Loading...
1/*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/errno.h>
25#include <linux/firewire.h>
26#include <linux/firewire-constants.h>
27#include <linux/fs.h>
28#include <linux/init.h>
29#include <linux/idr.h>
30#include <linux/jiffies.h>
31#include <linux/kernel.h>
32#include <linux/list.h>
33#include <linux/module.h>
34#include <linux/slab.h>
35#include <linux/spinlock.h>
36#include <linux/string.h>
37#include <linux/timer.h>
38#include <linux/types.h>
39#include <linux/workqueue.h>
40
41#include <asm/byteorder.h>
42
43#include "core.h"
44
45#define HEADER_PRI(pri) ((pri) << 0)
46#define HEADER_TCODE(tcode) ((tcode) << 4)
47#define HEADER_RETRY(retry) ((retry) << 8)
48#define HEADER_TLABEL(tlabel) ((tlabel) << 10)
49#define HEADER_DESTINATION(destination) ((destination) << 16)
50#define HEADER_SOURCE(source) ((source) << 16)
51#define HEADER_RCODE(rcode) ((rcode) << 12)
52#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
53#define HEADER_DATA_LENGTH(length) ((length) << 16)
54#define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
55
56#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
57#define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
58#define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
59#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
60#define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
61#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
62#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
63#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
64
65#define HEADER_DESTINATION_IS_BROADCAST(q) \
66 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
67
68#define PHY_PACKET_CONFIG 0x0
69#define PHY_PACKET_LINK_ON 0x1
70#define PHY_PACKET_SELF_ID 0x2
71
72#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
73#define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
74#define PHY_IDENTIFIER(id) ((id) << 30)
75
76/* returns 0 if the split timeout handler is already running */
77static int try_cancel_split_timeout(struct fw_transaction *t)
78{
79 if (t->is_split_transaction)
80 return del_timer(&t->split_timeout_timer);
81 else
82 return 1;
83}
84
85static int close_transaction(struct fw_transaction *transaction,
86 struct fw_card *card, int rcode)
87{
88 struct fw_transaction *t;
89 unsigned long flags;
90
91 spin_lock_irqsave(&card->lock, flags);
92 list_for_each_entry(t, &card->transaction_list, link) {
93 if (t == transaction) {
94 if (!try_cancel_split_timeout(t)) {
95 spin_unlock_irqrestore(&card->lock, flags);
96 goto timed_out;
97 }
98 list_del_init(&t->link);
99 card->tlabel_mask &= ~(1ULL << t->tlabel);
100 break;
101 }
102 }
103 spin_unlock_irqrestore(&card->lock, flags);
104
105 if (&t->link != &card->transaction_list) {
106 t->callback(card, rcode, NULL, 0, t->callback_data);
107 return 0;
108 }
109
110 timed_out:
111 return -ENOENT;
112}
113
114/*
115 * Only valid for transactions that are potentially pending (ie have
116 * been sent).
117 */
118int fw_cancel_transaction(struct fw_card *card,
119 struct fw_transaction *transaction)
120{
121 /*
122 * Cancel the packet transmission if it's still queued. That
123 * will call the packet transmission callback which cancels
124 * the transaction.
125 */
126
127 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
128 return 0;
129
130 /*
131 * If the request packet has already been sent, we need to see
132 * if the transaction is still pending and remove it in that case.
133 */
134
135 return close_transaction(transaction, card, RCODE_CANCELLED);
136}
137EXPORT_SYMBOL(fw_cancel_transaction);
138
139static void split_transaction_timeout_callback(unsigned long data)
140{
141 struct fw_transaction *t = (struct fw_transaction *)data;
142 struct fw_card *card = t->card;
143 unsigned long flags;
144
145 spin_lock_irqsave(&card->lock, flags);
146 if (list_empty(&t->link)) {
147 spin_unlock_irqrestore(&card->lock, flags);
148 return;
149 }
150 list_del(&t->link);
151 card->tlabel_mask &= ~(1ULL << t->tlabel);
152 spin_unlock_irqrestore(&card->lock, flags);
153
154 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
155}
156
157static void start_split_transaction_timeout(struct fw_transaction *t,
158 struct fw_card *card)
159{
160 unsigned long flags;
161
162 spin_lock_irqsave(&card->lock, flags);
163
164 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
165 spin_unlock_irqrestore(&card->lock, flags);
166 return;
167 }
168
169 t->is_split_transaction = true;
170 mod_timer(&t->split_timeout_timer,
171 jiffies + card->split_timeout_jiffies);
172
173 spin_unlock_irqrestore(&card->lock, flags);
174}
175
176static void transmit_complete_callback(struct fw_packet *packet,
177 struct fw_card *card, int status)
178{
179 struct fw_transaction *t =
180 container_of(packet, struct fw_transaction, packet);
181
182 switch (status) {
183 case ACK_COMPLETE:
184 close_transaction(t, card, RCODE_COMPLETE);
185 break;
186 case ACK_PENDING:
187 start_split_transaction_timeout(t, card);
188 break;
189 case ACK_BUSY_X:
190 case ACK_BUSY_A:
191 case ACK_BUSY_B:
192 close_transaction(t, card, RCODE_BUSY);
193 break;
194 case ACK_DATA_ERROR:
195 close_transaction(t, card, RCODE_DATA_ERROR);
196 break;
197 case ACK_TYPE_ERROR:
198 close_transaction(t, card, RCODE_TYPE_ERROR);
199 break;
200 default:
201 /*
202 * In this case the ack is really a juju specific
203 * rcode, so just forward that to the callback.
204 */
205 close_transaction(t, card, status);
206 break;
207 }
208}
209
210static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
211 int destination_id, int source_id, int generation, int speed,
212 unsigned long long offset, void *payload, size_t length)
213{
214 int ext_tcode;
215
216 if (tcode == TCODE_STREAM_DATA) {
217 packet->header[0] =
218 HEADER_DATA_LENGTH(length) |
219 destination_id |
220 HEADER_TCODE(TCODE_STREAM_DATA);
221 packet->header_length = 4;
222 packet->payload = payload;
223 packet->payload_length = length;
224
225 goto common;
226 }
227
228 if (tcode > 0x10) {
229 ext_tcode = tcode & ~0x10;
230 tcode = TCODE_LOCK_REQUEST;
231 } else
232 ext_tcode = 0;
233
234 packet->header[0] =
235 HEADER_RETRY(RETRY_X) |
236 HEADER_TLABEL(tlabel) |
237 HEADER_TCODE(tcode) |
238 HEADER_DESTINATION(destination_id);
239 packet->header[1] =
240 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
241 packet->header[2] =
242 offset;
243
244 switch (tcode) {
245 case TCODE_WRITE_QUADLET_REQUEST:
246 packet->header[3] = *(u32 *)payload;
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 case TCODE_LOCK_REQUEST:
252 case TCODE_WRITE_BLOCK_REQUEST:
253 packet->header[3] =
254 HEADER_DATA_LENGTH(length) |
255 HEADER_EXTENDED_TCODE(ext_tcode);
256 packet->header_length = 16;
257 packet->payload = payload;
258 packet->payload_length = length;
259 break;
260
261 case TCODE_READ_QUADLET_REQUEST:
262 packet->header_length = 12;
263 packet->payload_length = 0;
264 break;
265
266 case TCODE_READ_BLOCK_REQUEST:
267 packet->header[3] =
268 HEADER_DATA_LENGTH(length) |
269 HEADER_EXTENDED_TCODE(ext_tcode);
270 packet->header_length = 16;
271 packet->payload_length = 0;
272 break;
273
274 default:
275 WARN(1, "wrong tcode %d\n", tcode);
276 }
277 common:
278 packet->speed = speed;
279 packet->generation = generation;
280 packet->ack = 0;
281 packet->payload_mapped = false;
282}
283
284static int allocate_tlabel(struct fw_card *card)
285{
286 int tlabel;
287
288 tlabel = card->current_tlabel;
289 while (card->tlabel_mask & (1ULL << tlabel)) {
290 tlabel = (tlabel + 1) & 0x3f;
291 if (tlabel == card->current_tlabel)
292 return -EBUSY;
293 }
294
295 card->current_tlabel = (tlabel + 1) & 0x3f;
296 card->tlabel_mask |= 1ULL << tlabel;
297
298 return tlabel;
299}
300
301/**
302 * fw_send_request() - submit a request packet for transmission
303 * @card: interface to send the request at
304 * @t: transaction instance to which the request belongs
305 * @tcode: transaction code
306 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
307 * @generation: bus generation in which request and response are valid
308 * @speed: transmission speed
309 * @offset: 48bit wide offset into destination's address space
310 * @payload: data payload for the request subaction
311 * @length: length of the payload, in bytes
312 * @callback: function to be called when the transaction is completed
313 * @callback_data: data to be passed to the transaction completion callback
314 *
315 * Submit a request packet into the asynchronous request transmission queue.
316 * Can be called from atomic context. If you prefer a blocking API, use
317 * fw_run_transaction() in a context that can sleep.
318 *
319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
321 *
322 * Make sure that the value in @destination_id is not older than the one in
323 * @generation. Otherwise the request is in danger to be sent to a wrong node.
324 *
325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
327 * It will contain tag, channel, and sy data instead of a node ID then.
328 *
329 * The payload buffer at @data is going to be DMA-mapped except in case of
330 * @length <= 8 or of local (loopback) requests. Hence make sure that the
331 * buffer complies with the restrictions of the streaming DMA mapping API.
332 * @payload must not be freed before the @callback is called.
333 *
334 * In case of request types without payload, @data is NULL and @length is 0.
335 *
336 * After the transaction is completed successfully or unsuccessfully, the
337 * @callback will be called. Among its parameters is the response code which
338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
339 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
342 * generation, or missing ACK respectively.
343 *
344 * Note some timing corner cases: fw_send_request() may complete much earlier
345 * than when the request packet actually hits the wire. On the other hand,
346 * transaction completion and hence execution of @callback may happen even
347 * before fw_send_request() returns.
348 */
349void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
350 int destination_id, int generation, int speed,
351 unsigned long long offset, void *payload, size_t length,
352 fw_transaction_callback_t callback, void *callback_data)
353{
354 unsigned long flags;
355 int tlabel;
356
357 /*
358 * Allocate tlabel from the bitmap and put the transaction on
359 * the list while holding the card spinlock.
360 */
361
362 spin_lock_irqsave(&card->lock, flags);
363
364 tlabel = allocate_tlabel(card);
365 if (tlabel < 0) {
366 spin_unlock_irqrestore(&card->lock, flags);
367 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
368 return;
369 }
370
371 t->node_id = destination_id;
372 t->tlabel = tlabel;
373 t->card = card;
374 t->is_split_transaction = false;
375 setup_timer(&t->split_timeout_timer,
376 split_transaction_timeout_callback, (unsigned long)t);
377 t->callback = callback;
378 t->callback_data = callback_data;
379
380 fw_fill_request(&t->packet, tcode, t->tlabel,
381 destination_id, card->node_id, generation,
382 speed, offset, payload, length);
383 t->packet.callback = transmit_complete_callback;
384
385 list_add_tail(&t->link, &card->transaction_list);
386
387 spin_unlock_irqrestore(&card->lock, flags);
388
389 card->driver->send_request(card, &t->packet);
390}
391EXPORT_SYMBOL(fw_send_request);
392
393struct transaction_callback_data {
394 struct completion done;
395 void *payload;
396 int rcode;
397};
398
399static void transaction_callback(struct fw_card *card, int rcode,
400 void *payload, size_t length, void *data)
401{
402 struct transaction_callback_data *d = data;
403
404 if (rcode == RCODE_COMPLETE)
405 memcpy(d->payload, payload, length);
406 d->rcode = rcode;
407 complete(&d->done);
408}
409
410/**
411 * fw_run_transaction() - send request and sleep until transaction is completed
412 *
413 * Returns the RCODE. See fw_send_request() for parameter documentation.
414 * Unlike fw_send_request(), @data points to the payload of the request or/and
415 * to the payload of the response. DMA mapping restrictions apply to outbound
416 * request payloads of >= 8 bytes but not to inbound response payloads.
417 */
418int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
419 int generation, int speed, unsigned long long offset,
420 void *payload, size_t length)
421{
422 struct transaction_callback_data d;
423 struct fw_transaction t;
424
425 init_timer_on_stack(&t.split_timeout_timer);
426 init_completion(&d.done);
427 d.payload = payload;
428 fw_send_request(card, &t, tcode, destination_id, generation, speed,
429 offset, payload, length, transaction_callback, &d);
430 wait_for_completion(&d.done);
431 destroy_timer_on_stack(&t.split_timeout_timer);
432
433 return d.rcode;
434}
435EXPORT_SYMBOL(fw_run_transaction);
436
437static DEFINE_MUTEX(phy_config_mutex);
438static DECLARE_COMPLETION(phy_config_done);
439
440static void transmit_phy_packet_callback(struct fw_packet *packet,
441 struct fw_card *card, int status)
442{
443 complete(&phy_config_done);
444}
445
446static struct fw_packet phy_config_packet = {
447 .header_length = 12,
448 .header[0] = TCODE_LINK_INTERNAL << 4,
449 .payload_length = 0,
450 .speed = SCODE_100,
451 .callback = transmit_phy_packet_callback,
452};
453
454void fw_send_phy_config(struct fw_card *card,
455 int node_id, int generation, int gap_count)
456{
457 long timeout = DIV_ROUND_UP(HZ, 10);
458 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
459
460 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
461 data |= PHY_CONFIG_ROOT_ID(node_id);
462
463 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
464 gap_count = card->driver->read_phy_reg(card, 1);
465 if (gap_count < 0)
466 return;
467
468 gap_count &= 63;
469 if (gap_count == 63)
470 return;
471 }
472 data |= PHY_CONFIG_GAP_COUNT(gap_count);
473
474 mutex_lock(&phy_config_mutex);
475
476 phy_config_packet.header[1] = data;
477 phy_config_packet.header[2] = ~data;
478 phy_config_packet.generation = generation;
479 INIT_COMPLETION(phy_config_done);
480
481 card->driver->send_request(card, &phy_config_packet);
482 wait_for_completion_timeout(&phy_config_done, timeout);
483
484 mutex_unlock(&phy_config_mutex);
485}
486
487static struct fw_address_handler *lookup_overlapping_address_handler(
488 struct list_head *list, unsigned long long offset, size_t length)
489{
490 struct fw_address_handler *handler;
491
492 list_for_each_entry(handler, list, link) {
493 if (handler->offset < offset + length &&
494 offset < handler->offset + handler->length)
495 return handler;
496 }
497
498 return NULL;
499}
500
501static bool is_enclosing_handler(struct fw_address_handler *handler,
502 unsigned long long offset, size_t length)
503{
504 return handler->offset <= offset &&
505 offset + length <= handler->offset + handler->length;
506}
507
508static struct fw_address_handler *lookup_enclosing_address_handler(
509 struct list_head *list, unsigned long long offset, size_t length)
510{
511 struct fw_address_handler *handler;
512
513 list_for_each_entry(handler, list, link) {
514 if (is_enclosing_handler(handler, offset, length))
515 return handler;
516 }
517
518 return NULL;
519}
520
521static DEFINE_SPINLOCK(address_handler_lock);
522static LIST_HEAD(address_handler_list);
523
524const struct fw_address_region fw_high_memory_region =
525 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
526EXPORT_SYMBOL(fw_high_memory_region);
527
528#if 0
529const struct fw_address_region fw_low_memory_region =
530 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
531const struct fw_address_region fw_private_region =
532 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
533const struct fw_address_region fw_csr_region =
534 { .start = CSR_REGISTER_BASE,
535 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
536const struct fw_address_region fw_unit_space_region =
537 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
538#endif /* 0 */
539
540static bool is_in_fcp_region(u64 offset, size_t length)
541{
542 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
543 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
544}
545
546/**
547 * fw_core_add_address_handler() - register for incoming requests
548 * @handler: callback
549 * @region: region in the IEEE 1212 node space address range
550 *
551 * region->start, ->end, and handler->length have to be quadlet-aligned.
552 *
553 * When a request is received that falls within the specified address range,
554 * the specified callback is invoked. The parameters passed to the callback
555 * give the details of the particular request.
556 *
557 * Return value: 0 on success, non-zero otherwise.
558 *
559 * The start offset of the handler's address region is determined by
560 * fw_core_add_address_handler() and is returned in handler->offset.
561 *
562 * Address allocations are exclusive, except for the FCP registers.
563 */
564int fw_core_add_address_handler(struct fw_address_handler *handler,
565 const struct fw_address_region *region)
566{
567 struct fw_address_handler *other;
568 int ret = -EBUSY;
569
570 if (region->start & 0xffff000000000003ULL ||
571 region->start >= region->end ||
572 region->end > 0x0001000000000000ULL ||
573 handler->length & 3 ||
574 handler->length == 0)
575 return -EINVAL;
576
577 spin_lock_bh(&address_handler_lock);
578
579 handler->offset = region->start;
580 while (handler->offset + handler->length <= region->end) {
581 if (is_in_fcp_region(handler->offset, handler->length))
582 other = NULL;
583 else
584 other = lookup_overlapping_address_handler
585 (&address_handler_list,
586 handler->offset, handler->length);
587 if (other != NULL) {
588 handler->offset += other->length;
589 } else {
590 list_add_tail(&handler->link, &address_handler_list);
591 ret = 0;
592 break;
593 }
594 }
595
596 spin_unlock_bh(&address_handler_lock);
597
598 return ret;
599}
600EXPORT_SYMBOL(fw_core_add_address_handler);
601
602/**
603 * fw_core_remove_address_handler() - unregister an address handler
604 *
605 * When fw_core_remove_address_handler() returns, @handler->callback() is
606 * guaranteed to not run on any CPU anymore.
607 */
608void fw_core_remove_address_handler(struct fw_address_handler *handler)
609{
610 spin_lock_bh(&address_handler_lock);
611 list_del(&handler->link);
612 spin_unlock_bh(&address_handler_lock);
613}
614EXPORT_SYMBOL(fw_core_remove_address_handler);
615
616struct fw_request {
617 struct fw_packet response;
618 u32 request_header[4];
619 int ack;
620 u32 length;
621 u32 data[0];
622};
623
624static void free_response_callback(struct fw_packet *packet,
625 struct fw_card *card, int status)
626{
627 struct fw_request *request;
628
629 request = container_of(packet, struct fw_request, response);
630 kfree(request);
631}
632
633int fw_get_response_length(struct fw_request *r)
634{
635 int tcode, ext_tcode, data_length;
636
637 tcode = HEADER_GET_TCODE(r->request_header[0]);
638
639 switch (tcode) {
640 case TCODE_WRITE_QUADLET_REQUEST:
641 case TCODE_WRITE_BLOCK_REQUEST:
642 return 0;
643
644 case TCODE_READ_QUADLET_REQUEST:
645 return 4;
646
647 case TCODE_READ_BLOCK_REQUEST:
648 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
649 return data_length;
650
651 case TCODE_LOCK_REQUEST:
652 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
653 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
654 switch (ext_tcode) {
655 case EXTCODE_FETCH_ADD:
656 case EXTCODE_LITTLE_ADD:
657 return data_length;
658 default:
659 return data_length / 2;
660 }
661
662 default:
663 WARN(1, "wrong tcode %d\n", tcode);
664 return 0;
665 }
666}
667
668void fw_fill_response(struct fw_packet *response, u32 *request_header,
669 int rcode, void *payload, size_t length)
670{
671 int tcode, tlabel, extended_tcode, source, destination;
672
673 tcode = HEADER_GET_TCODE(request_header[0]);
674 tlabel = HEADER_GET_TLABEL(request_header[0]);
675 source = HEADER_GET_DESTINATION(request_header[0]);
676 destination = HEADER_GET_SOURCE(request_header[1]);
677 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
678
679 response->header[0] =
680 HEADER_RETRY(RETRY_1) |
681 HEADER_TLABEL(tlabel) |
682 HEADER_DESTINATION(destination);
683 response->header[1] =
684 HEADER_SOURCE(source) |
685 HEADER_RCODE(rcode);
686 response->header[2] = 0;
687
688 switch (tcode) {
689 case TCODE_WRITE_QUADLET_REQUEST:
690 case TCODE_WRITE_BLOCK_REQUEST:
691 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
692 response->header_length = 12;
693 response->payload_length = 0;
694 break;
695
696 case TCODE_READ_QUADLET_REQUEST:
697 response->header[0] |=
698 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
699 if (payload != NULL)
700 response->header[3] = *(u32 *)payload;
701 else
702 response->header[3] = 0;
703 response->header_length = 16;
704 response->payload_length = 0;
705 break;
706
707 case TCODE_READ_BLOCK_REQUEST:
708 case TCODE_LOCK_REQUEST:
709 response->header[0] |= HEADER_TCODE(tcode + 2);
710 response->header[3] =
711 HEADER_DATA_LENGTH(length) |
712 HEADER_EXTENDED_TCODE(extended_tcode);
713 response->header_length = 16;
714 response->payload = payload;
715 response->payload_length = length;
716 break;
717
718 default:
719 WARN(1, "wrong tcode %d\n", tcode);
720 }
721
722 response->payload_mapped = false;
723}
724EXPORT_SYMBOL(fw_fill_response);
725
726static u32 compute_split_timeout_timestamp(struct fw_card *card,
727 u32 request_timestamp)
728{
729 unsigned int cycles;
730 u32 timestamp;
731
732 cycles = card->split_timeout_cycles;
733 cycles += request_timestamp & 0x1fff;
734
735 timestamp = request_timestamp & ~0x1fff;
736 timestamp += (cycles / 8000) << 13;
737 timestamp |= cycles % 8000;
738
739 return timestamp;
740}
741
742static struct fw_request *allocate_request(struct fw_card *card,
743 struct fw_packet *p)
744{
745 struct fw_request *request;
746 u32 *data, length;
747 int request_tcode;
748
749 request_tcode = HEADER_GET_TCODE(p->header[0]);
750 switch (request_tcode) {
751 case TCODE_WRITE_QUADLET_REQUEST:
752 data = &p->header[3];
753 length = 4;
754 break;
755
756 case TCODE_WRITE_BLOCK_REQUEST:
757 case TCODE_LOCK_REQUEST:
758 data = p->payload;
759 length = HEADER_GET_DATA_LENGTH(p->header[3]);
760 break;
761
762 case TCODE_READ_QUADLET_REQUEST:
763 data = NULL;
764 length = 4;
765 break;
766
767 case TCODE_READ_BLOCK_REQUEST:
768 data = NULL;
769 length = HEADER_GET_DATA_LENGTH(p->header[3]);
770 break;
771
772 default:
773 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
774 p->header[0], p->header[1], p->header[2]);
775 return NULL;
776 }
777
778 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
779 if (request == NULL)
780 return NULL;
781
782 request->response.speed = p->speed;
783 request->response.timestamp =
784 compute_split_timeout_timestamp(card, p->timestamp);
785 request->response.generation = p->generation;
786 request->response.ack = 0;
787 request->response.callback = free_response_callback;
788 request->ack = p->ack;
789 request->length = length;
790 if (data)
791 memcpy(request->data, data, length);
792
793 memcpy(request->request_header, p->header, sizeof(p->header));
794
795 return request;
796}
797
798void fw_send_response(struct fw_card *card,
799 struct fw_request *request, int rcode)
800{
801 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
802 return;
803
804 /* unified transaction or broadcast transaction: don't respond */
805 if (request->ack != ACK_PENDING ||
806 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
807 kfree(request);
808 return;
809 }
810
811 if (rcode == RCODE_COMPLETE)
812 fw_fill_response(&request->response, request->request_header,
813 rcode, request->data,
814 fw_get_response_length(request));
815 else
816 fw_fill_response(&request->response, request->request_header,
817 rcode, NULL, 0);
818
819 card->driver->send_response(card, &request->response);
820}
821EXPORT_SYMBOL(fw_send_response);
822
823/**
824 * fw_get_request_speed() - returns speed at which the @request was received
825 */
826int fw_get_request_speed(struct fw_request *request)
827{
828 return request->response.speed;
829}
830EXPORT_SYMBOL(fw_get_request_speed);
831
832static void handle_exclusive_region_request(struct fw_card *card,
833 struct fw_packet *p,
834 struct fw_request *request,
835 unsigned long long offset)
836{
837 struct fw_address_handler *handler;
838 int tcode, destination, source;
839
840 destination = HEADER_GET_DESTINATION(p->header[0]);
841 source = HEADER_GET_SOURCE(p->header[1]);
842 tcode = HEADER_GET_TCODE(p->header[0]);
843 if (tcode == TCODE_LOCK_REQUEST)
844 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
845
846 spin_lock_bh(&address_handler_lock);
847 handler = lookup_enclosing_address_handler(&address_handler_list,
848 offset, request->length);
849 if (handler)
850 handler->address_callback(card, request,
851 tcode, destination, source,
852 p->generation, offset,
853 request->data, request->length,
854 handler->callback_data);
855 spin_unlock_bh(&address_handler_lock);
856
857 if (!handler)
858 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
859}
860
861static void handle_fcp_region_request(struct fw_card *card,
862 struct fw_packet *p,
863 struct fw_request *request,
864 unsigned long long offset)
865{
866 struct fw_address_handler *handler;
867 int tcode, destination, source;
868
869 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
870 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
871 request->length > 0x200) {
872 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
873
874 return;
875 }
876
877 tcode = HEADER_GET_TCODE(p->header[0]);
878 destination = HEADER_GET_DESTINATION(p->header[0]);
879 source = HEADER_GET_SOURCE(p->header[1]);
880
881 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
882 tcode != TCODE_WRITE_BLOCK_REQUEST) {
883 fw_send_response(card, request, RCODE_TYPE_ERROR);
884
885 return;
886 }
887
888 spin_lock_bh(&address_handler_lock);
889 list_for_each_entry(handler, &address_handler_list, link) {
890 if (is_enclosing_handler(handler, offset, request->length))
891 handler->address_callback(card, NULL, tcode,
892 destination, source,
893 p->generation, offset,
894 request->data,
895 request->length,
896 handler->callback_data);
897 }
898 spin_unlock_bh(&address_handler_lock);
899
900 fw_send_response(card, request, RCODE_COMPLETE);
901}
902
903void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
904{
905 struct fw_request *request;
906 unsigned long long offset;
907
908 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
909 return;
910
911 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
912 fw_cdev_handle_phy_packet(card, p);
913 return;
914 }
915
916 request = allocate_request(card, p);
917 if (request == NULL) {
918 /* FIXME: send statically allocated busy packet. */
919 return;
920 }
921
922 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
923 p->header[2];
924
925 if (!is_in_fcp_region(offset, request->length))
926 handle_exclusive_region_request(card, p, request, offset);
927 else
928 handle_fcp_region_request(card, p, request, offset);
929
930}
931EXPORT_SYMBOL(fw_core_handle_request);
932
933void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
934{
935 struct fw_transaction *t;
936 unsigned long flags;
937 u32 *data;
938 size_t data_length;
939 int tcode, tlabel, source, rcode;
940
941 tcode = HEADER_GET_TCODE(p->header[0]);
942 tlabel = HEADER_GET_TLABEL(p->header[0]);
943 source = HEADER_GET_SOURCE(p->header[1]);
944 rcode = HEADER_GET_RCODE(p->header[1]);
945
946 spin_lock_irqsave(&card->lock, flags);
947 list_for_each_entry(t, &card->transaction_list, link) {
948 if (t->node_id == source && t->tlabel == tlabel) {
949 if (!try_cancel_split_timeout(t)) {
950 spin_unlock_irqrestore(&card->lock, flags);
951 goto timed_out;
952 }
953 list_del_init(&t->link);
954 card->tlabel_mask &= ~(1ULL << t->tlabel);
955 break;
956 }
957 }
958 spin_unlock_irqrestore(&card->lock, flags);
959
960 if (&t->link == &card->transaction_list) {
961 timed_out:
962 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
963 source, tlabel);
964 return;
965 }
966
967 /*
968 * FIXME: sanity check packet, is length correct, does tcodes
969 * and addresses match.
970 */
971
972 switch (tcode) {
973 case TCODE_READ_QUADLET_RESPONSE:
974 data = (u32 *) &p->header[3];
975 data_length = 4;
976 break;
977
978 case TCODE_WRITE_RESPONSE:
979 data = NULL;
980 data_length = 0;
981 break;
982
983 case TCODE_READ_BLOCK_RESPONSE:
984 case TCODE_LOCK_RESPONSE:
985 data = p->payload;
986 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
987 break;
988
989 default:
990 /* Should never happen, this is just to shut up gcc. */
991 data = NULL;
992 data_length = 0;
993 break;
994 }
995
996 /*
997 * The response handler may be executed while the request handler
998 * is still pending. Cancel the request handler.
999 */
1000 card->driver->cancel_packet(card, &t->packet);
1001
1002 t->callback(card, rcode, data, data_length, t->callback_data);
1003}
1004EXPORT_SYMBOL(fw_core_handle_response);
1005
1006/**
1007 * fw_rcode_string - convert a firewire result code to an error description
1008 * @rcode: the result code
1009 */
1010const char *fw_rcode_string(int rcode)
1011{
1012 static const char *const names[] = {
1013 [RCODE_COMPLETE] = "no error",
1014 [RCODE_CONFLICT_ERROR] = "conflict error",
1015 [RCODE_DATA_ERROR] = "data error",
1016 [RCODE_TYPE_ERROR] = "type error",
1017 [RCODE_ADDRESS_ERROR] = "address error",
1018 [RCODE_SEND_ERROR] = "send error",
1019 [RCODE_CANCELLED] = "timeout",
1020 [RCODE_BUSY] = "busy",
1021 [RCODE_GENERATION] = "bus reset",
1022 [RCODE_NO_ACK] = "no ack",
1023 };
1024
1025 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1026 return names[rcode];
1027 else
1028 return "unknown";
1029}
1030EXPORT_SYMBOL(fw_rcode_string);
1031
1032static const struct fw_address_region topology_map_region =
1033 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1034 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1035
1036static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1037 int tcode, int destination, int source, int generation,
1038 unsigned long long offset, void *payload, size_t length,
1039 void *callback_data)
1040{
1041 int start;
1042
1043 if (!TCODE_IS_READ_REQUEST(tcode)) {
1044 fw_send_response(card, request, RCODE_TYPE_ERROR);
1045 return;
1046 }
1047
1048 if ((offset & 3) > 0 || (length & 3) > 0) {
1049 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1050 return;
1051 }
1052
1053 start = (offset - topology_map_region.start) / 4;
1054 memcpy(payload, &card->topology_map[start], length);
1055
1056 fw_send_response(card, request, RCODE_COMPLETE);
1057}
1058
1059static struct fw_address_handler topology_map = {
1060 .length = 0x400,
1061 .address_callback = handle_topology_map,
1062};
1063
1064static const struct fw_address_region registers_region =
1065 { .start = CSR_REGISTER_BASE,
1066 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1067
1068static void update_split_timeout(struct fw_card *card)
1069{
1070 unsigned int cycles;
1071
1072 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1073
1074 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1075 cycles = clamp(cycles, 800u, 3u * 8000u);
1076
1077 card->split_timeout_cycles = cycles;
1078 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1079}
1080
1081static void handle_registers(struct fw_card *card, struct fw_request *request,
1082 int tcode, int destination, int source, int generation,
1083 unsigned long long offset, void *payload, size_t length,
1084 void *callback_data)
1085{
1086 int reg = offset & ~CSR_REGISTER_BASE;
1087 __be32 *data = payload;
1088 int rcode = RCODE_COMPLETE;
1089 unsigned long flags;
1090
1091 switch (reg) {
1092 case CSR_PRIORITY_BUDGET:
1093 if (!card->priority_budget_implemented) {
1094 rcode = RCODE_ADDRESS_ERROR;
1095 break;
1096 }
1097 /* else fall through */
1098
1099 case CSR_NODE_IDS:
1100 /*
1101 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1102 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1103 */
1104 /* fall through */
1105
1106 case CSR_STATE_CLEAR:
1107 case CSR_STATE_SET:
1108 case CSR_CYCLE_TIME:
1109 case CSR_BUS_TIME:
1110 case CSR_BUSY_TIMEOUT:
1111 if (tcode == TCODE_READ_QUADLET_REQUEST)
1112 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1113 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1114 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1115 else
1116 rcode = RCODE_TYPE_ERROR;
1117 break;
1118
1119 case CSR_RESET_START:
1120 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1121 card->driver->write_csr(card, CSR_STATE_CLEAR,
1122 CSR_STATE_BIT_ABDICATE);
1123 else
1124 rcode = RCODE_TYPE_ERROR;
1125 break;
1126
1127 case CSR_SPLIT_TIMEOUT_HI:
1128 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1129 *data = cpu_to_be32(card->split_timeout_hi);
1130 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1131 spin_lock_irqsave(&card->lock, flags);
1132 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1133 update_split_timeout(card);
1134 spin_unlock_irqrestore(&card->lock, flags);
1135 } else {
1136 rcode = RCODE_TYPE_ERROR;
1137 }
1138 break;
1139
1140 case CSR_SPLIT_TIMEOUT_LO:
1141 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1142 *data = cpu_to_be32(card->split_timeout_lo);
1143 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1144 spin_lock_irqsave(&card->lock, flags);
1145 card->split_timeout_lo =
1146 be32_to_cpu(*data) & 0xfff80000;
1147 update_split_timeout(card);
1148 spin_unlock_irqrestore(&card->lock, flags);
1149 } else {
1150 rcode = RCODE_TYPE_ERROR;
1151 }
1152 break;
1153
1154 case CSR_MAINT_UTILITY:
1155 if (tcode == TCODE_READ_QUADLET_REQUEST)
1156 *data = card->maint_utility_register;
1157 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1158 card->maint_utility_register = *data;
1159 else
1160 rcode = RCODE_TYPE_ERROR;
1161 break;
1162
1163 case CSR_BROADCAST_CHANNEL:
1164 if (tcode == TCODE_READ_QUADLET_REQUEST)
1165 *data = cpu_to_be32(card->broadcast_channel);
1166 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1167 card->broadcast_channel =
1168 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1169 BROADCAST_CHANNEL_INITIAL;
1170 else
1171 rcode = RCODE_TYPE_ERROR;
1172 break;
1173
1174 case CSR_BUS_MANAGER_ID:
1175 case CSR_BANDWIDTH_AVAILABLE:
1176 case CSR_CHANNELS_AVAILABLE_HI:
1177 case CSR_CHANNELS_AVAILABLE_LO:
1178 /*
1179 * FIXME: these are handled by the OHCI hardware and
1180 * the stack never sees these request. If we add
1181 * support for a new type of controller that doesn't
1182 * handle this in hardware we need to deal with these
1183 * transactions.
1184 */
1185 BUG();
1186 break;
1187
1188 default:
1189 rcode = RCODE_ADDRESS_ERROR;
1190 break;
1191 }
1192
1193 fw_send_response(card, request, rcode);
1194}
1195
1196static struct fw_address_handler registers = {
1197 .length = 0x400,
1198 .address_callback = handle_registers,
1199};
1200
1201MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1202MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1203MODULE_LICENSE("GPL");
1204
1205static const u32 vendor_textual_descriptor[] = {
1206 /* textual descriptor leaf () */
1207 0x00060000,
1208 0x00000000,
1209 0x00000000,
1210 0x4c696e75, /* L i n u */
1211 0x78204669, /* x F i */
1212 0x72657769, /* r e w i */
1213 0x72650000, /* r e */
1214};
1215
1216static const u32 model_textual_descriptor[] = {
1217 /* model descriptor leaf () */
1218 0x00030000,
1219 0x00000000,
1220 0x00000000,
1221 0x4a756a75, /* J u j u */
1222};
1223
1224static struct fw_descriptor vendor_id_descriptor = {
1225 .length = ARRAY_SIZE(vendor_textual_descriptor),
1226 .immediate = 0x03d00d1e,
1227 .key = 0x81000000,
1228 .data = vendor_textual_descriptor,
1229};
1230
1231static struct fw_descriptor model_id_descriptor = {
1232 .length = ARRAY_SIZE(model_textual_descriptor),
1233 .immediate = 0x17000001,
1234 .key = 0x81000000,
1235 .data = model_textual_descriptor,
1236};
1237
1238static int __init fw_core_init(void)
1239{
1240 int ret;
1241
1242 fw_workqueue = alloc_workqueue("firewire",
1243 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1244 if (!fw_workqueue)
1245 return -ENOMEM;
1246
1247 ret = bus_register(&fw_bus_type);
1248 if (ret < 0) {
1249 destroy_workqueue(fw_workqueue);
1250 return ret;
1251 }
1252
1253 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1254 if (fw_cdev_major < 0) {
1255 bus_unregister(&fw_bus_type);
1256 destroy_workqueue(fw_workqueue);
1257 return fw_cdev_major;
1258 }
1259
1260 fw_core_add_address_handler(&topology_map, &topology_map_region);
1261 fw_core_add_address_handler(®isters, ®isters_region);
1262 fw_core_add_descriptor(&vendor_id_descriptor);
1263 fw_core_add_descriptor(&model_id_descriptor);
1264
1265 return 0;
1266}
1267
1268static void __exit fw_core_cleanup(void)
1269{
1270 unregister_chrdev(fw_cdev_major, "firewire");
1271 bus_unregister(&fw_bus_type);
1272 destroy_workqueue(fw_workqueue);
1273 idr_destroy(&fw_device_idr);
1274}
1275
1276module_init(fw_core_init);
1277module_exit(fw_core_cleanup);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/completion.h>
10#include <linux/device.h>
11#include <linux/errno.h>
12#include <linux/firewire.h>
13#include <linux/firewire-constants.h>
14#include <linux/fs.h>
15#include <linux/init.h>
16#include <linux/jiffies.h>
17#include <linux/kernel.h>
18#include <linux/list.h>
19#include <linux/module.h>
20#include <linux/rculist.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/timer.h>
25#include <linux/types.h>
26#include <linux/workqueue.h>
27
28#include <asm/byteorder.h>
29
30#include "core.h"
31#include "packet-header-definitions.h"
32#include "phy-packet-definitions.h"
33#include <trace/events/firewire.h>
34
35#define HEADER_DESTINATION_IS_BROADCAST(header) \
36 ((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38/* returns 0 if the split timeout handler is already running */
39static int try_cancel_split_timeout(struct fw_transaction *t)
40{
41 if (t->is_split_transaction)
42 return del_timer(&t->split_timeout_timer);
43 else
44 return 1;
45}
46
47static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 u32 response_tstamp)
49{
50 struct fw_transaction *t = NULL, *iter;
51
52 scoped_guard(spinlock_irqsave, &card->lock) {
53 list_for_each_entry(iter, &card->transaction_list, link) {
54 if (iter == transaction) {
55 if (try_cancel_split_timeout(iter)) {
56 list_del_init(&iter->link);
57 card->tlabel_mask &= ~(1ULL << iter->tlabel);
58 t = iter;
59 }
60 break;
61 }
62 }
63 }
64
65 if (!t)
66 return -ENOENT;
67
68 if (!t->with_tstamp) {
69 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
70 } else {
71 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
72 t->callback_data);
73 }
74
75 return 0;
76}
77
78/*
79 * Only valid for transactions that are potentially pending (ie have
80 * been sent).
81 */
82int fw_cancel_transaction(struct fw_card *card,
83 struct fw_transaction *transaction)
84{
85 u32 tstamp;
86
87 /*
88 * Cancel the packet transmission if it's still queued. That
89 * will call the packet transmission callback which cancels
90 * the transaction.
91 */
92
93 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
94 return 0;
95
96 /*
97 * If the request packet has already been sent, we need to see
98 * if the transaction is still pending and remove it in that case.
99 */
100
101 if (transaction->packet.ack == 0) {
102 // The timestamp is reused since it was just read now.
103 tstamp = transaction->packet.timestamp;
104 } else {
105 u32 curr_cycle_time = 0;
106
107 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
108 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
109 }
110
111 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
112}
113EXPORT_SYMBOL(fw_cancel_transaction);
114
115static void split_transaction_timeout_callback(struct timer_list *timer)
116{
117 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
118 struct fw_card *card = t->card;
119
120 scoped_guard(spinlock_irqsave, &card->lock) {
121 if (list_empty(&t->link))
122 return;
123 list_del(&t->link);
124 card->tlabel_mask &= ~(1ULL << t->tlabel);
125 }
126
127 if (!t->with_tstamp) {
128 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
129 } else {
130 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
131 t->split_timeout_cycle, NULL, 0, t->callback_data);
132 }
133}
134
135static void start_split_transaction_timeout(struct fw_transaction *t,
136 struct fw_card *card)
137{
138 guard(spinlock_irqsave)(&card->lock);
139
140 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
141 return;
142
143 t->is_split_transaction = true;
144 mod_timer(&t->split_timeout_timer,
145 jiffies + card->split_timeout_jiffies);
146}
147
148static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
149
150static void transmit_complete_callback(struct fw_packet *packet,
151 struct fw_card *card, int status)
152{
153 struct fw_transaction *t =
154 container_of(packet, struct fw_transaction, packet);
155
156 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
157 packet->speed, status, packet->timestamp);
158
159 switch (status) {
160 case ACK_COMPLETE:
161 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
162 break;
163 case ACK_PENDING:
164 {
165 t->split_timeout_cycle =
166 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
167 start_split_transaction_timeout(t, card);
168 break;
169 }
170 case ACK_BUSY_X:
171 case ACK_BUSY_A:
172 case ACK_BUSY_B:
173 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
174 break;
175 case ACK_DATA_ERROR:
176 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
177 break;
178 case ACK_TYPE_ERROR:
179 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
180 break;
181 default:
182 /*
183 * In this case the ack is really a juju specific
184 * rcode, so just forward that to the callback.
185 */
186 close_transaction(t, card, status, packet->timestamp);
187 break;
188 }
189}
190
191static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
192 int destination_id, int source_id, int generation, int speed,
193 unsigned long long offset, void *payload, size_t length)
194{
195 int ext_tcode;
196
197 if (tcode == TCODE_STREAM_DATA) {
198 // The value of destination_id argument should include tag, channel, and sy fields
199 // as isochronous packet header has.
200 packet->header[0] = destination_id;
201 isoc_header_set_data_length(packet->header, length);
202 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
203 packet->header_length = 4;
204 packet->payload = payload;
205 packet->payload_length = length;
206
207 goto common;
208 }
209
210 if (tcode > 0x10) {
211 ext_tcode = tcode & ~0x10;
212 tcode = TCODE_LOCK_REQUEST;
213 } else
214 ext_tcode = 0;
215
216 async_header_set_retry(packet->header, RETRY_X);
217 async_header_set_tlabel(packet->header, tlabel);
218 async_header_set_tcode(packet->header, tcode);
219 async_header_set_destination(packet->header, destination_id);
220 async_header_set_source(packet->header, source_id);
221 async_header_set_offset(packet->header, offset);
222
223 switch (tcode) {
224 case TCODE_WRITE_QUADLET_REQUEST:
225 async_header_set_quadlet_data(packet->header, *(u32 *)payload);
226 packet->header_length = 16;
227 packet->payload_length = 0;
228 break;
229
230 case TCODE_LOCK_REQUEST:
231 case TCODE_WRITE_BLOCK_REQUEST:
232 async_header_set_data_length(packet->header, length);
233 async_header_set_extended_tcode(packet->header, ext_tcode);
234 packet->header_length = 16;
235 packet->payload = payload;
236 packet->payload_length = length;
237 break;
238
239 case TCODE_READ_QUADLET_REQUEST:
240 packet->header_length = 12;
241 packet->payload_length = 0;
242 break;
243
244 case TCODE_READ_BLOCK_REQUEST:
245 async_header_set_data_length(packet->header, length);
246 async_header_set_extended_tcode(packet->header, ext_tcode);
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 default:
252 WARN(1, "wrong tcode %d\n", tcode);
253 }
254 common:
255 packet->speed = speed;
256 packet->generation = generation;
257 packet->ack = 0;
258 packet->payload_mapped = false;
259}
260
261static int allocate_tlabel(struct fw_card *card)
262{
263 int tlabel;
264
265 tlabel = card->current_tlabel;
266 while (card->tlabel_mask & (1ULL << tlabel)) {
267 tlabel = (tlabel + 1) & 0x3f;
268 if (tlabel == card->current_tlabel)
269 return -EBUSY;
270 }
271
272 card->current_tlabel = (tlabel + 1) & 0x3f;
273 card->tlabel_mask |= 1ULL << tlabel;
274
275 return tlabel;
276}
277
278/**
279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
280 * subaction with or without time stamp.
281 * @card: interface to send the request at
282 * @t: transaction instance to which the request belongs
283 * @tcode: transaction code
284 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
285 * @generation: bus generation in which request and response are valid
286 * @speed: transmission speed
287 * @offset: 48bit wide offset into destination's address space
288 * @payload: data payload for the request subaction
289 * @length: length of the payload, in bytes
290 * @callback: union of two functions whether to receive time stamp or not for response
291 * subaction.
292 * @with_tstamp: Whether to receive time stamp or not for response subaction.
293 * @callback_data: data to be passed to the transaction completion callback
294 *
295 * Submit a request packet into the asynchronous request transmission queue.
296 * Can be called from atomic context. If you prefer a blocking API, use
297 * fw_run_transaction() in a context that can sleep.
298 *
299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
301 *
302 * Make sure that the value in @destination_id is not older than the one in
303 * @generation. Otherwise the request is in danger to be sent to a wrong node.
304 *
305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
307 * It will contain tag, channel, and sy data instead of a node ID then.
308 *
309 * The payload buffer at @data is going to be DMA-mapped except in case of
310 * @length <= 8 or of local (loopback) requests. Hence make sure that the
311 * buffer complies with the restrictions of the streaming DMA mapping API.
312 * @payload must not be freed before the @callback is called.
313 *
314 * In case of request types without payload, @data is NULL and @length is 0.
315 *
316 * After the transaction is completed successfully or unsuccessfully, the
317 * @callback will be called. Among its parameters is the response code which
318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
319 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
322 * generation, or missing ACK respectively.
323 *
324 * Note some timing corner cases: fw_send_request() may complete much earlier
325 * than when the request packet actually hits the wire. On the other hand,
326 * transaction completion and hence execution of @callback may happen even
327 * before fw_send_request() returns.
328 */
329void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
330 int destination_id, int generation, int speed, unsigned long long offset,
331 void *payload, size_t length, union fw_transaction_callback callback,
332 bool with_tstamp, void *callback_data)
333{
334 unsigned long flags;
335 int tlabel;
336
337 /*
338 * Allocate tlabel from the bitmap and put the transaction on
339 * the list while holding the card spinlock.
340 */
341
342 spin_lock_irqsave(&card->lock, flags);
343
344 tlabel = allocate_tlabel(card);
345 if (tlabel < 0) {
346 spin_unlock_irqrestore(&card->lock, flags);
347 if (!with_tstamp) {
348 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
349 } else {
350 // Timestamping on behalf of hardware.
351 u32 curr_cycle_time = 0;
352 u32 tstamp;
353
354 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
355 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
356
357 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
358 callback_data);
359 }
360 return;
361 }
362
363 t->node_id = destination_id;
364 t->tlabel = tlabel;
365 t->card = card;
366 t->is_split_transaction = false;
367 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
368 t->callback = callback;
369 t->with_tstamp = with_tstamp;
370 t->callback_data = callback_data;
371
372 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
373 speed, offset, payload, length);
374 t->packet.callback = transmit_complete_callback;
375
376 list_add_tail(&t->link, &card->transaction_list);
377
378 spin_unlock_irqrestore(&card->lock, flags);
379
380 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
381 t->packet.header, payload,
382 tcode_is_read_request(tcode) ? 0 : length / 4);
383
384 card->driver->send_request(card, &t->packet);
385}
386EXPORT_SYMBOL_GPL(__fw_send_request);
387
388struct transaction_callback_data {
389 struct completion done;
390 void *payload;
391 int rcode;
392};
393
394static void transaction_callback(struct fw_card *card, int rcode,
395 void *payload, size_t length, void *data)
396{
397 struct transaction_callback_data *d = data;
398
399 if (rcode == RCODE_COMPLETE)
400 memcpy(d->payload, payload, length);
401 d->rcode = rcode;
402 complete(&d->done);
403}
404
405/**
406 * fw_run_transaction() - send request and sleep until transaction is completed
407 * @card: card interface for this request
408 * @tcode: transaction code
409 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
410 * @generation: bus generation in which request and response are valid
411 * @speed: transmission speed
412 * @offset: 48bit wide offset into destination's address space
413 * @payload: data payload for the request subaction
414 * @length: length of the payload, in bytes
415 *
416 * Returns the RCODE. See fw_send_request() for parameter documentation.
417 * Unlike fw_send_request(), @data points to the payload of the request or/and
418 * to the payload of the response. DMA mapping restrictions apply to outbound
419 * request payloads of >= 8 bytes but not to inbound response payloads.
420 */
421int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
422 int generation, int speed, unsigned long long offset,
423 void *payload, size_t length)
424{
425 struct transaction_callback_data d;
426 struct fw_transaction t;
427
428 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
429 init_completion(&d.done);
430 d.payload = payload;
431 fw_send_request(card, &t, tcode, destination_id, generation, speed,
432 offset, payload, length, transaction_callback, &d);
433 wait_for_completion(&d.done);
434 destroy_timer_on_stack(&t.split_timeout_timer);
435
436 return d.rcode;
437}
438EXPORT_SYMBOL(fw_run_transaction);
439
440static DEFINE_MUTEX(phy_config_mutex);
441static DECLARE_COMPLETION(phy_config_done);
442
443static void transmit_phy_packet_callback(struct fw_packet *packet,
444 struct fw_card *card, int status)
445{
446 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
447 packet->timestamp);
448 complete(&phy_config_done);
449}
450
451static struct fw_packet phy_config_packet = {
452 .header_length = 12,
453 .payload_length = 0,
454 .speed = SCODE_100,
455 .callback = transmit_phy_packet_callback,
456};
457
458void fw_send_phy_config(struct fw_card *card,
459 int node_id, int generation, int gap_count)
460{
461 long timeout = DIV_ROUND_UP(HZ, 10);
462 u32 data = 0;
463
464 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
465
466 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
467 phy_packet_phy_config_set_root_id(&data, node_id);
468 phy_packet_phy_config_set_force_root_node(&data, true);
469 }
470
471 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
472 gap_count = card->driver->read_phy_reg(card, 1);
473 if (gap_count < 0)
474 return;
475
476 gap_count &= 63;
477 if (gap_count == 63)
478 return;
479 }
480 phy_packet_phy_config_set_gap_count(&data, gap_count);
481 phy_packet_phy_config_set_gap_count_optimization(&data, true);
482
483 guard(mutex)(&phy_config_mutex);
484
485 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
486 phy_config_packet.header[1] = data;
487 phy_config_packet.header[2] = ~data;
488 phy_config_packet.generation = generation;
489 reinit_completion(&phy_config_done);
490
491 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
492 phy_config_packet.generation, phy_config_packet.header[1],
493 phy_config_packet.header[2]);
494
495 card->driver->send_request(card, &phy_config_packet);
496 wait_for_completion_timeout(&phy_config_done, timeout);
497}
498
499static struct fw_address_handler *lookup_overlapping_address_handler(
500 struct list_head *list, unsigned long long offset, size_t length)
501{
502 struct fw_address_handler *handler;
503
504 list_for_each_entry_rcu(handler, list, link) {
505 if (handler->offset < offset + length &&
506 offset < handler->offset + handler->length)
507 return handler;
508 }
509
510 return NULL;
511}
512
513static bool is_enclosing_handler(struct fw_address_handler *handler,
514 unsigned long long offset, size_t length)
515{
516 return handler->offset <= offset &&
517 offset + length <= handler->offset + handler->length;
518}
519
520static struct fw_address_handler *lookup_enclosing_address_handler(
521 struct list_head *list, unsigned long long offset, size_t length)
522{
523 struct fw_address_handler *handler;
524
525 list_for_each_entry_rcu(handler, list, link) {
526 if (is_enclosing_handler(handler, offset, length))
527 return handler;
528 }
529
530 return NULL;
531}
532
533static DEFINE_SPINLOCK(address_handler_list_lock);
534static LIST_HEAD(address_handler_list);
535
536const struct fw_address_region fw_high_memory_region =
537 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
538EXPORT_SYMBOL(fw_high_memory_region);
539
540static const struct fw_address_region low_memory_region =
541 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
542
543#if 0
544const struct fw_address_region fw_private_region =
545 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
546const struct fw_address_region fw_csr_region =
547 { .start = CSR_REGISTER_BASE,
548 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
549const struct fw_address_region fw_unit_space_region =
550 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
551#endif /* 0 */
552
553/**
554 * fw_core_add_address_handler() - register for incoming requests
555 * @handler: callback
556 * @region: region in the IEEE 1212 node space address range
557 *
558 * region->start, ->end, and handler->length have to be quadlet-aligned.
559 *
560 * When a request is received that falls within the specified address range,
561 * the specified callback is invoked. The parameters passed to the callback
562 * give the details of the particular request.
563 *
564 * To be called in process context.
565 * Return value: 0 on success, non-zero otherwise.
566 *
567 * The start offset of the handler's address region is determined by
568 * fw_core_add_address_handler() and is returned in handler->offset.
569 *
570 * Address allocations are exclusive, except for the FCP registers.
571 */
572int fw_core_add_address_handler(struct fw_address_handler *handler,
573 const struct fw_address_region *region)
574{
575 struct fw_address_handler *other;
576 int ret = -EBUSY;
577
578 if (region->start & 0xffff000000000003ULL ||
579 region->start >= region->end ||
580 region->end > 0x0001000000000000ULL ||
581 handler->length & 3 ||
582 handler->length == 0)
583 return -EINVAL;
584
585 guard(spinlock)(&address_handler_list_lock);
586
587 handler->offset = region->start;
588 while (handler->offset + handler->length <= region->end) {
589 if (is_in_fcp_region(handler->offset, handler->length))
590 other = NULL;
591 else
592 other = lookup_overlapping_address_handler
593 (&address_handler_list,
594 handler->offset, handler->length);
595 if (other != NULL) {
596 handler->offset += other->length;
597 } else {
598 list_add_tail_rcu(&handler->link, &address_handler_list);
599 ret = 0;
600 break;
601 }
602 }
603
604 return ret;
605}
606EXPORT_SYMBOL(fw_core_add_address_handler);
607
608/**
609 * fw_core_remove_address_handler() - unregister an address handler
610 * @handler: callback
611 *
612 * To be called in process context.
613 *
614 * When fw_core_remove_address_handler() returns, @handler->callback() is
615 * guaranteed to not run on any CPU anymore.
616 */
617void fw_core_remove_address_handler(struct fw_address_handler *handler)
618{
619 scoped_guard(spinlock, &address_handler_list_lock)
620 list_del_rcu(&handler->link);
621
622 synchronize_rcu();
623}
624EXPORT_SYMBOL(fw_core_remove_address_handler);
625
626struct fw_request {
627 struct kref kref;
628 struct fw_packet response;
629 u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
630 int ack;
631 u32 timestamp;
632 u32 length;
633 u32 data[];
634};
635
636void fw_request_get(struct fw_request *request)
637{
638 kref_get(&request->kref);
639}
640
641static void release_request(struct kref *kref)
642{
643 struct fw_request *request = container_of(kref, struct fw_request, kref);
644
645 kfree(request);
646}
647
648void fw_request_put(struct fw_request *request)
649{
650 kref_put(&request->kref, release_request);
651}
652
653static void free_response_callback(struct fw_packet *packet,
654 struct fw_card *card, int status)
655{
656 struct fw_request *request = container_of(packet, struct fw_request, response);
657
658 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
659 packet->speed, status, packet->timestamp);
660
661 // Decrease the reference count since not at in-flight.
662 fw_request_put(request);
663
664 // Decrease the reference count to release the object.
665 fw_request_put(request);
666}
667
668int fw_get_response_length(struct fw_request *r)
669{
670 int tcode, ext_tcode, data_length;
671
672 tcode = async_header_get_tcode(r->request_header);
673
674 switch (tcode) {
675 case TCODE_WRITE_QUADLET_REQUEST:
676 case TCODE_WRITE_BLOCK_REQUEST:
677 return 0;
678
679 case TCODE_READ_QUADLET_REQUEST:
680 return 4;
681
682 case TCODE_READ_BLOCK_REQUEST:
683 data_length = async_header_get_data_length(r->request_header);
684 return data_length;
685
686 case TCODE_LOCK_REQUEST:
687 ext_tcode = async_header_get_extended_tcode(r->request_header);
688 data_length = async_header_get_data_length(r->request_header);
689 switch (ext_tcode) {
690 case EXTCODE_FETCH_ADD:
691 case EXTCODE_LITTLE_ADD:
692 return data_length;
693 default:
694 return data_length / 2;
695 }
696
697 default:
698 WARN(1, "wrong tcode %d\n", tcode);
699 return 0;
700 }
701}
702
703void fw_fill_response(struct fw_packet *response, u32 *request_header,
704 int rcode, void *payload, size_t length)
705{
706 int tcode, tlabel, extended_tcode, source, destination;
707
708 tcode = async_header_get_tcode(request_header);
709 tlabel = async_header_get_tlabel(request_header);
710 source = async_header_get_destination(request_header); // Exchange.
711 destination = async_header_get_source(request_header); // Exchange.
712 extended_tcode = async_header_get_extended_tcode(request_header);
713
714 async_header_set_retry(response->header, RETRY_1);
715 async_header_set_tlabel(response->header, tlabel);
716 async_header_set_destination(response->header, destination);
717 async_header_set_source(response->header, source);
718 async_header_set_rcode(response->header, rcode);
719 response->header[2] = 0; // The field is reserved.
720
721 switch (tcode) {
722 case TCODE_WRITE_QUADLET_REQUEST:
723 case TCODE_WRITE_BLOCK_REQUEST:
724 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
725 response->header_length = 12;
726 response->payload_length = 0;
727 break;
728
729 case TCODE_READ_QUADLET_REQUEST:
730 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
731 if (payload != NULL)
732 async_header_set_quadlet_data(response->header, *(u32 *)payload);
733 else
734 async_header_set_quadlet_data(response->header, 0);
735 response->header_length = 16;
736 response->payload_length = 0;
737 break;
738
739 case TCODE_READ_BLOCK_REQUEST:
740 case TCODE_LOCK_REQUEST:
741 async_header_set_tcode(response->header, tcode + 2);
742 async_header_set_data_length(response->header, length);
743 async_header_set_extended_tcode(response->header, extended_tcode);
744 response->header_length = 16;
745 response->payload = payload;
746 response->payload_length = length;
747 break;
748
749 default:
750 WARN(1, "wrong tcode %d\n", tcode);
751 }
752
753 response->payload_mapped = false;
754}
755EXPORT_SYMBOL(fw_fill_response);
756
757static u32 compute_split_timeout_timestamp(struct fw_card *card,
758 u32 request_timestamp)
759{
760 unsigned int cycles;
761 u32 timestamp;
762
763 cycles = card->split_timeout_cycles;
764 cycles += request_timestamp & 0x1fff;
765
766 timestamp = request_timestamp & ~0x1fff;
767 timestamp += (cycles / 8000) << 13;
768 timestamp |= cycles % 8000;
769
770 return timestamp;
771}
772
773static struct fw_request *allocate_request(struct fw_card *card,
774 struct fw_packet *p)
775{
776 struct fw_request *request;
777 u32 *data, length;
778 int request_tcode;
779
780 request_tcode = async_header_get_tcode(p->header);
781 switch (request_tcode) {
782 case TCODE_WRITE_QUADLET_REQUEST:
783 data = &p->header[3];
784 length = 4;
785 break;
786
787 case TCODE_WRITE_BLOCK_REQUEST:
788 case TCODE_LOCK_REQUEST:
789 data = p->payload;
790 length = async_header_get_data_length(p->header);
791 break;
792
793 case TCODE_READ_QUADLET_REQUEST:
794 data = NULL;
795 length = 4;
796 break;
797
798 case TCODE_READ_BLOCK_REQUEST:
799 data = NULL;
800 length = async_header_get_data_length(p->header);
801 break;
802
803 default:
804 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
805 p->header[0], p->header[1], p->header[2]);
806 return NULL;
807 }
808
809 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
810 if (request == NULL)
811 return NULL;
812 kref_init(&request->kref);
813
814 request->response.speed = p->speed;
815 request->response.timestamp =
816 compute_split_timeout_timestamp(card, p->timestamp);
817 request->response.generation = p->generation;
818 request->response.ack = 0;
819 request->response.callback = free_response_callback;
820 request->ack = p->ack;
821 request->timestamp = p->timestamp;
822 request->length = length;
823 if (data)
824 memcpy(request->data, data, length);
825
826 memcpy(request->request_header, p->header, sizeof(p->header));
827
828 return request;
829}
830
831/**
832 * fw_send_response: - send response packet for asynchronous transaction.
833 * @card: interface to send the response at.
834 * @request: firewire request data for the transaction.
835 * @rcode: response code to send.
836 *
837 * Submit a response packet into the asynchronous response transmission queue. The @request
838 * is going to be released when the transmission successfully finishes later.
839 */
840void fw_send_response(struct fw_card *card,
841 struct fw_request *request, int rcode)
842{
843 u32 *data = NULL;
844 unsigned int data_length = 0;
845
846 /* unified transaction or broadcast transaction: don't respond */
847 if (request->ack != ACK_PENDING ||
848 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
849 fw_request_put(request);
850 return;
851 }
852
853 if (rcode == RCODE_COMPLETE) {
854 data = request->data;
855 data_length = fw_get_response_length(request);
856 }
857
858 fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
859
860 // Increase the reference count so that the object is kept during in-flight.
861 fw_request_get(request);
862
863 trace_async_response_outbound_initiate((uintptr_t)request, card->index,
864 request->response.generation, request->response.speed,
865 request->response.header, data,
866 data ? data_length / 4 : 0);
867
868 card->driver->send_response(card, &request->response);
869}
870EXPORT_SYMBOL(fw_send_response);
871
872/**
873 * fw_get_request_speed() - returns speed at which the @request was received
874 * @request: firewire request data
875 */
876int fw_get_request_speed(struct fw_request *request)
877{
878 return request->response.speed;
879}
880EXPORT_SYMBOL(fw_get_request_speed);
881
882/**
883 * fw_request_get_timestamp: Get timestamp of the request.
884 * @request: The opaque pointer to request structure.
885 *
886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
888 * field of isochronous cycle time register.
889 *
890 * Returns: timestamp of the request.
891 */
892u32 fw_request_get_timestamp(const struct fw_request *request)
893{
894 return request->timestamp;
895}
896EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
897
898static void handle_exclusive_region_request(struct fw_card *card,
899 struct fw_packet *p,
900 struct fw_request *request,
901 unsigned long long offset)
902{
903 struct fw_address_handler *handler;
904 int tcode, destination, source;
905
906 destination = async_header_get_destination(p->header);
907 source = async_header_get_source(p->header);
908 tcode = async_header_get_tcode(p->header);
909 if (tcode == TCODE_LOCK_REQUEST)
910 tcode = 0x10 + async_header_get_extended_tcode(p->header);
911
912 scoped_guard(rcu) {
913 handler = lookup_enclosing_address_handler(&address_handler_list, offset,
914 request->length);
915 if (handler)
916 handler->address_callback(card, request, tcode, destination, source,
917 p->generation, offset, request->data,
918 request->length, handler->callback_data);
919 }
920
921 if (!handler)
922 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
923}
924
925static void handle_fcp_region_request(struct fw_card *card,
926 struct fw_packet *p,
927 struct fw_request *request,
928 unsigned long long offset)
929{
930 struct fw_address_handler *handler;
931 int tcode, destination, source;
932
933 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
934 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
935 request->length > 0x200) {
936 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
937
938 return;
939 }
940
941 tcode = async_header_get_tcode(p->header);
942 destination = async_header_get_destination(p->header);
943 source = async_header_get_source(p->header);
944
945 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
946 tcode != TCODE_WRITE_BLOCK_REQUEST) {
947 fw_send_response(card, request, RCODE_TYPE_ERROR);
948
949 return;
950 }
951
952 scoped_guard(rcu) {
953 list_for_each_entry_rcu(handler, &address_handler_list, link) {
954 if (is_enclosing_handler(handler, offset, request->length))
955 handler->address_callback(card, request, tcode, destination, source,
956 p->generation, offset, request->data,
957 request->length, handler->callback_data);
958 }
959 }
960
961 fw_send_response(card, request, RCODE_COMPLETE);
962}
963
964void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
965{
966 struct fw_request *request;
967 unsigned long long offset;
968 unsigned int tcode;
969
970 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
971 return;
972
973 tcode = async_header_get_tcode(p->header);
974 if (tcode_is_link_internal(tcode)) {
975 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
976 p->header[1], p->header[2]);
977 fw_cdev_handle_phy_packet(card, p);
978 return;
979 }
980
981 request = allocate_request(card, p);
982 if (request == NULL) {
983 /* FIXME: send statically allocated busy packet. */
984 return;
985 }
986
987 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
988 p->ack, p->timestamp, p->header, request->data,
989 tcode_is_read_request(tcode) ? 0 : request->length / 4);
990
991 offset = async_header_get_offset(p->header);
992
993 if (!is_in_fcp_region(offset, request->length))
994 handle_exclusive_region_request(card, p, request, offset);
995 else
996 handle_fcp_region_request(card, p, request, offset);
997
998}
999EXPORT_SYMBOL(fw_core_handle_request);
1000
1001void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002{
1003 struct fw_transaction *t = NULL, *iter;
1004 u32 *data;
1005 size_t data_length;
1006 int tcode, tlabel, source, rcode;
1007
1008 tcode = async_header_get_tcode(p->header);
1009 tlabel = async_header_get_tlabel(p->header);
1010 source = async_header_get_source(p->header);
1011 rcode = async_header_get_rcode(p->header);
1012
1013 // FIXME: sanity check packet, is length correct, does tcodes
1014 // and addresses match to the transaction request queried later.
1015 //
1016 // For the tracepoints event, let us decode the header here against the concern.
1017
1018 switch (tcode) {
1019 case TCODE_READ_QUADLET_RESPONSE:
1020 data = (u32 *) &p->header[3];
1021 data_length = 4;
1022 break;
1023
1024 case TCODE_WRITE_RESPONSE:
1025 data = NULL;
1026 data_length = 0;
1027 break;
1028
1029 case TCODE_READ_BLOCK_RESPONSE:
1030 case TCODE_LOCK_RESPONSE:
1031 data = p->payload;
1032 data_length = async_header_get_data_length(p->header);
1033 break;
1034
1035 default:
1036 /* Should never happen, this is just to shut up gcc. */
1037 data = NULL;
1038 data_length = 0;
1039 break;
1040 }
1041
1042 scoped_guard(spinlock_irqsave, &card->lock) {
1043 list_for_each_entry(iter, &card->transaction_list, link) {
1044 if (iter->node_id == source && iter->tlabel == tlabel) {
1045 if (try_cancel_split_timeout(iter)) {
1046 list_del_init(&iter->link);
1047 card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048 t = iter;
1049 }
1050 break;
1051 }
1052 }
1053 }
1054
1055 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056 p->timestamp, p->header, data, data_length / 4);
1057
1058 if (!t) {
1059 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060 source, tlabel);
1061 return;
1062 }
1063
1064 /*
1065 * The response handler may be executed while the request handler
1066 * is still pending. Cancel the request handler.
1067 */
1068 card->driver->cancel_packet(card, &t->packet);
1069
1070 if (!t->with_tstamp) {
1071 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072 } else {
1073 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074 data_length, t->callback_data);
1075 }
1076}
1077EXPORT_SYMBOL(fw_core_handle_response);
1078
1079/**
1080 * fw_rcode_string - convert a firewire result code to an error description
1081 * @rcode: the result code
1082 */
1083const char *fw_rcode_string(int rcode)
1084{
1085 static const char *const names[] = {
1086 [RCODE_COMPLETE] = "no error",
1087 [RCODE_CONFLICT_ERROR] = "conflict error",
1088 [RCODE_DATA_ERROR] = "data error",
1089 [RCODE_TYPE_ERROR] = "type error",
1090 [RCODE_ADDRESS_ERROR] = "address error",
1091 [RCODE_SEND_ERROR] = "send error",
1092 [RCODE_CANCELLED] = "timeout",
1093 [RCODE_BUSY] = "busy",
1094 [RCODE_GENERATION] = "bus reset",
1095 [RCODE_NO_ACK] = "no ack",
1096 };
1097
1098 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099 return names[rcode];
1100 else
1101 return "unknown";
1102}
1103EXPORT_SYMBOL(fw_rcode_string);
1104
1105static const struct fw_address_region topology_map_region =
1106 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108
1109static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110 int tcode, int destination, int source, int generation,
1111 unsigned long long offset, void *payload, size_t length,
1112 void *callback_data)
1113{
1114 int start;
1115
1116 if (!tcode_is_read_request(tcode)) {
1117 fw_send_response(card, request, RCODE_TYPE_ERROR);
1118 return;
1119 }
1120
1121 if ((offset & 3) > 0 || (length & 3) > 0) {
1122 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123 return;
1124 }
1125
1126 start = (offset - topology_map_region.start) / 4;
1127 memcpy(payload, &card->topology_map[start], length);
1128
1129 fw_send_response(card, request, RCODE_COMPLETE);
1130}
1131
1132static struct fw_address_handler topology_map = {
1133 .length = 0x400,
1134 .address_callback = handle_topology_map,
1135};
1136
1137static const struct fw_address_region registers_region =
1138 { .start = CSR_REGISTER_BASE,
1139 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140
1141static void update_split_timeout(struct fw_card *card)
1142{
1143 unsigned int cycles;
1144
1145 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146
1147 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148 cycles = clamp(cycles, 800u, 3u * 8000u);
1149
1150 card->split_timeout_cycles = cycles;
1151 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152}
1153
1154static void handle_registers(struct fw_card *card, struct fw_request *request,
1155 int tcode, int destination, int source, int generation,
1156 unsigned long long offset, void *payload, size_t length,
1157 void *callback_data)
1158{
1159 int reg = offset & ~CSR_REGISTER_BASE;
1160 __be32 *data = payload;
1161 int rcode = RCODE_COMPLETE;
1162
1163 switch (reg) {
1164 case CSR_PRIORITY_BUDGET:
1165 if (!card->priority_budget_implemented) {
1166 rcode = RCODE_ADDRESS_ERROR;
1167 break;
1168 }
1169 fallthrough;
1170
1171 case CSR_NODE_IDS:
1172 /*
1173 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175 */
1176 fallthrough;
1177
1178 case CSR_STATE_CLEAR:
1179 case CSR_STATE_SET:
1180 case CSR_CYCLE_TIME:
1181 case CSR_BUS_TIME:
1182 case CSR_BUSY_TIMEOUT:
1183 if (tcode == TCODE_READ_QUADLET_REQUEST)
1184 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1185 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187 else
1188 rcode = RCODE_TYPE_ERROR;
1189 break;
1190
1191 case CSR_RESET_START:
1192 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193 card->driver->write_csr(card, CSR_STATE_CLEAR,
1194 CSR_STATE_BIT_ABDICATE);
1195 else
1196 rcode = RCODE_TYPE_ERROR;
1197 break;
1198
1199 case CSR_SPLIT_TIMEOUT_HI:
1200 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201 *data = cpu_to_be32(card->split_timeout_hi);
1202 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203 guard(spinlock_irqsave)(&card->lock);
1204
1205 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206 update_split_timeout(card);
1207 } else {
1208 rcode = RCODE_TYPE_ERROR;
1209 }
1210 break;
1211
1212 case CSR_SPLIT_TIMEOUT_LO:
1213 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214 *data = cpu_to_be32(card->split_timeout_lo);
1215 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216 guard(spinlock_irqsave)(&card->lock);
1217
1218 card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219 update_split_timeout(card);
1220 } else {
1221 rcode = RCODE_TYPE_ERROR;
1222 }
1223 break;
1224
1225 case CSR_MAINT_UTILITY:
1226 if (tcode == TCODE_READ_QUADLET_REQUEST)
1227 *data = card->maint_utility_register;
1228 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229 card->maint_utility_register = *data;
1230 else
1231 rcode = RCODE_TYPE_ERROR;
1232 break;
1233
1234 case CSR_BROADCAST_CHANNEL:
1235 if (tcode == TCODE_READ_QUADLET_REQUEST)
1236 *data = cpu_to_be32(card->broadcast_channel);
1237 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238 card->broadcast_channel =
1239 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240 BROADCAST_CHANNEL_INITIAL;
1241 else
1242 rcode = RCODE_TYPE_ERROR;
1243 break;
1244
1245 case CSR_BUS_MANAGER_ID:
1246 case CSR_BANDWIDTH_AVAILABLE:
1247 case CSR_CHANNELS_AVAILABLE_HI:
1248 case CSR_CHANNELS_AVAILABLE_LO:
1249 /*
1250 * FIXME: these are handled by the OHCI hardware and
1251 * the stack never sees these request. If we add
1252 * support for a new type of controller that doesn't
1253 * handle this in hardware we need to deal with these
1254 * transactions.
1255 */
1256 BUG();
1257 break;
1258
1259 default:
1260 rcode = RCODE_ADDRESS_ERROR;
1261 break;
1262 }
1263
1264 fw_send_response(card, request, rcode);
1265}
1266
1267static struct fw_address_handler registers = {
1268 .length = 0x400,
1269 .address_callback = handle_registers,
1270};
1271
1272static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273 int tcode, int destination, int source, int generation,
1274 unsigned long long offset, void *payload, size_t length,
1275 void *callback_data)
1276{
1277 /*
1278 * This catches requests not handled by the physical DMA unit,
1279 * i.e., wrong transaction types or unauthorized source nodes.
1280 */
1281 fw_send_response(card, request, RCODE_TYPE_ERROR);
1282}
1283
1284static struct fw_address_handler low_memory = {
1285 .length = FW_MAX_PHYSICAL_RANGE,
1286 .address_callback = handle_low_memory,
1287};
1288
1289MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291MODULE_LICENSE("GPL");
1292
1293static const u32 vendor_textual_descriptor[] = {
1294 /* textual descriptor leaf () */
1295 0x00060000,
1296 0x00000000,
1297 0x00000000,
1298 0x4c696e75, /* L i n u */
1299 0x78204669, /* x F i */
1300 0x72657769, /* r e w i */
1301 0x72650000, /* r e */
1302};
1303
1304static const u32 model_textual_descriptor[] = {
1305 /* model descriptor leaf () */
1306 0x00030000,
1307 0x00000000,
1308 0x00000000,
1309 0x4a756a75, /* J u j u */
1310};
1311
1312static struct fw_descriptor vendor_id_descriptor = {
1313 .length = ARRAY_SIZE(vendor_textual_descriptor),
1314 .immediate = 0x03001f11,
1315 .key = 0x81000000,
1316 .data = vendor_textual_descriptor,
1317};
1318
1319static struct fw_descriptor model_id_descriptor = {
1320 .length = ARRAY_SIZE(model_textual_descriptor),
1321 .immediate = 0x17023901,
1322 .key = 0x81000000,
1323 .data = model_textual_descriptor,
1324};
1325
1326static int __init fw_core_init(void)
1327{
1328 int ret;
1329
1330 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331 if (!fw_workqueue)
1332 return -ENOMEM;
1333
1334 ret = bus_register(&fw_bus_type);
1335 if (ret < 0) {
1336 destroy_workqueue(fw_workqueue);
1337 return ret;
1338 }
1339
1340 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341 if (fw_cdev_major < 0) {
1342 bus_unregister(&fw_bus_type);
1343 destroy_workqueue(fw_workqueue);
1344 return fw_cdev_major;
1345 }
1346
1347 fw_core_add_address_handler(&topology_map, &topology_map_region);
1348 fw_core_add_address_handler(®isters, ®isters_region);
1349 fw_core_add_address_handler(&low_memory, &low_memory_region);
1350 fw_core_add_descriptor(&vendor_id_descriptor);
1351 fw_core_add_descriptor(&model_id_descriptor);
1352
1353 return 0;
1354}
1355
1356static void __exit fw_core_cleanup(void)
1357{
1358 unregister_chrdev(fw_cdev_major, "firewire");
1359 bus_unregister(&fw_bus_type);
1360 destroy_workqueue(fw_workqueue);
1361 xa_destroy(&fw_device_xa);
1362}
1363
1364module_init(fw_core_init);
1365module_exit(fw_core_cleanup);