Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
 
  1/*
 
  2 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3 * Licensed under the GPL
  4 */
  5
  6#include <stdlib.h>
 
  7#include <unistd.h>
  8#include <sched.h>
  9#include <errno.h>
 10#include <string.h>
 
 
 11#include <sys/mman.h>
 12#include <sys/wait.h>
 
 13#include <asm/unistd.h>
 14#include "as-layout.h"
 15#include "init.h"
 16#include "kern_util.h"
 17#include "mem.h"
 18#include "os.h"
 19#include "proc_mm.h"
 20#include "ptrace_user.h"
 21#include "registers.h"
 22#include "skas.h"
 23#include "skas_ptrace.h"
 24#include "sysdep/stub.h"
 
 25
 26int is_skas_winch(int pid, int fd, void *data)
 27{
 28	return pid == getpgrp();
 29}
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31static int ptrace_dump_regs(int pid)
 32{
 33	unsigned long regs[MAX_REG_NR];
 34	int i;
 35
 36	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
 37		return -errno;
 38
 39	printk(UM_KERN_ERR "Stub registers -\n");
 40	for (i = 0; i < ARRAY_SIZE(regs); i++)
 41		printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
 
 
 
 42
 43	return 0;
 44}
 45
 46/*
 47 * Signals that are OK to receive in the stub - we'll just continue it.
 48 * SIGWINCH will happen when UML is inside a detached screen.
 49 */
 50#define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
 51
 52/* Signals that the stub will finish with - anything else is an error */
 53#define STUB_DONE_MASK (1 << SIGTRAP)
 54
 55void wait_stub_done(int pid)
 56{
 57	int n, status, err;
 58
 59	while (1) {
 60		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
 61		if ((n < 0) || !WIFSTOPPED(status))
 62			goto bad_wait;
 63
 64		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
 65			break;
 66
 67		err = ptrace(PTRACE_CONT, pid, 0, 0);
 68		if (err) {
 69			printk(UM_KERN_ERR "wait_stub_done : continue failed, "
 70			       "errno = %d\n", errno);
 71			fatal_sigsegv();
 72		}
 73	}
 74
 75	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
 76		return;
 77
 78bad_wait:
 79	err = ptrace_dump_regs(pid);
 80	if (err)
 81		printk(UM_KERN_ERR "Failed to get registers from stub, "
 82		       "errno = %d\n", -err);
 83	printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
 84	       "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
 85	       status);
 86	fatal_sigsegv();
 87}
 88
 89extern unsigned long current_stub_stack(void);
 90
 91static void get_skas_faultinfo(int pid, struct faultinfo *fi)
 92{
 93	int err;
 94
 95	if (ptrace_faultinfo) {
 96		err = ptrace(PTRACE_FAULTINFO, pid, 0, fi);
 97		if (err) {
 98			printk(UM_KERN_ERR "get_skas_faultinfo - "
 99			       "PTRACE_FAULTINFO failed, errno = %d\n", errno);
100			fatal_sigsegv();
101		}
102
103		/* Special handling for i386, which has different structs */
104		if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo))
105			memset((char *)fi + sizeof(struct ptrace_faultinfo), 0,
106			       sizeof(struct faultinfo) -
107			       sizeof(struct ptrace_faultinfo));
108	}
109	else {
110		unsigned long fpregs[FP_SIZE];
111
112		err = get_fp_registers(pid, fpregs);
113		if (err < 0) {
114			printk(UM_KERN_ERR "save_fp_registers returned %d\n",
115			       err);
116			fatal_sigsegv();
117		}
118		err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
119		if (err) {
120			printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
121			       "errno = %d\n", pid, errno);
122			fatal_sigsegv();
123		}
124		wait_stub_done(pid);
125
126		/*
127		 * faultinfo is prepared by the stub-segv-handler at start of
128		 * the stub stack page. We just have to copy it.
129		 */
130		memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
131
132		err = put_fp_registers(pid, fpregs);
133		if (err < 0) {
134			printk(UM_KERN_ERR "put_fp_registers returned %d\n",
135			       err);
136			fatal_sigsegv();
137		}
138	}
139}
140
141static void handle_segv(int pid, struct uml_pt_regs * regs)
142{
143	get_skas_faultinfo(pid, &regs->faultinfo);
144	segv(regs->faultinfo, 0, 1, NULL);
145}
146
147/*
148 * To use the same value of using_sysemu as the caller, ask it that value
149 * (in local_using_sysemu
150 */
151static void handle_trap(int pid, struct uml_pt_regs *regs,
152			int local_using_sysemu)
153{
154	int err, status;
155
156	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
157		fatal_sigsegv();
158
159	/* Mark this as a syscall */
160	UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
161
162	if (!local_using_sysemu)
163	{
164		err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
165			     __NR_getpid);
166		if (err < 0) {
167			printk(UM_KERN_ERR "handle_trap - nullifying syscall "
168			       "failed, errno = %d\n", errno);
169			fatal_sigsegv();
170		}
171
172		err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
173		if (err < 0) {
174			printk(UM_KERN_ERR "handle_trap - continuing to end of "
175			       "syscall failed, errno = %d\n", errno);
176			fatal_sigsegv();
177		}
178
179		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
180		if ((err < 0) || !WIFSTOPPED(status) ||
181		    (WSTOPSIG(status) != SIGTRAP + 0x80)) {
182			err = ptrace_dump_regs(pid);
183			if (err)
184				printk(UM_KERN_ERR "Failed to get registers "
185				       "from process, errno = %d\n", -err);
186			printk(UM_KERN_ERR "handle_trap - failed to wait at "
187			       "end of syscall, errno = %d, status = %d\n",
188			       errno, status);
189			fatal_sigsegv();
190		}
191	}
192
193	handle_syscall(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194}
195
196extern int __syscall_stub_start;
 
197
198static int userspace_tramp(void *stack)
 
 
 
 
 
 
 
 
199{
200	void *addr;
201	int err;
202
203	ptrace(PTRACE_TRACEME, 0, 0, 0);
 
204
205	signal(SIGTERM, SIG_DFL);
206	signal(SIGWINCH, SIG_IGN);
207	err = set_interval();
208	if (err) {
209		printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
210		       "errno = %d\n", err);
211		exit(1);
 
 
 
 
 
 
 
 
212	}
213
214	if (!proc_mm) {
215		/*
216		 * This has a pte, but it can't be mapped in with the usual
217		 * tlb_flush mechanism because this is part of that mechanism
218		 */
219		int fd;
220		unsigned long long offset;
221		fd = phys_mapping(to_phys(&__syscall_stub_start), &offset);
222		addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
223			      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
224		if (addr == MAP_FAILED) {
225			printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
226			       "errno = %d\n", STUB_CODE, errno);
227			exit(1);
228		}
229
230		if (stack != NULL) {
231			fd = phys_mapping(to_phys(stack), &offset);
232			addr = mmap((void *) STUB_DATA,
233				    UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
234				    MAP_FIXED | MAP_SHARED, fd, offset);
235			if (addr == MAP_FAILED) {
236				printk(UM_KERN_ERR "mapping segfault stack "
237				       "at 0x%lx failed, errno = %d\n",
238				       STUB_DATA, errno);
239				exit(1);
240			}
241		}
 
 
242	}
243	if (!ptrace_faultinfo && (stack != NULL)) {
244		struct sigaction sa;
245
246		unsigned long v = STUB_CODE +
247				  (unsigned long) stub_segv_handler -
248				  (unsigned long) &__syscall_stub_start;
249
250		set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
251		sigemptyset(&sa.sa_mask);
252		sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
253		sa.sa_sigaction = (void *) v;
254		sa.sa_restorer = NULL;
255		if (sigaction(SIGSEGV, &sa, NULL) < 0) {
256			printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
257			       "handler failed - errno = %d\n", errno);
258			exit(1);
259		}
 
 
 
 
 
 
 
 
 
 
260	}
261
262	kill(os_getpid(), SIGSTOP);
263	return 0;
264}
 
265
266/* Each element set once, and only accessed by a single processor anyway */
267#undef NR_CPUS
268#define NR_CPUS 1
269int userspace_pid[NR_CPUS];
270
 
 
 
 
 
 
 
 
 
 
 
271int start_userspace(unsigned long stub_stack)
272{
273	void *stack;
274	unsigned long sp;
275	int pid, status, n, flags, err;
276
 
277	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
278		     PROT_READ | PROT_WRITE | PROT_EXEC,
279		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
280	if (stack == MAP_FAILED) {
281		err = -errno;
282		printk(UM_KERN_ERR "start_userspace : mmap failed, "
283		       "errno = %d\n", errno);
284		return err;
285	}
286
287	sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
288
289	flags = CLONE_FILES;
290	if (proc_mm)
291		flags |= CLONE_VM;
292	else
293		flags |= SIGCHLD;
294
295	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
 
 
 
296	if (pid < 0) {
297		err = -errno;
298		printk(UM_KERN_ERR "start_userspace : clone failed, "
299		       "errno = %d\n", errno);
300		return err;
301	}
302
303	do {
304		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
305		if (n < 0) {
306			err = -errno;
307			printk(UM_KERN_ERR "start_userspace : wait failed, "
308			       "errno = %d\n", errno);
309			goto out_kill;
310		}
311	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
312
313	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
314		err = -EINVAL;
315		printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
316		       "status = %d\n", status);
317		goto out_kill;
318	}
319
320	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
321		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
322		err = -errno;
323		printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
324		       "failed, errno = %d\n", errno);
325		goto out_kill;
326	}
327
328	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
329		err = -errno;
330		printk(UM_KERN_ERR "start_userspace : munmap failed, "
331		       "errno = %d\n", errno);
332		goto out_kill;
333	}
334
335	return pid;
336
337 out_kill:
338	os_kill_ptraced_process(pid, 1);
339	return err;
340}
341
 
 
 
342void userspace(struct uml_pt_regs *regs)
343{
344	struct itimerval timer;
345	unsigned long long nsecs, now;
346	int err, status, op, pid = userspace_pid[0];
347	/* To prevent races if using_sysemu changes under us.*/
348	int local_using_sysemu;
349
350	if (getitimer(ITIMER_VIRTUAL, &timer))
351		printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
352	nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
353		timer.it_value.tv_usec * UM_NSEC_PER_USEC;
354	nsecs += os_nsecs();
355
356	while (1) {
357		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358		 * This can legitimately fail if the process loads a
359		 * bogus value into a segment register.  It will
360		 * segfault and PTRACE_GETREGS will read that value
361		 * out of the process.  However, PTRACE_SETREGS will
362		 * fail.  In this case, there is nothing to do but
363		 * just kill the process.
364		 */
365		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
 
 
366			fatal_sigsegv();
 
367
368		if (put_fp_registers(pid, regs->fp))
 
 
369			fatal_sigsegv();
 
370
371		/* Now we set local_using_sysemu to be used for one loop */
372		local_using_sysemu = get_using_sysemu();
373
374		op = SELECT_PTRACE_OPERATION(local_using_sysemu,
375					     singlestepping(NULL));
376
377		if (ptrace(op, pid, 0, 0)) {
378			printk(UM_KERN_ERR "userspace - ptrace continue "
379			       "failed, op = %d, errno = %d\n", op, errno);
380			fatal_sigsegv();
381		}
382
383		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
384		if (err < 0) {
385			printk(UM_KERN_ERR "userspace - wait failed, "
386			       "errno = %d\n", errno);
387			fatal_sigsegv();
388		}
389
390		regs->is_user = 1;
391		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
392			printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
393			       "errno = %d\n", errno);
394			fatal_sigsegv();
395		}
396
397		if (get_fp_registers(pid, regs->fp)) {
398			printk(UM_KERN_ERR "userspace -  get_fp_registers failed, "
399			       "errno = %d\n", errno);
400			fatal_sigsegv();
401		}
402
403		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
404
405		if (WIFSTOPPED(status)) {
406			int sig = WSTOPSIG(status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407			switch (sig) {
408			case SIGSEGV:
409				if (PTRACE_FULL_FAULTINFO ||
410				    !ptrace_faultinfo) {
411					get_skas_faultinfo(pid,
412							   &regs->faultinfo);
413					(*sig_info[SIGSEGV])(SIGSEGV, regs);
 
414				}
415				else handle_segv(pid, regs);
416				break;
417			case SIGTRAP + 0x80:
418			        handle_trap(pid, regs, local_using_sysemu);
419				break;
420			case SIGTRAP:
421				relay_signal(SIGTRAP, regs);
422				break;
423			case SIGVTALRM:
424				now = os_nsecs();
425				if (now < nsecs)
426					break;
427				block_signals();
428				(*sig_info[sig])(sig, regs);
429				unblock_signals();
430				nsecs = timer.it_value.tv_sec *
431					UM_NSEC_PER_SEC +
432					timer.it_value.tv_usec *
433					UM_NSEC_PER_USEC;
434				nsecs += os_nsecs();
435				break;
436			case SIGIO:
437			case SIGILL:
438			case SIGBUS:
439			case SIGFPE:
440			case SIGWINCH:
441				block_signals();
442				(*sig_info[sig])(sig, regs);
443				unblock_signals();
444				break;
445			default:
446				printk(UM_KERN_ERR "userspace - child stopped "
447				       "with signal %d\n", sig);
448				fatal_sigsegv();
449			}
450			pid = userspace_pid[0];
451			interrupt_end();
452
453			/* Avoid -ERESTARTSYS handling in host */
454			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
455				PT_SYSCALL_NR(regs->gp) = -1;
456		}
457	}
458}
459
460static unsigned long thread_regs[MAX_REG_NR];
461static unsigned long thread_fp_regs[FP_SIZE];
462
463static int __init init_thread_regs(void)
464{
465	get_safe_registers(thread_regs, thread_fp_regs);
466	/* Set parent's instruction pointer to start of clone-stub */
467	thread_regs[REGS_IP_INDEX] = STUB_CODE +
468				(unsigned long) stub_clone_handler -
469				(unsigned long) &__syscall_stub_start;
470	thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
471		sizeof(void *);
472#ifdef __SIGNAL_FRAMESIZE
473	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
474#endif
475	return 0;
476}
477
478__initcall(init_thread_regs);
479
480int copy_context_skas0(unsigned long new_stack, int pid)
481{
482	struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
483	int err;
484	unsigned long current_stack = current_stub_stack();
485	struct stub_data *data = (struct stub_data *) current_stack;
486	struct stub_data *child_data = (struct stub_data *) new_stack;
487	unsigned long long new_offset;
488	int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
489
490	/*
491	 * prepare offset and fd of child's stack as argument for parent's
492	 * and child's mmap2 calls
493	 */
494	*data = ((struct stub_data) { .offset	= MMAP_OFFSET(new_offset),
495				      .fd	= new_fd,
496				      .timer    = ((struct itimerval)
497					           { .it_value = tv,
498						     .it_interval = tv }) });
499
500	err = ptrace_setregs(pid, thread_regs);
501	if (err < 0) {
502		err = -errno;
503		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
504		       "failed, pid = %d, errno = %d\n", pid, -err);
505		return err;
506	}
507
508	err = put_fp_registers(pid, thread_fp_regs);
509	if (err < 0) {
510		printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
511		       "failed, pid = %d, err = %d\n", pid, err);
512		return err;
513	}
514
515	/* set a well known return code for detection of child write failure */
516	child_data->err = 12345678;
517
518	/*
519	 * Wait, until parent has finished its work: read child's pid from
520	 * parent's stack, and check, if bad result.
521	 */
522	err = ptrace(PTRACE_CONT, pid, 0, 0);
523	if (err) {
524		err = -errno;
525		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
526		       "errno = %d\n", pid, errno);
527		return err;
528	}
529
530	wait_stub_done(pid);
531
532	pid = data->err;
533	if (pid < 0) {
534		printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
535		       "error %d\n", -pid);
536		return pid;
537	}
538
539	/*
540	 * Wait, until child has finished too: read child's result from
541	 * child's stack and check it.
542	 */
543	wait_stub_done(pid);
544	if (child_data->err != STUB_DATA) {
545		printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
546		       "error %ld\n", child_data->err);
547		err = child_data->err;
548		goto out_kill;
549	}
550
551	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
552		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
553		err = -errno;
554		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
555		       "failed, errno = %d\n", errno);
556		goto out_kill;
557	}
558
559	return pid;
560
561 out_kill:
562	os_kill_ptraced_process(pid, 1);
563	return err;
564}
565
566/*
567 * This is used only, if stub pages are needed, while proc_mm is
568 * available. Opening /proc/mm creates a new mm_context, which lacks
569 * the stub-pages. Thus, we map them using /proc/mm-fd
570 */
571int map_stub_pages(int fd, unsigned long code, unsigned long data,
572		   unsigned long stack)
573{
574	struct proc_mm_op mmop;
575	int n;
576	unsigned long long code_offset;
577	int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start),
578				   &code_offset);
579
580	mmop = ((struct proc_mm_op) { .op        = MM_MMAP,
581				      .u         =
582				      { .mmap    =
583					{ .addr    = code,
584					  .len     = UM_KERN_PAGE_SIZE,
585					  .prot    = PROT_EXEC,
586					  .flags   = MAP_FIXED | MAP_PRIVATE,
587					  .fd      = code_fd,
588					  .offset  = code_offset
589	} } });
590	CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
591	if (n != sizeof(mmop)) {
592		n = errno;
593		printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, "
594		       "offset = %llx\n", code, code_fd,
595		       (unsigned long long) code_offset);
596		printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code "
597		       "failed, err = %d\n", n);
598		return -n;
599	}
600
601	if (stack) {
602		unsigned long long map_offset;
603		int map_fd = phys_mapping(to_phys((void *)stack), &map_offset);
604		mmop = ((struct proc_mm_op)
605				{ .op        = MM_MMAP,
606				  .u         =
607				  { .mmap    =
608				    { .addr    = data,
609				      .len     = UM_KERN_PAGE_SIZE,
610				      .prot    = PROT_READ | PROT_WRITE,
611				      .flags   = MAP_FIXED | MAP_SHARED,
612				      .fd      = map_fd,
613				      .offset  = map_offset
614		} } });
615		CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
616		if (n != sizeof(mmop)) {
617			n = errno;
618			printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for "
619			       "data failed, err = %d\n", n);
620			return -n;
621		}
622	}
623
624	return 0;
625}
626
627void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
628{
629	(*buf)[0].JB_IP = (unsigned long) handler;
630	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
631		sizeof(void *);
632}
633
634#define INIT_JMP_NEW_THREAD 0
635#define INIT_JMP_CALLBACK 1
636#define INIT_JMP_HALT 2
637#define INIT_JMP_REBOOT 3
638
639void switch_threads(jmp_buf *me, jmp_buf *you)
640{
 
 
641	if (UML_SETJMP(me) == 0)
642		UML_LONGJMP(you, 1);
643}
644
645static jmp_buf initial_jmpbuf;
646
647/* XXX Make these percpu */
648static void (*cb_proc)(void *arg);
649static void *cb_arg;
650static jmp_buf *cb_back;
651
652int start_idle_thread(void *stack, jmp_buf *switch_buf)
653{
654	int n;
655
656	set_handler(SIGWINCH);
657
658	/*
659	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
660	 * and restore signals, with the possible side-effect of
661	 * trying to handle any signals which came when they were
662	 * blocked, which can't be done on this stack.
663	 * Signals must be blocked when jumping back here and restored
664	 * after returning to the jumper.
665	 */
666	n = setjmp(initial_jmpbuf);
667	switch (n) {
668	case INIT_JMP_NEW_THREAD:
669		(*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler;
670		(*switch_buf)[0].JB_SP = (unsigned long) stack +
671			UM_THREAD_SIZE - sizeof(void *);
672		break;
673	case INIT_JMP_CALLBACK:
674		(*cb_proc)(cb_arg);
675		longjmp(*cb_back, 1);
676		break;
677	case INIT_JMP_HALT:
678		kmalloc_ok = 0;
679		return 0;
680	case INIT_JMP_REBOOT:
681		kmalloc_ok = 0;
682		return 1;
683	default:
684		printk(UM_KERN_ERR "Bad sigsetjmp return in "
685		       "start_idle_thread - %d\n", n);
686		fatal_sigsegv();
687	}
688	longjmp(*switch_buf, 1);
 
 
 
 
 
689}
690
691void initial_thread_cb_skas(void (*proc)(void *), void *arg)
692{
693	jmp_buf here;
694
695	cb_proc = proc;
696	cb_arg = arg;
697	cb_back = &here;
698
699	block_signals();
700	if (UML_SETJMP(&here) == 0)
701		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
702	unblock_signals();
703
704	cb_proc = NULL;
705	cb_arg = NULL;
706	cb_back = NULL;
707}
708
709void halt_skas(void)
710{
711	block_signals();
712	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
713}
714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715void reboot_skas(void)
716{
717	block_signals();
718	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
719}
720
721void __switch_mm(struct mm_id *mm_idp)
722{
723	int err;
724
725	/* FIXME: need cpu pid in __switch_mm */
726	if (proc_mm) {
727		err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0,
728			     mm_idp->u.mm_fd);
729		if (err) {
730			printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM "
731			       "failed, errno = %d\n", errno);
732			fatal_sigsegv();
733		}
734	}
735	else userspace_pid[0] = mm_idp->u.pid;
736}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 
  5 */
  6
  7#include <stdlib.h>
  8#include <stdbool.h>
  9#include <unistd.h>
 10#include <sched.h>
 11#include <errno.h>
 12#include <string.h>
 13#include <fcntl.h>
 14#include <mem_user.h>
 15#include <sys/mman.h>
 16#include <sys/wait.h>
 17#include <sys/stat.h>
 18#include <asm/unistd.h>
 19#include <as-layout.h>
 20#include <init.h>
 21#include <kern_util.h>
 22#include <mem.h>
 23#include <os.h>
 24#include <ptrace_user.h>
 25#include <registers.h>
 26#include <skas.h>
 27#include <sysdep/stub.h>
 28#include <linux/threads.h>
 29#include <timetravel.h>
 30#include "../internal.h"
 31
 32int is_skas_winch(int pid, int fd, void *data)
 33{
 34	return pid == getpgrp();
 35}
 36
 37static const char *ptrace_reg_name(int idx)
 38{
 39#define R(n) case HOST_##n: return #n
 40
 41	switch (idx) {
 42#ifdef __x86_64__
 43	R(BX);
 44	R(CX);
 45	R(DI);
 46	R(SI);
 47	R(DX);
 48	R(BP);
 49	R(AX);
 50	R(R8);
 51	R(R9);
 52	R(R10);
 53	R(R11);
 54	R(R12);
 55	R(R13);
 56	R(R14);
 57	R(R15);
 58	R(ORIG_AX);
 59	R(CS);
 60	R(SS);
 61	R(EFLAGS);
 62#elif defined(__i386__)
 63	R(IP);
 64	R(SP);
 65	R(EFLAGS);
 66	R(AX);
 67	R(BX);
 68	R(CX);
 69	R(DX);
 70	R(SI);
 71	R(DI);
 72	R(BP);
 73	R(CS);
 74	R(SS);
 75	R(DS);
 76	R(FS);
 77	R(ES);
 78	R(GS);
 79	R(ORIG_AX);
 80#endif
 81	}
 82	return "";
 83}
 84
 85static int ptrace_dump_regs(int pid)
 86{
 87	unsigned long regs[MAX_REG_NR];
 88	int i;
 89
 90	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
 91		return -errno;
 92
 93	printk(UM_KERN_ERR "Stub registers -\n");
 94	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 95		const char *regname = ptrace_reg_name(i);
 96
 97		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
 98	}
 99
100	return 0;
101}
102
103/*
104 * Signals that are OK to receive in the stub - we'll just continue it.
105 * SIGWINCH will happen when UML is inside a detached screen.
106 */
107#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
108
109/* Signals that the stub will finish with - anything else is an error */
110#define STUB_DONE_MASK (1 << SIGTRAP)
111
112void wait_stub_done(int pid)
113{
114	int n, status, err;
115
116	while (1) {
117		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
118		if ((n < 0) || !WIFSTOPPED(status))
119			goto bad_wait;
120
121		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
122			break;
123
124		err = ptrace(PTRACE_CONT, pid, 0, 0);
125		if (err) {
126			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
127			       __func__, errno);
128			fatal_sigsegv();
129		}
130	}
131
132	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
133		return;
134
135bad_wait:
136	err = ptrace_dump_regs(pid);
137	if (err)
138		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
139		       -err);
140	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
141	       __func__, pid, n, errno, status);
 
142	fatal_sigsegv();
143}
144
145extern unsigned long current_stub_stack(void);
146
147static void get_skas_faultinfo(int pid, struct faultinfo *fi)
148{
149	int err;
150
151	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
152	if (err) {
153		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
154		       "errno = %d\n", pid, errno);
155		fatal_sigsegv();
 
 
 
 
 
 
 
 
156	}
157	wait_stub_done(pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
159	/*
160	 * faultinfo is prepared by the stub_segv_handler at start of
161	 * the stub stack page. We just have to copy it.
162	 */
163	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
 
 
164}
165
166static void handle_segv(int pid, struct uml_pt_regs *regs)
167{
168	get_skas_faultinfo(pid, &regs->faultinfo);
169	segv(regs->faultinfo, 0, 1, NULL);
170}
171
172static void handle_trap(int pid, struct uml_pt_regs *regs)
 
 
 
 
 
173{
 
 
174	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
175		fatal_sigsegv();
176
177	handle_syscall(regs);
178}
179
180extern char __syscall_stub_start[];
 
 
 
 
 
 
 
 
181
182static int stub_exe_fd;
 
 
 
 
 
183
184#ifndef CLOSE_RANGE_CLOEXEC
185#define CLOSE_RANGE_CLOEXEC	(1U << 2)
186#endif
 
 
 
 
 
 
 
 
 
 
187
188static int userspace_tramp(void *stack)
189{
190	char *const argv[] = { "uml-userspace", NULL };
191	int pipe_fds[2];
192	unsigned long long offset;
193	struct stub_init_data init_data = {
194		.stub_start = STUB_START,
195		.segv_handler = STUB_CODE +
196				(unsigned long) stub_segv_handler -
197				(unsigned long) __syscall_stub_start,
198	};
199	struct iomem_region *iomem;
200	int ret;
201
202	init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
203					      &offset);
204	init_data.stub_code_offset = MMAP_OFFSET(offset);
205
206	init_data.stub_data_fd = phys_mapping(uml_to_phys(stack), &offset);
207	init_data.stub_data_offset = MMAP_OFFSET(offset);
208
209	/*
210	 * Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
211	 * and then unsetting it on all memory related FDs.
212	 * This is not strictly necessary from a safety perspective.
213	 */
214	syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
215
216	fcntl(init_data.stub_data_fd, F_SETFD, 0);
217	for (iomem = iomem_regions; iomem; iomem = iomem->next)
218		fcntl(iomem->fd, F_SETFD, 0);
219
220	/* Create a pipe for init_data (no CLOEXEC) and dup2 to STDIN */
221	if (pipe(pipe_fds))
222		exit(2);
223
224	if (dup2(pipe_fds[0], 0) < 0)
225		exit(3);
226	close(pipe_fds[0]);
227
228	/* Write init_data and close write side */
229	ret = write(pipe_fds[1], &init_data, sizeof(init_data));
230	close(pipe_fds[1]);
231
232	if (ret != sizeof(init_data))
233		exit(4);
234
235	/* Raw execveat for compatibility with older libc versions */
236	syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
237		(unsigned long)argv, NULL, AT_EMPTY_PATH);
238
239	exit(5);
240}
241
242extern char stub_exe_start[];
243extern char stub_exe_end[];
244
245extern char *tempdir;
246
247#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
248
249#ifndef MFD_EXEC
250#define MFD_EXEC 0x0010U
251#endif
252
253static int __init init_stub_exe_fd(void)
254{
255	size_t written = 0;
256	char *tmpfile = NULL;
257
258	stub_exe_fd = memfd_create("uml-userspace",
259				   MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
260
261	if (stub_exe_fd < 0) {
262		printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
263
264		tmpfile = malloc(strlen(tempdir) +
265				  strlen(STUB_EXE_NAME_TEMPLATE) + 1);
266		if (tmpfile == NULL)
267			panic("Failed to allocate memory for stub binary name");
268
269		strcpy(tmpfile, tempdir);
270		strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
271
272		stub_exe_fd = mkstemp(tmpfile);
273		if (stub_exe_fd < 0)
274			panic("Could not create temporary file for stub binary: %d",
275			      -errno);
276	}
277
278	while (written < stub_exe_end - stub_exe_start) {
279		ssize_t res = write(stub_exe_fd, stub_exe_start + written,
280				    stub_exe_end - stub_exe_start - written);
281		if (res < 0) {
282			if (errno == EINTR)
283				continue;
284
285			if (tmpfile)
286				unlink(tmpfile);
287			panic("Failed write stub binary: %d", -errno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288		}
289
290		written += res;
291	}
 
 
292
293	if (!tmpfile) {
294		fcntl(stub_exe_fd, F_ADD_SEALS,
295		      F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
296	} else {
297		if (fchmod(stub_exe_fd, 00500) < 0) {
298			unlink(tmpfile);
299			panic("Could not make stub binary executable: %d",
300			      -errno);
 
 
 
 
 
301		}
302
303		close(stub_exe_fd);
304		stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
305		if (stub_exe_fd < 0) {
306			unlink(tmpfile);
307			panic("Could not reopen stub binary: %d", -errno);
308		}
309
310		unlink(tmpfile);
311		free(tmpfile);
312	}
313
 
314	return 0;
315}
316__initcall(init_stub_exe_fd);
317
 
 
 
318int userspace_pid[NR_CPUS];
319
320/**
321 * start_userspace() - prepare a new userspace process
322 * @stub_stack:	pointer to the stub stack.
323 *
324 * Setups a new temporary stack page that is used while userspace_tramp() runs
325 * Clones the kernel process into a new userspace process, with FDs only.
326 *
327 * Return: When positive: the process id of the new userspace process,
328 *         when negative: an error number.
329 * FIXME: can PIDs become negative?!
330 */
331int start_userspace(unsigned long stub_stack)
332{
333	void *stack;
334	unsigned long sp;
335	int pid, status, n, err;
336
337	/* setup a temporary stack page */
338	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
339		     PROT_READ | PROT_WRITE | PROT_EXEC,
340		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
341	if (stack == MAP_FAILED) {
342		err = -errno;
343		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
344		       __func__, errno);
345		return err;
346	}
347
348	/* set stack pointer to the end of the stack page, so it can grow downwards */
349	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
 
 
 
 
 
350
351	/* clone into new userspace process */
352	pid = clone(userspace_tramp, (void *) sp,
353		    CLONE_VFORK | CLONE_VM | SIGCHLD,
354		    (void *)stub_stack);
355	if (pid < 0) {
356		err = -errno;
357		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
358		       __func__, errno);
359		return err;
360	}
361
362	do {
363		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
364		if (n < 0) {
365			err = -errno;
366			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
367			       __func__, errno);
368			goto out_kill;
369		}
370	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
371
372	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
373		err = -EINVAL;
374		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
375		       __func__, status);
376		goto out_kill;
377	}
378
379	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
380		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
381		err = -errno;
382		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
383		       __func__, errno);
384		goto out_kill;
385	}
386
387	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
388		err = -errno;
389		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
390		       __func__, errno);
391		goto out_kill;
392	}
393
394	return pid;
395
396 out_kill:
397	os_kill_ptraced_process(pid, 1);
398	return err;
399}
400
401int unscheduled_userspace_iterations;
402extern unsigned long tt_extra_sched_jiffies;
403
404void userspace(struct uml_pt_regs *regs)
405{
 
 
406	int err, status, op, pid = userspace_pid[0];
407	siginfo_t si;
 
408
409	/* Handle any immediate reschedules or signals */
410	interrupt_end();
 
 
 
411
412	while (1) {
413		/*
414		 * When we are in time-travel mode, userspace can theoretically
415		 * do a *lot* of work without being scheduled. The problem with
416		 * this is that it will prevent kernel bookkeeping (primarily
417		 * the RCU) from running and this can for example cause OOM
418		 * situations.
419		 *
420		 * This code accounts a jiffie against the scheduling clock
421		 * after the defined userspace iterations in the same thread.
422		 * By doing so the situation is effectively prevented.
423		 */
424		if (time_travel_mode == TT_MODE_INFCPU ||
425		    time_travel_mode == TT_MODE_EXTERNAL) {
426#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
427			if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
428			    unscheduled_userspace_iterations++ >
429			    CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
430				tt_extra_sched_jiffies += 1;
431				unscheduled_userspace_iterations = 0;
432			}
433#endif
434		}
435
436		time_travel_print_bc_msg();
437
438		current_mm_sync();
439
440		/* Flush out any pending syscalls */
441		err = syscall_stub_flush(current_mm_id());
442		if (err) {
443			if (err == -ENOMEM)
444				report_enomem();
445
446			printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
447				__func__, -err);
448			fatal_sigsegv();
449		}
450
451		/*
452		 * This can legitimately fail if the process loads a
453		 * bogus value into a segment register.  It will
454		 * segfault and PTRACE_GETREGS will read that value
455		 * out of the process.  However, PTRACE_SETREGS will
456		 * fail.  In this case, there is nothing to do but
457		 * just kill the process.
458		 */
459		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
460			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
461			       __func__, errno);
462			fatal_sigsegv();
463		}
464
465		if (put_fp_registers(pid, regs->fp)) {
466			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
467			       __func__, errno);
468			fatal_sigsegv();
469		}
470
471		if (singlestepping())
472			op = PTRACE_SYSEMU_SINGLESTEP;
473		else
474			op = PTRACE_SYSEMU;
 
475
476		if (ptrace(op, pid, 0, 0)) {
477			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
478			       __func__, op, errno);
479			fatal_sigsegv();
480		}
481
482		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
483		if (err < 0) {
484			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
485			       __func__, errno);
486			fatal_sigsegv();
487		}
488
489		regs->is_user = 1;
490		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
491			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
492			       __func__, errno);
493			fatal_sigsegv();
494		}
495
496		if (get_fp_registers(pid, regs->fp)) {
497			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
498			       __func__, errno);
499			fatal_sigsegv();
500		}
501
502		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
503
504		if (WIFSTOPPED(status)) {
505			int sig = WSTOPSIG(status);
506
507			/* These signal handlers need the si argument.
508			 * The SIGIO and SIGALARM handlers which constitute the
509			 * majority of invocations, do not use it.
510			 */
511			switch (sig) {
512			case SIGSEGV:
513			case SIGTRAP:
514			case SIGILL:
515			case SIGBUS:
516			case SIGFPE:
517			case SIGWINCH:
518				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
519				break;
520			}
521
522			switch (sig) {
523			case SIGSEGV:
524				if (PTRACE_FULL_FAULTINFO) {
 
525					get_skas_faultinfo(pid,
526							   &regs->faultinfo);
527					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
528							     regs);
529				}
530				else handle_segv(pid, regs);
531				break;
532			case SIGTRAP + 0x80:
533				handle_trap(pid, regs);
534				break;
535			case SIGTRAP:
536				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
537				break;
538			case SIGALRM:
 
 
 
 
 
 
 
 
 
 
 
539				break;
540			case SIGIO:
541			case SIGILL:
542			case SIGBUS:
543			case SIGFPE:
544			case SIGWINCH:
545				block_signals_trace();
546				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
547				unblock_signals_trace();
548				break;
549			default:
550				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
551				       __func__, sig);
552				fatal_sigsegv();
553			}
554			pid = userspace_pid[0];
555			interrupt_end();
556
557			/* Avoid -ERESTARTSYS handling in host */
558			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
559				PT_SYSCALL_NR(regs->gp) = -1;
560		}
561	}
562}
563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
565{
566	(*buf)[0].JB_IP = (unsigned long) handler;
567	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
568		sizeof(void *);
569}
570
571#define INIT_JMP_NEW_THREAD 0
572#define INIT_JMP_CALLBACK 1
573#define INIT_JMP_HALT 2
574#define INIT_JMP_REBOOT 3
575
576void switch_threads(jmp_buf *me, jmp_buf *you)
577{
578	unscheduled_userspace_iterations = 0;
579
580	if (UML_SETJMP(me) == 0)
581		UML_LONGJMP(you, 1);
582}
583
584static jmp_buf initial_jmpbuf;
585
586/* XXX Make these percpu */
587static void (*cb_proc)(void *arg);
588static void *cb_arg;
589static jmp_buf *cb_back;
590
591int start_idle_thread(void *stack, jmp_buf *switch_buf)
592{
593	int n;
594
595	set_handler(SIGWINCH);
596
597	/*
598	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
599	 * and restore signals, with the possible side-effect of
600	 * trying to handle any signals which came when they were
601	 * blocked, which can't be done on this stack.
602	 * Signals must be blocked when jumping back here and restored
603	 * after returning to the jumper.
604	 */
605	n = setjmp(initial_jmpbuf);
606	switch (n) {
607	case INIT_JMP_NEW_THREAD:
608		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
609		(*switch_buf)[0].JB_SP = (unsigned long) stack +
610			UM_THREAD_SIZE - sizeof(void *);
611		break;
612	case INIT_JMP_CALLBACK:
613		(*cb_proc)(cb_arg);
614		longjmp(*cb_back, 1);
615		break;
616	case INIT_JMP_HALT:
617		kmalloc_ok = 0;
618		return 0;
619	case INIT_JMP_REBOOT:
620		kmalloc_ok = 0;
621		return 1;
622	default:
623		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
624		       __func__, n);
625		fatal_sigsegv();
626	}
627	longjmp(*switch_buf, 1);
628
629	/* unreachable */
630	printk(UM_KERN_ERR "impossible long jump!");
631	fatal_sigsegv();
632	return 0;
633}
634
635void initial_thread_cb_skas(void (*proc)(void *), void *arg)
636{
637	jmp_buf here;
638
639	cb_proc = proc;
640	cb_arg = arg;
641	cb_back = &here;
642
643	block_signals_trace();
644	if (UML_SETJMP(&here) == 0)
645		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
646	unblock_signals_trace();
647
648	cb_proc = NULL;
649	cb_arg = NULL;
650	cb_back = NULL;
651}
652
653void halt_skas(void)
654{
655	block_signals_trace();
656	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
657}
658
659static bool noreboot;
660
661static int __init noreboot_cmd_param(char *str, int *add)
662{
663	*add = 0;
664	noreboot = true;
665	return 0;
666}
667
668__uml_setup("noreboot", noreboot_cmd_param,
669"noreboot\n"
670"    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
671"    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
672"    crashes in CI\n");
673
674void reboot_skas(void)
675{
676	block_signals_trace();
677	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
678}
679
680void __switch_mm(struct mm_id *mm_idp)
681{
682	userspace_pid[0] = mm_idp->pid;
 
 
 
 
 
 
 
 
 
 
 
 
683}