Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
  36#include "util/perf_api_probe.h"
  37#include "util/synthetic-events.h"
  38#include "time-utils.h"
  39
  40#include "../arch/x86/include/uapi/asm/perf_regs.h"
  41
  42#include "intel-pt-decoder/intel-pt-log.h"
  43#include "intel-pt-decoder/intel-pt-decoder.h"
  44#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  45#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  46
  47#define MAX_TIMESTAMP (~0ULL)
  48
  49struct range {
  50	u64 start;
  51	u64 end;
  52};
  53
  54struct intel_pt {
  55	struct auxtrace auxtrace;
  56	struct auxtrace_queues queues;
  57	struct auxtrace_heap heap;
  58	u32 auxtrace_type;
  59	struct perf_session *session;
  60	struct machine *machine;
  61	struct evsel *switch_evsel;
  62	struct thread *unknown_thread;
  63	bool timeless_decoding;
  64	bool sampling_mode;
  65	bool snapshot_mode;
  66	bool per_cpu_mmaps;
  67	bool have_tsc;
  68	bool data_queued;
  69	bool est_tsc;
  70	bool sync_switch;
  71	bool mispred_all;
  72	bool use_thread_stack;
  73	bool callstack;
  74	unsigned int br_stack_sz;
  75	unsigned int br_stack_sz_plus;
  76	int have_sched_switch;
  77	u32 pmu_type;
  78	u64 kernel_start;
  79	u64 switch_ip;
  80	u64 ptss_ip;
  81
  82	struct perf_tsc_conversion tc;
  83	bool cap_user_time_zero;
  84
  85	struct itrace_synth_opts synth_opts;
  86
  87	bool sample_instructions;
  88	u64 instructions_sample_type;
  89	u64 instructions_id;
  90
  91	bool sample_branches;
  92	u32 branches_filter;
  93	u64 branches_sample_type;
  94	u64 branches_id;
  95
  96	bool sample_transactions;
  97	u64 transactions_sample_type;
  98	u64 transactions_id;
  99
 100	bool sample_ptwrites;
 101	u64 ptwrites_sample_type;
 102	u64 ptwrites_id;
 103
 104	bool sample_pwr_events;
 105	u64 pwr_events_sample_type;
 106	u64 mwait_id;
 107	u64 pwre_id;
 108	u64 exstop_id;
 109	u64 pwrx_id;
 110	u64 cbr_id;
 111
 112	bool sample_pebs;
 113	struct evsel *pebs_evsel;
 114
 115	u64 tsc_bit;
 116	u64 mtc_bit;
 117	u64 mtc_freq_bits;
 118	u32 tsc_ctc_ratio_n;
 119	u32 tsc_ctc_ratio_d;
 120	u64 cyc_bit;
 121	u64 noretcomp_bit;
 122	unsigned max_non_turbo_ratio;
 123	unsigned cbr2khz;
 124
 125	unsigned long num_events;
 126
 127	char *filter;
 128	struct addr_filters filts;
 129
 130	struct range *time_ranges;
 131	unsigned int range_cnt;
 132
 133	struct ip_callchain *chain;
 134	struct branch_stack *br_stack;
 135};
 136
 137enum switch_state {
 138	INTEL_PT_SS_NOT_TRACING,
 139	INTEL_PT_SS_UNKNOWN,
 140	INTEL_PT_SS_TRACING,
 141	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 142	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 143};
 144
 145struct intel_pt_queue {
 146	struct intel_pt *pt;
 147	unsigned int queue_nr;
 148	struct auxtrace_buffer *buffer;
 149	struct auxtrace_buffer *old_buffer;
 150	void *decoder;
 151	const struct intel_pt_state *state;
 152	struct ip_callchain *chain;
 153	struct branch_stack *last_branch;
 154	union perf_event *event_buf;
 155	bool on_heap;
 156	bool stop;
 157	bool step_through_buffers;
 158	bool use_buffer_pid_tid;
 159	bool sync_switch;
 160	pid_t pid, tid;
 161	int cpu;
 162	int switch_state;
 163	pid_t next_tid;
 164	struct thread *thread;
 165	bool exclude_kernel;
 166	bool have_sample;
 167	u64 time;
 168	u64 timestamp;
 169	u64 sel_timestamp;
 170	bool sel_start;
 171	unsigned int sel_idx;
 172	u32 flags;
 173	u16 insn_len;
 174	u64 last_insn_cnt;
 175	u64 ipc_insn_cnt;
 176	u64 ipc_cyc_cnt;
 177	u64 last_in_insn_cnt;
 178	u64 last_in_cyc_cnt;
 179	u64 last_br_insn_cnt;
 180	u64 last_br_cyc_cnt;
 181	unsigned int cbr_seen;
 182	char insn[INTEL_PT_INSN_BUF_SZ];
 183};
 184
 185static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 186			  unsigned char *buf, size_t len)
 187{
 188	struct intel_pt_pkt packet;
 189	size_t pos = 0;
 190	int ret, pkt_len, i;
 191	char desc[INTEL_PT_PKT_DESC_MAX];
 192	const char *color = PERF_COLOR_BLUE;
 193	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 194
 195	color_fprintf(stdout, color,
 196		      ". ... Intel Processor Trace data: size %zu bytes\n",
 197		      len);
 198
 199	while (len) {
 200		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 201		if (ret > 0)
 202			pkt_len = ret;
 203		else
 204			pkt_len = 1;
 205		printf(".");
 206		color_fprintf(stdout, color, "  %08x: ", pos);
 207		for (i = 0; i < pkt_len; i++)
 208			color_fprintf(stdout, color, " %02x", buf[i]);
 209		for (; i < 16; i++)
 210			color_fprintf(stdout, color, "   ");
 211		if (ret > 0) {
 212			ret = intel_pt_pkt_desc(&packet, desc,
 213						INTEL_PT_PKT_DESC_MAX);
 214			if (ret > 0)
 215				color_fprintf(stdout, color, " %s\n", desc);
 216		} else {
 217			color_fprintf(stdout, color, " Bad packet!\n");
 218		}
 219		pos += pkt_len;
 220		buf += pkt_len;
 221		len -= pkt_len;
 222	}
 223}
 224
 225static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 226				size_t len)
 227{
 228	printf(".\n");
 229	intel_pt_dump(pt, buf, len);
 230}
 231
 232static void intel_pt_log_event(union perf_event *event)
 233{
 234	FILE *f = intel_pt_log_fp();
 235
 236	if (!intel_pt_enable_logging || !f)
 237		return;
 238
 239	perf_event__fprintf(event, NULL, f);
 240}
 241
 242static void intel_pt_dump_sample(struct perf_session *session,
 243				 struct perf_sample *sample)
 244{
 245	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
 246					   auxtrace);
 247
 248	printf("\n");
 249	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
 250}
 251
 252static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
 253{
 254	struct perf_time_interval *range = pt->synth_opts.ptime_range;
 255	int n = pt->synth_opts.range_num;
 256
 257	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 258		return true;
 259
 260	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 261		return false;
 262
 263	/* perf_time__ranges_skip_sample does not work if time is zero */
 264	if (!tm)
 265		tm = 1;
 266
 267	return !n || !perf_time__ranges_skip_sample(range, n, tm);
 268}
 269
 270static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 271				   struct auxtrace_buffer *b)
 272{
 273	bool consecutive = false;
 274	void *start;
 275
 276	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 277				      pt->have_tsc, &consecutive);
 278	if (!start)
 279		return -EINVAL;
 280	b->use_size = b->data + b->size - start;
 281	b->use_data = start;
 282	if (b->use_size && consecutive)
 283		b->consecutive = true;
 284	return 0;
 285}
 286
 287static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 288			       struct auxtrace_buffer *buffer,
 289			       struct auxtrace_buffer *old_buffer,
 290			       struct intel_pt_buffer *b)
 291{
 292	bool might_overlap;
 293
 294	if (!buffer->data) {
 295		int fd = perf_data__fd(ptq->pt->session->data);
 296
 297		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 298		if (!buffer->data)
 299			return -ENOMEM;
 300	}
 301
 302	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 303	if (might_overlap && !buffer->consecutive && old_buffer &&
 304	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 305		return -ENOMEM;
 306
 307	if (buffer->use_data) {
 308		b->len = buffer->use_size;
 309		b->buf = buffer->use_data;
 310	} else {
 311		b->len = buffer->size;
 312		b->buf = buffer->data;
 313	}
 314	b->ref_timestamp = buffer->reference;
 315
 316	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 317		b->consecutive = false;
 318		b->trace_nr = buffer->buffer_nr + 1;
 319	} else {
 320		b->consecutive = true;
 321	}
 322
 323	return 0;
 324}
 325
 326/* Do not drop buffers with references - refer intel_pt_get_trace() */
 327static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 328					   struct auxtrace_buffer *buffer)
 329{
 330	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 331		return;
 332
 333	auxtrace_buffer__drop_data(buffer);
 334}
 335
 336/* Must be serialized with respect to intel_pt_get_trace() */
 337static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 338			      void *cb_data)
 339{
 340	struct intel_pt_queue *ptq = data;
 341	struct auxtrace_buffer *buffer = ptq->buffer;
 342	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 343	struct auxtrace_queue *queue;
 344	int err = 0;
 345
 346	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 347
 348	while (1) {
 349		struct intel_pt_buffer b = { .len = 0 };
 350
 351		buffer = auxtrace_buffer__next(queue, buffer);
 352		if (!buffer)
 353			break;
 354
 355		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 356		if (err)
 357			break;
 358
 359		if (b.len) {
 360			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 361			old_buffer = buffer;
 362		} else {
 363			intel_pt_lookahead_drop_buffer(ptq, buffer);
 364			continue;
 365		}
 366
 367		err = cb(&b, cb_data);
 368		if (err)
 369			break;
 370	}
 371
 372	if (buffer != old_buffer)
 373		intel_pt_lookahead_drop_buffer(ptq, buffer);
 374	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 375
 376	return err;
 377}
 378
 379/*
 380 * This function assumes data is processed sequentially only.
 381 * Must be serialized with respect to intel_pt_lookahead()
 382 */
 383static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 384{
 385	struct intel_pt_queue *ptq = data;
 386	struct auxtrace_buffer *buffer = ptq->buffer;
 387	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 388	struct auxtrace_queue *queue;
 389	int err;
 390
 391	if (ptq->stop) {
 392		b->len = 0;
 393		return 0;
 394	}
 395
 396	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 397
 398	buffer = auxtrace_buffer__next(queue, buffer);
 399	if (!buffer) {
 400		if (old_buffer)
 401			auxtrace_buffer__drop_data(old_buffer);
 402		b->len = 0;
 403		return 0;
 404	}
 405
 406	ptq->buffer = buffer;
 407
 408	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 409	if (err)
 410		return err;
 411
 412	if (ptq->step_through_buffers)
 413		ptq->stop = true;
 414
 415	if (b->len) {
 416		if (old_buffer)
 417			auxtrace_buffer__drop_data(old_buffer);
 418		ptq->old_buffer = buffer;
 419	} else {
 420		auxtrace_buffer__drop_data(buffer);
 421		return intel_pt_get_trace(b, data);
 422	}
 423
 424	return 0;
 425}
 426
 427struct intel_pt_cache_entry {
 428	struct auxtrace_cache_entry	entry;
 429	u64				insn_cnt;
 430	u64				byte_cnt;
 431	enum intel_pt_insn_op		op;
 432	enum intel_pt_insn_branch	branch;
 433	int				length;
 434	int32_t				rel;
 435	char				insn[INTEL_PT_INSN_BUF_SZ];
 436};
 437
 438static int intel_pt_config_div(const char *var, const char *value, void *data)
 439{
 440	int *d = data;
 441	long val;
 442
 443	if (!strcmp(var, "intel-pt.cache-divisor")) {
 444		val = strtol(value, NULL, 0);
 445		if (val > 0 && val <= INT_MAX)
 446			*d = val;
 447	}
 448
 449	return 0;
 450}
 451
 452static int intel_pt_cache_divisor(void)
 453{
 454	static int d;
 455
 456	if (d)
 457		return d;
 458
 459	perf_config(intel_pt_config_div, &d);
 460
 461	if (!d)
 462		d = 64;
 463
 464	return d;
 465}
 466
 467static unsigned int intel_pt_cache_size(struct dso *dso,
 468					struct machine *machine)
 469{
 470	off_t size;
 471
 472	size = dso__data_size(dso, machine);
 473	size /= intel_pt_cache_divisor();
 474	if (size < 1000)
 475		return 10;
 476	if (size > (1 << 21))
 477		return 21;
 478	return 32 - __builtin_clz(size);
 479}
 480
 481static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 482					     struct machine *machine)
 483{
 484	struct auxtrace_cache *c;
 485	unsigned int bits;
 486
 487	if (dso->auxtrace_cache)
 488		return dso->auxtrace_cache;
 489
 490	bits = intel_pt_cache_size(dso, machine);
 491
 492	/* Ignoring cache creation failure */
 493	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 494
 495	dso->auxtrace_cache = c;
 496
 497	return c;
 498}
 499
 500static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 501			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 502			      struct intel_pt_insn *intel_pt_insn)
 503{
 504	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 505	struct intel_pt_cache_entry *e;
 506	int err;
 507
 508	if (!c)
 509		return -ENOMEM;
 510
 511	e = auxtrace_cache__alloc_entry(c);
 512	if (!e)
 513		return -ENOMEM;
 514
 515	e->insn_cnt = insn_cnt;
 516	e->byte_cnt = byte_cnt;
 517	e->op = intel_pt_insn->op;
 518	e->branch = intel_pt_insn->branch;
 519	e->length = intel_pt_insn->length;
 520	e->rel = intel_pt_insn->rel;
 521	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 522
 523	err = auxtrace_cache__add(c, offset, &e->entry);
 524	if (err)
 525		auxtrace_cache__free_entry(c, e);
 526
 527	return err;
 528}
 529
 530static struct intel_pt_cache_entry *
 531intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 532{
 533	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 534
 535	if (!c)
 536		return NULL;
 537
 538	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 539}
 540
 541static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
 542				      u64 offset)
 543{
 544	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 545
 546	if (!c)
 547		return;
 548
 549	auxtrace_cache__remove(dso->auxtrace_cache, offset);
 550}
 551
 552static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
 553{
 554	return ip >= pt->kernel_start ?
 555	       PERF_RECORD_MISC_KERNEL :
 556	       PERF_RECORD_MISC_USER;
 557}
 558
 559static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 560				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 561				   uint64_t to_ip, uint64_t max_insn_cnt,
 562				   void *data)
 563{
 564	struct intel_pt_queue *ptq = data;
 565	struct machine *machine = ptq->pt->machine;
 566	struct thread *thread;
 567	struct addr_location al;
 568	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 569	ssize_t len;
 570	int x86_64;
 571	u8 cpumode;
 572	u64 offset, start_offset, start_ip;
 573	u64 insn_cnt = 0;
 574	bool one_map = true;
 575
 576	intel_pt_insn->length = 0;
 577
 578	if (to_ip && *ip == to_ip)
 579		goto out_no_cache;
 580
 581	cpumode = intel_pt_cpumode(ptq->pt, *ip);
 582
 583	thread = ptq->thread;
 584	if (!thread) {
 585		if (cpumode != PERF_RECORD_MISC_KERNEL)
 586			return -EINVAL;
 587		thread = ptq->pt->unknown_thread;
 588	}
 589
 590	while (1) {
 591		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
 592			return -EINVAL;
 593
 594		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 595		    dso__data_status_seen(al.map->dso,
 596					  DSO_DATA_STATUS_SEEN_ITRACE))
 597			return -ENOENT;
 598
 599		offset = al.map->map_ip(al.map, *ip);
 600
 601		if (!to_ip && one_map) {
 602			struct intel_pt_cache_entry *e;
 603
 604			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 605			if (e &&
 606			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 607				*insn_cnt_ptr = e->insn_cnt;
 608				*ip += e->byte_cnt;
 609				intel_pt_insn->op = e->op;
 610				intel_pt_insn->branch = e->branch;
 611				intel_pt_insn->length = e->length;
 612				intel_pt_insn->rel = e->rel;
 613				memcpy(intel_pt_insn->buf, e->insn,
 614				       INTEL_PT_INSN_BUF_SZ);
 615				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 616				return 0;
 617			}
 618		}
 619
 620		start_offset = offset;
 621		start_ip = *ip;
 622
 623		/* Load maps to ensure dso->is_64_bit has been updated */
 624		map__load(al.map);
 625
 626		x86_64 = al.map->dso->is_64_bit;
 627
 628		while (1) {
 629			len = dso__data_read_offset(al.map->dso, machine,
 630						    offset, buf,
 631						    INTEL_PT_INSN_BUF_SZ);
 632			if (len <= 0)
 633				return -EINVAL;
 634
 635			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 636				return -EINVAL;
 637
 638			intel_pt_log_insn(intel_pt_insn, *ip);
 639
 640			insn_cnt += 1;
 641
 642			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 643				goto out;
 644
 645			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 646				goto out_no_cache;
 647
 648			*ip += intel_pt_insn->length;
 649
 650			if (to_ip && *ip == to_ip)
 651				goto out_no_cache;
 652
 653			if (*ip >= al.map->end)
 654				break;
 655
 656			offset += intel_pt_insn->length;
 657		}
 658		one_map = false;
 659	}
 660out:
 661	*insn_cnt_ptr = insn_cnt;
 662
 663	if (!one_map)
 664		goto out_no_cache;
 665
 666	/*
 667	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 668	 * entries.
 669	 */
 670	if (to_ip) {
 671		struct intel_pt_cache_entry *e;
 672
 673		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 674		if (e)
 675			return 0;
 676	}
 677
 678	/* Ignore cache errors */
 679	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 680			   *ip - start_ip, intel_pt_insn);
 681
 682	return 0;
 683
 684out_no_cache:
 685	*insn_cnt_ptr = insn_cnt;
 686	return 0;
 687}
 688
 689static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 690				  uint64_t offset, const char *filename)
 691{
 692	struct addr_filter *filt;
 693	bool have_filter   = false;
 694	bool hit_tracestop = false;
 695	bool hit_filter    = false;
 696
 697	list_for_each_entry(filt, &pt->filts.head, list) {
 698		if (filt->start)
 699			have_filter = true;
 700
 701		if ((filename && !filt->filename) ||
 702		    (!filename && filt->filename) ||
 703		    (filename && strcmp(filename, filt->filename)))
 704			continue;
 705
 706		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 707			continue;
 708
 709		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 710			     ip, offset, filename ? filename : "[kernel]",
 711			     filt->start ? "filter" : "stop",
 712			     filt->addr, filt->size);
 713
 714		if (filt->start)
 715			hit_filter = true;
 716		else
 717			hit_tracestop = true;
 718	}
 719
 720	if (!hit_tracestop && !hit_filter)
 721		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 722			     ip, offset, filename ? filename : "[kernel]");
 723
 724	return hit_tracestop || (have_filter && !hit_filter);
 725}
 726
 727static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 728{
 729	struct intel_pt_queue *ptq = data;
 730	struct thread *thread;
 731	struct addr_location al;
 732	u8 cpumode;
 733	u64 offset;
 734
 735	if (ip >= ptq->pt->kernel_start)
 736		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 737
 738	cpumode = PERF_RECORD_MISC_USER;
 739
 740	thread = ptq->thread;
 741	if (!thread)
 742		return -EINVAL;
 743
 744	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 745		return -EINVAL;
 746
 747	offset = al.map->map_ip(al.map, ip);
 748
 749	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 750				     al.map->dso->long_name);
 751}
 752
 753static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 754{
 755	return __intel_pt_pgd_ip(ip, data) > 0;
 756}
 757
 758static bool intel_pt_get_config(struct intel_pt *pt,
 759				struct perf_event_attr *attr, u64 *config)
 760{
 761	if (attr->type == pt->pmu_type) {
 762		if (config)
 763			*config = attr->config;
 764		return true;
 765	}
 766
 767	return false;
 768}
 769
 770static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 771{
 772	struct evsel *evsel;
 773
 774	evlist__for_each_entry(pt->session->evlist, evsel) {
 775		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 776		    !evsel->core.attr.exclude_kernel)
 777			return false;
 778	}
 779	return true;
 780}
 781
 782static bool intel_pt_return_compression(struct intel_pt *pt)
 783{
 784	struct evsel *evsel;
 785	u64 config;
 786
 787	if (!pt->noretcomp_bit)
 788		return true;
 789
 790	evlist__for_each_entry(pt->session->evlist, evsel) {
 791		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 792		    (config & pt->noretcomp_bit))
 793			return false;
 794	}
 795	return true;
 796}
 797
 798static bool intel_pt_branch_enable(struct intel_pt *pt)
 799{
 800	struct evsel *evsel;
 801	u64 config;
 802
 803	evlist__for_each_entry(pt->session->evlist, evsel) {
 804		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 805		    (config & 1) && !(config & 0x2000))
 806			return false;
 807	}
 808	return true;
 809}
 810
 811static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 812{
 813	struct evsel *evsel;
 814	unsigned int shift;
 815	u64 config;
 816
 817	if (!pt->mtc_freq_bits)
 818		return 0;
 819
 820	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 821		config >>= 1;
 822
 823	evlist__for_each_entry(pt->session->evlist, evsel) {
 824		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
 825			return (config & pt->mtc_freq_bits) >> shift;
 826	}
 827	return 0;
 828}
 829
 830static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 831{
 832	struct evsel *evsel;
 833	bool timeless_decoding = true;
 834	u64 config;
 835
 836	if (!pt->tsc_bit || !pt->cap_user_time_zero)
 837		return true;
 838
 839	evlist__for_each_entry(pt->session->evlist, evsel) {
 840		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
 841			return true;
 842		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 843			if (config & pt->tsc_bit)
 844				timeless_decoding = false;
 845			else
 846				return true;
 847		}
 848	}
 849	return timeless_decoding;
 850}
 851
 852static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 853{
 854	struct evsel *evsel;
 855
 856	evlist__for_each_entry(pt->session->evlist, evsel) {
 857		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 858		    !evsel->core.attr.exclude_kernel)
 859			return true;
 860	}
 861	return false;
 862}
 863
 864static bool intel_pt_have_tsc(struct intel_pt *pt)
 865{
 866	struct evsel *evsel;
 867	bool have_tsc = false;
 868	u64 config;
 869
 870	if (!pt->tsc_bit)
 871		return false;
 872
 873	evlist__for_each_entry(pt->session->evlist, evsel) {
 874		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 875			if (config & pt->tsc_bit)
 876				have_tsc = true;
 877			else
 878				return false;
 879		}
 880	}
 881	return have_tsc;
 882}
 883
 884static bool intel_pt_sampling_mode(struct intel_pt *pt)
 885{
 886	struct evsel *evsel;
 887
 888	evlist__for_each_entry(pt->session->evlist, evsel) {
 889		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
 890		    evsel->core.attr.aux_sample_size)
 891			return true;
 892	}
 893	return false;
 894}
 895
 896static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
 897{
 898	u64 quot, rem;
 899
 900	quot = ns / pt->tc.time_mult;
 901	rem  = ns % pt->tc.time_mult;
 902	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
 903		pt->tc.time_mult;
 904}
 905
 906static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
 907{
 908	size_t sz = sizeof(struct ip_callchain);
 909
 910	/* Add 1 to callchain_sz for callchain context */
 911	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
 912	return zalloc(sz);
 913}
 914
 915static int intel_pt_callchain_init(struct intel_pt *pt)
 916{
 917	struct evsel *evsel;
 918
 919	evlist__for_each_entry(pt->session->evlist, evsel) {
 920		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
 921			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
 922	}
 923
 924	pt->chain = intel_pt_alloc_chain(pt);
 925	if (!pt->chain)
 926		return -ENOMEM;
 927
 928	return 0;
 929}
 930
 931static void intel_pt_add_callchain(struct intel_pt *pt,
 932				   struct perf_sample *sample)
 933{
 934	struct thread *thread = machine__findnew_thread(pt->machine,
 935							sample->pid,
 936							sample->tid);
 937
 938	thread_stack__sample_late(thread, sample->cpu, pt->chain,
 939				  pt->synth_opts.callchain_sz + 1, sample->ip,
 940				  pt->kernel_start);
 941
 942	sample->callchain = pt->chain;
 943}
 944
 945static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
 946{
 947	size_t sz = sizeof(struct branch_stack);
 948
 949	sz += entry_cnt * sizeof(struct branch_entry);
 950	return zalloc(sz);
 951}
 952
 953static int intel_pt_br_stack_init(struct intel_pt *pt)
 954{
 955	struct evsel *evsel;
 956
 957	evlist__for_each_entry(pt->session->evlist, evsel) {
 958		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
 959			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
 960	}
 961
 962	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
 963	if (!pt->br_stack)
 964		return -ENOMEM;
 965
 966	return 0;
 967}
 968
 969static void intel_pt_add_br_stack(struct intel_pt *pt,
 970				  struct perf_sample *sample)
 971{
 972	struct thread *thread = machine__findnew_thread(pt->machine,
 973							sample->pid,
 974							sample->tid);
 975
 976	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
 977				     pt->br_stack_sz, sample->ip,
 978				     pt->kernel_start);
 979
 980	sample->branch_stack = pt->br_stack;
 981}
 982
 983/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
 984#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
 985
 986static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
 987						   unsigned int queue_nr)
 988{
 989	struct intel_pt_params params = { .get_trace = 0, };
 990	struct perf_env *env = pt->machine->env;
 991	struct intel_pt_queue *ptq;
 992
 993	ptq = zalloc(sizeof(struct intel_pt_queue));
 994	if (!ptq)
 995		return NULL;
 996
 997	if (pt->synth_opts.callchain) {
 998		ptq->chain = intel_pt_alloc_chain(pt);
 999		if (!ptq->chain)
1000			goto out_free;
1001	}
1002
1003	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1004		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1005
1006		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1007		if (!ptq->last_branch)
1008			goto out_free;
1009	}
1010
1011	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1012	if (!ptq->event_buf)
1013		goto out_free;
1014
1015	ptq->pt = pt;
1016	ptq->queue_nr = queue_nr;
1017	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1018	ptq->pid = -1;
1019	ptq->tid = -1;
1020	ptq->cpu = -1;
1021	ptq->next_tid = -1;
1022
1023	params.get_trace = intel_pt_get_trace;
1024	params.walk_insn = intel_pt_walk_next_insn;
1025	params.lookahead = intel_pt_lookahead;
1026	params.data = ptq;
1027	params.return_compression = intel_pt_return_compression(pt);
1028	params.branch_enable = intel_pt_branch_enable(pt);
1029	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1030	params.mtc_period = intel_pt_mtc_period(pt);
1031	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1032	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1033	params.quick = pt->synth_opts.quick;
1034
1035	if (pt->filts.cnt > 0)
1036		params.pgd_ip = intel_pt_pgd_ip;
1037
1038	if (pt->synth_opts.instructions) {
1039		if (pt->synth_opts.period) {
1040			switch (pt->synth_opts.period_type) {
1041			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1042				params.period_type =
1043						INTEL_PT_PERIOD_INSTRUCTIONS;
1044				params.period = pt->synth_opts.period;
1045				break;
1046			case PERF_ITRACE_PERIOD_TICKS:
1047				params.period_type = INTEL_PT_PERIOD_TICKS;
1048				params.period = pt->synth_opts.period;
1049				break;
1050			case PERF_ITRACE_PERIOD_NANOSECS:
1051				params.period_type = INTEL_PT_PERIOD_TICKS;
1052				params.period = intel_pt_ns_to_ticks(pt,
1053							pt->synth_opts.period);
1054				break;
1055			default:
1056				break;
1057			}
1058		}
1059
1060		if (!params.period) {
1061			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1062			params.period = 1;
1063		}
1064	}
1065
1066	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1067		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1068
1069	ptq->decoder = intel_pt_decoder_new(&params);
1070	if (!ptq->decoder)
1071		goto out_free;
1072
1073	return ptq;
1074
1075out_free:
1076	zfree(&ptq->event_buf);
1077	zfree(&ptq->last_branch);
1078	zfree(&ptq->chain);
1079	free(ptq);
1080	return NULL;
1081}
1082
1083static void intel_pt_free_queue(void *priv)
1084{
1085	struct intel_pt_queue *ptq = priv;
1086
1087	if (!ptq)
1088		return;
1089	thread__zput(ptq->thread);
1090	intel_pt_decoder_free(ptq->decoder);
1091	zfree(&ptq->event_buf);
1092	zfree(&ptq->last_branch);
1093	zfree(&ptq->chain);
1094	free(ptq);
1095}
1096
1097static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1098				     struct auxtrace_queue *queue)
1099{
1100	struct intel_pt_queue *ptq = queue->priv;
1101
1102	if (queue->tid == -1 || pt->have_sched_switch) {
1103		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1104		thread__zput(ptq->thread);
1105	}
1106
1107	if (!ptq->thread && ptq->tid != -1)
1108		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1109
1110	if (ptq->thread) {
1111		ptq->pid = ptq->thread->pid_;
1112		if (queue->cpu == -1)
1113			ptq->cpu = ptq->thread->cpu;
1114	}
1115}
1116
1117static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1118{
1119	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1120		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1121	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1122		if (ptq->state->to_ip)
1123			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1124				     PERF_IP_FLAG_ASYNC |
1125				     PERF_IP_FLAG_INTERRUPT;
1126		else
1127			ptq->flags = PERF_IP_FLAG_BRANCH |
1128				     PERF_IP_FLAG_TRACE_END;
1129		ptq->insn_len = 0;
1130	} else {
1131		if (ptq->state->from_ip)
1132			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1133		else
1134			ptq->flags = PERF_IP_FLAG_BRANCH |
1135				     PERF_IP_FLAG_TRACE_BEGIN;
1136		if (ptq->state->flags & INTEL_PT_IN_TX)
1137			ptq->flags |= PERF_IP_FLAG_IN_TX;
1138		ptq->insn_len = ptq->state->insn_len;
1139		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1140	}
1141
1142	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1143		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1144	if (ptq->state->type & INTEL_PT_TRACE_END)
1145		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1146}
1147
1148static void intel_pt_setup_time_range(struct intel_pt *pt,
1149				      struct intel_pt_queue *ptq)
1150{
1151	if (!pt->range_cnt)
1152		return;
1153
1154	ptq->sel_timestamp = pt->time_ranges[0].start;
1155	ptq->sel_idx = 0;
1156
1157	if (ptq->sel_timestamp) {
1158		ptq->sel_start = true;
1159	} else {
1160		ptq->sel_timestamp = pt->time_ranges[0].end;
1161		ptq->sel_start = false;
1162	}
1163}
1164
1165static int intel_pt_setup_queue(struct intel_pt *pt,
1166				struct auxtrace_queue *queue,
1167				unsigned int queue_nr)
1168{
1169	struct intel_pt_queue *ptq = queue->priv;
1170
1171	if (list_empty(&queue->head))
1172		return 0;
1173
1174	if (!ptq) {
1175		ptq = intel_pt_alloc_queue(pt, queue_nr);
1176		if (!ptq)
1177			return -ENOMEM;
1178		queue->priv = ptq;
1179
1180		if (queue->cpu != -1)
1181			ptq->cpu = queue->cpu;
1182		ptq->tid = queue->tid;
1183
1184		ptq->cbr_seen = UINT_MAX;
1185
1186		if (pt->sampling_mode && !pt->snapshot_mode &&
1187		    pt->timeless_decoding)
1188			ptq->step_through_buffers = true;
1189
1190		ptq->sync_switch = pt->sync_switch;
1191
1192		intel_pt_setup_time_range(pt, ptq);
1193	}
1194
1195	if (!ptq->on_heap &&
1196	    (!ptq->sync_switch ||
1197	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1198		const struct intel_pt_state *state;
1199		int ret;
1200
1201		if (pt->timeless_decoding)
1202			return 0;
1203
1204		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1205		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1206			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1207
1208		if (ptq->sel_start && ptq->sel_timestamp) {
1209			ret = intel_pt_fast_forward(ptq->decoder,
1210						    ptq->sel_timestamp);
1211			if (ret)
1212				return ret;
1213		}
1214
1215		while (1) {
1216			state = intel_pt_decode(ptq->decoder);
1217			if (state->err) {
1218				if (state->err == INTEL_PT_ERR_NODATA) {
1219					intel_pt_log("queue %u has no timestamp\n",
1220						     queue_nr);
1221					return 0;
1222				}
1223				continue;
1224			}
1225			if (state->timestamp)
1226				break;
1227		}
1228
1229		ptq->timestamp = state->timestamp;
1230		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1231			     queue_nr, ptq->timestamp);
1232		ptq->state = state;
1233		ptq->have_sample = true;
1234		if (ptq->sel_start && ptq->sel_timestamp &&
1235		    ptq->timestamp < ptq->sel_timestamp)
1236			ptq->have_sample = false;
1237		intel_pt_sample_flags(ptq);
1238		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1239		if (ret)
1240			return ret;
1241		ptq->on_heap = true;
1242	}
1243
1244	return 0;
1245}
1246
1247static int intel_pt_setup_queues(struct intel_pt *pt)
1248{
1249	unsigned int i;
1250	int ret;
1251
1252	for (i = 0; i < pt->queues.nr_queues; i++) {
1253		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1254		if (ret)
1255			return ret;
1256	}
1257	return 0;
1258}
1259
1260static inline bool intel_pt_skip_event(struct intel_pt *pt)
1261{
1262	return pt->synth_opts.initial_skip &&
1263	       pt->num_events++ < pt->synth_opts.initial_skip;
1264}
1265
1266/*
1267 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1268 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1269 * from this decoder state.
1270 */
1271static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1272{
1273	return pt->synth_opts.initial_skip &&
1274	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1275}
1276
1277static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1278				   union perf_event *event,
1279				   struct perf_sample *sample)
1280{
1281	event->sample.header.type = PERF_RECORD_SAMPLE;
1282	event->sample.header.size = sizeof(struct perf_event_header);
1283
1284	sample->pid = ptq->pid;
1285	sample->tid = ptq->tid;
1286	sample->cpu = ptq->cpu;
1287	sample->insn_len = ptq->insn_len;
1288	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1289}
1290
1291static void intel_pt_prep_b_sample(struct intel_pt *pt,
1292				   struct intel_pt_queue *ptq,
1293				   union perf_event *event,
1294				   struct perf_sample *sample)
1295{
1296	intel_pt_prep_a_sample(ptq, event, sample);
1297
1298	if (!pt->timeless_decoding)
1299		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1300
1301	sample->ip = ptq->state->from_ip;
1302	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1303	sample->addr = ptq->state->to_ip;
1304	sample->period = 1;
1305	sample->flags = ptq->flags;
1306
1307	event->sample.header.misc = sample->cpumode;
1308}
1309
1310static int intel_pt_inject_event(union perf_event *event,
1311				 struct perf_sample *sample, u64 type)
1312{
1313	event->header.size = perf_event__sample_event_size(sample, type, 0);
1314	return perf_event__synthesize_sample(event, type, 0, sample);
1315}
1316
1317static inline int intel_pt_opt_inject(struct intel_pt *pt,
1318				      union perf_event *event,
1319				      struct perf_sample *sample, u64 type)
1320{
1321	if (!pt->synth_opts.inject)
1322		return 0;
1323
1324	return intel_pt_inject_event(event, sample, type);
1325}
1326
1327static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1328					union perf_event *event,
1329					struct perf_sample *sample, u64 type)
1330{
1331	int ret;
1332
1333	ret = intel_pt_opt_inject(pt, event, sample, type);
1334	if (ret)
1335		return ret;
1336
1337	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1338	if (ret)
1339		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1340
1341	return ret;
1342}
1343
1344static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1345{
1346	struct intel_pt *pt = ptq->pt;
1347	union perf_event *event = ptq->event_buf;
1348	struct perf_sample sample = { .ip = 0, };
1349	struct dummy_branch_stack {
1350		u64			nr;
1351		u64			hw_idx;
1352		struct branch_entry	entries;
1353	} dummy_bs;
1354
1355	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1356		return 0;
1357
1358	if (intel_pt_skip_event(pt))
1359		return 0;
1360
1361	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1362
1363	sample.id = ptq->pt->branches_id;
1364	sample.stream_id = ptq->pt->branches_id;
1365
1366	/*
1367	 * perf report cannot handle events without a branch stack when using
1368	 * SORT_MODE__BRANCH so make a dummy one.
1369	 */
1370	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1371		dummy_bs = (struct dummy_branch_stack){
1372			.nr = 1,
1373			.hw_idx = -1ULL,
1374			.entries = {
1375				.from = sample.ip,
1376				.to = sample.addr,
1377			},
1378		};
1379		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1380	}
1381
1382	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1383	if (sample.cyc_cnt) {
1384		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1385		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1386		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1387	}
1388
1389	return intel_pt_deliver_synth_event(pt, event, &sample,
1390					    pt->branches_sample_type);
1391}
1392
1393static void intel_pt_prep_sample(struct intel_pt *pt,
1394				 struct intel_pt_queue *ptq,
1395				 union perf_event *event,
1396				 struct perf_sample *sample)
1397{
1398	intel_pt_prep_b_sample(pt, ptq, event, sample);
1399
1400	if (pt->synth_opts.callchain) {
1401		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1402				     pt->synth_opts.callchain_sz + 1,
1403				     sample->ip, pt->kernel_start);
1404		sample->callchain = ptq->chain;
1405	}
1406
1407	if (pt->synth_opts.last_branch) {
1408		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1409					pt->br_stack_sz);
1410		sample->branch_stack = ptq->last_branch;
1411	}
1412}
1413
1414static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1415{
1416	struct intel_pt *pt = ptq->pt;
1417	union perf_event *event = ptq->event_buf;
1418	struct perf_sample sample = { .ip = 0, };
1419
1420	if (intel_pt_skip_event(pt))
1421		return 0;
1422
1423	intel_pt_prep_sample(pt, ptq, event, &sample);
1424
1425	sample.id = ptq->pt->instructions_id;
1426	sample.stream_id = ptq->pt->instructions_id;
1427	if (pt->synth_opts.quick)
1428		sample.period = 1;
1429	else
1430		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1431
1432	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1433	if (sample.cyc_cnt) {
1434		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1435		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1436		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1437	}
1438
1439	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1440
1441	return intel_pt_deliver_synth_event(pt, event, &sample,
1442					    pt->instructions_sample_type);
1443}
1444
1445static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1446{
1447	struct intel_pt *pt = ptq->pt;
1448	union perf_event *event = ptq->event_buf;
1449	struct perf_sample sample = { .ip = 0, };
1450
1451	if (intel_pt_skip_event(pt))
1452		return 0;
1453
1454	intel_pt_prep_sample(pt, ptq, event, &sample);
1455
1456	sample.id = ptq->pt->transactions_id;
1457	sample.stream_id = ptq->pt->transactions_id;
1458
1459	return intel_pt_deliver_synth_event(pt, event, &sample,
1460					    pt->transactions_sample_type);
1461}
1462
1463static void intel_pt_prep_p_sample(struct intel_pt *pt,
1464				   struct intel_pt_queue *ptq,
1465				   union perf_event *event,
1466				   struct perf_sample *sample)
1467{
1468	intel_pt_prep_sample(pt, ptq, event, sample);
1469
1470	/*
1471	 * Zero IP is used to mean "trace start" but that is not the case for
1472	 * power or PTWRITE events with no IP, so clear the flags.
1473	 */
1474	if (!sample->ip)
1475		sample->flags = 0;
1476}
1477
1478static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1479{
1480	struct intel_pt *pt = ptq->pt;
1481	union perf_event *event = ptq->event_buf;
1482	struct perf_sample sample = { .ip = 0, };
1483	struct perf_synth_intel_ptwrite raw;
1484
1485	if (intel_pt_skip_event(pt))
1486		return 0;
1487
1488	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1489
1490	sample.id = ptq->pt->ptwrites_id;
1491	sample.stream_id = ptq->pt->ptwrites_id;
1492
1493	raw.flags = 0;
1494	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1495	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1496
1497	sample.raw_size = perf_synth__raw_size(raw);
1498	sample.raw_data = perf_synth__raw_data(&raw);
1499
1500	return intel_pt_deliver_synth_event(pt, event, &sample,
1501					    pt->ptwrites_sample_type);
1502}
1503
1504static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1505{
1506	struct intel_pt *pt = ptq->pt;
1507	union perf_event *event = ptq->event_buf;
1508	struct perf_sample sample = { .ip = 0, };
1509	struct perf_synth_intel_cbr raw;
1510	u32 flags;
1511
1512	if (intel_pt_skip_cbr_event(pt))
1513		return 0;
1514
1515	ptq->cbr_seen = ptq->state->cbr;
1516
1517	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1518
1519	sample.id = ptq->pt->cbr_id;
1520	sample.stream_id = ptq->pt->cbr_id;
1521
1522	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1523	raw.flags = cpu_to_le32(flags);
1524	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1525	raw.reserved3 = 0;
1526
1527	sample.raw_size = perf_synth__raw_size(raw);
1528	sample.raw_data = perf_synth__raw_data(&raw);
1529
1530	return intel_pt_deliver_synth_event(pt, event, &sample,
1531					    pt->pwr_events_sample_type);
1532}
1533
1534static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1535{
1536	struct intel_pt *pt = ptq->pt;
1537	union perf_event *event = ptq->event_buf;
1538	struct perf_sample sample = { .ip = 0, };
1539	struct perf_synth_intel_mwait raw;
1540
1541	if (intel_pt_skip_event(pt))
1542		return 0;
1543
1544	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1545
1546	sample.id = ptq->pt->mwait_id;
1547	sample.stream_id = ptq->pt->mwait_id;
1548
1549	raw.reserved = 0;
1550	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1551
1552	sample.raw_size = perf_synth__raw_size(raw);
1553	sample.raw_data = perf_synth__raw_data(&raw);
1554
1555	return intel_pt_deliver_synth_event(pt, event, &sample,
1556					    pt->pwr_events_sample_type);
1557}
1558
1559static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1560{
1561	struct intel_pt *pt = ptq->pt;
1562	union perf_event *event = ptq->event_buf;
1563	struct perf_sample sample = { .ip = 0, };
1564	struct perf_synth_intel_pwre raw;
1565
1566	if (intel_pt_skip_event(pt))
1567		return 0;
1568
1569	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1570
1571	sample.id = ptq->pt->pwre_id;
1572	sample.stream_id = ptq->pt->pwre_id;
1573
1574	raw.reserved = 0;
1575	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1576
1577	sample.raw_size = perf_synth__raw_size(raw);
1578	sample.raw_data = perf_synth__raw_data(&raw);
1579
1580	return intel_pt_deliver_synth_event(pt, event, &sample,
1581					    pt->pwr_events_sample_type);
1582}
1583
1584static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1585{
1586	struct intel_pt *pt = ptq->pt;
1587	union perf_event *event = ptq->event_buf;
1588	struct perf_sample sample = { .ip = 0, };
1589	struct perf_synth_intel_exstop raw;
1590
1591	if (intel_pt_skip_event(pt))
1592		return 0;
1593
1594	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1595
1596	sample.id = ptq->pt->exstop_id;
1597	sample.stream_id = ptq->pt->exstop_id;
1598
1599	raw.flags = 0;
1600	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1601
1602	sample.raw_size = perf_synth__raw_size(raw);
1603	sample.raw_data = perf_synth__raw_data(&raw);
1604
1605	return intel_pt_deliver_synth_event(pt, event, &sample,
1606					    pt->pwr_events_sample_type);
1607}
1608
1609static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1610{
1611	struct intel_pt *pt = ptq->pt;
1612	union perf_event *event = ptq->event_buf;
1613	struct perf_sample sample = { .ip = 0, };
1614	struct perf_synth_intel_pwrx raw;
1615
1616	if (intel_pt_skip_event(pt))
1617		return 0;
1618
1619	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1620
1621	sample.id = ptq->pt->pwrx_id;
1622	sample.stream_id = ptq->pt->pwrx_id;
1623
1624	raw.reserved = 0;
1625	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1626
1627	sample.raw_size = perf_synth__raw_size(raw);
1628	sample.raw_data = perf_synth__raw_data(&raw);
1629
1630	return intel_pt_deliver_synth_event(pt, event, &sample,
1631					    pt->pwr_events_sample_type);
1632}
1633
1634/*
1635 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1636 * intel_pt_add_gp_regs().
1637 */
1638static const int pebs_gp_regs[] = {
1639	[PERF_REG_X86_FLAGS]	= 1,
1640	[PERF_REG_X86_IP]	= 2,
1641	[PERF_REG_X86_AX]	= 3,
1642	[PERF_REG_X86_CX]	= 4,
1643	[PERF_REG_X86_DX]	= 5,
1644	[PERF_REG_X86_BX]	= 6,
1645	[PERF_REG_X86_SP]	= 7,
1646	[PERF_REG_X86_BP]	= 8,
1647	[PERF_REG_X86_SI]	= 9,
1648	[PERF_REG_X86_DI]	= 10,
1649	[PERF_REG_X86_R8]	= 11,
1650	[PERF_REG_X86_R9]	= 12,
1651	[PERF_REG_X86_R10]	= 13,
1652	[PERF_REG_X86_R11]	= 14,
1653	[PERF_REG_X86_R12]	= 15,
1654	[PERF_REG_X86_R13]	= 16,
1655	[PERF_REG_X86_R14]	= 17,
1656	[PERF_REG_X86_R15]	= 18,
1657};
1658
1659static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1660				 const struct intel_pt_blk_items *items,
1661				 u64 regs_mask)
1662{
1663	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1664	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1665	u32 bit;
1666	int i;
1667
1668	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1669		/* Get the PEBS gp_regs array index */
1670		int n = pebs_gp_regs[i] - 1;
1671
1672		if (n < 0)
1673			continue;
1674		/*
1675		 * Add only registers that were requested (i.e. 'regs_mask') and
1676		 * that were provided (i.e. 'mask'), and update the resulting
1677		 * mask (i.e. 'intr_regs->mask') accordingly.
1678		 */
1679		if (mask & 1 << n && regs_mask & bit) {
1680			intr_regs->mask |= bit;
1681			*pos++ = gp_regs[n];
1682		}
1683	}
1684
1685	return pos;
1686}
1687
1688#ifndef PERF_REG_X86_XMM0
1689#define PERF_REG_X86_XMM0 32
1690#endif
1691
1692static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1693			     const struct intel_pt_blk_items *items,
1694			     u64 regs_mask)
1695{
1696	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1697	const u64 *xmm = items->xmm;
1698
1699	/*
1700	 * If there are any XMM registers, then there should be all of them.
1701	 * Nevertheless, follow the logic to add only registers that were
1702	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1703	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1704	 */
1705	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1706
1707	for (; mask; mask >>= 1, xmm++) {
1708		if (mask & 1)
1709			*pos++ = *xmm;
1710	}
1711}
1712
1713#define LBR_INFO_MISPRED	(1ULL << 63)
1714#define LBR_INFO_IN_TX		(1ULL << 62)
1715#define LBR_INFO_ABORT		(1ULL << 61)
1716#define LBR_INFO_CYCLES		0xffff
1717
1718/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1719static u64 intel_pt_lbr_flags(u64 info)
1720{
1721	union {
1722		struct branch_flags flags;
1723		u64 result;
1724	} u;
1725
1726	u.result	  = 0;
1727	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1728	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1729	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1730	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1731	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1732
1733	return u.result;
1734}
1735
1736static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1737			      const struct intel_pt_blk_items *items)
1738{
1739	u64 *to;
1740	int i;
1741
1742	br_stack->nr = 0;
1743
1744	to = &br_stack->entries[0].from;
1745
1746	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1747		u32 mask = items->mask[i];
1748		const u64 *from = items->val[i];
1749
1750		for (; mask; mask >>= 3, from += 3) {
1751			if ((mask & 7) == 7) {
1752				*to++ = from[0];
1753				*to++ = from[1];
1754				*to++ = intel_pt_lbr_flags(from[2]);
1755				br_stack->nr += 1;
1756			}
1757		}
1758	}
1759}
1760
1761static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1762{
1763	const struct intel_pt_blk_items *items = &ptq->state->items;
1764	struct perf_sample sample = { .ip = 0, };
1765	union perf_event *event = ptq->event_buf;
1766	struct intel_pt *pt = ptq->pt;
1767	struct evsel *evsel = pt->pebs_evsel;
1768	u64 sample_type = evsel->core.attr.sample_type;
1769	u64 id = evsel->core.id[0];
1770	u8 cpumode;
1771	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1772
1773	if (intel_pt_skip_event(pt))
1774		return 0;
1775
1776	intel_pt_prep_a_sample(ptq, event, &sample);
1777
1778	sample.id = id;
1779	sample.stream_id = id;
1780
1781	if (!evsel->core.attr.freq)
1782		sample.period = evsel->core.attr.sample_period;
1783
1784	/* No support for non-zero CS base */
1785	if (items->has_ip)
1786		sample.ip = items->ip;
1787	else if (items->has_rip)
1788		sample.ip = items->rip;
1789	else
1790		sample.ip = ptq->state->from_ip;
1791
1792	/* No support for guest mode at this time */
1793	cpumode = sample.ip < ptq->pt->kernel_start ?
1794		  PERF_RECORD_MISC_USER :
1795		  PERF_RECORD_MISC_KERNEL;
1796
1797	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1798
1799	sample.cpumode = cpumode;
1800
1801	if (sample_type & PERF_SAMPLE_TIME) {
1802		u64 timestamp = 0;
1803
1804		if (items->has_timestamp)
1805			timestamp = items->timestamp;
1806		else if (!pt->timeless_decoding)
1807			timestamp = ptq->timestamp;
1808		if (timestamp)
1809			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1810	}
1811
1812	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1813	    pt->synth_opts.callchain) {
1814		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1815				     pt->synth_opts.callchain_sz, sample.ip,
1816				     pt->kernel_start);
1817		sample.callchain = ptq->chain;
1818	}
1819
1820	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1821	    (items->mask[INTEL_PT_GP_REGS_POS] ||
1822	     items->mask[INTEL_PT_XMM_POS])) {
1823		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1824		u64 *pos;
1825
1826		sample.intr_regs.abi = items->is_32_bit ?
1827				       PERF_SAMPLE_REGS_ABI_32 :
1828				       PERF_SAMPLE_REGS_ABI_64;
1829		sample.intr_regs.regs = regs;
1830
1831		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1832
1833		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1834	}
1835
1836	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1837		if (items->mask[INTEL_PT_LBR_0_POS] ||
1838		    items->mask[INTEL_PT_LBR_1_POS] ||
1839		    items->mask[INTEL_PT_LBR_2_POS]) {
1840			intel_pt_add_lbrs(ptq->last_branch, items);
1841		} else if (pt->synth_opts.last_branch) {
1842			thread_stack__br_sample(ptq->thread, ptq->cpu,
1843						ptq->last_branch,
1844						pt->br_stack_sz);
1845		} else {
1846			ptq->last_branch->nr = 0;
1847		}
1848		sample.branch_stack = ptq->last_branch;
1849	}
1850
1851	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1852		sample.addr = items->mem_access_address;
1853
1854	if (sample_type & PERF_SAMPLE_WEIGHT) {
1855		/*
1856		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1857		 * intel_hsw_weight().
1858		 */
1859		if (items->has_mem_access_latency)
1860			sample.weight = items->mem_access_latency;
1861		if (!sample.weight && items->has_tsx_aux_info) {
1862			/* Cycles last block */
1863			sample.weight = (u32)items->tsx_aux_info;
1864		}
1865	}
1866
1867	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1868		u64 ax = items->has_rax ? items->rax : 0;
1869		/* Refer kernel's intel_hsw_transaction() */
1870		u64 txn = (u8)(items->tsx_aux_info >> 32);
1871
1872		/* For RTM XABORTs also log the abort code from AX */
1873		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1874			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1875		sample.transaction = txn;
1876	}
1877
1878	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1879}
1880
1881static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1882				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1883{
1884	union perf_event event;
1885	char msg[MAX_AUXTRACE_ERROR_MSG];
1886	int err;
1887
1888	if (pt->synth_opts.error_minus_flags) {
1889		if (code == INTEL_PT_ERR_OVR &&
1890		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1891			return 0;
1892		if (code == INTEL_PT_ERR_LOST &&
1893		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1894			return 0;
1895	}
1896
1897	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1898
1899	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1900			     code, cpu, pid, tid, ip, msg, timestamp);
1901
1902	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1903	if (err)
1904		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1905		       err);
1906
1907	return err;
1908}
1909
1910static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1911				 const struct intel_pt_state *state)
1912{
1913	struct intel_pt *pt = ptq->pt;
1914	u64 tm = ptq->timestamp;
1915
1916	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1917
1918	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1919				    ptq->tid, state->from_ip, tm);
1920}
1921
1922static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1923{
1924	struct auxtrace_queue *queue;
1925	pid_t tid = ptq->next_tid;
1926	int err;
1927
1928	if (tid == -1)
1929		return 0;
1930
1931	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1932
1933	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1934
1935	queue = &pt->queues.queue_array[ptq->queue_nr];
1936	intel_pt_set_pid_tid_cpu(pt, queue);
1937
1938	ptq->next_tid = -1;
1939
1940	return err;
1941}
1942
1943static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1944{
1945	struct intel_pt *pt = ptq->pt;
1946
1947	return ip == pt->switch_ip &&
1948	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1949	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1950			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1951}
1952
1953#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1954			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1955
1956static int intel_pt_sample(struct intel_pt_queue *ptq)
1957{
1958	const struct intel_pt_state *state = ptq->state;
1959	struct intel_pt *pt = ptq->pt;
1960	int err;
1961
1962	if (!ptq->have_sample)
1963		return 0;
1964
1965	ptq->have_sample = false;
1966
1967	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1968		/*
1969		 * Cycle count and instruction count only go together to create
1970		 * a valid IPC ratio when the cycle count changes.
1971		 */
1972		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1973		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1974	}
1975
1976	/*
1977	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1978	 * precedes the current timestamp.
1979	 */
1980	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1981		err = intel_pt_synth_pebs_sample(ptq);
1982		if (err)
1983			return err;
1984	}
1985
1986	if (pt->sample_pwr_events) {
1987		if (ptq->state->cbr != ptq->cbr_seen) {
1988			err = intel_pt_synth_cbr_sample(ptq);
1989			if (err)
1990				return err;
1991		}
1992		if (state->type & INTEL_PT_PWR_EVT) {
1993			if (state->type & INTEL_PT_MWAIT_OP) {
1994				err = intel_pt_synth_mwait_sample(ptq);
1995				if (err)
1996					return err;
1997			}
1998			if (state->type & INTEL_PT_PWR_ENTRY) {
1999				err = intel_pt_synth_pwre_sample(ptq);
2000				if (err)
2001					return err;
2002			}
2003			if (state->type & INTEL_PT_EX_STOP) {
2004				err = intel_pt_synth_exstop_sample(ptq);
2005				if (err)
2006					return err;
2007			}
2008			if (state->type & INTEL_PT_PWR_EXIT) {
2009				err = intel_pt_synth_pwrx_sample(ptq);
2010				if (err)
2011					return err;
2012			}
2013		}
2014	}
2015
2016	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2017		err = intel_pt_synth_instruction_sample(ptq);
2018		if (err)
2019			return err;
2020	}
2021
2022	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2023		err = intel_pt_synth_transaction_sample(ptq);
2024		if (err)
2025			return err;
2026	}
2027
2028	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2029		err = intel_pt_synth_ptwrite_sample(ptq);
2030		if (err)
2031			return err;
2032	}
2033
2034	if (!(state->type & INTEL_PT_BRANCH))
2035		return 0;
2036
2037	if (pt->use_thread_stack) {
2038		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2039				    state->from_ip, state->to_ip, ptq->insn_len,
2040				    state->trace_nr, pt->callstack,
2041				    pt->br_stack_sz_plus,
2042				    pt->mispred_all);
2043	} else {
2044		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2045	}
2046
2047	if (pt->sample_branches) {
2048		err = intel_pt_synth_branch_sample(ptq);
2049		if (err)
2050			return err;
2051	}
2052
2053	if (!ptq->sync_switch)
2054		return 0;
2055
2056	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2057		switch (ptq->switch_state) {
2058		case INTEL_PT_SS_NOT_TRACING:
2059		case INTEL_PT_SS_UNKNOWN:
2060		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2061			err = intel_pt_next_tid(pt, ptq);
2062			if (err)
2063				return err;
2064			ptq->switch_state = INTEL_PT_SS_TRACING;
2065			break;
2066		default:
2067			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2068			return 1;
2069		}
2070	} else if (!state->to_ip) {
2071		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2072	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2073		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2074	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2075		   state->to_ip == pt->ptss_ip &&
2076		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2077		ptq->switch_state = INTEL_PT_SS_TRACING;
2078	}
2079
2080	return 0;
2081}
2082
2083static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2084{
2085	struct machine *machine = pt->machine;
2086	struct map *map;
2087	struct symbol *sym, *start;
2088	u64 ip, switch_ip = 0;
2089	const char *ptss;
2090
2091	if (ptss_ip)
2092		*ptss_ip = 0;
2093
2094	map = machine__kernel_map(machine);
2095	if (!map)
2096		return 0;
2097
2098	if (map__load(map))
2099		return 0;
2100
2101	start = dso__first_symbol(map->dso);
2102
2103	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2104		if (sym->binding == STB_GLOBAL &&
2105		    !strcmp(sym->name, "__switch_to")) {
2106			ip = map->unmap_ip(map, sym->start);
2107			if (ip >= map->start && ip < map->end) {
2108				switch_ip = ip;
2109				break;
2110			}
2111		}
2112	}
2113
2114	if (!switch_ip || !ptss_ip)
2115		return 0;
2116
2117	if (pt->have_sched_switch == 1)
2118		ptss = "perf_trace_sched_switch";
2119	else
2120		ptss = "__perf_event_task_sched_out";
2121
2122	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2123		if (!strcmp(sym->name, ptss)) {
2124			ip = map->unmap_ip(map, sym->start);
2125			if (ip >= map->start && ip < map->end) {
2126				*ptss_ip = ip;
2127				break;
2128			}
2129		}
2130	}
2131
2132	return switch_ip;
2133}
2134
2135static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2136{
2137	unsigned int i;
2138
2139	pt->sync_switch = true;
2140
2141	for (i = 0; i < pt->queues.nr_queues; i++) {
2142		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2143		struct intel_pt_queue *ptq = queue->priv;
2144
2145		if (ptq)
2146			ptq->sync_switch = true;
2147	}
2148}
2149
2150/*
2151 * To filter against time ranges, it is only necessary to look at the next start
2152 * or end time.
2153 */
2154static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2155{
2156	struct intel_pt *pt = ptq->pt;
2157
2158	if (ptq->sel_start) {
2159		/* Next time is an end time */
2160		ptq->sel_start = false;
2161		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2162		return true;
2163	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2164		/* Next time is a start time */
2165		ptq->sel_start = true;
2166		ptq->sel_idx += 1;
2167		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2168		return true;
2169	}
2170
2171	/* No next time */
2172	return false;
2173}
2174
2175static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2176{
2177	int err;
2178
2179	while (1) {
2180		if (ptq->sel_start) {
2181			if (ptq->timestamp >= ptq->sel_timestamp) {
2182				/* After start time, so consider next time */
2183				intel_pt_next_time(ptq);
2184				if (!ptq->sel_timestamp) {
2185					/* No end time */
2186					return 0;
2187				}
2188				/* Check against end time */
2189				continue;
2190			}
2191			/* Before start time, so fast forward */
2192			ptq->have_sample = false;
2193			if (ptq->sel_timestamp > *ff_timestamp) {
2194				if (ptq->sync_switch) {
2195					intel_pt_next_tid(ptq->pt, ptq);
2196					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2197				}
2198				*ff_timestamp = ptq->sel_timestamp;
2199				err = intel_pt_fast_forward(ptq->decoder,
2200							    ptq->sel_timestamp);
2201				if (err)
2202					return err;
2203			}
2204			return 0;
2205		} else if (ptq->timestamp > ptq->sel_timestamp) {
2206			/* After end time, so consider next time */
2207			if (!intel_pt_next_time(ptq)) {
2208				/* No next time range, so stop decoding */
2209				ptq->have_sample = false;
2210				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2211				return 1;
2212			}
2213			/* Check against next start time */
2214			continue;
2215		} else {
2216			/* Before end time */
2217			return 0;
2218		}
2219	}
2220}
2221
2222static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2223{
2224	const struct intel_pt_state *state = ptq->state;
2225	struct intel_pt *pt = ptq->pt;
2226	u64 ff_timestamp = 0;
2227	int err;
2228
2229	if (!pt->kernel_start) {
2230		pt->kernel_start = machine__kernel_start(pt->machine);
2231		if (pt->per_cpu_mmaps &&
2232		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2233		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2234		    !pt->sampling_mode) {
2235			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2236			if (pt->switch_ip) {
2237				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2238					     pt->switch_ip, pt->ptss_ip);
2239				intel_pt_enable_sync_switch(pt);
2240			}
2241		}
2242	}
2243
2244	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2245		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2246	while (1) {
2247		err = intel_pt_sample(ptq);
2248		if (err)
2249			return err;
2250
2251		state = intel_pt_decode(ptq->decoder);
2252		if (state->err) {
2253			if (state->err == INTEL_PT_ERR_NODATA)
2254				return 1;
2255			if (ptq->sync_switch &&
2256			    state->from_ip >= pt->kernel_start) {
2257				ptq->sync_switch = false;
2258				intel_pt_next_tid(pt, ptq);
2259			}
2260			if (pt->synth_opts.errors) {
2261				err = intel_ptq_synth_error(ptq, state);
2262				if (err)
2263					return err;
2264			}
2265			continue;
2266		}
2267
2268		ptq->state = state;
2269		ptq->have_sample = true;
2270		intel_pt_sample_flags(ptq);
2271
2272		/* Use estimated TSC upon return to user space */
2273		if (pt->est_tsc &&
2274		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2275		    state->to_ip && state->to_ip < pt->kernel_start) {
2276			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2277				     state->timestamp, state->est_timestamp);
2278			ptq->timestamp = state->est_timestamp;
2279		/* Use estimated TSC in unknown switch state */
2280		} else if (ptq->sync_switch &&
2281			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2282			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2283			   ptq->next_tid == -1) {
2284			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2285				     state->timestamp, state->est_timestamp);
2286			ptq->timestamp = state->est_timestamp;
2287		} else if (state->timestamp > ptq->timestamp) {
2288			ptq->timestamp = state->timestamp;
2289		}
2290
2291		if (ptq->sel_timestamp) {
2292			err = intel_pt_time_filter(ptq, &ff_timestamp);
2293			if (err)
2294				return err;
2295		}
2296
2297		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2298			*timestamp = ptq->timestamp;
2299			return 0;
2300		}
2301	}
2302	return 0;
2303}
2304
2305static inline int intel_pt_update_queues(struct intel_pt *pt)
2306{
2307	if (pt->queues.new_data) {
2308		pt->queues.new_data = false;
2309		return intel_pt_setup_queues(pt);
2310	}
2311	return 0;
2312}
2313
2314static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2315{
2316	unsigned int queue_nr;
2317	u64 ts;
2318	int ret;
2319
2320	while (1) {
2321		struct auxtrace_queue *queue;
2322		struct intel_pt_queue *ptq;
2323
2324		if (!pt->heap.heap_cnt)
2325			return 0;
2326
2327		if (pt->heap.heap_array[0].ordinal >= timestamp)
2328			return 0;
2329
2330		queue_nr = pt->heap.heap_array[0].queue_nr;
2331		queue = &pt->queues.queue_array[queue_nr];
2332		ptq = queue->priv;
2333
2334		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2335			     queue_nr, pt->heap.heap_array[0].ordinal,
2336			     timestamp);
2337
2338		auxtrace_heap__pop(&pt->heap);
2339
2340		if (pt->heap.heap_cnt) {
2341			ts = pt->heap.heap_array[0].ordinal + 1;
2342			if (ts > timestamp)
2343				ts = timestamp;
2344		} else {
2345			ts = timestamp;
2346		}
2347
2348		intel_pt_set_pid_tid_cpu(pt, queue);
2349
2350		ret = intel_pt_run_decoder(ptq, &ts);
2351
2352		if (ret < 0) {
2353			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2354			return ret;
2355		}
2356
2357		if (!ret) {
2358			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2359			if (ret < 0)
2360				return ret;
2361		} else {
2362			ptq->on_heap = false;
2363		}
2364	}
2365
2366	return 0;
2367}
2368
2369static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2370					    u64 time_)
2371{
2372	struct auxtrace_queues *queues = &pt->queues;
2373	unsigned int i;
2374	u64 ts = 0;
2375
2376	for (i = 0; i < queues->nr_queues; i++) {
2377		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2378		struct intel_pt_queue *ptq = queue->priv;
2379
2380		if (ptq && (tid == -1 || ptq->tid == tid)) {
2381			ptq->time = time_;
2382			intel_pt_set_pid_tid_cpu(pt, queue);
2383			intel_pt_run_decoder(ptq, &ts);
2384		}
2385	}
2386	return 0;
2387}
2388
2389static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2390					    struct auxtrace_queue *queue,
2391					    struct perf_sample *sample)
2392{
2393	struct machine *m = ptq->pt->machine;
2394
2395	ptq->pid = sample->pid;
2396	ptq->tid = sample->tid;
2397	ptq->cpu = queue->cpu;
2398
2399	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2400		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2401
2402	thread__zput(ptq->thread);
2403
2404	if (ptq->tid == -1)
2405		return;
2406
2407	if (ptq->pid == -1) {
2408		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2409		if (ptq->thread)
2410			ptq->pid = ptq->thread->pid_;
2411		return;
2412	}
2413
2414	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2415}
2416
2417static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2418					    struct perf_sample *sample)
2419{
2420	struct auxtrace_queue *queue;
2421	struct intel_pt_queue *ptq;
2422	u64 ts = 0;
2423
2424	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2425	if (!queue)
2426		return -EINVAL;
2427
2428	ptq = queue->priv;
2429	if (!ptq)
2430		return 0;
2431
2432	ptq->stop = false;
2433	ptq->time = sample->time;
2434	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2435	intel_pt_run_decoder(ptq, &ts);
2436	return 0;
2437}
2438
2439static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2440{
2441	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2442				    sample->pid, sample->tid, 0, sample->time);
2443}
2444
2445static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2446{
2447	unsigned i, j;
2448
2449	if (cpu < 0 || !pt->queues.nr_queues)
2450		return NULL;
2451
2452	if ((unsigned)cpu >= pt->queues.nr_queues)
2453		i = pt->queues.nr_queues - 1;
2454	else
2455		i = cpu;
2456
2457	if (pt->queues.queue_array[i].cpu == cpu)
2458		return pt->queues.queue_array[i].priv;
2459
2460	for (j = 0; i > 0; j++) {
2461		if (pt->queues.queue_array[--i].cpu == cpu)
2462			return pt->queues.queue_array[i].priv;
2463	}
2464
2465	for (; j < pt->queues.nr_queues; j++) {
2466		if (pt->queues.queue_array[j].cpu == cpu)
2467			return pt->queues.queue_array[j].priv;
2468	}
2469
2470	return NULL;
2471}
2472
2473static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2474				u64 timestamp)
2475{
2476	struct intel_pt_queue *ptq;
2477	int err;
2478
2479	if (!pt->sync_switch)
2480		return 1;
2481
2482	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2483	if (!ptq || !ptq->sync_switch)
2484		return 1;
2485
2486	switch (ptq->switch_state) {
2487	case INTEL_PT_SS_NOT_TRACING:
2488		break;
2489	case INTEL_PT_SS_UNKNOWN:
2490	case INTEL_PT_SS_TRACING:
2491		ptq->next_tid = tid;
2492		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2493		return 0;
2494	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2495		if (!ptq->on_heap) {
2496			ptq->timestamp = perf_time_to_tsc(timestamp,
2497							  &pt->tc);
2498			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2499						 ptq->timestamp);
2500			if (err)
2501				return err;
2502			ptq->on_heap = true;
2503		}
2504		ptq->switch_state = INTEL_PT_SS_TRACING;
2505		break;
2506	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2507		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2508		break;
2509	default:
2510		break;
2511	}
2512
2513	ptq->next_tid = -1;
2514
2515	return 1;
2516}
2517
2518static int intel_pt_process_switch(struct intel_pt *pt,
2519				   struct perf_sample *sample)
2520{
2521	struct evsel *evsel;
2522	pid_t tid;
2523	int cpu, ret;
2524
2525	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2526	if (evsel != pt->switch_evsel)
2527		return 0;
2528
2529	tid = evsel__intval(evsel, sample, "next_pid");
2530	cpu = sample->cpu;
2531
2532	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2533		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2534		     &pt->tc));
2535
2536	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2537	if (ret <= 0)
2538		return ret;
2539
2540	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2541}
2542
2543static int intel_pt_context_switch_in(struct intel_pt *pt,
2544				      struct perf_sample *sample)
2545{
2546	pid_t pid = sample->pid;
2547	pid_t tid = sample->tid;
2548	int cpu = sample->cpu;
2549
2550	if (pt->sync_switch) {
2551		struct intel_pt_queue *ptq;
2552
2553		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2554		if (ptq && ptq->sync_switch) {
2555			ptq->next_tid = -1;
2556			switch (ptq->switch_state) {
2557			case INTEL_PT_SS_NOT_TRACING:
2558			case INTEL_PT_SS_UNKNOWN:
2559			case INTEL_PT_SS_TRACING:
2560				break;
2561			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2562			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2563				ptq->switch_state = INTEL_PT_SS_TRACING;
2564				break;
2565			default:
2566				break;
2567			}
2568		}
2569	}
2570
2571	/*
2572	 * If the current tid has not been updated yet, ensure it is now that
2573	 * a "switch in" event has occurred.
2574	 */
2575	if (machine__get_current_tid(pt->machine, cpu) == tid)
2576		return 0;
2577
2578	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2579}
2580
2581static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2582				   struct perf_sample *sample)
2583{
2584	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2585	pid_t pid, tid;
2586	int cpu, ret;
2587
2588	cpu = sample->cpu;
2589
2590	if (pt->have_sched_switch == 3) {
2591		if (!out)
2592			return intel_pt_context_switch_in(pt, sample);
2593		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2594			pr_err("Expecting CPU-wide context switch event\n");
2595			return -EINVAL;
2596		}
2597		pid = event->context_switch.next_prev_pid;
2598		tid = event->context_switch.next_prev_tid;
2599	} else {
2600		if (out)
2601			return 0;
2602		pid = sample->pid;
2603		tid = sample->tid;
2604	}
2605
2606	if (tid == -1) {
2607		pr_err("context_switch event has no tid\n");
2608		return -EINVAL;
2609	}
2610
2611	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2612	if (ret <= 0)
2613		return ret;
2614
2615	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2616}
2617
2618static int intel_pt_process_itrace_start(struct intel_pt *pt,
2619					 union perf_event *event,
2620					 struct perf_sample *sample)
2621{
2622	if (!pt->per_cpu_mmaps)
2623		return 0;
2624
2625	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2626		     sample->cpu, event->itrace_start.pid,
2627		     event->itrace_start.tid, sample->time,
2628		     perf_time_to_tsc(sample->time, &pt->tc));
2629
2630	return machine__set_current_tid(pt->machine, sample->cpu,
2631					event->itrace_start.pid,
2632					event->itrace_start.tid);
2633}
2634
2635static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2636			     struct addr_location *al)
2637{
2638	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2639		if (!thread__find_map(thread, cpumode, addr, al))
2640			return -1;
2641	}
2642
2643	return 0;
2644}
2645
2646/* Invalidate all instruction cache entries that overlap the text poke */
2647static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2648{
2649	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2650	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2651	/* Assume text poke begins in a basic block no more than 4096 bytes */
2652	int cnt = 4096 + event->text_poke.new_len;
2653	struct thread *thread = pt->unknown_thread;
2654	struct addr_location al = { .map = NULL };
2655	struct machine *machine = pt->machine;
2656	struct intel_pt_cache_entry *e;
2657	u64 offset;
2658
2659	if (!event->text_poke.new_len)
2660		return 0;
2661
2662	for (; cnt; cnt--, addr--) {
2663		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2664			if (addr < event->text_poke.addr)
2665				return 0;
2666			continue;
2667		}
2668
2669		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2670			continue;
2671
2672		offset = al.map->map_ip(al.map, addr);
2673
2674		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2675		if (!e)
2676			continue;
2677
2678		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2679			/*
2680			 * No overlap. Working backwards there cannot be another
2681			 * basic block that overlaps the text poke if there is a
2682			 * branch instruction before the text poke address.
2683			 */
2684			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2685				return 0;
2686		} else {
2687			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2688			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2689				     al.map->dso->long_name, addr);
2690		}
2691	}
2692
2693	return 0;
2694}
2695
2696static int intel_pt_process_event(struct perf_session *session,
2697				  union perf_event *event,
2698				  struct perf_sample *sample,
2699				  struct perf_tool *tool)
2700{
2701	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2702					   auxtrace);
2703	u64 timestamp;
2704	int err = 0;
2705
2706	if (dump_trace)
2707		return 0;
2708
2709	if (!tool->ordered_events) {
2710		pr_err("Intel Processor Trace requires ordered events\n");
2711		return -EINVAL;
2712	}
2713
2714	if (sample->time && sample->time != (u64)-1)
2715		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2716	else
2717		timestamp = 0;
2718
2719	if (timestamp || pt->timeless_decoding) {
2720		err = intel_pt_update_queues(pt);
2721		if (err)
2722			return err;
2723	}
2724
2725	if (pt->timeless_decoding) {
2726		if (pt->sampling_mode) {
2727			if (sample->aux_sample.size)
2728				err = intel_pt_process_timeless_sample(pt,
2729								       sample);
2730		} else if (event->header.type == PERF_RECORD_EXIT) {
2731			err = intel_pt_process_timeless_queues(pt,
2732							       event->fork.tid,
2733							       sample->time);
2734		}
2735	} else if (timestamp) {
2736		err = intel_pt_process_queues(pt, timestamp);
2737	}
2738	if (err)
2739		return err;
2740
2741	if (event->header.type == PERF_RECORD_SAMPLE) {
2742		if (pt->synth_opts.add_callchain && !sample->callchain)
2743			intel_pt_add_callchain(pt, sample);
2744		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2745			intel_pt_add_br_stack(pt, sample);
2746	}
2747
2748	if (event->header.type == PERF_RECORD_AUX &&
2749	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2750	    pt->synth_opts.errors) {
2751		err = intel_pt_lost(pt, sample);
2752		if (err)
2753			return err;
2754	}
2755
2756	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2757		err = intel_pt_process_switch(pt, sample);
2758	else if (event->header.type == PERF_RECORD_ITRACE_START)
2759		err = intel_pt_process_itrace_start(pt, event, sample);
2760	else if (event->header.type == PERF_RECORD_SWITCH ||
2761		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2762		err = intel_pt_context_switch(pt, event, sample);
2763
2764	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2765		err = intel_pt_text_poke(pt, event);
2766
2767	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2768		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2769			     event->header.type, sample->cpu, sample->time, timestamp);
2770		intel_pt_log_event(event);
2771	}
2772
2773	return err;
2774}
2775
2776static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2777{
2778	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2779					   auxtrace);
2780	int ret;
2781
2782	if (dump_trace)
2783		return 0;
2784
2785	if (!tool->ordered_events)
2786		return -EINVAL;
2787
2788	ret = intel_pt_update_queues(pt);
2789	if (ret < 0)
2790		return ret;
2791
2792	if (pt->timeless_decoding)
2793		return intel_pt_process_timeless_queues(pt, -1,
2794							MAX_TIMESTAMP - 1);
2795
2796	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2797}
2798
2799static void intel_pt_free_events(struct perf_session *session)
2800{
2801	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2802					   auxtrace);
2803	struct auxtrace_queues *queues = &pt->queues;
2804	unsigned int i;
2805
2806	for (i = 0; i < queues->nr_queues; i++) {
2807		intel_pt_free_queue(queues->queue_array[i].priv);
2808		queues->queue_array[i].priv = NULL;
2809	}
2810	intel_pt_log_disable();
2811	auxtrace_queues__free(queues);
2812}
2813
2814static void intel_pt_free(struct perf_session *session)
2815{
2816	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2817					   auxtrace);
2818
2819	auxtrace_heap__free(&pt->heap);
2820	intel_pt_free_events(session);
2821	session->auxtrace = NULL;
2822	thread__put(pt->unknown_thread);
2823	addr_filters__exit(&pt->filts);
2824	zfree(&pt->chain);
2825	zfree(&pt->filter);
2826	zfree(&pt->time_ranges);
2827	free(pt);
2828}
2829
2830static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2831				       struct evsel *evsel)
2832{
2833	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2834					   auxtrace);
2835
2836	return evsel->core.attr.type == pt->pmu_type;
2837}
2838
2839static int intel_pt_process_auxtrace_event(struct perf_session *session,
2840					   union perf_event *event,
2841					   struct perf_tool *tool __maybe_unused)
2842{
2843	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2844					   auxtrace);
2845
2846	if (!pt->data_queued) {
2847		struct auxtrace_buffer *buffer;
2848		off_t data_offset;
2849		int fd = perf_data__fd(session->data);
2850		int err;
2851
2852		if (perf_data__is_pipe(session->data)) {
2853			data_offset = 0;
2854		} else {
2855			data_offset = lseek(fd, 0, SEEK_CUR);
2856			if (data_offset == -1)
2857				return -errno;
2858		}
2859
2860		err = auxtrace_queues__add_event(&pt->queues, session, event,
2861						 data_offset, &buffer);
2862		if (err)
2863			return err;
2864
2865		/* Dump here now we have copied a piped trace out of the pipe */
2866		if (dump_trace) {
2867			if (auxtrace_buffer__get_data(buffer, fd)) {
2868				intel_pt_dump_event(pt, buffer->data,
2869						    buffer->size);
2870				auxtrace_buffer__put_data(buffer);
2871			}
2872		}
2873	}
2874
2875	return 0;
2876}
2877
2878static int intel_pt_queue_data(struct perf_session *session,
2879			       struct perf_sample *sample,
2880			       union perf_event *event, u64 data_offset)
2881{
2882	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2883					   auxtrace);
2884	u64 timestamp;
2885
2886	if (event) {
2887		return auxtrace_queues__add_event(&pt->queues, session, event,
2888						  data_offset, NULL);
2889	}
2890
2891	if (sample->time && sample->time != (u64)-1)
2892		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2893	else
2894		timestamp = 0;
2895
2896	return auxtrace_queues__add_sample(&pt->queues, session, sample,
2897					   data_offset, timestamp);
2898}
2899
2900struct intel_pt_synth {
2901	struct perf_tool dummy_tool;
2902	struct perf_session *session;
2903};
2904
2905static int intel_pt_event_synth(struct perf_tool *tool,
2906				union perf_event *event,
2907				struct perf_sample *sample __maybe_unused,
2908				struct machine *machine __maybe_unused)
2909{
2910	struct intel_pt_synth *intel_pt_synth =
2911			container_of(tool, struct intel_pt_synth, dummy_tool);
2912
2913	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2914						 NULL);
2915}
2916
2917static int intel_pt_synth_event(struct perf_session *session, const char *name,
2918				struct perf_event_attr *attr, u64 id)
2919{
2920	struct intel_pt_synth intel_pt_synth;
2921	int err;
2922
2923	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2924		 name, id, (u64)attr->sample_type);
2925
2926	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2927	intel_pt_synth.session = session;
2928
2929	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2930					  &id, intel_pt_event_synth);
2931	if (err)
2932		pr_err("%s: failed to synthesize '%s' event type\n",
2933		       __func__, name);
2934
2935	return err;
2936}
2937
2938static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2939				    const char *name)
2940{
2941	struct evsel *evsel;
2942
2943	evlist__for_each_entry(evlist, evsel) {
2944		if (evsel->core.id && evsel->core.id[0] == id) {
2945			if (evsel->name)
2946				zfree(&evsel->name);
2947			evsel->name = strdup(name);
2948			break;
2949		}
2950	}
2951}
2952
2953static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2954					 struct evlist *evlist)
2955{
2956	struct evsel *evsel;
2957
2958	evlist__for_each_entry(evlist, evsel) {
2959		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2960			return evsel;
2961	}
2962
2963	return NULL;
2964}
2965
2966static int intel_pt_synth_events(struct intel_pt *pt,
2967				 struct perf_session *session)
2968{
2969	struct evlist *evlist = session->evlist;
2970	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2971	struct perf_event_attr attr;
2972	u64 id;
2973	int err;
2974
2975	if (!evsel) {
2976		pr_debug("There are no selected events with Intel Processor Trace data\n");
2977		return 0;
2978	}
2979
2980	memset(&attr, 0, sizeof(struct perf_event_attr));
2981	attr.size = sizeof(struct perf_event_attr);
2982	attr.type = PERF_TYPE_HARDWARE;
2983	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2984	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2985			    PERF_SAMPLE_PERIOD;
2986	if (pt->timeless_decoding)
2987		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2988	else
2989		attr.sample_type |= PERF_SAMPLE_TIME;
2990	if (!pt->per_cpu_mmaps)
2991		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2992	attr.exclude_user = evsel->core.attr.exclude_user;
2993	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2994	attr.exclude_hv = evsel->core.attr.exclude_hv;
2995	attr.exclude_host = evsel->core.attr.exclude_host;
2996	attr.exclude_guest = evsel->core.attr.exclude_guest;
2997	attr.sample_id_all = evsel->core.attr.sample_id_all;
2998	attr.read_format = evsel->core.attr.read_format;
2999
3000	id = evsel->core.id[0] + 1000000000;
3001	if (!id)
3002		id = 1;
3003
3004	if (pt->synth_opts.branches) {
3005		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3006		attr.sample_period = 1;
3007		attr.sample_type |= PERF_SAMPLE_ADDR;
3008		err = intel_pt_synth_event(session, "branches", &attr, id);
3009		if (err)
3010			return err;
3011		pt->sample_branches = true;
3012		pt->branches_sample_type = attr.sample_type;
3013		pt->branches_id = id;
3014		id += 1;
3015		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3016	}
3017
3018	if (pt->synth_opts.callchain)
3019		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3020	if (pt->synth_opts.last_branch) {
3021		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3022		/*
3023		 * We don't use the hardware index, but the sample generation
3024		 * code uses the new format branch_stack with this field,
3025		 * so the event attributes must indicate that it's present.
3026		 */
3027		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3028	}
3029
3030	if (pt->synth_opts.instructions) {
3031		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3032		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3033			attr.sample_period =
3034				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3035		else
3036			attr.sample_period = pt->synth_opts.period;
3037		err = intel_pt_synth_event(session, "instructions", &attr, id);
3038		if (err)
3039			return err;
3040		pt->sample_instructions = true;
3041		pt->instructions_sample_type = attr.sample_type;
3042		pt->instructions_id = id;
3043		id += 1;
3044	}
3045
3046	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3047	attr.sample_period = 1;
3048
3049	if (pt->synth_opts.transactions) {
3050		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3051		err = intel_pt_synth_event(session, "transactions", &attr, id);
3052		if (err)
3053			return err;
3054		pt->sample_transactions = true;
3055		pt->transactions_sample_type = attr.sample_type;
3056		pt->transactions_id = id;
3057		intel_pt_set_event_name(evlist, id, "transactions");
3058		id += 1;
3059	}
3060
3061	attr.type = PERF_TYPE_SYNTH;
3062	attr.sample_type |= PERF_SAMPLE_RAW;
3063
3064	if (pt->synth_opts.ptwrites) {
3065		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3066		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3067		if (err)
3068			return err;
3069		pt->sample_ptwrites = true;
3070		pt->ptwrites_sample_type = attr.sample_type;
3071		pt->ptwrites_id = id;
3072		intel_pt_set_event_name(evlist, id, "ptwrite");
3073		id += 1;
3074	}
3075
3076	if (pt->synth_opts.pwr_events) {
3077		pt->sample_pwr_events = true;
3078		pt->pwr_events_sample_type = attr.sample_type;
3079
3080		attr.config = PERF_SYNTH_INTEL_CBR;
3081		err = intel_pt_synth_event(session, "cbr", &attr, id);
3082		if (err)
3083			return err;
3084		pt->cbr_id = id;
3085		intel_pt_set_event_name(evlist, id, "cbr");
3086		id += 1;
3087	}
3088
3089	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3090		attr.config = PERF_SYNTH_INTEL_MWAIT;
3091		err = intel_pt_synth_event(session, "mwait", &attr, id);
3092		if (err)
3093			return err;
3094		pt->mwait_id = id;
3095		intel_pt_set_event_name(evlist, id, "mwait");
3096		id += 1;
3097
3098		attr.config = PERF_SYNTH_INTEL_PWRE;
3099		err = intel_pt_synth_event(session, "pwre", &attr, id);
3100		if (err)
3101			return err;
3102		pt->pwre_id = id;
3103		intel_pt_set_event_name(evlist, id, "pwre");
3104		id += 1;
3105
3106		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3107		err = intel_pt_synth_event(session, "exstop", &attr, id);
3108		if (err)
3109			return err;
3110		pt->exstop_id = id;
3111		intel_pt_set_event_name(evlist, id, "exstop");
3112		id += 1;
3113
3114		attr.config = PERF_SYNTH_INTEL_PWRX;
3115		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3116		if (err)
3117			return err;
3118		pt->pwrx_id = id;
3119		intel_pt_set_event_name(evlist, id, "pwrx");
3120		id += 1;
3121	}
3122
3123	return 0;
3124}
3125
3126static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3127{
3128	struct evsel *evsel;
3129
3130	if (!pt->synth_opts.other_events)
3131		return;
3132
3133	evlist__for_each_entry(pt->session->evlist, evsel) {
3134		if (evsel->core.attr.aux_output && evsel->core.id) {
3135			pt->sample_pebs = true;
3136			pt->pebs_evsel = evsel;
3137			return;
3138		}
3139	}
3140}
3141
3142static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3143{
3144	struct evsel *evsel;
3145
3146	evlist__for_each_entry_reverse(evlist, evsel) {
3147		const char *name = evsel__name(evsel);
3148
3149		if (!strcmp(name, "sched:sched_switch"))
3150			return evsel;
3151	}
3152
3153	return NULL;
3154}
3155
3156static bool intel_pt_find_switch(struct evlist *evlist)
3157{
3158	struct evsel *evsel;
3159
3160	evlist__for_each_entry(evlist, evsel) {
3161		if (evsel->core.attr.context_switch)
3162			return true;
3163	}
3164
3165	return false;
3166}
3167
3168static int intel_pt_perf_config(const char *var, const char *value, void *data)
3169{
3170	struct intel_pt *pt = data;
3171
3172	if (!strcmp(var, "intel-pt.mispred-all"))
3173		pt->mispred_all = perf_config_bool(var, value);
3174
3175	return 0;
3176}
3177
3178/* Find least TSC which converts to ns or later */
3179static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3180{
3181	u64 tsc, tm;
3182
3183	tsc = perf_time_to_tsc(ns, &pt->tc);
3184
3185	while (1) {
3186		tm = tsc_to_perf_time(tsc, &pt->tc);
3187		if (tm < ns)
3188			break;
3189		tsc -= 1;
3190	}
3191
3192	while (tm < ns)
3193		tm = tsc_to_perf_time(++tsc, &pt->tc);
3194
3195	return tsc;
3196}
3197
3198/* Find greatest TSC which converts to ns or earlier */
3199static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3200{
3201	u64 tsc, tm;
3202
3203	tsc = perf_time_to_tsc(ns, &pt->tc);
3204
3205	while (1) {
3206		tm = tsc_to_perf_time(tsc, &pt->tc);
3207		if (tm > ns)
3208			break;
3209		tsc += 1;
3210	}
3211
3212	while (tm > ns)
3213		tm = tsc_to_perf_time(--tsc, &pt->tc);
3214
3215	return tsc;
3216}
3217
3218static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3219				      struct itrace_synth_opts *opts)
3220{
3221	struct perf_time_interval *p = opts->ptime_range;
3222	int n = opts->range_num;
3223	int i;
3224
3225	if (!n || !p || pt->timeless_decoding)
3226		return 0;
3227
3228	pt->time_ranges = calloc(n, sizeof(struct range));
3229	if (!pt->time_ranges)
3230		return -ENOMEM;
3231
3232	pt->range_cnt = n;
3233
3234	intel_pt_log("%s: %u range(s)\n", __func__, n);
3235
3236	for (i = 0; i < n; i++) {
3237		struct range *r = &pt->time_ranges[i];
3238		u64 ts = p[i].start;
3239		u64 te = p[i].end;
3240
3241		/*
3242		 * Take care to ensure the TSC range matches the perf-time range
3243		 * when converted back to perf-time.
3244		 */
3245		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3246		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3247
3248		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3249			     i, ts, te);
3250		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3251			     i, r->start, r->end);
3252	}
3253
3254	return 0;
3255}
3256
3257static const char * const intel_pt_info_fmts[] = {
3258	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3259	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3260	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3261	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3262	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3263	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3264	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3265	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3266	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3267	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3268	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3269	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3270	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3271	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3272	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3273	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3274};
3275
3276static void intel_pt_print_info(__u64 *arr, int start, int finish)
3277{
3278	int i;
3279
3280	if (!dump_trace)
3281		return;
3282
3283	for (i = start; i <= finish; i++)
3284		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3285}
3286
3287static void intel_pt_print_info_str(const char *name, const char *str)
3288{
3289	if (!dump_trace)
3290		return;
3291
3292	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3293}
3294
3295static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3296{
3297	return auxtrace_info->header.size >=
3298		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3299}
3300
3301int intel_pt_process_auxtrace_info(union perf_event *event,
3302				   struct perf_session *session)
3303{
3304	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3305	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3306	struct intel_pt *pt;
3307	void *info_end;
3308	__u64 *info;
3309	int err;
3310
3311	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3312					min_sz)
3313		return -EINVAL;
3314
3315	pt = zalloc(sizeof(struct intel_pt));
3316	if (!pt)
3317		return -ENOMEM;
3318
3319	addr_filters__init(&pt->filts);
3320
3321	err = perf_config(intel_pt_perf_config, pt);
3322	if (err)
3323		goto err_free;
3324
3325	err = auxtrace_queues__init(&pt->queues);
3326	if (err)
3327		goto err_free;
3328
3329	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3330
3331	pt->session = session;
3332	pt->machine = &session->machines.host; /* No kvm support */
3333	pt->auxtrace_type = auxtrace_info->type;
3334	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3335	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3336	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3337	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3338	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3339	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3340	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3341	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3342	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3343	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3344	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3345			    INTEL_PT_PER_CPU_MMAPS);
3346
3347	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3348		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3349		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3350		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3351		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3352		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3353		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3354				    INTEL_PT_CYC_BIT);
3355	}
3356
3357	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3358		pt->max_non_turbo_ratio =
3359			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3360		intel_pt_print_info(&auxtrace_info->priv[0],
3361				    INTEL_PT_MAX_NONTURBO_RATIO,
3362				    INTEL_PT_MAX_NONTURBO_RATIO);
3363	}
3364
3365	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3366	info_end = (void *)info + auxtrace_info->header.size;
3367
3368	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3369		size_t len;
3370
3371		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3372		intel_pt_print_info(&auxtrace_info->priv[0],
3373				    INTEL_PT_FILTER_STR_LEN,
3374				    INTEL_PT_FILTER_STR_LEN);
3375		if (len) {
3376			const char *filter = (const char *)info;
3377
3378			len = roundup(len + 1, 8);
3379			info += len >> 3;
3380			if ((void *)info > info_end) {
3381				pr_err("%s: bad filter string length\n", __func__);
3382				err = -EINVAL;
3383				goto err_free_queues;
3384			}
3385			pt->filter = memdup(filter, len);
3386			if (!pt->filter) {
3387				err = -ENOMEM;
3388				goto err_free_queues;
3389			}
3390			if (session->header.needs_swap)
3391				mem_bswap_64(pt->filter, len);
3392			if (pt->filter[len - 1]) {
3393				pr_err("%s: filter string not null terminated\n", __func__);
3394				err = -EINVAL;
3395				goto err_free_queues;
3396			}
3397			err = addr_filters__parse_bare_filter(&pt->filts,
3398							      filter);
3399			if (err)
3400				goto err_free_queues;
3401		}
3402		intel_pt_print_info_str("Filter string", pt->filter);
3403	}
3404
3405	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3406	if (pt->timeless_decoding && !pt->tc.time_mult)
3407		pt->tc.time_mult = 1;
3408	pt->have_tsc = intel_pt_have_tsc(pt);
3409	pt->sampling_mode = intel_pt_sampling_mode(pt);
3410	pt->est_tsc = !pt->timeless_decoding;
3411
3412	pt->unknown_thread = thread__new(999999999, 999999999);
3413	if (!pt->unknown_thread) {
3414		err = -ENOMEM;
3415		goto err_free_queues;
3416	}
3417
3418	/*
3419	 * Since this thread will not be kept in any rbtree not in a
3420	 * list, initialize its list node so that at thread__put() the
3421	 * current thread lifetime assuption is kept and we don't segfault
3422	 * at list_del_init().
3423	 */
3424	INIT_LIST_HEAD(&pt->unknown_thread->node);
3425
3426	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3427	if (err)
3428		goto err_delete_thread;
3429	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3430		err = -ENOMEM;
3431		goto err_delete_thread;
3432	}
3433
3434	pt->auxtrace.process_event = intel_pt_process_event;
3435	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3436	pt->auxtrace.queue_data = intel_pt_queue_data;
3437	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3438	pt->auxtrace.flush_events = intel_pt_flush;
3439	pt->auxtrace.free_events = intel_pt_free_events;
3440	pt->auxtrace.free = intel_pt_free;
3441	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3442	session->auxtrace = &pt->auxtrace;
3443
3444	if (dump_trace)
3445		return 0;
3446
3447	if (pt->have_sched_switch == 1) {
3448		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3449		if (!pt->switch_evsel) {
3450			pr_err("%s: missing sched_switch event\n", __func__);
3451			err = -EINVAL;
3452			goto err_delete_thread;
3453		}
3454	} else if (pt->have_sched_switch == 2 &&
3455		   !intel_pt_find_switch(session->evlist)) {
3456		pr_err("%s: missing context_switch attribute flag\n", __func__);
3457		err = -EINVAL;
3458		goto err_delete_thread;
3459	}
3460
3461	if (session->itrace_synth_opts->set) {
3462		pt->synth_opts = *session->itrace_synth_opts;
3463	} else {
3464		itrace_synth_opts__set_default(&pt->synth_opts,
3465				session->itrace_synth_opts->default_no_sample);
3466		if (!session->itrace_synth_opts->default_no_sample &&
3467		    !session->itrace_synth_opts->inject) {
3468			pt->synth_opts.branches = false;
3469			pt->synth_opts.callchain = true;
3470			pt->synth_opts.add_callchain = true;
3471		}
3472		pt->synth_opts.thread_stack =
3473				session->itrace_synth_opts->thread_stack;
3474	}
3475
3476	if (pt->synth_opts.log)
3477		intel_pt_log_enable();
3478
3479	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3480	if (pt->tc.time_mult) {
3481		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3482
3483		if (!pt->max_non_turbo_ratio)
3484			pt->max_non_turbo_ratio =
3485					(tsc_freq + 50000000) / 100000000;
3486		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3487		intel_pt_log("Maximum non-turbo ratio %u\n",
3488			     pt->max_non_turbo_ratio);
3489		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3490	}
3491
3492	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3493	if (err)
3494		goto err_delete_thread;
3495
3496	if (pt->synth_opts.calls)
3497		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3498				       PERF_IP_FLAG_TRACE_END;
3499	if (pt->synth_opts.returns)
3500		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3501				       PERF_IP_FLAG_TRACE_BEGIN;
3502
3503	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3504	    !symbol_conf.use_callchain) {
3505		symbol_conf.use_callchain = true;
3506		if (callchain_register_param(&callchain_param) < 0) {
3507			symbol_conf.use_callchain = false;
3508			pt->synth_opts.callchain = false;
3509			pt->synth_opts.add_callchain = false;
3510		}
3511	}
3512
3513	if (pt->synth_opts.add_callchain) {
3514		err = intel_pt_callchain_init(pt);
3515		if (err)
3516			goto err_delete_thread;
3517	}
3518
3519	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3520		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3521		pt->br_stack_sz_plus = pt->br_stack_sz;
3522	}
3523
3524	if (pt->synth_opts.add_last_branch) {
3525		err = intel_pt_br_stack_init(pt);
3526		if (err)
3527			goto err_delete_thread;
3528		/*
3529		 * Additional branch stack size to cater for tracing from the
3530		 * actual sample ip to where the sample time is recorded.
3531		 * Measured at about 200 branches, but generously set to 1024.
3532		 * If kernel space is not being traced, then add just 1 for the
3533		 * branch to kernel space.
3534		 */
3535		if (intel_pt_tracing_kernel(pt))
3536			pt->br_stack_sz_plus += 1024;
3537		else
3538			pt->br_stack_sz_plus += 1;
3539	}
3540
3541	pt->use_thread_stack = pt->synth_opts.callchain ||
3542			       pt->synth_opts.add_callchain ||
3543			       pt->synth_opts.thread_stack ||
3544			       pt->synth_opts.last_branch ||
3545			       pt->synth_opts.add_last_branch;
3546
3547	pt->callstack = pt->synth_opts.callchain ||
3548			pt->synth_opts.add_callchain ||
3549			pt->synth_opts.thread_stack;
3550
3551	err = intel_pt_synth_events(pt, session);
3552	if (err)
3553		goto err_delete_thread;
3554
3555	intel_pt_setup_pebs_events(pt);
3556
3557	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3558		err = auxtrace_queue_data(session, true, true);
3559	else
3560		err = auxtrace_queues__process_index(&pt->queues, session);
3561	if (err)
3562		goto err_delete_thread;
3563
3564	if (pt->queues.populated)
3565		pt->data_queued = true;
3566
3567	if (pt->timeless_decoding)
3568		pr_debug2("Intel PT decoding without timestamps\n");
3569
3570	return 0;
3571
3572err_delete_thread:
3573	zfree(&pt->chain);
3574	thread__zput(pt->unknown_thread);
3575err_free_queues:
3576	intel_pt_log_disable();
3577	auxtrace_queues__free(&pt->queues);
3578	session->auxtrace = NULL;
3579err_free:
3580	addr_filters__exit(&pt->filts);
3581	zfree(&pt->filter);
3582	zfree(&pt->time_ranges);
3583	free(pt);
3584	return err;
3585}