Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include "blk-rq-qos.h"
  4
  5/*
  6 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
  7 * false if 'v' + 1 would be bigger than 'below'.
  8 */
  9static bool atomic_inc_below(atomic_t *v, unsigned int below)
 10{
 11	unsigned int cur = atomic_read(v);
 12
 13	do {
 14		if (cur >= below)
 15			return false;
 16	} while (!atomic_try_cmpxchg(v, &cur, cur + 1));
 17
 18	return true;
 19}
 20
 21bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
 22{
 23	return atomic_inc_below(&rq_wait->inflight, limit);
 24}
 25
 26void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
 27{
 28	do {
 29		if (rqos->ops->cleanup)
 30			rqos->ops->cleanup(rqos, bio);
 31		rqos = rqos->next;
 32	} while (rqos);
 33}
 34
 35void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
 36{
 37	do {
 38		if (rqos->ops->done)
 39			rqos->ops->done(rqos, rq);
 40		rqos = rqos->next;
 41	} while (rqos);
 42}
 43
 44void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
 45{
 46	do {
 47		if (rqos->ops->issue)
 48			rqos->ops->issue(rqos, rq);
 49		rqos = rqos->next;
 50	} while (rqos);
 51}
 52
 53void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
 54{
 55	do {
 56		if (rqos->ops->requeue)
 57			rqos->ops->requeue(rqos, rq);
 58		rqos = rqos->next;
 59	} while (rqos);
 60}
 61
 62void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
 63{
 64	do {
 65		if (rqos->ops->throttle)
 66			rqos->ops->throttle(rqos, bio);
 67		rqos = rqos->next;
 68	} while (rqos);
 69}
 70
 71void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
 72{
 73	do {
 74		if (rqos->ops->track)
 75			rqos->ops->track(rqos, rq, bio);
 76		rqos = rqos->next;
 77	} while (rqos);
 78}
 79
 80void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
 81{
 82	do {
 83		if (rqos->ops->merge)
 84			rqos->ops->merge(rqos, rq, bio);
 85		rqos = rqos->next;
 86	} while (rqos);
 87}
 88
 89void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
 90{
 91	do {
 92		if (rqos->ops->done_bio)
 93			rqos->ops->done_bio(rqos, bio);
 94		rqos = rqos->next;
 95	} while (rqos);
 96}
 97
 98void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
 99{
100	do {
101		if (rqos->ops->queue_depth_changed)
102			rqos->ops->queue_depth_changed(rqos);
103		rqos = rqos->next;
104	} while (rqos);
105}
106
107/*
108 * Return true, if we can't increase the depth further by scaling
109 */
110bool rq_depth_calc_max_depth(struct rq_depth *rqd)
111{
112	unsigned int depth;
113	bool ret = false;
114
115	/*
116	 * For QD=1 devices, this is a special case. It's important for those
117	 * to have one request ready when one completes, so force a depth of
118	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
119	 * since the device can't have more than that in flight. If we're
120	 * scaling down, then keep a setting of 1/1/1.
121	 */
122	if (rqd->queue_depth == 1) {
123		if (rqd->scale_step > 0)
124			rqd->max_depth = 1;
125		else {
126			rqd->max_depth = 2;
127			ret = true;
128		}
129	} else {
130		/*
131		 * scale_step == 0 is our default state. If we have suffered
132		 * latency spikes, step will be > 0, and we shrink the
133		 * allowed write depths. If step is < 0, we're only doing
134		 * writes, and we allow a temporarily higher depth to
135		 * increase performance.
136		 */
137		depth = min_t(unsigned int, rqd->default_depth,
138			      rqd->queue_depth);
139		if (rqd->scale_step > 0)
140			depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
141		else if (rqd->scale_step < 0) {
142			unsigned int maxd = 3 * rqd->queue_depth / 4;
143
144			depth = 1 + ((depth - 1) << -rqd->scale_step);
145			if (depth > maxd) {
146				depth = maxd;
147				ret = true;
148			}
149		}
150
151		rqd->max_depth = depth;
152	}
153
154	return ret;
155}
156
157/* Returns true on success and false if scaling up wasn't possible */
158bool rq_depth_scale_up(struct rq_depth *rqd)
159{
160	/*
161	 * Hit max in previous round, stop here
162	 */
163	if (rqd->scaled_max)
164		return false;
165
166	rqd->scale_step--;
167
168	rqd->scaled_max = rq_depth_calc_max_depth(rqd);
169	return true;
170}
171
172/*
173 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
174 * had a latency violation. Returns true on success and returns false if
175 * scaling down wasn't possible.
176 */
177bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
178{
179	/*
180	 * Stop scaling down when we've hit the limit. This also prevents
181	 * ->scale_step from going to crazy values, if the device can't
182	 * keep up.
183	 */
184	if (rqd->max_depth == 1)
185		return false;
186
187	if (rqd->scale_step < 0 && hard_throttle)
188		rqd->scale_step = 0;
189	else
190		rqd->scale_step++;
191
192	rqd->scaled_max = false;
193	rq_depth_calc_max_depth(rqd);
194	return true;
195}
196
197struct rq_qos_wait_data {
198	struct wait_queue_entry wq;
199	struct task_struct *task;
200	struct rq_wait *rqw;
201	acquire_inflight_cb_t *cb;
202	void *private_data;
203	bool got_token;
204};
205
206static int rq_qos_wake_function(struct wait_queue_entry *curr,
207				unsigned int mode, int wake_flags, void *key)
208{
209	struct rq_qos_wait_data *data = container_of(curr,
210						     struct rq_qos_wait_data,
211						     wq);
212
213	/*
214	 * If we fail to get a budget, return -1 to interrupt the wake up loop
215	 * in __wake_up_common.
216	 */
217	if (!data->cb(data->rqw, data->private_data))
218		return -1;
219
220	data->got_token = true;
221	wake_up_process(data->task);
222	list_del_init_careful(&curr->entry);
223	return 1;
224}
225
226/**
227 * rq_qos_wait - throttle on a rqw if we need to
228 * @rqw: rqw to throttle on
229 * @private_data: caller provided specific data
230 * @acquire_inflight_cb: inc the rqw->inflight counter if we can
231 * @cleanup_cb: the callback to cleanup in case we race with a waker
232 *
233 * This provides a uniform place for the rq_qos users to do their throttling.
234 * Since you can end up with a lot of things sleeping at once, this manages the
235 * waking up based on the resources available.  The acquire_inflight_cb should
236 * inc the rqw->inflight if we have the ability to do so, or return false if not
237 * and then we will sleep until the room becomes available.
238 *
239 * cleanup_cb is in case that we race with a waker and need to cleanup the
240 * inflight count accordingly.
241 */
242void rq_qos_wait(struct rq_wait *rqw, void *private_data,
243		 acquire_inflight_cb_t *acquire_inflight_cb,
244		 cleanup_cb_t *cleanup_cb)
245{
246	struct rq_qos_wait_data data = {
247		.wq = {
248			.func	= rq_qos_wake_function,
249			.entry	= LIST_HEAD_INIT(data.wq.entry),
250		},
251		.task = current,
252		.rqw = rqw,
253		.cb = acquire_inflight_cb,
254		.private_data = private_data,
255	};
256	bool has_sleeper;
257
258	has_sleeper = wq_has_sleeper(&rqw->wait);
259	if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
260		return;
261
262	has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq,
263						 TASK_UNINTERRUPTIBLE);
264	do {
265		/* The memory barrier in set_current_state saves us here. */
266		if (data.got_token)
267			break;
268		if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
269			finish_wait(&rqw->wait, &data.wq);
270
271			/*
272			 * We raced with rq_qos_wake_function() getting a token,
273			 * which means we now have two. Put our local token
274			 * and wake anyone else potentially waiting for one.
275			 */
276			if (data.got_token)
277				cleanup_cb(rqw, private_data);
278			return;
279		}
280		io_schedule();
281		has_sleeper = true;
282		set_current_state(TASK_UNINTERRUPTIBLE);
283	} while (1);
284	finish_wait(&rqw->wait, &data.wq);
285}
286
287void rq_qos_exit(struct request_queue *q)
288{
289	mutex_lock(&q->rq_qos_mutex);
290	while (q->rq_qos) {
291		struct rq_qos *rqos = q->rq_qos;
292		q->rq_qos = rqos->next;
293		rqos->ops->exit(rqos);
294	}
295	mutex_unlock(&q->rq_qos_mutex);
296}
297
298int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id,
299		const struct rq_qos_ops *ops)
300{
301	struct request_queue *q = disk->queue;
302
303	lockdep_assert_held(&q->rq_qos_mutex);
304
305	rqos->disk = disk;
306	rqos->id = id;
307	rqos->ops = ops;
308
309	/*
310	 * No IO can be in-flight when adding rqos, so freeze queue, which
311	 * is fine since we only support rq_qos for blk-mq queue.
312	 */
313	blk_mq_freeze_queue(q);
314
315	if (rq_qos_id(q, rqos->id))
316		goto ebusy;
317	rqos->next = q->rq_qos;
318	q->rq_qos = rqos;
319
320	blk_mq_unfreeze_queue(q);
321
322	if (rqos->ops->debugfs_attrs) {
323		mutex_lock(&q->debugfs_mutex);
324		blk_mq_debugfs_register_rqos(rqos);
325		mutex_unlock(&q->debugfs_mutex);
326	}
327
328	return 0;
329ebusy:
330	blk_mq_unfreeze_queue(q);
331	return -EBUSY;
332}
333
334void rq_qos_del(struct rq_qos *rqos)
335{
336	struct request_queue *q = rqos->disk->queue;
337	struct rq_qos **cur;
338
339	lockdep_assert_held(&q->rq_qos_mutex);
340
341	blk_mq_freeze_queue(q);
342	for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) {
343		if (*cur == rqos) {
344			*cur = rqos->next;
345			break;
346		}
347	}
348	blk_mq_unfreeze_queue(q);
349
350	mutex_lock(&q->debugfs_mutex);
351	blk_mq_debugfs_unregister_rqos(rqos);
352	mutex_unlock(&q->debugfs_mutex);
353}