Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2  FUSE: Filesystem in Userspace
   3  Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
   4
   5  This program can be distributed under the terms of the GNU GPL.
   6  See the file COPYING.
   7*/
   8
   9#include "fuse_i.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/poll.h>
 
  14#include <linux/uio.h>
  15#include <linux/miscdevice.h>
  16#include <linux/pagemap.h>
  17#include <linux/file.h>
  18#include <linux/slab.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/swap.h>
  21#include <linux/splice.h>
 
 
 
 
  22
  23MODULE_ALIAS_MISCDEV(FUSE_MINOR);
  24MODULE_ALIAS("devname:fuse");
  25
 
 
 
 
  26static struct kmem_cache *fuse_req_cachep;
  27
  28static struct fuse_conn *fuse_get_conn(struct file *file)
 
 
  29{
  30	/*
  31	 * Lockless access is OK, because file->private data is set
  32	 * once during mount and is valid until the file is released.
  33	 */
  34	return file->private_data;
  35}
  36
  37static void fuse_request_init(struct fuse_req *req)
  38{
  39	memset(req, 0, sizeof(*req));
  40	INIT_LIST_HEAD(&req->list);
  41	INIT_LIST_HEAD(&req->intr_entry);
  42	init_waitqueue_head(&req->waitq);
  43	atomic_set(&req->count, 1);
 
 
  44}
  45
  46struct fuse_req *fuse_request_alloc(void)
  47{
  48	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
  49	if (req)
  50		fuse_request_init(req);
  51	return req;
  52}
  53EXPORT_SYMBOL_GPL(fuse_request_alloc);
  54
  55struct fuse_req *fuse_request_alloc_nofs(void)
  56{
  57	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
  58	if (req)
  59		fuse_request_init(req);
  60	return req;
  61}
  62
  63void fuse_request_free(struct fuse_req *req)
  64{
  65	kmem_cache_free(fuse_req_cachep, req);
  66}
  67
  68static void block_sigs(sigset_t *oldset)
  69{
  70	sigset_t mask;
  71
  72	siginitsetinv(&mask, sigmask(SIGKILL));
  73	sigprocmask(SIG_BLOCK, &mask, oldset);
  74}
  75
  76static void restore_sigs(sigset_t *oldset)
 
  77{
  78	sigprocmask(SIG_SETMASK, oldset, NULL);
  79}
  80
  81static void __fuse_get_request(struct fuse_req *req)
  82{
  83	atomic_inc(&req->count);
 
 
  84}
  85
  86/* Must be called with > 1 refcount */
  87static void __fuse_put_request(struct fuse_req *req)
  88{
  89	BUG_ON(atomic_read(&req->count) < 2);
  90	atomic_dec(&req->count);
  91}
  92
  93static void fuse_req_init_context(struct fuse_req *req)
  94{
  95	req->in.h.uid = current_fsuid();
  96	req->in.h.gid = current_fsgid();
  97	req->in.h.pid = current->pid;
 
 
 
 
 
 
 
  98}
  99
 100struct fuse_req *fuse_get_req(struct fuse_conn *fc)
 
 
 
 
 101{
 
 102	struct fuse_req *req;
 103	sigset_t oldset;
 104	int intr;
 
 105	int err;
 106
 107	atomic_inc(&fc->num_waiting);
 108	block_sigs(&oldset);
 109	intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
 110	restore_sigs(&oldset);
 111	err = -EINTR;
 112	if (intr)
 113		goto out;
 
 
 
 114
 115	err = -ENOTCONN;
 116	if (!fc->connected)
 117		goto out;
 118
 119	req = fuse_request_alloc();
 
 
 
 
 120	err = -ENOMEM;
 121	if (!req)
 
 
 122		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123
 124	fuse_req_init_context(req);
 125	req->waiting = 1;
 126	return req;
 127
 128 out:
 129	atomic_dec(&fc->num_waiting);
 130	return ERR_PTR(err);
 131}
 132EXPORT_SYMBOL_GPL(fuse_get_req);
 133
 134/*
 135 * Return request in fuse_file->reserved_req.  However that may
 136 * currently be in use.  If that is the case, wait for it to become
 137 * available.
 138 */
 139static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
 140					 struct file *file)
 141{
 142	struct fuse_req *req = NULL;
 143	struct fuse_file *ff = file->private_data;
 144
 145	do {
 146		wait_event(fc->reserved_req_waitq, ff->reserved_req);
 147		spin_lock(&fc->lock);
 148		if (ff->reserved_req) {
 149			req = ff->reserved_req;
 150			ff->reserved_req = NULL;
 151			get_file(file);
 152			req->stolen_file = file;
 
 
 153		}
 154		spin_unlock(&fc->lock);
 155	} while (!req);
 156
 157	return req;
 
 
 
 
 
 
 158}
 159
 160/*
 161 * Put stolen request back into fuse_file->reserved_req
 162 */
 163static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
 164{
 165	struct file *file = req->stolen_file;
 166	struct fuse_file *ff = file->private_data;
 167
 168	spin_lock(&fc->lock);
 169	fuse_request_init(req);
 170	BUG_ON(ff->reserved_req);
 171	ff->reserved_req = req;
 172	wake_up_all(&fc->reserved_req_waitq);
 173	spin_unlock(&fc->lock);
 174	fput(file);
 175}
 
 176
 177/*
 178 * Gets a requests for a file operation, always succeeds
 179 *
 180 * This is used for sending the FLUSH request, which must get to
 181 * userspace, due to POSIX locks which may need to be unlocked.
 182 *
 183 * If allocation fails due to OOM, use the reserved request in
 184 * fuse_file.
 185 *
 186 * This is very unlikely to deadlock accidentally, since the
 187 * filesystem should not have it's own file open.  If deadlock is
 188 * intentional, it can still be broken by "aborting" the filesystem.
 189 */
 190struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
 191{
 192	struct fuse_req *req;
 193
 194	atomic_inc(&fc->num_waiting);
 195	wait_event(fc->blocked_waitq, !fc->blocked);
 196	req = fuse_request_alloc();
 197	if (!req)
 198		req = get_reserved_req(fc, file);
 199
 200	fuse_req_init_context(req);
 201	req->waiting = 1;
 202	return req;
 203}
 204
 205void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
 206{
 207	if (atomic_dec_and_test(&req->count)) {
 208		if (req->waiting)
 209			atomic_dec(&fc->num_waiting);
 210
 211		if (req->stolen_file)
 212			put_reserved_req(fc, req);
 213		else
 214			fuse_request_free(req);
 215	}
 216}
 217EXPORT_SYMBOL_GPL(fuse_put_request);
 218
 219static unsigned len_args(unsigned numargs, struct fuse_arg *args)
 220{
 221	unsigned nbytes = 0;
 222	unsigned i;
 223
 224	for (i = 0; i < numargs; i++)
 225		nbytes += args[i].size;
 
 
 
 
 
 
 
 
 226
 227	return nbytes;
 
 
 
 
 
 
 
 
 
 
 228}
 229
 230static u64 fuse_get_unique(struct fuse_conn *fc)
 231{
 232	fc->reqctr++;
 233	/* zero is special */
 234	if (fc->reqctr == 0)
 235		fc->reqctr = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236
 237	return fc->reqctr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 238}
 239
 240static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
 
 
 
 
 
 
 
 241{
 242	req->in.h.len = sizeof(struct fuse_in_header) +
 243		len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
 244	list_add_tail(&req->list, &fc->pending);
 245	req->state = FUSE_REQ_PENDING;
 246	if (!req->waiting) {
 247		req->waiting = 1;
 248		atomic_inc(&fc->num_waiting);
 249	}
 250	wake_up(&fc->waitq);
 251	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
 252}
 253
 254void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
 255		       u64 nodeid, u64 nlookup)
 256{
 
 
 257	forget->forget_one.nodeid = nodeid;
 258	forget->forget_one.nlookup = nlookup;
 259
 260	spin_lock(&fc->lock);
 261	if (fc->connected) {
 262		fc->forget_list_tail->next = forget;
 263		fc->forget_list_tail = forget;
 264		wake_up(&fc->waitq);
 265		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
 266	} else {
 267		kfree(forget);
 268	}
 269	spin_unlock(&fc->lock);
 270}
 271
 272static void flush_bg_queue(struct fuse_conn *fc)
 273{
 
 
 274	while (fc->active_background < fc->max_background &&
 275	       !list_empty(&fc->bg_queue)) {
 276		struct fuse_req *req;
 277
 278		req = list_entry(fc->bg_queue.next, struct fuse_req, list);
 279		list_del(&req->list);
 280		fc->active_background++;
 281		req->in.h.unique = fuse_get_unique(fc);
 282		queue_request(fc, req);
 283	}
 284}
 285
 286/*
 287 * This function is called when a request is finished.  Either a reply
 288 * has arrived or it was aborted (and not yet sent) or some error
 289 * occurred during communication with userspace, or the device file
 290 * was closed.  The requester thread is woken up (if still waiting),
 291 * the 'end' callback is called if given, else the reference to the
 292 * request is released
 293 *
 294 * Called with fc->lock, unlocks it
 295 */
 296static void request_end(struct fuse_conn *fc, struct fuse_req *req)
 297__releases(fc->lock)
 298{
 299	void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
 300	req->end = NULL;
 301	list_del(&req->list);
 302	list_del(&req->intr_entry);
 303	req->state = FUSE_REQ_FINISHED;
 304	if (req->background) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305		if (fc->num_background == fc->max_background) {
 306			fc->blocked = 0;
 307			wake_up_all(&fc->blocked_waitq);
 308		}
 309		if (fc->num_background == fc->congestion_threshold &&
 310		    fc->connected && fc->bdi_initialized) {
 311			clear_bdi_congested(&fc->bdi, BLK_RW_SYNC);
 312			clear_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
 
 
 
 
 313		}
 
 314		fc->num_background--;
 315		fc->active_background--;
 316		flush_bg_queue(fc);
 
 
 
 
 317	}
 318	spin_unlock(&fc->lock);
 319	wake_up(&req->waitq);
 320	if (end)
 321		end(fc, req);
 322	fuse_put_request(fc, req);
 323}
 
 324
 325static void wait_answer_interruptible(struct fuse_conn *fc,
 326				      struct fuse_req *req)
 327__releases(fc->lock)
 328__acquires(fc->lock)
 329{
 330	if (signal_pending(current))
 331		return;
 332
 333	spin_unlock(&fc->lock);
 334	wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
 335	spin_lock(&fc->lock);
 336}
 337
 338static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
 339{
 340	list_add_tail(&req->intr_entry, &fc->interrupts);
 341	wake_up(&fc->waitq);
 342	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
 343}
 344
 345static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
 346__releases(fc->lock)
 347__acquires(fc->lock)
 348{
 
 
 
 
 349	if (!fc->no_interrupt) {
 350		/* Any signal may interrupt this */
 351		wait_answer_interruptible(fc, req);
 352
 353		if (req->aborted)
 354			goto aborted;
 355		if (req->state == FUSE_REQ_FINISHED)
 356			return;
 357
 358		req->interrupted = 1;
 359		if (req->state == FUSE_REQ_SENT)
 360			queue_interrupt(fc, req);
 
 
 361	}
 362
 363	if (!req->force) {
 364		sigset_t oldset;
 365
 366		/* Only fatal signals may interrupt this */
 367		block_sigs(&oldset);
 368		wait_answer_interruptible(fc, req);
 369		restore_sigs(&oldset);
 370
 371		if (req->aborted)
 372			goto aborted;
 373		if (req->state == FUSE_REQ_FINISHED)
 374			return;
 375
 
 376		/* Request is not yet in userspace, bail out */
 377		if (req->state == FUSE_REQ_PENDING) {
 378			list_del(&req->list);
 
 379			__fuse_put_request(req);
 380			req->out.h.error = -EINTR;
 381			return;
 382		}
 
 383	}
 384
 385	/*
 386	 * Either request is already in userspace, or it was forced.
 387	 * Wait it out.
 388	 */
 389	spin_unlock(&fc->lock);
 390	wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
 391	spin_lock(&fc->lock);
 392
 393	if (!req->aborted)
 394		return;
 
 395
 396 aborted:
 397	BUG_ON(req->state != FUSE_REQ_FINISHED);
 398	if (req->locked) {
 399		/* This is uninterruptible sleep, because data is
 400		   being copied to/from the buffers of req.  During
 401		   locked state, there mustn't be any filesystem
 402		   operation (e.g. page fault), since that could lead
 403		   to deadlock */
 404		spin_unlock(&fc->lock);
 405		wait_event(req->waitq, !req->locked);
 406		spin_lock(&fc->lock);
 407	}
 408}
 409
 410void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
 411{
 412	req->isreply = 1;
 413	spin_lock(&fc->lock);
 414	if (!fc->connected)
 415		req->out.h.error = -ENOTCONN;
 416	else if (fc->conn_error)
 417		req->out.h.error = -ECONNREFUSED;
 418	else {
 419		req->in.h.unique = fuse_get_unique(fc);
 420		queue_request(fc, req);
 421		/* acquire extra reference, since request is still needed
 422		   after request_end() */
 423		__fuse_get_request(req);
 424
 425		request_wait_answer(fc, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426	}
 427	spin_unlock(&fc->lock);
 428}
 429EXPORT_SYMBOL_GPL(fuse_request_send);
 430
 431static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
 432					    struct fuse_req *req)
 433{
 434	req->background = 1;
 435	fc->num_background++;
 436	if (fc->num_background == fc->max_background)
 437		fc->blocked = 1;
 438	if (fc->num_background == fc->congestion_threshold &&
 439	    fc->bdi_initialized) {
 440		set_bdi_congested(&fc->bdi, BLK_RW_SYNC);
 441		set_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
 442	}
 443	list_add_tail(&req->list, &fc->bg_queue);
 444	flush_bg_queue(fc);
 445}
 446
 447static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
 448{
 449	spin_lock(&fc->lock);
 450	if (fc->connected) {
 451		fuse_request_send_nowait_locked(fc, req);
 452		spin_unlock(&fc->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453	} else {
 454		req->out.h.error = -ENOTCONN;
 455		request_end(fc, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456	}
 
 
 
 457}
 458
 459void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
 460{
 461	req->isreply = 1;
 462	fuse_request_send_nowait(fc, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463}
 464EXPORT_SYMBOL_GPL(fuse_request_send_background);
 465
 466static int fuse_request_send_notify_reply(struct fuse_conn *fc,
 467					  struct fuse_req *req, u64 unique)
 468{
 469	int err = -ENODEV;
 470
 471	req->isreply = 0;
 472	req->in.h.unique = unique;
 473	spin_lock(&fc->lock);
 474	if (fc->connected) {
 475		queue_request(fc, req);
 476		err = 0;
 
 
 
 
 
 477	}
 478	spin_unlock(&fc->lock);
 479
 480	return err;
 
 
 
 
 
 
 
 481}
 
 482
 483/*
 484 * Called under fc->lock
 485 *
 486 * fc->connected must have been checked previously
 487 */
 488void fuse_request_send_background_locked(struct fuse_conn *fc,
 489					 struct fuse_req *req)
 490{
 491	req->isreply = 1;
 492	fuse_request_send_nowait_locked(fc, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 493}
 494
 495/*
 496 * Lock the request.  Up to the next unlock_request() there mustn't be
 497 * anything that could cause a page-fault.  If the request was already
 498 * aborted bail out.
 499 */
 500static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
 501{
 502	int err = 0;
 503	if (req) {
 504		spin_lock(&fc->lock);
 505		if (req->aborted)
 506			err = -ENOENT;
 507		else
 508			req->locked = 1;
 509		spin_unlock(&fc->lock);
 510	}
 511	return err;
 512}
 513
 514/*
 515 * Unlock request.  If it was aborted during being locked, the
 516 * requester thread is currently waiting for it to be unlocked, so
 517 * wake it up.
 518 */
 519static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
 520{
 
 521	if (req) {
 522		spin_lock(&fc->lock);
 523		req->locked = 0;
 524		if (req->aborted)
 525			wake_up(&req->waitq);
 526		spin_unlock(&fc->lock);
 
 527	}
 
 528}
 529
 530struct fuse_copy_state {
 531	struct fuse_conn *fc;
 532	int write;
 533	struct fuse_req *req;
 534	const struct iovec *iov;
 535	struct pipe_buffer *pipebufs;
 536	struct pipe_buffer *currbuf;
 537	struct pipe_inode_info *pipe;
 538	unsigned long nr_segs;
 539	unsigned long seglen;
 540	unsigned long addr;
 541	struct page *pg;
 542	void *mapaddr;
 543	void *buf;
 544	unsigned len;
 
 545	unsigned move_pages:1;
 546};
 547
 548static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
 549			   int write,
 550			   const struct iovec *iov, unsigned long nr_segs)
 551{
 552	memset(cs, 0, sizeof(*cs));
 553	cs->fc = fc;
 554	cs->write = write;
 555	cs->iov = iov;
 556	cs->nr_segs = nr_segs;
 557}
 558
 559/* Unmap and put previous page of userspace buffer */
 560static void fuse_copy_finish(struct fuse_copy_state *cs)
 561{
 562	if (cs->currbuf) {
 563		struct pipe_buffer *buf = cs->currbuf;
 564
 565		if (!cs->write) {
 566			buf->ops->unmap(cs->pipe, buf, cs->mapaddr);
 567		} else {
 568			kunmap(buf->page);
 569			buf->len = PAGE_SIZE - cs->len;
 570		}
 571		cs->currbuf = NULL;
 572		cs->mapaddr = NULL;
 573	} else if (cs->mapaddr) {
 574		kunmap(cs->pg);
 575		if (cs->write) {
 576			flush_dcache_page(cs->pg);
 577			set_page_dirty_lock(cs->pg);
 578		}
 579		put_page(cs->pg);
 580		cs->mapaddr = NULL;
 581	}
 
 582}
 583
 584/*
 585 * Get another pagefull of userspace buffer, and map it to kernel
 586 * address space, and lock request
 587 */
 588static int fuse_copy_fill(struct fuse_copy_state *cs)
 589{
 590	unsigned long offset;
 591	int err;
 592
 593	unlock_request(cs->fc, cs->req);
 
 
 
 594	fuse_copy_finish(cs);
 595	if (cs->pipebufs) {
 596		struct pipe_buffer *buf = cs->pipebufs;
 597
 598		if (!cs->write) {
 599			err = buf->ops->confirm(cs->pipe, buf);
 600			if (err)
 601				return err;
 602
 603			BUG_ON(!cs->nr_segs);
 604			cs->currbuf = buf;
 605			cs->mapaddr = buf->ops->map(cs->pipe, buf, 0);
 
 606			cs->len = buf->len;
 607			cs->buf = cs->mapaddr + buf->offset;
 608			cs->pipebufs++;
 609			cs->nr_segs--;
 610		} else {
 611			struct page *page;
 612
 613			if (cs->nr_segs == cs->pipe->buffers)
 614				return -EIO;
 615
 616			page = alloc_page(GFP_HIGHUSER);
 617			if (!page)
 618				return -ENOMEM;
 619
 620			buf->page = page;
 621			buf->offset = 0;
 622			buf->len = 0;
 623
 624			cs->currbuf = buf;
 625			cs->mapaddr = kmap(page);
 626			cs->buf = cs->mapaddr;
 627			cs->len = PAGE_SIZE;
 628			cs->pipebufs++;
 629			cs->nr_segs++;
 630		}
 631	} else {
 632		if (!cs->seglen) {
 633			BUG_ON(!cs->nr_segs);
 634			cs->seglen = cs->iov[0].iov_len;
 635			cs->addr = (unsigned long) cs->iov[0].iov_base;
 636			cs->iov++;
 637			cs->nr_segs--;
 638		}
 639		err = get_user_pages_fast(cs->addr, 1, cs->write, &cs->pg);
 640		if (err < 0)
 641			return err;
 642		BUG_ON(err != 1);
 643		offset = cs->addr % PAGE_SIZE;
 644		cs->mapaddr = kmap(cs->pg);
 645		cs->buf = cs->mapaddr + offset;
 646		cs->len = min(PAGE_SIZE - offset, cs->seglen);
 647		cs->seglen -= cs->len;
 648		cs->addr += cs->len;
 649	}
 650
 651	return lock_request(cs->fc, cs->req);
 652}
 653
 654/* Do as much copy to/from userspace buffer as we can */
 655static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
 656{
 657	unsigned ncpy = min(*size, cs->len);
 658	if (val) {
 
 
 
 659		if (cs->write)
 660			memcpy(cs->buf, *val, ncpy);
 661		else
 662			memcpy(*val, cs->buf, ncpy);
 
 
 663		*val += ncpy;
 664	}
 665	*size -= ncpy;
 666	cs->len -= ncpy;
 667	cs->buf += ncpy;
 668	return ncpy;
 669}
 670
 671static int fuse_check_page(struct page *page)
 672{
 673	if (page_mapcount(page) ||
 674	    page->mapping != NULL ||
 675	    page_count(page) != 1 ||
 676	    (page->flags & PAGE_FLAGS_CHECK_AT_PREP &
 677	     ~(1 << PG_locked |
 678	       1 << PG_referenced |
 679	       1 << PG_uptodate |
 680	       1 << PG_lru |
 681	       1 << PG_active |
 682	       1 << PG_reclaim))) {
 683		printk(KERN_WARNING "fuse: trying to steal weird page\n");
 684		printk(KERN_WARNING "  page=%p index=%li flags=%08lx, count=%i, mapcount=%i, mapping=%p\n", page, page->index, page->flags, page_count(page), page_mapcount(page), page->mapping);
 
 
 685		return 1;
 686	}
 687	return 0;
 688}
 689
 
 
 
 
 
 
 690static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
 691{
 692	int err;
 693	struct page *oldpage = *pagep;
 694	struct page *newpage;
 695	struct pipe_buffer *buf = cs->pipebufs;
 696	struct address_space *mapping;
 697	pgoff_t index;
 698
 699	unlock_request(cs->fc, cs->req);
 
 
 
 
 700	fuse_copy_finish(cs);
 701
 702	err = buf->ops->confirm(cs->pipe, buf);
 703	if (err)
 704		return err;
 705
 706	BUG_ON(!cs->nr_segs);
 707	cs->currbuf = buf;
 708	cs->len = buf->len;
 709	cs->pipebufs++;
 710	cs->nr_segs--;
 711
 712	if (cs->len != PAGE_SIZE)
 713		goto out_fallback;
 714
 715	if (buf->ops->steal(cs->pipe, buf) != 0)
 716		goto out_fallback;
 717
 718	newpage = buf->page;
 719
 720	if (WARN_ON(!PageUptodate(newpage)))
 721		return -EIO;
 722
 723	ClearPageMappedToDisk(newpage);
 
 724
 725	if (fuse_check_page(newpage) != 0)
 726		goto out_fallback_unlock;
 727
 728	mapping = oldpage->mapping;
 729	index = oldpage->index;
 730
 731	/*
 732	 * This is a new and locked page, it shouldn't be mapped or
 733	 * have any special flags on it
 734	 */
 735	if (WARN_ON(page_mapped(oldpage)))
 736		goto out_fallback_unlock;
 737	if (WARN_ON(page_has_private(oldpage)))
 738		goto out_fallback_unlock;
 739	if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage)))
 
 740		goto out_fallback_unlock;
 741	if (WARN_ON(PageMlocked(oldpage)))
 742		goto out_fallback_unlock;
 743
 744	err = replace_page_cache_page(oldpage, newpage, GFP_KERNEL);
 745	if (err) {
 746		unlock_page(newpage);
 747		return err;
 748	}
 749
 750	page_cache_get(newpage);
 751
 752	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
 753		lru_cache_add_file(newpage);
 
 
 
 
 
 
 754
 755	err = 0;
 756	spin_lock(&cs->fc->lock);
 757	if (cs->req->aborted)
 758		err = -ENOENT;
 759	else
 760		*pagep = newpage;
 761	spin_unlock(&cs->fc->lock);
 762
 763	if (err) {
 764		unlock_page(newpage);
 765		page_cache_release(newpage);
 766		return err;
 767	}
 768
 769	unlock_page(oldpage);
 770	page_cache_release(oldpage);
 
 771	cs->len = 0;
 772
 773	return 0;
 
 
 
 
 774
 775out_fallback_unlock:
 776	unlock_page(newpage);
 777out_fallback:
 778	cs->mapaddr = buf->ops->map(cs->pipe, buf, 1);
 779	cs->buf = cs->mapaddr + buf->offset;
 780
 781	err = lock_request(cs->fc, cs->req);
 782	if (err)
 783		return err;
 784
 785	return 1;
 786}
 787
 788static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
 789			 unsigned offset, unsigned count)
 790{
 791	struct pipe_buffer *buf;
 
 792
 793	if (cs->nr_segs == cs->pipe->buffers)
 794		return -EIO;
 795
 796	unlock_request(cs->fc, cs->req);
 
 
 
 
 
 
 797	fuse_copy_finish(cs);
 798
 799	buf = cs->pipebufs;
 800	page_cache_get(page);
 801	buf->page = page;
 802	buf->offset = offset;
 803	buf->len = count;
 804
 805	cs->pipebufs++;
 806	cs->nr_segs++;
 807	cs->len = 0;
 808
 809	return 0;
 810}
 811
 812/*
 813 * Copy a page in the request to/from the userspace buffer.  Must be
 814 * done atomically
 815 */
 816static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
 817			  unsigned offset, unsigned count, int zeroing)
 818{
 819	int err;
 820	struct page *page = *pagep;
 821
 822	if (page && zeroing && count < PAGE_SIZE)
 823		clear_highpage(page);
 824
 825	while (count) {
 826		if (cs->write && cs->pipebufs && page) {
 827			return fuse_ref_page(cs, page, offset, count);
 
 
 
 
 
 
 
 
 
 
 828		} else if (!cs->len) {
 829			if (cs->move_pages && page &&
 830			    offset == 0 && count == PAGE_SIZE) {
 831				err = fuse_try_move_page(cs, pagep);
 832				if (err <= 0)
 833					return err;
 834			} else {
 835				err = fuse_copy_fill(cs);
 836				if (err)
 837					return err;
 838			}
 839		}
 840		if (page) {
 841			void *mapaddr = kmap_atomic(page);
 842			void *buf = mapaddr + offset;
 843			offset += fuse_copy_do(cs, &buf, &count);
 844			kunmap_atomic(mapaddr);
 845		} else
 846			offset += fuse_copy_do(cs, NULL, &count);
 847	}
 848	if (page && !cs->write)
 849		flush_dcache_page(page);
 850	return 0;
 851}
 852
 853/* Copy pages in the request to/from userspace buffer */
 854static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
 855			   int zeroing)
 856{
 857	unsigned i;
 858	struct fuse_req *req = cs->req;
 859	unsigned offset = req->page_offset;
 860	unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
 861
 862	for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
 863		int err;
 
 
 
 
 
 864
 865		err = fuse_copy_page(cs, &req->pages[i], offset, count,
 866				     zeroing);
 867		if (err)
 868			return err;
 869
 870		nbytes -= count;
 871		count = min(nbytes, (unsigned) PAGE_SIZE);
 872		offset = 0;
 
 
 
 
 
 
 873	}
 874	return 0;
 875}
 876
 877/* Copy a single argument in the request to/from userspace buffer */
 878static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
 879{
 880	while (size) {
 881		if (!cs->len) {
 882			int err = fuse_copy_fill(cs);
 883			if (err)
 884				return err;
 885		}
 886		fuse_copy_do(cs, &val, &size);
 887	}
 888	return 0;
 889}
 890
 891/* Copy request arguments to/from userspace buffer */
 892static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
 893			  unsigned argpages, struct fuse_arg *args,
 894			  int zeroing)
 895{
 896	int err = 0;
 897	unsigned i;
 898
 899	for (i = 0; !err && i < numargs; i++)  {
 900		struct fuse_arg *arg = &args[i];
 901		if (i == numargs - 1 && argpages)
 902			err = fuse_copy_pages(cs, arg->size, zeroing);
 903		else
 904			err = fuse_copy_one(cs, arg->value, arg->size);
 905	}
 906	return err;
 907}
 908
 909static int forget_pending(struct fuse_conn *fc)
 910{
 911	return fc->forget_list_head.next != NULL;
 912}
 913
 914static int request_pending(struct fuse_conn *fc)
 915{
 916	return !list_empty(&fc->pending) || !list_empty(&fc->interrupts) ||
 917		forget_pending(fc);
 918}
 919
 920/* Wait until a request is available on the pending list */
 921static void request_wait(struct fuse_conn *fc)
 922__releases(fc->lock)
 923__acquires(fc->lock)
 924{
 925	DECLARE_WAITQUEUE(wait, current);
 926
 927	add_wait_queue_exclusive(&fc->waitq, &wait);
 928	while (fc->connected && !request_pending(fc)) {
 929		set_current_state(TASK_INTERRUPTIBLE);
 930		if (signal_pending(current))
 931			break;
 932
 933		spin_unlock(&fc->lock);
 934		schedule();
 935		spin_lock(&fc->lock);
 936	}
 937	set_current_state(TASK_RUNNING);
 938	remove_wait_queue(&fc->waitq, &wait);
 939}
 940
 941/*
 942 * Transfer an interrupt request to userspace
 943 *
 944 * Unlike other requests this is assembled on demand, without a need
 945 * to allocate a separate fuse_req structure.
 946 *
 947 * Called with fc->lock held, releases it
 948 */
 949static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_copy_state *cs,
 
 950			       size_t nbytes, struct fuse_req *req)
 951__releases(fc->lock)
 952{
 953	struct fuse_in_header ih;
 954	struct fuse_interrupt_in arg;
 955	unsigned reqsize = sizeof(ih) + sizeof(arg);
 956	int err;
 957
 958	list_del_init(&req->intr_entry);
 959	req->intr_unique = fuse_get_unique(fc);
 960	memset(&ih, 0, sizeof(ih));
 961	memset(&arg, 0, sizeof(arg));
 962	ih.len = reqsize;
 963	ih.opcode = FUSE_INTERRUPT;
 964	ih.unique = req->intr_unique;
 965	arg.unique = req->in.h.unique;
 966
 967	spin_unlock(&fc->lock);
 968	if (nbytes < reqsize)
 969		return -EINVAL;
 970
 971	err = fuse_copy_one(cs, &ih, sizeof(ih));
 972	if (!err)
 973		err = fuse_copy_one(cs, &arg, sizeof(arg));
 974	fuse_copy_finish(cs);
 975
 976	return err ? err : reqsize;
 977}
 978
 979static struct fuse_forget_link *dequeue_forget(struct fuse_conn *fc,
 980					       unsigned max,
 981					       unsigned *countp)
 982{
 983	struct fuse_forget_link *head = fc->forget_list_head.next;
 984	struct fuse_forget_link **newhead = &head;
 985	unsigned count;
 986
 987	for (count = 0; *newhead != NULL && count < max; count++)
 988		newhead = &(*newhead)->next;
 989
 990	fc->forget_list_head.next = *newhead;
 991	*newhead = NULL;
 992	if (fc->forget_list_head.next == NULL)
 993		fc->forget_list_tail = &fc->forget_list_head;
 994
 995	if (countp != NULL)
 996		*countp = count;
 997
 998	return head;
 999}
1000
1001static int fuse_read_single_forget(struct fuse_conn *fc,
1002				   struct fuse_copy_state *cs,
1003				   size_t nbytes)
1004__releases(fc->lock)
1005{
1006	int err;
1007	struct fuse_forget_link *forget = dequeue_forget(fc, 1, NULL);
1008	struct fuse_forget_in arg = {
1009		.nlookup = forget->forget_one.nlookup,
1010	};
1011	struct fuse_in_header ih = {
1012		.opcode = FUSE_FORGET,
1013		.nodeid = forget->forget_one.nodeid,
1014		.unique = fuse_get_unique(fc),
1015		.len = sizeof(ih) + sizeof(arg),
1016	};
1017
1018	spin_unlock(&fc->lock);
1019	kfree(forget);
1020	if (nbytes < ih.len)
1021		return -EINVAL;
1022
1023	err = fuse_copy_one(cs, &ih, sizeof(ih));
1024	if (!err)
1025		err = fuse_copy_one(cs, &arg, sizeof(arg));
1026	fuse_copy_finish(cs);
1027
1028	if (err)
1029		return err;
1030
1031	return ih.len;
1032}
1033
1034static int fuse_read_batch_forget(struct fuse_conn *fc,
1035				   struct fuse_copy_state *cs, size_t nbytes)
1036__releases(fc->lock)
1037{
1038	int err;
1039	unsigned max_forgets;
1040	unsigned count;
1041	struct fuse_forget_link *head;
1042	struct fuse_batch_forget_in arg = { .count = 0 };
1043	struct fuse_in_header ih = {
1044		.opcode = FUSE_BATCH_FORGET,
1045		.unique = fuse_get_unique(fc),
1046		.len = sizeof(ih) + sizeof(arg),
1047	};
1048
1049	if (nbytes < ih.len) {
1050		spin_unlock(&fc->lock);
1051		return -EINVAL;
1052	}
1053
1054	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1055	head = dequeue_forget(fc, max_forgets, &count);
1056	spin_unlock(&fc->lock);
1057
1058	arg.count = count;
1059	ih.len += count * sizeof(struct fuse_forget_one);
1060	err = fuse_copy_one(cs, &ih, sizeof(ih));
1061	if (!err)
1062		err = fuse_copy_one(cs, &arg, sizeof(arg));
1063
1064	while (head) {
1065		struct fuse_forget_link *forget = head;
1066
1067		if (!err) {
1068			err = fuse_copy_one(cs, &forget->forget_one,
1069					    sizeof(forget->forget_one));
1070		}
1071		head = forget->next;
1072		kfree(forget);
1073	}
1074
1075	fuse_copy_finish(cs);
1076
1077	if (err)
1078		return err;
1079
1080	return ih.len;
1081}
1082
1083static int fuse_read_forget(struct fuse_conn *fc, struct fuse_copy_state *cs,
 
1084			    size_t nbytes)
1085__releases(fc->lock)
1086{
1087	if (fc->minor < 16 || fc->forget_list_head.next->next == NULL)
1088		return fuse_read_single_forget(fc, cs, nbytes);
1089	else
1090		return fuse_read_batch_forget(fc, cs, nbytes);
1091}
1092
1093/*
1094 * Read a single request into the userspace filesystem's buffer.  This
1095 * function waits until a request is available, then removes it from
1096 * the pending list and copies request data to userspace buffer.  If
1097 * no reply is needed (FORGET) or request has been aborted or there
1098 * was an error during the copying then it's finished by calling
1099 * request_end().  Otherwise add it to the processing list, and set
1100 * the 'sent' flag.
1101 */
1102static ssize_t fuse_dev_do_read(struct fuse_conn *fc, struct file *file,
1103				struct fuse_copy_state *cs, size_t nbytes)
1104{
1105	int err;
 
 
 
1106	struct fuse_req *req;
1107	struct fuse_in *in;
1108	unsigned reqsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110 restart:
1111	spin_lock(&fc->lock);
1112	err = -EAGAIN;
1113	if ((file->f_flags & O_NONBLOCK) && fc->connected &&
1114	    !request_pending(fc))
1115		goto err_unlock;
1116
1117	request_wait(fc);
1118	err = -ENODEV;
1119	if (!fc->connected)
1120		goto err_unlock;
1121	err = -ERESTARTSYS;
1122	if (!request_pending(fc))
 
 
 
 
1123		goto err_unlock;
 
1124
1125	if (!list_empty(&fc->interrupts)) {
1126		req = list_entry(fc->interrupts.next, struct fuse_req,
1127				 intr_entry);
1128		return fuse_read_interrupt(fc, cs, nbytes, req);
1129	}
1130
1131	if (forget_pending(fc)) {
1132		if (list_empty(&fc->pending) || fc->forget_batch-- > 0)
1133			return fuse_read_forget(fc, cs, nbytes);
1134
1135		if (fc->forget_batch <= -8)
1136			fc->forget_batch = 16;
1137	}
1138
1139	req = list_entry(fc->pending.next, struct fuse_req, list);
1140	req->state = FUSE_REQ_READING;
1141	list_move(&req->list, &fc->io);
 
 
 
 
1142
1143	in = &req->in;
1144	reqsize = in->h.len;
1145	/* If request is too large, reply with an error and restart the read */
1146	if (nbytes < reqsize) {
1147		req->out.h.error = -EIO;
1148		/* SETXATTR is special, since it may contain too large data */
1149		if (in->h.opcode == FUSE_SETXATTR)
1150			req->out.h.error = -E2BIG;
1151		request_end(fc, req);
1152		goto restart;
1153	}
1154	spin_unlock(&fc->lock);
 
 
 
 
 
 
 
 
 
 
 
1155	cs->req = req;
1156	err = fuse_copy_one(cs, &in->h, sizeof(in->h));
1157	if (!err)
1158		err = fuse_copy_args(cs, in->numargs, in->argpages,
1159				     (struct fuse_arg *) in->args, 0);
1160	fuse_copy_finish(cs);
1161	spin_lock(&fc->lock);
1162	req->locked = 0;
1163	if (req->aborted) {
1164		request_end(fc, req);
1165		return -ENODEV;
1166	}
1167	if (err) {
1168		req->out.h.error = -EIO;
1169		request_end(fc, req);
1170		return err;
1171	}
1172	if (!req->isreply)
1173		request_end(fc, req);
1174	else {
1175		req->state = FUSE_REQ_SENT;
1176		list_move_tail(&req->list, &fc->processing);
1177		if (req->interrupted)
1178			queue_interrupt(fc, req);
1179		spin_unlock(&fc->lock);
1180	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181	return reqsize;
1182
 
 
 
 
 
 
 
1183 err_unlock:
1184	spin_unlock(&fc->lock);
1185	return err;
1186}
1187
1188static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
1189			      unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
1190{
1191	struct fuse_copy_state cs;
1192	struct file *file = iocb->ki_filp;
1193	struct fuse_conn *fc = fuse_get_conn(file);
1194	if (!fc)
 
1195		return -EPERM;
1196
1197	fuse_copy_init(&cs, fc, 1, iov, nr_segs);
 
1198
1199	return fuse_dev_do_read(fc, file, &cs, iov_length(iov, nr_segs));
1200}
1201
1202static int fuse_dev_pipe_buf_steal(struct pipe_inode_info *pipe,
1203				   struct pipe_buffer *buf)
1204{
1205	return 1;
1206}
1207
1208static const struct pipe_buf_operations fuse_dev_pipe_buf_ops = {
1209	.can_merge = 0,
1210	.map = generic_pipe_buf_map,
1211	.unmap = generic_pipe_buf_unmap,
1212	.confirm = generic_pipe_buf_confirm,
1213	.release = generic_pipe_buf_release,
1214	.steal = fuse_dev_pipe_buf_steal,
1215	.get = generic_pipe_buf_get,
1216};
1217
1218static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1219				    struct pipe_inode_info *pipe,
1220				    size_t len, unsigned int flags)
1221{
1222	int ret;
1223	int page_nr = 0;
1224	int do_wakeup = 0;
1225	struct pipe_buffer *bufs;
1226	struct fuse_copy_state cs;
1227	struct fuse_conn *fc = fuse_get_conn(in);
1228	if (!fc)
 
1229		return -EPERM;
1230
1231	bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL);
 
1232	if (!bufs)
1233		return -ENOMEM;
1234
1235	fuse_copy_init(&cs, fc, 1, NULL, 0);
1236	cs.pipebufs = bufs;
1237	cs.pipe = pipe;
1238	ret = fuse_dev_do_read(fc, in, &cs, len);
1239	if (ret < 0)
1240		goto out;
1241
1242	ret = 0;
1243	pipe_lock(pipe);
1244
1245	if (!pipe->readers) {
1246		send_sig(SIGPIPE, current, 0);
1247		if (!ret)
1248			ret = -EPIPE;
1249		goto out_unlock;
1250	}
1251
1252	if (pipe->nrbufs + cs.nr_segs > pipe->buffers) {
1253		ret = -EIO;
1254		goto out_unlock;
1255	}
1256
1257	while (page_nr < cs.nr_segs) {
1258		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1259		struct pipe_buffer *buf = pipe->bufs + newbuf;
1260
1261		buf->page = bufs[page_nr].page;
1262		buf->offset = bufs[page_nr].offset;
1263		buf->len = bufs[page_nr].len;
1264		buf->ops = &fuse_dev_pipe_buf_ops;
1265
1266		pipe->nrbufs++;
1267		page_nr++;
1268		ret += buf->len;
1269
1270		if (pipe->inode)
1271			do_wakeup = 1;
1272	}
1273
1274out_unlock:
1275	pipe_unlock(pipe);
1276
1277	if (do_wakeup) {
1278		smp_mb();
1279		if (waitqueue_active(&pipe->wait))
1280			wake_up_interruptible(&pipe->wait);
1281		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 
 
1282	}
1283
 
1284out:
1285	for (; page_nr < cs.nr_segs; page_nr++)
1286		page_cache_release(bufs[page_nr].page);
1287
1288	kfree(bufs);
1289	return ret;
1290}
1291
1292static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1293			    struct fuse_copy_state *cs)
1294{
1295	struct fuse_notify_poll_wakeup_out outarg;
1296	int err = -EINVAL;
1297
1298	if (size != sizeof(outarg))
1299		goto err;
1300
1301	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1302	if (err)
1303		goto err;
1304
1305	fuse_copy_finish(cs);
1306	return fuse_notify_poll_wakeup(fc, &outarg);
1307
1308err:
1309	fuse_copy_finish(cs);
1310	return err;
1311}
1312
1313static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1314				   struct fuse_copy_state *cs)
1315{
1316	struct fuse_notify_inval_inode_out outarg;
1317	int err = -EINVAL;
1318
1319	if (size != sizeof(outarg))
1320		goto err;
1321
1322	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1323	if (err)
1324		goto err;
1325	fuse_copy_finish(cs);
1326
1327	down_read(&fc->killsb);
1328	err = -ENOENT;
1329	if (fc->sb) {
1330		err = fuse_reverse_inval_inode(fc->sb, outarg.ino,
1331					       outarg.off, outarg.len);
1332	}
1333	up_read(&fc->killsb);
1334	return err;
1335
1336err:
1337	fuse_copy_finish(cs);
1338	return err;
1339}
1340
1341static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1342				   struct fuse_copy_state *cs)
1343{
1344	struct fuse_notify_inval_entry_out outarg;
1345	int err = -ENOMEM;
1346	char *buf;
1347	struct qstr name;
1348
1349	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1350	if (!buf)
1351		goto err;
1352
1353	err = -EINVAL;
1354	if (size < sizeof(outarg))
1355		goto err;
1356
1357	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1358	if (err)
1359		goto err;
1360
1361	err = -ENAMETOOLONG;
1362	if (outarg.namelen > FUSE_NAME_MAX)
1363		goto err;
1364
1365	err = -EINVAL;
1366	if (size != sizeof(outarg) + outarg.namelen + 1)
1367		goto err;
1368
1369	name.name = buf;
1370	name.len = outarg.namelen;
1371	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1372	if (err)
1373		goto err;
1374	fuse_copy_finish(cs);
1375	buf[outarg.namelen] = 0;
1376	name.hash = full_name_hash(name.name, name.len);
1377
1378	down_read(&fc->killsb);
1379	err = -ENOENT;
1380	if (fc->sb)
1381		err = fuse_reverse_inval_entry(fc->sb, outarg.parent, 0, &name);
1382	up_read(&fc->killsb);
1383	kfree(buf);
1384	return err;
1385
1386err:
1387	kfree(buf);
1388	fuse_copy_finish(cs);
1389	return err;
1390}
1391
1392static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1393			      struct fuse_copy_state *cs)
1394{
1395	struct fuse_notify_delete_out outarg;
1396	int err = -ENOMEM;
1397	char *buf;
1398	struct qstr name;
1399
1400	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1401	if (!buf)
1402		goto err;
1403
1404	err = -EINVAL;
1405	if (size < sizeof(outarg))
1406		goto err;
1407
1408	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1409	if (err)
1410		goto err;
1411
1412	err = -ENAMETOOLONG;
1413	if (outarg.namelen > FUSE_NAME_MAX)
1414		goto err;
1415
1416	err = -EINVAL;
1417	if (size != sizeof(outarg) + outarg.namelen + 1)
1418		goto err;
1419
1420	name.name = buf;
1421	name.len = outarg.namelen;
1422	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1423	if (err)
1424		goto err;
1425	fuse_copy_finish(cs);
1426	buf[outarg.namelen] = 0;
1427	name.hash = full_name_hash(name.name, name.len);
1428
1429	down_read(&fc->killsb);
1430	err = -ENOENT;
1431	if (fc->sb)
1432		err = fuse_reverse_inval_entry(fc->sb, outarg.parent,
1433					       outarg.child, &name);
1434	up_read(&fc->killsb);
1435	kfree(buf);
1436	return err;
1437
1438err:
1439	kfree(buf);
1440	fuse_copy_finish(cs);
1441	return err;
1442}
1443
1444static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1445			     struct fuse_copy_state *cs)
1446{
1447	struct fuse_notify_store_out outarg;
1448	struct inode *inode;
1449	struct address_space *mapping;
1450	u64 nodeid;
1451	int err;
1452	pgoff_t index;
1453	unsigned int offset;
1454	unsigned int num;
1455	loff_t file_size;
1456	loff_t end;
1457
1458	err = -EINVAL;
1459	if (size < sizeof(outarg))
1460		goto out_finish;
1461
1462	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1463	if (err)
1464		goto out_finish;
1465
1466	err = -EINVAL;
1467	if (size - sizeof(outarg) != outarg.size)
1468		goto out_finish;
1469
1470	nodeid = outarg.nodeid;
1471
1472	down_read(&fc->killsb);
1473
1474	err = -ENOENT;
1475	if (!fc->sb)
1476		goto out_up_killsb;
1477
1478	inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1479	if (!inode)
1480		goto out_up_killsb;
1481
1482	mapping = inode->i_mapping;
1483	index = outarg.offset >> PAGE_CACHE_SHIFT;
1484	offset = outarg.offset & ~PAGE_CACHE_MASK;
1485	file_size = i_size_read(inode);
1486	end = outarg.offset + outarg.size;
1487	if (end > file_size) {
1488		file_size = end;
1489		fuse_write_update_size(inode, file_size);
1490	}
1491
1492	num = outarg.size;
1493	while (num) {
 
1494		struct page *page;
1495		unsigned int this_num;
1496
1497		err = -ENOMEM;
1498		page = find_or_create_page(mapping, index,
1499					   mapping_gfp_mask(mapping));
1500		if (!page)
1501			goto out_iput;
1502
1503		this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset);
 
1504		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1505		if (!err && offset == 0 && (num != 0 || file_size == end))
1506			SetPageUptodate(page);
1507		unlock_page(page);
1508		page_cache_release(page);
 
 
 
1509
1510		if (err)
1511			goto out_iput;
1512
1513		num -= this_num;
1514		offset = 0;
1515		index++;
1516	}
1517
1518	err = 0;
1519
1520out_iput:
1521	iput(inode);
1522out_up_killsb:
1523	up_read(&fc->killsb);
1524out_finish:
1525	fuse_copy_finish(cs);
1526	return err;
1527}
1528
1529static void fuse_retrieve_end(struct fuse_conn *fc, struct fuse_req *req)
 
 
 
 
 
 
1530{
1531	release_pages(req->pages, req->num_pages, 0);
 
 
 
 
1532}
1533
1534static int fuse_retrieve(struct fuse_conn *fc, struct inode *inode,
1535			 struct fuse_notify_retrieve_out *outarg)
1536{
1537	int err;
1538	struct address_space *mapping = inode->i_mapping;
1539	struct fuse_req *req;
1540	pgoff_t index;
1541	loff_t file_size;
1542	unsigned int num;
1543	unsigned int offset;
1544	size_t total_len = 0;
 
 
 
 
 
 
1545
1546	req = fuse_get_req(fc);
1547	if (IS_ERR(req))
1548		return PTR_ERR(req);
1549
1550	offset = outarg->offset & ~PAGE_CACHE_MASK;
1551
1552	req->in.h.opcode = FUSE_NOTIFY_REPLY;
1553	req->in.h.nodeid = outarg->nodeid;
1554	req->in.numargs = 2;
1555	req->in.argpages = 1;
1556	req->page_offset = offset;
1557	req->end = fuse_retrieve_end;
1558
1559	index = outarg->offset >> PAGE_CACHE_SHIFT;
1560	file_size = i_size_read(inode);
1561	num = outarg->size;
 
1562	if (outarg->offset > file_size)
1563		num = 0;
1564	else if (outarg->offset + num > file_size)
1565		num = file_size - outarg->offset;
1566
1567	while (num && req->num_pages < FUSE_MAX_PAGES_PER_REQ) {
1568		struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569		unsigned int this_num;
1570
1571		page = find_get_page(mapping, index);
1572		if (!page)
1573			break;
1574
1575		this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset);
1576		req->pages[req->num_pages] = page;
1577		req->num_pages++;
 
 
 
1578
1579		offset = 0;
1580		num -= this_num;
1581		total_len += this_num;
1582		index++;
1583	}
1584	req->misc.retrieve_in.offset = outarg->offset;
1585	req->misc.retrieve_in.size = total_len;
1586	req->in.args[0].size = sizeof(req->misc.retrieve_in);
1587	req->in.args[0].value = &req->misc.retrieve_in;
1588	req->in.args[1].size = total_len;
1589
1590	err = fuse_request_send_notify_reply(fc, req, outarg->notify_unique);
1591	if (err)
1592		fuse_retrieve_end(fc, req);
1593
1594	return err;
1595}
1596
1597static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1598				struct fuse_copy_state *cs)
1599{
1600	struct fuse_notify_retrieve_out outarg;
 
1601	struct inode *inode;
 
1602	int err;
1603
1604	err = -EINVAL;
1605	if (size != sizeof(outarg))
1606		goto copy_finish;
1607
1608	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1609	if (err)
1610		goto copy_finish;
1611
1612	fuse_copy_finish(cs);
1613
1614	down_read(&fc->killsb);
1615	err = -ENOENT;
1616	if (fc->sb) {
1617		u64 nodeid = outarg.nodeid;
1618
1619		inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1620		if (inode) {
1621			err = fuse_retrieve(fc, inode, &outarg);
1622			iput(inode);
1623		}
1624	}
1625	up_read(&fc->killsb);
1626
1627	return err;
1628
1629copy_finish:
1630	fuse_copy_finish(cs);
1631	return err;
1632}
1633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1635		       unsigned int size, struct fuse_copy_state *cs)
1636{
 
 
 
1637	switch (code) {
1638	case FUSE_NOTIFY_POLL:
1639		return fuse_notify_poll(fc, size, cs);
1640
1641	case FUSE_NOTIFY_INVAL_INODE:
1642		return fuse_notify_inval_inode(fc, size, cs);
1643
1644	case FUSE_NOTIFY_INVAL_ENTRY:
1645		return fuse_notify_inval_entry(fc, size, cs);
1646
1647	case FUSE_NOTIFY_STORE:
1648		return fuse_notify_store(fc, size, cs);
1649
1650	case FUSE_NOTIFY_RETRIEVE:
1651		return fuse_notify_retrieve(fc, size, cs);
1652
1653	case FUSE_NOTIFY_DELETE:
1654		return fuse_notify_delete(fc, size, cs);
1655
 
 
 
1656	default:
1657		fuse_copy_finish(cs);
1658		return -EINVAL;
1659	}
1660}
1661
1662/* Look up request on processing list by unique ID */
1663static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
1664{
1665	struct list_head *entry;
 
1666
1667	list_for_each(entry, &fc->processing) {
1668		struct fuse_req *req;
1669		req = list_entry(entry, struct fuse_req, list);
1670		if (req->in.h.unique == unique || req->intr_unique == unique)
1671			return req;
1672	}
1673	return NULL;
1674}
1675
1676static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
1677			 unsigned nbytes)
1678{
1679	unsigned reqsize = sizeof(struct fuse_out_header);
1680
1681	if (out->h.error)
1682		return nbytes != reqsize ? -EINVAL : 0;
1683
1684	reqsize += len_args(out->numargs, out->args);
1685
1686	if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
1687		return -EINVAL;
1688	else if (reqsize > nbytes) {
1689		struct fuse_arg *lastarg = &out->args[out->numargs-1];
1690		unsigned diffsize = reqsize - nbytes;
 
1691		if (diffsize > lastarg->size)
1692			return -EINVAL;
1693		lastarg->size -= diffsize;
1694	}
1695	return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
1696			      out->page_zeroing);
1697}
1698
1699/*
1700 * Write a single reply to a request.  First the header is copied from
1701 * the write buffer.  The request is then searched on the processing
1702 * list by the unique ID found in the header.  If found, then remove
1703 * it from the list and copy the rest of the buffer to the request.
1704 * The request is finished by calling request_end()
1705 */
1706static ssize_t fuse_dev_do_write(struct fuse_conn *fc,
1707				 struct fuse_copy_state *cs, size_t nbytes)
1708{
1709	int err;
 
 
1710	struct fuse_req *req;
1711	struct fuse_out_header oh;
1712
 
1713	if (nbytes < sizeof(struct fuse_out_header))
1714		return -EINVAL;
1715
1716	err = fuse_copy_one(cs, &oh, sizeof(oh));
1717	if (err)
1718		goto err_finish;
1719
1720	err = -EINVAL;
1721	if (oh.len != nbytes)
1722		goto err_finish;
1723
1724	/*
1725	 * Zero oh.unique indicates unsolicited notification message
1726	 * and error contains notification code.
1727	 */
1728	if (!oh.unique) {
1729		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1730		return err ? err : nbytes;
1731	}
1732
1733	err = -EINVAL;
1734	if (oh.error <= -1000 || oh.error > 0)
1735		goto err_finish;
 
 
 
 
 
1736
1737	spin_lock(&fc->lock);
1738	err = -ENOENT;
1739	if (!fc->connected)
1740		goto err_unlock;
 
 
1741
1742	req = request_find(fc, oh.unique);
1743	if (!req)
1744		goto err_unlock;
 
1745
1746	if (req->aborted) {
1747		spin_unlock(&fc->lock);
1748		fuse_copy_finish(cs);
1749		spin_lock(&fc->lock);
1750		request_end(fc, req);
1751		return -ENOENT;
1752	}
1753	/* Is it an interrupt reply? */
1754	if (req->intr_unique == oh.unique) {
1755		err = -EINVAL;
1756		if (nbytes != sizeof(struct fuse_out_header))
1757			goto err_unlock;
1758
1759		if (oh.error == -ENOSYS)
1760			fc->no_interrupt = 1;
1761		else if (oh.error == -EAGAIN)
1762			queue_interrupt(fc, req);
1763
1764		spin_unlock(&fc->lock);
1765		fuse_copy_finish(cs);
1766		return nbytes;
1767	}
1768
1769	req->state = FUSE_REQ_WRITING;
1770	list_move(&req->list, &fc->io);
1771	req->out.h = oh;
1772	req->locked = 1;
 
1773	cs->req = req;
1774	if (!req->out.page_replace)
1775		cs->move_pages = 0;
1776	spin_unlock(&fc->lock);
1777
1778	err = copy_out_args(cs, &req->out, nbytes);
 
 
 
1779	fuse_copy_finish(cs);
1780
1781	spin_lock(&fc->lock);
1782	req->locked = 0;
1783	if (!err) {
1784		if (req->aborted)
1785			err = -ENOENT;
1786	} else if (!req->aborted)
1787		req->out.h.error = -EIO;
1788	request_end(fc, req);
 
 
1789
 
 
1790	return err ? err : nbytes;
1791
1792 err_unlock:
1793	spin_unlock(&fc->lock);
1794 err_finish:
1795	fuse_copy_finish(cs);
1796	return err;
1797}
1798
1799static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
1800			      unsigned long nr_segs, loff_t pos)
1801{
1802	struct fuse_copy_state cs;
1803	struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
1804	if (!fc)
 
1805		return -EPERM;
1806
1807	fuse_copy_init(&cs, fc, 0, iov, nr_segs);
 
 
 
1808
1809	return fuse_dev_do_write(fc, &cs, iov_length(iov, nr_segs));
1810}
1811
1812static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1813				     struct file *out, loff_t *ppos,
1814				     size_t len, unsigned int flags)
1815{
 
1816	unsigned nbuf;
1817	unsigned idx;
1818	struct pipe_buffer *bufs;
1819	struct fuse_copy_state cs;
1820	struct fuse_conn *fc;
1821	size_t rem;
1822	ssize_t ret;
1823
1824	fc = fuse_get_conn(out);
1825	if (!fc)
1826		return -EPERM;
1827
1828	bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL);
1829	if (!bufs)
 
 
 
 
 
 
 
 
1830		return -ENOMEM;
 
1831
1832	pipe_lock(pipe);
1833	nbuf = 0;
1834	rem = 0;
1835	for (idx = 0; idx < pipe->nrbufs && rem < len; idx++)
1836		rem += pipe->bufs[(pipe->curbuf + idx) & (pipe->buffers - 1)].len;
1837
1838	ret = -EINVAL;
1839	if (rem < len) {
1840		pipe_unlock(pipe);
1841		goto out;
1842	}
1843
1844	rem = len;
1845	while (rem) {
1846		struct pipe_buffer *ibuf;
1847		struct pipe_buffer *obuf;
1848
1849		BUG_ON(nbuf >= pipe->buffers);
1850		BUG_ON(!pipe->nrbufs);
1851		ibuf = &pipe->bufs[pipe->curbuf];
 
1852		obuf = &bufs[nbuf];
1853
1854		if (rem >= ibuf->len) {
1855			*obuf = *ibuf;
1856			ibuf->ops = NULL;
1857			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1858			pipe->nrbufs--;
1859		} else {
1860			ibuf->ops->get(pipe, ibuf);
 
 
1861			*obuf = *ibuf;
1862			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1863			obuf->len = rem;
1864			ibuf->offset += obuf->len;
1865			ibuf->len -= obuf->len;
1866		}
1867		nbuf++;
1868		rem -= obuf->len;
1869	}
1870	pipe_unlock(pipe);
1871
1872	fuse_copy_init(&cs, fc, 0, NULL, nbuf);
1873	cs.pipebufs = bufs;
 
1874	cs.pipe = pipe;
1875
1876	if (flags & SPLICE_F_MOVE)
1877		cs.move_pages = 1;
1878
1879	ret = fuse_dev_do_write(fc, &cs, len);
1880
 
 
1881	for (idx = 0; idx < nbuf; idx++) {
1882		struct pipe_buffer *buf = &bufs[idx];
1883		buf->ops->release(pipe, buf);
 
 
1884	}
1885out:
1886	kfree(bufs);
 
1887	return ret;
1888}
1889
1890static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1891{
1892	unsigned mask = POLLOUT | POLLWRNORM;
1893	struct fuse_conn *fc = fuse_get_conn(file);
1894	if (!fc)
1895		return POLLERR;
1896
1897	poll_wait(file, &fc->waitq, wait);
1898
1899	spin_lock(&fc->lock);
1900	if (!fc->connected)
1901		mask = POLLERR;
1902	else if (request_pending(fc))
1903		mask |= POLLIN | POLLRDNORM;
1904	spin_unlock(&fc->lock);
 
 
 
1905
1906	return mask;
1907}
1908
1909/*
1910 * Abort all requests on the given list (pending or processing)
1911 *
1912 * This function releases and reacquires fc->lock
1913 */
1914static void end_requests(struct fuse_conn *fc, struct list_head *head)
1915__releases(fc->lock)
1916__acquires(fc->lock)
1917{
1918	while (!list_empty(head)) {
1919		struct fuse_req *req;
1920		req = list_entry(head->next, struct fuse_req, list);
1921		req->out.h.error = -ECONNABORTED;
1922		request_end(fc, req);
1923		spin_lock(&fc->lock);
1924	}
1925}
1926
1927/*
1928 * Abort requests under I/O
1929 *
1930 * The requests are set to aborted and finished, and the request
1931 * waiter is woken up.  This will make request_wait_answer() wait
1932 * until the request is unlocked and then return.
1933 *
1934 * If the request is asynchronous, then the end function needs to be
1935 * called after waiting for the request to be unlocked (if it was
1936 * locked).
1937 */
1938static void end_io_requests(struct fuse_conn *fc)
1939__releases(fc->lock)
1940__acquires(fc->lock)
1941{
1942	while (!list_empty(&fc->io)) {
1943		struct fuse_req *req =
1944			list_entry(fc->io.next, struct fuse_req, list);
1945		void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1946
1947		req->aborted = 1;
1948		req->out.h.error = -ECONNABORTED;
1949		req->state = FUSE_REQ_FINISHED;
1950		list_del_init(&req->list);
1951		wake_up(&req->waitq);
1952		if (end) {
1953			req->end = NULL;
1954			__fuse_get_request(req);
1955			spin_unlock(&fc->lock);
1956			wait_event(req->waitq, !req->locked);
1957			end(fc, req);
1958			fuse_put_request(fc, req);
1959			spin_lock(&fc->lock);
1960		}
1961	}
1962}
1963
1964static void end_queued_requests(struct fuse_conn *fc)
1965__releases(fc->lock)
1966__acquires(fc->lock)
1967{
1968	fc->max_background = UINT_MAX;
1969	flush_bg_queue(fc);
1970	end_requests(fc, &fc->pending);
1971	end_requests(fc, &fc->processing);
1972	while (forget_pending(fc))
1973		kfree(dequeue_forget(fc, 1, NULL));
1974}
1975
1976static void end_polls(struct fuse_conn *fc)
1977{
1978	struct rb_node *p;
1979
1980	p = rb_first(&fc->polled_files);
1981
1982	while (p) {
1983		struct fuse_file *ff;
1984		ff = rb_entry(p, struct fuse_file, polled_node);
1985		wake_up_interruptible_all(&ff->poll_wait);
1986
1987		p = rb_next(p);
1988	}
1989}
1990
1991/*
1992 * Abort all requests.
1993 *
1994 * Emergency exit in case of a malicious or accidental deadlock, or
1995 * just a hung filesystem.
1996 *
1997 * The same effect is usually achievable through killing the
1998 * filesystem daemon and all users of the filesystem.  The exception
1999 * is the combination of an asynchronous request and the tricky
2000 * deadlock (see Documentation/filesystems/fuse.txt).
2001 *
2002 * During the aborting, progression of requests from the pending and
2003 * processing lists onto the io list, and progression of new requests
2004 * onto the pending list is prevented by req->connected being false.
2005 *
2006 * Progression of requests under I/O to the processing list is
2007 * prevented by the req->aborted flag being true for these requests.
2008 * For this reason requests on the io list must be aborted first.
2009 */
2010void fuse_abort_conn(struct fuse_conn *fc)
2011{
 
 
2012	spin_lock(&fc->lock);
2013	if (fc->connected) {
 
 
 
 
 
 
 
2014		fc->connected = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015		fc->blocked = 0;
2016		end_io_requests(fc);
2017		end_queued_requests(fc);
 
 
 
 
 
 
 
 
 
 
 
 
2018		end_polls(fc);
2019		wake_up_all(&fc->waitq);
2020		wake_up_all(&fc->blocked_waitq);
2021		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
 
 
 
 
2022	}
2023	spin_unlock(&fc->lock);
2024}
2025EXPORT_SYMBOL_GPL(fuse_abort_conn);
2026
 
 
 
 
 
 
 
2027int fuse_dev_release(struct inode *inode, struct file *file)
2028{
2029	struct fuse_conn *fc = fuse_get_conn(file);
2030	if (fc) {
2031		spin_lock(&fc->lock);
2032		fc->connected = 0;
2033		fc->blocked = 0;
2034		end_queued_requests(fc);
2035		end_polls(fc);
2036		wake_up_all(&fc->blocked_waitq);
2037		spin_unlock(&fc->lock);
2038		fuse_conn_put(fc);
2039	}
2040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041	return 0;
2042}
2043EXPORT_SYMBOL_GPL(fuse_dev_release);
2044
2045static int fuse_dev_fasync(int fd, struct file *file, int on)
2046{
2047	struct fuse_conn *fc = fuse_get_conn(file);
2048	if (!fc)
 
2049		return -EPERM;
2050
2051	/* No locking - fasync_helper does its own locking */
2052	return fasync_helper(fd, file, on, &fc->fasync);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053}
2054
2055const struct file_operations fuse_dev_operations = {
2056	.owner		= THIS_MODULE,
2057	.llseek		= no_llseek,
2058	.read		= do_sync_read,
2059	.aio_read	= fuse_dev_read,
2060	.splice_read	= fuse_dev_splice_read,
2061	.write		= do_sync_write,
2062	.aio_write	= fuse_dev_write,
2063	.splice_write	= fuse_dev_splice_write,
2064	.poll		= fuse_dev_poll,
2065	.release	= fuse_dev_release,
2066	.fasync		= fuse_dev_fasync,
 
 
2067};
2068EXPORT_SYMBOL_GPL(fuse_dev_operations);
2069
2070static struct miscdevice fuse_miscdevice = {
2071	.minor = FUSE_MINOR,
2072	.name  = "fuse",
2073	.fops = &fuse_dev_operations,
2074};
2075
2076int __init fuse_dev_init(void)
2077{
2078	int err = -ENOMEM;
2079	fuse_req_cachep = kmem_cache_create("fuse_request",
2080					    sizeof(struct fuse_req),
2081					    0, 0, NULL);
2082	if (!fuse_req_cachep)
2083		goto out;
2084
2085	err = misc_register(&fuse_miscdevice);
2086	if (err)
2087		goto out_cache_clean;
2088
2089	return 0;
2090
2091 out_cache_clean:
2092	kmem_cache_destroy(fuse_req_cachep);
2093 out:
2094	return err;
2095}
2096
2097void fuse_dev_cleanup(void)
2098{
2099	misc_deregister(&fuse_miscdevice);
2100	kmem_cache_destroy(fuse_req_cachep);
2101}
v6.13.7
   1/*
   2  FUSE: Filesystem in Userspace
   3  Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
   4
   5  This program can be distributed under the terms of the GNU GPL.
   6  See the file COPYING.
   7*/
   8
   9#include "fuse_i.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/poll.h>
  14#include <linux/sched/signal.h>
  15#include <linux/uio.h>
  16#include <linux/miscdevice.h>
  17#include <linux/pagemap.h>
  18#include <linux/file.h>
  19#include <linux/slab.h>
  20#include <linux/pipe_fs_i.h>
  21#include <linux/swap.h>
  22#include <linux/splice.h>
  23#include <linux/sched.h>
  24
  25#define CREATE_TRACE_POINTS
  26#include "fuse_trace.h"
  27
  28MODULE_ALIAS_MISCDEV(FUSE_MINOR);
  29MODULE_ALIAS("devname:fuse");
  30
  31/* Ordinary requests have even IDs, while interrupts IDs are odd */
  32#define FUSE_INT_REQ_BIT (1ULL << 0)
  33#define FUSE_REQ_ID_STEP (1ULL << 1)
  34
  35static struct kmem_cache *fuse_req_cachep;
  36
  37static void end_requests(struct list_head *head);
  38
  39static struct fuse_dev *fuse_get_dev(struct file *file)
  40{
  41	/*
  42	 * Lockless access is OK, because file->private data is set
  43	 * once during mount and is valid until the file is released.
  44	 */
  45	return READ_ONCE(file->private_data);
  46}
  47
  48static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req)
  49{
 
  50	INIT_LIST_HEAD(&req->list);
  51	INIT_LIST_HEAD(&req->intr_entry);
  52	init_waitqueue_head(&req->waitq);
  53	refcount_set(&req->count, 1);
  54	__set_bit(FR_PENDING, &req->flags);
  55	req->fm = fm;
  56}
  57
  58static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags)
  59{
  60	struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags);
  61	if (req)
  62		fuse_request_init(fm, req);
 
 
 
  63
 
 
 
 
 
  64	return req;
  65}
  66
  67static void fuse_request_free(struct fuse_req *req)
  68{
  69	kmem_cache_free(fuse_req_cachep, req);
  70}
  71
  72static void __fuse_get_request(struct fuse_req *req)
  73{
  74	refcount_inc(&req->count);
 
 
 
  75}
  76
  77/* Must be called with > 1 refcount */
  78static void __fuse_put_request(struct fuse_req *req)
  79{
  80	refcount_dec(&req->count);
  81}
  82
  83void fuse_set_initialized(struct fuse_conn *fc)
  84{
  85	/* Make sure stores before this are seen on another CPU */
  86	smp_wmb();
  87	fc->initialized = 1;
  88}
  89
  90static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background)
 
  91{
  92	return !fc->initialized || (for_background && fc->blocked);
 
  93}
  94
  95static void fuse_drop_waiting(struct fuse_conn *fc)
  96{
  97	/*
  98	 * lockess check of fc->connected is okay, because atomic_dec_and_test()
  99	 * provides a memory barrier matched with the one in fuse_wait_aborted()
 100	 * to ensure no wake-up is missed.
 101	 */
 102	if (atomic_dec_and_test(&fc->num_waiting) &&
 103	    !READ_ONCE(fc->connected)) {
 104		/* wake up aborters */
 105		wake_up_all(&fc->blocked_waitq);
 106	}
 107}
 108
 109static void fuse_put_request(struct fuse_req *req);
 110
 111static struct fuse_req *fuse_get_req(struct mnt_idmap *idmap,
 112				     struct fuse_mount *fm,
 113				     bool for_background)
 114{
 115	struct fuse_conn *fc = fm->fc;
 116	struct fuse_req *req;
 117	bool no_idmap = !fm->sb || (fm->sb->s_iflags & SB_I_NOIDMAP);
 118	kuid_t fsuid;
 119	kgid_t fsgid;
 120	int err;
 121
 122	atomic_inc(&fc->num_waiting);
 123
 124	if (fuse_block_alloc(fc, for_background)) {
 125		err = -EINTR;
 126		if (wait_event_killable_exclusive(fc->blocked_waitq,
 127				!fuse_block_alloc(fc, for_background)))
 128			goto out;
 129	}
 130	/* Matches smp_wmb() in fuse_set_initialized() */
 131	smp_rmb();
 132
 133	err = -ENOTCONN;
 134	if (!fc->connected)
 135		goto out;
 136
 137	err = -ECONNREFUSED;
 138	if (fc->conn_error)
 139		goto out;
 140
 141	req = fuse_request_alloc(fm, GFP_KERNEL);
 142	err = -ENOMEM;
 143	if (!req) {
 144		if (for_background)
 145			wake_up(&fc->blocked_waitq);
 146		goto out;
 147	}
 148
 149	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
 150
 151	__set_bit(FR_WAITING, &req->flags);
 152	if (for_background)
 153		__set_bit(FR_BACKGROUND, &req->flags);
 154
 155	/*
 156	 * Keep the old behavior when idmappings support was not
 157	 * declared by a FUSE server.
 158	 *
 159	 * For those FUSE servers who support idmapped mounts,
 160	 * we send UID/GID only along with "inode creation"
 161	 * fuse requests, otherwise idmap == &invalid_mnt_idmap and
 162	 * req->in.h.{u,g}id will be equal to FUSE_INVALID_UIDGID.
 163	 */
 164	fsuid = no_idmap ? current_fsuid() : mapped_fsuid(idmap, fc->user_ns);
 165	fsgid = no_idmap ? current_fsgid() : mapped_fsgid(idmap, fc->user_ns);
 166	req->in.h.uid = from_kuid(fc->user_ns, fsuid);
 167	req->in.h.gid = from_kgid(fc->user_ns, fsgid);
 168
 169	if (no_idmap && unlikely(req->in.h.uid == ((uid_t)-1) ||
 170				 req->in.h.gid == ((gid_t)-1))) {
 171		fuse_put_request(req);
 172		return ERR_PTR(-EOVERFLOW);
 173	}
 174
 
 
 175	return req;
 176
 177 out:
 178	fuse_drop_waiting(fc);
 179	return ERR_PTR(err);
 180}
 
 181
 182static void fuse_put_request(struct fuse_req *req)
 
 
 
 
 
 
 183{
 184	struct fuse_conn *fc = req->fm->fc;
 
 185
 186	if (refcount_dec_and_test(&req->count)) {
 187		if (test_bit(FR_BACKGROUND, &req->flags)) {
 188			/*
 189			 * We get here in the unlikely case that a background
 190			 * request was allocated but not sent
 191			 */
 192			spin_lock(&fc->bg_lock);
 193			if (!fc->blocked)
 194				wake_up(&fc->blocked_waitq);
 195			spin_unlock(&fc->bg_lock);
 196		}
 
 
 197
 198		if (test_bit(FR_WAITING, &req->flags)) {
 199			__clear_bit(FR_WAITING, &req->flags);
 200			fuse_drop_waiting(fc);
 201		}
 202
 203		fuse_request_free(req);
 204	}
 205}
 206
 207unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args)
 
 
 
 208{
 209	unsigned nbytes = 0;
 210	unsigned i;
 211
 212	for (i = 0; i < numargs; i++)
 213		nbytes += args[i].size;
 214
 215	return nbytes;
 
 
 
 216}
 217EXPORT_SYMBOL_GPL(fuse_len_args);
 218
 219static u64 fuse_get_unique_locked(struct fuse_iqueue *fiq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 220{
 221	fiq->reqctr += FUSE_REQ_ID_STEP;
 222	return fiq->reqctr;
 
 
 
 
 
 
 
 
 
 223}
 224
 225u64 fuse_get_unique(struct fuse_iqueue *fiq)
 226{
 227	u64 ret;
 
 
 228
 229	spin_lock(&fiq->lock);
 230	ret = fuse_get_unique_locked(fiq);
 231	spin_unlock(&fiq->lock);
 232
 233	return ret;
 234}
 235EXPORT_SYMBOL_GPL(fuse_get_unique);
 236
 237static unsigned int fuse_req_hash(u64 unique)
 238{
 239	return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS);
 240}
 241
 242/*
 243 * A new request is available, wake fiq->waitq
 244 */
 245static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq)
 246__releases(fiq->lock)
 247{
 248	wake_up(&fiq->waitq);
 249	kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
 250	spin_unlock(&fiq->lock);
 251}
 252
 253static void fuse_dev_queue_forget(struct fuse_iqueue *fiq, struct fuse_forget_link *forget)
 254{
 255	spin_lock(&fiq->lock);
 256	if (fiq->connected) {
 257		fiq->forget_list_tail->next = forget;
 258		fiq->forget_list_tail = forget;
 259		fuse_dev_wake_and_unlock(fiq);
 260	} else {
 261		kfree(forget);
 262		spin_unlock(&fiq->lock);
 263	}
 264}
 265
 266static void fuse_dev_queue_interrupt(struct fuse_iqueue *fiq, struct fuse_req *req)
 267{
 268	spin_lock(&fiq->lock);
 269	if (list_empty(&req->intr_entry)) {
 270		list_add_tail(&req->intr_entry, &fiq->interrupts);
 271		/*
 272		 * Pairs with smp_mb() implied by test_and_set_bit()
 273		 * from fuse_request_end().
 274		 */
 275		smp_mb();
 276		if (test_bit(FR_FINISHED, &req->flags)) {
 277			list_del_init(&req->intr_entry);
 278			spin_unlock(&fiq->lock);
 279		} else  {
 280			fuse_dev_wake_and_unlock(fiq);
 281		}
 282	} else {
 283		spin_unlock(&fiq->lock);
 284	}
 285}
 286
 287static void fuse_dev_queue_req(struct fuse_iqueue *fiq, struct fuse_req *req)
 288{
 289	spin_lock(&fiq->lock);
 290	if (fiq->connected) {
 291		if (req->in.h.opcode != FUSE_NOTIFY_REPLY)
 292			req->in.h.unique = fuse_get_unique_locked(fiq);
 293		list_add_tail(&req->list, &fiq->pending);
 294		fuse_dev_wake_and_unlock(fiq);
 295	} else {
 296		spin_unlock(&fiq->lock);
 297		req->out.h.error = -ENOTCONN;
 298		clear_bit(FR_PENDING, &req->flags);
 299		fuse_request_end(req);
 300	}
 301}
 302
 303const struct fuse_iqueue_ops fuse_dev_fiq_ops = {
 304	.send_forget	= fuse_dev_queue_forget,
 305	.send_interrupt	= fuse_dev_queue_interrupt,
 306	.send_req	= fuse_dev_queue_req,
 307};
 308EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops);
 309
 310static void fuse_send_one(struct fuse_iqueue *fiq, struct fuse_req *req)
 311{
 312	req->in.h.len = sizeof(struct fuse_in_header) +
 313		fuse_len_args(req->args->in_numargs,
 314			      (struct fuse_arg *) req->args->in_args);
 315	trace_fuse_request_send(req);
 316	fiq->ops->send_req(fiq, req);
 
 
 
 
 
 317}
 318
 319void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
 320		       u64 nodeid, u64 nlookup)
 321{
 322	struct fuse_iqueue *fiq = &fc->iq;
 323
 324	forget->forget_one.nodeid = nodeid;
 325	forget->forget_one.nlookup = nlookup;
 326
 327	fiq->ops->send_forget(fiq, forget);
 
 
 
 
 
 
 
 
 
 328}
 329
 330static void flush_bg_queue(struct fuse_conn *fc)
 331{
 332	struct fuse_iqueue *fiq = &fc->iq;
 333
 334	while (fc->active_background < fc->max_background &&
 335	       !list_empty(&fc->bg_queue)) {
 336		struct fuse_req *req;
 337
 338		req = list_first_entry(&fc->bg_queue, struct fuse_req, list);
 339		list_del(&req->list);
 340		fc->active_background++;
 341		fuse_send_one(fiq, req);
 
 342	}
 343}
 344
 345/*
 346 * This function is called when a request is finished.  Either a reply
 347 * has arrived or it was aborted (and not yet sent) or some error
 348 * occurred during communication with userspace, or the device file
 349 * was closed.  The requester thread is woken up (if still waiting),
 350 * the 'end' callback is called if given, else the reference to the
 351 * request is released
 
 
 352 */
 353void fuse_request_end(struct fuse_req *req)
 
 354{
 355	struct fuse_mount *fm = req->fm;
 356	struct fuse_conn *fc = fm->fc;
 357	struct fuse_iqueue *fiq = &fc->iq;
 358
 359	if (test_and_set_bit(FR_FINISHED, &req->flags))
 360		goto put_request;
 361
 362	trace_fuse_request_end(req);
 363	/*
 364	 * test_and_set_bit() implies smp_mb() between bit
 365	 * changing and below FR_INTERRUPTED check. Pairs with
 366	 * smp_mb() from queue_interrupt().
 367	 */
 368	if (test_bit(FR_INTERRUPTED, &req->flags)) {
 369		spin_lock(&fiq->lock);
 370		list_del_init(&req->intr_entry);
 371		spin_unlock(&fiq->lock);
 372	}
 373	WARN_ON(test_bit(FR_PENDING, &req->flags));
 374	WARN_ON(test_bit(FR_SENT, &req->flags));
 375	if (test_bit(FR_BACKGROUND, &req->flags)) {
 376		spin_lock(&fc->bg_lock);
 377		clear_bit(FR_BACKGROUND, &req->flags);
 378		if (fc->num_background == fc->max_background) {
 379			fc->blocked = 0;
 380			wake_up(&fc->blocked_waitq);
 381		} else if (!fc->blocked) {
 382			/*
 383			 * Wake up next waiter, if any.  It's okay to use
 384			 * waitqueue_active(), as we've already synced up
 385			 * fc->blocked with waiters with the wake_up() call
 386			 * above.
 387			 */
 388			if (waitqueue_active(&fc->blocked_waitq))
 389				wake_up(&fc->blocked_waitq);
 390		}
 391
 392		fc->num_background--;
 393		fc->active_background--;
 394		flush_bg_queue(fc);
 395		spin_unlock(&fc->bg_lock);
 396	} else {
 397		/* Wake up waiter sleeping in request_wait_answer() */
 398		wake_up(&req->waitq);
 399	}
 400
 401	if (test_bit(FR_ASYNC, &req->flags))
 402		req->args->end(fm, req->args, req->out.h.error);
 403put_request:
 404	fuse_put_request(req);
 405}
 406EXPORT_SYMBOL_GPL(fuse_request_end);
 407
 408static int queue_interrupt(struct fuse_req *req)
 
 
 
 409{
 410	struct fuse_iqueue *fiq = &req->fm->fc->iq;
 
 411
 412	/* Check for we've sent request to interrupt this req */
 413	if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags)))
 414		return -EINVAL;
 
 415
 416	fiq->ops->send_interrupt(fiq, req);
 417
 418	return 0;
 
 
 419}
 420
 421static void request_wait_answer(struct fuse_req *req)
 
 
 422{
 423	struct fuse_conn *fc = req->fm->fc;
 424	struct fuse_iqueue *fiq = &fc->iq;
 425	int err;
 426
 427	if (!fc->no_interrupt) {
 428		/* Any signal may interrupt this */
 429		err = wait_event_interruptible(req->waitq,
 430					test_bit(FR_FINISHED, &req->flags));
 431		if (!err)
 
 
 432			return;
 433
 434		set_bit(FR_INTERRUPTED, &req->flags);
 435		/* matches barrier in fuse_dev_do_read() */
 436		smp_mb__after_atomic();
 437		if (test_bit(FR_SENT, &req->flags))
 438			queue_interrupt(req);
 439	}
 440
 441	if (!test_bit(FR_FORCE, &req->flags)) {
 
 
 442		/* Only fatal signals may interrupt this */
 443		err = wait_event_killable(req->waitq,
 444					test_bit(FR_FINISHED, &req->flags));
 445		if (!err)
 
 
 
 
 446			return;
 447
 448		spin_lock(&fiq->lock);
 449		/* Request is not yet in userspace, bail out */
 450		if (test_bit(FR_PENDING, &req->flags)) {
 451			list_del(&req->list);
 452			spin_unlock(&fiq->lock);
 453			__fuse_put_request(req);
 454			req->out.h.error = -EINTR;
 455			return;
 456		}
 457		spin_unlock(&fiq->lock);
 458	}
 459
 460	/*
 461	 * Either request is already in userspace, or it was forced.
 462	 * Wait it out.
 463	 */
 464	wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags));
 465}
 
 466
 467static void __fuse_request_send(struct fuse_req *req)
 468{
 469	struct fuse_iqueue *fiq = &req->fm->fc->iq;
 470
 471	BUG_ON(test_bit(FR_BACKGROUND, &req->flags));
 472
 473	/* acquire extra reference, since request is still needed after
 474	   fuse_request_end() */
 475	__fuse_get_request(req);
 476	fuse_send_one(fiq, req);
 477
 478	request_wait_answer(req);
 479	/* Pairs with smp_wmb() in fuse_request_end() */
 480	smp_rmb();
 
 
 481}
 482
 483static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args)
 484{
 485	if (fc->minor < 4 && args->opcode == FUSE_STATFS)
 486		args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE;
 
 
 
 
 
 
 
 
 
 
 487
 488	if (fc->minor < 9) {
 489		switch (args->opcode) {
 490		case FUSE_LOOKUP:
 491		case FUSE_CREATE:
 492		case FUSE_MKNOD:
 493		case FUSE_MKDIR:
 494		case FUSE_SYMLINK:
 495		case FUSE_LINK:
 496			args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE;
 497			break;
 498		case FUSE_GETATTR:
 499		case FUSE_SETATTR:
 500			args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE;
 501			break;
 502		}
 503	}
 504	if (fc->minor < 12) {
 505		switch (args->opcode) {
 506		case FUSE_CREATE:
 507			args->in_args[0].size = sizeof(struct fuse_open_in);
 508			break;
 509		case FUSE_MKNOD:
 510			args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE;
 511			break;
 512		}
 513	}
 
 514}
 
 515
 516static void fuse_force_creds(struct fuse_req *req)
 
 517{
 518	struct fuse_conn *fc = req->fm->fc;
 519
 520	if (!req->fm->sb || req->fm->sb->s_iflags & SB_I_NOIDMAP) {
 521		req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid());
 522		req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid());
 523	} else {
 524		req->in.h.uid = FUSE_INVALID_UIDGID;
 525		req->in.h.gid = FUSE_INVALID_UIDGID;
 526	}
 527
 528	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
 529}
 530
 531static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args)
 532{
 533	req->in.h.opcode = args->opcode;
 534	req->in.h.nodeid = args->nodeid;
 535	req->args = args;
 536	if (args->is_ext)
 537		req->in.h.total_extlen = args->in_args[args->ext_idx].size / 8;
 538	if (args->end)
 539		__set_bit(FR_ASYNC, &req->flags);
 540}
 541
 542ssize_t __fuse_simple_request(struct mnt_idmap *idmap,
 543			      struct fuse_mount *fm,
 544			      struct fuse_args *args)
 545{
 546	struct fuse_conn *fc = fm->fc;
 547	struct fuse_req *req;
 548	ssize_t ret;
 549
 550	if (args->force) {
 551		atomic_inc(&fc->num_waiting);
 552		req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL);
 553
 554		if (!args->nocreds)
 555			fuse_force_creds(req);
 556
 557		__set_bit(FR_WAITING, &req->flags);
 558		__set_bit(FR_FORCE, &req->flags);
 559	} else {
 560		WARN_ON(args->nocreds);
 561		req = fuse_get_req(idmap, fm, false);
 562		if (IS_ERR(req))
 563			return PTR_ERR(req);
 564	}
 565
 566	/* Needs to be done after fuse_get_req() so that fc->minor is valid */
 567	fuse_adjust_compat(fc, args);
 568	fuse_args_to_req(req, args);
 569
 570	if (!args->noreply)
 571		__set_bit(FR_ISREPLY, &req->flags);
 572	__fuse_request_send(req);
 573	ret = req->out.h.error;
 574	if (!ret && args->out_argvar) {
 575		BUG_ON(args->out_numargs == 0);
 576		ret = args->out_args[args->out_numargs - 1].size;
 577	}
 578	fuse_put_request(req);
 579
 580	return ret;
 581}
 582
 583static bool fuse_request_queue_background(struct fuse_req *req)
 584{
 585	struct fuse_mount *fm = req->fm;
 586	struct fuse_conn *fc = fm->fc;
 587	bool queued = false;
 588
 589	WARN_ON(!test_bit(FR_BACKGROUND, &req->flags));
 590	if (!test_bit(FR_WAITING, &req->flags)) {
 591		__set_bit(FR_WAITING, &req->flags);
 592		atomic_inc(&fc->num_waiting);
 593	}
 594	__set_bit(FR_ISREPLY, &req->flags);
 595	spin_lock(&fc->bg_lock);
 596	if (likely(fc->connected)) {
 597		fc->num_background++;
 598		if (fc->num_background == fc->max_background)
 599			fc->blocked = 1;
 600		list_add_tail(&req->list, &fc->bg_queue);
 601		flush_bg_queue(fc);
 602		queued = true;
 603	}
 604	spin_unlock(&fc->bg_lock);
 605
 606	return queued;
 607}
 
 608
 609int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args,
 610			    gfp_t gfp_flags)
 611{
 612	struct fuse_req *req;
 613
 614	if (args->force) {
 615		WARN_ON(!args->nocreds);
 616		req = fuse_request_alloc(fm, gfp_flags);
 617		if (!req)
 618			return -ENOMEM;
 619		__set_bit(FR_BACKGROUND, &req->flags);
 620	} else {
 621		WARN_ON(args->nocreds);
 622		req = fuse_get_req(&invalid_mnt_idmap, fm, true);
 623		if (IS_ERR(req))
 624			return PTR_ERR(req);
 625	}
 
 626
 627	fuse_args_to_req(req, args);
 628
 629	if (!fuse_request_queue_background(req)) {
 630		fuse_put_request(req);
 631		return -ENOTCONN;
 632	}
 633
 634	return 0;
 635}
 636EXPORT_SYMBOL_GPL(fuse_simple_background);
 637
 638static int fuse_simple_notify_reply(struct fuse_mount *fm,
 639				    struct fuse_args *args, u64 unique)
 
 
 
 
 
 640{
 641	struct fuse_req *req;
 642	struct fuse_iqueue *fiq = &fm->fc->iq;
 643
 644	req = fuse_get_req(&invalid_mnt_idmap, fm, false);
 645	if (IS_ERR(req))
 646		return PTR_ERR(req);
 647
 648	__clear_bit(FR_ISREPLY, &req->flags);
 649	req->in.h.unique = unique;
 650
 651	fuse_args_to_req(req, args);
 652
 653	fuse_send_one(fiq, req);
 654
 655	return 0;
 656}
 657
 658/*
 659 * Lock the request.  Up to the next unlock_request() there mustn't be
 660 * anything that could cause a page-fault.  If the request was already
 661 * aborted bail out.
 662 */
 663static int lock_request(struct fuse_req *req)
 664{
 665	int err = 0;
 666	if (req) {
 667		spin_lock(&req->waitq.lock);
 668		if (test_bit(FR_ABORTED, &req->flags))
 669			err = -ENOENT;
 670		else
 671			set_bit(FR_LOCKED, &req->flags);
 672		spin_unlock(&req->waitq.lock);
 673	}
 674	return err;
 675}
 676
 677/*
 678 * Unlock request.  If it was aborted while locked, caller is responsible
 679 * for unlocking and ending the request.
 
 680 */
 681static int unlock_request(struct fuse_req *req)
 682{
 683	int err = 0;
 684	if (req) {
 685		spin_lock(&req->waitq.lock);
 686		if (test_bit(FR_ABORTED, &req->flags))
 687			err = -ENOENT;
 688		else
 689			clear_bit(FR_LOCKED, &req->flags);
 690		spin_unlock(&req->waitq.lock);
 691	}
 692	return err;
 693}
 694
 695struct fuse_copy_state {
 
 696	int write;
 697	struct fuse_req *req;
 698	struct iov_iter *iter;
 699	struct pipe_buffer *pipebufs;
 700	struct pipe_buffer *currbuf;
 701	struct pipe_inode_info *pipe;
 702	unsigned long nr_segs;
 
 
 703	struct page *pg;
 
 
 704	unsigned len;
 705	unsigned offset;
 706	unsigned move_pages:1;
 707};
 708
 709static void fuse_copy_init(struct fuse_copy_state *cs, int write,
 710			   struct iov_iter *iter)
 
 711{
 712	memset(cs, 0, sizeof(*cs));
 
 713	cs->write = write;
 714	cs->iter = iter;
 
 715}
 716
 717/* Unmap and put previous page of userspace buffer */
 718static void fuse_copy_finish(struct fuse_copy_state *cs)
 719{
 720	if (cs->currbuf) {
 721		struct pipe_buffer *buf = cs->currbuf;
 722
 723		if (cs->write)
 
 
 
 724			buf->len = PAGE_SIZE - cs->len;
 
 725		cs->currbuf = NULL;
 726	} else if (cs->pg) {
 
 
 727		if (cs->write) {
 728			flush_dcache_page(cs->pg);
 729			set_page_dirty_lock(cs->pg);
 730		}
 731		put_page(cs->pg);
 
 732	}
 733	cs->pg = NULL;
 734}
 735
 736/*
 737 * Get another pagefull of userspace buffer, and map it to kernel
 738 * address space, and lock request
 739 */
 740static int fuse_copy_fill(struct fuse_copy_state *cs)
 741{
 742	struct page *page;
 743	int err;
 744
 745	err = unlock_request(cs->req);
 746	if (err)
 747		return err;
 748
 749	fuse_copy_finish(cs);
 750	if (cs->pipebufs) {
 751		struct pipe_buffer *buf = cs->pipebufs;
 752
 753		if (!cs->write) {
 754			err = pipe_buf_confirm(cs->pipe, buf);
 755			if (err)
 756				return err;
 757
 758			BUG_ON(!cs->nr_segs);
 759			cs->currbuf = buf;
 760			cs->pg = buf->page;
 761			cs->offset = buf->offset;
 762			cs->len = buf->len;
 
 763			cs->pipebufs++;
 764			cs->nr_segs--;
 765		} else {
 766			if (cs->nr_segs >= cs->pipe->max_usage)
 
 
 767				return -EIO;
 768
 769			page = alloc_page(GFP_HIGHUSER);
 770			if (!page)
 771				return -ENOMEM;
 772
 773			buf->page = page;
 774			buf->offset = 0;
 775			buf->len = 0;
 776
 777			cs->currbuf = buf;
 778			cs->pg = page;
 779			cs->offset = 0;
 780			cs->len = PAGE_SIZE;
 781			cs->pipebufs++;
 782			cs->nr_segs++;
 783		}
 784	} else {
 785		size_t off;
 786		err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off);
 
 
 
 
 
 
 787		if (err < 0)
 788			return err;
 789		BUG_ON(!err);
 790		cs->len = err;
 791		cs->offset = off;
 792		cs->pg = page;
 
 
 
 793	}
 794
 795	return lock_request(cs->req);
 796}
 797
 798/* Do as much copy to/from userspace buffer as we can */
 799static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
 800{
 801	unsigned ncpy = min(*size, cs->len);
 802	if (val) {
 803		void *pgaddr = kmap_local_page(cs->pg);
 804		void *buf = pgaddr + cs->offset;
 805
 806		if (cs->write)
 807			memcpy(buf, *val, ncpy);
 808		else
 809			memcpy(*val, buf, ncpy);
 810
 811		kunmap_local(pgaddr);
 812		*val += ncpy;
 813	}
 814	*size -= ncpy;
 815	cs->len -= ncpy;
 816	cs->offset += ncpy;
 817	return ncpy;
 818}
 819
 820static int fuse_check_folio(struct folio *folio)
 821{
 822	if (folio_mapped(folio) ||
 823	    folio->mapping != NULL ||
 824	    (folio->flags & PAGE_FLAGS_CHECK_AT_PREP &
 
 825	     ~(1 << PG_locked |
 826	       1 << PG_referenced |
 
 827	       1 << PG_lru |
 828	       1 << PG_active |
 829	       1 << PG_workingset |
 830	       1 << PG_reclaim |
 831	       1 << PG_waiters |
 832	       LRU_GEN_MASK | LRU_REFS_MASK))) {
 833		dump_page(&folio->page, "fuse: trying to steal weird page");
 834		return 1;
 835	}
 836	return 0;
 837}
 838
 839/*
 840 * Attempt to steal a page from the splice() pipe and move it into the
 841 * pagecache. If successful, the pointer in @pagep will be updated. The
 842 * folio that was originally in @pagep will lose a reference and the new
 843 * folio returned in @pagep will carry a reference.
 844 */
 845static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
 846{
 847	int err;
 848	struct folio *oldfolio = page_folio(*pagep);
 849	struct folio *newfolio;
 850	struct pipe_buffer *buf = cs->pipebufs;
 
 
 851
 852	folio_get(oldfolio);
 853	err = unlock_request(cs->req);
 854	if (err)
 855		goto out_put_old;
 856
 857	fuse_copy_finish(cs);
 858
 859	err = pipe_buf_confirm(cs->pipe, buf);
 860	if (err)
 861		goto out_put_old;
 862
 863	BUG_ON(!cs->nr_segs);
 864	cs->currbuf = buf;
 865	cs->len = buf->len;
 866	cs->pipebufs++;
 867	cs->nr_segs--;
 868
 869	if (cs->len != PAGE_SIZE)
 870		goto out_fallback;
 871
 872	if (!pipe_buf_try_steal(cs->pipe, buf))
 873		goto out_fallback;
 874
 875	newfolio = page_folio(buf->page);
 
 
 
 876
 877	folio_clear_uptodate(newfolio);
 878	folio_clear_mappedtodisk(newfolio);
 879
 880	if (fuse_check_folio(newfolio) != 0)
 881		goto out_fallback_unlock;
 882
 
 
 
 883	/*
 884	 * This is a new and locked page, it shouldn't be mapped or
 885	 * have any special flags on it
 886	 */
 887	if (WARN_ON(folio_mapped(oldfolio)))
 888		goto out_fallback_unlock;
 889	if (WARN_ON(folio_has_private(oldfolio)))
 890		goto out_fallback_unlock;
 891	if (WARN_ON(folio_test_dirty(oldfolio) ||
 892				folio_test_writeback(oldfolio)))
 893		goto out_fallback_unlock;
 894	if (WARN_ON(folio_test_mlocked(oldfolio)))
 895		goto out_fallback_unlock;
 896
 897	replace_page_cache_folio(oldfolio, newfolio);
 
 
 
 
 898
 899	folio_get(newfolio);
 900
 901	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
 902		folio_add_lru(newfolio);
 903
 904	/*
 905	 * Release while we have extra ref on stolen page.  Otherwise
 906	 * anon_pipe_buf_release() might think the page can be reused.
 907	 */
 908	pipe_buf_release(cs->pipe, buf);
 909
 910	err = 0;
 911	spin_lock(&cs->req->waitq.lock);
 912	if (test_bit(FR_ABORTED, &cs->req->flags))
 913		err = -ENOENT;
 914	else
 915		*pagep = &newfolio->page;
 916	spin_unlock(&cs->req->waitq.lock);
 917
 918	if (err) {
 919		folio_unlock(newfolio);
 920		folio_put(newfolio);
 921		goto out_put_old;
 922	}
 923
 924	folio_unlock(oldfolio);
 925	/* Drop ref for ap->pages[] array */
 926	folio_put(oldfolio);
 927	cs->len = 0;
 928
 929	err = 0;
 930out_put_old:
 931	/* Drop ref obtained in this function */
 932	folio_put(oldfolio);
 933	return err;
 934
 935out_fallback_unlock:
 936	folio_unlock(newfolio);
 937out_fallback:
 938	cs->pg = buf->page;
 939	cs->offset = buf->offset;
 940
 941	err = lock_request(cs->req);
 942	if (!err)
 943		err = 1;
 944
 945	goto out_put_old;
 946}
 947
 948static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
 949			 unsigned offset, unsigned count)
 950{
 951	struct pipe_buffer *buf;
 952	int err;
 953
 954	if (cs->nr_segs >= cs->pipe->max_usage)
 955		return -EIO;
 956
 957	get_page(page);
 958	err = unlock_request(cs->req);
 959	if (err) {
 960		put_page(page);
 961		return err;
 962	}
 963
 964	fuse_copy_finish(cs);
 965
 966	buf = cs->pipebufs;
 
 967	buf->page = page;
 968	buf->offset = offset;
 969	buf->len = count;
 970
 971	cs->pipebufs++;
 972	cs->nr_segs++;
 973	cs->len = 0;
 974
 975	return 0;
 976}
 977
 978/*
 979 * Copy a page in the request to/from the userspace buffer.  Must be
 980 * done atomically
 981 */
 982static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
 983			  unsigned offset, unsigned count, int zeroing)
 984{
 985	int err;
 986	struct page *page = *pagep;
 987
 988	if (page && zeroing && count < PAGE_SIZE)
 989		clear_highpage(page);
 990
 991	while (count) {
 992		if (cs->write && cs->pipebufs && page) {
 993			/*
 994			 * Can't control lifetime of pipe buffers, so always
 995			 * copy user pages.
 996			 */
 997			if (cs->req->args->user_pages) {
 998				err = fuse_copy_fill(cs);
 999				if (err)
1000					return err;
1001			} else {
1002				return fuse_ref_page(cs, page, offset, count);
1003			}
1004		} else if (!cs->len) {
1005			if (cs->move_pages && page &&
1006			    offset == 0 && count == PAGE_SIZE) {
1007				err = fuse_try_move_page(cs, pagep);
1008				if (err <= 0)
1009					return err;
1010			} else {
1011				err = fuse_copy_fill(cs);
1012				if (err)
1013					return err;
1014			}
1015		}
1016		if (page) {
1017			void *mapaddr = kmap_local_page(page);
1018			void *buf = mapaddr + offset;
1019			offset += fuse_copy_do(cs, &buf, &count);
1020			kunmap_local(mapaddr);
1021		} else
1022			offset += fuse_copy_do(cs, NULL, &count);
1023	}
1024	if (page && !cs->write)
1025		flush_dcache_page(page);
1026	return 0;
1027}
1028
1029/* Copy pages in the request to/from userspace buffer */
1030static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
1031			   int zeroing)
1032{
1033	unsigned i;
1034	struct fuse_req *req = cs->req;
1035	struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args);
 
1036
1037	for (i = 0; i < ap->num_folios && (nbytes || zeroing); i++) {
1038		int err;
1039		unsigned int offset = ap->descs[i].offset;
1040		unsigned int count = min(nbytes, ap->descs[i].length);
1041		struct page *orig, *pagep;
1042
1043		orig = pagep = &ap->folios[i]->page;
1044
1045		err = fuse_copy_page(cs, &pagep, offset, count, zeroing);
 
1046		if (err)
1047			return err;
1048
1049		nbytes -= count;
1050
1051		/*
1052		 *  fuse_copy_page may have moved a page from a pipe instead of
1053		 *  copying into our given page, so update the folios if it was
1054		 *  replaced.
1055		 */
1056		if (pagep != orig)
1057			ap->folios[i] = page_folio(pagep);
1058	}
1059	return 0;
1060}
1061
1062/* Copy a single argument in the request to/from userspace buffer */
1063static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
1064{
1065	while (size) {
1066		if (!cs->len) {
1067			int err = fuse_copy_fill(cs);
1068			if (err)
1069				return err;
1070		}
1071		fuse_copy_do(cs, &val, &size);
1072	}
1073	return 0;
1074}
1075
1076/* Copy request arguments to/from userspace buffer */
1077static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
1078			  unsigned argpages, struct fuse_arg *args,
1079			  int zeroing)
1080{
1081	int err = 0;
1082	unsigned i;
1083
1084	for (i = 0; !err && i < numargs; i++)  {
1085		struct fuse_arg *arg = &args[i];
1086		if (i == numargs - 1 && argpages)
1087			err = fuse_copy_pages(cs, arg->size, zeroing);
1088		else
1089			err = fuse_copy_one(cs, arg->value, arg->size);
1090	}
1091	return err;
1092}
1093
1094static int forget_pending(struct fuse_iqueue *fiq)
1095{
1096	return fiq->forget_list_head.next != NULL;
1097}
1098
1099static int request_pending(struct fuse_iqueue *fiq)
1100{
1101	return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) ||
1102		forget_pending(fiq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103}
1104
1105/*
1106 * Transfer an interrupt request to userspace
1107 *
1108 * Unlike other requests this is assembled on demand, without a need
1109 * to allocate a separate fuse_req structure.
1110 *
1111 * Called with fiq->lock held, releases it
1112 */
1113static int fuse_read_interrupt(struct fuse_iqueue *fiq,
1114			       struct fuse_copy_state *cs,
1115			       size_t nbytes, struct fuse_req *req)
1116__releases(fiq->lock)
1117{
1118	struct fuse_in_header ih;
1119	struct fuse_interrupt_in arg;
1120	unsigned reqsize = sizeof(ih) + sizeof(arg);
1121	int err;
1122
1123	list_del_init(&req->intr_entry);
 
1124	memset(&ih, 0, sizeof(ih));
1125	memset(&arg, 0, sizeof(arg));
1126	ih.len = reqsize;
1127	ih.opcode = FUSE_INTERRUPT;
1128	ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT);
1129	arg.unique = req->in.h.unique;
1130
1131	spin_unlock(&fiq->lock);
1132	if (nbytes < reqsize)
1133		return -EINVAL;
1134
1135	err = fuse_copy_one(cs, &ih, sizeof(ih));
1136	if (!err)
1137		err = fuse_copy_one(cs, &arg, sizeof(arg));
1138	fuse_copy_finish(cs);
1139
1140	return err ? err : reqsize;
1141}
1142
1143static struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq,
1144						    unsigned int max,
1145						    unsigned int *countp)
1146{
1147	struct fuse_forget_link *head = fiq->forget_list_head.next;
1148	struct fuse_forget_link **newhead = &head;
1149	unsigned count;
1150
1151	for (count = 0; *newhead != NULL && count < max; count++)
1152		newhead = &(*newhead)->next;
1153
1154	fiq->forget_list_head.next = *newhead;
1155	*newhead = NULL;
1156	if (fiq->forget_list_head.next == NULL)
1157		fiq->forget_list_tail = &fiq->forget_list_head;
1158
1159	if (countp != NULL)
1160		*countp = count;
1161
1162	return head;
1163}
1164
1165static int fuse_read_single_forget(struct fuse_iqueue *fiq,
1166				   struct fuse_copy_state *cs,
1167				   size_t nbytes)
1168__releases(fiq->lock)
1169{
1170	int err;
1171	struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL);
1172	struct fuse_forget_in arg = {
1173		.nlookup = forget->forget_one.nlookup,
1174	};
1175	struct fuse_in_header ih = {
1176		.opcode = FUSE_FORGET,
1177		.nodeid = forget->forget_one.nodeid,
1178		.unique = fuse_get_unique_locked(fiq),
1179		.len = sizeof(ih) + sizeof(arg),
1180	};
1181
1182	spin_unlock(&fiq->lock);
1183	kfree(forget);
1184	if (nbytes < ih.len)
1185		return -EINVAL;
1186
1187	err = fuse_copy_one(cs, &ih, sizeof(ih));
1188	if (!err)
1189		err = fuse_copy_one(cs, &arg, sizeof(arg));
1190	fuse_copy_finish(cs);
1191
1192	if (err)
1193		return err;
1194
1195	return ih.len;
1196}
1197
1198static int fuse_read_batch_forget(struct fuse_iqueue *fiq,
1199				   struct fuse_copy_state *cs, size_t nbytes)
1200__releases(fiq->lock)
1201{
1202	int err;
1203	unsigned max_forgets;
1204	unsigned count;
1205	struct fuse_forget_link *head;
1206	struct fuse_batch_forget_in arg = { .count = 0 };
1207	struct fuse_in_header ih = {
1208		.opcode = FUSE_BATCH_FORGET,
1209		.unique = fuse_get_unique_locked(fiq),
1210		.len = sizeof(ih) + sizeof(arg),
1211	};
1212
1213	if (nbytes < ih.len) {
1214		spin_unlock(&fiq->lock);
1215		return -EINVAL;
1216	}
1217
1218	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1219	head = fuse_dequeue_forget(fiq, max_forgets, &count);
1220	spin_unlock(&fiq->lock);
1221
1222	arg.count = count;
1223	ih.len += count * sizeof(struct fuse_forget_one);
1224	err = fuse_copy_one(cs, &ih, sizeof(ih));
1225	if (!err)
1226		err = fuse_copy_one(cs, &arg, sizeof(arg));
1227
1228	while (head) {
1229		struct fuse_forget_link *forget = head;
1230
1231		if (!err) {
1232			err = fuse_copy_one(cs, &forget->forget_one,
1233					    sizeof(forget->forget_one));
1234		}
1235		head = forget->next;
1236		kfree(forget);
1237	}
1238
1239	fuse_copy_finish(cs);
1240
1241	if (err)
1242		return err;
1243
1244	return ih.len;
1245}
1246
1247static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq,
1248			    struct fuse_copy_state *cs,
1249			    size_t nbytes)
1250__releases(fiq->lock)
1251{
1252	if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL)
1253		return fuse_read_single_forget(fiq, cs, nbytes);
1254	else
1255		return fuse_read_batch_forget(fiq, cs, nbytes);
1256}
1257
1258/*
1259 * Read a single request into the userspace filesystem's buffer.  This
1260 * function waits until a request is available, then removes it from
1261 * the pending list and copies request data to userspace buffer.  If
1262 * no reply is needed (FORGET) or request has been aborted or there
1263 * was an error during the copying then it's finished by calling
1264 * fuse_request_end().  Otherwise add it to the processing list, and set
1265 * the 'sent' flag.
1266 */
1267static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file,
1268				struct fuse_copy_state *cs, size_t nbytes)
1269{
1270	ssize_t err;
1271	struct fuse_conn *fc = fud->fc;
1272	struct fuse_iqueue *fiq = &fc->iq;
1273	struct fuse_pqueue *fpq = &fud->pq;
1274	struct fuse_req *req;
1275	struct fuse_args *args;
1276	unsigned reqsize;
1277	unsigned int hash;
1278
1279	/*
1280	 * Require sane minimum read buffer - that has capacity for fixed part
1281	 * of any request header + negotiated max_write room for data.
1282	 *
1283	 * Historically libfuse reserves 4K for fixed header room, but e.g.
1284	 * GlusterFS reserves only 80 bytes
1285	 *
1286	 *	= `sizeof(fuse_in_header) + sizeof(fuse_write_in)`
1287	 *
1288	 * which is the absolute minimum any sane filesystem should be using
1289	 * for header room.
1290	 */
1291	if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER,
1292			   sizeof(struct fuse_in_header) +
1293			   sizeof(struct fuse_write_in) +
1294			   fc->max_write))
1295		return -EINVAL;
1296
1297 restart:
1298	for (;;) {
1299		spin_lock(&fiq->lock);
1300		if (!fiq->connected || request_pending(fiq))
1301			break;
1302		spin_unlock(&fiq->lock);
1303
1304		if (file->f_flags & O_NONBLOCK)
1305			return -EAGAIN;
1306		err = wait_event_interruptible_exclusive(fiq->waitq,
1307				!fiq->connected || request_pending(fiq));
1308		if (err)
1309			return err;
1310	}
1311
1312	if (!fiq->connected) {
1313		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1314		goto err_unlock;
1315	}
1316
1317	if (!list_empty(&fiq->interrupts)) {
1318		req = list_entry(fiq->interrupts.next, struct fuse_req,
1319				 intr_entry);
1320		return fuse_read_interrupt(fiq, cs, nbytes, req);
1321	}
1322
1323	if (forget_pending(fiq)) {
1324		if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0)
1325			return fuse_read_forget(fc, fiq, cs, nbytes);
1326
1327		if (fiq->forget_batch <= -8)
1328			fiq->forget_batch = 16;
1329	}
1330
1331	req = list_entry(fiq->pending.next, struct fuse_req, list);
1332	clear_bit(FR_PENDING, &req->flags);
1333	list_del_init(&req->list);
1334	spin_unlock(&fiq->lock);
1335
1336	args = req->args;
1337	reqsize = req->in.h.len;
1338
 
 
1339	/* If request is too large, reply with an error and restart the read */
1340	if (nbytes < reqsize) {
1341		req->out.h.error = -EIO;
1342		/* SETXATTR is special, since it may contain too large data */
1343		if (args->opcode == FUSE_SETXATTR)
1344			req->out.h.error = -E2BIG;
1345		fuse_request_end(req);
1346		goto restart;
1347	}
1348	spin_lock(&fpq->lock);
1349	/*
1350	 *  Must not put request on fpq->io queue after having been shut down by
1351	 *  fuse_abort_conn()
1352	 */
1353	if (!fpq->connected) {
1354		req->out.h.error = err = -ECONNABORTED;
1355		goto out_end;
1356
1357	}
1358	list_add(&req->list, &fpq->io);
1359	spin_unlock(&fpq->lock);
1360	cs->req = req;
1361	err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h));
1362	if (!err)
1363		err = fuse_copy_args(cs, args->in_numargs, args->in_pages,
1364				     (struct fuse_arg *) args->in_args, 0);
1365	fuse_copy_finish(cs);
1366	spin_lock(&fpq->lock);
1367	clear_bit(FR_LOCKED, &req->flags);
1368	if (!fpq->connected) {
1369		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1370		goto out_end;
1371	}
1372	if (err) {
1373		req->out.h.error = -EIO;
1374		goto out_end;
 
 
 
 
 
 
 
 
 
 
1375	}
1376	if (!test_bit(FR_ISREPLY, &req->flags)) {
1377		err = reqsize;
1378		goto out_end;
1379	}
1380	hash = fuse_req_hash(req->in.h.unique);
1381	list_move_tail(&req->list, &fpq->processing[hash]);
1382	__fuse_get_request(req);
1383	set_bit(FR_SENT, &req->flags);
1384	spin_unlock(&fpq->lock);
1385	/* matches barrier in request_wait_answer() */
1386	smp_mb__after_atomic();
1387	if (test_bit(FR_INTERRUPTED, &req->flags))
1388		queue_interrupt(req);
1389	fuse_put_request(req);
1390
1391	return reqsize;
1392
1393out_end:
1394	if (!test_bit(FR_PRIVATE, &req->flags))
1395		list_del_init(&req->list);
1396	spin_unlock(&fpq->lock);
1397	fuse_request_end(req);
1398	return err;
1399
1400 err_unlock:
1401	spin_unlock(&fiq->lock);
1402	return err;
1403}
1404
1405static int fuse_dev_open(struct inode *inode, struct file *file)
1406{
1407	/*
1408	 * The fuse device's file's private_data is used to hold
1409	 * the fuse_conn(ection) when it is mounted, and is used to
1410	 * keep track of whether the file has been mounted already.
1411	 */
1412	file->private_data = NULL;
1413	return 0;
1414}
1415
1416static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to)
1417{
1418	struct fuse_copy_state cs;
1419	struct file *file = iocb->ki_filp;
1420	struct fuse_dev *fud = fuse_get_dev(file);
1421
1422	if (!fud)
1423		return -EPERM;
1424
1425	if (!user_backed_iter(to))
1426		return -EINVAL;
1427
1428	fuse_copy_init(&cs, 1, to);
 
1429
1430	return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to));
 
 
 
1431}
1432
 
 
 
 
 
 
 
 
 
 
1433static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1434				    struct pipe_inode_info *pipe,
1435				    size_t len, unsigned int flags)
1436{
1437	int total, ret;
1438	int page_nr = 0;
 
1439	struct pipe_buffer *bufs;
1440	struct fuse_copy_state cs;
1441	struct fuse_dev *fud = fuse_get_dev(in);
1442
1443	if (!fud)
1444		return -EPERM;
1445
1446	bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer),
1447			      GFP_KERNEL);
1448	if (!bufs)
1449		return -ENOMEM;
1450
1451	fuse_copy_init(&cs, 1, NULL);
1452	cs.pipebufs = bufs;
1453	cs.pipe = pipe;
1454	ret = fuse_dev_do_read(fud, in, &cs, len);
1455	if (ret < 0)
1456		goto out;
1457
1458	if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) {
 
 
 
 
 
 
 
 
 
 
1459		ret = -EIO;
1460		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461	}
1462
1463	for (ret = total = 0; page_nr < cs.nr_segs; total += ret) {
1464		/*
1465		 * Need to be careful about this.  Having buf->ops in module
1466		 * code can Oops if the buffer persists after module unload.
1467		 */
1468		bufs[page_nr].ops = &nosteal_pipe_buf_ops;
1469		bufs[page_nr].flags = 0;
1470		ret = add_to_pipe(pipe, &bufs[page_nr++]);
1471		if (unlikely(ret < 0))
1472			break;
1473	}
1474	if (total)
1475		ret = total;
1476out:
1477	for (; page_nr < cs.nr_segs; page_nr++)
1478		put_page(bufs[page_nr].page);
1479
1480	kvfree(bufs);
1481	return ret;
1482}
1483
1484static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1485			    struct fuse_copy_state *cs)
1486{
1487	struct fuse_notify_poll_wakeup_out outarg;
1488	int err = -EINVAL;
1489
1490	if (size != sizeof(outarg))
1491		goto err;
1492
1493	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1494	if (err)
1495		goto err;
1496
1497	fuse_copy_finish(cs);
1498	return fuse_notify_poll_wakeup(fc, &outarg);
1499
1500err:
1501	fuse_copy_finish(cs);
1502	return err;
1503}
1504
1505static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1506				   struct fuse_copy_state *cs)
1507{
1508	struct fuse_notify_inval_inode_out outarg;
1509	int err = -EINVAL;
1510
1511	if (size != sizeof(outarg))
1512		goto err;
1513
1514	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1515	if (err)
1516		goto err;
1517	fuse_copy_finish(cs);
1518
1519	down_read(&fc->killsb);
1520	err = fuse_reverse_inval_inode(fc, outarg.ino,
1521				       outarg.off, outarg.len);
 
 
 
1522	up_read(&fc->killsb);
1523	return err;
1524
1525err:
1526	fuse_copy_finish(cs);
1527	return err;
1528}
1529
1530static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1531				   struct fuse_copy_state *cs)
1532{
1533	struct fuse_notify_inval_entry_out outarg;
1534	int err = -ENOMEM;
1535	char *buf;
1536	struct qstr name;
1537
1538	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1539	if (!buf)
1540		goto err;
1541
1542	err = -EINVAL;
1543	if (size < sizeof(outarg))
1544		goto err;
1545
1546	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1547	if (err)
1548		goto err;
1549
1550	err = -ENAMETOOLONG;
1551	if (outarg.namelen > FUSE_NAME_MAX)
1552		goto err;
1553
1554	err = -EINVAL;
1555	if (size != sizeof(outarg) + outarg.namelen + 1)
1556		goto err;
1557
1558	name.name = buf;
1559	name.len = outarg.namelen;
1560	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1561	if (err)
1562		goto err;
1563	fuse_copy_finish(cs);
1564	buf[outarg.namelen] = 0;
 
1565
1566	down_read(&fc->killsb);
1567	err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags);
 
 
1568	up_read(&fc->killsb);
1569	kfree(buf);
1570	return err;
1571
1572err:
1573	kfree(buf);
1574	fuse_copy_finish(cs);
1575	return err;
1576}
1577
1578static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1579			      struct fuse_copy_state *cs)
1580{
1581	struct fuse_notify_delete_out outarg;
1582	int err = -ENOMEM;
1583	char *buf;
1584	struct qstr name;
1585
1586	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1587	if (!buf)
1588		goto err;
1589
1590	err = -EINVAL;
1591	if (size < sizeof(outarg))
1592		goto err;
1593
1594	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1595	if (err)
1596		goto err;
1597
1598	err = -ENAMETOOLONG;
1599	if (outarg.namelen > FUSE_NAME_MAX)
1600		goto err;
1601
1602	err = -EINVAL;
1603	if (size != sizeof(outarg) + outarg.namelen + 1)
1604		goto err;
1605
1606	name.name = buf;
1607	name.len = outarg.namelen;
1608	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1609	if (err)
1610		goto err;
1611	fuse_copy_finish(cs);
1612	buf[outarg.namelen] = 0;
 
1613
1614	down_read(&fc->killsb);
1615	err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0);
 
 
 
1616	up_read(&fc->killsb);
1617	kfree(buf);
1618	return err;
1619
1620err:
1621	kfree(buf);
1622	fuse_copy_finish(cs);
1623	return err;
1624}
1625
1626static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1627			     struct fuse_copy_state *cs)
1628{
1629	struct fuse_notify_store_out outarg;
1630	struct inode *inode;
1631	struct address_space *mapping;
1632	u64 nodeid;
1633	int err;
1634	pgoff_t index;
1635	unsigned int offset;
1636	unsigned int num;
1637	loff_t file_size;
1638	loff_t end;
1639
1640	err = -EINVAL;
1641	if (size < sizeof(outarg))
1642		goto out_finish;
1643
1644	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1645	if (err)
1646		goto out_finish;
1647
1648	err = -EINVAL;
1649	if (size - sizeof(outarg) != outarg.size)
1650		goto out_finish;
1651
1652	nodeid = outarg.nodeid;
1653
1654	down_read(&fc->killsb);
1655
1656	err = -ENOENT;
1657	inode = fuse_ilookup(fc, nodeid,  NULL);
 
 
 
1658	if (!inode)
1659		goto out_up_killsb;
1660
1661	mapping = inode->i_mapping;
1662	index = outarg.offset >> PAGE_SHIFT;
1663	offset = outarg.offset & ~PAGE_MASK;
1664	file_size = i_size_read(inode);
1665	end = outarg.offset + outarg.size;
1666	if (end > file_size) {
1667		file_size = end;
1668		fuse_write_update_attr(inode, file_size, outarg.size);
1669	}
1670
1671	num = outarg.size;
1672	while (num) {
1673		struct folio *folio;
1674		struct page *page;
1675		unsigned int this_num;
1676
1677		folio = filemap_grab_folio(mapping, index);
1678		err = PTR_ERR(folio);
1679		if (IS_ERR(folio))
 
1680			goto out_iput;
1681
1682		page = &folio->page;
1683		this_num = min_t(unsigned, num, folio_size(folio) - offset);
1684		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1685		if (!folio_test_uptodate(folio) && !err && offset == 0 &&
1686		    (this_num == folio_size(folio) || file_size == end)) {
1687			folio_zero_segment(folio, this_num, folio_size(folio));
1688			folio_mark_uptodate(folio);
1689		}
1690		folio_unlock(folio);
1691		folio_put(folio);
1692
1693		if (err)
1694			goto out_iput;
1695
1696		num -= this_num;
1697		offset = 0;
1698		index++;
1699	}
1700
1701	err = 0;
1702
1703out_iput:
1704	iput(inode);
1705out_up_killsb:
1706	up_read(&fc->killsb);
1707out_finish:
1708	fuse_copy_finish(cs);
1709	return err;
1710}
1711
1712struct fuse_retrieve_args {
1713	struct fuse_args_pages ap;
1714	struct fuse_notify_retrieve_in inarg;
1715};
1716
1717static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args,
1718			      int error)
1719{
1720	struct fuse_retrieve_args *ra =
1721		container_of(args, typeof(*ra), ap.args);
1722
1723	release_pages(ra->ap.folios, ra->ap.num_folios);
1724	kfree(ra);
1725}
1726
1727static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode,
1728			 struct fuse_notify_retrieve_out *outarg)
1729{
1730	int err;
1731	struct address_space *mapping = inode->i_mapping;
 
1732	pgoff_t index;
1733	loff_t file_size;
1734	unsigned int num;
1735	unsigned int offset;
1736	size_t total_len = 0;
1737	unsigned int num_pages, cur_pages = 0;
1738	struct fuse_conn *fc = fm->fc;
1739	struct fuse_retrieve_args *ra;
1740	size_t args_size = sizeof(*ra);
1741	struct fuse_args_pages *ap;
1742	struct fuse_args *args;
1743
1744	offset = outarg->offset & ~PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
1745	file_size = i_size_read(inode);
1746
1747	num = min(outarg->size, fc->max_write);
1748	if (outarg->offset > file_size)
1749		num = 0;
1750	else if (outarg->offset + num > file_size)
1751		num = file_size - outarg->offset;
1752
1753	num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1754	num_pages = min(num_pages, fc->max_pages);
1755
1756	args_size += num_pages * (sizeof(ap->folios[0]) + sizeof(ap->descs[0]));
1757
1758	ra = kzalloc(args_size, GFP_KERNEL);
1759	if (!ra)
1760		return -ENOMEM;
1761
1762	ap = &ra->ap;
1763	ap->folios = (void *) (ra + 1);
1764	ap->descs = (void *) (ap->folios + num_pages);
1765
1766	args = &ap->args;
1767	args->nodeid = outarg->nodeid;
1768	args->opcode = FUSE_NOTIFY_REPLY;
1769	args->in_numargs = 2;
1770	args->in_pages = true;
1771	args->end = fuse_retrieve_end;
1772
1773	index = outarg->offset >> PAGE_SHIFT;
1774
1775	while (num && cur_pages < num_pages) {
1776		struct folio *folio;
1777		unsigned int this_num;
1778
1779		folio = filemap_get_folio(mapping, index);
1780		if (IS_ERR(folio))
1781			break;
1782
1783		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1784		ap->folios[ap->num_folios] = folio;
1785		ap->descs[ap->num_folios].offset = offset;
1786		ap->descs[ap->num_folios].length = this_num;
1787		ap->num_folios++;
1788		cur_pages++;
1789
1790		offset = 0;
1791		num -= this_num;
1792		total_len += this_num;
1793		index++;
1794	}
1795	ra->inarg.offset = outarg->offset;
1796	ra->inarg.size = total_len;
1797	args->in_args[0].size = sizeof(ra->inarg);
1798	args->in_args[0].value = &ra->inarg;
1799	args->in_args[1].size = total_len;
1800
1801	err = fuse_simple_notify_reply(fm, args, outarg->notify_unique);
1802	if (err)
1803		fuse_retrieve_end(fm, args, err);
1804
1805	return err;
1806}
1807
1808static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1809				struct fuse_copy_state *cs)
1810{
1811	struct fuse_notify_retrieve_out outarg;
1812	struct fuse_mount *fm;
1813	struct inode *inode;
1814	u64 nodeid;
1815	int err;
1816
1817	err = -EINVAL;
1818	if (size != sizeof(outarg))
1819		goto copy_finish;
1820
1821	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1822	if (err)
1823		goto copy_finish;
1824
1825	fuse_copy_finish(cs);
1826
1827	down_read(&fc->killsb);
1828	err = -ENOENT;
1829	nodeid = outarg.nodeid;
 
1830
1831	inode = fuse_ilookup(fc, nodeid, &fm);
1832	if (inode) {
1833		err = fuse_retrieve(fm, inode, &outarg);
1834		iput(inode);
 
1835	}
1836	up_read(&fc->killsb);
1837
1838	return err;
1839
1840copy_finish:
1841	fuse_copy_finish(cs);
1842	return err;
1843}
1844
1845/*
1846 * Resending all processing queue requests.
1847 *
1848 * During a FUSE daemon panics and failover, it is possible for some inflight
1849 * requests to be lost and never returned. As a result, applications awaiting
1850 * replies would become stuck forever. To address this, we can use notification
1851 * to trigger resending of these pending requests to the FUSE daemon, ensuring
1852 * they are properly processed again.
1853 *
1854 * Please note that this strategy is applicable only to idempotent requests or
1855 * if the FUSE daemon takes careful measures to avoid processing duplicated
1856 * non-idempotent requests.
1857 */
1858static void fuse_resend(struct fuse_conn *fc)
1859{
1860	struct fuse_dev *fud;
1861	struct fuse_req *req, *next;
1862	struct fuse_iqueue *fiq = &fc->iq;
1863	LIST_HEAD(to_queue);
1864	unsigned int i;
1865
1866	spin_lock(&fc->lock);
1867	if (!fc->connected) {
1868		spin_unlock(&fc->lock);
1869		return;
1870	}
1871
1872	list_for_each_entry(fud, &fc->devices, entry) {
1873		struct fuse_pqueue *fpq = &fud->pq;
1874
1875		spin_lock(&fpq->lock);
1876		for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
1877			list_splice_tail_init(&fpq->processing[i], &to_queue);
1878		spin_unlock(&fpq->lock);
1879	}
1880	spin_unlock(&fc->lock);
1881
1882	list_for_each_entry_safe(req, next, &to_queue, list) {
1883		set_bit(FR_PENDING, &req->flags);
1884		clear_bit(FR_SENT, &req->flags);
1885		/* mark the request as resend request */
1886		req->in.h.unique |= FUSE_UNIQUE_RESEND;
1887	}
1888
1889	spin_lock(&fiq->lock);
1890	if (!fiq->connected) {
1891		spin_unlock(&fiq->lock);
1892		list_for_each_entry(req, &to_queue, list)
1893			clear_bit(FR_PENDING, &req->flags);
1894		end_requests(&to_queue);
1895		return;
1896	}
1897	/* iq and pq requests are both oldest to newest */
1898	list_splice(&to_queue, &fiq->pending);
1899	fuse_dev_wake_and_unlock(fiq);
1900}
1901
1902static int fuse_notify_resend(struct fuse_conn *fc)
1903{
1904	fuse_resend(fc);
1905	return 0;
1906}
1907
1908static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1909		       unsigned int size, struct fuse_copy_state *cs)
1910{
1911	/* Don't try to move pages (yet) */
1912	cs->move_pages = 0;
1913
1914	switch (code) {
1915	case FUSE_NOTIFY_POLL:
1916		return fuse_notify_poll(fc, size, cs);
1917
1918	case FUSE_NOTIFY_INVAL_INODE:
1919		return fuse_notify_inval_inode(fc, size, cs);
1920
1921	case FUSE_NOTIFY_INVAL_ENTRY:
1922		return fuse_notify_inval_entry(fc, size, cs);
1923
1924	case FUSE_NOTIFY_STORE:
1925		return fuse_notify_store(fc, size, cs);
1926
1927	case FUSE_NOTIFY_RETRIEVE:
1928		return fuse_notify_retrieve(fc, size, cs);
1929
1930	case FUSE_NOTIFY_DELETE:
1931		return fuse_notify_delete(fc, size, cs);
1932
1933	case FUSE_NOTIFY_RESEND:
1934		return fuse_notify_resend(fc);
1935
1936	default:
1937		fuse_copy_finish(cs);
1938		return -EINVAL;
1939	}
1940}
1941
1942/* Look up request on processing list by unique ID */
1943static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique)
1944{
1945	unsigned int hash = fuse_req_hash(unique);
1946	struct fuse_req *req;
1947
1948	list_for_each_entry(req, &fpq->processing[hash], list) {
1949		if (req->in.h.unique == unique)
 
 
1950			return req;
1951	}
1952	return NULL;
1953}
1954
1955static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args,
1956			 unsigned nbytes)
1957{
1958	unsigned reqsize = sizeof(struct fuse_out_header);
1959
1960	reqsize += fuse_len_args(args->out_numargs, args->out_args);
 
1961
1962	if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar))
 
 
1963		return -EINVAL;
1964	else if (reqsize > nbytes) {
1965		struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1];
1966		unsigned diffsize = reqsize - nbytes;
1967
1968		if (diffsize > lastarg->size)
1969			return -EINVAL;
1970		lastarg->size -= diffsize;
1971	}
1972	return fuse_copy_args(cs, args->out_numargs, args->out_pages,
1973			      args->out_args, args->page_zeroing);
1974}
1975
1976/*
1977 * Write a single reply to a request.  First the header is copied from
1978 * the write buffer.  The request is then searched on the processing
1979 * list by the unique ID found in the header.  If found, then remove
1980 * it from the list and copy the rest of the buffer to the request.
1981 * The request is finished by calling fuse_request_end().
1982 */
1983static ssize_t fuse_dev_do_write(struct fuse_dev *fud,
1984				 struct fuse_copy_state *cs, size_t nbytes)
1985{
1986	int err;
1987	struct fuse_conn *fc = fud->fc;
1988	struct fuse_pqueue *fpq = &fud->pq;
1989	struct fuse_req *req;
1990	struct fuse_out_header oh;
1991
1992	err = -EINVAL;
1993	if (nbytes < sizeof(struct fuse_out_header))
1994		goto out;
1995
1996	err = fuse_copy_one(cs, &oh, sizeof(oh));
1997	if (err)
1998		goto copy_finish;
1999
2000	err = -EINVAL;
2001	if (oh.len != nbytes)
2002		goto copy_finish;
2003
2004	/*
2005	 * Zero oh.unique indicates unsolicited notification message
2006	 * and error contains notification code.
2007	 */
2008	if (!oh.unique) {
2009		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
2010		goto out;
2011	}
2012
2013	err = -EINVAL;
2014	if (oh.error <= -512 || oh.error > 0)
2015		goto copy_finish;
2016
2017	spin_lock(&fpq->lock);
2018	req = NULL;
2019	if (fpq->connected)
2020		req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT);
2021
 
2022	err = -ENOENT;
2023	if (!req) {
2024		spin_unlock(&fpq->lock);
2025		goto copy_finish;
2026	}
2027
2028	/* Is it an interrupt reply ID? */
2029	if (oh.unique & FUSE_INT_REQ_BIT) {
2030		__fuse_get_request(req);
2031		spin_unlock(&fpq->lock);
2032
2033		err = 0;
 
 
 
 
 
 
 
 
 
2034		if (nbytes != sizeof(struct fuse_out_header))
2035			err = -EINVAL;
2036		else if (oh.error == -ENOSYS)
 
2037			fc->no_interrupt = 1;
2038		else if (oh.error == -EAGAIN)
2039			err = queue_interrupt(req);
2040
2041		fuse_put_request(req);
2042
2043		goto copy_finish;
2044	}
2045
2046	clear_bit(FR_SENT, &req->flags);
2047	list_move(&req->list, &fpq->io);
2048	req->out.h = oh;
2049	set_bit(FR_LOCKED, &req->flags);
2050	spin_unlock(&fpq->lock);
2051	cs->req = req;
2052	if (!req->args->page_replace)
2053		cs->move_pages = 0;
 
2054
2055	if (oh.error)
2056		err = nbytes != sizeof(oh) ? -EINVAL : 0;
2057	else
2058		err = copy_out_args(cs, req->args, nbytes);
2059	fuse_copy_finish(cs);
2060
2061	spin_lock(&fpq->lock);
2062	clear_bit(FR_LOCKED, &req->flags);
2063	if (!fpq->connected)
2064		err = -ENOENT;
2065	else if (err)
 
2066		req->out.h.error = -EIO;
2067	if (!test_bit(FR_PRIVATE, &req->flags))
2068		list_del_init(&req->list);
2069	spin_unlock(&fpq->lock);
2070
2071	fuse_request_end(req);
2072out:
2073	return err ? err : nbytes;
2074
2075copy_finish:
 
 
2076	fuse_copy_finish(cs);
2077	goto out;
2078}
2079
2080static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from)
 
2081{
2082	struct fuse_copy_state cs;
2083	struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp);
2084
2085	if (!fud)
2086		return -EPERM;
2087
2088	if (!user_backed_iter(from))
2089		return -EINVAL;
2090
2091	fuse_copy_init(&cs, 0, from);
2092
2093	return fuse_dev_do_write(fud, &cs, iov_iter_count(from));
2094}
2095
2096static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
2097				     struct file *out, loff_t *ppos,
2098				     size_t len, unsigned int flags)
2099{
2100	unsigned int head, tail, mask, count;
2101	unsigned nbuf;
2102	unsigned idx;
2103	struct pipe_buffer *bufs;
2104	struct fuse_copy_state cs;
2105	struct fuse_dev *fud;
2106	size_t rem;
2107	ssize_t ret;
2108
2109	fud = fuse_get_dev(out);
2110	if (!fud)
2111		return -EPERM;
2112
2113	pipe_lock(pipe);
2114
2115	head = pipe->head;
2116	tail = pipe->tail;
2117	mask = pipe->ring_size - 1;
2118	count = head - tail;
2119
2120	bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL);
2121	if (!bufs) {
2122		pipe_unlock(pipe);
2123		return -ENOMEM;
2124	}
2125
 
2126	nbuf = 0;
2127	rem = 0;
2128	for (idx = tail; idx != head && rem < len; idx++)
2129		rem += pipe->bufs[idx & mask].len;
2130
2131	ret = -EINVAL;
2132	if (rem < len)
2133		goto out_free;
 
 
2134
2135	rem = len;
2136	while (rem) {
2137		struct pipe_buffer *ibuf;
2138		struct pipe_buffer *obuf;
2139
2140		if (WARN_ON(nbuf >= count || tail == head))
2141			goto out_free;
2142
2143		ibuf = &pipe->bufs[tail & mask];
2144		obuf = &bufs[nbuf];
2145
2146		if (rem >= ibuf->len) {
2147			*obuf = *ibuf;
2148			ibuf->ops = NULL;
2149			tail++;
2150			pipe->tail = tail;
2151		} else {
2152			if (!pipe_buf_get(pipe, ibuf))
2153				goto out_free;
2154
2155			*obuf = *ibuf;
2156			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2157			obuf->len = rem;
2158			ibuf->offset += obuf->len;
2159			ibuf->len -= obuf->len;
2160		}
2161		nbuf++;
2162		rem -= obuf->len;
2163	}
2164	pipe_unlock(pipe);
2165
2166	fuse_copy_init(&cs, 0, NULL);
2167	cs.pipebufs = bufs;
2168	cs.nr_segs = nbuf;
2169	cs.pipe = pipe;
2170
2171	if (flags & SPLICE_F_MOVE)
2172		cs.move_pages = 1;
2173
2174	ret = fuse_dev_do_write(fud, &cs, len);
2175
2176	pipe_lock(pipe);
2177out_free:
2178	for (idx = 0; idx < nbuf; idx++) {
2179		struct pipe_buffer *buf = &bufs[idx];
2180
2181		if (buf->ops)
2182			pipe_buf_release(pipe, buf);
2183	}
2184	pipe_unlock(pipe);
2185
2186	kvfree(bufs);
2187	return ret;
2188}
2189
2190static __poll_t fuse_dev_poll(struct file *file, poll_table *wait)
2191{
2192	__poll_t mask = EPOLLOUT | EPOLLWRNORM;
2193	struct fuse_iqueue *fiq;
2194	struct fuse_dev *fud = fuse_get_dev(file);
2195
2196	if (!fud)
2197		return EPOLLERR;
2198
2199	fiq = &fud->fc->iq;
2200	poll_wait(file, &fiq->waitq, wait);
2201
2202	spin_lock(&fiq->lock);
2203	if (!fiq->connected)
2204		mask = EPOLLERR;
2205	else if (request_pending(fiq))
2206		mask |= EPOLLIN | EPOLLRDNORM;
2207	spin_unlock(&fiq->lock);
2208
2209	return mask;
2210}
2211
2212/* Abort all requests on the given list (pending or processing) */
2213static void end_requests(struct list_head *head)
 
 
 
 
 
 
2214{
2215	while (!list_empty(head)) {
2216		struct fuse_req *req;
2217		req = list_entry(head->next, struct fuse_req, list);
2218		req->out.h.error = -ECONNABORTED;
2219		clear_bit(FR_SENT, &req->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220		list_del_init(&req->list);
2221		fuse_request_end(req);
 
 
 
 
 
 
 
 
 
2222	}
2223}
2224
 
 
 
 
 
 
 
 
 
 
 
 
2225static void end_polls(struct fuse_conn *fc)
2226{
2227	struct rb_node *p;
2228
2229	p = rb_first(&fc->polled_files);
2230
2231	while (p) {
2232		struct fuse_file *ff;
2233		ff = rb_entry(p, struct fuse_file, polled_node);
2234		wake_up_interruptible_all(&ff->poll_wait);
2235
2236		p = rb_next(p);
2237	}
2238}
2239
2240/*
2241 * Abort all requests.
2242 *
2243 * Emergency exit in case of a malicious or accidental deadlock, or just a hung
2244 * filesystem.
2245 *
2246 * The same effect is usually achievable through killing the filesystem daemon
2247 * and all users of the filesystem.  The exception is the combination of an
2248 * asynchronous request and the tricky deadlock (see
2249 * Documentation/filesystems/fuse.rst).
2250 *
2251 * Aborting requests under I/O goes as follows: 1: Separate out unlocked
2252 * requests, they should be finished off immediately.  Locked requests will be
2253 * finished after unlock; see unlock_request(). 2: Finish off the unlocked
2254 * requests.  It is possible that some request will finish before we can.  This
2255 * is OK, the request will in that case be removed from the list before we touch
2256 * it.
 
2257 */
2258void fuse_abort_conn(struct fuse_conn *fc)
2259{
2260	struct fuse_iqueue *fiq = &fc->iq;
2261
2262	spin_lock(&fc->lock);
2263	if (fc->connected) {
2264		struct fuse_dev *fud;
2265		struct fuse_req *req, *next;
2266		LIST_HEAD(to_end);
2267		unsigned int i;
2268
2269		/* Background queuing checks fc->connected under bg_lock */
2270		spin_lock(&fc->bg_lock);
2271		fc->connected = 0;
2272		spin_unlock(&fc->bg_lock);
2273
2274		fuse_set_initialized(fc);
2275		list_for_each_entry(fud, &fc->devices, entry) {
2276			struct fuse_pqueue *fpq = &fud->pq;
2277
2278			spin_lock(&fpq->lock);
2279			fpq->connected = 0;
2280			list_for_each_entry_safe(req, next, &fpq->io, list) {
2281				req->out.h.error = -ECONNABORTED;
2282				spin_lock(&req->waitq.lock);
2283				set_bit(FR_ABORTED, &req->flags);
2284				if (!test_bit(FR_LOCKED, &req->flags)) {
2285					set_bit(FR_PRIVATE, &req->flags);
2286					__fuse_get_request(req);
2287					list_move(&req->list, &to_end);
2288				}
2289				spin_unlock(&req->waitq.lock);
2290			}
2291			for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2292				list_splice_tail_init(&fpq->processing[i],
2293						      &to_end);
2294			spin_unlock(&fpq->lock);
2295		}
2296		spin_lock(&fc->bg_lock);
2297		fc->blocked = 0;
2298		fc->max_background = UINT_MAX;
2299		flush_bg_queue(fc);
2300		spin_unlock(&fc->bg_lock);
2301
2302		spin_lock(&fiq->lock);
2303		fiq->connected = 0;
2304		list_for_each_entry(req, &fiq->pending, list)
2305			clear_bit(FR_PENDING, &req->flags);
2306		list_splice_tail_init(&fiq->pending, &to_end);
2307		while (forget_pending(fiq))
2308			kfree(fuse_dequeue_forget(fiq, 1, NULL));
2309		wake_up_all(&fiq->waitq);
2310		spin_unlock(&fiq->lock);
2311		kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
2312		end_polls(fc);
 
2313		wake_up_all(&fc->blocked_waitq);
2314		spin_unlock(&fc->lock);
2315
2316		end_requests(&to_end);
2317	} else {
2318		spin_unlock(&fc->lock);
2319	}
 
2320}
2321EXPORT_SYMBOL_GPL(fuse_abort_conn);
2322
2323void fuse_wait_aborted(struct fuse_conn *fc)
2324{
2325	/* matches implicit memory barrier in fuse_drop_waiting() */
2326	smp_mb();
2327	wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0);
2328}
2329
2330int fuse_dev_release(struct inode *inode, struct file *file)
2331{
2332	struct fuse_dev *fud = fuse_get_dev(file);
 
 
 
 
 
 
 
 
 
 
2333
2334	if (fud) {
2335		struct fuse_conn *fc = fud->fc;
2336		struct fuse_pqueue *fpq = &fud->pq;
2337		LIST_HEAD(to_end);
2338		unsigned int i;
2339
2340		spin_lock(&fpq->lock);
2341		WARN_ON(!list_empty(&fpq->io));
2342		for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2343			list_splice_init(&fpq->processing[i], &to_end);
2344		spin_unlock(&fpq->lock);
2345
2346		end_requests(&to_end);
2347
2348		/* Are we the last open device? */
2349		if (atomic_dec_and_test(&fc->dev_count)) {
2350			WARN_ON(fc->iq.fasync != NULL);
2351			fuse_abort_conn(fc);
2352		}
2353		fuse_dev_free(fud);
2354	}
2355	return 0;
2356}
2357EXPORT_SYMBOL_GPL(fuse_dev_release);
2358
2359static int fuse_dev_fasync(int fd, struct file *file, int on)
2360{
2361	struct fuse_dev *fud = fuse_get_dev(file);
2362
2363	if (!fud)
2364		return -EPERM;
2365
2366	/* No locking - fasync_helper does its own locking */
2367	return fasync_helper(fd, file, on, &fud->fc->iq.fasync);
2368}
2369
2370static int fuse_device_clone(struct fuse_conn *fc, struct file *new)
2371{
2372	struct fuse_dev *fud;
2373
2374	if (new->private_data)
2375		return -EINVAL;
2376
2377	fud = fuse_dev_alloc_install(fc);
2378	if (!fud)
2379		return -ENOMEM;
2380
2381	new->private_data = fud;
2382	atomic_inc(&fc->dev_count);
2383
2384	return 0;
2385}
2386
2387static long fuse_dev_ioctl_clone(struct file *file, __u32 __user *argp)
2388{
2389	int res;
2390	int oldfd;
2391	struct fuse_dev *fud = NULL;
2392
2393	if (get_user(oldfd, argp))
2394		return -EFAULT;
2395
2396	CLASS(fd, f)(oldfd);
2397	if (fd_empty(f))
2398		return -EINVAL;
2399
2400	/*
2401	 * Check against file->f_op because CUSE
2402	 * uses the same ioctl handler.
2403	 */
2404	if (fd_file(f)->f_op == file->f_op)
2405		fud = fuse_get_dev(fd_file(f));
2406
2407	res = -EINVAL;
2408	if (fud) {
2409		mutex_lock(&fuse_mutex);
2410		res = fuse_device_clone(fud->fc, file);
2411		mutex_unlock(&fuse_mutex);
2412	}
2413
2414	return res;
2415}
2416
2417static long fuse_dev_ioctl_backing_open(struct file *file,
2418					struct fuse_backing_map __user *argp)
2419{
2420	struct fuse_dev *fud = fuse_get_dev(file);
2421	struct fuse_backing_map map;
2422
2423	if (!fud)
2424		return -EPERM;
2425
2426	if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH))
2427		return -EOPNOTSUPP;
2428
2429	if (copy_from_user(&map, argp, sizeof(map)))
2430		return -EFAULT;
2431
2432	return fuse_backing_open(fud->fc, &map);
2433}
2434
2435static long fuse_dev_ioctl_backing_close(struct file *file, __u32 __user *argp)
2436{
2437	struct fuse_dev *fud = fuse_get_dev(file);
2438	int backing_id;
2439
2440	if (!fud)
2441		return -EPERM;
2442
2443	if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH))
2444		return -EOPNOTSUPP;
2445
2446	if (get_user(backing_id, argp))
2447		return -EFAULT;
2448
2449	return fuse_backing_close(fud->fc, backing_id);
2450}
2451
2452static long fuse_dev_ioctl(struct file *file, unsigned int cmd,
2453			   unsigned long arg)
2454{
2455	void __user *argp = (void __user *)arg;
2456
2457	switch (cmd) {
2458	case FUSE_DEV_IOC_CLONE:
2459		return fuse_dev_ioctl_clone(file, argp);
2460
2461	case FUSE_DEV_IOC_BACKING_OPEN:
2462		return fuse_dev_ioctl_backing_open(file, argp);
2463
2464	case FUSE_DEV_IOC_BACKING_CLOSE:
2465		return fuse_dev_ioctl_backing_close(file, argp);
2466
2467	default:
2468		return -ENOTTY;
2469	}
2470}
2471
2472const struct file_operations fuse_dev_operations = {
2473	.owner		= THIS_MODULE,
2474	.open		= fuse_dev_open,
2475	.read_iter	= fuse_dev_read,
 
2476	.splice_read	= fuse_dev_splice_read,
2477	.write_iter	= fuse_dev_write,
 
2478	.splice_write	= fuse_dev_splice_write,
2479	.poll		= fuse_dev_poll,
2480	.release	= fuse_dev_release,
2481	.fasync		= fuse_dev_fasync,
2482	.unlocked_ioctl = fuse_dev_ioctl,
2483	.compat_ioctl   = compat_ptr_ioctl,
2484};
2485EXPORT_SYMBOL_GPL(fuse_dev_operations);
2486
2487static struct miscdevice fuse_miscdevice = {
2488	.minor = FUSE_MINOR,
2489	.name  = "fuse",
2490	.fops = &fuse_dev_operations,
2491};
2492
2493int __init fuse_dev_init(void)
2494{
2495	int err = -ENOMEM;
2496	fuse_req_cachep = kmem_cache_create("fuse_request",
2497					    sizeof(struct fuse_req),
2498					    0, 0, NULL);
2499	if (!fuse_req_cachep)
2500		goto out;
2501
2502	err = misc_register(&fuse_miscdevice);
2503	if (err)
2504		goto out_cache_clean;
2505
2506	return 0;
2507
2508 out_cache_clean:
2509	kmem_cache_destroy(fuse_req_cachep);
2510 out:
2511	return err;
2512}
2513
2514void fuse_dev_cleanup(void)
2515{
2516	misc_deregister(&fuse_miscdevice);
2517	kmem_cache_destroy(fuse_req_cachep);
2518}