Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/* Maximum size of each resync request */
  3#define RESYNC_BLOCK_SIZE (64*1024)
  4#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  5
  6/*
  7 * Number of guaranteed raid bios in case of extreme VM load:
  8 */
  9#define	NR_RAID_BIOS 256
 10
 11/* when we get a read error on a read-only array, we redirect to another
 12 * device without failing the first device, or trying to over-write to
 13 * correct the read error.  To keep track of bad blocks on a per-bio
 14 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
 15 */
 16#define IO_BLOCKED ((struct bio *)1)
 17/* When we successfully write to a known bad-block, we need to remove the
 18 * bad-block marking which must be done from process context.  So we record
 19 * the success by setting devs[n].bio to IO_MADE_GOOD
 20 */
 21#define IO_MADE_GOOD ((struct bio *)2)
 22
 23#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 24#define MAX_PLUG_BIO 32
 25
 26/* for managing resync I/O pages */
 27struct resync_pages {
 28	void		*raid_bio;
 29	struct page	*pages[RESYNC_PAGES];
 30};
 31
 32struct raid1_plug_cb {
 33	struct blk_plug_cb	cb;
 34	struct bio_list		pending;
 35	unsigned int		count;
 36};
 37
 38static void rbio_pool_free(void *rbio, void *data)
 39{
 40	kfree(rbio);
 41}
 42
 43static inline int resync_alloc_pages(struct resync_pages *rp,
 44				     gfp_t gfp_flags)
 45{
 46	int i;
 47
 48	for (i = 0; i < RESYNC_PAGES; i++) {
 49		rp->pages[i] = alloc_page(gfp_flags);
 50		if (!rp->pages[i])
 51			goto out_free;
 52	}
 53
 54	return 0;
 55
 56out_free:
 57	while (--i >= 0)
 58		put_page(rp->pages[i]);
 59	return -ENOMEM;
 60}
 61
 62static inline void resync_free_pages(struct resync_pages *rp)
 63{
 64	int i;
 65
 66	for (i = 0; i < RESYNC_PAGES; i++)
 67		put_page(rp->pages[i]);
 68}
 69
 70static inline void resync_get_all_pages(struct resync_pages *rp)
 71{
 72	int i;
 73
 74	for (i = 0; i < RESYNC_PAGES; i++)
 75		get_page(rp->pages[i]);
 76}
 77
 78static inline struct page *resync_fetch_page(struct resync_pages *rp,
 79					     unsigned idx)
 80{
 81	if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
 82		return NULL;
 83	return rp->pages[idx];
 84}
 85
 86/*
 87 * 'strct resync_pages' stores actual pages used for doing the resync
 88 *  IO, and it is per-bio, so make .bi_private points to it.
 89 */
 90static inline struct resync_pages *get_resync_pages(struct bio *bio)
 91{
 92	return bio->bi_private;
 93}
 94
 95/* generally called after bio_reset() for reseting bvec */
 96static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
 97			       int size)
 98{
 99	int idx = 0;
100
101	/* initialize bvec table again */
102	do {
103		struct page *page = resync_fetch_page(rp, idx);
104		int len = min_t(int, size, PAGE_SIZE);
105
106		if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
107			bio->bi_status = BLK_STS_RESOURCE;
108			bio_endio(bio);
109			return;
110		}
111
112		size -= len;
113	} while (idx++ < RESYNC_PAGES && size > 0);
114}
115
116
117static inline void raid1_submit_write(struct bio *bio)
118{
119	struct md_rdev *rdev = (void *)bio->bi_bdev;
120
121	bio->bi_next = NULL;
122	bio_set_dev(bio, rdev->bdev);
123	if (test_bit(Faulty, &rdev->flags))
124		bio_io_error(bio);
125	else if (unlikely(bio_op(bio) ==  REQ_OP_DISCARD &&
126			  !bdev_max_discard_sectors(bio->bi_bdev)))
127		/* Just ignore it */
128		bio_endio(bio);
129	else
130		submit_bio_noacct(bio);
131}
132
133static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
134				      blk_plug_cb_fn unplug, int copies)
135{
136	struct raid1_plug_cb *plug = NULL;
137	struct blk_plug_cb *cb;
138
139	/*
140	 * If bitmap is not enabled, it's safe to submit the io directly, and
141	 * this can get optimal performance.
142	 */
143	if (!mddev->bitmap_ops->enabled(mddev)) {
144		raid1_submit_write(bio);
145		return true;
146	}
147
148	cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
149	if (!cb)
150		return false;
151
152	plug = container_of(cb, struct raid1_plug_cb, cb);
153	bio_list_add(&plug->pending, bio);
154	if (++plug->count / MAX_PLUG_BIO >= copies) {
155		list_del(&cb->list);
156		cb->callback(cb, false);
157	}
158
159
160	return true;
161}
162
163/*
164 * current->bio_list will be set under submit_bio() context, in this case bitmap
165 * io will be added to the list and wait for current io submission to finish,
166 * while current io submission must wait for bitmap io to be done. In order to
167 * avoid such deadlock, submit bitmap io asynchronously.
168 */
169static inline void raid1_prepare_flush_writes(struct mddev *mddev)
170{
171	mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
172}
173
174/*
175 * Used by fix_read_error() to decay the per rdev read_errors.
176 * We halve the read error count for every hour that has elapsed
177 * since the last recorded read error.
178 */
179static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
180{
181	long cur_time_mon;
182	unsigned long hours_since_last;
183	unsigned int read_errors = atomic_read(&rdev->read_errors);
184
185	cur_time_mon = ktime_get_seconds();
186
187	if (rdev->last_read_error == 0) {
188		/* first time we've seen a read error */
189		rdev->last_read_error = cur_time_mon;
190		return;
191	}
192
193	hours_since_last = (long)(cur_time_mon -
194			    rdev->last_read_error) / 3600;
195
196	rdev->last_read_error = cur_time_mon;
197
198	/*
199	 * if hours_since_last is > the number of bits in read_errors
200	 * just set read errors to 0. We do this to avoid
201	 * overflowing the shift of read_errors by hours_since_last.
202	 */
203	if (hours_since_last >= 8 * sizeof(read_errors))
204		atomic_set(&rdev->read_errors, 0);
205	else
206		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
207}
208
209static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev)
210{
211	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
212	int read_errors;
213
214	check_decay_read_errors(mddev, rdev);
215	read_errors =  atomic_inc_return(&rdev->read_errors);
216	if (read_errors > max_read_errors) {
217		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
218			  mdname(mddev), rdev->bdev, read_errors, max_read_errors);
219		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n",
220			  mdname(mddev), rdev->bdev);
221		md_error(mddev, rdev);
222		return true;
223	}
224
225	return false;
226}
227
228/**
229 * raid1_check_read_range() - check a given read range for bad blocks,
230 * available read length is returned;
231 * @rdev: the rdev to read;
232 * @this_sector: read position;
233 * @len: read length;
234 *
235 * helper function for read_balance()
236 *
237 * 1) If there are no bad blocks in the range, @len is returned;
238 * 2) If the range are all bad blocks, 0 is returned;
239 * 3) If there are partial bad blocks:
240 *  - If the bad block range starts after @this_sector, the length of first
241 *  good region is returned;
242 *  - If the bad block range starts before @this_sector, 0 is returned and
243 *  the @len is updated to the offset into the region before we get to the
244 *  good blocks;
245 */
246static inline int raid1_check_read_range(struct md_rdev *rdev,
247					 sector_t this_sector, int *len)
248{
249	sector_t first_bad;
250	int bad_sectors;
251
252	/* no bad block overlap */
253	if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors))
254		return *len;
255
256	/*
257	 * bad block range starts offset into our range so we can return the
258	 * number of sectors before the bad blocks start.
259	 */
260	if (first_bad > this_sector)
261		return first_bad - this_sector;
262
263	/* read range is fully consumed by bad blocks. */
264	if (this_sector + *len <= first_bad + bad_sectors)
265		return 0;
266
267	/*
268	 * final case, bad block range starts before or at the start of our
269	 * range but does not cover our entire range so we still return 0 but
270	 * update the length with the number of sectors before we get to the
271	 * good ones.
272	 */
273	*len = first_bad + bad_sectors - this_sector;
274	return 0;
275}
276
277/*
278 * Check if read should choose the first rdev.
279 *
280 * Balance on the whole device if no resync is going on (recovery is ok) or
281 * below the resync window. Otherwise, take the first readable disk.
282 */
283static inline bool raid1_should_read_first(struct mddev *mddev,
284					   sector_t this_sector, int len)
285{
286	if ((mddev->recovery_cp < this_sector + len))
287		return true;
288
289	if (mddev_is_clustered(mddev) &&
290	    md_cluster_ops->area_resyncing(mddev, READ, this_sector,
291					   this_sector + len))
292		return true;
293
294	return false;
295}