_to_cpu(sup->flags);
 354
 355		pr_err("\tkey_hash       %d (%s)\n",
 356		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 357		pr_err("\tkey_fmt        %d (%s)\n",
 358		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 359		pr_err("\tflags          %#x\n", sup_flags);
 360		pr_err("\tbig_lpt        %u\n",
 361		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 362		pr_err("\tspace_fixup    %u\n",
 363		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 364		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 365		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 366		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 367		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 368		pr_err("\tmax_bud_bytes  %llu\n",
 
 
 
 
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 371		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 372		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 373		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 374		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 375		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 376		pr_err("\tdefault_compr  %u\n",
 
 
 
 
 
 
 377		       (int)le16_to_cpu(sup->default_compr));
 378		pr_err("\trp_size        %llu\n",
 379		       (unsigned long long)le64_to_cpu(sup->rp_size));
 380		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 381		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 382		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 383		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 384		pr_err("\tUUID           %pUB\n", sup->uuid);
 
 
 
 
 
 385		break;
 386	}
 387	case UBIFS_MST_NODE:
 388	{
 389		const struct ubifs_mst_node *mst = node;
 390
 391		pr_err("\thighest_inum   %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 393		pr_err("\tcommit number  %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 395		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 396		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 397		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 398		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 399		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 400		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 401		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 402		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 403		pr_err("\tindex_size     %llu\n",
 
 
 
 
 
 
 
 
 404		       (unsigned long long)le64_to_cpu(mst->index_size));
 405		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 406		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 407		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 408		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 409		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 410		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 411		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 412		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 413		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 414		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 415		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 416		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 417		pr_err("\ttotal_free     %llu\n",
 
 
 
 
 
 
 
 
 
 
 
 
 418		       (unsigned long long)le64_to_cpu(mst->total_free));
 419		pr_err("\ttotal_dirty    %llu\n",
 420		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 421		pr_err("\ttotal_used     %llu\n",
 422		       (unsigned long long)le64_to_cpu(mst->total_used));
 423		pr_err("\ttotal_dead     %llu\n",
 424		       (unsigned long long)le64_to_cpu(mst->total_dead));
 425		pr_err("\ttotal_dark     %llu\n",
 426		       (unsigned long long)le64_to_cpu(mst->total_dark));
 427		break;
 428	}
 429	case UBIFS_REF_NODE:
 430	{
 431		const struct ubifs_ref_node *ref = node;
 432
 433		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 434		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 435		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 
 
 
 436		break;
 437	}
 438	case UBIFS_INO_NODE:
 439	{
 440		const struct ubifs_ino_node *ino = node;
 441
 442		key_read(c, &ino->key, &key);
 443		pr_err("\tkey            %s\n",
 444		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 445		pr_err("\tcreat_sqnum    %llu\n",
 446		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 447		pr_err("\tsize           %llu\n",
 448		       (unsigned long long)le64_to_cpu(ino->size));
 449		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 450		pr_err("\tatime          %lld.%u\n",
 
 451		       (long long)le64_to_cpu(ino->atime_sec),
 452		       le32_to_cpu(ino->atime_nsec));
 453		pr_err("\tmtime          %lld.%u\n",
 454		       (long long)le64_to_cpu(ino->mtime_sec),
 455		       le32_to_cpu(ino->mtime_nsec));
 456		pr_err("\tctime          %lld.%u\n",
 457		       (long long)le64_to_cpu(ino->ctime_sec),
 458		       le32_to_cpu(ino->ctime_nsec));
 459		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 460		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 461		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 462		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 463		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 464		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 465		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 466		pr_err("\tcompr_type     %#x\n",
 
 
 
 
 
 
 
 467		       (int)le16_to_cpu(ino->compr_type));
 468		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 
 469		break;
 470	}
 471	case UBIFS_DENT_NODE:
 472	case UBIFS_XENT_NODE:
 473	{
 474		const struct ubifs_dent_node *dent = node;
 475		int nlen = le16_to_cpu(dent->nlen);
 476
 477		key_read(c, &dent->key, &key);
 478		pr_err("\tkey            %s\n",
 479		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 480		pr_err("\tinum           %llu\n",
 481		       (unsigned long long)le64_to_cpu(dent->inum));
 482		pr_err("\ttype           %d\n", (int)dent->type);
 483		pr_err("\tnlen           %d\n", nlen);
 484		pr_err("\tname           ");
 485
 486		if (nlen > UBIFS_MAX_NLEN ||
 487		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
 488			pr_err("(bad name length, not printing, bad or corrupted node)");
 489		else {
 490			for (i = 0; i < nlen && dent->name[i]; i++)
 491				pr_cont("%c", isprint(dent->name[i]) ?
 492					dent->name[i] : '?');
 493		}
 494		pr_cont("\n");
 495
 496		break;
 497	}
 498	case UBIFS_DATA_NODE:
 499	{
 500		const struct ubifs_data_node *dn = node;
 
 501
 502		key_read(c, &dn->key, &key);
 503		pr_err("\tkey            %s\n",
 504		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 505		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 506		pr_err("\tcompr_typ      %d\n",
 
 507		       (int)le16_to_cpu(dn->compr_type));
 508		pr_err("\tdata size      %u\n",
 509		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
 510		pr_err("\tdata (length = %d):\n",
 511		       safe_len - (int)UBIFS_DATA_NODE_SZ);
 512		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 513			       (void *)&dn->data,
 514			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
 515		break;
 516	}
 517	case UBIFS_TRUN_NODE:
 518	{
 519		const struct ubifs_trun_node *trun = node;
 520
 521		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 522		pr_err("\told_size       %llu\n",
 
 523		       (unsigned long long)le64_to_cpu(trun->old_size));
 524		pr_err("\tnew_size       %llu\n",
 525		       (unsigned long long)le64_to_cpu(trun->new_size));
 526		break;
 527	}
 528	case UBIFS_IDX_NODE:
 529	{
 530		const struct ubifs_idx_node *idx = node;
 531		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
 532				    (ubifs_idx_node_sz(c, 1) -
 533				    UBIFS_IDX_NODE_SZ);
 534
 535		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
 536		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
 537		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 538		pr_err("\tBranches:\n");
 539
 540		for (i = 0; i < n && i < c->fanout; i++) {
 
 
 
 
 
 
 541			const struct ubifs_branch *br;
 542
 543			br = ubifs_idx_branch(c, idx, i);
 544			key_read(c, &br->key, &key);
 545			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 546			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 547			       le32_to_cpu(br->len),
 548			       dbg_snprintf_key(c, &key, key_buf,
 549						DBG_KEY_BUF_LEN));
 550		}
 551		break;
 552	}
 553	case UBIFS_CS_NODE:
 554		break;
 555	case UBIFS_ORPH_NODE:
 556	{
 557		const struct ubifs_orph_node *orph = node;
 558
 559		pr_err("\tcommit number  %llu\n",
 560		       (unsigned long long)
 561				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562		pr_err("\tlast node flag %llu\n",
 563		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
 565		pr_err("\t%d orphan inode numbers:\n", n);
 566		for (i = 0; i < n; i++)
 567			pr_err("\t  ino %llu\n",
 568			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 569		break;
 570	}
 571	case UBIFS_AUTH_NODE:
 572	{
 573		break;
 574	}
 575	default:
 576		pr_err("node type %d was not recognized\n", type);
 
 577	}
 578
 579out_unlock:
 580	spin_unlock(&dbg_lock);
 581}
 582
 583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 584{
 585	spin_lock(&dbg_lock);
 586	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 587	       req->new_ino, req->dirtied_ino);
 588	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 589	       req->new_ino_d, req->dirtied_ino_d);
 590	pr_err("\tnew_page    %d, dirtied_page %d\n",
 591	       req->new_page, req->dirtied_page);
 592	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 593	       req->new_dent, req->mod_dent);
 594	pr_err("\tidx_growth  %d\n", req->idx_growth);
 595	pr_err("\tdata_growth %d dd_growth     %d\n",
 596	       req->data_growth, req->dd_growth);
 597	spin_unlock(&dbg_lock);
 598}
 599
 600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 601{
 602	spin_lock(&dbg_lock);
 603	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 604	       current->pid, lst->empty_lebs, lst->idx_lebs);
 605	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 606	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 607	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 608	       lst->total_used, lst->total_dark, lst->total_dead);
 
 
 609	spin_unlock(&dbg_lock);
 610}
 611
 612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 613{
 614	int i;
 615	struct rb_node *rb;
 616	struct ubifs_bud *bud;
 617	struct ubifs_gced_idx_leb *idx_gc;
 618	long long available, outstanding, free;
 619
 620	spin_lock(&c->space_lock);
 621	spin_lock(&dbg_lock);
 622	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 623	       current->pid, bi->data_growth + bi->dd_growth,
 
 624	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 625	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 626	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 627	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 628	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 629	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 
 
 630	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 631	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 632	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 
 633	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 634
 635	if (bi != &c->bi)
 636		/*
 637		 * If we are dumping saved budgeting data, do not print
 638		 * additional information which is about the current state, not
 639		 * the old one which corresponded to the saved budgeting data.
 640		 */
 641		goto out_unlock;
 642
 643	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 644	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 645	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 646	       atomic_long_read(&c->dirty_pg_cnt),
 647	       atomic_long_read(&c->dirty_zn_cnt),
 648	       atomic_long_read(&c->clean_zn_cnt));
 649	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 
 650
 651	/* If we are in R/O mode, journal heads do not exist */
 652	if (c->jheads)
 653		for (i = 0; i < c->jhead_cnt; i++)
 654			pr_err("\tjhead %s\t LEB %d\n",
 655			       dbg_jhead(c->jheads[i].wbuf.jhead),
 656			       c->jheads[i].wbuf.lnum);
 657	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 658		bud = rb_entry(rb, struct ubifs_bud, rb);
 659		pr_err("\tbud LEB %d\n", bud->lnum);
 660	}
 661	list_for_each_entry(bud, &c->old_buds, list)
 662		pr_err("\told bud LEB %d\n", bud->lnum);
 663	list_for_each_entry(idx_gc, &c->idx_gc, list)
 664		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 665		       idx_gc->lnum, idx_gc->unmap);
 666	pr_err("\tcommit state %d\n", c->cmt_state);
 667
 668	/* Print budgeting predictions */
 669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 670	outstanding = c->bi.data_growth + c->bi.dd_growth;
 671	free = ubifs_get_free_space_nolock(c);
 672	pr_err("Budgeting predictions:\n");
 673	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 674	       available, outstanding, free);
 675out_unlock:
 676	spin_unlock(&dbg_lock);
 677	spin_unlock(&c->space_lock);
 678}
 679
 680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 681{
 682	int i, spc, dark = 0, dead = 0;
 683	struct rb_node *rb;
 684	struct ubifs_bud *bud;
 685
 686	spc = lp->free + lp->dirty;
 687	if (spc < c->dead_wm)
 688		dead = spc;
 689	else
 690		dark = ubifs_calc_dark(c, spc);
 691
 692	if (lp->flags & LPROPS_INDEX)
 693		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 694		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 695		       lp->flags);
 696	else
 697		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 698		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 699		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 
 
 700
 701	if (lp->flags & LPROPS_TAKEN) {
 702		if (lp->flags & LPROPS_INDEX)
 703			pr_cont("index, taken");
 704		else
 705			pr_cont("taken");
 706	} else {
 707		const char *s;
 708
 709		if (lp->flags & LPROPS_INDEX) {
 710			switch (lp->flags & LPROPS_CAT_MASK) {
 711			case LPROPS_DIRTY_IDX:
 712				s = "dirty index";
 713				break;
 714			case LPROPS_FRDI_IDX:
 715				s = "freeable index";
 716				break;
 717			default:
 718				s = "index";
 719			}
 720		} else {
 721			switch (lp->flags & LPROPS_CAT_MASK) {
 722			case LPROPS_UNCAT:
 723				s = "not categorized";
 724				break;
 725			case LPROPS_DIRTY:
 726				s = "dirty";
 727				break;
 728			case LPROPS_FREE:
 729				s = "free";
 730				break;
 731			case LPROPS_EMPTY:
 732				s = "empty";
 733				break;
 734			case LPROPS_FREEABLE:
 735				s = "freeable";
 736				break;
 737			default:
 738				s = NULL;
 739				break;
 740			}
 741		}
 742		pr_cont("%s", s);
 743	}
 744
 745	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 746		bud = rb_entry(rb, struct ubifs_bud, rb);
 747		if (bud->lnum == lp->lnum) {
 748			int head = 0;
 749			for (i = 0; i < c->jhead_cnt; i++) {
 750				/*
 751				 * Note, if we are in R/O mode or in the middle
 752				 * of mounting/re-mounting, the write-buffers do
 753				 * not exist.
 754				 */
 755				if (c->jheads &&
 756				    lp->lnum == c->jheads[i].wbuf.lnum) {
 757					pr_cont(", jhead %s", dbg_jhead(i));
 
 758					head = 1;
 759				}
 760			}
 761			if (!head)
 762				pr_cont(", bud of jhead %s",
 763				       dbg_jhead(bud->jhead));
 764		}
 765	}
 766	if (lp->lnum == c->gc_lnum)
 767		pr_cont(", GC LEB");
 768	pr_cont(")\n");
 769}
 770
 771void ubifs_dump_lprops(struct ubifs_info *c)
 772{
 773	int lnum, err;
 774	struct ubifs_lprops lp;
 775	struct ubifs_lp_stats lst;
 776
 777	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 
 778	ubifs_get_lp_stats(c, &lst);
 779	ubifs_dump_lstats(&lst);
 780
 781	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 782		err = ubifs_read_one_lp(c, lnum, &lp);
 783		if (err) {
 784			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 785			continue;
 786		}
 787
 788		ubifs_dump_lprop(c, &lp);
 789	}
 790	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 
 791}
 792
 793void ubifs_dump_lpt_info(struct ubifs_info *c)
 794{
 795	int i;
 796
 797	spin_lock(&dbg_lock);
 798	pr_err("(pid %d) dumping LPT information\n", current->pid);
 799	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 800	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 801	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 802	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 803	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 804	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
 805	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 806	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 807	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 808	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 809	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 810	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 811	pr_err("\tspace_bits:    %d\n", c->space_bits);
 812	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 813	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 814	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 815	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 816	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 817	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 818	pr_err("\tLPT head is at %d:%d\n",
 819	       c->nhead_lnum, c->nhead_offs);
 820	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 
 821	if (c->big_lpt)
 822		pr_err("\tLPT lsave is at %d:%d\n",
 823		       c->lsave_lnum, c->lsave_offs);
 824	for (i = 0; i < c->lpt_lebs; i++)
 825		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 826		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 827		       c->ltab[i].tgc, c->ltab[i].cmt);
 828	spin_unlock(&dbg_lock);
 829}
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 832{
 833	struct ubifs_scan_leb *sleb;
 834	struct ubifs_scan_node *snod;
 835	void *buf;
 836
 837	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 
 
 
 
 838
 839	buf = __vmalloc(c->leb_size, GFP_NOFS);
 840	if (!buf) {
 841		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 842		return;
 843	}
 844
 845	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 846	if (IS_ERR(sleb)) {
 847		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 848		goto out;
 849	}
 850
 851	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 852	       sleb->nodes_cnt, sleb->endpt);
 853
 854	list_for_each_entry(snod, &sleb->nodes, list) {
 855		cond_resched();
 856		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 857		       snod->offs, snod->len);
 858		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 859	}
 860
 861	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 
 862	ubifs_scan_destroy(sleb);
 863
 864out:
 865	vfree(buf);
 866	return;
 867}
 868
 869void ubifs_dump_znode(const struct ubifs_info *c,
 870		      const struct ubifs_znode *znode)
 871{
 872	int n;
 873	const struct ubifs_zbranch *zbr;
 874	char key_buf[DBG_KEY_BUF_LEN];
 875
 876	spin_lock(&dbg_lock);
 877	if (znode->parent)
 878		zbr = &znode->parent->zbranch[znode->iip];
 879	else
 880		zbr = &c->zroot;
 881
 882	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 883	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 884	       znode->level, znode->child_cnt, znode->flags);
 
 885
 886	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 887		spin_unlock(&dbg_lock);
 888		return;
 889	}
 890
 891	pr_err("zbranches:\n");
 892	for (n = 0; n < znode->child_cnt; n++) {
 893		zbr = &znode->zbranch[n];
 894		if (znode->level > 0)
 895			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 896			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 897			       dbg_snprintf_key(c, &zbr->key, key_buf,
 898						DBG_KEY_BUF_LEN));
 
 
 899		else
 900			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 901			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 902			       dbg_snprintf_key(c, &zbr->key, key_buf,
 903						DBG_KEY_BUF_LEN));
 
 
 904	}
 905	spin_unlock(&dbg_lock);
 906}
 907
 908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 909{
 910	int i;
 911
 912	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 913	       current->pid, cat, heap->cnt);
 914	for (i = 0; i < heap->cnt; i++) {
 915		struct ubifs_lprops *lprops = heap->arr[i];
 916
 917		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 918		       i, lprops->lnum, lprops->hpos, lprops->free,
 919		       lprops->dirty, lprops->flags);
 920	}
 921	pr_err("(pid %d) finish dumping heap\n", current->pid);
 922}
 923
 924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 925		      struct ubifs_nnode *parent, int iip)
 926{
 927	int i;
 928
 929	pr_err("(pid %d) dumping pnode:\n", current->pid);
 930	pr_err("\taddress %zx parent %zx cnext %zx\n",
 931	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 932	pr_err("\tflags %lu iip %d level %d num %d\n",
 933	       pnode->flags, iip, pnode->level, pnode->num);
 934	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 935		struct ubifs_lprops *lp = &pnode->lprops[i];
 936
 937		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 938		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 939	}
 940}
 941
 942void ubifs_dump_tnc(struct ubifs_info *c)
 943{
 944	struct ubifs_znode *znode;
 945	int level;
 946
 947	pr_err("\n");
 948	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 949	if (c->zroot.znode) {
 950		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 951		level = znode->level;
 952		pr_err("== Level %d ==\n", level);
 953		while (znode) {
 954			if (level != znode->level) {
 955				level = znode->level;
 956				pr_err("== Level %d ==\n", level);
 957			}
 958			ubifs_dump_znode(c, znode);
 959			znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 960		}
 961	} else {
 962		pr_err("empty TNC tree in memory\n");
 963	}
 964	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 965}
 966
 967static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 968		      void *priv)
 969{
 970	ubifs_dump_znode(c, znode);
 971	return 0;
 972}
 973
 974/**
 975 * ubifs_dump_index - dump the on-flash index.
 976 * @c: UBIFS file-system description object
 977 *
 978 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 979 * which dumps only in-memory znodes and does not read znodes which from flash.
 980 */
 981void ubifs_dump_index(struct ubifs_info *c)
 982{
 983	dbg_walk_index(c, NULL, dump_znode, NULL);
 984}
 985
 986/**
 987 * dbg_save_space_info - save information about flash space.
 988 * @c: UBIFS file-system description object
 989 *
 990 * This function saves information about UBIFS free space, dirty space, etc, in
 991 * order to check it later.
 992 */
 993void dbg_save_space_info(struct ubifs_info *c)
 994{
 995	struct ubifs_debug_info *d = c->dbg;
 996	int freeable_cnt;
 997
 998	spin_lock(&c->space_lock);
 999	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1000	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1001	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1002
1003	/*
1004	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1005	 * affects the free space calculations, and UBIFS might not know about
1006	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1007	 * only when we read their lprops, and we do this only lazily, upon the
1008	 * need. So at any given point of time @c->freeable_cnt might be not
1009	 * exactly accurate.
1010	 *
1011	 * Just one example about the issue we hit when we did not zero
1012	 * @c->freeable_cnt.
1013	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1014	 *    amount of free space in @d->saved_free
1015	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1016	 *    information from flash, where we cache LEBs from various
1017	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1018	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1019	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1020	 *    -> 'ubifs_add_to_cat()').
1021	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1022	 *    becomes %1.
1023	 * 4. We calculate the amount of free space when the re-mount is
1024	 *    finished in 'dbg_check_space_info()' and it does not match
1025	 *    @d->saved_free.
1026	 */
1027	freeable_cnt = c->freeable_cnt;
1028	c->freeable_cnt = 0;
1029	d->saved_free = ubifs_get_free_space_nolock(c);
1030	c->freeable_cnt = freeable_cnt;
1031	spin_unlock(&c->space_lock);
1032}
1033
1034/**
1035 * dbg_check_space_info - check flash space information.
1036 * @c: UBIFS file-system description object
1037 *
1038 * This function compares current flash space information with the information
1039 * which was saved when the 'dbg_save_space_info()' function was called.
1040 * Returns zero if the information has not changed, and %-EINVAL if it has
1041 * changed.
1042 */
1043int dbg_check_space_info(struct ubifs_info *c)
1044{
1045	struct ubifs_debug_info *d = c->dbg;
1046	struct ubifs_lp_stats lst;
1047	long long free;
1048	int freeable_cnt;
1049
1050	spin_lock(&c->space_lock);
1051	freeable_cnt = c->freeable_cnt;
1052	c->freeable_cnt = 0;
1053	free = ubifs_get_free_space_nolock(c);
1054	c->freeable_cnt = freeable_cnt;
1055	spin_unlock(&c->space_lock);
1056
1057	if (free != d->saved_free) {
1058		ubifs_err(c, "free space changed from %lld to %lld",
1059			  d->saved_free, free);
1060		goto out;
1061	}
1062
1063	return 0;
1064
1065out:
1066	ubifs_msg(c, "saved lprops statistics dump");
1067	ubifs_dump_lstats(&d->saved_lst);
1068	ubifs_msg(c, "saved budgeting info dump");
1069	ubifs_dump_budg(c, &d->saved_bi);
1070	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1071	ubifs_msg(c, "current lprops statistics dump");
1072	ubifs_get_lp_stats(c, &lst);
1073	ubifs_dump_lstats(&lst);
1074	ubifs_msg(c, "current budgeting info dump");
1075	ubifs_dump_budg(c, &c->bi);
1076	dump_stack();
1077	return -EINVAL;
1078}
1079
1080/**
1081 * dbg_check_synced_i_size - check synchronized inode size.
1082 * @c: UBIFS file-system description object
1083 * @inode: inode to check
1084 *
1085 * If inode is clean, synchronized inode size has to be equivalent to current
1086 * inode size. This function has to be called only for locked inodes (@i_mutex
1087 * has to be locked). Returns %0 if synchronized inode size if correct, and
1088 * %-EINVAL if not.
1089 */
1090int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1091{
1092	int err = 0;
1093	struct ubifs_inode *ui = ubifs_inode(inode);
1094
1095	if (!dbg_is_chk_gen(c))
1096		return 0;
1097	if (!S_ISREG(inode->i_mode))
1098		return 0;
1099
1100	mutex_lock(&ui->ui_mutex);
1101	spin_lock(&ui->ui_lock);
1102	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1103		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1104			  ui->ui_size, ui->synced_i_size);
1105		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1106			  inode->i_mode, i_size_read(inode));
1107		dump_stack();
1108		err = -EINVAL;
1109	}
1110	spin_unlock(&ui->ui_lock);
1111	mutex_unlock(&ui->ui_mutex);
1112	return err;
1113}
1114
1115/*
1116 * dbg_check_dir - check directory inode size and link count.
1117 * @c: UBIFS file-system description object
1118 * @dir: the directory to calculate size for
1119 * @size: the result is returned here
1120 *
1121 * This function makes sure that directory size and link count are correct.
1122 * Returns zero in case of success and a negative error code in case of
1123 * failure.
1124 *
1125 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126 * calling this function.
1127 */
1128int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1129{
1130	unsigned int nlink = 2;
1131	union ubifs_key key;
1132	struct ubifs_dent_node *dent, *pdent = NULL;
1133	struct fscrypt_name nm = {0};
1134	loff_t size = UBIFS_INO_NODE_SZ;
1135
1136	if (!dbg_is_chk_gen(c))
1137		return 0;
1138
1139	if (!S_ISDIR(dir->i_mode))
1140		return 0;
1141
1142	lowest_dent_key(c, &key, dir->i_ino);
1143	while (1) {
1144		int err;
1145
1146		dent = ubifs_tnc_next_ent(c, &key, &nm);
1147		if (IS_ERR(dent)) {
1148			err = PTR_ERR(dent);
1149			if (err == -ENOENT)
1150				break;
1151			kfree(pdent);
1152			return err;
1153		}
1154
1155		fname_name(&nm) = dent->name;
1156		fname_len(&nm) = le16_to_cpu(dent->nlen);
1157		size += CALC_DENT_SIZE(fname_len(&nm));
1158		if (dent->type == UBIFS_ITYPE_DIR)
1159			nlink += 1;
1160		kfree(pdent);
1161		pdent = dent;
1162		key_read(c, &dent->key, &key);
1163	}
1164	kfree(pdent);
1165
1166	if (i_size_read(dir) != size) {
1167		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1168			  dir->i_ino, (unsigned long long)i_size_read(dir),
 
1169			  (unsigned long long)size);
1170		ubifs_dump_inode(c, dir);
1171		dump_stack();
1172		return -EINVAL;
1173	}
1174	if (dir->i_nlink != nlink) {
1175		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1176			  dir->i_ino, dir->i_nlink, nlink);
1177		ubifs_dump_inode(c, dir);
1178		dump_stack();
1179		return -EINVAL;
1180	}
1181
1182	return 0;
1183}
1184
1185/**
1186 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1187 * @c: UBIFS file-system description object
1188 * @zbr1: first zbranch
1189 * @zbr2: following zbranch
1190 *
1191 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1192 * names of the direntries/xentries which are referred by the keys. This
1193 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1194 * sure the name of direntry/xentry referred by @zbr1 is less than
1195 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1196 * and a negative error code in case of failure.
1197 */
1198static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1199			       struct ubifs_zbranch *zbr2)
1200{
1201	int err, nlen1, nlen2, cmp;
1202	struct ubifs_dent_node *dent1, *dent2;
1203	union ubifs_key key;
1204	char key_buf[DBG_KEY_BUF_LEN];
1205
1206	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1207	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1208	if (!dent1)
1209		return -ENOMEM;
1210	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1211	if (!dent2) {
1212		err = -ENOMEM;
1213		goto out_free;
1214	}
1215
1216	err = ubifs_tnc_read_node(c, zbr1, dent1);
1217	if (err)
1218		goto out_free;
1219	err = ubifs_validate_entry(c, dent1);
1220	if (err)
1221		goto out_free;
1222
1223	err = ubifs_tnc_read_node(c, zbr2, dent2);
1224	if (err)
1225		goto out_free;
1226	err = ubifs_validate_entry(c, dent2);
1227	if (err)
1228		goto out_free;
1229
1230	/* Make sure node keys are the same as in zbranch */
1231	err = 1;
1232	key_read(c, &dent1->key, &key);
1233	if (keys_cmp(c, &zbr1->key, &key)) {
1234		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1235			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1236						       DBG_KEY_BUF_LEN));
1237		ubifs_err(c, "but it should have key %s according to tnc",
1238			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1239					   DBG_KEY_BUF_LEN));
1240		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1241		goto out_free;
1242	}
1243
1244	key_read(c, &dent2->key, &key);
1245	if (keys_cmp(c, &zbr2->key, &key)) {
1246		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1247			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1248						       DBG_KEY_BUF_LEN));
1249		ubifs_err(c, "but it should have key %s according to tnc",
1250			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1251					   DBG_KEY_BUF_LEN));
1252		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1253		goto out_free;
1254	}
1255
1256	nlen1 = le16_to_cpu(dent1->nlen);
1257	nlen2 = le16_to_cpu(dent2->nlen);
1258
1259	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1260	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1261		err = 0;
1262		goto out_free;
1263	}
1264	if (cmp == 0 && nlen1 == nlen2)
1265		ubifs_err(c, "2 xent/dent nodes with the same name");
1266	else
1267		ubifs_err(c, "bad order of colliding key %s",
1268			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1269
1270	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1271	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1272	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1273	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1274
1275out_free:
1276	kfree(dent2);
1277	kfree(dent1);
1278	return err;
1279}
1280
1281/**
1282 * dbg_check_znode - check if znode is all right.
1283 * @c: UBIFS file-system description object
1284 * @zbr: zbranch which points to this znode
1285 *
1286 * This function makes sure that znode referred to by @zbr is all right.
1287 * Returns zero if it is, and %-EINVAL if it is not.
1288 */
1289static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1290{
1291	struct ubifs_znode *znode = zbr->znode;
1292	struct ubifs_znode *zp = znode->parent;
1293	int n, err, cmp;
1294
1295	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1296		err = 1;
1297		goto out;
1298	}
1299	if (znode->level < 0) {
1300		err = 2;
1301		goto out;
1302	}
1303	if (znode->iip < 0 || znode->iip >= c->fanout) {
1304		err = 3;
1305		goto out;
1306	}
1307
1308	if (zbr->len == 0)
1309		/* Only dirty zbranch may have no on-flash nodes */
1310		if (!ubifs_zn_dirty(znode)) {
1311			err = 4;
1312			goto out;
1313		}
1314
1315	if (ubifs_zn_dirty(znode)) {
1316		/*
1317		 * If znode is dirty, its parent has to be dirty as well. The
1318		 * order of the operation is important, so we have to have
1319		 * memory barriers.
1320		 */
1321		smp_mb();
1322		if (zp && !ubifs_zn_dirty(zp)) {
1323			/*
1324			 * The dirty flag is atomic and is cleared outside the
1325			 * TNC mutex, so znode's dirty flag may now have
1326			 * been cleared. The child is always cleared before the
1327			 * parent, so we just need to check again.
1328			 */
1329			smp_mb();
1330			if (ubifs_zn_dirty(znode)) {
1331				err = 5;
1332				goto out;
1333			}
1334		}
1335	}
1336
1337	if (zp) {
1338		const union ubifs_key *min, *max;
1339
1340		if (znode->level != zp->level - 1) {
1341			err = 6;
1342			goto out;
1343		}
1344
1345		/* Make sure the 'parent' pointer in our znode is correct */
1346		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1347		if (!err) {
1348			/* This zbranch does not exist in the parent */
1349			err = 7;
1350			goto out;
1351		}
1352
1353		if (znode->iip >= zp->child_cnt) {
1354			err = 8;
1355			goto out;
1356		}
1357
1358		if (znode->iip != n) {
1359			/* This may happen only in case of collisions */
1360			if (keys_cmp(c, &zp->zbranch[n].key,
1361				     &zp->zbranch[znode->iip].key)) {
1362				err = 9;
1363				goto out;
1364			}
1365			n = znode->iip;
1366		}
1367
1368		/*
1369		 * Make sure that the first key in our znode is greater than or
1370		 * equal to the key in the pointing zbranch.
1371		 */
1372		min = &zbr->key;
1373		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1374		if (cmp == 1) {
1375			err = 10;
1376			goto out;
1377		}
1378
1379		if (n + 1 < zp->child_cnt) {
1380			max = &zp->zbranch[n + 1].key;
1381
1382			/*
1383			 * Make sure the last key in our znode is less or
1384			 * equivalent than the key in the zbranch which goes
1385			 * after our pointing zbranch.
1386			 */
1387			cmp = keys_cmp(c, max,
1388				&znode->zbranch[znode->child_cnt - 1].key);
1389			if (cmp == -1) {
1390				err = 11;
1391				goto out;
1392			}
1393		}
1394	} else {
1395		/* This may only be root znode */
1396		if (zbr != &c->zroot) {
1397			err = 12;
1398			goto out;
1399		}
1400	}
1401
1402	/*
1403	 * Make sure that next key is greater or equivalent then the previous
1404	 * one.
1405	 */
1406	for (n = 1; n < znode->child_cnt; n++) {
1407		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1408			       &znode->zbranch[n].key);
1409		if (cmp > 0) {
1410			err = 13;
1411			goto out;
1412		}
1413		if (cmp == 0) {
1414			/* This can only be keys with colliding hash */
1415			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1416				err = 14;
1417				goto out;
1418			}
1419
1420			if (znode->level != 0 || c->replaying)
1421				continue;
1422
1423			/*
1424			 * Colliding keys should follow binary order of
1425			 * corresponding xentry/dentry names.
1426			 */
1427			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1428						  &znode->zbranch[n]);
1429			if (err < 0)
1430				return err;
1431			if (err) {
1432				err = 15;
1433				goto out;
1434			}
1435		}
1436	}
1437
1438	for (n = 0; n < znode->child_cnt; n++) {
1439		if (!znode->zbranch[n].znode &&
1440		    (znode->zbranch[n].lnum == 0 ||
1441		     znode->zbranch[n].len == 0)) {
1442			err = 16;
1443			goto out;
1444		}
1445
1446		if (znode->zbranch[n].lnum != 0 &&
1447		    znode->zbranch[n].len == 0) {
1448			err = 17;
1449			goto out;
1450		}
1451
1452		if (znode->zbranch[n].lnum == 0 &&
1453		    znode->zbranch[n].len != 0) {
1454			err = 18;
1455			goto out;
1456		}
1457
1458		if (znode->zbranch[n].lnum == 0 &&
1459		    znode->zbranch[n].offs != 0) {
1460			err = 19;
1461			goto out;
1462		}
1463
1464		if (znode->level != 0 && znode->zbranch[n].znode)
1465			if (znode->zbranch[n].znode->parent != znode) {
1466				err = 20;
1467				goto out;
1468			}
1469	}
1470
1471	return 0;
1472
1473out:
1474	ubifs_err(c, "failed, error %d", err);
1475	ubifs_msg(c, "dump of the znode");
1476	ubifs_dump_znode(c, znode);
1477	if (zp) {
1478		ubifs_msg(c, "dump of the parent znode");
1479		ubifs_dump_znode(c, zp);
1480	}
1481	dump_stack();
1482	return -EINVAL;
1483}
1484
1485/**
1486 * dbg_check_tnc - check TNC tree.
1487 * @c: UBIFS file-system description object
1488 * @extra: do extra checks that are possible at start commit
1489 *
1490 * This function traverses whole TNC tree and checks every znode. Returns zero
1491 * if everything is all right and %-EINVAL if something is wrong with TNC.
1492 */
1493int dbg_check_tnc(struct ubifs_info *c, int extra)
1494{
1495	struct ubifs_znode *znode;
1496	long clean_cnt = 0, dirty_cnt = 0;
1497	int err, last;
1498
1499	if (!dbg_is_chk_index(c))
1500		return 0;
1501
1502	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1503	if (!c->zroot.znode)
1504		return 0;
1505
1506	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1507	while (1) {
1508		struct ubifs_znode *prev;
1509		struct ubifs_zbranch *zbr;
1510
1511		if (!znode->parent)
1512			zbr = &c->zroot;
1513		else
1514			zbr = &znode->parent->zbranch[znode->iip];
1515
1516		err = dbg_check_znode(c, zbr);
1517		if (err)
1518			return err;
1519
1520		if (extra) {
1521			if (ubifs_zn_dirty(znode))
1522				dirty_cnt += 1;
1523			else
1524				clean_cnt += 1;
1525		}
1526
1527		prev = znode;
1528		znode = ubifs_tnc_postorder_next(c, znode);
1529		if (!znode)
1530			break;
1531
1532		/*
1533		 * If the last key of this znode is equivalent to the first key
1534		 * of the next znode (collision), then check order of the keys.
1535		 */
1536		last = prev->child_cnt - 1;
1537		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1538		    !keys_cmp(c, &prev->zbranch[last].key,
1539			      &znode->zbranch[0].key)) {
1540			err = dbg_check_key_order(c, &prev->zbranch[last],
1541						  &znode->zbranch[0]);
1542			if (err < 0)
1543				return err;
1544			if (err) {
1545				ubifs_msg(c, "first znode");
1546				ubifs_dump_znode(c, prev);
1547				ubifs_msg(c, "second znode");
1548				ubifs_dump_znode(c, znode);
1549				return -EINVAL;
1550			}
1551		}
1552	}
1553
1554	if (extra) {
1555		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1556			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1557				  atomic_long_read(&c->clean_zn_cnt),
1558				  clean_cnt);
1559			return -EINVAL;
1560		}
1561		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1562			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1563				  atomic_long_read(&c->dirty_zn_cnt),
1564				  dirty_cnt);
1565			return -EINVAL;
1566		}
1567	}
1568
1569	return 0;
1570}
1571
1572/**
1573 * dbg_walk_index - walk the on-flash index.
1574 * @c: UBIFS file-system description object
1575 * @leaf_cb: called for each leaf node
1576 * @znode_cb: called for each indexing node
1577 * @priv: private data which is passed to callbacks
1578 *
1579 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1580 * node and @znode_cb for each indexing node. Returns zero in case of success
1581 * and a negative error code in case of failure.
1582 *
1583 * It would be better if this function removed every znode it pulled to into
1584 * the TNC, so that the behavior more closely matched the non-debugging
1585 * behavior.
1586 */
1587int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1588		   dbg_znode_callback znode_cb, void *priv)
1589{
1590	int err;
1591	struct ubifs_zbranch *zbr;
1592	struct ubifs_znode *znode, *child;
1593
1594	mutex_lock(&c->tnc_mutex);
1595	/* If the root indexing node is not in TNC - pull it */
1596	if (!c->zroot.znode) {
1597		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1598		if (IS_ERR(c->zroot.znode)) {
1599			err = PTR_ERR(c->zroot.znode);
1600			c->zroot.znode = NULL;
1601			goto out_unlock;
1602		}
1603	}
1604
1605	/*
1606	 * We are going to traverse the indexing tree in the postorder manner.
1607	 * Go down and find the leftmost indexing node where we are going to
1608	 * start from.
1609	 */
1610	znode = c->zroot.znode;
1611	while (znode->level > 0) {
1612		zbr = &znode->zbranch[0];
1613		child = zbr->znode;
1614		if (!child) {
1615			child = ubifs_load_znode(c, zbr, znode, 0);
1616			if (IS_ERR(child)) {
1617				err = PTR_ERR(child);
1618				goto out_unlock;
1619			}
 
1620		}
1621
1622		znode = child;
1623	}
1624
1625	/* Iterate over all indexing nodes */
1626	while (1) {
1627		int idx;
1628
1629		cond_resched();
1630
1631		if (znode_cb) {
1632			err = znode_cb(c, znode, priv);
1633			if (err) {
1634				ubifs_err(c, "znode checking function returned error %d",
1635					  err);
1636				ubifs_dump_znode(c, znode);
1637				goto out_dump;
1638			}
1639		}
1640		if (leaf_cb && znode->level == 0) {
1641			for (idx = 0; idx < znode->child_cnt; idx++) {
1642				zbr = &znode->zbranch[idx];
1643				err = leaf_cb(c, zbr, priv);
1644				if (err) {
1645					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
 
 
1646						  err, zbr->lnum, zbr->offs);
1647					goto out_dump;
1648				}
1649			}
1650		}
1651
1652		if (!znode->parent)
1653			break;
1654
1655		idx = znode->iip + 1;
1656		znode = znode->parent;
1657		if (idx < znode->child_cnt) {
1658			/* Switch to the next index in the parent */
1659			zbr = &znode->zbranch[idx];
1660			child = zbr->znode;
1661			if (!child) {
1662				child = ubifs_load_znode(c, zbr, znode, idx);
1663				if (IS_ERR(child)) {
1664					err = PTR_ERR(child);
1665					goto out_unlock;
1666				}
1667				zbr->znode = child;
1668			}
1669			znode = child;
1670		} else
1671			/*
1672			 * This is the last child, switch to the parent and
1673			 * continue.
1674			 */
1675			continue;
1676
1677		/* Go to the lowest leftmost znode in the new sub-tree */
1678		while (znode->level > 0) {
1679			zbr = &znode->zbranch[0];
1680			child = zbr->znode;
1681			if (!child) {
1682				child = ubifs_load_znode(c, zbr, znode, 0);
1683				if (IS_ERR(child)) {
1684					err = PTR_ERR(child);
1685					goto out_unlock;
1686				}
1687				zbr->znode = child;
1688			}
1689			znode = child;
1690		}
1691	}
1692
1693	mutex_unlock(&c->tnc_mutex);
1694	return 0;
1695
1696out_dump:
1697	if (znode->parent)
1698		zbr = &znode->parent->zbranch[znode->iip];
1699	else
1700		zbr = &c->zroot;
1701	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1702	ubifs_dump_znode(c, znode);
1703out_unlock:
1704	mutex_unlock(&c->tnc_mutex);
1705	return err;
1706}
1707
1708/**
1709 * add_size - add znode size to partially calculated index size.
1710 * @c: UBIFS file-system description object
1711 * @znode: znode to add size for
1712 * @priv: partially calculated index size
1713 *
1714 * This is a helper function for 'dbg_check_idx_size()' which is called for
1715 * every indexing node and adds its size to the 'long long' variable pointed to
1716 * by @priv.
1717 */
1718static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1719{
1720	long long *idx_size = priv;
1721	int add;
1722
1723	add = ubifs_idx_node_sz(c, znode->child_cnt);
1724	add = ALIGN(add, 8);
1725	*idx_size += add;
1726	return 0;
1727}
1728
1729/**
1730 * dbg_check_idx_size - check index size.
1731 * @c: UBIFS file-system description object
1732 * @idx_size: size to check
1733 *
1734 * This function walks the UBIFS index, calculates its size and checks that the
1735 * size is equivalent to @idx_size. Returns zero in case of success and a
1736 * negative error code in case of failure.
1737 */
1738int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1739{
1740	int err;
1741	long long calc = 0;
1742
1743	if (!dbg_is_chk_index(c))
1744		return 0;
1745
1746	err = dbg_walk_index(c, NULL, add_size, &calc);
1747	if (err) {
1748		ubifs_err(c, "error %d while walking the index", err);
1749		goto out_err;
1750	}
1751
1752	if (calc != idx_size) {
1753		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1754			  calc, idx_size);
1755		dump_stack();
1756		err = -EINVAL;
1757		goto out_err;
1758	}
1759
1760	return 0;
1761
1762out_err:
1763	ubifs_destroy_tnc_tree(c);
1764	return err;
1765}
1766
1767/**
1768 * struct fsck_inode - information about an inode used when checking the file-system.
1769 * @rb: link in the RB-tree of inodes
1770 * @inum: inode number
1771 * @mode: inode type, permissions, etc
1772 * @nlink: inode link count
1773 * @xattr_cnt: count of extended attributes
1774 * @references: how many directory/xattr entries refer this inode (calculated
1775 *              while walking the index)
1776 * @calc_cnt: for directory inode count of child directories
1777 * @size: inode size (read from on-flash inode)
1778 * @xattr_sz: summary size of all extended attributes (read from on-flash
1779 *            inode)
1780 * @calc_sz: for directories calculated directory size
1781 * @calc_xcnt: count of extended attributes
1782 * @calc_xsz: calculated summary size of all extended attributes
1783 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1784 *             inode (read from on-flash inode)
1785 * @calc_xnms: calculated sum of lengths of all extended attribute names
1786 */
1787struct fsck_inode {
1788	struct rb_node rb;
1789	ino_t inum;
1790	umode_t mode;
1791	unsigned int nlink;
1792	unsigned int xattr_cnt;
1793	int references;
1794	int calc_cnt;
1795	long long size;
1796	unsigned int xattr_sz;
1797	long long calc_sz;
1798	long long calc_xcnt;
1799	long long calc_xsz;
1800	unsigned int xattr_nms;
1801	long long calc_xnms;
1802};
1803
1804/**
1805 * struct fsck_data - private FS checking information.
1806 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1807 */
1808struct fsck_data {
1809	struct rb_root inodes;
1810};
1811
1812/**
1813 * add_inode - add inode information to RB-tree of inodes.
1814 * @c: UBIFS file-system description object
1815 * @fsckd: FS checking information
1816 * @ino: raw UBIFS inode to add
1817 *
1818 * This is a helper function for 'check_leaf()' which adds information about
1819 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1820 * case of success and a negative error code in case of failure.
1821 */
1822static struct fsck_inode *add_inode(struct ubifs_info *c,
1823				    struct fsck_data *fsckd,
1824				    struct ubifs_ino_node *ino)
1825{
1826	struct rb_node **p, *parent = NULL;
1827	struct fsck_inode *fscki;
1828	ino_t inum = key_inum_flash(c, &ino->key);
1829	struct inode *inode;
1830	struct ubifs_inode *ui;
1831
1832	p = &fsckd->inodes.rb_node;
1833	while (*p) {
1834		parent = *p;
1835		fscki = rb_entry(parent, struct fsck_inode, rb);
1836		if (inum < fscki->inum)
1837			p = &(*p)->rb_left;
1838		else if (inum > fscki->inum)
1839			p = &(*p)->rb_right;
1840		else
1841			return fscki;
1842	}
1843
1844	if (inum > c->highest_inum) {
1845		ubifs_err(c, "too high inode number, max. is %lu",
1846			  (unsigned long)c->highest_inum);
1847		return ERR_PTR(-EINVAL);
1848	}
1849
1850	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1851	if (!fscki)
1852		return ERR_PTR(-ENOMEM);
1853
1854	inode = ilookup(c->vfs_sb, inum);
1855
1856	fscki->inum = inum;
1857	/*
1858	 * If the inode is present in the VFS inode cache, use it instead of
1859	 * the on-flash inode which might be out-of-date. E.g., the size might
1860	 * be out-of-date. If we do not do this, the following may happen, for
1861	 * example:
1862	 *   1. A power cut happens
1863	 *   2. We mount the file-system R/O, the replay process fixes up the
1864	 *      inode size in the VFS cache, but on on-flash.
1865	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1866	 *      size.
1867	 */
1868	if (!inode) {
1869		fscki->nlink = le32_to_cpu(ino->nlink);
1870		fscki->size = le64_to_cpu(ino->size);
1871		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1872		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1873		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1874		fscki->mode = le32_to_cpu(ino->mode);
1875	} else {
1876		ui = ubifs_inode(inode);
1877		fscki->nlink = inode->i_nlink;
1878		fscki->size = inode->i_size;
1879		fscki->xattr_cnt = ui->xattr_cnt;
1880		fscki->xattr_sz = ui->xattr_size;
1881		fscki->xattr_nms = ui->xattr_names;
1882		fscki->mode = inode->i_mode;
1883		iput(inode);
1884	}
1885
1886	if (S_ISDIR(fscki->mode)) {
1887		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1888		fscki->calc_cnt = 2;
1889	}
1890
1891	rb_link_node(&fscki->rb, parent, p);
1892	rb_insert_color(&fscki->rb, &fsckd->inodes);
1893
1894	return fscki;
1895}
1896
1897/**
1898 * search_inode - search inode in the RB-tree of inodes.
1899 * @fsckd: FS checking information
1900 * @inum: inode number to search
1901 *
1902 * This is a helper function for 'check_leaf()' which searches inode @inum in
1903 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1904 * the inode was not found.
1905 */
1906static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1907{
1908	struct rb_node *p;
1909	struct fsck_inode *fscki;
1910
1911	p = fsckd->inodes.rb_node;
1912	while (p) {
1913		fscki = rb_entry(p, struct fsck_inode, rb);
1914		if (inum < fscki->inum)
1915			p = p->rb_left;
1916		else if (inum > fscki->inum)
1917			p = p->rb_right;
1918		else
1919			return fscki;
1920	}
1921	return NULL;
1922}
1923
1924/**
1925 * read_add_inode - read inode node and add it to RB-tree of inodes.
1926 * @c: UBIFS file-system description object
1927 * @fsckd: FS checking information
1928 * @inum: inode number to read
1929 *
1930 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1931 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1932 * information pointer in case of success and a negative error code in case of
1933 * failure.
1934 */
1935static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1936					 struct fsck_data *fsckd, ino_t inum)
1937{
1938	int n, err;
1939	union ubifs_key key;
1940	struct ubifs_znode *znode;
1941	struct ubifs_zbranch *zbr;
1942	struct ubifs_ino_node *ino;
1943	struct fsck_inode *fscki;
1944
1945	fscki = search_inode(fsckd, inum);
1946	if (fscki)
1947		return fscki;
1948
1949	ino_key_init(c, &key, inum);
1950	err = ubifs_lookup_level0(c, &key, &znode, &n);
1951	if (!err) {
1952		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1953		return ERR_PTR(-ENOENT);
1954	} else if (err < 0) {
1955		ubifs_err(c, "error %d while looking up inode %lu",
1956			  err, (unsigned long)inum);
1957		return ERR_PTR(err);
1958	}
1959
1960	zbr = &znode->zbranch[n];
1961	if (zbr->len < UBIFS_INO_NODE_SZ) {
1962		ubifs_err(c, "bad node %lu node length %d",
1963			  (unsigned long)inum, zbr->len);
1964		return ERR_PTR(-EINVAL);
1965	}
1966
1967	ino = kmalloc(zbr->len, GFP_NOFS);
1968	if (!ino)
1969		return ERR_PTR(-ENOMEM);
1970
1971	err = ubifs_tnc_read_node(c, zbr, ino);
1972	if (err) {
1973		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1974			  zbr->lnum, zbr->offs, err);
1975		kfree(ino);
1976		return ERR_PTR(err);
1977	}
1978
1979	fscki = add_inode(c, fsckd, ino);
1980	kfree(ino);
1981	if (IS_ERR(fscki)) {
1982		ubifs_err(c, "error %ld while adding inode %lu node",
1983			  PTR_ERR(fscki), (unsigned long)inum);
1984		return fscki;
1985	}
1986
1987	return fscki;
1988}
1989
1990/**
1991 * check_leaf - check leaf node.
1992 * @c: UBIFS file-system description object
1993 * @zbr: zbranch of the leaf node to check
1994 * @priv: FS checking information
1995 *
1996 * This is a helper function for 'dbg_check_filesystem()' which is called for
1997 * every single leaf node while walking the indexing tree. It checks that the
1998 * leaf node referred from the indexing tree exists, has correct CRC, and does
1999 * some other basic validation. This function is also responsible for building
2000 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2001 * calculates reference count, size, etc for each inode in order to later
2002 * compare them to the information stored inside the inodes and detect possible
2003 * inconsistencies. Returns zero in case of success and a negative error code
2004 * in case of failure.
2005 */
2006static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2007		      void *priv)
2008{
2009	ino_t inum;
2010	void *node;
2011	struct ubifs_ch *ch;
2012	int err, type = key_type(c, &zbr->key);
2013	struct fsck_inode *fscki;
2014
2015	if (zbr->len < UBIFS_CH_SZ) {
2016		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2017			  zbr->len, zbr->lnum, zbr->offs);
2018		return -EINVAL;
2019	}
2020
2021	node = kmalloc(zbr->len, GFP_NOFS);
2022	if (!node)
2023		return -ENOMEM;
2024
2025	err = ubifs_tnc_read_node(c, zbr, node);
2026	if (err) {
2027		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2028			  zbr->lnum, zbr->offs, err);
2029		goto out_free;
2030	}
2031
2032	/* If this is an inode node, add it to RB-tree of inodes */
2033	if (type == UBIFS_INO_KEY) {
2034		fscki = add_inode(c, priv, node);
2035		if (IS_ERR(fscki)) {
2036			err = PTR_ERR(fscki);
2037			ubifs_err(c, "error %d while adding inode node", err);
2038			goto out_dump;
2039		}
2040		goto out;
2041	}
2042
2043	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2044	    type != UBIFS_DATA_KEY) {
2045		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2046			  type, zbr->lnum, zbr->offs);
2047		err = -EINVAL;
2048		goto out_free;
2049	}
2050
2051	ch = node;
2052	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2053		ubifs_err(c, "too high sequence number, max. is %llu",
2054			  c->max_sqnum);
2055		err = -EINVAL;
2056		goto out_dump;
2057	}
2058
2059	if (type == UBIFS_DATA_KEY) {
2060		long long blk_offs;
2061		struct ubifs_data_node *dn = node;
2062
2063		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2064
2065		/*
2066		 * Search the inode node this data node belongs to and insert
2067		 * it to the RB-tree of inodes.
2068		 */
2069		inum = key_inum_flash(c, &dn->key);
2070		fscki = read_add_inode(c, priv, inum);
2071		if (IS_ERR(fscki)) {
2072			err = PTR_ERR(fscki);
2073			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
 
2074				  err, (unsigned long)inum);
2075			goto out_dump;
2076		}
2077
2078		/* Make sure the data node is within inode size */
2079		blk_offs = key_block_flash(c, &dn->key);
2080		blk_offs <<= UBIFS_BLOCK_SHIFT;
2081		blk_offs += le32_to_cpu(dn->size);
2082		if (blk_offs > fscki->size) {
2083			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2084				  zbr->lnum, zbr->offs, fscki->size);
 
2085			err = -EINVAL;
2086			goto out_dump;
2087		}
2088	} else {
2089		int nlen;
2090		struct ubifs_dent_node *dent = node;
2091		struct fsck_inode *fscki1;
2092
2093		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2094
2095		err = ubifs_validate_entry(c, dent);
2096		if (err)
2097			goto out_dump;
2098
2099		/*
2100		 * Search the inode node this entry refers to and the parent
2101		 * inode node and insert them to the RB-tree of inodes.
2102		 */
2103		inum = le64_to_cpu(dent->inum);
2104		fscki = read_add_inode(c, priv, inum);
2105		if (IS_ERR(fscki)) {
2106			err = PTR_ERR(fscki);
2107			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
 
2108				  err, (unsigned long)inum);
2109			goto out_dump;
2110		}
2111
2112		/* Count how many direntries or xentries refers this inode */
2113		fscki->references += 1;
2114
2115		inum = key_inum_flash(c, &dent->key);
2116		fscki1 = read_add_inode(c, priv, inum);
2117		if (IS_ERR(fscki1)) {
2118			err = PTR_ERR(fscki1);
2119			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
 
2120				  err, (unsigned long)inum);
2121			goto out_dump;
2122		}
2123
2124		nlen = le16_to_cpu(dent->nlen);
2125		if (type == UBIFS_XENT_KEY) {
2126			fscki1->calc_xcnt += 1;
2127			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2128			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2129			fscki1->calc_xnms += nlen;
2130		} else {
2131			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2132			if (dent->type == UBIFS_ITYPE_DIR)
2133				fscki1->calc_cnt += 1;
2134		}
2135	}
2136
2137out:
2138	kfree(node);
2139	return 0;
2140
2141out_dump:
2142	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2143	ubifs_dump_node(c, node, zbr->len);
2144out_free:
2145	kfree(node);
2146	return err;
2147}
2148
2149/**
2150 * free_inodes - free RB-tree of inodes.
2151 * @fsckd: FS checking information
2152 */
2153static void free_inodes(struct fsck_data *fsckd)
2154{
2155	struct fsck_inode *fscki, *n;
 
2156
2157	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2158		kfree(fscki);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159}
2160
2161/**
2162 * check_inodes - checks all inodes.
2163 * @c: UBIFS file-system description object
2164 * @fsckd: FS checking information
2165 *
2166 * This is a helper function for 'dbg_check_filesystem()' which walks the
2167 * RB-tree of inodes after the index scan has been finished, and checks that
2168 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2169 * %-EINVAL if not, and a negative error code in case of failure.
2170 */
2171static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2172{
2173	int n, err;
2174	union ubifs_key key;
2175	struct ubifs_znode *znode;
2176	struct ubifs_zbranch *zbr;
2177	struct ubifs_ino_node *ino;
2178	struct fsck_inode *fscki;
2179	struct rb_node *this = rb_first(&fsckd->inodes);
2180
2181	while (this) {
2182		fscki = rb_entry(this, struct fsck_inode, rb);
2183		this = rb_next(this);
2184
2185		if (S_ISDIR(fscki->mode)) {
2186			/*
2187			 * Directories have to have exactly one reference (they
2188			 * cannot have hardlinks), although root inode is an
2189			 * exception.
2190			 */
2191			if (fscki->inum != UBIFS_ROOT_INO &&
2192			    fscki->references != 1) {
2193				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
 
 
2194					  (unsigned long)fscki->inum,
2195					  fscki->references);
2196				goto out_dump;
2197			}
2198			if (fscki->inum == UBIFS_ROOT_INO &&
2199			    fscki->references != 0) {
2200				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
 
2201					  (unsigned long)fscki->inum,
2202					  fscki->references);
2203				goto out_dump;
2204			}
2205			if (fscki->calc_sz != fscki->size) {
2206				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
 
2207					  (unsigned long)fscki->inum,
2208					  fscki->size, fscki->calc_sz);
2209				goto out_dump;
2210			}
2211			if (fscki->calc_cnt != fscki->nlink) {
2212				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
 
2213					  (unsigned long)fscki->inum,
2214					  fscki->nlink, fscki->calc_cnt);
2215				goto out_dump;
2216			}
2217		} else {
2218			if (fscki->references != fscki->nlink) {
2219				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
 
2220					  (unsigned long)fscki->inum,
2221					  fscki->nlink, fscki->references);
2222				goto out_dump;
2223			}
2224		}
2225		if (fscki->xattr_sz != fscki->calc_xsz) {
2226			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
 
2227				  (unsigned long)fscki->inum, fscki->xattr_sz,
2228				  fscki->calc_xsz);
2229			goto out_dump;
2230		}
2231		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2232			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
 
2233				  (unsigned long)fscki->inum,
2234				  fscki->xattr_cnt, fscki->calc_xcnt);
2235			goto out_dump;
2236		}
2237		if (fscki->xattr_nms != fscki->calc_xnms) {
2238			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
 
2239				  (unsigned long)fscki->inum, fscki->xattr_nms,
2240				  fscki->calc_xnms);
2241			goto out_dump;
2242		}
2243	}
2244
2245	return 0;
2246
2247out_dump:
2248	/* Read the bad inode and dump it */
2249	ino_key_init(c, &key, fscki->inum);
2250	err = ubifs_lookup_level0(c, &key, &znode, &n);
2251	if (!err) {
2252		ubifs_err(c, "inode %lu not found in index",
2253			  (unsigned long)fscki->inum);
2254		return -ENOENT;
2255	} else if (err < 0) {
2256		ubifs_err(c, "error %d while looking up inode %lu",
2257			  err, (unsigned long)fscki->inum);
2258		return err;
2259	}
2260
2261	zbr = &znode->zbranch[n];
2262	ino = kmalloc(zbr->len, GFP_NOFS);
2263	if (!ino)
2264		return -ENOMEM;
2265
2266	err = ubifs_tnc_read_node(c, zbr, ino);
2267	if (err) {
2268		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2269			  zbr->lnum, zbr->offs, err);
2270		kfree(ino);
2271		return err;
2272	}
2273
2274	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2275		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2276	ubifs_dump_node(c, ino, zbr->len);
2277	kfree(ino);
2278	return -EINVAL;
2279}
2280
2281/**
2282 * dbg_check_filesystem - check the file-system.
2283 * @c: UBIFS file-system description object
2284 *
2285 * This function checks the file system, namely:
2286 * o makes sure that all leaf nodes exist and their CRCs are correct;
2287 * o makes sure inode nlink, size, xattr size/count are correct (for all
2288 *   inodes).
2289 *
2290 * The function reads whole indexing tree and all nodes, so it is pretty
2291 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2292 * not, and a negative error code in case of failure.
2293 */
2294int dbg_check_filesystem(struct ubifs_info *c)
2295{
2296	int err;
2297	struct fsck_data fsckd;
2298
2299	if (!dbg_is_chk_fs(c))
2300		return 0;
2301
2302	fsckd.inodes = RB_ROOT;
2303	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2304	if (err)
2305		goto out_free;
2306
2307	err = check_inodes(c, &fsckd);
2308	if (err)
2309		goto out_free;
2310
2311	free_inodes(&fsckd);
2312	return 0;
2313
2314out_free:
2315	ubifs_err(c, "file-system check failed with error %d", err);
2316	dump_stack();
2317	free_inodes(&fsckd);
2318	return err;
2319}
2320
2321/**
2322 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2323 * @c: UBIFS file-system description object
2324 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2325 *
2326 * This function returns zero if the list of data nodes is sorted correctly,
2327 * and %-EINVAL if not.
2328 */
2329int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2330{
2331	struct list_head *cur;
2332	struct ubifs_scan_node *sa, *sb;
2333
2334	if (!dbg_is_chk_gen(c))
2335		return 0;
2336
2337	for (cur = head->next; cur->next != head; cur = cur->next) {
2338		ino_t inuma, inumb;
2339		uint32_t blka, blkb;
2340
2341		cond_resched();
2342		sa = container_of(cur, struct ubifs_scan_node, list);
2343		sb = container_of(cur->next, struct ubifs_scan_node, list);
2344
2345		if (sa->type != UBIFS_DATA_NODE) {
2346			ubifs_err(c, "bad node type %d", sa->type);
2347			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2348			return -EINVAL;
2349		}
2350		if (sb->type != UBIFS_DATA_NODE) {
2351			ubifs_err(c, "bad node type %d", sb->type);
2352			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2353			return -EINVAL;
2354		}
2355
2356		inuma = key_inum(c, &sa->key);
2357		inumb = key_inum(c, &sb->key);
2358
2359		if (inuma < inumb)
2360			continue;
2361		if (inuma > inumb) {
2362			ubifs_err(c, "larger inum %lu goes before inum %lu",
2363				  (unsigned long)inuma, (unsigned long)inumb);
2364			goto error_dump;
2365		}
2366
2367		blka = key_block(c, &sa->key);
2368		blkb = key_block(c, &sb->key);
2369
2370		if (blka > blkb) {
2371			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2372			goto error_dump;
2373		}
2374		if (blka == blkb) {
2375			ubifs_err(c, "two data nodes for the same block");
2376			goto error_dump;
2377		}
2378	}
2379
2380	return 0;
2381
2382error_dump:
2383	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2384	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2385	return -EINVAL;
2386}
2387
2388/**
2389 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2390 * @c: UBIFS file-system description object
2391 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2392 *
2393 * This function returns zero if the list of non-data nodes is sorted correctly,
2394 * and %-EINVAL if not.
2395 */
2396int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2397{
2398	struct list_head *cur;
2399	struct ubifs_scan_node *sa, *sb;
2400
2401	if (!dbg_is_chk_gen(c))
2402		return 0;
2403
2404	for (cur = head->next; cur->next != head; cur = cur->next) {
2405		ino_t inuma, inumb;
2406		uint32_t hasha, hashb;
2407
2408		cond_resched();
2409		sa = container_of(cur, struct ubifs_scan_node, list);
2410		sb = container_of(cur->next, struct ubifs_scan_node, list);
2411
2412		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2413		    sa->type != UBIFS_XENT_NODE) {
2414			ubifs_err(c, "bad node type %d", sa->type);
2415			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2416			return -EINVAL;
2417		}
2418		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2419		    sb->type != UBIFS_XENT_NODE) {
2420			ubifs_err(c, "bad node type %d", sb->type);
2421			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2422			return -EINVAL;
2423		}
2424
2425		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2426			ubifs_err(c, "non-inode node goes before inode node");
2427			goto error_dump;
2428		}
2429
2430		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2431			continue;
2432
2433		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2434			/* Inode nodes are sorted in descending size order */
2435			if (sa->len < sb->len) {
2436				ubifs_err(c, "smaller inode node goes first");
2437				goto error_dump;
2438			}
2439			continue;
2440		}
2441
2442		/*
2443		 * This is either a dentry or xentry, which should be sorted in
2444		 * ascending (parent ino, hash) order.
2445		 */
2446		inuma = key_inum(c, &sa->key);
2447		inumb = key_inum(c, &sb->key);
2448
2449		if (inuma < inumb)
2450			continue;
2451		if (inuma > inumb) {
2452			ubifs_err(c, "larger inum %lu goes before inum %lu",
2453				  (unsigned long)inuma, (unsigned long)inumb);
2454			goto error_dump;
2455		}
2456
2457		hasha = key_block(c, &sa->key);
2458		hashb = key_block(c, &sb->key);
2459
2460		if (hasha > hashb) {
2461			ubifs_err(c, "larger hash %u goes before %u",
2462				  hasha, hashb);
2463			goto error_dump;
2464		}
2465	}
2466
2467	return 0;
2468
2469error_dump:
2470	ubifs_msg(c, "dumping first node");
2471	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2472	ubifs_msg(c, "dumping second node");
2473	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2474	return -EINVAL;
 
2475}
2476
2477static inline int chance(unsigned int n, unsigned int out_of)
2478{
2479	return !!(get_random_u32_below(out_of) + 1 <= n);
2480
2481}
2482
2483static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2484{
2485	struct ubifs_debug_info *d = c->dbg;
2486
2487	ubifs_assert(c, dbg_is_tst_rcvry(c));
2488
2489	if (!d->pc_cnt) {
2490		/* First call - decide delay to the power cut */
2491		if (chance(1, 2)) {
2492			unsigned long delay;
2493
2494			if (chance(1, 2)) {
2495				d->pc_delay = 1;
2496				/* Fail within 1 minute */
2497				delay = get_random_u32_below(60000);
2498				d->pc_timeout = jiffies;
2499				d->pc_timeout += msecs_to_jiffies(delay);
2500				ubifs_warn(c, "failing after %lums", delay);
2501			} else {
2502				d->pc_delay = 2;
2503				delay = get_random_u32_below(10000);
2504				/* Fail within 10000 operations */
2505				d->pc_cnt_max = delay;
2506				ubifs_warn(c, "failing after %lu calls", delay);
2507			}
2508		}
2509
2510		d->pc_cnt += 1;
2511	}
2512
2513	/* Determine if failure delay has expired */
2514	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2515			return 0;
2516	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2517			return 0;
2518
2519	if (lnum == UBIFS_SB_LNUM) {
2520		if (write && chance(1, 2))
2521			return 0;
2522		if (chance(19, 20))
2523			return 0;
2524		ubifs_warn(c, "failing in super block LEB %d", lnum);
2525	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2526		if (chance(19, 20))
2527			return 0;
2528		ubifs_warn(c, "failing in master LEB %d", lnum);
2529	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2530		if (write && chance(99, 100))
2531			return 0;
2532		if (chance(399, 400))
2533			return 0;
2534		ubifs_warn(c, "failing in log LEB %d", lnum);
2535	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2536		if (write && chance(7, 8))
2537			return 0;
2538		if (chance(19, 20))
2539			return 0;
2540		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2541	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2542		if (write && chance(1, 2))
2543			return 0;
2544		if (chance(9, 10))
2545			return 0;
2546		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2547	} else if (lnum == c->ihead_lnum) {
2548		if (chance(99, 100))
2549			return 0;
2550		ubifs_warn(c, "failing in index head LEB %d", lnum);
2551	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2552		if (chance(9, 10))
2553			return 0;
2554		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2555	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2556		   !ubifs_search_bud(c, lnum)) {
2557		if (chance(19, 20))
2558			return 0;
2559		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2560	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2561		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2562		if (chance(999, 1000))
2563			return 0;
2564		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2565	} else {
2566		if (chance(9999, 10000))
2567			return 0;
2568		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2569	}
2570
2571	d->pc_happened = 1;
2572	ubifs_warn(c, "========== Power cut emulated ==========");
2573	dump_stack();
2574	return 1;
2575}
2576
2577static int corrupt_data(const struct ubifs_info *c, const void *buf,
2578			unsigned int len)
2579{
2580	unsigned int from, to, ffs = chance(1, 2);
2581	unsigned char *p = (void *)buf;
2582
2583	from = get_random_u32_below(len);
2584	/* Corruption span max to end of write unit */
2585	to = min(len, ALIGN(from + 1, c->max_write_size));
 
 
2586
2587	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2588		   ffs ? "0xFFs" : "random data");
 
2589
2590	if (ffs)
2591		memset(p + from, 0xFF, to - from);
 
2592	else
2593		get_random_bytes(p + from, to - from);
2594
2595	return to;
2596}
2597
2598int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2599		  int offs, int len)
2600{
2601	int err, failing;
2602
2603	if (dbg_is_power_cut(c))
2604		return -EROFS;
2605
2606	failing = power_cut_emulated(c, lnum, 1);
2607	if (failing) {
2608		len = corrupt_data(c, buf, len);
2609		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2610			   len, lnum, offs);
2611	}
2612	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2613	if (err)
2614		return err;
2615	if (failing)
2616		return -EROFS;
2617	return 0;
2618}
2619
2620int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2621		   int len)
2622{
2623	int err;
2624
2625	if (dbg_is_power_cut(c))
2626		return -EROFS;
2627	if (power_cut_emulated(c, lnum, 1))
2628		return -EROFS;
2629	err = ubi_leb_change(c->ubi, lnum, buf, len);
2630	if (err)
2631		return err;
2632	if (power_cut_emulated(c, lnum, 1))
2633		return -EROFS;
2634	return 0;
2635}
2636
2637int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2638{
2639	int err;
2640
2641	if (dbg_is_power_cut(c))
2642		return -EROFS;
2643	if (power_cut_emulated(c, lnum, 0))
2644		return -EROFS;
2645	err = ubi_leb_unmap(c->ubi, lnum);
2646	if (err)
2647		return err;
2648	if (power_cut_emulated(c, lnum, 0))
2649		return -EROFS;
2650	return 0;
2651}
2652
2653int dbg_leb_map(struct ubifs_info *c, int lnum)
2654{
2655	int err;
2656
2657	if (dbg_is_power_cut(c))
2658		return -EROFS;
2659	if (power_cut_emulated(c, lnum, 0))
2660		return -EROFS;
2661	err = ubi_leb_map(c->ubi, lnum);
2662	if (err)
2663		return err;
2664	if (power_cut_emulated(c, lnum, 0))
2665		return -EROFS;
2666	return 0;
2667}
2668
2669/*
2670 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2671 * contain the stuff specific to particular file-system mounts.
2672 */
2673static struct dentry *dfs_rootdir;
2674
2675static int dfs_file_open(struct inode *inode, struct file *file)
2676{
2677	file->private_data = inode->i_private;
2678	return nonseekable_open(inode, file);
2679}
2680
2681/**
2682 * provide_user_output - provide output to the user reading a debugfs file.
2683 * @val: boolean value for the answer
2684 * @u: the buffer to store the answer at
2685 * @count: size of the buffer
2686 * @ppos: position in the @u output buffer
2687 *
2688 * This is a simple helper function which stores @val boolean value in the user
2689 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2690 * bytes written to @u in case of success and a negative error code in case of
2691 * failure.
2692 */
2693static int provide_user_output(int val, char __user *u, size_t count,
2694			       loff_t *ppos)
2695{
2696	char buf[3];
2697
2698	if (val)
2699		buf[0] = '1';
2700	else
2701		buf[0] = '0';
2702	buf[1] = '\n';
2703	buf[2] = 0x00;
2704
2705	return simple_read_from_buffer(u, count, ppos, buf, 2);
2706}
2707
2708static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2709			     loff_t *ppos)
2710{
2711	struct dentry *dent = file->f_path.dentry;
2712	struct ubifs_info *c = file->private_data;
2713	struct ubifs_debug_info *d = c->dbg;
2714	int val;
2715
2716	if (dent == d->dfs_chk_gen)
2717		val = d->chk_gen;
2718	else if (dent == d->dfs_chk_index)
2719		val = d->chk_index;
2720	else if (dent == d->dfs_chk_orph)
2721		val = d->chk_orph;
2722	else if (dent == d->dfs_chk_lprops)
2723		val = d->chk_lprops;
2724	else if (dent == d->dfs_chk_fs)
2725		val = d->chk_fs;
2726	else if (dent == d->dfs_tst_rcvry)
2727		val = d->tst_rcvry;
2728	else if (dent == d->dfs_ro_error)
2729		val = c->ro_error;
2730	else
2731		return -EINVAL;
2732
2733	return provide_user_output(val, u, count, ppos);
2734}
2735
2736/**
2737 * interpret_user_input - interpret user debugfs file input.
2738 * @u: user-provided buffer with the input
2739 * @count: buffer size
2740 *
2741 * This is a helper function which interpret user input to a boolean UBIFS
2742 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2743 * in case of failure.
2744 */
2745static int interpret_user_input(const char __user *u, size_t count)
2746{
2747	size_t buf_size;
2748	char buf[8];
2749
2750	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2751	if (copy_from_user(buf, u, buf_size))
2752		return -EFAULT;
2753
2754	if (buf[0] == '1')
2755		return 1;
2756	else if (buf[0] == '0')
2757		return 0;
2758
2759	return -EINVAL;
2760}
2761
2762static ssize_t dfs_file_write(struct file *file, const char __user *u,
2763			      size_t count, loff_t *ppos)
2764{
2765	struct ubifs_info *c = file->private_data;
2766	struct ubifs_debug_info *d = c->dbg;
2767	struct dentry *dent = file->f_path.dentry;
2768	int val;
2769
 
 
 
 
 
 
 
 
 
 
 
 
2770	if (file->f_path.dentry == d->dfs_dump_lprops) {
2771		ubifs_dump_lprops(c);
2772		return count;
2773	}
2774	if (file->f_path.dentry == d->dfs_dump_budg) {
2775		ubifs_dump_budg(c, &c->bi);
2776		return count;
2777	}
2778	if (file->f_path.dentry == d->dfs_dump_tnc) {
2779		mutex_lock(&c->tnc_mutex);
2780		ubifs_dump_tnc(c);
2781		mutex_unlock(&c->tnc_mutex);
2782		return count;
2783	}
2784
2785	val = interpret_user_input(u, count);
2786	if (val < 0)
2787		return val;
2788
2789	if (dent == d->dfs_chk_gen)
2790		d->chk_gen = val;
2791	else if (dent == d->dfs_chk_index)
2792		d->chk_index = val;
2793	else if (dent == d->dfs_chk_orph)
2794		d->chk_orph = val;
2795	else if (dent == d->dfs_chk_lprops)
2796		d->chk_lprops = val;
2797	else if (dent == d->dfs_chk_fs)
2798		d->chk_fs = val;
2799	else if (dent == d->dfs_tst_rcvry)
2800		d->tst_rcvry = val;
2801	else if (dent == d->dfs_ro_error)
2802		c->ro_error = !!val;
2803	else
2804		return -EINVAL;
2805
2806	return count;
2807}
2808
2809static const struct file_operations dfs_fops = {
2810	.open = dfs_file_open,
2811	.read = dfs_file_read,
2812	.write = dfs_file_write,
2813	.owner = THIS_MODULE,
 
2814};
2815
2816/**
2817 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2818 * @c: UBIFS file-system description object
2819 *
2820 * This function creates all debugfs files for this instance of UBIFS.
 
2821 *
2822 * Note, the only reason we have not merged this function with the
2823 * 'ubifs_debugging_init()' function is because it is better to initialize
2824 * debugfs interfaces at the very end of the mount process, and remove them at
2825 * the very beginning of the mount process.
2826 */
2827void dbg_debugfs_init_fs(struct ubifs_info *c)
2828{
2829	int n;
2830	const char *fname;
 
2831	struct ubifs_debug_info *d = c->dbg;
2832
2833	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
 
 
 
2834		     c->vi.ubi_num, c->vi.vol_id);
2835	if (n >= UBIFS_DFS_DIR_LEN) {
2836		/* The array size is too small */
2837		return;
 
 
2838	}
2839
2840	fname = d->dfs_dir_name;
2841	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
 
 
 
2842
2843	fname = "dump_lprops";
2844	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845						 &dfs_fops);
 
 
2846
2847	fname = "dump_budg";
2848	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2849					       &dfs_fops);
 
 
2850
2851	fname = "dump_tnc";
2852	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2853					      &dfs_fops);
 
 
2854
2855	fname = "chk_general";
2856	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857					     d->dfs_dir, c, &dfs_fops);
 
 
 
2858
2859	fname = "chk_index";
2860	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861					       d->dfs_dir, c, &dfs_fops);
 
 
 
2862
2863	fname = "chk_orphans";
2864	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865					      d->dfs_dir, c, &dfs_fops);
 
 
 
2866
2867	fname = "chk_lprops";
2868	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869						d->dfs_dir, c, &dfs_fops);
 
 
 
2870
2871	fname = "chk_fs";
2872	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873					    d->dfs_dir, c, &dfs_fops);
 
 
 
2874
2875	fname = "tst_recovery";
2876	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877					       d->dfs_dir, c, &dfs_fops);
 
 
 
 
 
2878
2879	fname = "ro_error";
2880	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2881					      d->dfs_dir, c, &dfs_fops);
 
 
 
 
2882}
2883
2884/**
2885 * dbg_debugfs_exit_fs - remove all debugfs files.
2886 * @c: UBIFS file-system description object
2887 */
2888void dbg_debugfs_exit_fs(struct ubifs_info *c)
2889{
2890	debugfs_remove_recursive(c->dbg->dfs_dir);
 
2891}
2892
2893struct ubifs_global_debug_info ubifs_dbg;
2894
2895static struct dentry *dfs_chk_gen;
2896static struct dentry *dfs_chk_index;
2897static struct dentry *dfs_chk_orph;
2898static struct dentry *dfs_chk_lprops;
2899static struct dentry *dfs_chk_fs;
2900static struct dentry *dfs_tst_rcvry;
2901
2902static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2903				    size_t count, loff_t *ppos)
2904{
2905	struct dentry *dent = file->f_path.dentry;
2906	int val;
2907
2908	if (dent == dfs_chk_gen)
2909		val = ubifs_dbg.chk_gen;
2910	else if (dent == dfs_chk_index)
2911		val = ubifs_dbg.chk_index;
2912	else if (dent == dfs_chk_orph)
2913		val = ubifs_dbg.chk_orph;
2914	else if (dent == dfs_chk_lprops)
2915		val = ubifs_dbg.chk_lprops;
2916	else if (dent == dfs_chk_fs)
2917		val = ubifs_dbg.chk_fs;
2918	else if (dent == dfs_tst_rcvry)
2919		val = ubifs_dbg.tst_rcvry;
2920	else
2921		return -EINVAL;
2922
2923	return provide_user_output(val, u, count, ppos);
2924}
2925
2926static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2927				     size_t count, loff_t *ppos)
2928{
2929	struct dentry *dent = file->f_path.dentry;
2930	int val;
2931
2932	val = interpret_user_input(u, count);
2933	if (val < 0)
2934		return val;
2935
2936	if (dent == dfs_chk_gen)
2937		ubifs_dbg.chk_gen = val;
2938	else if (dent == dfs_chk_index)
2939		ubifs_dbg.chk_index = val;
2940	else if (dent == dfs_chk_orph)
2941		ubifs_dbg.chk_orph = val;
2942	else if (dent == dfs_chk_lprops)
2943		ubifs_dbg.chk_lprops = val;
2944	else if (dent == dfs_chk_fs)
2945		ubifs_dbg.chk_fs = val;
2946	else if (dent == dfs_tst_rcvry)
2947		ubifs_dbg.tst_rcvry = val;
2948	else
2949		return -EINVAL;
2950
2951	return count;
2952}
2953
2954static const struct file_operations dfs_global_fops = {
2955	.read = dfs_global_file_read,
2956	.write = dfs_global_file_write,
2957	.owner = THIS_MODULE,
 
2958};
2959
2960/**
2961 * dbg_debugfs_init - initialize debugfs file-system.
2962 *
2963 * UBIFS uses debugfs file-system to expose various debugging knobs to
2964 * user-space. This function creates "ubifs" directory in the debugfs
2965 * file-system.
 
2966 */
2967void dbg_debugfs_init(void)
2968{
 
2969	const char *fname;
 
 
 
 
2970
2971	fname = "ubifs";
2972	dfs_rootdir = debugfs_create_dir(fname, NULL);
 
 
 
2973
2974	fname = "chk_general";
2975	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976					  NULL, &dfs_global_fops);
 
 
 
2977
2978	fname = "chk_index";
2979	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2981
2982	fname = "chk_orphans";
2983	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2984					   dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2985
2986	fname = "chk_lprops";
2987	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2988					     dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2989
2990	fname = "chk_fs";
2991	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2992					 NULL, &dfs_global_fops);
 
 
 
2993
2994	fname = "tst_recovery";
2995	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2996					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2997}
2998
2999/**
3000 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3001 */
3002void dbg_debugfs_exit(void)
3003{
3004	debugfs_remove_recursive(dfs_rootdir);
3005}
3006
3007void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3008			 const char *file, int line)
3009{
3010	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3011
3012	switch (c->assert_action) {
3013		case ASSACT_PANIC:
3014		BUG();
3015		break;
3016
3017		case ASSACT_RO:
3018		ubifs_ro_mode(c, -EINVAL);
3019		break;
3020
3021		case ASSACT_REPORT:
3022		default:
3023		dump_stack();
3024		break;
3025
3026	}
3027}
3028
3029/**
3030 * ubifs_debugging_init - initialize UBIFS debugging.
3031 * @c: UBIFS file-system description object
3032 *
3033 * This function initializes debugging-related data for the file system.
3034 * Returns zero in case of success and a negative error code in case of
3035 * failure.
3036 */
3037int ubifs_debugging_init(struct ubifs_info *c)
3038{
3039	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3040	if (!c->dbg)
3041		return -ENOMEM;
3042
3043	return 0;
3044}
3045
3046/**
3047 * ubifs_debugging_exit - free debugging data.
3048 * @c: UBIFS file-system description object
3049 */
3050void ubifs_debugging_exit(struct ubifs_info *c)
3051{
3052	kfree(c->dbg);
3053}