Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7#include <inttypes.h>
8#include <stdio.h>
9#include <stdbool.h>
10#include <errno.h>
11#include <linux/kernel.h>
12#include <linux/string.h>
13#include <linux/types.h>
14#include <linux/zalloc.h>
15
16#include "session.h"
17#include "machine.h"
18#include "memswap.h"
19#include "sort.h"
20#include "tool.h"
21#include "event.h"
22#include "evlist.h"
23#include "evsel.h"
24#include "map.h"
25#include "color.h"
26#include "thread.h"
27#include "thread-stack.h"
28#include "symbol.h"
29#include "callchain.h"
30#include "dso.h"
31#include "debug.h"
32#include "auxtrace.h"
33#include "tsc.h"
34#include "intel-pt.h"
35#include "config.h"
36#include "util/perf_api_probe.h"
37#include "util/synthetic-events.h"
38#include "time-utils.h"
39
40#include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42#include "intel-pt-decoder/intel-pt-log.h"
43#include "intel-pt-decoder/intel-pt-decoder.h"
44#include "intel-pt-decoder/intel-pt-insn-decoder.h"
45#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47#define MAX_TIMESTAMP (~0ULL)
48
49struct range {
50 u64 start;
51 u64 end;
52};
53
54struct intel_pt {
55 struct auxtrace auxtrace;
56 struct auxtrace_queues queues;
57 struct auxtrace_heap heap;
58 u32 auxtrace_type;
59 struct perf_session *session;
60 struct machine *machine;
61 struct evsel *switch_evsel;
62 struct thread *unknown_thread;
63 bool timeless_decoding;
64 bool sampling_mode;
65 bool snapshot_mode;
66 bool per_cpu_mmaps;
67 bool have_tsc;
68 bool data_queued;
69 bool est_tsc;
70 bool sync_switch;
71 bool mispred_all;
72 bool use_thread_stack;
73 bool callstack;
74 unsigned int br_stack_sz;
75 unsigned int br_stack_sz_plus;
76 int have_sched_switch;
77 u32 pmu_type;
78 u64 kernel_start;
79 u64 switch_ip;
80 u64 ptss_ip;
81
82 struct perf_tsc_conversion tc;
83 bool cap_user_time_zero;
84
85 struct itrace_synth_opts synth_opts;
86
87 bool sample_instructions;
88 u64 instructions_sample_type;
89 u64 instructions_id;
90
91 bool sample_branches;
92 u32 branches_filter;
93 u64 branches_sample_type;
94 u64 branches_id;
95
96 bool sample_transactions;
97 u64 transactions_sample_type;
98 u64 transactions_id;
99
100 bool sample_ptwrites;
101 u64 ptwrites_sample_type;
102 u64 ptwrites_id;
103
104 bool sample_pwr_events;
105 u64 pwr_events_sample_type;
106 u64 mwait_id;
107 u64 pwre_id;
108 u64 exstop_id;
109 u64 pwrx_id;
110 u64 cbr_id;
111
112 bool sample_pebs;
113 struct evsel *pebs_evsel;
114
115 u64 tsc_bit;
116 u64 mtc_bit;
117 u64 mtc_freq_bits;
118 u32 tsc_ctc_ratio_n;
119 u32 tsc_ctc_ratio_d;
120 u64 cyc_bit;
121 u64 noretcomp_bit;
122 unsigned max_non_turbo_ratio;
123 unsigned cbr2khz;
124
125 unsigned long num_events;
126
127 char *filter;
128 struct addr_filters filts;
129
130 struct range *time_ranges;
131 unsigned int range_cnt;
132
133 struct ip_callchain *chain;
134 struct branch_stack *br_stack;
135};
136
137enum switch_state {
138 INTEL_PT_SS_NOT_TRACING,
139 INTEL_PT_SS_UNKNOWN,
140 INTEL_PT_SS_TRACING,
141 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142 INTEL_PT_SS_EXPECTING_SWITCH_IP,
143};
144
145struct intel_pt_queue {
146 struct intel_pt *pt;
147 unsigned int queue_nr;
148 struct auxtrace_buffer *buffer;
149 struct auxtrace_buffer *old_buffer;
150 void *decoder;
151 const struct intel_pt_state *state;
152 struct ip_callchain *chain;
153 struct branch_stack *last_branch;
154 union perf_event *event_buf;
155 bool on_heap;
156 bool stop;
157 bool step_through_buffers;
158 bool use_buffer_pid_tid;
159 bool sync_switch;
160 pid_t pid, tid;
161 int cpu;
162 int switch_state;
163 pid_t next_tid;
164 struct thread *thread;
165 bool exclude_kernel;
166 bool have_sample;
167 u64 time;
168 u64 timestamp;
169 u64 sel_timestamp;
170 bool sel_start;
171 unsigned int sel_idx;
172 u32 flags;
173 u16 insn_len;
174 u64 last_insn_cnt;
175 u64 ipc_insn_cnt;
176 u64 ipc_cyc_cnt;
177 u64 last_in_insn_cnt;
178 u64 last_in_cyc_cnt;
179 u64 last_br_insn_cnt;
180 u64 last_br_cyc_cnt;
181 unsigned int cbr_seen;
182 char insn[INTEL_PT_INSN_BUF_SZ];
183};
184
185static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186 unsigned char *buf, size_t len)
187{
188 struct intel_pt_pkt packet;
189 size_t pos = 0;
190 int ret, pkt_len, i;
191 char desc[INTEL_PT_PKT_DESC_MAX];
192 const char *color = PERF_COLOR_BLUE;
193 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194
195 color_fprintf(stdout, color,
196 ". ... Intel Processor Trace data: size %zu bytes\n",
197 len);
198
199 while (len) {
200 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201 if (ret > 0)
202 pkt_len = ret;
203 else
204 pkt_len = 1;
205 printf(".");
206 color_fprintf(stdout, color, " %08x: ", pos);
207 for (i = 0; i < pkt_len; i++)
208 color_fprintf(stdout, color, " %02x", buf[i]);
209 for (; i < 16; i++)
210 color_fprintf(stdout, color, " ");
211 if (ret > 0) {
212 ret = intel_pt_pkt_desc(&packet, desc,
213 INTEL_PT_PKT_DESC_MAX);
214 if (ret > 0)
215 color_fprintf(stdout, color, " %s\n", desc);
216 } else {
217 color_fprintf(stdout, color, " Bad packet!\n");
218 }
219 pos += pkt_len;
220 buf += pkt_len;
221 len -= pkt_len;
222 }
223}
224
225static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226 size_t len)
227{
228 printf(".\n");
229 intel_pt_dump(pt, buf, len);
230}
231
232static void intel_pt_log_event(union perf_event *event)
233{
234 FILE *f = intel_pt_log_fp();
235
236 if (!intel_pt_enable_logging || !f)
237 return;
238
239 perf_event__fprintf(event, NULL, f);
240}
241
242static void intel_pt_dump_sample(struct perf_session *session,
243 struct perf_sample *sample)
244{
245 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246 auxtrace);
247
248 printf("\n");
249 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250}
251
252static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253{
254 struct perf_time_interval *range = pt->synth_opts.ptime_range;
255 int n = pt->synth_opts.range_num;
256
257 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258 return true;
259
260 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261 return false;
262
263 /* perf_time__ranges_skip_sample does not work if time is zero */
264 if (!tm)
265 tm = 1;
266
267 return !n || !perf_time__ranges_skip_sample(range, n, tm);
268}
269
270static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271 struct auxtrace_buffer *b)
272{
273 bool consecutive = false;
274 void *start;
275
276 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277 pt->have_tsc, &consecutive);
278 if (!start)
279 return -EINVAL;
280 b->use_size = b->data + b->size - start;
281 b->use_data = start;
282 if (b->use_size && consecutive)
283 b->consecutive = true;
284 return 0;
285}
286
287static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288 struct auxtrace_buffer *buffer,
289 struct auxtrace_buffer *old_buffer,
290 struct intel_pt_buffer *b)
291{
292 bool might_overlap;
293
294 if (!buffer->data) {
295 int fd = perf_data__fd(ptq->pt->session->data);
296
297 buffer->data = auxtrace_buffer__get_data(buffer, fd);
298 if (!buffer->data)
299 return -ENOMEM;
300 }
301
302 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303 if (might_overlap && !buffer->consecutive && old_buffer &&
304 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305 return -ENOMEM;
306
307 if (buffer->use_data) {
308 b->len = buffer->use_size;
309 b->buf = buffer->use_data;
310 } else {
311 b->len = buffer->size;
312 b->buf = buffer->data;
313 }
314 b->ref_timestamp = buffer->reference;
315
316 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317 b->consecutive = false;
318 b->trace_nr = buffer->buffer_nr + 1;
319 } else {
320 b->consecutive = true;
321 }
322
323 return 0;
324}
325
326/* Do not drop buffers with references - refer intel_pt_get_trace() */
327static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328 struct auxtrace_buffer *buffer)
329{
330 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331 return;
332
333 auxtrace_buffer__drop_data(buffer);
334}
335
336/* Must be serialized with respect to intel_pt_get_trace() */
337static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338 void *cb_data)
339{
340 struct intel_pt_queue *ptq = data;
341 struct auxtrace_buffer *buffer = ptq->buffer;
342 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343 struct auxtrace_queue *queue;
344 int err = 0;
345
346 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347
348 while (1) {
349 struct intel_pt_buffer b = { .len = 0 };
350
351 buffer = auxtrace_buffer__next(queue, buffer);
352 if (!buffer)
353 break;
354
355 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356 if (err)
357 break;
358
359 if (b.len) {
360 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361 old_buffer = buffer;
362 } else {
363 intel_pt_lookahead_drop_buffer(ptq, buffer);
364 continue;
365 }
366
367 err = cb(&b, cb_data);
368 if (err)
369 break;
370 }
371
372 if (buffer != old_buffer)
373 intel_pt_lookahead_drop_buffer(ptq, buffer);
374 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375
376 return err;
377}
378
379/*
380 * This function assumes data is processed sequentially only.
381 * Must be serialized with respect to intel_pt_lookahead()
382 */
383static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384{
385 struct intel_pt_queue *ptq = data;
386 struct auxtrace_buffer *buffer = ptq->buffer;
387 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388 struct auxtrace_queue *queue;
389 int err;
390
391 if (ptq->stop) {
392 b->len = 0;
393 return 0;
394 }
395
396 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397
398 buffer = auxtrace_buffer__next(queue, buffer);
399 if (!buffer) {
400 if (old_buffer)
401 auxtrace_buffer__drop_data(old_buffer);
402 b->len = 0;
403 return 0;
404 }
405
406 ptq->buffer = buffer;
407
408 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409 if (err)
410 return err;
411
412 if (ptq->step_through_buffers)
413 ptq->stop = true;
414
415 if (b->len) {
416 if (old_buffer)
417 auxtrace_buffer__drop_data(old_buffer);
418 ptq->old_buffer = buffer;
419 } else {
420 auxtrace_buffer__drop_data(buffer);
421 return intel_pt_get_trace(b, data);
422 }
423
424 return 0;
425}
426
427struct intel_pt_cache_entry {
428 struct auxtrace_cache_entry entry;
429 u64 insn_cnt;
430 u64 byte_cnt;
431 enum intel_pt_insn_op op;
432 enum intel_pt_insn_branch branch;
433 int length;
434 int32_t rel;
435 char insn[INTEL_PT_INSN_BUF_SZ];
436};
437
438static int intel_pt_config_div(const char *var, const char *value, void *data)
439{
440 int *d = data;
441 long val;
442
443 if (!strcmp(var, "intel-pt.cache-divisor")) {
444 val = strtol(value, NULL, 0);
445 if (val > 0 && val <= INT_MAX)
446 *d = val;
447 }
448
449 return 0;
450}
451
452static int intel_pt_cache_divisor(void)
453{
454 static int d;
455
456 if (d)
457 return d;
458
459 perf_config(intel_pt_config_div, &d);
460
461 if (!d)
462 d = 64;
463
464 return d;
465}
466
467static unsigned int intel_pt_cache_size(struct dso *dso,
468 struct machine *machine)
469{
470 off_t size;
471
472 size = dso__data_size(dso, machine);
473 size /= intel_pt_cache_divisor();
474 if (size < 1000)
475 return 10;
476 if (size > (1 << 21))
477 return 21;
478 return 32 - __builtin_clz(size);
479}
480
481static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482 struct machine *machine)
483{
484 struct auxtrace_cache *c;
485 unsigned int bits;
486
487 if (dso->auxtrace_cache)
488 return dso->auxtrace_cache;
489
490 bits = intel_pt_cache_size(dso, machine);
491
492 /* Ignoring cache creation failure */
493 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494
495 dso->auxtrace_cache = c;
496
497 return c;
498}
499
500static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501 u64 offset, u64 insn_cnt, u64 byte_cnt,
502 struct intel_pt_insn *intel_pt_insn)
503{
504 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505 struct intel_pt_cache_entry *e;
506 int err;
507
508 if (!c)
509 return -ENOMEM;
510
511 e = auxtrace_cache__alloc_entry(c);
512 if (!e)
513 return -ENOMEM;
514
515 e->insn_cnt = insn_cnt;
516 e->byte_cnt = byte_cnt;
517 e->op = intel_pt_insn->op;
518 e->branch = intel_pt_insn->branch;
519 e->length = intel_pt_insn->length;
520 e->rel = intel_pt_insn->rel;
521 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522
523 err = auxtrace_cache__add(c, offset, &e->entry);
524 if (err)
525 auxtrace_cache__free_entry(c, e);
526
527 return err;
528}
529
530static struct intel_pt_cache_entry *
531intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532{
533 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534
535 if (!c)
536 return NULL;
537
538 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539}
540
541static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542 u64 offset)
543{
544 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545
546 if (!c)
547 return;
548
549 auxtrace_cache__remove(dso->auxtrace_cache, offset);
550}
551
552static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553{
554 return ip >= pt->kernel_start ?
555 PERF_RECORD_MISC_KERNEL :
556 PERF_RECORD_MISC_USER;
557}
558
559static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560 uint64_t *insn_cnt_ptr, uint64_t *ip,
561 uint64_t to_ip, uint64_t max_insn_cnt,
562 void *data)
563{
564 struct intel_pt_queue *ptq = data;
565 struct machine *machine = ptq->pt->machine;
566 struct thread *thread;
567 struct addr_location al;
568 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569 ssize_t len;
570 int x86_64;
571 u8 cpumode;
572 u64 offset, start_offset, start_ip;
573 u64 insn_cnt = 0;
574 bool one_map = true;
575
576 intel_pt_insn->length = 0;
577
578 if (to_ip && *ip == to_ip)
579 goto out_no_cache;
580
581 cpumode = intel_pt_cpumode(ptq->pt, *ip);
582
583 thread = ptq->thread;
584 if (!thread) {
585 if (cpumode != PERF_RECORD_MISC_KERNEL)
586 return -EINVAL;
587 thread = ptq->pt->unknown_thread;
588 }
589
590 while (1) {
591 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592 return -EINVAL;
593
594 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595 dso__data_status_seen(al.map->dso,
596 DSO_DATA_STATUS_SEEN_ITRACE))
597 return -ENOENT;
598
599 offset = al.map->map_ip(al.map, *ip);
600
601 if (!to_ip && one_map) {
602 struct intel_pt_cache_entry *e;
603
604 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605 if (e &&
606 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607 *insn_cnt_ptr = e->insn_cnt;
608 *ip += e->byte_cnt;
609 intel_pt_insn->op = e->op;
610 intel_pt_insn->branch = e->branch;
611 intel_pt_insn->length = e->length;
612 intel_pt_insn->rel = e->rel;
613 memcpy(intel_pt_insn->buf, e->insn,
614 INTEL_PT_INSN_BUF_SZ);
615 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616 return 0;
617 }
618 }
619
620 start_offset = offset;
621 start_ip = *ip;
622
623 /* Load maps to ensure dso->is_64_bit has been updated */
624 map__load(al.map);
625
626 x86_64 = al.map->dso->is_64_bit;
627
628 while (1) {
629 len = dso__data_read_offset(al.map->dso, machine,
630 offset, buf,
631 INTEL_PT_INSN_BUF_SZ);
632 if (len <= 0)
633 return -EINVAL;
634
635 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636 return -EINVAL;
637
638 intel_pt_log_insn(intel_pt_insn, *ip);
639
640 insn_cnt += 1;
641
642 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643 goto out;
644
645 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646 goto out_no_cache;
647
648 *ip += intel_pt_insn->length;
649
650 if (to_ip && *ip == to_ip)
651 goto out_no_cache;
652
653 if (*ip >= al.map->end)
654 break;
655
656 offset += intel_pt_insn->length;
657 }
658 one_map = false;
659 }
660out:
661 *insn_cnt_ptr = insn_cnt;
662
663 if (!one_map)
664 goto out_no_cache;
665
666 /*
667 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
668 * entries.
669 */
670 if (to_ip) {
671 struct intel_pt_cache_entry *e;
672
673 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
674 if (e)
675 return 0;
676 }
677
678 /* Ignore cache errors */
679 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
680 *ip - start_ip, intel_pt_insn);
681
682 return 0;
683
684out_no_cache:
685 *insn_cnt_ptr = insn_cnt;
686 return 0;
687}
688
689static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
690 uint64_t offset, const char *filename)
691{
692 struct addr_filter *filt;
693 bool have_filter = false;
694 bool hit_tracestop = false;
695 bool hit_filter = false;
696
697 list_for_each_entry(filt, &pt->filts.head, list) {
698 if (filt->start)
699 have_filter = true;
700
701 if ((filename && !filt->filename) ||
702 (!filename && filt->filename) ||
703 (filename && strcmp(filename, filt->filename)))
704 continue;
705
706 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
707 continue;
708
709 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
710 ip, offset, filename ? filename : "[kernel]",
711 filt->start ? "filter" : "stop",
712 filt->addr, filt->size);
713
714 if (filt->start)
715 hit_filter = true;
716 else
717 hit_tracestop = true;
718 }
719
720 if (!hit_tracestop && !hit_filter)
721 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
722 ip, offset, filename ? filename : "[kernel]");
723
724 return hit_tracestop || (have_filter && !hit_filter);
725}
726
727static int __intel_pt_pgd_ip(uint64_t ip, void *data)
728{
729 struct intel_pt_queue *ptq = data;
730 struct thread *thread;
731 struct addr_location al;
732 u8 cpumode;
733 u64 offset;
734
735 if (ip >= ptq->pt->kernel_start)
736 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
737
738 cpumode = PERF_RECORD_MISC_USER;
739
740 thread = ptq->thread;
741 if (!thread)
742 return -EINVAL;
743
744 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
745 return -EINVAL;
746
747 offset = al.map->map_ip(al.map, ip);
748
749 return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
750 al.map->dso->long_name);
751}
752
753static bool intel_pt_pgd_ip(uint64_t ip, void *data)
754{
755 return __intel_pt_pgd_ip(ip, data) > 0;
756}
757
758static bool intel_pt_get_config(struct intel_pt *pt,
759 struct perf_event_attr *attr, u64 *config)
760{
761 if (attr->type == pt->pmu_type) {
762 if (config)
763 *config = attr->config;
764 return true;
765 }
766
767 return false;
768}
769
770static bool intel_pt_exclude_kernel(struct intel_pt *pt)
771{
772 struct evsel *evsel;
773
774 evlist__for_each_entry(pt->session->evlist, evsel) {
775 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
776 !evsel->core.attr.exclude_kernel)
777 return false;
778 }
779 return true;
780}
781
782static bool intel_pt_return_compression(struct intel_pt *pt)
783{
784 struct evsel *evsel;
785 u64 config;
786
787 if (!pt->noretcomp_bit)
788 return true;
789
790 evlist__for_each_entry(pt->session->evlist, evsel) {
791 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
792 (config & pt->noretcomp_bit))
793 return false;
794 }
795 return true;
796}
797
798static bool intel_pt_branch_enable(struct intel_pt *pt)
799{
800 struct evsel *evsel;
801 u64 config;
802
803 evlist__for_each_entry(pt->session->evlist, evsel) {
804 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
805 (config & 1) && !(config & 0x2000))
806 return false;
807 }
808 return true;
809}
810
811static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
812{
813 struct evsel *evsel;
814 unsigned int shift;
815 u64 config;
816
817 if (!pt->mtc_freq_bits)
818 return 0;
819
820 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
821 config >>= 1;
822
823 evlist__for_each_entry(pt->session->evlist, evsel) {
824 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
825 return (config & pt->mtc_freq_bits) >> shift;
826 }
827 return 0;
828}
829
830static bool intel_pt_timeless_decoding(struct intel_pt *pt)
831{
832 struct evsel *evsel;
833 bool timeless_decoding = true;
834 u64 config;
835
836 if (!pt->tsc_bit || !pt->cap_user_time_zero)
837 return true;
838
839 evlist__for_each_entry(pt->session->evlist, evsel) {
840 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
841 return true;
842 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
843 if (config & pt->tsc_bit)
844 timeless_decoding = false;
845 else
846 return true;
847 }
848 }
849 return timeless_decoding;
850}
851
852static bool intel_pt_tracing_kernel(struct intel_pt *pt)
853{
854 struct evsel *evsel;
855
856 evlist__for_each_entry(pt->session->evlist, evsel) {
857 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
858 !evsel->core.attr.exclude_kernel)
859 return true;
860 }
861 return false;
862}
863
864static bool intel_pt_have_tsc(struct intel_pt *pt)
865{
866 struct evsel *evsel;
867 bool have_tsc = false;
868 u64 config;
869
870 if (!pt->tsc_bit)
871 return false;
872
873 evlist__for_each_entry(pt->session->evlist, evsel) {
874 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
875 if (config & pt->tsc_bit)
876 have_tsc = true;
877 else
878 return false;
879 }
880 }
881 return have_tsc;
882}
883
884static bool intel_pt_sampling_mode(struct intel_pt *pt)
885{
886 struct evsel *evsel;
887
888 evlist__for_each_entry(pt->session->evlist, evsel) {
889 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
890 evsel->core.attr.aux_sample_size)
891 return true;
892 }
893 return false;
894}
895
896static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
897{
898 u64 quot, rem;
899
900 quot = ns / pt->tc.time_mult;
901 rem = ns % pt->tc.time_mult;
902 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
903 pt->tc.time_mult;
904}
905
906static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
907{
908 size_t sz = sizeof(struct ip_callchain);
909
910 /* Add 1 to callchain_sz for callchain context */
911 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
912 return zalloc(sz);
913}
914
915static int intel_pt_callchain_init(struct intel_pt *pt)
916{
917 struct evsel *evsel;
918
919 evlist__for_each_entry(pt->session->evlist, evsel) {
920 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
921 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
922 }
923
924 pt->chain = intel_pt_alloc_chain(pt);
925 if (!pt->chain)
926 return -ENOMEM;
927
928 return 0;
929}
930
931static void intel_pt_add_callchain(struct intel_pt *pt,
932 struct perf_sample *sample)
933{
934 struct thread *thread = machine__findnew_thread(pt->machine,
935 sample->pid,
936 sample->tid);
937
938 thread_stack__sample_late(thread, sample->cpu, pt->chain,
939 pt->synth_opts.callchain_sz + 1, sample->ip,
940 pt->kernel_start);
941
942 sample->callchain = pt->chain;
943}
944
945static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
946{
947 size_t sz = sizeof(struct branch_stack);
948
949 sz += entry_cnt * sizeof(struct branch_entry);
950 return zalloc(sz);
951}
952
953static int intel_pt_br_stack_init(struct intel_pt *pt)
954{
955 struct evsel *evsel;
956
957 evlist__for_each_entry(pt->session->evlist, evsel) {
958 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
959 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
960 }
961
962 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
963 if (!pt->br_stack)
964 return -ENOMEM;
965
966 return 0;
967}
968
969static void intel_pt_add_br_stack(struct intel_pt *pt,
970 struct perf_sample *sample)
971{
972 struct thread *thread = machine__findnew_thread(pt->machine,
973 sample->pid,
974 sample->tid);
975
976 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
977 pt->br_stack_sz, sample->ip,
978 pt->kernel_start);
979
980 sample->branch_stack = pt->br_stack;
981}
982
983/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
984#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
985
986static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
987 unsigned int queue_nr)
988{
989 struct intel_pt_params params = { .get_trace = 0, };
990 struct perf_env *env = pt->machine->env;
991 struct intel_pt_queue *ptq;
992
993 ptq = zalloc(sizeof(struct intel_pt_queue));
994 if (!ptq)
995 return NULL;
996
997 if (pt->synth_opts.callchain) {
998 ptq->chain = intel_pt_alloc_chain(pt);
999 if (!ptq->chain)
1000 goto out_free;
1001 }
1002
1003 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1004 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1005
1006 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1007 if (!ptq->last_branch)
1008 goto out_free;
1009 }
1010
1011 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1012 if (!ptq->event_buf)
1013 goto out_free;
1014
1015 ptq->pt = pt;
1016 ptq->queue_nr = queue_nr;
1017 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1018 ptq->pid = -1;
1019 ptq->tid = -1;
1020 ptq->cpu = -1;
1021 ptq->next_tid = -1;
1022
1023 params.get_trace = intel_pt_get_trace;
1024 params.walk_insn = intel_pt_walk_next_insn;
1025 params.lookahead = intel_pt_lookahead;
1026 params.data = ptq;
1027 params.return_compression = intel_pt_return_compression(pt);
1028 params.branch_enable = intel_pt_branch_enable(pt);
1029 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1030 params.mtc_period = intel_pt_mtc_period(pt);
1031 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1032 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1033 params.quick = pt->synth_opts.quick;
1034
1035 if (pt->filts.cnt > 0)
1036 params.pgd_ip = intel_pt_pgd_ip;
1037
1038 if (pt->synth_opts.instructions) {
1039 if (pt->synth_opts.period) {
1040 switch (pt->synth_opts.period_type) {
1041 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1042 params.period_type =
1043 INTEL_PT_PERIOD_INSTRUCTIONS;
1044 params.period = pt->synth_opts.period;
1045 break;
1046 case PERF_ITRACE_PERIOD_TICKS:
1047 params.period_type = INTEL_PT_PERIOD_TICKS;
1048 params.period = pt->synth_opts.period;
1049 break;
1050 case PERF_ITRACE_PERIOD_NANOSECS:
1051 params.period_type = INTEL_PT_PERIOD_TICKS;
1052 params.period = intel_pt_ns_to_ticks(pt,
1053 pt->synth_opts.period);
1054 break;
1055 default:
1056 break;
1057 }
1058 }
1059
1060 if (!params.period) {
1061 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1062 params.period = 1;
1063 }
1064 }
1065
1066 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1067 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1068
1069 ptq->decoder = intel_pt_decoder_new(¶ms);
1070 if (!ptq->decoder)
1071 goto out_free;
1072
1073 return ptq;
1074
1075out_free:
1076 zfree(&ptq->event_buf);
1077 zfree(&ptq->last_branch);
1078 zfree(&ptq->chain);
1079 free(ptq);
1080 return NULL;
1081}
1082
1083static void intel_pt_free_queue(void *priv)
1084{
1085 struct intel_pt_queue *ptq = priv;
1086
1087 if (!ptq)
1088 return;
1089 thread__zput(ptq->thread);
1090 intel_pt_decoder_free(ptq->decoder);
1091 zfree(&ptq->event_buf);
1092 zfree(&ptq->last_branch);
1093 zfree(&ptq->chain);
1094 free(ptq);
1095}
1096
1097static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1098 struct auxtrace_queue *queue)
1099{
1100 struct intel_pt_queue *ptq = queue->priv;
1101
1102 if (queue->tid == -1 || pt->have_sched_switch) {
1103 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1104 thread__zput(ptq->thread);
1105 }
1106
1107 if (!ptq->thread && ptq->tid != -1)
1108 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1109
1110 if (ptq->thread) {
1111 ptq->pid = ptq->thread->pid_;
1112 if (queue->cpu == -1)
1113 ptq->cpu = ptq->thread->cpu;
1114 }
1115}
1116
1117static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1118{
1119 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1120 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1121 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1122 if (ptq->state->to_ip)
1123 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1124 PERF_IP_FLAG_ASYNC |
1125 PERF_IP_FLAG_INTERRUPT;
1126 else
1127 ptq->flags = PERF_IP_FLAG_BRANCH |
1128 PERF_IP_FLAG_TRACE_END;
1129 ptq->insn_len = 0;
1130 } else {
1131 if (ptq->state->from_ip)
1132 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1133 else
1134 ptq->flags = PERF_IP_FLAG_BRANCH |
1135 PERF_IP_FLAG_TRACE_BEGIN;
1136 if (ptq->state->flags & INTEL_PT_IN_TX)
1137 ptq->flags |= PERF_IP_FLAG_IN_TX;
1138 ptq->insn_len = ptq->state->insn_len;
1139 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1140 }
1141
1142 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1143 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1144 if (ptq->state->type & INTEL_PT_TRACE_END)
1145 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1146}
1147
1148static void intel_pt_setup_time_range(struct intel_pt *pt,
1149 struct intel_pt_queue *ptq)
1150{
1151 if (!pt->range_cnt)
1152 return;
1153
1154 ptq->sel_timestamp = pt->time_ranges[0].start;
1155 ptq->sel_idx = 0;
1156
1157 if (ptq->sel_timestamp) {
1158 ptq->sel_start = true;
1159 } else {
1160 ptq->sel_timestamp = pt->time_ranges[0].end;
1161 ptq->sel_start = false;
1162 }
1163}
1164
1165static int intel_pt_setup_queue(struct intel_pt *pt,
1166 struct auxtrace_queue *queue,
1167 unsigned int queue_nr)
1168{
1169 struct intel_pt_queue *ptq = queue->priv;
1170
1171 if (list_empty(&queue->head))
1172 return 0;
1173
1174 if (!ptq) {
1175 ptq = intel_pt_alloc_queue(pt, queue_nr);
1176 if (!ptq)
1177 return -ENOMEM;
1178 queue->priv = ptq;
1179
1180 if (queue->cpu != -1)
1181 ptq->cpu = queue->cpu;
1182 ptq->tid = queue->tid;
1183
1184 ptq->cbr_seen = UINT_MAX;
1185
1186 if (pt->sampling_mode && !pt->snapshot_mode &&
1187 pt->timeless_decoding)
1188 ptq->step_through_buffers = true;
1189
1190 ptq->sync_switch = pt->sync_switch;
1191
1192 intel_pt_setup_time_range(pt, ptq);
1193 }
1194
1195 if (!ptq->on_heap &&
1196 (!ptq->sync_switch ||
1197 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1198 const struct intel_pt_state *state;
1199 int ret;
1200
1201 if (pt->timeless_decoding)
1202 return 0;
1203
1204 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1205 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1206 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1207
1208 if (ptq->sel_start && ptq->sel_timestamp) {
1209 ret = intel_pt_fast_forward(ptq->decoder,
1210 ptq->sel_timestamp);
1211 if (ret)
1212 return ret;
1213 }
1214
1215 while (1) {
1216 state = intel_pt_decode(ptq->decoder);
1217 if (state->err) {
1218 if (state->err == INTEL_PT_ERR_NODATA) {
1219 intel_pt_log("queue %u has no timestamp\n",
1220 queue_nr);
1221 return 0;
1222 }
1223 continue;
1224 }
1225 if (state->timestamp)
1226 break;
1227 }
1228
1229 ptq->timestamp = state->timestamp;
1230 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1231 queue_nr, ptq->timestamp);
1232 ptq->state = state;
1233 ptq->have_sample = true;
1234 if (ptq->sel_start && ptq->sel_timestamp &&
1235 ptq->timestamp < ptq->sel_timestamp)
1236 ptq->have_sample = false;
1237 intel_pt_sample_flags(ptq);
1238 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1239 if (ret)
1240 return ret;
1241 ptq->on_heap = true;
1242 }
1243
1244 return 0;
1245}
1246
1247static int intel_pt_setup_queues(struct intel_pt *pt)
1248{
1249 unsigned int i;
1250 int ret;
1251
1252 for (i = 0; i < pt->queues.nr_queues; i++) {
1253 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1254 if (ret)
1255 return ret;
1256 }
1257 return 0;
1258}
1259
1260static inline bool intel_pt_skip_event(struct intel_pt *pt)
1261{
1262 return pt->synth_opts.initial_skip &&
1263 pt->num_events++ < pt->synth_opts.initial_skip;
1264}
1265
1266/*
1267 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1268 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1269 * from this decoder state.
1270 */
1271static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1272{
1273 return pt->synth_opts.initial_skip &&
1274 pt->num_events + 4 < pt->synth_opts.initial_skip;
1275}
1276
1277static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1278 union perf_event *event,
1279 struct perf_sample *sample)
1280{
1281 event->sample.header.type = PERF_RECORD_SAMPLE;
1282 event->sample.header.size = sizeof(struct perf_event_header);
1283
1284 sample->pid = ptq->pid;
1285 sample->tid = ptq->tid;
1286 sample->cpu = ptq->cpu;
1287 sample->insn_len = ptq->insn_len;
1288 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1289}
1290
1291static void intel_pt_prep_b_sample(struct intel_pt *pt,
1292 struct intel_pt_queue *ptq,
1293 union perf_event *event,
1294 struct perf_sample *sample)
1295{
1296 intel_pt_prep_a_sample(ptq, event, sample);
1297
1298 if (!pt->timeless_decoding)
1299 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1300
1301 sample->ip = ptq->state->from_ip;
1302 sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1303 sample->addr = ptq->state->to_ip;
1304 sample->period = 1;
1305 sample->flags = ptq->flags;
1306
1307 event->sample.header.misc = sample->cpumode;
1308}
1309
1310static int intel_pt_inject_event(union perf_event *event,
1311 struct perf_sample *sample, u64 type)
1312{
1313 event->header.size = perf_event__sample_event_size(sample, type, 0);
1314 return perf_event__synthesize_sample(event, type, 0, sample);
1315}
1316
1317static inline int intel_pt_opt_inject(struct intel_pt *pt,
1318 union perf_event *event,
1319 struct perf_sample *sample, u64 type)
1320{
1321 if (!pt->synth_opts.inject)
1322 return 0;
1323
1324 return intel_pt_inject_event(event, sample, type);
1325}
1326
1327static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1328 union perf_event *event,
1329 struct perf_sample *sample, u64 type)
1330{
1331 int ret;
1332
1333 ret = intel_pt_opt_inject(pt, event, sample, type);
1334 if (ret)
1335 return ret;
1336
1337 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1338 if (ret)
1339 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1340
1341 return ret;
1342}
1343
1344static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1345{
1346 struct intel_pt *pt = ptq->pt;
1347 union perf_event *event = ptq->event_buf;
1348 struct perf_sample sample = { .ip = 0, };
1349 struct dummy_branch_stack {
1350 u64 nr;
1351 u64 hw_idx;
1352 struct branch_entry entries;
1353 } dummy_bs;
1354
1355 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1356 return 0;
1357
1358 if (intel_pt_skip_event(pt))
1359 return 0;
1360
1361 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1362
1363 sample.id = ptq->pt->branches_id;
1364 sample.stream_id = ptq->pt->branches_id;
1365
1366 /*
1367 * perf report cannot handle events without a branch stack when using
1368 * SORT_MODE__BRANCH so make a dummy one.
1369 */
1370 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1371 dummy_bs = (struct dummy_branch_stack){
1372 .nr = 1,
1373 .hw_idx = -1ULL,
1374 .entries = {
1375 .from = sample.ip,
1376 .to = sample.addr,
1377 },
1378 };
1379 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1380 }
1381
1382 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1383 if (sample.cyc_cnt) {
1384 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1385 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1386 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1387 }
1388
1389 return intel_pt_deliver_synth_event(pt, event, &sample,
1390 pt->branches_sample_type);
1391}
1392
1393static void intel_pt_prep_sample(struct intel_pt *pt,
1394 struct intel_pt_queue *ptq,
1395 union perf_event *event,
1396 struct perf_sample *sample)
1397{
1398 intel_pt_prep_b_sample(pt, ptq, event, sample);
1399
1400 if (pt->synth_opts.callchain) {
1401 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1402 pt->synth_opts.callchain_sz + 1,
1403 sample->ip, pt->kernel_start);
1404 sample->callchain = ptq->chain;
1405 }
1406
1407 if (pt->synth_opts.last_branch) {
1408 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1409 pt->br_stack_sz);
1410 sample->branch_stack = ptq->last_branch;
1411 }
1412}
1413
1414static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1415{
1416 struct intel_pt *pt = ptq->pt;
1417 union perf_event *event = ptq->event_buf;
1418 struct perf_sample sample = { .ip = 0, };
1419
1420 if (intel_pt_skip_event(pt))
1421 return 0;
1422
1423 intel_pt_prep_sample(pt, ptq, event, &sample);
1424
1425 sample.id = ptq->pt->instructions_id;
1426 sample.stream_id = ptq->pt->instructions_id;
1427 if (pt->synth_opts.quick)
1428 sample.period = 1;
1429 else
1430 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1431
1432 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1433 if (sample.cyc_cnt) {
1434 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1435 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1436 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1437 }
1438
1439 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1440
1441 return intel_pt_deliver_synth_event(pt, event, &sample,
1442 pt->instructions_sample_type);
1443}
1444
1445static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1446{
1447 struct intel_pt *pt = ptq->pt;
1448 union perf_event *event = ptq->event_buf;
1449 struct perf_sample sample = { .ip = 0, };
1450
1451 if (intel_pt_skip_event(pt))
1452 return 0;
1453
1454 intel_pt_prep_sample(pt, ptq, event, &sample);
1455
1456 sample.id = ptq->pt->transactions_id;
1457 sample.stream_id = ptq->pt->transactions_id;
1458
1459 return intel_pt_deliver_synth_event(pt, event, &sample,
1460 pt->transactions_sample_type);
1461}
1462
1463static void intel_pt_prep_p_sample(struct intel_pt *pt,
1464 struct intel_pt_queue *ptq,
1465 union perf_event *event,
1466 struct perf_sample *sample)
1467{
1468 intel_pt_prep_sample(pt, ptq, event, sample);
1469
1470 /*
1471 * Zero IP is used to mean "trace start" but that is not the case for
1472 * power or PTWRITE events with no IP, so clear the flags.
1473 */
1474 if (!sample->ip)
1475 sample->flags = 0;
1476}
1477
1478static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1479{
1480 struct intel_pt *pt = ptq->pt;
1481 union perf_event *event = ptq->event_buf;
1482 struct perf_sample sample = { .ip = 0, };
1483 struct perf_synth_intel_ptwrite raw;
1484
1485 if (intel_pt_skip_event(pt))
1486 return 0;
1487
1488 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1489
1490 sample.id = ptq->pt->ptwrites_id;
1491 sample.stream_id = ptq->pt->ptwrites_id;
1492
1493 raw.flags = 0;
1494 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1495 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1496
1497 sample.raw_size = perf_synth__raw_size(raw);
1498 sample.raw_data = perf_synth__raw_data(&raw);
1499
1500 return intel_pt_deliver_synth_event(pt, event, &sample,
1501 pt->ptwrites_sample_type);
1502}
1503
1504static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1505{
1506 struct intel_pt *pt = ptq->pt;
1507 union perf_event *event = ptq->event_buf;
1508 struct perf_sample sample = { .ip = 0, };
1509 struct perf_synth_intel_cbr raw;
1510 u32 flags;
1511
1512 if (intel_pt_skip_cbr_event(pt))
1513 return 0;
1514
1515 ptq->cbr_seen = ptq->state->cbr;
1516
1517 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1518
1519 sample.id = ptq->pt->cbr_id;
1520 sample.stream_id = ptq->pt->cbr_id;
1521
1522 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1523 raw.flags = cpu_to_le32(flags);
1524 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1525 raw.reserved3 = 0;
1526
1527 sample.raw_size = perf_synth__raw_size(raw);
1528 sample.raw_data = perf_synth__raw_data(&raw);
1529
1530 return intel_pt_deliver_synth_event(pt, event, &sample,
1531 pt->pwr_events_sample_type);
1532}
1533
1534static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1535{
1536 struct intel_pt *pt = ptq->pt;
1537 union perf_event *event = ptq->event_buf;
1538 struct perf_sample sample = { .ip = 0, };
1539 struct perf_synth_intel_mwait raw;
1540
1541 if (intel_pt_skip_event(pt))
1542 return 0;
1543
1544 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1545
1546 sample.id = ptq->pt->mwait_id;
1547 sample.stream_id = ptq->pt->mwait_id;
1548
1549 raw.reserved = 0;
1550 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1551
1552 sample.raw_size = perf_synth__raw_size(raw);
1553 sample.raw_data = perf_synth__raw_data(&raw);
1554
1555 return intel_pt_deliver_synth_event(pt, event, &sample,
1556 pt->pwr_events_sample_type);
1557}
1558
1559static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1560{
1561 struct intel_pt *pt = ptq->pt;
1562 union perf_event *event = ptq->event_buf;
1563 struct perf_sample sample = { .ip = 0, };
1564 struct perf_synth_intel_pwre raw;
1565
1566 if (intel_pt_skip_event(pt))
1567 return 0;
1568
1569 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1570
1571 sample.id = ptq->pt->pwre_id;
1572 sample.stream_id = ptq->pt->pwre_id;
1573
1574 raw.reserved = 0;
1575 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1576
1577 sample.raw_size = perf_synth__raw_size(raw);
1578 sample.raw_data = perf_synth__raw_data(&raw);
1579
1580 return intel_pt_deliver_synth_event(pt, event, &sample,
1581 pt->pwr_events_sample_type);
1582}
1583
1584static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1585{
1586 struct intel_pt *pt = ptq->pt;
1587 union perf_event *event = ptq->event_buf;
1588 struct perf_sample sample = { .ip = 0, };
1589 struct perf_synth_intel_exstop raw;
1590
1591 if (intel_pt_skip_event(pt))
1592 return 0;
1593
1594 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1595
1596 sample.id = ptq->pt->exstop_id;
1597 sample.stream_id = ptq->pt->exstop_id;
1598
1599 raw.flags = 0;
1600 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1601
1602 sample.raw_size = perf_synth__raw_size(raw);
1603 sample.raw_data = perf_synth__raw_data(&raw);
1604
1605 return intel_pt_deliver_synth_event(pt, event, &sample,
1606 pt->pwr_events_sample_type);
1607}
1608
1609static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1610{
1611 struct intel_pt *pt = ptq->pt;
1612 union perf_event *event = ptq->event_buf;
1613 struct perf_sample sample = { .ip = 0, };
1614 struct perf_synth_intel_pwrx raw;
1615
1616 if (intel_pt_skip_event(pt))
1617 return 0;
1618
1619 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1620
1621 sample.id = ptq->pt->pwrx_id;
1622 sample.stream_id = ptq->pt->pwrx_id;
1623
1624 raw.reserved = 0;
1625 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1626
1627 sample.raw_size = perf_synth__raw_size(raw);
1628 sample.raw_data = perf_synth__raw_data(&raw);
1629
1630 return intel_pt_deliver_synth_event(pt, event, &sample,
1631 pt->pwr_events_sample_type);
1632}
1633
1634/*
1635 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1636 * intel_pt_add_gp_regs().
1637 */
1638static const int pebs_gp_regs[] = {
1639 [PERF_REG_X86_FLAGS] = 1,
1640 [PERF_REG_X86_IP] = 2,
1641 [PERF_REG_X86_AX] = 3,
1642 [PERF_REG_X86_CX] = 4,
1643 [PERF_REG_X86_DX] = 5,
1644 [PERF_REG_X86_BX] = 6,
1645 [PERF_REG_X86_SP] = 7,
1646 [PERF_REG_X86_BP] = 8,
1647 [PERF_REG_X86_SI] = 9,
1648 [PERF_REG_X86_DI] = 10,
1649 [PERF_REG_X86_R8] = 11,
1650 [PERF_REG_X86_R9] = 12,
1651 [PERF_REG_X86_R10] = 13,
1652 [PERF_REG_X86_R11] = 14,
1653 [PERF_REG_X86_R12] = 15,
1654 [PERF_REG_X86_R13] = 16,
1655 [PERF_REG_X86_R14] = 17,
1656 [PERF_REG_X86_R15] = 18,
1657};
1658
1659static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1660 const struct intel_pt_blk_items *items,
1661 u64 regs_mask)
1662{
1663 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1664 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1665 u32 bit;
1666 int i;
1667
1668 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1669 /* Get the PEBS gp_regs array index */
1670 int n = pebs_gp_regs[i] - 1;
1671
1672 if (n < 0)
1673 continue;
1674 /*
1675 * Add only registers that were requested (i.e. 'regs_mask') and
1676 * that were provided (i.e. 'mask'), and update the resulting
1677 * mask (i.e. 'intr_regs->mask') accordingly.
1678 */
1679 if (mask & 1 << n && regs_mask & bit) {
1680 intr_regs->mask |= bit;
1681 *pos++ = gp_regs[n];
1682 }
1683 }
1684
1685 return pos;
1686}
1687
1688#ifndef PERF_REG_X86_XMM0
1689#define PERF_REG_X86_XMM0 32
1690#endif
1691
1692static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1693 const struct intel_pt_blk_items *items,
1694 u64 regs_mask)
1695{
1696 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1697 const u64 *xmm = items->xmm;
1698
1699 /*
1700 * If there are any XMM registers, then there should be all of them.
1701 * Nevertheless, follow the logic to add only registers that were
1702 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1703 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1704 */
1705 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1706
1707 for (; mask; mask >>= 1, xmm++) {
1708 if (mask & 1)
1709 *pos++ = *xmm;
1710 }
1711}
1712
1713#define LBR_INFO_MISPRED (1ULL << 63)
1714#define LBR_INFO_IN_TX (1ULL << 62)
1715#define LBR_INFO_ABORT (1ULL << 61)
1716#define LBR_INFO_CYCLES 0xffff
1717
1718/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1719static u64 intel_pt_lbr_flags(u64 info)
1720{
1721 union {
1722 struct branch_flags flags;
1723 u64 result;
1724 } u;
1725
1726 u.result = 0;
1727 u.flags.mispred = !!(info & LBR_INFO_MISPRED);
1728 u.flags.predicted = !(info & LBR_INFO_MISPRED);
1729 u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
1730 u.flags.abort = !!(info & LBR_INFO_ABORT);
1731 u.flags.cycles = info & LBR_INFO_CYCLES;
1732
1733 return u.result;
1734}
1735
1736static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1737 const struct intel_pt_blk_items *items)
1738{
1739 u64 *to;
1740 int i;
1741
1742 br_stack->nr = 0;
1743
1744 to = &br_stack->entries[0].from;
1745
1746 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1747 u32 mask = items->mask[i];
1748 const u64 *from = items->val[i];
1749
1750 for (; mask; mask >>= 3, from += 3) {
1751 if ((mask & 7) == 7) {
1752 *to++ = from[0];
1753 *to++ = from[1];
1754 *to++ = intel_pt_lbr_flags(from[2]);
1755 br_stack->nr += 1;
1756 }
1757 }
1758 }
1759}
1760
1761static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1762{
1763 const struct intel_pt_blk_items *items = &ptq->state->items;
1764 struct perf_sample sample = { .ip = 0, };
1765 union perf_event *event = ptq->event_buf;
1766 struct intel_pt *pt = ptq->pt;
1767 struct evsel *evsel = pt->pebs_evsel;
1768 u64 sample_type = evsel->core.attr.sample_type;
1769 u64 id = evsel->core.id[0];
1770 u8 cpumode;
1771 u64 regs[8 * sizeof(sample.intr_regs.mask)];
1772
1773 if (intel_pt_skip_event(pt))
1774 return 0;
1775
1776 intel_pt_prep_a_sample(ptq, event, &sample);
1777
1778 sample.id = id;
1779 sample.stream_id = id;
1780
1781 if (!evsel->core.attr.freq)
1782 sample.period = evsel->core.attr.sample_period;
1783
1784 /* No support for non-zero CS base */
1785 if (items->has_ip)
1786 sample.ip = items->ip;
1787 else if (items->has_rip)
1788 sample.ip = items->rip;
1789 else
1790 sample.ip = ptq->state->from_ip;
1791
1792 /* No support for guest mode at this time */
1793 cpumode = sample.ip < ptq->pt->kernel_start ?
1794 PERF_RECORD_MISC_USER :
1795 PERF_RECORD_MISC_KERNEL;
1796
1797 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1798
1799 sample.cpumode = cpumode;
1800
1801 if (sample_type & PERF_SAMPLE_TIME) {
1802 u64 timestamp = 0;
1803
1804 if (items->has_timestamp)
1805 timestamp = items->timestamp;
1806 else if (!pt->timeless_decoding)
1807 timestamp = ptq->timestamp;
1808 if (timestamp)
1809 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1810 }
1811
1812 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1813 pt->synth_opts.callchain) {
1814 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1815 pt->synth_opts.callchain_sz, sample.ip,
1816 pt->kernel_start);
1817 sample.callchain = ptq->chain;
1818 }
1819
1820 if (sample_type & PERF_SAMPLE_REGS_INTR &&
1821 (items->mask[INTEL_PT_GP_REGS_POS] ||
1822 items->mask[INTEL_PT_XMM_POS])) {
1823 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1824 u64 *pos;
1825
1826 sample.intr_regs.abi = items->is_32_bit ?
1827 PERF_SAMPLE_REGS_ABI_32 :
1828 PERF_SAMPLE_REGS_ABI_64;
1829 sample.intr_regs.regs = regs;
1830
1831 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1832
1833 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1834 }
1835
1836 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1837 if (items->mask[INTEL_PT_LBR_0_POS] ||
1838 items->mask[INTEL_PT_LBR_1_POS] ||
1839 items->mask[INTEL_PT_LBR_2_POS]) {
1840 intel_pt_add_lbrs(ptq->last_branch, items);
1841 } else if (pt->synth_opts.last_branch) {
1842 thread_stack__br_sample(ptq->thread, ptq->cpu,
1843 ptq->last_branch,
1844 pt->br_stack_sz);
1845 } else {
1846 ptq->last_branch->nr = 0;
1847 }
1848 sample.branch_stack = ptq->last_branch;
1849 }
1850
1851 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1852 sample.addr = items->mem_access_address;
1853
1854 if (sample_type & PERF_SAMPLE_WEIGHT) {
1855 /*
1856 * Refer kernel's setup_pebs_adaptive_sample_data() and
1857 * intel_hsw_weight().
1858 */
1859 if (items->has_mem_access_latency)
1860 sample.weight = items->mem_access_latency;
1861 if (!sample.weight && items->has_tsx_aux_info) {
1862 /* Cycles last block */
1863 sample.weight = (u32)items->tsx_aux_info;
1864 }
1865 }
1866
1867 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1868 u64 ax = items->has_rax ? items->rax : 0;
1869 /* Refer kernel's intel_hsw_transaction() */
1870 u64 txn = (u8)(items->tsx_aux_info >> 32);
1871
1872 /* For RTM XABORTs also log the abort code from AX */
1873 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1874 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1875 sample.transaction = txn;
1876 }
1877
1878 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1879}
1880
1881static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1882 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1883{
1884 union perf_event event;
1885 char msg[MAX_AUXTRACE_ERROR_MSG];
1886 int err;
1887
1888 if (pt->synth_opts.error_minus_flags) {
1889 if (code == INTEL_PT_ERR_OVR &&
1890 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1891 return 0;
1892 if (code == INTEL_PT_ERR_LOST &&
1893 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1894 return 0;
1895 }
1896
1897 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1898
1899 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1900 code, cpu, pid, tid, ip, msg, timestamp);
1901
1902 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1903 if (err)
1904 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1905 err);
1906
1907 return err;
1908}
1909
1910static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1911 const struct intel_pt_state *state)
1912{
1913 struct intel_pt *pt = ptq->pt;
1914 u64 tm = ptq->timestamp;
1915
1916 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1917
1918 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1919 ptq->tid, state->from_ip, tm);
1920}
1921
1922static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1923{
1924 struct auxtrace_queue *queue;
1925 pid_t tid = ptq->next_tid;
1926 int err;
1927
1928 if (tid == -1)
1929 return 0;
1930
1931 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1932
1933 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1934
1935 queue = &pt->queues.queue_array[ptq->queue_nr];
1936 intel_pt_set_pid_tid_cpu(pt, queue);
1937
1938 ptq->next_tid = -1;
1939
1940 return err;
1941}
1942
1943static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1944{
1945 struct intel_pt *pt = ptq->pt;
1946
1947 return ip == pt->switch_ip &&
1948 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1949 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1950 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1951}
1952
1953#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1954 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1955
1956static int intel_pt_sample(struct intel_pt_queue *ptq)
1957{
1958 const struct intel_pt_state *state = ptq->state;
1959 struct intel_pt *pt = ptq->pt;
1960 int err;
1961
1962 if (!ptq->have_sample)
1963 return 0;
1964
1965 ptq->have_sample = false;
1966
1967 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1968 /*
1969 * Cycle count and instruction count only go together to create
1970 * a valid IPC ratio when the cycle count changes.
1971 */
1972 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1973 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1974 }
1975
1976 /*
1977 * Do PEBS first to allow for the possibility that the PEBS timestamp
1978 * precedes the current timestamp.
1979 */
1980 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1981 err = intel_pt_synth_pebs_sample(ptq);
1982 if (err)
1983 return err;
1984 }
1985
1986 if (pt->sample_pwr_events) {
1987 if (ptq->state->cbr != ptq->cbr_seen) {
1988 err = intel_pt_synth_cbr_sample(ptq);
1989 if (err)
1990 return err;
1991 }
1992 if (state->type & INTEL_PT_PWR_EVT) {
1993 if (state->type & INTEL_PT_MWAIT_OP) {
1994 err = intel_pt_synth_mwait_sample(ptq);
1995 if (err)
1996 return err;
1997 }
1998 if (state->type & INTEL_PT_PWR_ENTRY) {
1999 err = intel_pt_synth_pwre_sample(ptq);
2000 if (err)
2001 return err;
2002 }
2003 if (state->type & INTEL_PT_EX_STOP) {
2004 err = intel_pt_synth_exstop_sample(ptq);
2005 if (err)
2006 return err;
2007 }
2008 if (state->type & INTEL_PT_PWR_EXIT) {
2009 err = intel_pt_synth_pwrx_sample(ptq);
2010 if (err)
2011 return err;
2012 }
2013 }
2014 }
2015
2016 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2017 err = intel_pt_synth_instruction_sample(ptq);
2018 if (err)
2019 return err;
2020 }
2021
2022 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2023 err = intel_pt_synth_transaction_sample(ptq);
2024 if (err)
2025 return err;
2026 }
2027
2028 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2029 err = intel_pt_synth_ptwrite_sample(ptq);
2030 if (err)
2031 return err;
2032 }
2033
2034 if (!(state->type & INTEL_PT_BRANCH))
2035 return 0;
2036
2037 if (pt->use_thread_stack) {
2038 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2039 state->from_ip, state->to_ip, ptq->insn_len,
2040 state->trace_nr, pt->callstack,
2041 pt->br_stack_sz_plus,
2042 pt->mispred_all);
2043 } else {
2044 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2045 }
2046
2047 if (pt->sample_branches) {
2048 err = intel_pt_synth_branch_sample(ptq);
2049 if (err)
2050 return err;
2051 }
2052
2053 if (!ptq->sync_switch)
2054 return 0;
2055
2056 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2057 switch (ptq->switch_state) {
2058 case INTEL_PT_SS_NOT_TRACING:
2059 case INTEL_PT_SS_UNKNOWN:
2060 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2061 err = intel_pt_next_tid(pt, ptq);
2062 if (err)
2063 return err;
2064 ptq->switch_state = INTEL_PT_SS_TRACING;
2065 break;
2066 default:
2067 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2068 return 1;
2069 }
2070 } else if (!state->to_ip) {
2071 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2072 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2073 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2074 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2075 state->to_ip == pt->ptss_ip &&
2076 (ptq->flags & PERF_IP_FLAG_CALL)) {
2077 ptq->switch_state = INTEL_PT_SS_TRACING;
2078 }
2079
2080 return 0;
2081}
2082
2083static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2084{
2085 struct machine *machine = pt->machine;
2086 struct map *map;
2087 struct symbol *sym, *start;
2088 u64 ip, switch_ip = 0;
2089 const char *ptss;
2090
2091 if (ptss_ip)
2092 *ptss_ip = 0;
2093
2094 map = machine__kernel_map(machine);
2095 if (!map)
2096 return 0;
2097
2098 if (map__load(map))
2099 return 0;
2100
2101 start = dso__first_symbol(map->dso);
2102
2103 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2104 if (sym->binding == STB_GLOBAL &&
2105 !strcmp(sym->name, "__switch_to")) {
2106 ip = map->unmap_ip(map, sym->start);
2107 if (ip >= map->start && ip < map->end) {
2108 switch_ip = ip;
2109 break;
2110 }
2111 }
2112 }
2113
2114 if (!switch_ip || !ptss_ip)
2115 return 0;
2116
2117 if (pt->have_sched_switch == 1)
2118 ptss = "perf_trace_sched_switch";
2119 else
2120 ptss = "__perf_event_task_sched_out";
2121
2122 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2123 if (!strcmp(sym->name, ptss)) {
2124 ip = map->unmap_ip(map, sym->start);
2125 if (ip >= map->start && ip < map->end) {
2126 *ptss_ip = ip;
2127 break;
2128 }
2129 }
2130 }
2131
2132 return switch_ip;
2133}
2134
2135static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2136{
2137 unsigned int i;
2138
2139 pt->sync_switch = true;
2140
2141 for (i = 0; i < pt->queues.nr_queues; i++) {
2142 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2143 struct intel_pt_queue *ptq = queue->priv;
2144
2145 if (ptq)
2146 ptq->sync_switch = true;
2147 }
2148}
2149
2150/*
2151 * To filter against time ranges, it is only necessary to look at the next start
2152 * or end time.
2153 */
2154static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2155{
2156 struct intel_pt *pt = ptq->pt;
2157
2158 if (ptq->sel_start) {
2159 /* Next time is an end time */
2160 ptq->sel_start = false;
2161 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2162 return true;
2163 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2164 /* Next time is a start time */
2165 ptq->sel_start = true;
2166 ptq->sel_idx += 1;
2167 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2168 return true;
2169 }
2170
2171 /* No next time */
2172 return false;
2173}
2174
2175static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2176{
2177 int err;
2178
2179 while (1) {
2180 if (ptq->sel_start) {
2181 if (ptq->timestamp >= ptq->sel_timestamp) {
2182 /* After start time, so consider next time */
2183 intel_pt_next_time(ptq);
2184 if (!ptq->sel_timestamp) {
2185 /* No end time */
2186 return 0;
2187 }
2188 /* Check against end time */
2189 continue;
2190 }
2191 /* Before start time, so fast forward */
2192 ptq->have_sample = false;
2193 if (ptq->sel_timestamp > *ff_timestamp) {
2194 if (ptq->sync_switch) {
2195 intel_pt_next_tid(ptq->pt, ptq);
2196 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2197 }
2198 *ff_timestamp = ptq->sel_timestamp;
2199 err = intel_pt_fast_forward(ptq->decoder,
2200 ptq->sel_timestamp);
2201 if (err)
2202 return err;
2203 }
2204 return 0;
2205 } else if (ptq->timestamp > ptq->sel_timestamp) {
2206 /* After end time, so consider next time */
2207 if (!intel_pt_next_time(ptq)) {
2208 /* No next time range, so stop decoding */
2209 ptq->have_sample = false;
2210 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2211 return 1;
2212 }
2213 /* Check against next start time */
2214 continue;
2215 } else {
2216 /* Before end time */
2217 return 0;
2218 }
2219 }
2220}
2221
2222static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2223{
2224 const struct intel_pt_state *state = ptq->state;
2225 struct intel_pt *pt = ptq->pt;
2226 u64 ff_timestamp = 0;
2227 int err;
2228
2229 if (!pt->kernel_start) {
2230 pt->kernel_start = machine__kernel_start(pt->machine);
2231 if (pt->per_cpu_mmaps &&
2232 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2233 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2234 !pt->sampling_mode) {
2235 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2236 if (pt->switch_ip) {
2237 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2238 pt->switch_ip, pt->ptss_ip);
2239 intel_pt_enable_sync_switch(pt);
2240 }
2241 }
2242 }
2243
2244 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2245 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2246 while (1) {
2247 err = intel_pt_sample(ptq);
2248 if (err)
2249 return err;
2250
2251 state = intel_pt_decode(ptq->decoder);
2252 if (state->err) {
2253 if (state->err == INTEL_PT_ERR_NODATA)
2254 return 1;
2255 if (ptq->sync_switch &&
2256 state->from_ip >= pt->kernel_start) {
2257 ptq->sync_switch = false;
2258 intel_pt_next_tid(pt, ptq);
2259 }
2260 if (pt->synth_opts.errors) {
2261 err = intel_ptq_synth_error(ptq, state);
2262 if (err)
2263 return err;
2264 }
2265 continue;
2266 }
2267
2268 ptq->state = state;
2269 ptq->have_sample = true;
2270 intel_pt_sample_flags(ptq);
2271
2272 /* Use estimated TSC upon return to user space */
2273 if (pt->est_tsc &&
2274 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2275 state->to_ip && state->to_ip < pt->kernel_start) {
2276 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2277 state->timestamp, state->est_timestamp);
2278 ptq->timestamp = state->est_timestamp;
2279 /* Use estimated TSC in unknown switch state */
2280 } else if (ptq->sync_switch &&
2281 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2282 intel_pt_is_switch_ip(ptq, state->to_ip) &&
2283 ptq->next_tid == -1) {
2284 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2285 state->timestamp, state->est_timestamp);
2286 ptq->timestamp = state->est_timestamp;
2287 } else if (state->timestamp > ptq->timestamp) {
2288 ptq->timestamp = state->timestamp;
2289 }
2290
2291 if (ptq->sel_timestamp) {
2292 err = intel_pt_time_filter(ptq, &ff_timestamp);
2293 if (err)
2294 return err;
2295 }
2296
2297 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2298 *timestamp = ptq->timestamp;
2299 return 0;
2300 }
2301 }
2302 return 0;
2303}
2304
2305static inline int intel_pt_update_queues(struct intel_pt *pt)
2306{
2307 if (pt->queues.new_data) {
2308 pt->queues.new_data = false;
2309 return intel_pt_setup_queues(pt);
2310 }
2311 return 0;
2312}
2313
2314static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2315{
2316 unsigned int queue_nr;
2317 u64 ts;
2318 int ret;
2319
2320 while (1) {
2321 struct auxtrace_queue *queue;
2322 struct intel_pt_queue *ptq;
2323
2324 if (!pt->heap.heap_cnt)
2325 return 0;
2326
2327 if (pt->heap.heap_array[0].ordinal >= timestamp)
2328 return 0;
2329
2330 queue_nr = pt->heap.heap_array[0].queue_nr;
2331 queue = &pt->queues.queue_array[queue_nr];
2332 ptq = queue->priv;
2333
2334 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2335 queue_nr, pt->heap.heap_array[0].ordinal,
2336 timestamp);
2337
2338 auxtrace_heap__pop(&pt->heap);
2339
2340 if (pt->heap.heap_cnt) {
2341 ts = pt->heap.heap_array[0].ordinal + 1;
2342 if (ts > timestamp)
2343 ts = timestamp;
2344 } else {
2345 ts = timestamp;
2346 }
2347
2348 intel_pt_set_pid_tid_cpu(pt, queue);
2349
2350 ret = intel_pt_run_decoder(ptq, &ts);
2351
2352 if (ret < 0) {
2353 auxtrace_heap__add(&pt->heap, queue_nr, ts);
2354 return ret;
2355 }
2356
2357 if (!ret) {
2358 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2359 if (ret < 0)
2360 return ret;
2361 } else {
2362 ptq->on_heap = false;
2363 }
2364 }
2365
2366 return 0;
2367}
2368
2369static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2370 u64 time_)
2371{
2372 struct auxtrace_queues *queues = &pt->queues;
2373 unsigned int i;
2374 u64 ts = 0;
2375
2376 for (i = 0; i < queues->nr_queues; i++) {
2377 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2378 struct intel_pt_queue *ptq = queue->priv;
2379
2380 if (ptq && (tid == -1 || ptq->tid == tid)) {
2381 ptq->time = time_;
2382 intel_pt_set_pid_tid_cpu(pt, queue);
2383 intel_pt_run_decoder(ptq, &ts);
2384 }
2385 }
2386 return 0;
2387}
2388
2389static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2390 struct auxtrace_queue *queue,
2391 struct perf_sample *sample)
2392{
2393 struct machine *m = ptq->pt->machine;
2394
2395 ptq->pid = sample->pid;
2396 ptq->tid = sample->tid;
2397 ptq->cpu = queue->cpu;
2398
2399 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2400 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2401
2402 thread__zput(ptq->thread);
2403
2404 if (ptq->tid == -1)
2405 return;
2406
2407 if (ptq->pid == -1) {
2408 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2409 if (ptq->thread)
2410 ptq->pid = ptq->thread->pid_;
2411 return;
2412 }
2413
2414 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2415}
2416
2417static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2418 struct perf_sample *sample)
2419{
2420 struct auxtrace_queue *queue;
2421 struct intel_pt_queue *ptq;
2422 u64 ts = 0;
2423
2424 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2425 if (!queue)
2426 return -EINVAL;
2427
2428 ptq = queue->priv;
2429 if (!ptq)
2430 return 0;
2431
2432 ptq->stop = false;
2433 ptq->time = sample->time;
2434 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2435 intel_pt_run_decoder(ptq, &ts);
2436 return 0;
2437}
2438
2439static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2440{
2441 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2442 sample->pid, sample->tid, 0, sample->time);
2443}
2444
2445static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2446{
2447 unsigned i, j;
2448
2449 if (cpu < 0 || !pt->queues.nr_queues)
2450 return NULL;
2451
2452 if ((unsigned)cpu >= pt->queues.nr_queues)
2453 i = pt->queues.nr_queues - 1;
2454 else
2455 i = cpu;
2456
2457 if (pt->queues.queue_array[i].cpu == cpu)
2458 return pt->queues.queue_array[i].priv;
2459
2460 for (j = 0; i > 0; j++) {
2461 if (pt->queues.queue_array[--i].cpu == cpu)
2462 return pt->queues.queue_array[i].priv;
2463 }
2464
2465 for (; j < pt->queues.nr_queues; j++) {
2466 if (pt->queues.queue_array[j].cpu == cpu)
2467 return pt->queues.queue_array[j].priv;
2468 }
2469
2470 return NULL;
2471}
2472
2473static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2474 u64 timestamp)
2475{
2476 struct intel_pt_queue *ptq;
2477 int err;
2478
2479 if (!pt->sync_switch)
2480 return 1;
2481
2482 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2483 if (!ptq || !ptq->sync_switch)
2484 return 1;
2485
2486 switch (ptq->switch_state) {
2487 case INTEL_PT_SS_NOT_TRACING:
2488 break;
2489 case INTEL_PT_SS_UNKNOWN:
2490 case INTEL_PT_SS_TRACING:
2491 ptq->next_tid = tid;
2492 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2493 return 0;
2494 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2495 if (!ptq->on_heap) {
2496 ptq->timestamp = perf_time_to_tsc(timestamp,
2497 &pt->tc);
2498 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2499 ptq->timestamp);
2500 if (err)
2501 return err;
2502 ptq->on_heap = true;
2503 }
2504 ptq->switch_state = INTEL_PT_SS_TRACING;
2505 break;
2506 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2507 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2508 break;
2509 default:
2510 break;
2511 }
2512
2513 ptq->next_tid = -1;
2514
2515 return 1;
2516}
2517
2518static int intel_pt_process_switch(struct intel_pt *pt,
2519 struct perf_sample *sample)
2520{
2521 struct evsel *evsel;
2522 pid_t tid;
2523 int cpu, ret;
2524
2525 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2526 if (evsel != pt->switch_evsel)
2527 return 0;
2528
2529 tid = evsel__intval(evsel, sample, "next_pid");
2530 cpu = sample->cpu;
2531
2532 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2533 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2534 &pt->tc));
2535
2536 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2537 if (ret <= 0)
2538 return ret;
2539
2540 return machine__set_current_tid(pt->machine, cpu, -1, tid);
2541}
2542
2543static int intel_pt_context_switch_in(struct intel_pt *pt,
2544 struct perf_sample *sample)
2545{
2546 pid_t pid = sample->pid;
2547 pid_t tid = sample->tid;
2548 int cpu = sample->cpu;
2549
2550 if (pt->sync_switch) {
2551 struct intel_pt_queue *ptq;
2552
2553 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2554 if (ptq && ptq->sync_switch) {
2555 ptq->next_tid = -1;
2556 switch (ptq->switch_state) {
2557 case INTEL_PT_SS_NOT_TRACING:
2558 case INTEL_PT_SS_UNKNOWN:
2559 case INTEL_PT_SS_TRACING:
2560 break;
2561 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2562 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2563 ptq->switch_state = INTEL_PT_SS_TRACING;
2564 break;
2565 default:
2566 break;
2567 }
2568 }
2569 }
2570
2571 /*
2572 * If the current tid has not been updated yet, ensure it is now that
2573 * a "switch in" event has occurred.
2574 */
2575 if (machine__get_current_tid(pt->machine, cpu) == tid)
2576 return 0;
2577
2578 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2579}
2580
2581static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2582 struct perf_sample *sample)
2583{
2584 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2585 pid_t pid, tid;
2586 int cpu, ret;
2587
2588 cpu = sample->cpu;
2589
2590 if (pt->have_sched_switch == 3) {
2591 if (!out)
2592 return intel_pt_context_switch_in(pt, sample);
2593 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2594 pr_err("Expecting CPU-wide context switch event\n");
2595 return -EINVAL;
2596 }
2597 pid = event->context_switch.next_prev_pid;
2598 tid = event->context_switch.next_prev_tid;
2599 } else {
2600 if (out)
2601 return 0;
2602 pid = sample->pid;
2603 tid = sample->tid;
2604 }
2605
2606 if (tid == -1) {
2607 pr_err("context_switch event has no tid\n");
2608 return -EINVAL;
2609 }
2610
2611 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2612 if (ret <= 0)
2613 return ret;
2614
2615 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2616}
2617
2618static int intel_pt_process_itrace_start(struct intel_pt *pt,
2619 union perf_event *event,
2620 struct perf_sample *sample)
2621{
2622 if (!pt->per_cpu_mmaps)
2623 return 0;
2624
2625 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2626 sample->cpu, event->itrace_start.pid,
2627 event->itrace_start.tid, sample->time,
2628 perf_time_to_tsc(sample->time, &pt->tc));
2629
2630 return machine__set_current_tid(pt->machine, sample->cpu,
2631 event->itrace_start.pid,
2632 event->itrace_start.tid);
2633}
2634
2635static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2636 struct addr_location *al)
2637{
2638 if (!al->map || addr < al->map->start || addr >= al->map->end) {
2639 if (!thread__find_map(thread, cpumode, addr, al))
2640 return -1;
2641 }
2642
2643 return 0;
2644}
2645
2646/* Invalidate all instruction cache entries that overlap the text poke */
2647static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2648{
2649 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2650 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2651 /* Assume text poke begins in a basic block no more than 4096 bytes */
2652 int cnt = 4096 + event->text_poke.new_len;
2653 struct thread *thread = pt->unknown_thread;
2654 struct addr_location al = { .map = NULL };
2655 struct machine *machine = pt->machine;
2656 struct intel_pt_cache_entry *e;
2657 u64 offset;
2658
2659 if (!event->text_poke.new_len)
2660 return 0;
2661
2662 for (; cnt; cnt--, addr--) {
2663 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2664 if (addr < event->text_poke.addr)
2665 return 0;
2666 continue;
2667 }
2668
2669 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2670 continue;
2671
2672 offset = al.map->map_ip(al.map, addr);
2673
2674 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2675 if (!e)
2676 continue;
2677
2678 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2679 /*
2680 * No overlap. Working backwards there cannot be another
2681 * basic block that overlaps the text poke if there is a
2682 * branch instruction before the text poke address.
2683 */
2684 if (e->branch != INTEL_PT_BR_NO_BRANCH)
2685 return 0;
2686 } else {
2687 intel_pt_cache_invalidate(al.map->dso, machine, offset);
2688 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2689 al.map->dso->long_name, addr);
2690 }
2691 }
2692
2693 return 0;
2694}
2695
2696static int intel_pt_process_event(struct perf_session *session,
2697 union perf_event *event,
2698 struct perf_sample *sample,
2699 struct perf_tool *tool)
2700{
2701 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2702 auxtrace);
2703 u64 timestamp;
2704 int err = 0;
2705
2706 if (dump_trace)
2707 return 0;
2708
2709 if (!tool->ordered_events) {
2710 pr_err("Intel Processor Trace requires ordered events\n");
2711 return -EINVAL;
2712 }
2713
2714 if (sample->time && sample->time != (u64)-1)
2715 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2716 else
2717 timestamp = 0;
2718
2719 if (timestamp || pt->timeless_decoding) {
2720 err = intel_pt_update_queues(pt);
2721 if (err)
2722 return err;
2723 }
2724
2725 if (pt->timeless_decoding) {
2726 if (pt->sampling_mode) {
2727 if (sample->aux_sample.size)
2728 err = intel_pt_process_timeless_sample(pt,
2729 sample);
2730 } else if (event->header.type == PERF_RECORD_EXIT) {
2731 err = intel_pt_process_timeless_queues(pt,
2732 event->fork.tid,
2733 sample->time);
2734 }
2735 } else if (timestamp) {
2736 err = intel_pt_process_queues(pt, timestamp);
2737 }
2738 if (err)
2739 return err;
2740
2741 if (event->header.type == PERF_RECORD_SAMPLE) {
2742 if (pt->synth_opts.add_callchain && !sample->callchain)
2743 intel_pt_add_callchain(pt, sample);
2744 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2745 intel_pt_add_br_stack(pt, sample);
2746 }
2747
2748 if (event->header.type == PERF_RECORD_AUX &&
2749 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2750 pt->synth_opts.errors) {
2751 err = intel_pt_lost(pt, sample);
2752 if (err)
2753 return err;
2754 }
2755
2756 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2757 err = intel_pt_process_switch(pt, sample);
2758 else if (event->header.type == PERF_RECORD_ITRACE_START)
2759 err = intel_pt_process_itrace_start(pt, event, sample);
2760 else if (event->header.type == PERF_RECORD_SWITCH ||
2761 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2762 err = intel_pt_context_switch(pt, event, sample);
2763
2764 if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2765 err = intel_pt_text_poke(pt, event);
2766
2767 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2768 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2769 event->header.type, sample->cpu, sample->time, timestamp);
2770 intel_pt_log_event(event);
2771 }
2772
2773 return err;
2774}
2775
2776static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2777{
2778 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2779 auxtrace);
2780 int ret;
2781
2782 if (dump_trace)
2783 return 0;
2784
2785 if (!tool->ordered_events)
2786 return -EINVAL;
2787
2788 ret = intel_pt_update_queues(pt);
2789 if (ret < 0)
2790 return ret;
2791
2792 if (pt->timeless_decoding)
2793 return intel_pt_process_timeless_queues(pt, -1,
2794 MAX_TIMESTAMP - 1);
2795
2796 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2797}
2798
2799static void intel_pt_free_events(struct perf_session *session)
2800{
2801 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2802 auxtrace);
2803 struct auxtrace_queues *queues = &pt->queues;
2804 unsigned int i;
2805
2806 for (i = 0; i < queues->nr_queues; i++) {
2807 intel_pt_free_queue(queues->queue_array[i].priv);
2808 queues->queue_array[i].priv = NULL;
2809 }
2810 intel_pt_log_disable();
2811 auxtrace_queues__free(queues);
2812}
2813
2814static void intel_pt_free(struct perf_session *session)
2815{
2816 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2817 auxtrace);
2818
2819 auxtrace_heap__free(&pt->heap);
2820 intel_pt_free_events(session);
2821 session->auxtrace = NULL;
2822 thread__put(pt->unknown_thread);
2823 addr_filters__exit(&pt->filts);
2824 zfree(&pt->chain);
2825 zfree(&pt->filter);
2826 zfree(&pt->time_ranges);
2827 free(pt);
2828}
2829
2830static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2831 struct evsel *evsel)
2832{
2833 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2834 auxtrace);
2835
2836 return evsel->core.attr.type == pt->pmu_type;
2837}
2838
2839static int intel_pt_process_auxtrace_event(struct perf_session *session,
2840 union perf_event *event,
2841 struct perf_tool *tool __maybe_unused)
2842{
2843 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2844 auxtrace);
2845
2846 if (!pt->data_queued) {
2847 struct auxtrace_buffer *buffer;
2848 off_t data_offset;
2849 int fd = perf_data__fd(session->data);
2850 int err;
2851
2852 if (perf_data__is_pipe(session->data)) {
2853 data_offset = 0;
2854 } else {
2855 data_offset = lseek(fd, 0, SEEK_CUR);
2856 if (data_offset == -1)
2857 return -errno;
2858 }
2859
2860 err = auxtrace_queues__add_event(&pt->queues, session, event,
2861 data_offset, &buffer);
2862 if (err)
2863 return err;
2864
2865 /* Dump here now we have copied a piped trace out of the pipe */
2866 if (dump_trace) {
2867 if (auxtrace_buffer__get_data(buffer, fd)) {
2868 intel_pt_dump_event(pt, buffer->data,
2869 buffer->size);
2870 auxtrace_buffer__put_data(buffer);
2871 }
2872 }
2873 }
2874
2875 return 0;
2876}
2877
2878static int intel_pt_queue_data(struct perf_session *session,
2879 struct perf_sample *sample,
2880 union perf_event *event, u64 data_offset)
2881{
2882 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2883 auxtrace);
2884 u64 timestamp;
2885
2886 if (event) {
2887 return auxtrace_queues__add_event(&pt->queues, session, event,
2888 data_offset, NULL);
2889 }
2890
2891 if (sample->time && sample->time != (u64)-1)
2892 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2893 else
2894 timestamp = 0;
2895
2896 return auxtrace_queues__add_sample(&pt->queues, session, sample,
2897 data_offset, timestamp);
2898}
2899
2900struct intel_pt_synth {
2901 struct perf_tool dummy_tool;
2902 struct perf_session *session;
2903};
2904
2905static int intel_pt_event_synth(struct perf_tool *tool,
2906 union perf_event *event,
2907 struct perf_sample *sample __maybe_unused,
2908 struct machine *machine __maybe_unused)
2909{
2910 struct intel_pt_synth *intel_pt_synth =
2911 container_of(tool, struct intel_pt_synth, dummy_tool);
2912
2913 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2914 NULL);
2915}
2916
2917static int intel_pt_synth_event(struct perf_session *session, const char *name,
2918 struct perf_event_attr *attr, u64 id)
2919{
2920 struct intel_pt_synth intel_pt_synth;
2921 int err;
2922
2923 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2924 name, id, (u64)attr->sample_type);
2925
2926 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2927 intel_pt_synth.session = session;
2928
2929 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2930 &id, intel_pt_event_synth);
2931 if (err)
2932 pr_err("%s: failed to synthesize '%s' event type\n",
2933 __func__, name);
2934
2935 return err;
2936}
2937
2938static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2939 const char *name)
2940{
2941 struct evsel *evsel;
2942
2943 evlist__for_each_entry(evlist, evsel) {
2944 if (evsel->core.id && evsel->core.id[0] == id) {
2945 if (evsel->name)
2946 zfree(&evsel->name);
2947 evsel->name = strdup(name);
2948 break;
2949 }
2950 }
2951}
2952
2953static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2954 struct evlist *evlist)
2955{
2956 struct evsel *evsel;
2957
2958 evlist__for_each_entry(evlist, evsel) {
2959 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2960 return evsel;
2961 }
2962
2963 return NULL;
2964}
2965
2966static int intel_pt_synth_events(struct intel_pt *pt,
2967 struct perf_session *session)
2968{
2969 struct evlist *evlist = session->evlist;
2970 struct evsel *evsel = intel_pt_evsel(pt, evlist);
2971 struct perf_event_attr attr;
2972 u64 id;
2973 int err;
2974
2975 if (!evsel) {
2976 pr_debug("There are no selected events with Intel Processor Trace data\n");
2977 return 0;
2978 }
2979
2980 memset(&attr, 0, sizeof(struct perf_event_attr));
2981 attr.size = sizeof(struct perf_event_attr);
2982 attr.type = PERF_TYPE_HARDWARE;
2983 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2984 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2985 PERF_SAMPLE_PERIOD;
2986 if (pt->timeless_decoding)
2987 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2988 else
2989 attr.sample_type |= PERF_SAMPLE_TIME;
2990 if (!pt->per_cpu_mmaps)
2991 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2992 attr.exclude_user = evsel->core.attr.exclude_user;
2993 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2994 attr.exclude_hv = evsel->core.attr.exclude_hv;
2995 attr.exclude_host = evsel->core.attr.exclude_host;
2996 attr.exclude_guest = evsel->core.attr.exclude_guest;
2997 attr.sample_id_all = evsel->core.attr.sample_id_all;
2998 attr.read_format = evsel->core.attr.read_format;
2999
3000 id = evsel->core.id[0] + 1000000000;
3001 if (!id)
3002 id = 1;
3003
3004 if (pt->synth_opts.branches) {
3005 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3006 attr.sample_period = 1;
3007 attr.sample_type |= PERF_SAMPLE_ADDR;
3008 err = intel_pt_synth_event(session, "branches", &attr, id);
3009 if (err)
3010 return err;
3011 pt->sample_branches = true;
3012 pt->branches_sample_type = attr.sample_type;
3013 pt->branches_id = id;
3014 id += 1;
3015 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3016 }
3017
3018 if (pt->synth_opts.callchain)
3019 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3020 if (pt->synth_opts.last_branch) {
3021 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3022 /*
3023 * We don't use the hardware index, but the sample generation
3024 * code uses the new format branch_stack with this field,
3025 * so the event attributes must indicate that it's present.
3026 */
3027 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3028 }
3029
3030 if (pt->synth_opts.instructions) {
3031 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3032 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3033 attr.sample_period =
3034 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3035 else
3036 attr.sample_period = pt->synth_opts.period;
3037 err = intel_pt_synth_event(session, "instructions", &attr, id);
3038 if (err)
3039 return err;
3040 pt->sample_instructions = true;
3041 pt->instructions_sample_type = attr.sample_type;
3042 pt->instructions_id = id;
3043 id += 1;
3044 }
3045
3046 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3047 attr.sample_period = 1;
3048
3049 if (pt->synth_opts.transactions) {
3050 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3051 err = intel_pt_synth_event(session, "transactions", &attr, id);
3052 if (err)
3053 return err;
3054 pt->sample_transactions = true;
3055 pt->transactions_sample_type = attr.sample_type;
3056 pt->transactions_id = id;
3057 intel_pt_set_event_name(evlist, id, "transactions");
3058 id += 1;
3059 }
3060
3061 attr.type = PERF_TYPE_SYNTH;
3062 attr.sample_type |= PERF_SAMPLE_RAW;
3063
3064 if (pt->synth_opts.ptwrites) {
3065 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3066 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3067 if (err)
3068 return err;
3069 pt->sample_ptwrites = true;
3070 pt->ptwrites_sample_type = attr.sample_type;
3071 pt->ptwrites_id = id;
3072 intel_pt_set_event_name(evlist, id, "ptwrite");
3073 id += 1;
3074 }
3075
3076 if (pt->synth_opts.pwr_events) {
3077 pt->sample_pwr_events = true;
3078 pt->pwr_events_sample_type = attr.sample_type;
3079
3080 attr.config = PERF_SYNTH_INTEL_CBR;
3081 err = intel_pt_synth_event(session, "cbr", &attr, id);
3082 if (err)
3083 return err;
3084 pt->cbr_id = id;
3085 intel_pt_set_event_name(evlist, id, "cbr");
3086 id += 1;
3087 }
3088
3089 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3090 attr.config = PERF_SYNTH_INTEL_MWAIT;
3091 err = intel_pt_synth_event(session, "mwait", &attr, id);
3092 if (err)
3093 return err;
3094 pt->mwait_id = id;
3095 intel_pt_set_event_name(evlist, id, "mwait");
3096 id += 1;
3097
3098 attr.config = PERF_SYNTH_INTEL_PWRE;
3099 err = intel_pt_synth_event(session, "pwre", &attr, id);
3100 if (err)
3101 return err;
3102 pt->pwre_id = id;
3103 intel_pt_set_event_name(evlist, id, "pwre");
3104 id += 1;
3105
3106 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3107 err = intel_pt_synth_event(session, "exstop", &attr, id);
3108 if (err)
3109 return err;
3110 pt->exstop_id = id;
3111 intel_pt_set_event_name(evlist, id, "exstop");
3112 id += 1;
3113
3114 attr.config = PERF_SYNTH_INTEL_PWRX;
3115 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3116 if (err)
3117 return err;
3118 pt->pwrx_id = id;
3119 intel_pt_set_event_name(evlist, id, "pwrx");
3120 id += 1;
3121 }
3122
3123 return 0;
3124}
3125
3126static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3127{
3128 struct evsel *evsel;
3129
3130 if (!pt->synth_opts.other_events)
3131 return;
3132
3133 evlist__for_each_entry(pt->session->evlist, evsel) {
3134 if (evsel->core.attr.aux_output && evsel->core.id) {
3135 pt->sample_pebs = true;
3136 pt->pebs_evsel = evsel;
3137 return;
3138 }
3139 }
3140}
3141
3142static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3143{
3144 struct evsel *evsel;
3145
3146 evlist__for_each_entry_reverse(evlist, evsel) {
3147 const char *name = evsel__name(evsel);
3148
3149 if (!strcmp(name, "sched:sched_switch"))
3150 return evsel;
3151 }
3152
3153 return NULL;
3154}
3155
3156static bool intel_pt_find_switch(struct evlist *evlist)
3157{
3158 struct evsel *evsel;
3159
3160 evlist__for_each_entry(evlist, evsel) {
3161 if (evsel->core.attr.context_switch)
3162 return true;
3163 }
3164
3165 return false;
3166}
3167
3168static int intel_pt_perf_config(const char *var, const char *value, void *data)
3169{
3170 struct intel_pt *pt = data;
3171
3172 if (!strcmp(var, "intel-pt.mispred-all"))
3173 pt->mispred_all = perf_config_bool(var, value);
3174
3175 return 0;
3176}
3177
3178/* Find least TSC which converts to ns or later */
3179static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3180{
3181 u64 tsc, tm;
3182
3183 tsc = perf_time_to_tsc(ns, &pt->tc);
3184
3185 while (1) {
3186 tm = tsc_to_perf_time(tsc, &pt->tc);
3187 if (tm < ns)
3188 break;
3189 tsc -= 1;
3190 }
3191
3192 while (tm < ns)
3193 tm = tsc_to_perf_time(++tsc, &pt->tc);
3194
3195 return tsc;
3196}
3197
3198/* Find greatest TSC which converts to ns or earlier */
3199static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3200{
3201 u64 tsc, tm;
3202
3203 tsc = perf_time_to_tsc(ns, &pt->tc);
3204
3205 while (1) {
3206 tm = tsc_to_perf_time(tsc, &pt->tc);
3207 if (tm > ns)
3208 break;
3209 tsc += 1;
3210 }
3211
3212 while (tm > ns)
3213 tm = tsc_to_perf_time(--tsc, &pt->tc);
3214
3215 return tsc;
3216}
3217
3218static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3219 struct itrace_synth_opts *opts)
3220{
3221 struct perf_time_interval *p = opts->ptime_range;
3222 int n = opts->range_num;
3223 int i;
3224
3225 if (!n || !p || pt->timeless_decoding)
3226 return 0;
3227
3228 pt->time_ranges = calloc(n, sizeof(struct range));
3229 if (!pt->time_ranges)
3230 return -ENOMEM;
3231
3232 pt->range_cnt = n;
3233
3234 intel_pt_log("%s: %u range(s)\n", __func__, n);
3235
3236 for (i = 0; i < n; i++) {
3237 struct range *r = &pt->time_ranges[i];
3238 u64 ts = p[i].start;
3239 u64 te = p[i].end;
3240
3241 /*
3242 * Take care to ensure the TSC range matches the perf-time range
3243 * when converted back to perf-time.
3244 */
3245 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3246 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
3247
3248 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3249 i, ts, te);
3250 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3251 i, r->start, r->end);
3252 }
3253
3254 return 0;
3255}
3256
3257static const char * const intel_pt_info_fmts[] = {
3258 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
3259 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
3260 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
3261 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
3262 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
3263 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
3264 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
3265 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
3266 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
3267 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
3268 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
3269 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
3270 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
3271 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
3272 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
3273 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
3274};
3275
3276static void intel_pt_print_info(__u64 *arr, int start, int finish)
3277{
3278 int i;
3279
3280 if (!dump_trace)
3281 return;
3282
3283 for (i = start; i <= finish; i++)
3284 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3285}
3286
3287static void intel_pt_print_info_str(const char *name, const char *str)
3288{
3289 if (!dump_trace)
3290 return;
3291
3292 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
3293}
3294
3295static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3296{
3297 return auxtrace_info->header.size >=
3298 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3299}
3300
3301int intel_pt_process_auxtrace_info(union perf_event *event,
3302 struct perf_session *session)
3303{
3304 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3305 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3306 struct intel_pt *pt;
3307 void *info_end;
3308 __u64 *info;
3309 int err;
3310
3311 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3312 min_sz)
3313 return -EINVAL;
3314
3315 pt = zalloc(sizeof(struct intel_pt));
3316 if (!pt)
3317 return -ENOMEM;
3318
3319 addr_filters__init(&pt->filts);
3320
3321 err = perf_config(intel_pt_perf_config, pt);
3322 if (err)
3323 goto err_free;
3324
3325 err = auxtrace_queues__init(&pt->queues);
3326 if (err)
3327 goto err_free;
3328
3329 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3330
3331 pt->session = session;
3332 pt->machine = &session->machines.host; /* No kvm support */
3333 pt->auxtrace_type = auxtrace_info->type;
3334 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3335 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3336 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3337 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3338 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3339 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3340 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3341 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3342 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3343 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3344 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3345 INTEL_PT_PER_CPU_MMAPS);
3346
3347 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3348 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3349 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3350 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3351 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3352 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3353 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3354 INTEL_PT_CYC_BIT);
3355 }
3356
3357 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3358 pt->max_non_turbo_ratio =
3359 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3360 intel_pt_print_info(&auxtrace_info->priv[0],
3361 INTEL_PT_MAX_NONTURBO_RATIO,
3362 INTEL_PT_MAX_NONTURBO_RATIO);
3363 }
3364
3365 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3366 info_end = (void *)info + auxtrace_info->header.size;
3367
3368 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3369 size_t len;
3370
3371 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3372 intel_pt_print_info(&auxtrace_info->priv[0],
3373 INTEL_PT_FILTER_STR_LEN,
3374 INTEL_PT_FILTER_STR_LEN);
3375 if (len) {
3376 const char *filter = (const char *)info;
3377
3378 len = roundup(len + 1, 8);
3379 info += len >> 3;
3380 if ((void *)info > info_end) {
3381 pr_err("%s: bad filter string length\n", __func__);
3382 err = -EINVAL;
3383 goto err_free_queues;
3384 }
3385 pt->filter = memdup(filter, len);
3386 if (!pt->filter) {
3387 err = -ENOMEM;
3388 goto err_free_queues;
3389 }
3390 if (session->header.needs_swap)
3391 mem_bswap_64(pt->filter, len);
3392 if (pt->filter[len - 1]) {
3393 pr_err("%s: filter string not null terminated\n", __func__);
3394 err = -EINVAL;
3395 goto err_free_queues;
3396 }
3397 err = addr_filters__parse_bare_filter(&pt->filts,
3398 filter);
3399 if (err)
3400 goto err_free_queues;
3401 }
3402 intel_pt_print_info_str("Filter string", pt->filter);
3403 }
3404
3405 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3406 if (pt->timeless_decoding && !pt->tc.time_mult)
3407 pt->tc.time_mult = 1;
3408 pt->have_tsc = intel_pt_have_tsc(pt);
3409 pt->sampling_mode = intel_pt_sampling_mode(pt);
3410 pt->est_tsc = !pt->timeless_decoding;
3411
3412 pt->unknown_thread = thread__new(999999999, 999999999);
3413 if (!pt->unknown_thread) {
3414 err = -ENOMEM;
3415 goto err_free_queues;
3416 }
3417
3418 /*
3419 * Since this thread will not be kept in any rbtree not in a
3420 * list, initialize its list node so that at thread__put() the
3421 * current thread lifetime assuption is kept and we don't segfault
3422 * at list_del_init().
3423 */
3424 INIT_LIST_HEAD(&pt->unknown_thread->node);
3425
3426 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3427 if (err)
3428 goto err_delete_thread;
3429 if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3430 err = -ENOMEM;
3431 goto err_delete_thread;
3432 }
3433
3434 pt->auxtrace.process_event = intel_pt_process_event;
3435 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3436 pt->auxtrace.queue_data = intel_pt_queue_data;
3437 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3438 pt->auxtrace.flush_events = intel_pt_flush;
3439 pt->auxtrace.free_events = intel_pt_free_events;
3440 pt->auxtrace.free = intel_pt_free;
3441 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3442 session->auxtrace = &pt->auxtrace;
3443
3444 if (dump_trace)
3445 return 0;
3446
3447 if (pt->have_sched_switch == 1) {
3448 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3449 if (!pt->switch_evsel) {
3450 pr_err("%s: missing sched_switch event\n", __func__);
3451 err = -EINVAL;
3452 goto err_delete_thread;
3453 }
3454 } else if (pt->have_sched_switch == 2 &&
3455 !intel_pt_find_switch(session->evlist)) {
3456 pr_err("%s: missing context_switch attribute flag\n", __func__);
3457 err = -EINVAL;
3458 goto err_delete_thread;
3459 }
3460
3461 if (session->itrace_synth_opts->set) {
3462 pt->synth_opts = *session->itrace_synth_opts;
3463 } else {
3464 itrace_synth_opts__set_default(&pt->synth_opts,
3465 session->itrace_synth_opts->default_no_sample);
3466 if (!session->itrace_synth_opts->default_no_sample &&
3467 !session->itrace_synth_opts->inject) {
3468 pt->synth_opts.branches = false;
3469 pt->synth_opts.callchain = true;
3470 pt->synth_opts.add_callchain = true;
3471 }
3472 pt->synth_opts.thread_stack =
3473 session->itrace_synth_opts->thread_stack;
3474 }
3475
3476 if (pt->synth_opts.log)
3477 intel_pt_log_enable();
3478
3479 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3480 if (pt->tc.time_mult) {
3481 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3482
3483 if (!pt->max_non_turbo_ratio)
3484 pt->max_non_turbo_ratio =
3485 (tsc_freq + 50000000) / 100000000;
3486 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3487 intel_pt_log("Maximum non-turbo ratio %u\n",
3488 pt->max_non_turbo_ratio);
3489 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3490 }
3491
3492 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3493 if (err)
3494 goto err_delete_thread;
3495
3496 if (pt->synth_opts.calls)
3497 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3498 PERF_IP_FLAG_TRACE_END;
3499 if (pt->synth_opts.returns)
3500 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3501 PERF_IP_FLAG_TRACE_BEGIN;
3502
3503 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3504 !symbol_conf.use_callchain) {
3505 symbol_conf.use_callchain = true;
3506 if (callchain_register_param(&callchain_param) < 0) {
3507 symbol_conf.use_callchain = false;
3508 pt->synth_opts.callchain = false;
3509 pt->synth_opts.add_callchain = false;
3510 }
3511 }
3512
3513 if (pt->synth_opts.add_callchain) {
3514 err = intel_pt_callchain_init(pt);
3515 if (err)
3516 goto err_delete_thread;
3517 }
3518
3519 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3520 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3521 pt->br_stack_sz_plus = pt->br_stack_sz;
3522 }
3523
3524 if (pt->synth_opts.add_last_branch) {
3525 err = intel_pt_br_stack_init(pt);
3526 if (err)
3527 goto err_delete_thread;
3528 /*
3529 * Additional branch stack size to cater for tracing from the
3530 * actual sample ip to where the sample time is recorded.
3531 * Measured at about 200 branches, but generously set to 1024.
3532 * If kernel space is not being traced, then add just 1 for the
3533 * branch to kernel space.
3534 */
3535 if (intel_pt_tracing_kernel(pt))
3536 pt->br_stack_sz_plus += 1024;
3537 else
3538 pt->br_stack_sz_plus += 1;
3539 }
3540
3541 pt->use_thread_stack = pt->synth_opts.callchain ||
3542 pt->synth_opts.add_callchain ||
3543 pt->synth_opts.thread_stack ||
3544 pt->synth_opts.last_branch ||
3545 pt->synth_opts.add_last_branch;
3546
3547 pt->callstack = pt->synth_opts.callchain ||
3548 pt->synth_opts.add_callchain ||
3549 pt->synth_opts.thread_stack;
3550
3551 err = intel_pt_synth_events(pt, session);
3552 if (err)
3553 goto err_delete_thread;
3554
3555 intel_pt_setup_pebs_events(pt);
3556
3557 if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3558 err = auxtrace_queue_data(session, true, true);
3559 else
3560 err = auxtrace_queues__process_index(&pt->queues, session);
3561 if (err)
3562 goto err_delete_thread;
3563
3564 if (pt->queues.populated)
3565 pt->data_queued = true;
3566
3567 if (pt->timeless_decoding)
3568 pr_debug2("Intel PT decoding without timestamps\n");
3569
3570 return 0;
3571
3572err_delete_thread:
3573 zfree(&pt->chain);
3574 thread__zput(pt->unknown_thread);
3575err_free_queues:
3576 intel_pt_log_disable();
3577 auxtrace_queues__free(&pt->queues);
3578 session->auxtrace = NULL;
3579err_free:
3580 addr_filters__exit(&pt->filts);
3581 zfree(&pt->filter);
3582 zfree(&pt->time_ranges);
3583 free(pt);
3584 return err;
3585}