Loading...
1#define _FILE_OFFSET_BITS 64
2
3#include "util.h"
4#include <sys/types.h>
5#include <byteswap.h>
6#include <unistd.h>
7#include <stdio.h>
8#include <stdlib.h>
9#include <linux/list.h>
10#include <linux/kernel.h>
11#include <linux/bitops.h>
12#include <sys/utsname.h>
13
14#include "evlist.h"
15#include "evsel.h"
16#include "header.h"
17#include "../perf.h"
18#include "trace-event.h"
19#include "session.h"
20#include "symbol.h"
21#include "debug.h"
22#include "cpumap.h"
23
24static bool no_buildid_cache = false;
25
26static int event_count;
27static struct perf_trace_event_type *events;
28
29static u32 header_argc;
30static const char **header_argv;
31
32int perf_header__push_event(u64 id, const char *name)
33{
34 struct perf_trace_event_type *nevents;
35
36 if (strlen(name) > MAX_EVENT_NAME)
37 pr_warning("Event %s will be truncated\n", name);
38
39 nevents = realloc(events, (event_count + 1) * sizeof(*events));
40 if (nevents == NULL)
41 return -ENOMEM;
42 events = nevents;
43
44 memset(&events[event_count], 0, sizeof(struct perf_trace_event_type));
45 events[event_count].event_id = id;
46 strncpy(events[event_count].name, name, MAX_EVENT_NAME - 1);
47 event_count++;
48 return 0;
49}
50
51char *perf_header__find_event(u64 id)
52{
53 int i;
54 for (i = 0 ; i < event_count; i++) {
55 if (events[i].event_id == id)
56 return events[i].name;
57 }
58 return NULL;
59}
60
61/*
62 * magic2 = "PERFILE2"
63 * must be a numerical value to let the endianness
64 * determine the memory layout. That way we are able
65 * to detect endianness when reading the perf.data file
66 * back.
67 *
68 * we check for legacy (PERFFILE) format.
69 */
70static const char *__perf_magic1 = "PERFFILE";
71static const u64 __perf_magic2 = 0x32454c4946524550ULL;
72static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
73
74#define PERF_MAGIC __perf_magic2
75
76struct perf_file_attr {
77 struct perf_event_attr attr;
78 struct perf_file_section ids;
79};
80
81void perf_header__set_feat(struct perf_header *header, int feat)
82{
83 set_bit(feat, header->adds_features);
84}
85
86void perf_header__clear_feat(struct perf_header *header, int feat)
87{
88 clear_bit(feat, header->adds_features);
89}
90
91bool perf_header__has_feat(const struct perf_header *header, int feat)
92{
93 return test_bit(feat, header->adds_features);
94}
95
96static int do_write(int fd, const void *buf, size_t size)
97{
98 while (size) {
99 int ret = write(fd, buf, size);
100
101 if (ret < 0)
102 return -errno;
103
104 size -= ret;
105 buf += ret;
106 }
107
108 return 0;
109}
110
111#define NAME_ALIGN 64
112
113static int write_padded(int fd, const void *bf, size_t count,
114 size_t count_aligned)
115{
116 static const char zero_buf[NAME_ALIGN];
117 int err = do_write(fd, bf, count);
118
119 if (!err)
120 err = do_write(fd, zero_buf, count_aligned - count);
121
122 return err;
123}
124
125static int do_write_string(int fd, const char *str)
126{
127 u32 len, olen;
128 int ret;
129
130 olen = strlen(str) + 1;
131 len = ALIGN(olen, NAME_ALIGN);
132
133 /* write len, incl. \0 */
134 ret = do_write(fd, &len, sizeof(len));
135 if (ret < 0)
136 return ret;
137
138 return write_padded(fd, str, olen, len);
139}
140
141static char *do_read_string(int fd, struct perf_header *ph)
142{
143 ssize_t sz, ret;
144 u32 len;
145 char *buf;
146
147 sz = read(fd, &len, sizeof(len));
148 if (sz < (ssize_t)sizeof(len))
149 return NULL;
150
151 if (ph->needs_swap)
152 len = bswap_32(len);
153
154 buf = malloc(len);
155 if (!buf)
156 return NULL;
157
158 ret = read(fd, buf, len);
159 if (ret == (ssize_t)len) {
160 /*
161 * strings are padded by zeroes
162 * thus the actual strlen of buf
163 * may be less than len
164 */
165 return buf;
166 }
167
168 free(buf);
169 return NULL;
170}
171
172int
173perf_header__set_cmdline(int argc, const char **argv)
174{
175 int i;
176
177 header_argc = (u32)argc;
178
179 /* do not include NULL termination */
180 header_argv = calloc(argc, sizeof(char *));
181 if (!header_argv)
182 return -ENOMEM;
183
184 /*
185 * must copy argv contents because it gets moved
186 * around during option parsing
187 */
188 for (i = 0; i < argc ; i++)
189 header_argv[i] = argv[i];
190
191 return 0;
192}
193
194#define dsos__for_each_with_build_id(pos, head) \
195 list_for_each_entry(pos, head, node) \
196 if (!pos->has_build_id) \
197 continue; \
198 else
199
200static int __dsos__write_buildid_table(struct list_head *head, pid_t pid,
201 u16 misc, int fd)
202{
203 struct dso *pos;
204
205 dsos__for_each_with_build_id(pos, head) {
206 int err;
207 struct build_id_event b;
208 size_t len;
209
210 if (!pos->hit)
211 continue;
212 len = pos->long_name_len + 1;
213 len = ALIGN(len, NAME_ALIGN);
214 memset(&b, 0, sizeof(b));
215 memcpy(&b.build_id, pos->build_id, sizeof(pos->build_id));
216 b.pid = pid;
217 b.header.misc = misc;
218 b.header.size = sizeof(b) + len;
219 err = do_write(fd, &b, sizeof(b));
220 if (err < 0)
221 return err;
222 err = write_padded(fd, pos->long_name,
223 pos->long_name_len + 1, len);
224 if (err < 0)
225 return err;
226 }
227
228 return 0;
229}
230
231static int machine__write_buildid_table(struct machine *machine, int fd)
232{
233 int err;
234 u16 kmisc = PERF_RECORD_MISC_KERNEL,
235 umisc = PERF_RECORD_MISC_USER;
236
237 if (!machine__is_host(machine)) {
238 kmisc = PERF_RECORD_MISC_GUEST_KERNEL;
239 umisc = PERF_RECORD_MISC_GUEST_USER;
240 }
241
242 err = __dsos__write_buildid_table(&machine->kernel_dsos, machine->pid,
243 kmisc, fd);
244 if (err == 0)
245 err = __dsos__write_buildid_table(&machine->user_dsos,
246 machine->pid, umisc, fd);
247 return err;
248}
249
250static int dsos__write_buildid_table(struct perf_header *header, int fd)
251{
252 struct perf_session *session = container_of(header,
253 struct perf_session, header);
254 struct rb_node *nd;
255 int err = machine__write_buildid_table(&session->host_machine, fd);
256
257 if (err)
258 return err;
259
260 for (nd = rb_first(&session->machines); nd; nd = rb_next(nd)) {
261 struct machine *pos = rb_entry(nd, struct machine, rb_node);
262 err = machine__write_buildid_table(pos, fd);
263 if (err)
264 break;
265 }
266 return err;
267}
268
269int build_id_cache__add_s(const char *sbuild_id, const char *debugdir,
270 const char *name, bool is_kallsyms)
271{
272 const size_t size = PATH_MAX;
273 char *realname, *filename = zalloc(size),
274 *linkname = zalloc(size), *targetname;
275 int len, err = -1;
276
277 if (is_kallsyms) {
278 if (symbol_conf.kptr_restrict) {
279 pr_debug("Not caching a kptr_restrict'ed /proc/kallsyms\n");
280 return 0;
281 }
282 realname = (char *)name;
283 } else
284 realname = realpath(name, NULL);
285
286 if (realname == NULL || filename == NULL || linkname == NULL)
287 goto out_free;
288
289 len = scnprintf(filename, size, "%s%s%s",
290 debugdir, is_kallsyms ? "/" : "", realname);
291 if (mkdir_p(filename, 0755))
292 goto out_free;
293
294 snprintf(filename + len, size - len, "/%s", sbuild_id);
295
296 if (access(filename, F_OK)) {
297 if (is_kallsyms) {
298 if (copyfile("/proc/kallsyms", filename))
299 goto out_free;
300 } else if (link(realname, filename) && copyfile(name, filename))
301 goto out_free;
302 }
303
304 len = scnprintf(linkname, size, "%s/.build-id/%.2s",
305 debugdir, sbuild_id);
306
307 if (access(linkname, X_OK) && mkdir_p(linkname, 0755))
308 goto out_free;
309
310 snprintf(linkname + len, size - len, "/%s", sbuild_id + 2);
311 targetname = filename + strlen(debugdir) - 5;
312 memcpy(targetname, "../..", 5);
313
314 if (symlink(targetname, linkname) == 0)
315 err = 0;
316out_free:
317 if (!is_kallsyms)
318 free(realname);
319 free(filename);
320 free(linkname);
321 return err;
322}
323
324static int build_id_cache__add_b(const u8 *build_id, size_t build_id_size,
325 const char *name, const char *debugdir,
326 bool is_kallsyms)
327{
328 char sbuild_id[BUILD_ID_SIZE * 2 + 1];
329
330 build_id__sprintf(build_id, build_id_size, sbuild_id);
331
332 return build_id_cache__add_s(sbuild_id, debugdir, name, is_kallsyms);
333}
334
335int build_id_cache__remove_s(const char *sbuild_id, const char *debugdir)
336{
337 const size_t size = PATH_MAX;
338 char *filename = zalloc(size),
339 *linkname = zalloc(size);
340 int err = -1;
341
342 if (filename == NULL || linkname == NULL)
343 goto out_free;
344
345 snprintf(linkname, size, "%s/.build-id/%.2s/%s",
346 debugdir, sbuild_id, sbuild_id + 2);
347
348 if (access(linkname, F_OK))
349 goto out_free;
350
351 if (readlink(linkname, filename, size - 1) < 0)
352 goto out_free;
353
354 if (unlink(linkname))
355 goto out_free;
356
357 /*
358 * Since the link is relative, we must make it absolute:
359 */
360 snprintf(linkname, size, "%s/.build-id/%.2s/%s",
361 debugdir, sbuild_id, filename);
362
363 if (unlink(linkname))
364 goto out_free;
365
366 err = 0;
367out_free:
368 free(filename);
369 free(linkname);
370 return err;
371}
372
373static int dso__cache_build_id(struct dso *dso, const char *debugdir)
374{
375 bool is_kallsyms = dso->kernel && dso->long_name[0] != '/';
376
377 return build_id_cache__add_b(dso->build_id, sizeof(dso->build_id),
378 dso->long_name, debugdir, is_kallsyms);
379}
380
381static int __dsos__cache_build_ids(struct list_head *head, const char *debugdir)
382{
383 struct dso *pos;
384 int err = 0;
385
386 dsos__for_each_with_build_id(pos, head)
387 if (dso__cache_build_id(pos, debugdir))
388 err = -1;
389
390 return err;
391}
392
393static int machine__cache_build_ids(struct machine *machine, const char *debugdir)
394{
395 int ret = __dsos__cache_build_ids(&machine->kernel_dsos, debugdir);
396 ret |= __dsos__cache_build_ids(&machine->user_dsos, debugdir);
397 return ret;
398}
399
400static int perf_session__cache_build_ids(struct perf_session *session)
401{
402 struct rb_node *nd;
403 int ret;
404 char debugdir[PATH_MAX];
405
406 snprintf(debugdir, sizeof(debugdir), "%s", buildid_dir);
407
408 if (mkdir(debugdir, 0755) != 0 && errno != EEXIST)
409 return -1;
410
411 ret = machine__cache_build_ids(&session->host_machine, debugdir);
412
413 for (nd = rb_first(&session->machines); nd; nd = rb_next(nd)) {
414 struct machine *pos = rb_entry(nd, struct machine, rb_node);
415 ret |= machine__cache_build_ids(pos, debugdir);
416 }
417 return ret ? -1 : 0;
418}
419
420static bool machine__read_build_ids(struct machine *machine, bool with_hits)
421{
422 bool ret = __dsos__read_build_ids(&machine->kernel_dsos, with_hits);
423 ret |= __dsos__read_build_ids(&machine->user_dsos, with_hits);
424 return ret;
425}
426
427static bool perf_session__read_build_ids(struct perf_session *session, bool with_hits)
428{
429 struct rb_node *nd;
430 bool ret = machine__read_build_ids(&session->host_machine, with_hits);
431
432 for (nd = rb_first(&session->machines); nd; nd = rb_next(nd)) {
433 struct machine *pos = rb_entry(nd, struct machine, rb_node);
434 ret |= machine__read_build_ids(pos, with_hits);
435 }
436
437 return ret;
438}
439
440static int write_tracing_data(int fd, struct perf_header *h __used,
441 struct perf_evlist *evlist)
442{
443 return read_tracing_data(fd, &evlist->entries);
444}
445
446
447static int write_build_id(int fd, struct perf_header *h,
448 struct perf_evlist *evlist __used)
449{
450 struct perf_session *session;
451 int err;
452
453 session = container_of(h, struct perf_session, header);
454
455 if (!perf_session__read_build_ids(session, true))
456 return -1;
457
458 err = dsos__write_buildid_table(h, fd);
459 if (err < 0) {
460 pr_debug("failed to write buildid table\n");
461 return err;
462 }
463 if (!no_buildid_cache)
464 perf_session__cache_build_ids(session);
465
466 return 0;
467}
468
469static int write_hostname(int fd, struct perf_header *h __used,
470 struct perf_evlist *evlist __used)
471{
472 struct utsname uts;
473 int ret;
474
475 ret = uname(&uts);
476 if (ret < 0)
477 return -1;
478
479 return do_write_string(fd, uts.nodename);
480}
481
482static int write_osrelease(int fd, struct perf_header *h __used,
483 struct perf_evlist *evlist __used)
484{
485 struct utsname uts;
486 int ret;
487
488 ret = uname(&uts);
489 if (ret < 0)
490 return -1;
491
492 return do_write_string(fd, uts.release);
493}
494
495static int write_arch(int fd, struct perf_header *h __used,
496 struct perf_evlist *evlist __used)
497{
498 struct utsname uts;
499 int ret;
500
501 ret = uname(&uts);
502 if (ret < 0)
503 return -1;
504
505 return do_write_string(fd, uts.machine);
506}
507
508static int write_version(int fd, struct perf_header *h __used,
509 struct perf_evlist *evlist __used)
510{
511 return do_write_string(fd, perf_version_string);
512}
513
514static int write_cpudesc(int fd, struct perf_header *h __used,
515 struct perf_evlist *evlist __used)
516{
517#ifndef CPUINFO_PROC
518#define CPUINFO_PROC NULL
519#endif
520 FILE *file;
521 char *buf = NULL;
522 char *s, *p;
523 const char *search = CPUINFO_PROC;
524 size_t len = 0;
525 int ret = -1;
526
527 if (!search)
528 return -1;
529
530 file = fopen("/proc/cpuinfo", "r");
531 if (!file)
532 return -1;
533
534 while (getline(&buf, &len, file) > 0) {
535 ret = strncmp(buf, search, strlen(search));
536 if (!ret)
537 break;
538 }
539
540 if (ret)
541 goto done;
542
543 s = buf;
544
545 p = strchr(buf, ':');
546 if (p && *(p+1) == ' ' && *(p+2))
547 s = p + 2;
548 p = strchr(s, '\n');
549 if (p)
550 *p = '\0';
551
552 /* squash extra space characters (branding string) */
553 p = s;
554 while (*p) {
555 if (isspace(*p)) {
556 char *r = p + 1;
557 char *q = r;
558 *p = ' ';
559 while (*q && isspace(*q))
560 q++;
561 if (q != (p+1))
562 while ((*r++ = *q++));
563 }
564 p++;
565 }
566 ret = do_write_string(fd, s);
567done:
568 free(buf);
569 fclose(file);
570 return ret;
571}
572
573static int write_nrcpus(int fd, struct perf_header *h __used,
574 struct perf_evlist *evlist __used)
575{
576 long nr;
577 u32 nrc, nra;
578 int ret;
579
580 nr = sysconf(_SC_NPROCESSORS_CONF);
581 if (nr < 0)
582 return -1;
583
584 nrc = (u32)(nr & UINT_MAX);
585
586 nr = sysconf(_SC_NPROCESSORS_ONLN);
587 if (nr < 0)
588 return -1;
589
590 nra = (u32)(nr & UINT_MAX);
591
592 ret = do_write(fd, &nrc, sizeof(nrc));
593 if (ret < 0)
594 return ret;
595
596 return do_write(fd, &nra, sizeof(nra));
597}
598
599static int write_event_desc(int fd, struct perf_header *h __used,
600 struct perf_evlist *evlist)
601{
602 struct perf_evsel *attr;
603 u32 nre = 0, nri, sz;
604 int ret;
605
606 list_for_each_entry(attr, &evlist->entries, node)
607 nre++;
608
609 /*
610 * write number of events
611 */
612 ret = do_write(fd, &nre, sizeof(nre));
613 if (ret < 0)
614 return ret;
615
616 /*
617 * size of perf_event_attr struct
618 */
619 sz = (u32)sizeof(attr->attr);
620 ret = do_write(fd, &sz, sizeof(sz));
621 if (ret < 0)
622 return ret;
623
624 list_for_each_entry(attr, &evlist->entries, node) {
625
626 ret = do_write(fd, &attr->attr, sz);
627 if (ret < 0)
628 return ret;
629 /*
630 * write number of unique id per event
631 * there is one id per instance of an event
632 *
633 * copy into an nri to be independent of the
634 * type of ids,
635 */
636 nri = attr->ids;
637 ret = do_write(fd, &nri, sizeof(nri));
638 if (ret < 0)
639 return ret;
640
641 /*
642 * write event string as passed on cmdline
643 */
644 ret = do_write_string(fd, event_name(attr));
645 if (ret < 0)
646 return ret;
647 /*
648 * write unique ids for this event
649 */
650 ret = do_write(fd, attr->id, attr->ids * sizeof(u64));
651 if (ret < 0)
652 return ret;
653 }
654 return 0;
655}
656
657static int write_cmdline(int fd, struct perf_header *h __used,
658 struct perf_evlist *evlist __used)
659{
660 char buf[MAXPATHLEN];
661 char proc[32];
662 u32 i, n;
663 int ret;
664
665 /*
666 * actual atual path to perf binary
667 */
668 sprintf(proc, "/proc/%d/exe", getpid());
669 ret = readlink(proc, buf, sizeof(buf));
670 if (ret <= 0)
671 return -1;
672
673 /* readlink() does not add null termination */
674 buf[ret] = '\0';
675
676 /* account for binary path */
677 n = header_argc + 1;
678
679 ret = do_write(fd, &n, sizeof(n));
680 if (ret < 0)
681 return ret;
682
683 ret = do_write_string(fd, buf);
684 if (ret < 0)
685 return ret;
686
687 for (i = 0 ; i < header_argc; i++) {
688 ret = do_write_string(fd, header_argv[i]);
689 if (ret < 0)
690 return ret;
691 }
692 return 0;
693}
694
695#define CORE_SIB_FMT \
696 "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
697#define THRD_SIB_FMT \
698 "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
699
700struct cpu_topo {
701 u32 core_sib;
702 u32 thread_sib;
703 char **core_siblings;
704 char **thread_siblings;
705};
706
707static int build_cpu_topo(struct cpu_topo *tp, int cpu)
708{
709 FILE *fp;
710 char filename[MAXPATHLEN];
711 char *buf = NULL, *p;
712 size_t len = 0;
713 u32 i = 0;
714 int ret = -1;
715
716 sprintf(filename, CORE_SIB_FMT, cpu);
717 fp = fopen(filename, "r");
718 if (!fp)
719 return -1;
720
721 if (getline(&buf, &len, fp) <= 0)
722 goto done;
723
724 fclose(fp);
725
726 p = strchr(buf, '\n');
727 if (p)
728 *p = '\0';
729
730 for (i = 0; i < tp->core_sib; i++) {
731 if (!strcmp(buf, tp->core_siblings[i]))
732 break;
733 }
734 if (i == tp->core_sib) {
735 tp->core_siblings[i] = buf;
736 tp->core_sib++;
737 buf = NULL;
738 len = 0;
739 }
740
741 sprintf(filename, THRD_SIB_FMT, cpu);
742 fp = fopen(filename, "r");
743 if (!fp)
744 goto done;
745
746 if (getline(&buf, &len, fp) <= 0)
747 goto done;
748
749 p = strchr(buf, '\n');
750 if (p)
751 *p = '\0';
752
753 for (i = 0; i < tp->thread_sib; i++) {
754 if (!strcmp(buf, tp->thread_siblings[i]))
755 break;
756 }
757 if (i == tp->thread_sib) {
758 tp->thread_siblings[i] = buf;
759 tp->thread_sib++;
760 buf = NULL;
761 }
762 ret = 0;
763done:
764 if(fp)
765 fclose(fp);
766 free(buf);
767 return ret;
768}
769
770static void free_cpu_topo(struct cpu_topo *tp)
771{
772 u32 i;
773
774 if (!tp)
775 return;
776
777 for (i = 0 ; i < tp->core_sib; i++)
778 free(tp->core_siblings[i]);
779
780 for (i = 0 ; i < tp->thread_sib; i++)
781 free(tp->thread_siblings[i]);
782
783 free(tp);
784}
785
786static struct cpu_topo *build_cpu_topology(void)
787{
788 struct cpu_topo *tp;
789 void *addr;
790 u32 nr, i;
791 size_t sz;
792 long ncpus;
793 int ret = -1;
794
795 ncpus = sysconf(_SC_NPROCESSORS_CONF);
796 if (ncpus < 0)
797 return NULL;
798
799 nr = (u32)(ncpus & UINT_MAX);
800
801 sz = nr * sizeof(char *);
802
803 addr = calloc(1, sizeof(*tp) + 2 * sz);
804 if (!addr)
805 return NULL;
806
807 tp = addr;
808
809 addr += sizeof(*tp);
810 tp->core_siblings = addr;
811 addr += sz;
812 tp->thread_siblings = addr;
813
814 for (i = 0; i < nr; i++) {
815 ret = build_cpu_topo(tp, i);
816 if (ret < 0)
817 break;
818 }
819 if (ret) {
820 free_cpu_topo(tp);
821 tp = NULL;
822 }
823 return tp;
824}
825
826static int write_cpu_topology(int fd, struct perf_header *h __used,
827 struct perf_evlist *evlist __used)
828{
829 struct cpu_topo *tp;
830 u32 i;
831 int ret;
832
833 tp = build_cpu_topology();
834 if (!tp)
835 return -1;
836
837 ret = do_write(fd, &tp->core_sib, sizeof(tp->core_sib));
838 if (ret < 0)
839 goto done;
840
841 for (i = 0; i < tp->core_sib; i++) {
842 ret = do_write_string(fd, tp->core_siblings[i]);
843 if (ret < 0)
844 goto done;
845 }
846 ret = do_write(fd, &tp->thread_sib, sizeof(tp->thread_sib));
847 if (ret < 0)
848 goto done;
849
850 for (i = 0; i < tp->thread_sib; i++) {
851 ret = do_write_string(fd, tp->thread_siblings[i]);
852 if (ret < 0)
853 break;
854 }
855done:
856 free_cpu_topo(tp);
857 return ret;
858}
859
860
861
862static int write_total_mem(int fd, struct perf_header *h __used,
863 struct perf_evlist *evlist __used)
864{
865 char *buf = NULL;
866 FILE *fp;
867 size_t len = 0;
868 int ret = -1, n;
869 uint64_t mem;
870
871 fp = fopen("/proc/meminfo", "r");
872 if (!fp)
873 return -1;
874
875 while (getline(&buf, &len, fp) > 0) {
876 ret = strncmp(buf, "MemTotal:", 9);
877 if (!ret)
878 break;
879 }
880 if (!ret) {
881 n = sscanf(buf, "%*s %"PRIu64, &mem);
882 if (n == 1)
883 ret = do_write(fd, &mem, sizeof(mem));
884 }
885 free(buf);
886 fclose(fp);
887 return ret;
888}
889
890static int write_topo_node(int fd, int node)
891{
892 char str[MAXPATHLEN];
893 char field[32];
894 char *buf = NULL, *p;
895 size_t len = 0;
896 FILE *fp;
897 u64 mem_total, mem_free, mem;
898 int ret = -1;
899
900 sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
901 fp = fopen(str, "r");
902 if (!fp)
903 return -1;
904
905 while (getline(&buf, &len, fp) > 0) {
906 /* skip over invalid lines */
907 if (!strchr(buf, ':'))
908 continue;
909 if (sscanf(buf, "%*s %*d %s %"PRIu64, field, &mem) != 2)
910 goto done;
911 if (!strcmp(field, "MemTotal:"))
912 mem_total = mem;
913 if (!strcmp(field, "MemFree:"))
914 mem_free = mem;
915 }
916
917 fclose(fp);
918
919 ret = do_write(fd, &mem_total, sizeof(u64));
920 if (ret)
921 goto done;
922
923 ret = do_write(fd, &mem_free, sizeof(u64));
924 if (ret)
925 goto done;
926
927 ret = -1;
928 sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
929
930 fp = fopen(str, "r");
931 if (!fp)
932 goto done;
933
934 if (getline(&buf, &len, fp) <= 0)
935 goto done;
936
937 p = strchr(buf, '\n');
938 if (p)
939 *p = '\0';
940
941 ret = do_write_string(fd, buf);
942done:
943 free(buf);
944 fclose(fp);
945 return ret;
946}
947
948static int write_numa_topology(int fd, struct perf_header *h __used,
949 struct perf_evlist *evlist __used)
950{
951 char *buf = NULL;
952 size_t len = 0;
953 FILE *fp;
954 struct cpu_map *node_map = NULL;
955 char *c;
956 u32 nr, i, j;
957 int ret = -1;
958
959 fp = fopen("/sys/devices/system/node/online", "r");
960 if (!fp)
961 return -1;
962
963 if (getline(&buf, &len, fp) <= 0)
964 goto done;
965
966 c = strchr(buf, '\n');
967 if (c)
968 *c = '\0';
969
970 node_map = cpu_map__new(buf);
971 if (!node_map)
972 goto done;
973
974 nr = (u32)node_map->nr;
975
976 ret = do_write(fd, &nr, sizeof(nr));
977 if (ret < 0)
978 goto done;
979
980 for (i = 0; i < nr; i++) {
981 j = (u32)node_map->map[i];
982 ret = do_write(fd, &j, sizeof(j));
983 if (ret < 0)
984 break;
985
986 ret = write_topo_node(fd, i);
987 if (ret < 0)
988 break;
989 }
990done:
991 free(buf);
992 fclose(fp);
993 free(node_map);
994 return ret;
995}
996
997/*
998 * default get_cpuid(): nothing gets recorded
999 * actual implementation must be in arch/$(ARCH)/util/header.c
1000 */
1001int __attribute__((weak)) get_cpuid(char *buffer __used, size_t sz __used)
1002{
1003 return -1;
1004}
1005
1006static int write_cpuid(int fd, struct perf_header *h __used,
1007 struct perf_evlist *evlist __used)
1008{
1009 char buffer[64];
1010 int ret;
1011
1012 ret = get_cpuid(buffer, sizeof(buffer));
1013 if (!ret)
1014 goto write_it;
1015
1016 return -1;
1017write_it:
1018 return do_write_string(fd, buffer);
1019}
1020
1021static int write_branch_stack(int fd __used, struct perf_header *h __used,
1022 struct perf_evlist *evlist __used)
1023{
1024 return 0;
1025}
1026
1027static void print_hostname(struct perf_header *ph, int fd, FILE *fp)
1028{
1029 char *str = do_read_string(fd, ph);
1030 fprintf(fp, "# hostname : %s\n", str);
1031 free(str);
1032}
1033
1034static void print_osrelease(struct perf_header *ph, int fd, FILE *fp)
1035{
1036 char *str = do_read_string(fd, ph);
1037 fprintf(fp, "# os release : %s\n", str);
1038 free(str);
1039}
1040
1041static void print_arch(struct perf_header *ph, int fd, FILE *fp)
1042{
1043 char *str = do_read_string(fd, ph);
1044 fprintf(fp, "# arch : %s\n", str);
1045 free(str);
1046}
1047
1048static void print_cpudesc(struct perf_header *ph, int fd, FILE *fp)
1049{
1050 char *str = do_read_string(fd, ph);
1051 fprintf(fp, "# cpudesc : %s\n", str);
1052 free(str);
1053}
1054
1055static void print_nrcpus(struct perf_header *ph, int fd, FILE *fp)
1056{
1057 ssize_t ret;
1058 u32 nr;
1059
1060 ret = read(fd, &nr, sizeof(nr));
1061 if (ret != (ssize_t)sizeof(nr))
1062 nr = -1; /* interpreted as error */
1063
1064 if (ph->needs_swap)
1065 nr = bswap_32(nr);
1066
1067 fprintf(fp, "# nrcpus online : %u\n", nr);
1068
1069 ret = read(fd, &nr, sizeof(nr));
1070 if (ret != (ssize_t)sizeof(nr))
1071 nr = -1; /* interpreted as error */
1072
1073 if (ph->needs_swap)
1074 nr = bswap_32(nr);
1075
1076 fprintf(fp, "# nrcpus avail : %u\n", nr);
1077}
1078
1079static void print_version(struct perf_header *ph, int fd, FILE *fp)
1080{
1081 char *str = do_read_string(fd, ph);
1082 fprintf(fp, "# perf version : %s\n", str);
1083 free(str);
1084}
1085
1086static void print_cmdline(struct perf_header *ph, int fd, FILE *fp)
1087{
1088 ssize_t ret;
1089 char *str;
1090 u32 nr, i;
1091
1092 ret = read(fd, &nr, sizeof(nr));
1093 if (ret != (ssize_t)sizeof(nr))
1094 return;
1095
1096 if (ph->needs_swap)
1097 nr = bswap_32(nr);
1098
1099 fprintf(fp, "# cmdline : ");
1100
1101 for (i = 0; i < nr; i++) {
1102 str = do_read_string(fd, ph);
1103 fprintf(fp, "%s ", str);
1104 free(str);
1105 }
1106 fputc('\n', fp);
1107}
1108
1109static void print_cpu_topology(struct perf_header *ph, int fd, FILE *fp)
1110{
1111 ssize_t ret;
1112 u32 nr, i;
1113 char *str;
1114
1115 ret = read(fd, &nr, sizeof(nr));
1116 if (ret != (ssize_t)sizeof(nr))
1117 return;
1118
1119 if (ph->needs_swap)
1120 nr = bswap_32(nr);
1121
1122 for (i = 0; i < nr; i++) {
1123 str = do_read_string(fd, ph);
1124 fprintf(fp, "# sibling cores : %s\n", str);
1125 free(str);
1126 }
1127
1128 ret = read(fd, &nr, sizeof(nr));
1129 if (ret != (ssize_t)sizeof(nr))
1130 return;
1131
1132 if (ph->needs_swap)
1133 nr = bswap_32(nr);
1134
1135 for (i = 0; i < nr; i++) {
1136 str = do_read_string(fd, ph);
1137 fprintf(fp, "# sibling threads : %s\n", str);
1138 free(str);
1139 }
1140}
1141
1142static void print_event_desc(struct perf_header *ph, int fd, FILE *fp)
1143{
1144 struct perf_event_attr attr;
1145 uint64_t id;
1146 void *buf = NULL;
1147 char *str;
1148 u32 nre, sz, nr, i, j;
1149 ssize_t ret;
1150 size_t msz;
1151
1152 /* number of events */
1153 ret = read(fd, &nre, sizeof(nre));
1154 if (ret != (ssize_t)sizeof(nre))
1155 goto error;
1156
1157 if (ph->needs_swap)
1158 nre = bswap_32(nre);
1159
1160 ret = read(fd, &sz, sizeof(sz));
1161 if (ret != (ssize_t)sizeof(sz))
1162 goto error;
1163
1164 if (ph->needs_swap)
1165 sz = bswap_32(sz);
1166
1167 memset(&attr, 0, sizeof(attr));
1168
1169 /* buffer to hold on file attr struct */
1170 buf = malloc(sz);
1171 if (!buf)
1172 goto error;
1173
1174 msz = sizeof(attr);
1175 if (sz < msz)
1176 msz = sz;
1177
1178 for (i = 0 ; i < nre; i++) {
1179
1180 /*
1181 * must read entire on-file attr struct to
1182 * sync up with layout.
1183 */
1184 ret = read(fd, buf, sz);
1185 if (ret != (ssize_t)sz)
1186 goto error;
1187
1188 if (ph->needs_swap)
1189 perf_event__attr_swap(buf);
1190
1191 memcpy(&attr, buf, msz);
1192
1193 ret = read(fd, &nr, sizeof(nr));
1194 if (ret != (ssize_t)sizeof(nr))
1195 goto error;
1196
1197 if (ph->needs_swap)
1198 nr = bswap_32(nr);
1199
1200 str = do_read_string(fd, ph);
1201 fprintf(fp, "# event : name = %s, ", str);
1202 free(str);
1203
1204 fprintf(fp, "type = %d, config = 0x%"PRIx64
1205 ", config1 = 0x%"PRIx64", config2 = 0x%"PRIx64,
1206 attr.type,
1207 (u64)attr.config,
1208 (u64)attr.config1,
1209 (u64)attr.config2);
1210
1211 fprintf(fp, ", excl_usr = %d, excl_kern = %d",
1212 attr.exclude_user,
1213 attr.exclude_kernel);
1214
1215 if (nr)
1216 fprintf(fp, ", id = {");
1217
1218 for (j = 0 ; j < nr; j++) {
1219 ret = read(fd, &id, sizeof(id));
1220 if (ret != (ssize_t)sizeof(id))
1221 goto error;
1222
1223 if (ph->needs_swap)
1224 id = bswap_64(id);
1225
1226 if (j)
1227 fputc(',', fp);
1228
1229 fprintf(fp, " %"PRIu64, id);
1230 }
1231 if (nr && j == nr)
1232 fprintf(fp, " }");
1233 fputc('\n', fp);
1234 }
1235 free(buf);
1236 return;
1237error:
1238 fprintf(fp, "# event desc: not available or unable to read\n");
1239}
1240
1241static void print_total_mem(struct perf_header *h __used, int fd, FILE *fp)
1242{
1243 uint64_t mem;
1244 ssize_t ret;
1245
1246 ret = read(fd, &mem, sizeof(mem));
1247 if (ret != sizeof(mem))
1248 goto error;
1249
1250 if (h->needs_swap)
1251 mem = bswap_64(mem);
1252
1253 fprintf(fp, "# total memory : %"PRIu64" kB\n", mem);
1254 return;
1255error:
1256 fprintf(fp, "# total memory : unknown\n");
1257}
1258
1259static void print_numa_topology(struct perf_header *h __used, int fd, FILE *fp)
1260{
1261 ssize_t ret;
1262 u32 nr, c, i;
1263 char *str;
1264 uint64_t mem_total, mem_free;
1265
1266 /* nr nodes */
1267 ret = read(fd, &nr, sizeof(nr));
1268 if (ret != (ssize_t)sizeof(nr))
1269 goto error;
1270
1271 if (h->needs_swap)
1272 nr = bswap_32(nr);
1273
1274 for (i = 0; i < nr; i++) {
1275
1276 /* node number */
1277 ret = read(fd, &c, sizeof(c));
1278 if (ret != (ssize_t)sizeof(c))
1279 goto error;
1280
1281 if (h->needs_swap)
1282 c = bswap_32(c);
1283
1284 ret = read(fd, &mem_total, sizeof(u64));
1285 if (ret != sizeof(u64))
1286 goto error;
1287
1288 ret = read(fd, &mem_free, sizeof(u64));
1289 if (ret != sizeof(u64))
1290 goto error;
1291
1292 if (h->needs_swap) {
1293 mem_total = bswap_64(mem_total);
1294 mem_free = bswap_64(mem_free);
1295 }
1296
1297 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1298 " free = %"PRIu64" kB\n",
1299 c,
1300 mem_total,
1301 mem_free);
1302
1303 str = do_read_string(fd, h);
1304 fprintf(fp, "# node%u cpu list : %s\n", c, str);
1305 free(str);
1306 }
1307 return;
1308error:
1309 fprintf(fp, "# numa topology : not available\n");
1310}
1311
1312static void print_cpuid(struct perf_header *ph, int fd, FILE *fp)
1313{
1314 char *str = do_read_string(fd, ph);
1315 fprintf(fp, "# cpuid : %s\n", str);
1316 free(str);
1317}
1318
1319static void print_branch_stack(struct perf_header *ph __used, int fd __used,
1320 FILE *fp)
1321{
1322 fprintf(fp, "# contains samples with branch stack\n");
1323}
1324
1325static int __event_process_build_id(struct build_id_event *bev,
1326 char *filename,
1327 struct perf_session *session)
1328{
1329 int err = -1;
1330 struct list_head *head;
1331 struct machine *machine;
1332 u16 misc;
1333 struct dso *dso;
1334 enum dso_kernel_type dso_type;
1335
1336 machine = perf_session__findnew_machine(session, bev->pid);
1337 if (!machine)
1338 goto out;
1339
1340 misc = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1341
1342 switch (misc) {
1343 case PERF_RECORD_MISC_KERNEL:
1344 dso_type = DSO_TYPE_KERNEL;
1345 head = &machine->kernel_dsos;
1346 break;
1347 case PERF_RECORD_MISC_GUEST_KERNEL:
1348 dso_type = DSO_TYPE_GUEST_KERNEL;
1349 head = &machine->kernel_dsos;
1350 break;
1351 case PERF_RECORD_MISC_USER:
1352 case PERF_RECORD_MISC_GUEST_USER:
1353 dso_type = DSO_TYPE_USER;
1354 head = &machine->user_dsos;
1355 break;
1356 default:
1357 goto out;
1358 }
1359
1360 dso = __dsos__findnew(head, filename);
1361 if (dso != NULL) {
1362 char sbuild_id[BUILD_ID_SIZE * 2 + 1];
1363
1364 dso__set_build_id(dso, &bev->build_id);
1365
1366 if (filename[0] == '[')
1367 dso->kernel = dso_type;
1368
1369 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1370 sbuild_id);
1371 pr_debug("build id event received for %s: %s\n",
1372 dso->long_name, sbuild_id);
1373 }
1374
1375 err = 0;
1376out:
1377 return err;
1378}
1379
1380static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1381 int input, u64 offset, u64 size)
1382{
1383 struct perf_session *session = container_of(header, struct perf_session, header);
1384 struct {
1385 struct perf_event_header header;
1386 u8 build_id[ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1387 char filename[0];
1388 } old_bev;
1389 struct build_id_event bev;
1390 char filename[PATH_MAX];
1391 u64 limit = offset + size;
1392
1393 while (offset < limit) {
1394 ssize_t len;
1395
1396 if (read(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1397 return -1;
1398
1399 if (header->needs_swap)
1400 perf_event_header__bswap(&old_bev.header);
1401
1402 len = old_bev.header.size - sizeof(old_bev);
1403 if (read(input, filename, len) != len)
1404 return -1;
1405
1406 bev.header = old_bev.header;
1407
1408 /*
1409 * As the pid is the missing value, we need to fill
1410 * it properly. The header.misc value give us nice hint.
1411 */
1412 bev.pid = HOST_KERNEL_ID;
1413 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1414 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1415 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1416
1417 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1418 __event_process_build_id(&bev, filename, session);
1419
1420 offset += bev.header.size;
1421 }
1422
1423 return 0;
1424}
1425
1426static int perf_header__read_build_ids(struct perf_header *header,
1427 int input, u64 offset, u64 size)
1428{
1429 struct perf_session *session = container_of(header, struct perf_session, header);
1430 struct build_id_event bev;
1431 char filename[PATH_MAX];
1432 u64 limit = offset + size, orig_offset = offset;
1433 int err = -1;
1434
1435 while (offset < limit) {
1436 ssize_t len;
1437
1438 if (read(input, &bev, sizeof(bev)) != sizeof(bev))
1439 goto out;
1440
1441 if (header->needs_swap)
1442 perf_event_header__bswap(&bev.header);
1443
1444 len = bev.header.size - sizeof(bev);
1445 if (read(input, filename, len) != len)
1446 goto out;
1447 /*
1448 * The a1645ce1 changeset:
1449 *
1450 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1451 *
1452 * Added a field to struct build_id_event that broke the file
1453 * format.
1454 *
1455 * Since the kernel build-id is the first entry, process the
1456 * table using the old format if the well known
1457 * '[kernel.kallsyms]' string for the kernel build-id has the
1458 * first 4 characters chopped off (where the pid_t sits).
1459 */
1460 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1461 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1462 return -1;
1463 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1464 }
1465
1466 __event_process_build_id(&bev, filename, session);
1467
1468 offset += bev.header.size;
1469 }
1470 err = 0;
1471out:
1472 return err;
1473}
1474
1475static int process_tracing_data(struct perf_file_section *section __unused,
1476 struct perf_header *ph __unused,
1477 int feat __unused, int fd)
1478{
1479 trace_report(fd, false);
1480 return 0;
1481}
1482
1483static int process_build_id(struct perf_file_section *section,
1484 struct perf_header *ph,
1485 int feat __unused, int fd)
1486{
1487 if (perf_header__read_build_ids(ph, fd, section->offset, section->size))
1488 pr_debug("Failed to read buildids, continuing...\n");
1489 return 0;
1490}
1491
1492struct feature_ops {
1493 int (*write)(int fd, struct perf_header *h, struct perf_evlist *evlist);
1494 void (*print)(struct perf_header *h, int fd, FILE *fp);
1495 int (*process)(struct perf_file_section *section,
1496 struct perf_header *h, int feat, int fd);
1497 const char *name;
1498 bool full_only;
1499};
1500
1501#define FEAT_OPA(n, func) \
1502 [n] = { .name = #n, .write = write_##func, .print = print_##func }
1503#define FEAT_OPP(n, func) \
1504 [n] = { .name = #n, .write = write_##func, .print = print_##func, \
1505 .process = process_##func }
1506#define FEAT_OPF(n, func) \
1507 [n] = { .name = #n, .write = write_##func, .print = print_##func, \
1508 .full_only = true }
1509
1510/* feature_ops not implemented: */
1511#define print_tracing_data NULL
1512#define print_build_id NULL
1513
1514static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
1515 FEAT_OPP(HEADER_TRACING_DATA, tracing_data),
1516 FEAT_OPP(HEADER_BUILD_ID, build_id),
1517 FEAT_OPA(HEADER_HOSTNAME, hostname),
1518 FEAT_OPA(HEADER_OSRELEASE, osrelease),
1519 FEAT_OPA(HEADER_VERSION, version),
1520 FEAT_OPA(HEADER_ARCH, arch),
1521 FEAT_OPA(HEADER_NRCPUS, nrcpus),
1522 FEAT_OPA(HEADER_CPUDESC, cpudesc),
1523 FEAT_OPA(HEADER_CPUID, cpuid),
1524 FEAT_OPA(HEADER_TOTAL_MEM, total_mem),
1525 FEAT_OPA(HEADER_EVENT_DESC, event_desc),
1526 FEAT_OPA(HEADER_CMDLINE, cmdline),
1527 FEAT_OPF(HEADER_CPU_TOPOLOGY, cpu_topology),
1528 FEAT_OPF(HEADER_NUMA_TOPOLOGY, numa_topology),
1529 FEAT_OPA(HEADER_BRANCH_STACK, branch_stack),
1530};
1531
1532struct header_print_data {
1533 FILE *fp;
1534 bool full; /* extended list of headers */
1535};
1536
1537static int perf_file_section__fprintf_info(struct perf_file_section *section,
1538 struct perf_header *ph,
1539 int feat, int fd, void *data)
1540{
1541 struct header_print_data *hd = data;
1542
1543 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
1544 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
1545 "%d, continuing...\n", section->offset, feat);
1546 return 0;
1547 }
1548 if (feat >= HEADER_LAST_FEATURE) {
1549 pr_warning("unknown feature %d\n", feat);
1550 return 0;
1551 }
1552 if (!feat_ops[feat].print)
1553 return 0;
1554
1555 if (!feat_ops[feat].full_only || hd->full)
1556 feat_ops[feat].print(ph, fd, hd->fp);
1557 else
1558 fprintf(hd->fp, "# %s info available, use -I to display\n",
1559 feat_ops[feat].name);
1560
1561 return 0;
1562}
1563
1564int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
1565{
1566 struct header_print_data hd;
1567 struct perf_header *header = &session->header;
1568 int fd = session->fd;
1569 hd.fp = fp;
1570 hd.full = full;
1571
1572 perf_header__process_sections(header, fd, &hd,
1573 perf_file_section__fprintf_info);
1574 return 0;
1575}
1576
1577static int do_write_feat(int fd, struct perf_header *h, int type,
1578 struct perf_file_section **p,
1579 struct perf_evlist *evlist)
1580{
1581 int err;
1582 int ret = 0;
1583
1584 if (perf_header__has_feat(h, type)) {
1585 if (!feat_ops[type].write)
1586 return -1;
1587
1588 (*p)->offset = lseek(fd, 0, SEEK_CUR);
1589
1590 err = feat_ops[type].write(fd, h, evlist);
1591 if (err < 0) {
1592 pr_debug("failed to write feature %d\n", type);
1593
1594 /* undo anything written */
1595 lseek(fd, (*p)->offset, SEEK_SET);
1596
1597 return -1;
1598 }
1599 (*p)->size = lseek(fd, 0, SEEK_CUR) - (*p)->offset;
1600 (*p)++;
1601 }
1602 return ret;
1603}
1604
1605static int perf_header__adds_write(struct perf_header *header,
1606 struct perf_evlist *evlist, int fd)
1607{
1608 int nr_sections;
1609 struct perf_file_section *feat_sec, *p;
1610 int sec_size;
1611 u64 sec_start;
1612 int feat;
1613 int err;
1614
1615 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
1616 if (!nr_sections)
1617 return 0;
1618
1619 feat_sec = p = calloc(sizeof(*feat_sec), nr_sections);
1620 if (feat_sec == NULL)
1621 return -ENOMEM;
1622
1623 sec_size = sizeof(*feat_sec) * nr_sections;
1624
1625 sec_start = header->data_offset + header->data_size;
1626 lseek(fd, sec_start + sec_size, SEEK_SET);
1627
1628 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
1629 if (do_write_feat(fd, header, feat, &p, evlist))
1630 perf_header__clear_feat(header, feat);
1631 }
1632
1633 lseek(fd, sec_start, SEEK_SET);
1634 /*
1635 * may write more than needed due to dropped feature, but
1636 * this is okay, reader will skip the mising entries
1637 */
1638 err = do_write(fd, feat_sec, sec_size);
1639 if (err < 0)
1640 pr_debug("failed to write feature section\n");
1641 free(feat_sec);
1642 return err;
1643}
1644
1645int perf_header__write_pipe(int fd)
1646{
1647 struct perf_pipe_file_header f_header;
1648 int err;
1649
1650 f_header = (struct perf_pipe_file_header){
1651 .magic = PERF_MAGIC,
1652 .size = sizeof(f_header),
1653 };
1654
1655 err = do_write(fd, &f_header, sizeof(f_header));
1656 if (err < 0) {
1657 pr_debug("failed to write perf pipe header\n");
1658 return err;
1659 }
1660
1661 return 0;
1662}
1663
1664int perf_session__write_header(struct perf_session *session,
1665 struct perf_evlist *evlist,
1666 int fd, bool at_exit)
1667{
1668 struct perf_file_header f_header;
1669 struct perf_file_attr f_attr;
1670 struct perf_header *header = &session->header;
1671 struct perf_evsel *attr, *pair = NULL;
1672 int err;
1673
1674 lseek(fd, sizeof(f_header), SEEK_SET);
1675
1676 if (session->evlist != evlist)
1677 pair = list_entry(session->evlist->entries.next, struct perf_evsel, node);
1678
1679 list_for_each_entry(attr, &evlist->entries, node) {
1680 attr->id_offset = lseek(fd, 0, SEEK_CUR);
1681 err = do_write(fd, attr->id, attr->ids * sizeof(u64));
1682 if (err < 0) {
1683out_err_write:
1684 pr_debug("failed to write perf header\n");
1685 return err;
1686 }
1687 if (session->evlist != evlist) {
1688 err = do_write(fd, pair->id, pair->ids * sizeof(u64));
1689 if (err < 0)
1690 goto out_err_write;
1691 attr->ids += pair->ids;
1692 pair = list_entry(pair->node.next, struct perf_evsel, node);
1693 }
1694 }
1695
1696 header->attr_offset = lseek(fd, 0, SEEK_CUR);
1697
1698 list_for_each_entry(attr, &evlist->entries, node) {
1699 f_attr = (struct perf_file_attr){
1700 .attr = attr->attr,
1701 .ids = {
1702 .offset = attr->id_offset,
1703 .size = attr->ids * sizeof(u64),
1704 }
1705 };
1706 err = do_write(fd, &f_attr, sizeof(f_attr));
1707 if (err < 0) {
1708 pr_debug("failed to write perf header attribute\n");
1709 return err;
1710 }
1711 }
1712
1713 header->event_offset = lseek(fd, 0, SEEK_CUR);
1714 header->event_size = event_count * sizeof(struct perf_trace_event_type);
1715 if (events) {
1716 err = do_write(fd, events, header->event_size);
1717 if (err < 0) {
1718 pr_debug("failed to write perf header events\n");
1719 return err;
1720 }
1721 }
1722
1723 header->data_offset = lseek(fd, 0, SEEK_CUR);
1724
1725 if (at_exit) {
1726 err = perf_header__adds_write(header, evlist, fd);
1727 if (err < 0)
1728 return err;
1729 }
1730
1731 f_header = (struct perf_file_header){
1732 .magic = PERF_MAGIC,
1733 .size = sizeof(f_header),
1734 .attr_size = sizeof(f_attr),
1735 .attrs = {
1736 .offset = header->attr_offset,
1737 .size = evlist->nr_entries * sizeof(f_attr),
1738 },
1739 .data = {
1740 .offset = header->data_offset,
1741 .size = header->data_size,
1742 },
1743 .event_types = {
1744 .offset = header->event_offset,
1745 .size = header->event_size,
1746 },
1747 };
1748
1749 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
1750
1751 lseek(fd, 0, SEEK_SET);
1752 err = do_write(fd, &f_header, sizeof(f_header));
1753 if (err < 0) {
1754 pr_debug("failed to write perf header\n");
1755 return err;
1756 }
1757 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
1758
1759 header->frozen = 1;
1760 return 0;
1761}
1762
1763static int perf_header__getbuffer64(struct perf_header *header,
1764 int fd, void *buf, size_t size)
1765{
1766 if (readn(fd, buf, size) <= 0)
1767 return -1;
1768
1769 if (header->needs_swap)
1770 mem_bswap_64(buf, size);
1771
1772 return 0;
1773}
1774
1775int perf_header__process_sections(struct perf_header *header, int fd,
1776 void *data,
1777 int (*process)(struct perf_file_section *section,
1778 struct perf_header *ph,
1779 int feat, int fd, void *data))
1780{
1781 struct perf_file_section *feat_sec, *sec;
1782 int nr_sections;
1783 int sec_size;
1784 int feat;
1785 int err;
1786
1787 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
1788 if (!nr_sections)
1789 return 0;
1790
1791 feat_sec = sec = calloc(sizeof(*feat_sec), nr_sections);
1792 if (!feat_sec)
1793 return -1;
1794
1795 sec_size = sizeof(*feat_sec) * nr_sections;
1796
1797 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
1798
1799 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
1800 if (err < 0)
1801 goto out_free;
1802
1803 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
1804 err = process(sec++, header, feat, fd, data);
1805 if (err < 0)
1806 goto out_free;
1807 }
1808 err = 0;
1809out_free:
1810 free(feat_sec);
1811 return err;
1812}
1813
1814static const int attr_file_abi_sizes[] = {
1815 [0] = PERF_ATTR_SIZE_VER0,
1816 [1] = PERF_ATTR_SIZE_VER1,
1817 0,
1818};
1819
1820/*
1821 * In the legacy file format, the magic number is not used to encode endianness.
1822 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
1823 * on ABI revisions, we need to try all combinations for all endianness to
1824 * detect the endianness.
1825 */
1826static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
1827{
1828 uint64_t ref_size, attr_size;
1829 int i;
1830
1831 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
1832 ref_size = attr_file_abi_sizes[i]
1833 + sizeof(struct perf_file_section);
1834 if (hdr_sz != ref_size) {
1835 attr_size = bswap_64(hdr_sz);
1836 if (attr_size != ref_size)
1837 continue;
1838
1839 ph->needs_swap = true;
1840 }
1841 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
1842 i,
1843 ph->needs_swap);
1844 return 0;
1845 }
1846 /* could not determine endianness */
1847 return -1;
1848}
1849
1850#define PERF_PIPE_HDR_VER0 16
1851
1852static const size_t attr_pipe_abi_sizes[] = {
1853 [0] = PERF_PIPE_HDR_VER0,
1854 0,
1855};
1856
1857/*
1858 * In the legacy pipe format, there is an implicit assumption that endiannesss
1859 * between host recording the samples, and host parsing the samples is the
1860 * same. This is not always the case given that the pipe output may always be
1861 * redirected into a file and analyzed on a different machine with possibly a
1862 * different endianness and perf_event ABI revsions in the perf tool itself.
1863 */
1864static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
1865{
1866 u64 attr_size;
1867 int i;
1868
1869 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
1870 if (hdr_sz != attr_pipe_abi_sizes[i]) {
1871 attr_size = bswap_64(hdr_sz);
1872 if (attr_size != hdr_sz)
1873 continue;
1874
1875 ph->needs_swap = true;
1876 }
1877 pr_debug("Pipe ABI%d perf.data file detected\n", i);
1878 return 0;
1879 }
1880 return -1;
1881}
1882
1883static int check_magic_endian(u64 magic, uint64_t hdr_sz,
1884 bool is_pipe, struct perf_header *ph)
1885{
1886 int ret;
1887
1888 /* check for legacy format */
1889 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
1890 if (ret == 0) {
1891 pr_debug("legacy perf.data format\n");
1892 if (is_pipe)
1893 return try_all_pipe_abis(hdr_sz, ph);
1894
1895 return try_all_file_abis(hdr_sz, ph);
1896 }
1897 /*
1898 * the new magic number serves two purposes:
1899 * - unique number to identify actual perf.data files
1900 * - encode endianness of file
1901 */
1902
1903 /* check magic number with one endianness */
1904 if (magic == __perf_magic2)
1905 return 0;
1906
1907 /* check magic number with opposite endianness */
1908 if (magic != __perf_magic2_sw)
1909 return -1;
1910
1911 ph->needs_swap = true;
1912
1913 return 0;
1914}
1915
1916int perf_file_header__read(struct perf_file_header *header,
1917 struct perf_header *ph, int fd)
1918{
1919 int ret;
1920
1921 lseek(fd, 0, SEEK_SET);
1922
1923 ret = readn(fd, header, sizeof(*header));
1924 if (ret <= 0)
1925 return -1;
1926
1927 if (check_magic_endian(header->magic,
1928 header->attr_size, false, ph) < 0) {
1929 pr_debug("magic/endian check failed\n");
1930 return -1;
1931 }
1932
1933 if (ph->needs_swap) {
1934 mem_bswap_64(header, offsetof(struct perf_file_header,
1935 adds_features));
1936 }
1937
1938 if (header->size != sizeof(*header)) {
1939 /* Support the previous format */
1940 if (header->size == offsetof(typeof(*header), adds_features))
1941 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
1942 else
1943 return -1;
1944 } else if (ph->needs_swap) {
1945 /*
1946 * feature bitmap is declared as an array of unsigned longs --
1947 * not good since its size can differ between the host that
1948 * generated the data file and the host analyzing the file.
1949 *
1950 * We need to handle endianness, but we don't know the size of
1951 * the unsigned long where the file was generated. Take a best
1952 * guess at determining it: try 64-bit swap first (ie., file
1953 * created on a 64-bit host), and check if the hostname feature
1954 * bit is set (this feature bit is forced on as of fbe96f2).
1955 * If the bit is not, undo the 64-bit swap and try a 32-bit
1956 * swap. If the hostname bit is still not set (e.g., older data
1957 * file), punt and fallback to the original behavior --
1958 * clearing all feature bits and setting buildid.
1959 */
1960 mem_bswap_64(&header->adds_features,
1961 BITS_TO_U64(HEADER_FEAT_BITS));
1962
1963 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
1964 /* unswap as u64 */
1965 mem_bswap_64(&header->adds_features,
1966 BITS_TO_U64(HEADER_FEAT_BITS));
1967
1968 /* unswap as u32 */
1969 mem_bswap_32(&header->adds_features,
1970 BITS_TO_U32(HEADER_FEAT_BITS));
1971 }
1972
1973 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
1974 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
1975 set_bit(HEADER_BUILD_ID, header->adds_features);
1976 }
1977 }
1978
1979 memcpy(&ph->adds_features, &header->adds_features,
1980 sizeof(ph->adds_features));
1981
1982 ph->event_offset = header->event_types.offset;
1983 ph->event_size = header->event_types.size;
1984 ph->data_offset = header->data.offset;
1985 ph->data_size = header->data.size;
1986 return 0;
1987}
1988
1989static int perf_file_section__process(struct perf_file_section *section,
1990 struct perf_header *ph,
1991 int feat, int fd, void *data __used)
1992{
1993 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
1994 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
1995 "%d, continuing...\n", section->offset, feat);
1996 return 0;
1997 }
1998
1999 if (feat >= HEADER_LAST_FEATURE) {
2000 pr_debug("unknown feature %d, continuing...\n", feat);
2001 return 0;
2002 }
2003
2004 if (!feat_ops[feat].process)
2005 return 0;
2006
2007 return feat_ops[feat].process(section, ph, feat, fd);
2008}
2009
2010static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
2011 struct perf_header *ph, int fd,
2012 bool repipe)
2013{
2014 int ret;
2015
2016 ret = readn(fd, header, sizeof(*header));
2017 if (ret <= 0)
2018 return -1;
2019
2020 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
2021 pr_debug("endian/magic failed\n");
2022 return -1;
2023 }
2024
2025 if (ph->needs_swap)
2026 header->size = bswap_64(header->size);
2027
2028 if (repipe && do_write(STDOUT_FILENO, header, sizeof(*header)) < 0)
2029 return -1;
2030
2031 return 0;
2032}
2033
2034static int perf_header__read_pipe(struct perf_session *session, int fd)
2035{
2036 struct perf_header *header = &session->header;
2037 struct perf_pipe_file_header f_header;
2038
2039 if (perf_file_header__read_pipe(&f_header, header, fd,
2040 session->repipe) < 0) {
2041 pr_debug("incompatible file format\n");
2042 return -EINVAL;
2043 }
2044
2045 session->fd = fd;
2046
2047 return 0;
2048}
2049
2050static int read_attr(int fd, struct perf_header *ph,
2051 struct perf_file_attr *f_attr)
2052{
2053 struct perf_event_attr *attr = &f_attr->attr;
2054 size_t sz, left;
2055 size_t our_sz = sizeof(f_attr->attr);
2056 int ret;
2057
2058 memset(f_attr, 0, sizeof(*f_attr));
2059
2060 /* read minimal guaranteed structure */
2061 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
2062 if (ret <= 0) {
2063 pr_debug("cannot read %d bytes of header attr\n",
2064 PERF_ATTR_SIZE_VER0);
2065 return -1;
2066 }
2067
2068 /* on file perf_event_attr size */
2069 sz = attr->size;
2070
2071 if (ph->needs_swap)
2072 sz = bswap_32(sz);
2073
2074 if (sz == 0) {
2075 /* assume ABI0 */
2076 sz = PERF_ATTR_SIZE_VER0;
2077 } else if (sz > our_sz) {
2078 pr_debug("file uses a more recent and unsupported ABI"
2079 " (%zu bytes extra)\n", sz - our_sz);
2080 return -1;
2081 }
2082 /* what we have not yet read and that we know about */
2083 left = sz - PERF_ATTR_SIZE_VER0;
2084 if (left) {
2085 void *ptr = attr;
2086 ptr += PERF_ATTR_SIZE_VER0;
2087
2088 ret = readn(fd, ptr, left);
2089 }
2090 /* read perf_file_section, ids are read in caller */
2091 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
2092
2093 return ret <= 0 ? -1 : 0;
2094}
2095
2096static int perf_evsel__set_tracepoint_name(struct perf_evsel *evsel)
2097{
2098 struct event_format *event = trace_find_event(evsel->attr.config);
2099 char bf[128];
2100
2101 if (event == NULL)
2102 return -1;
2103
2104 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
2105 evsel->name = strdup(bf);
2106 if (event->name == NULL)
2107 return -1;
2108
2109 return 0;
2110}
2111
2112static int perf_evlist__set_tracepoint_names(struct perf_evlist *evlist)
2113{
2114 struct perf_evsel *pos;
2115
2116 list_for_each_entry(pos, &evlist->entries, node) {
2117 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
2118 perf_evsel__set_tracepoint_name(pos))
2119 return -1;
2120 }
2121
2122 return 0;
2123}
2124
2125int perf_session__read_header(struct perf_session *session, int fd)
2126{
2127 struct perf_header *header = &session->header;
2128 struct perf_file_header f_header;
2129 struct perf_file_attr f_attr;
2130 u64 f_id;
2131 int nr_attrs, nr_ids, i, j;
2132
2133 session->evlist = perf_evlist__new(NULL, NULL);
2134 if (session->evlist == NULL)
2135 return -ENOMEM;
2136
2137 if (session->fd_pipe)
2138 return perf_header__read_pipe(session, fd);
2139
2140 if (perf_file_header__read(&f_header, header, fd) < 0)
2141 return -EINVAL;
2142
2143 nr_attrs = f_header.attrs.size / f_header.attr_size;
2144 lseek(fd, f_header.attrs.offset, SEEK_SET);
2145
2146 for (i = 0; i < nr_attrs; i++) {
2147 struct perf_evsel *evsel;
2148 off_t tmp;
2149
2150 if (read_attr(fd, header, &f_attr) < 0)
2151 goto out_errno;
2152
2153 if (header->needs_swap)
2154 perf_event__attr_swap(&f_attr.attr);
2155
2156 tmp = lseek(fd, 0, SEEK_CUR);
2157 evsel = perf_evsel__new(&f_attr.attr, i);
2158
2159 if (evsel == NULL)
2160 goto out_delete_evlist;
2161 /*
2162 * Do it before so that if perf_evsel__alloc_id fails, this
2163 * entry gets purged too at perf_evlist__delete().
2164 */
2165 perf_evlist__add(session->evlist, evsel);
2166
2167 nr_ids = f_attr.ids.size / sizeof(u64);
2168 /*
2169 * We don't have the cpu and thread maps on the header, so
2170 * for allocating the perf_sample_id table we fake 1 cpu and
2171 * hattr->ids threads.
2172 */
2173 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
2174 goto out_delete_evlist;
2175
2176 lseek(fd, f_attr.ids.offset, SEEK_SET);
2177
2178 for (j = 0; j < nr_ids; j++) {
2179 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
2180 goto out_errno;
2181
2182 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
2183 }
2184
2185 lseek(fd, tmp, SEEK_SET);
2186 }
2187
2188 symbol_conf.nr_events = nr_attrs;
2189
2190 if (f_header.event_types.size) {
2191 lseek(fd, f_header.event_types.offset, SEEK_SET);
2192 events = malloc(f_header.event_types.size);
2193 if (events == NULL)
2194 return -ENOMEM;
2195 if (perf_header__getbuffer64(header, fd, events,
2196 f_header.event_types.size))
2197 goto out_errno;
2198 event_count = f_header.event_types.size / sizeof(struct perf_trace_event_type);
2199 }
2200
2201 perf_header__process_sections(header, fd, NULL,
2202 perf_file_section__process);
2203
2204 lseek(fd, header->data_offset, SEEK_SET);
2205
2206 if (perf_evlist__set_tracepoint_names(session->evlist))
2207 goto out_delete_evlist;
2208
2209 header->frozen = 1;
2210 return 0;
2211out_errno:
2212 return -errno;
2213
2214out_delete_evlist:
2215 perf_evlist__delete(session->evlist);
2216 session->evlist = NULL;
2217 return -ENOMEM;
2218}
2219
2220int perf_event__synthesize_attr(struct perf_tool *tool,
2221 struct perf_event_attr *attr, u16 ids, u64 *id,
2222 perf_event__handler_t process)
2223{
2224 union perf_event *ev;
2225 size_t size;
2226 int err;
2227
2228 size = sizeof(struct perf_event_attr);
2229 size = ALIGN(size, sizeof(u64));
2230 size += sizeof(struct perf_event_header);
2231 size += ids * sizeof(u64);
2232
2233 ev = malloc(size);
2234
2235 if (ev == NULL)
2236 return -ENOMEM;
2237
2238 ev->attr.attr = *attr;
2239 memcpy(ev->attr.id, id, ids * sizeof(u64));
2240
2241 ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
2242 ev->attr.header.size = size;
2243
2244 err = process(tool, ev, NULL, NULL);
2245
2246 free(ev);
2247
2248 return err;
2249}
2250
2251int perf_event__synthesize_attrs(struct perf_tool *tool,
2252 struct perf_session *session,
2253 perf_event__handler_t process)
2254{
2255 struct perf_evsel *attr;
2256 int err = 0;
2257
2258 list_for_each_entry(attr, &session->evlist->entries, node) {
2259 err = perf_event__synthesize_attr(tool, &attr->attr, attr->ids,
2260 attr->id, process);
2261 if (err) {
2262 pr_debug("failed to create perf header attribute\n");
2263 return err;
2264 }
2265 }
2266
2267 return err;
2268}
2269
2270int perf_event__process_attr(union perf_event *event,
2271 struct perf_evlist **pevlist)
2272{
2273 unsigned int i, ids, n_ids;
2274 struct perf_evsel *evsel;
2275 struct perf_evlist *evlist = *pevlist;
2276
2277 if (evlist == NULL) {
2278 *pevlist = evlist = perf_evlist__new(NULL, NULL);
2279 if (evlist == NULL)
2280 return -ENOMEM;
2281 }
2282
2283 evsel = perf_evsel__new(&event->attr.attr, evlist->nr_entries);
2284 if (evsel == NULL)
2285 return -ENOMEM;
2286
2287 perf_evlist__add(evlist, evsel);
2288
2289 ids = event->header.size;
2290 ids -= (void *)&event->attr.id - (void *)event;
2291 n_ids = ids / sizeof(u64);
2292 /*
2293 * We don't have the cpu and thread maps on the header, so
2294 * for allocating the perf_sample_id table we fake 1 cpu and
2295 * hattr->ids threads.
2296 */
2297 if (perf_evsel__alloc_id(evsel, 1, n_ids))
2298 return -ENOMEM;
2299
2300 for (i = 0; i < n_ids; i++) {
2301 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
2302 }
2303
2304 return 0;
2305}
2306
2307int perf_event__synthesize_event_type(struct perf_tool *tool,
2308 u64 event_id, char *name,
2309 perf_event__handler_t process,
2310 struct machine *machine)
2311{
2312 union perf_event ev;
2313 size_t size = 0;
2314 int err = 0;
2315
2316 memset(&ev, 0, sizeof(ev));
2317
2318 ev.event_type.event_type.event_id = event_id;
2319 memset(ev.event_type.event_type.name, 0, MAX_EVENT_NAME);
2320 strncpy(ev.event_type.event_type.name, name, MAX_EVENT_NAME - 1);
2321
2322 ev.event_type.header.type = PERF_RECORD_HEADER_EVENT_TYPE;
2323 size = strlen(ev.event_type.event_type.name);
2324 size = ALIGN(size, sizeof(u64));
2325 ev.event_type.header.size = sizeof(ev.event_type) -
2326 (sizeof(ev.event_type.event_type.name) - size);
2327
2328 err = process(tool, &ev, NULL, machine);
2329
2330 return err;
2331}
2332
2333int perf_event__synthesize_event_types(struct perf_tool *tool,
2334 perf_event__handler_t process,
2335 struct machine *machine)
2336{
2337 struct perf_trace_event_type *type;
2338 int i, err = 0;
2339
2340 for (i = 0; i < event_count; i++) {
2341 type = &events[i];
2342
2343 err = perf_event__synthesize_event_type(tool, type->event_id,
2344 type->name, process,
2345 machine);
2346 if (err) {
2347 pr_debug("failed to create perf header event type\n");
2348 return err;
2349 }
2350 }
2351
2352 return err;
2353}
2354
2355int perf_event__process_event_type(struct perf_tool *tool __unused,
2356 union perf_event *event)
2357{
2358 if (perf_header__push_event(event->event_type.event_type.event_id,
2359 event->event_type.event_type.name) < 0)
2360 return -ENOMEM;
2361
2362 return 0;
2363}
2364
2365int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
2366 struct perf_evlist *evlist,
2367 perf_event__handler_t process)
2368{
2369 union perf_event ev;
2370 struct tracing_data *tdata;
2371 ssize_t size = 0, aligned_size = 0, padding;
2372 int err __used = 0;
2373
2374 /*
2375 * We are going to store the size of the data followed
2376 * by the data contents. Since the fd descriptor is a pipe,
2377 * we cannot seek back to store the size of the data once
2378 * we know it. Instead we:
2379 *
2380 * - write the tracing data to the temp file
2381 * - get/write the data size to pipe
2382 * - write the tracing data from the temp file
2383 * to the pipe
2384 */
2385 tdata = tracing_data_get(&evlist->entries, fd, true);
2386 if (!tdata)
2387 return -1;
2388
2389 memset(&ev, 0, sizeof(ev));
2390
2391 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
2392 size = tdata->size;
2393 aligned_size = ALIGN(size, sizeof(u64));
2394 padding = aligned_size - size;
2395 ev.tracing_data.header.size = sizeof(ev.tracing_data);
2396 ev.tracing_data.size = aligned_size;
2397
2398 process(tool, &ev, NULL, NULL);
2399
2400 /*
2401 * The put function will copy all the tracing data
2402 * stored in temp file to the pipe.
2403 */
2404 tracing_data_put(tdata);
2405
2406 write_padded(fd, NULL, 0, padding);
2407
2408 return aligned_size;
2409}
2410
2411int perf_event__process_tracing_data(union perf_event *event,
2412 struct perf_session *session)
2413{
2414 ssize_t size_read, padding, size = event->tracing_data.size;
2415 off_t offset = lseek(session->fd, 0, SEEK_CUR);
2416 char buf[BUFSIZ];
2417
2418 /* setup for reading amidst mmap */
2419 lseek(session->fd, offset + sizeof(struct tracing_data_event),
2420 SEEK_SET);
2421
2422 size_read = trace_report(session->fd, session->repipe);
2423
2424 padding = ALIGN(size_read, sizeof(u64)) - size_read;
2425
2426 if (read(session->fd, buf, padding) < 0)
2427 die("reading input file");
2428 if (session->repipe) {
2429 int retw = write(STDOUT_FILENO, buf, padding);
2430 if (retw <= 0 || retw != padding)
2431 die("repiping tracing data padding");
2432 }
2433
2434 if (size_read + padding != size)
2435 die("tracing data size mismatch");
2436
2437 return size_read + padding;
2438}
2439
2440int perf_event__synthesize_build_id(struct perf_tool *tool,
2441 struct dso *pos, u16 misc,
2442 perf_event__handler_t process,
2443 struct machine *machine)
2444{
2445 union perf_event ev;
2446 size_t len;
2447 int err = 0;
2448
2449 if (!pos->hit)
2450 return err;
2451
2452 memset(&ev, 0, sizeof(ev));
2453
2454 len = pos->long_name_len + 1;
2455 len = ALIGN(len, NAME_ALIGN);
2456 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
2457 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
2458 ev.build_id.header.misc = misc;
2459 ev.build_id.pid = machine->pid;
2460 ev.build_id.header.size = sizeof(ev.build_id) + len;
2461 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
2462
2463 err = process(tool, &ev, NULL, machine);
2464
2465 return err;
2466}
2467
2468int perf_event__process_build_id(struct perf_tool *tool __used,
2469 union perf_event *event,
2470 struct perf_session *session)
2471{
2472 __event_process_build_id(&event->build_id,
2473 event->build_id.filename,
2474 session);
2475 return 0;
2476}
2477
2478void disable_buildid_cache(void)
2479{
2480 no_buildid_cache = true;
2481}
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#include <bpf/libbpf.h>
23#include <perf/cpumap.h>
24
25#include "dso.h"
26#include "evlist.h"
27#include "evsel.h"
28#include "util/evsel_fprintf.h"
29#include "header.h"
30#include "memswap.h"
31#include "trace-event.h"
32#include "session.h"
33#include "symbol.h"
34#include "debug.h"
35#include "cpumap.h"
36#include "pmu.h"
37#include "vdso.h"
38#include "strbuf.h"
39#include "build-id.h"
40#include "data.h"
41#include <api/fs/fs.h>
42#include "asm/bug.h"
43#include "tool.h"
44#include "time-utils.h"
45#include "units.h"
46#include "util/util.h" // perf_exe()
47#include "cputopo.h"
48#include "bpf-event.h"
49#include "clockid.h"
50
51#include <linux/ctype.h>
52#include <internal/lib.h>
53
54/*
55 * magic2 = "PERFILE2"
56 * must be a numerical value to let the endianness
57 * determine the memory layout. That way we are able
58 * to detect endianness when reading the perf.data file
59 * back.
60 *
61 * we check for legacy (PERFFILE) format.
62 */
63static const char *__perf_magic1 = "PERFFILE";
64static const u64 __perf_magic2 = 0x32454c4946524550ULL;
65static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66
67#define PERF_MAGIC __perf_magic2
68
69const char perf_version_string[] = PERF_VERSION;
70
71struct perf_file_attr {
72 struct perf_event_attr attr;
73 struct perf_file_section ids;
74};
75
76void perf_header__set_feat(struct perf_header *header, int feat)
77{
78 set_bit(feat, header->adds_features);
79}
80
81void perf_header__clear_feat(struct perf_header *header, int feat)
82{
83 clear_bit(feat, header->adds_features);
84}
85
86bool perf_header__has_feat(const struct perf_header *header, int feat)
87{
88 return test_bit(feat, header->adds_features);
89}
90
91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92{
93 ssize_t ret = writen(ff->fd, buf, size);
94
95 if (ret != (ssize_t)size)
96 return ret < 0 ? (int)ret : -1;
97 return 0;
98}
99
100static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
101{
102 /* struct perf_event_header::size is u16 */
103 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 size_t new_size = ff->size;
105 void *addr;
106
107 if (size + ff->offset > max_size)
108 return -E2BIG;
109
110 while (size > (new_size - ff->offset))
111 new_size <<= 1;
112 new_size = min(max_size, new_size);
113
114 if (ff->size < new_size) {
115 addr = realloc(ff->buf, new_size);
116 if (!addr)
117 return -ENOMEM;
118 ff->buf = addr;
119 ff->size = new_size;
120 }
121
122 memcpy(ff->buf + ff->offset, buf, size);
123 ff->offset += size;
124
125 return 0;
126}
127
128/* Return: 0 if succeded, -ERR if failed. */
129int do_write(struct feat_fd *ff, const void *buf, size_t size)
130{
131 if (!ff->buf)
132 return __do_write_fd(ff, buf, size);
133 return __do_write_buf(ff, buf, size);
134}
135
136/* Return: 0 if succeded, -ERR if failed. */
137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138{
139 u64 *p = (u64 *) set;
140 int i, ret;
141
142 ret = do_write(ff, &size, sizeof(size));
143 if (ret < 0)
144 return ret;
145
146 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 ret = do_write(ff, p + i, sizeof(*p));
148 if (ret < 0)
149 return ret;
150 }
151
152 return 0;
153}
154
155/* Return: 0 if succeded, -ERR if failed. */
156int write_padded(struct feat_fd *ff, const void *bf,
157 size_t count, size_t count_aligned)
158{
159 static const char zero_buf[NAME_ALIGN];
160 int err = do_write(ff, bf, count);
161
162 if (!err)
163 err = do_write(ff, zero_buf, count_aligned - count);
164
165 return err;
166}
167
168#define string_size(str) \
169 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171/* Return: 0 if succeded, -ERR if failed. */
172static int do_write_string(struct feat_fd *ff, const char *str)
173{
174 u32 len, olen;
175 int ret;
176
177 olen = strlen(str) + 1;
178 len = PERF_ALIGN(olen, NAME_ALIGN);
179
180 /* write len, incl. \0 */
181 ret = do_write(ff, &len, sizeof(len));
182 if (ret < 0)
183 return ret;
184
185 return write_padded(ff, str, olen, len);
186}
187
188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189{
190 ssize_t ret = readn(ff->fd, addr, size);
191
192 if (ret != size)
193 return ret < 0 ? (int)ret : -1;
194 return 0;
195}
196
197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198{
199 if (size > (ssize_t)ff->size - ff->offset)
200 return -1;
201
202 memcpy(addr, ff->buf + ff->offset, size);
203 ff->offset += size;
204
205 return 0;
206
207}
208
209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210{
211 if (!ff->buf)
212 return __do_read_fd(ff, addr, size);
213 return __do_read_buf(ff, addr, size);
214}
215
216static int do_read_u32(struct feat_fd *ff, u32 *addr)
217{
218 int ret;
219
220 ret = __do_read(ff, addr, sizeof(*addr));
221 if (ret)
222 return ret;
223
224 if (ff->ph->needs_swap)
225 *addr = bswap_32(*addr);
226 return 0;
227}
228
229static int do_read_u64(struct feat_fd *ff, u64 *addr)
230{
231 int ret;
232
233 ret = __do_read(ff, addr, sizeof(*addr));
234 if (ret)
235 return ret;
236
237 if (ff->ph->needs_swap)
238 *addr = bswap_64(*addr);
239 return 0;
240}
241
242static char *do_read_string(struct feat_fd *ff)
243{
244 u32 len;
245 char *buf;
246
247 if (do_read_u32(ff, &len))
248 return NULL;
249
250 buf = malloc(len);
251 if (!buf)
252 return NULL;
253
254 if (!__do_read(ff, buf, len)) {
255 /*
256 * strings are padded by zeroes
257 * thus the actual strlen of buf
258 * may be less than len
259 */
260 return buf;
261 }
262
263 free(buf);
264 return NULL;
265}
266
267/* Return: 0 if succeded, -ERR if failed. */
268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269{
270 unsigned long *set;
271 u64 size, *p;
272 int i, ret;
273
274 ret = do_read_u64(ff, &size);
275 if (ret)
276 return ret;
277
278 set = bitmap_alloc(size);
279 if (!set)
280 return -ENOMEM;
281
282 p = (u64 *) set;
283
284 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 ret = do_read_u64(ff, p + i);
286 if (ret < 0) {
287 free(set);
288 return ret;
289 }
290 }
291
292 *pset = set;
293 *psize = size;
294 return 0;
295}
296
297static int write_tracing_data(struct feat_fd *ff,
298 struct evlist *evlist)
299{
300 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 return -1;
302
303 return read_tracing_data(ff->fd, &evlist->core.entries);
304}
305
306static int write_build_id(struct feat_fd *ff,
307 struct evlist *evlist __maybe_unused)
308{
309 struct perf_session *session;
310 int err;
311
312 session = container_of(ff->ph, struct perf_session, header);
313
314 if (!perf_session__read_build_ids(session, true))
315 return -1;
316
317 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 return -1;
319
320 err = perf_session__write_buildid_table(session, ff);
321 if (err < 0) {
322 pr_debug("failed to write buildid table\n");
323 return err;
324 }
325 perf_session__cache_build_ids(session);
326
327 return 0;
328}
329
330static int write_hostname(struct feat_fd *ff,
331 struct evlist *evlist __maybe_unused)
332{
333 struct utsname uts;
334 int ret;
335
336 ret = uname(&uts);
337 if (ret < 0)
338 return -1;
339
340 return do_write_string(ff, uts.nodename);
341}
342
343static int write_osrelease(struct feat_fd *ff,
344 struct evlist *evlist __maybe_unused)
345{
346 struct utsname uts;
347 int ret;
348
349 ret = uname(&uts);
350 if (ret < 0)
351 return -1;
352
353 return do_write_string(ff, uts.release);
354}
355
356static int write_arch(struct feat_fd *ff,
357 struct evlist *evlist __maybe_unused)
358{
359 struct utsname uts;
360 int ret;
361
362 ret = uname(&uts);
363 if (ret < 0)
364 return -1;
365
366 return do_write_string(ff, uts.machine);
367}
368
369static int write_version(struct feat_fd *ff,
370 struct evlist *evlist __maybe_unused)
371{
372 return do_write_string(ff, perf_version_string);
373}
374
375static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376{
377 FILE *file;
378 char *buf = NULL;
379 char *s, *p;
380 const char *search = cpuinfo_proc;
381 size_t len = 0;
382 int ret = -1;
383
384 if (!search)
385 return -1;
386
387 file = fopen("/proc/cpuinfo", "r");
388 if (!file)
389 return -1;
390
391 while (getline(&buf, &len, file) > 0) {
392 ret = strncmp(buf, search, strlen(search));
393 if (!ret)
394 break;
395 }
396
397 if (ret) {
398 ret = -1;
399 goto done;
400 }
401
402 s = buf;
403
404 p = strchr(buf, ':');
405 if (p && *(p+1) == ' ' && *(p+2))
406 s = p + 2;
407 p = strchr(s, '\n');
408 if (p)
409 *p = '\0';
410
411 /* squash extra space characters (branding string) */
412 p = s;
413 while (*p) {
414 if (isspace(*p)) {
415 char *r = p + 1;
416 char *q = skip_spaces(r);
417 *p = ' ';
418 if (q != (p+1))
419 while ((*r++ = *q++));
420 }
421 p++;
422 }
423 ret = do_write_string(ff, s);
424done:
425 free(buf);
426 fclose(file);
427 return ret;
428}
429
430static int write_cpudesc(struct feat_fd *ff,
431 struct evlist *evlist __maybe_unused)
432{
433#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434#define CPUINFO_PROC { "cpu", }
435#elif defined(__s390__)
436#define CPUINFO_PROC { "vendor_id", }
437#elif defined(__sh__)
438#define CPUINFO_PROC { "cpu type", }
439#elif defined(__alpha__) || defined(__mips__)
440#define CPUINFO_PROC { "cpu model", }
441#elif defined(__arm__)
442#define CPUINFO_PROC { "model name", "Processor", }
443#elif defined(__arc__)
444#define CPUINFO_PROC { "Processor", }
445#elif defined(__xtensa__)
446#define CPUINFO_PROC { "core ID", }
447#else
448#define CPUINFO_PROC { "model name", }
449#endif
450 const char *cpuinfo_procs[] = CPUINFO_PROC;
451#undef CPUINFO_PROC
452 unsigned int i;
453
454 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
455 int ret;
456 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 if (ret >= 0)
458 return ret;
459 }
460 return -1;
461}
462
463
464static int write_nrcpus(struct feat_fd *ff,
465 struct evlist *evlist __maybe_unused)
466{
467 long nr;
468 u32 nrc, nra;
469 int ret;
470
471 nrc = cpu__max_present_cpu();
472
473 nr = sysconf(_SC_NPROCESSORS_ONLN);
474 if (nr < 0)
475 return -1;
476
477 nra = (u32)(nr & UINT_MAX);
478
479 ret = do_write(ff, &nrc, sizeof(nrc));
480 if (ret < 0)
481 return ret;
482
483 return do_write(ff, &nra, sizeof(nra));
484}
485
486static int write_event_desc(struct feat_fd *ff,
487 struct evlist *evlist)
488{
489 struct evsel *evsel;
490 u32 nre, nri, sz;
491 int ret;
492
493 nre = evlist->core.nr_entries;
494
495 /*
496 * write number of events
497 */
498 ret = do_write(ff, &nre, sizeof(nre));
499 if (ret < 0)
500 return ret;
501
502 /*
503 * size of perf_event_attr struct
504 */
505 sz = (u32)sizeof(evsel->core.attr);
506 ret = do_write(ff, &sz, sizeof(sz));
507 if (ret < 0)
508 return ret;
509
510 evlist__for_each_entry(evlist, evsel) {
511 ret = do_write(ff, &evsel->core.attr, sz);
512 if (ret < 0)
513 return ret;
514 /*
515 * write number of unique id per event
516 * there is one id per instance of an event
517 *
518 * copy into an nri to be independent of the
519 * type of ids,
520 */
521 nri = evsel->core.ids;
522 ret = do_write(ff, &nri, sizeof(nri));
523 if (ret < 0)
524 return ret;
525
526 /*
527 * write event string as passed on cmdline
528 */
529 ret = do_write_string(ff, evsel__name(evsel));
530 if (ret < 0)
531 return ret;
532 /*
533 * write unique ids for this event
534 */
535 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 if (ret < 0)
537 return ret;
538 }
539 return 0;
540}
541
542static int write_cmdline(struct feat_fd *ff,
543 struct evlist *evlist __maybe_unused)
544{
545 char pbuf[MAXPATHLEN], *buf;
546 int i, ret, n;
547
548 /* actual path to perf binary */
549 buf = perf_exe(pbuf, MAXPATHLEN);
550
551 /* account for binary path */
552 n = perf_env.nr_cmdline + 1;
553
554 ret = do_write(ff, &n, sizeof(n));
555 if (ret < 0)
556 return ret;
557
558 ret = do_write_string(ff, buf);
559 if (ret < 0)
560 return ret;
561
562 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 if (ret < 0)
565 return ret;
566 }
567 return 0;
568}
569
570
571static int write_cpu_topology(struct feat_fd *ff,
572 struct evlist *evlist __maybe_unused)
573{
574 struct cpu_topology *tp;
575 u32 i;
576 int ret, j;
577
578 tp = cpu_topology__new();
579 if (!tp)
580 return -1;
581
582 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 if (ret < 0)
584 goto done;
585
586 for (i = 0; i < tp->core_sib; i++) {
587 ret = do_write_string(ff, tp->core_siblings[i]);
588 if (ret < 0)
589 goto done;
590 }
591 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 if (ret < 0)
593 goto done;
594
595 for (i = 0; i < tp->thread_sib; i++) {
596 ret = do_write_string(ff, tp->thread_siblings[i]);
597 if (ret < 0)
598 break;
599 }
600
601 ret = perf_env__read_cpu_topology_map(&perf_env);
602 if (ret < 0)
603 goto done;
604
605 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606 ret = do_write(ff, &perf_env.cpu[j].core_id,
607 sizeof(perf_env.cpu[j].core_id));
608 if (ret < 0)
609 return ret;
610 ret = do_write(ff, &perf_env.cpu[j].socket_id,
611 sizeof(perf_env.cpu[j].socket_id));
612 if (ret < 0)
613 return ret;
614 }
615
616 if (!tp->die_sib)
617 goto done;
618
619 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
620 if (ret < 0)
621 goto done;
622
623 for (i = 0; i < tp->die_sib; i++) {
624 ret = do_write_string(ff, tp->die_siblings[i]);
625 if (ret < 0)
626 goto done;
627 }
628
629 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
630 ret = do_write(ff, &perf_env.cpu[j].die_id,
631 sizeof(perf_env.cpu[j].die_id));
632 if (ret < 0)
633 return ret;
634 }
635
636done:
637 cpu_topology__delete(tp);
638 return ret;
639}
640
641
642
643static int write_total_mem(struct feat_fd *ff,
644 struct evlist *evlist __maybe_unused)
645{
646 char *buf = NULL;
647 FILE *fp;
648 size_t len = 0;
649 int ret = -1, n;
650 uint64_t mem;
651
652 fp = fopen("/proc/meminfo", "r");
653 if (!fp)
654 return -1;
655
656 while (getline(&buf, &len, fp) > 0) {
657 ret = strncmp(buf, "MemTotal:", 9);
658 if (!ret)
659 break;
660 }
661 if (!ret) {
662 n = sscanf(buf, "%*s %"PRIu64, &mem);
663 if (n == 1)
664 ret = do_write(ff, &mem, sizeof(mem));
665 } else
666 ret = -1;
667 free(buf);
668 fclose(fp);
669 return ret;
670}
671
672static int write_numa_topology(struct feat_fd *ff,
673 struct evlist *evlist __maybe_unused)
674{
675 struct numa_topology *tp;
676 int ret = -1;
677 u32 i;
678
679 tp = numa_topology__new();
680 if (!tp)
681 return -ENOMEM;
682
683 ret = do_write(ff, &tp->nr, sizeof(u32));
684 if (ret < 0)
685 goto err;
686
687 for (i = 0; i < tp->nr; i++) {
688 struct numa_topology_node *n = &tp->nodes[i];
689
690 ret = do_write(ff, &n->node, sizeof(u32));
691 if (ret < 0)
692 goto err;
693
694 ret = do_write(ff, &n->mem_total, sizeof(u64));
695 if (ret)
696 goto err;
697
698 ret = do_write(ff, &n->mem_free, sizeof(u64));
699 if (ret)
700 goto err;
701
702 ret = do_write_string(ff, n->cpus);
703 if (ret < 0)
704 goto err;
705 }
706
707 ret = 0;
708
709err:
710 numa_topology__delete(tp);
711 return ret;
712}
713
714/*
715 * File format:
716 *
717 * struct pmu_mappings {
718 * u32 pmu_num;
719 * struct pmu_map {
720 * u32 type;
721 * char name[];
722 * }[pmu_num];
723 * };
724 */
725
726static int write_pmu_mappings(struct feat_fd *ff,
727 struct evlist *evlist __maybe_unused)
728{
729 struct perf_pmu *pmu = NULL;
730 u32 pmu_num = 0;
731 int ret;
732
733 /*
734 * Do a first pass to count number of pmu to avoid lseek so this
735 * works in pipe mode as well.
736 */
737 while ((pmu = perf_pmu__scan(pmu))) {
738 if (!pmu->name)
739 continue;
740 pmu_num++;
741 }
742
743 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 if (ret < 0)
745 return ret;
746
747 while ((pmu = perf_pmu__scan(pmu))) {
748 if (!pmu->name)
749 continue;
750
751 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 if (ret < 0)
753 return ret;
754
755 ret = do_write_string(ff, pmu->name);
756 if (ret < 0)
757 return ret;
758 }
759
760 return 0;
761}
762
763/*
764 * File format:
765 *
766 * struct group_descs {
767 * u32 nr_groups;
768 * struct group_desc {
769 * char name[];
770 * u32 leader_idx;
771 * u32 nr_members;
772 * }[nr_groups];
773 * };
774 */
775static int write_group_desc(struct feat_fd *ff,
776 struct evlist *evlist)
777{
778 u32 nr_groups = evlist->nr_groups;
779 struct evsel *evsel;
780 int ret;
781
782 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 if (ret < 0)
784 return ret;
785
786 evlist__for_each_entry(evlist, evsel) {
787 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
791
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
795
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
803 }
804 }
805 return 0;
806}
807
808/*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815{
816 return NULL;
817}
818
819/* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824{
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
828
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
833 }
834
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
843 }
844 return 1;
845}
846
847/*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852{
853 return ENOSYS; /* Not implemented */
854}
855
856static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
858{
859 char buffer[64];
860 int ret;
861
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
865
866 return do_write_string(ff, buffer);
867}
868
869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
871{
872 return 0;
873}
874
875static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
877{
878 struct perf_session *session;
879 int err;
880
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
883
884 session = container_of(ff->ph, struct perf_session, header);
885
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
890}
891
892static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
894{
895 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
896 sizeof(ff->ph->env.clock.clockid_res_ns));
897}
898
899static int write_clock_data(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
901{
902 u64 *data64;
903 u32 data32;
904 int ret;
905
906 /* version */
907 data32 = 1;
908
909 ret = do_write(ff, &data32, sizeof(data32));
910 if (ret < 0)
911 return ret;
912
913 /* clockid */
914 data32 = ff->ph->env.clock.clockid;
915
916 ret = do_write(ff, &data32, sizeof(data32));
917 if (ret < 0)
918 return ret;
919
920 /* TOD ref time */
921 data64 = &ff->ph->env.clock.tod_ns;
922
923 ret = do_write(ff, data64, sizeof(*data64));
924 if (ret < 0)
925 return ret;
926
927 /* clockid ref time */
928 data64 = &ff->ph->env.clock.clockid_ns;
929
930 return do_write(ff, data64, sizeof(*data64));
931}
932
933static int write_dir_format(struct feat_fd *ff,
934 struct evlist *evlist __maybe_unused)
935{
936 struct perf_session *session;
937 struct perf_data *data;
938
939 session = container_of(ff->ph, struct perf_session, header);
940 data = session->data;
941
942 if (WARN_ON(!perf_data__is_dir(data)))
943 return -1;
944
945 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
946}
947
948#ifdef HAVE_LIBBPF_SUPPORT
949static int write_bpf_prog_info(struct feat_fd *ff,
950 struct evlist *evlist __maybe_unused)
951{
952 struct perf_env *env = &ff->ph->env;
953 struct rb_root *root;
954 struct rb_node *next;
955 int ret;
956
957 down_read(&env->bpf_progs.lock);
958
959 ret = do_write(ff, &env->bpf_progs.infos_cnt,
960 sizeof(env->bpf_progs.infos_cnt));
961 if (ret < 0)
962 goto out;
963
964 root = &env->bpf_progs.infos;
965 next = rb_first(root);
966 while (next) {
967 struct bpf_prog_info_node *node;
968 size_t len;
969
970 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
971 next = rb_next(&node->rb_node);
972 len = sizeof(struct bpf_prog_info_linear) +
973 node->info_linear->data_len;
974
975 /* before writing to file, translate address to offset */
976 bpf_program__bpil_addr_to_offs(node->info_linear);
977 ret = do_write(ff, node->info_linear, len);
978 /*
979 * translate back to address even when do_write() fails,
980 * so that this function never changes the data.
981 */
982 bpf_program__bpil_offs_to_addr(node->info_linear);
983 if (ret < 0)
984 goto out;
985 }
986out:
987 up_read(&env->bpf_progs.lock);
988 return ret;
989}
990#else // HAVE_LIBBPF_SUPPORT
991static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992 struct evlist *evlist __maybe_unused)
993{
994 return 0;
995}
996#endif // HAVE_LIBBPF_SUPPORT
997
998static int write_bpf_btf(struct feat_fd *ff,
999 struct evlist *evlist __maybe_unused)
1000{
1001 struct perf_env *env = &ff->ph->env;
1002 struct rb_root *root;
1003 struct rb_node *next;
1004 int ret;
1005
1006 down_read(&env->bpf_progs.lock);
1007
1008 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009 sizeof(env->bpf_progs.btfs_cnt));
1010
1011 if (ret < 0)
1012 goto out;
1013
1014 root = &env->bpf_progs.btfs;
1015 next = rb_first(root);
1016 while (next) {
1017 struct btf_node *node;
1018
1019 node = rb_entry(next, struct btf_node, rb_node);
1020 next = rb_next(&node->rb_node);
1021 ret = do_write(ff, &node->id,
1022 sizeof(u32) * 2 + node->data_size);
1023 if (ret < 0)
1024 goto out;
1025 }
1026out:
1027 up_read(&env->bpf_progs.lock);
1028 return ret;
1029}
1030
1031static int cpu_cache_level__sort(const void *a, const void *b)
1032{
1033 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036 return cache_a->level - cache_b->level;
1037}
1038
1039static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040{
1041 if (a->level != b->level)
1042 return false;
1043
1044 if (a->line_size != b->line_size)
1045 return false;
1046
1047 if (a->sets != b->sets)
1048 return false;
1049
1050 if (a->ways != b->ways)
1051 return false;
1052
1053 if (strcmp(a->type, b->type))
1054 return false;
1055
1056 if (strcmp(a->size, b->size))
1057 return false;
1058
1059 if (strcmp(a->map, b->map))
1060 return false;
1061
1062 return true;
1063}
1064
1065static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066{
1067 char path[PATH_MAX], file[PATH_MAX];
1068 struct stat st;
1069 size_t len;
1070
1071 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074 if (stat(file, &st))
1075 return 1;
1076
1077 scnprintf(file, PATH_MAX, "%s/level", path);
1078 if (sysfs__read_int(file, (int *) &cache->level))
1079 return -1;
1080
1081 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082 if (sysfs__read_int(file, (int *) &cache->line_size))
1083 return -1;
1084
1085 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086 if (sysfs__read_int(file, (int *) &cache->sets))
1087 return -1;
1088
1089 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090 if (sysfs__read_int(file, (int *) &cache->ways))
1091 return -1;
1092
1093 scnprintf(file, PATH_MAX, "%s/type", path);
1094 if (sysfs__read_str(file, &cache->type, &len))
1095 return -1;
1096
1097 cache->type[len] = 0;
1098 cache->type = strim(cache->type);
1099
1100 scnprintf(file, PATH_MAX, "%s/size", path);
1101 if (sysfs__read_str(file, &cache->size, &len)) {
1102 zfree(&cache->type);
1103 return -1;
1104 }
1105
1106 cache->size[len] = 0;
1107 cache->size = strim(cache->size);
1108
1109 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110 if (sysfs__read_str(file, &cache->map, &len)) {
1111 zfree(&cache->size);
1112 zfree(&cache->type);
1113 return -1;
1114 }
1115
1116 cache->map[len] = 0;
1117 cache->map = strim(cache->map);
1118 return 0;
1119}
1120
1121static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122{
1123 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124}
1125
1126#define MAX_CACHE_LVL 4
1127
1128static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129{
1130 u32 i, cnt = 0;
1131 u32 nr, cpu;
1132 u16 level;
1133
1134 nr = cpu__max_cpu();
1135
1136 for (cpu = 0; cpu < nr; cpu++) {
1137 for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 struct cpu_cache_level c;
1139 int err;
1140
1141 err = cpu_cache_level__read(&c, cpu, level);
1142 if (err < 0)
1143 return err;
1144
1145 if (err == 1)
1146 break;
1147
1148 for (i = 0; i < cnt; i++) {
1149 if (cpu_cache_level__cmp(&c, &caches[i]))
1150 break;
1151 }
1152
1153 if (i == cnt)
1154 caches[cnt++] = c;
1155 else
1156 cpu_cache_level__free(&c);
1157 }
1158 }
1159 *cntp = cnt;
1160 return 0;
1161}
1162
1163static int write_cache(struct feat_fd *ff,
1164 struct evlist *evlist __maybe_unused)
1165{
1166 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167 struct cpu_cache_level caches[max_caches];
1168 u32 cnt = 0, i, version = 1;
1169 int ret;
1170
1171 ret = build_caches(caches, &cnt);
1172 if (ret)
1173 goto out;
1174
1175 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177 ret = do_write(ff, &version, sizeof(u32));
1178 if (ret < 0)
1179 goto out;
1180
1181 ret = do_write(ff, &cnt, sizeof(u32));
1182 if (ret < 0)
1183 goto out;
1184
1185 for (i = 0; i < cnt; i++) {
1186 struct cpu_cache_level *c = &caches[i];
1187
1188 #define _W(v) \
1189 ret = do_write(ff, &c->v, sizeof(u32)); \
1190 if (ret < 0) \
1191 goto out;
1192
1193 _W(level)
1194 _W(line_size)
1195 _W(sets)
1196 _W(ways)
1197 #undef _W
1198
1199 #define _W(v) \
1200 ret = do_write_string(ff, (const char *) c->v); \
1201 if (ret < 0) \
1202 goto out;
1203
1204 _W(type)
1205 _W(size)
1206 _W(map)
1207 #undef _W
1208 }
1209
1210out:
1211 for (i = 0; i < cnt; i++)
1212 cpu_cache_level__free(&caches[i]);
1213 return ret;
1214}
1215
1216static int write_stat(struct feat_fd *ff __maybe_unused,
1217 struct evlist *evlist __maybe_unused)
1218{
1219 return 0;
1220}
1221
1222static int write_sample_time(struct feat_fd *ff,
1223 struct evlist *evlist)
1224{
1225 int ret;
1226
1227 ret = do_write(ff, &evlist->first_sample_time,
1228 sizeof(evlist->first_sample_time));
1229 if (ret < 0)
1230 return ret;
1231
1232 return do_write(ff, &evlist->last_sample_time,
1233 sizeof(evlist->last_sample_time));
1234}
1235
1236
1237static int memory_node__read(struct memory_node *n, unsigned long idx)
1238{
1239 unsigned int phys, size = 0;
1240 char path[PATH_MAX];
1241 struct dirent *ent;
1242 DIR *dir;
1243
1244#define for_each_memory(mem, dir) \
1245 while ((ent = readdir(dir))) \
1246 if (strcmp(ent->d_name, ".") && \
1247 strcmp(ent->d_name, "..") && \
1248 sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250 scnprintf(path, PATH_MAX,
1251 "%s/devices/system/node/node%lu",
1252 sysfs__mountpoint(), idx);
1253
1254 dir = opendir(path);
1255 if (!dir) {
1256 pr_warning("failed: cant' open memory sysfs data\n");
1257 return -1;
1258 }
1259
1260 for_each_memory(phys, dir) {
1261 size = max(phys, size);
1262 }
1263
1264 size++;
1265
1266 n->set = bitmap_alloc(size);
1267 if (!n->set) {
1268 closedir(dir);
1269 return -ENOMEM;
1270 }
1271
1272 n->node = idx;
1273 n->size = size;
1274
1275 rewinddir(dir);
1276
1277 for_each_memory(phys, dir) {
1278 set_bit(phys, n->set);
1279 }
1280
1281 closedir(dir);
1282 return 0;
1283}
1284
1285static int memory_node__sort(const void *a, const void *b)
1286{
1287 const struct memory_node *na = a;
1288 const struct memory_node *nb = b;
1289
1290 return na->node - nb->node;
1291}
1292
1293static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294{
1295 char path[PATH_MAX];
1296 struct dirent *ent;
1297 DIR *dir;
1298 u64 cnt = 0;
1299 int ret = 0;
1300
1301 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302 sysfs__mountpoint());
1303
1304 dir = opendir(path);
1305 if (!dir) {
1306 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307 __func__, path);
1308 return -1;
1309 }
1310
1311 while (!ret && (ent = readdir(dir))) {
1312 unsigned int idx;
1313 int r;
1314
1315 if (!strcmp(ent->d_name, ".") ||
1316 !strcmp(ent->d_name, ".."))
1317 continue;
1318
1319 r = sscanf(ent->d_name, "node%u", &idx);
1320 if (r != 1)
1321 continue;
1322
1323 if (WARN_ONCE(cnt >= size,
1324 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325 closedir(dir);
1326 return -1;
1327 }
1328
1329 ret = memory_node__read(&nodes[cnt++], idx);
1330 }
1331
1332 *cntp = cnt;
1333 closedir(dir);
1334
1335 if (!ret)
1336 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338 return ret;
1339}
1340
1341#define MAX_MEMORY_NODES 2000
1342
1343/*
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1346 *
1347 * 0 - version | for future changes
1348 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count | number of nodes
1350 *
1351 * For each node we store map of physical indexes for
1352 * each node:
1353 *
1354 * 32 - node id | node index
1355 * 40 - size | size of bitmap
1356 * 48 - bitmap | bitmap of memory indexes that belongs to node
1357 */
1358static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359 struct evlist *evlist __maybe_unused)
1360{
1361 static struct memory_node nodes[MAX_MEMORY_NODES];
1362 u64 bsize, version = 1, i, nr;
1363 int ret;
1364
1365 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366 (unsigned long long *) &bsize);
1367 if (ret)
1368 return ret;
1369
1370 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371 if (ret)
1372 return ret;
1373
1374 ret = do_write(ff, &version, sizeof(version));
1375 if (ret < 0)
1376 goto out;
1377
1378 ret = do_write(ff, &bsize, sizeof(bsize));
1379 if (ret < 0)
1380 goto out;
1381
1382 ret = do_write(ff, &nr, sizeof(nr));
1383 if (ret < 0)
1384 goto out;
1385
1386 for (i = 0; i < nr; i++) {
1387 struct memory_node *n = &nodes[i];
1388
1389 #define _W(v) \
1390 ret = do_write(ff, &n->v, sizeof(n->v)); \
1391 if (ret < 0) \
1392 goto out;
1393
1394 _W(node)
1395 _W(size)
1396
1397 #undef _W
1398
1399 ret = do_write_bitmap(ff, n->set, n->size);
1400 if (ret < 0)
1401 goto out;
1402 }
1403
1404out:
1405 return ret;
1406}
1407
1408static int write_compressed(struct feat_fd *ff __maybe_unused,
1409 struct evlist *evlist __maybe_unused)
1410{
1411 int ret;
1412
1413 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414 if (ret)
1415 return ret;
1416
1417 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418 if (ret)
1419 return ret;
1420
1421 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422 if (ret)
1423 return ret;
1424
1425 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426 if (ret)
1427 return ret;
1428
1429 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430}
1431
1432static int write_cpu_pmu_caps(struct feat_fd *ff,
1433 struct evlist *evlist __maybe_unused)
1434{
1435 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436 struct perf_pmu_caps *caps = NULL;
1437 int nr_caps;
1438 int ret;
1439
1440 if (!cpu_pmu)
1441 return -ENOENT;
1442
1443 nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444 if (nr_caps < 0)
1445 return nr_caps;
1446
1447 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448 if (ret < 0)
1449 return ret;
1450
1451 list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452 ret = do_write_string(ff, caps->name);
1453 if (ret < 0)
1454 return ret;
1455
1456 ret = do_write_string(ff, caps->value);
1457 if (ret < 0)
1458 return ret;
1459 }
1460
1461 return ret;
1462}
1463
1464static void print_hostname(struct feat_fd *ff, FILE *fp)
1465{
1466 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467}
1468
1469static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470{
1471 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472}
1473
1474static void print_arch(struct feat_fd *ff, FILE *fp)
1475{
1476 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477}
1478
1479static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480{
1481 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482}
1483
1484static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485{
1486 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488}
1489
1490static void print_version(struct feat_fd *ff, FILE *fp)
1491{
1492 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493}
1494
1495static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496{
1497 int nr, i;
1498
1499 nr = ff->ph->env.nr_cmdline;
1500
1501 fprintf(fp, "# cmdline : ");
1502
1503 for (i = 0; i < nr; i++) {
1504 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505 if (!argv_i) {
1506 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507 } else {
1508 char *mem = argv_i;
1509 do {
1510 char *quote = strchr(argv_i, '\'');
1511 if (!quote)
1512 break;
1513 *quote++ = '\0';
1514 fprintf(fp, "%s\\\'", argv_i);
1515 argv_i = quote;
1516 } while (1);
1517 fprintf(fp, "%s ", argv_i);
1518 free(mem);
1519 }
1520 }
1521 fputc('\n', fp);
1522}
1523
1524static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525{
1526 struct perf_header *ph = ff->ph;
1527 int cpu_nr = ph->env.nr_cpus_avail;
1528 int nr, i;
1529 char *str;
1530
1531 nr = ph->env.nr_sibling_cores;
1532 str = ph->env.sibling_cores;
1533
1534 for (i = 0; i < nr; i++) {
1535 fprintf(fp, "# sibling sockets : %s\n", str);
1536 str += strlen(str) + 1;
1537 }
1538
1539 if (ph->env.nr_sibling_dies) {
1540 nr = ph->env.nr_sibling_dies;
1541 str = ph->env.sibling_dies;
1542
1543 for (i = 0; i < nr; i++) {
1544 fprintf(fp, "# sibling dies : %s\n", str);
1545 str += strlen(str) + 1;
1546 }
1547 }
1548
1549 nr = ph->env.nr_sibling_threads;
1550 str = ph->env.sibling_threads;
1551
1552 for (i = 0; i < nr; i++) {
1553 fprintf(fp, "# sibling threads : %s\n", str);
1554 str += strlen(str) + 1;
1555 }
1556
1557 if (ph->env.nr_sibling_dies) {
1558 if (ph->env.cpu != NULL) {
1559 for (i = 0; i < cpu_nr; i++)
1560 fprintf(fp, "# CPU %d: Core ID %d, "
1561 "Die ID %d, Socket ID %d\n",
1562 i, ph->env.cpu[i].core_id,
1563 ph->env.cpu[i].die_id,
1564 ph->env.cpu[i].socket_id);
1565 } else
1566 fprintf(fp, "# Core ID, Die ID and Socket ID "
1567 "information is not available\n");
1568 } else {
1569 if (ph->env.cpu != NULL) {
1570 for (i = 0; i < cpu_nr; i++)
1571 fprintf(fp, "# CPU %d: Core ID %d, "
1572 "Socket ID %d\n",
1573 i, ph->env.cpu[i].core_id,
1574 ph->env.cpu[i].socket_id);
1575 } else
1576 fprintf(fp, "# Core ID and Socket ID "
1577 "information is not available\n");
1578 }
1579}
1580
1581static void print_clockid(struct feat_fd *ff, FILE *fp)
1582{
1583 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584 ff->ph->env.clock.clockid_res_ns * 1000);
1585}
1586
1587static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588{
1589 struct timespec clockid_ns;
1590 char tstr[64], date[64];
1591 struct timeval tod_ns;
1592 clockid_t clockid;
1593 struct tm ltime;
1594 u64 ref;
1595
1596 if (!ff->ph->env.clock.enabled) {
1597 fprintf(fp, "# reference time disabled\n");
1598 return;
1599 }
1600
1601 /* Compute TOD time. */
1602 ref = ff->ph->env.clock.tod_ns;
1603 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607 /* Compute clockid time. */
1608 ref = ff->ph->env.clock.clockid_ns;
1609 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611 clockid_ns.tv_nsec = ref;
1612
1613 clockid = ff->ph->env.clock.clockid;
1614
1615 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1616 snprintf(tstr, sizeof(tstr), "<error>");
1617 else {
1618 strftime(date, sizeof(date), "%F %T", <ime);
1619 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620 date, (int) tod_ns.tv_usec);
1621 }
1622
1623 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625 tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626 clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627 clockid_name(clockid));
1628}
1629
1630static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631{
1632 struct perf_session *session;
1633 struct perf_data *data;
1634
1635 session = container_of(ff->ph, struct perf_session, header);
1636 data = session->data;
1637
1638 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639}
1640
1641static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642{
1643 struct perf_env *env = &ff->ph->env;
1644 struct rb_root *root;
1645 struct rb_node *next;
1646
1647 down_read(&env->bpf_progs.lock);
1648
1649 root = &env->bpf_progs.infos;
1650 next = rb_first(root);
1651
1652 while (next) {
1653 struct bpf_prog_info_node *node;
1654
1655 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656 next = rb_next(&node->rb_node);
1657
1658 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659 env, fp);
1660 }
1661
1662 up_read(&env->bpf_progs.lock);
1663}
1664
1665static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666{
1667 struct perf_env *env = &ff->ph->env;
1668 struct rb_root *root;
1669 struct rb_node *next;
1670
1671 down_read(&env->bpf_progs.lock);
1672
1673 root = &env->bpf_progs.btfs;
1674 next = rb_first(root);
1675
1676 while (next) {
1677 struct btf_node *node;
1678
1679 node = rb_entry(next, struct btf_node, rb_node);
1680 next = rb_next(&node->rb_node);
1681 fprintf(fp, "# btf info of id %u\n", node->id);
1682 }
1683
1684 up_read(&env->bpf_progs.lock);
1685}
1686
1687static void free_event_desc(struct evsel *events)
1688{
1689 struct evsel *evsel;
1690
1691 if (!events)
1692 return;
1693
1694 for (evsel = events; evsel->core.attr.size; evsel++) {
1695 zfree(&evsel->name);
1696 zfree(&evsel->core.id);
1697 }
1698
1699 free(events);
1700}
1701
1702static bool perf_attr_check(struct perf_event_attr *attr)
1703{
1704 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705 pr_warning("Reserved bits are set unexpectedly. "
1706 "Please update perf tool.\n");
1707 return false;
1708 }
1709
1710 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711 pr_warning("Unknown sample type (0x%llx) is detected. "
1712 "Please update perf tool.\n",
1713 attr->sample_type);
1714 return false;
1715 }
1716
1717 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718 pr_warning("Unknown read format (0x%llx) is detected. "
1719 "Please update perf tool.\n",
1720 attr->read_format);
1721 return false;
1722 }
1723
1724 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727 "Please update perf tool.\n",
1728 attr->branch_sample_type);
1729
1730 return false;
1731 }
1732
1733 return true;
1734}
1735
1736static struct evsel *read_event_desc(struct feat_fd *ff)
1737{
1738 struct evsel *evsel, *events = NULL;
1739 u64 *id;
1740 void *buf = NULL;
1741 u32 nre, sz, nr, i, j;
1742 size_t msz;
1743
1744 /* number of events */
1745 if (do_read_u32(ff, &nre))
1746 goto error;
1747
1748 if (do_read_u32(ff, &sz))
1749 goto error;
1750
1751 /* buffer to hold on file attr struct */
1752 buf = malloc(sz);
1753 if (!buf)
1754 goto error;
1755
1756 /* the last event terminates with evsel->core.attr.size == 0: */
1757 events = calloc(nre + 1, sizeof(*events));
1758 if (!events)
1759 goto error;
1760
1761 msz = sizeof(evsel->core.attr);
1762 if (sz < msz)
1763 msz = sz;
1764
1765 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766 evsel->idx = i;
1767
1768 /*
1769 * must read entire on-file attr struct to
1770 * sync up with layout.
1771 */
1772 if (__do_read(ff, buf, sz))
1773 goto error;
1774
1775 if (ff->ph->needs_swap)
1776 perf_event__attr_swap(buf);
1777
1778 memcpy(&evsel->core.attr, buf, msz);
1779
1780 if (!perf_attr_check(&evsel->core.attr))
1781 goto error;
1782
1783 if (do_read_u32(ff, &nr))
1784 goto error;
1785
1786 if (ff->ph->needs_swap)
1787 evsel->needs_swap = true;
1788
1789 evsel->name = do_read_string(ff);
1790 if (!evsel->name)
1791 goto error;
1792
1793 if (!nr)
1794 continue;
1795
1796 id = calloc(nr, sizeof(*id));
1797 if (!id)
1798 goto error;
1799 evsel->core.ids = nr;
1800 evsel->core.id = id;
1801
1802 for (j = 0 ; j < nr; j++) {
1803 if (do_read_u64(ff, id))
1804 goto error;
1805 id++;
1806 }
1807 }
1808out:
1809 free(buf);
1810 return events;
1811error:
1812 free_event_desc(events);
1813 events = NULL;
1814 goto out;
1815}
1816
1817static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818 void *priv __maybe_unused)
1819{
1820 return fprintf(fp, ", %s = %s", name, val);
1821}
1822
1823static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824{
1825 struct evsel *evsel, *events;
1826 u32 j;
1827 u64 *id;
1828
1829 if (ff->events)
1830 events = ff->events;
1831 else
1832 events = read_event_desc(ff);
1833
1834 if (!events) {
1835 fprintf(fp, "# event desc: not available or unable to read\n");
1836 return;
1837 }
1838
1839 for (evsel = events; evsel->core.attr.size; evsel++) {
1840 fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842 if (evsel->core.ids) {
1843 fprintf(fp, ", id = {");
1844 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 if (j)
1846 fputc(',', fp);
1847 fprintf(fp, " %"PRIu64, *id);
1848 }
1849 fprintf(fp, " }");
1850 }
1851
1852 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854 fputc('\n', fp);
1855 }
1856
1857 free_event_desc(events);
1858 ff->events = NULL;
1859}
1860
1861static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862{
1863 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864}
1865
1866static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867{
1868 int i;
1869 struct numa_node *n;
1870
1871 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872 n = &ff->ph->env.numa_nodes[i];
1873
1874 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1875 " free = %"PRIu64" kB\n",
1876 n->node, n->mem_total, n->mem_free);
1877
1878 fprintf(fp, "# node%u cpu list : ", n->node);
1879 cpu_map__fprintf(n->map, fp);
1880 }
1881}
1882
1883static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884{
1885 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886}
1887
1888static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889{
1890 fprintf(fp, "# contains samples with branch stack\n");
1891}
1892
1893static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894{
1895 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896}
1897
1898static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899{
1900 fprintf(fp, "# contains stat data\n");
1901}
1902
1903static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904{
1905 int i;
1906
1907 fprintf(fp, "# CPU cache info:\n");
1908 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909 fprintf(fp, "# ");
1910 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911 }
1912}
1913
1914static void print_compressed(struct feat_fd *ff, FILE *fp)
1915{
1916 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919}
1920
1921static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922{
1923 const char *delimiter = "# cpu pmu capabilities: ";
1924 u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925 char *str;
1926
1927 if (!nr_caps) {
1928 fprintf(fp, "# cpu pmu capabilities: not available\n");
1929 return;
1930 }
1931
1932 str = ff->ph->env.cpu_pmu_caps;
1933 while (nr_caps--) {
1934 fprintf(fp, "%s%s", delimiter, str);
1935 delimiter = ", ";
1936 str += strlen(str) + 1;
1937 }
1938
1939 fprintf(fp, "\n");
1940}
1941
1942static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943{
1944 const char *delimiter = "# pmu mappings: ";
1945 char *str, *tmp;
1946 u32 pmu_num;
1947 u32 type;
1948
1949 pmu_num = ff->ph->env.nr_pmu_mappings;
1950 if (!pmu_num) {
1951 fprintf(fp, "# pmu mappings: not available\n");
1952 return;
1953 }
1954
1955 str = ff->ph->env.pmu_mappings;
1956
1957 while (pmu_num) {
1958 type = strtoul(str, &tmp, 0);
1959 if (*tmp != ':')
1960 goto error;
1961
1962 str = tmp + 1;
1963 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965 delimiter = ", ";
1966 str += strlen(str) + 1;
1967 pmu_num--;
1968 }
1969
1970 fprintf(fp, "\n");
1971
1972 if (!pmu_num)
1973 return;
1974error:
1975 fprintf(fp, "# pmu mappings: unable to read\n");
1976}
1977
1978static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979{
1980 struct perf_session *session;
1981 struct evsel *evsel;
1982 u32 nr = 0;
1983
1984 session = container_of(ff->ph, struct perf_session, header);
1985
1986 evlist__for_each_entry(session->evlist, evsel) {
1987 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989
1990 nr = evsel->core.nr_members - 1;
1991 } else if (nr) {
1992 fprintf(fp, ",%s", evsel__name(evsel));
1993
1994 if (--nr == 0)
1995 fprintf(fp, "}\n");
1996 }
1997 }
1998}
1999
2000static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001{
2002 struct perf_session *session;
2003 char time_buf[32];
2004 double d;
2005
2006 session = container_of(ff->ph, struct perf_session, header);
2007
2008 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009 time_buf, sizeof(time_buf));
2010 fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013 time_buf, sizeof(time_buf));
2014 fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016 d = (double)(session->evlist->last_sample_time -
2017 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020}
2021
2022static void memory_node__fprintf(struct memory_node *n,
2023 unsigned long long bsize, FILE *fp)
2024{
2025 char buf_map[100], buf_size[50];
2026 unsigned long long size;
2027
2028 size = bsize * bitmap_weight(n->set, n->size);
2029 unit_number__scnprintf(buf_size, 50, size);
2030
2031 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033}
2034
2035static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036{
2037 struct memory_node *nodes;
2038 int i, nr;
2039
2040 nodes = ff->ph->env.memory_nodes;
2041 nr = ff->ph->env.nr_memory_nodes;
2042
2043 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044 nr, ff->ph->env.memory_bsize);
2045
2046 for (i = 0; i < nr; i++) {
2047 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048 }
2049}
2050
2051static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 char *filename,
2053 struct perf_session *session)
2054{
2055 int err = -1;
2056 struct machine *machine;
2057 u16 cpumode;
2058 struct dso *dso;
2059 enum dso_space_type dso_space;
2060
2061 machine = perf_session__findnew_machine(session, bev->pid);
2062 if (!machine)
2063 goto out;
2064
2065 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067 switch (cpumode) {
2068 case PERF_RECORD_MISC_KERNEL:
2069 dso_space = DSO_SPACE__KERNEL;
2070 break;
2071 case PERF_RECORD_MISC_GUEST_KERNEL:
2072 dso_space = DSO_SPACE__KERNEL_GUEST;
2073 break;
2074 case PERF_RECORD_MISC_USER:
2075 case PERF_RECORD_MISC_GUEST_USER:
2076 dso_space = DSO_SPACE__USER;
2077 break;
2078 default:
2079 goto out;
2080 }
2081
2082 dso = machine__findnew_dso(machine, filename);
2083 if (dso != NULL) {
2084 char sbuild_id[SBUILD_ID_SIZE];
2085
2086 dso__set_build_id(dso, &bev->build_id);
2087
2088 if (dso_space != DSO_SPACE__USER) {
2089 struct kmod_path m = { .name = NULL, };
2090
2091 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2092 dso__set_module_info(dso, &m, machine);
2093
2094 dso->kernel = dso_space;
2095 free(m.name);
2096 }
2097
2098 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2099 sbuild_id);
2100 pr_debug("build id event received for %s: %s\n",
2101 dso->long_name, sbuild_id);
2102 dso__put(dso);
2103 }
2104
2105 err = 0;
2106out:
2107 return err;
2108}
2109
2110static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2111 int input, u64 offset, u64 size)
2112{
2113 struct perf_session *session = container_of(header, struct perf_session, header);
2114 struct {
2115 struct perf_event_header header;
2116 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2117 char filename[0];
2118 } old_bev;
2119 struct perf_record_header_build_id bev;
2120 char filename[PATH_MAX];
2121 u64 limit = offset + size;
2122
2123 while (offset < limit) {
2124 ssize_t len;
2125
2126 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2127 return -1;
2128
2129 if (header->needs_swap)
2130 perf_event_header__bswap(&old_bev.header);
2131
2132 len = old_bev.header.size - sizeof(old_bev);
2133 if (readn(input, filename, len) != len)
2134 return -1;
2135
2136 bev.header = old_bev.header;
2137
2138 /*
2139 * As the pid is the missing value, we need to fill
2140 * it properly. The header.misc value give us nice hint.
2141 */
2142 bev.pid = HOST_KERNEL_ID;
2143 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2144 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2145 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2146
2147 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2148 __event_process_build_id(&bev, filename, session);
2149
2150 offset += bev.header.size;
2151 }
2152
2153 return 0;
2154}
2155
2156static int perf_header__read_build_ids(struct perf_header *header,
2157 int input, u64 offset, u64 size)
2158{
2159 struct perf_session *session = container_of(header, struct perf_session, header);
2160 struct perf_record_header_build_id bev;
2161 char filename[PATH_MAX];
2162 u64 limit = offset + size, orig_offset = offset;
2163 int err = -1;
2164
2165 while (offset < limit) {
2166 ssize_t len;
2167
2168 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2169 goto out;
2170
2171 if (header->needs_swap)
2172 perf_event_header__bswap(&bev.header);
2173
2174 len = bev.header.size - sizeof(bev);
2175 if (readn(input, filename, len) != len)
2176 goto out;
2177 /*
2178 * The a1645ce1 changeset:
2179 *
2180 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2181 *
2182 * Added a field to struct perf_record_header_build_id that broke the file
2183 * format.
2184 *
2185 * Since the kernel build-id is the first entry, process the
2186 * table using the old format if the well known
2187 * '[kernel.kallsyms]' string for the kernel build-id has the
2188 * first 4 characters chopped off (where the pid_t sits).
2189 */
2190 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2191 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2192 return -1;
2193 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2194 }
2195
2196 __event_process_build_id(&bev, filename, session);
2197
2198 offset += bev.header.size;
2199 }
2200 err = 0;
2201out:
2202 return err;
2203}
2204
2205/* Macro for features that simply need to read and store a string. */
2206#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2207static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2208{\
2209 ff->ph->env.__feat_env = do_read_string(ff); \
2210 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2211}
2212
2213FEAT_PROCESS_STR_FUN(hostname, hostname);
2214FEAT_PROCESS_STR_FUN(osrelease, os_release);
2215FEAT_PROCESS_STR_FUN(version, version);
2216FEAT_PROCESS_STR_FUN(arch, arch);
2217FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2218FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2219
2220static int process_tracing_data(struct feat_fd *ff, void *data)
2221{
2222 ssize_t ret = trace_report(ff->fd, data, false);
2223
2224 return ret < 0 ? -1 : 0;
2225}
2226
2227static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2228{
2229 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2230 pr_debug("Failed to read buildids, continuing...\n");
2231 return 0;
2232}
2233
2234static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2235{
2236 int ret;
2237 u32 nr_cpus_avail, nr_cpus_online;
2238
2239 ret = do_read_u32(ff, &nr_cpus_avail);
2240 if (ret)
2241 return ret;
2242
2243 ret = do_read_u32(ff, &nr_cpus_online);
2244 if (ret)
2245 return ret;
2246 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2247 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2248 return 0;
2249}
2250
2251static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2252{
2253 u64 total_mem;
2254 int ret;
2255
2256 ret = do_read_u64(ff, &total_mem);
2257 if (ret)
2258 return -1;
2259 ff->ph->env.total_mem = (unsigned long long)total_mem;
2260 return 0;
2261}
2262
2263static struct evsel *
2264perf_evlist__find_by_index(struct evlist *evlist, int idx)
2265{
2266 struct evsel *evsel;
2267
2268 evlist__for_each_entry(evlist, evsel) {
2269 if (evsel->idx == idx)
2270 return evsel;
2271 }
2272
2273 return NULL;
2274}
2275
2276static void
2277perf_evlist__set_event_name(struct evlist *evlist,
2278 struct evsel *event)
2279{
2280 struct evsel *evsel;
2281
2282 if (!event->name)
2283 return;
2284
2285 evsel = perf_evlist__find_by_index(evlist, event->idx);
2286 if (!evsel)
2287 return;
2288
2289 if (evsel->name)
2290 return;
2291
2292 evsel->name = strdup(event->name);
2293}
2294
2295static int
2296process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2297{
2298 struct perf_session *session;
2299 struct evsel *evsel, *events = read_event_desc(ff);
2300
2301 if (!events)
2302 return 0;
2303
2304 session = container_of(ff->ph, struct perf_session, header);
2305
2306 if (session->data->is_pipe) {
2307 /* Save events for reading later by print_event_desc,
2308 * since they can't be read again in pipe mode. */
2309 ff->events = events;
2310 }
2311
2312 for (evsel = events; evsel->core.attr.size; evsel++)
2313 perf_evlist__set_event_name(session->evlist, evsel);
2314
2315 if (!session->data->is_pipe)
2316 free_event_desc(events);
2317
2318 return 0;
2319}
2320
2321static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2322{
2323 char *str, *cmdline = NULL, **argv = NULL;
2324 u32 nr, i, len = 0;
2325
2326 if (do_read_u32(ff, &nr))
2327 return -1;
2328
2329 ff->ph->env.nr_cmdline = nr;
2330
2331 cmdline = zalloc(ff->size + nr + 1);
2332 if (!cmdline)
2333 return -1;
2334
2335 argv = zalloc(sizeof(char *) * (nr + 1));
2336 if (!argv)
2337 goto error;
2338
2339 for (i = 0; i < nr; i++) {
2340 str = do_read_string(ff);
2341 if (!str)
2342 goto error;
2343
2344 argv[i] = cmdline + len;
2345 memcpy(argv[i], str, strlen(str) + 1);
2346 len += strlen(str) + 1;
2347 free(str);
2348 }
2349 ff->ph->env.cmdline = cmdline;
2350 ff->ph->env.cmdline_argv = (const char **) argv;
2351 return 0;
2352
2353error:
2354 free(argv);
2355 free(cmdline);
2356 return -1;
2357}
2358
2359static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2360{
2361 u32 nr, i;
2362 char *str;
2363 struct strbuf sb;
2364 int cpu_nr = ff->ph->env.nr_cpus_avail;
2365 u64 size = 0;
2366 struct perf_header *ph = ff->ph;
2367 bool do_core_id_test = true;
2368
2369 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2370 if (!ph->env.cpu)
2371 return -1;
2372
2373 if (do_read_u32(ff, &nr))
2374 goto free_cpu;
2375
2376 ph->env.nr_sibling_cores = nr;
2377 size += sizeof(u32);
2378 if (strbuf_init(&sb, 128) < 0)
2379 goto free_cpu;
2380
2381 for (i = 0; i < nr; i++) {
2382 str = do_read_string(ff);
2383 if (!str)
2384 goto error;
2385
2386 /* include a NULL character at the end */
2387 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2388 goto error;
2389 size += string_size(str);
2390 free(str);
2391 }
2392 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2393
2394 if (do_read_u32(ff, &nr))
2395 return -1;
2396
2397 ph->env.nr_sibling_threads = nr;
2398 size += sizeof(u32);
2399
2400 for (i = 0; i < nr; i++) {
2401 str = do_read_string(ff);
2402 if (!str)
2403 goto error;
2404
2405 /* include a NULL character at the end */
2406 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2407 goto error;
2408 size += string_size(str);
2409 free(str);
2410 }
2411 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2412
2413 /*
2414 * The header may be from old perf,
2415 * which doesn't include core id and socket id information.
2416 */
2417 if (ff->size <= size) {
2418 zfree(&ph->env.cpu);
2419 return 0;
2420 }
2421
2422 /* On s390 the socket_id number is not related to the numbers of cpus.
2423 * The socket_id number might be higher than the numbers of cpus.
2424 * This depends on the configuration.
2425 * AArch64 is the same.
2426 */
2427 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2428 || !strncmp(ph->env.arch, "aarch64", 7)))
2429 do_core_id_test = false;
2430
2431 for (i = 0; i < (u32)cpu_nr; i++) {
2432 if (do_read_u32(ff, &nr))
2433 goto free_cpu;
2434
2435 ph->env.cpu[i].core_id = nr;
2436 size += sizeof(u32);
2437
2438 if (do_read_u32(ff, &nr))
2439 goto free_cpu;
2440
2441 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442 pr_debug("socket_id number is too big."
2443 "You may need to upgrade the perf tool.\n");
2444 goto free_cpu;
2445 }
2446
2447 ph->env.cpu[i].socket_id = nr;
2448 size += sizeof(u32);
2449 }
2450
2451 /*
2452 * The header may be from old perf,
2453 * which doesn't include die information.
2454 */
2455 if (ff->size <= size)
2456 return 0;
2457
2458 if (do_read_u32(ff, &nr))
2459 return -1;
2460
2461 ph->env.nr_sibling_dies = nr;
2462 size += sizeof(u32);
2463
2464 for (i = 0; i < nr; i++) {
2465 str = do_read_string(ff);
2466 if (!str)
2467 goto error;
2468
2469 /* include a NULL character at the end */
2470 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2471 goto error;
2472 size += string_size(str);
2473 free(str);
2474 }
2475 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2476
2477 for (i = 0; i < (u32)cpu_nr; i++) {
2478 if (do_read_u32(ff, &nr))
2479 goto free_cpu;
2480
2481 ph->env.cpu[i].die_id = nr;
2482 }
2483
2484 return 0;
2485
2486error:
2487 strbuf_release(&sb);
2488free_cpu:
2489 zfree(&ph->env.cpu);
2490 return -1;
2491}
2492
2493static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2494{
2495 struct numa_node *nodes, *n;
2496 u32 nr, i;
2497 char *str;
2498
2499 /* nr nodes */
2500 if (do_read_u32(ff, &nr))
2501 return -1;
2502
2503 nodes = zalloc(sizeof(*nodes) * nr);
2504 if (!nodes)
2505 return -ENOMEM;
2506
2507 for (i = 0; i < nr; i++) {
2508 n = &nodes[i];
2509
2510 /* node number */
2511 if (do_read_u32(ff, &n->node))
2512 goto error;
2513
2514 if (do_read_u64(ff, &n->mem_total))
2515 goto error;
2516
2517 if (do_read_u64(ff, &n->mem_free))
2518 goto error;
2519
2520 str = do_read_string(ff);
2521 if (!str)
2522 goto error;
2523
2524 n->map = perf_cpu_map__new(str);
2525 if (!n->map)
2526 goto error;
2527
2528 free(str);
2529 }
2530 ff->ph->env.nr_numa_nodes = nr;
2531 ff->ph->env.numa_nodes = nodes;
2532 return 0;
2533
2534error:
2535 free(nodes);
2536 return -1;
2537}
2538
2539static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2540{
2541 char *name;
2542 u32 pmu_num;
2543 u32 type;
2544 struct strbuf sb;
2545
2546 if (do_read_u32(ff, &pmu_num))
2547 return -1;
2548
2549 if (!pmu_num) {
2550 pr_debug("pmu mappings not available\n");
2551 return 0;
2552 }
2553
2554 ff->ph->env.nr_pmu_mappings = pmu_num;
2555 if (strbuf_init(&sb, 128) < 0)
2556 return -1;
2557
2558 while (pmu_num) {
2559 if (do_read_u32(ff, &type))
2560 goto error;
2561
2562 name = do_read_string(ff);
2563 if (!name)
2564 goto error;
2565
2566 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2567 goto error;
2568 /* include a NULL character at the end */
2569 if (strbuf_add(&sb, "", 1) < 0)
2570 goto error;
2571
2572 if (!strcmp(name, "msr"))
2573 ff->ph->env.msr_pmu_type = type;
2574
2575 free(name);
2576 pmu_num--;
2577 }
2578 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2579 return 0;
2580
2581error:
2582 strbuf_release(&sb);
2583 return -1;
2584}
2585
2586static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2587{
2588 size_t ret = -1;
2589 u32 i, nr, nr_groups;
2590 struct perf_session *session;
2591 struct evsel *evsel, *leader = NULL;
2592 struct group_desc {
2593 char *name;
2594 u32 leader_idx;
2595 u32 nr_members;
2596 } *desc;
2597
2598 if (do_read_u32(ff, &nr_groups))
2599 return -1;
2600
2601 ff->ph->env.nr_groups = nr_groups;
2602 if (!nr_groups) {
2603 pr_debug("group desc not available\n");
2604 return 0;
2605 }
2606
2607 desc = calloc(nr_groups, sizeof(*desc));
2608 if (!desc)
2609 return -1;
2610
2611 for (i = 0; i < nr_groups; i++) {
2612 desc[i].name = do_read_string(ff);
2613 if (!desc[i].name)
2614 goto out_free;
2615
2616 if (do_read_u32(ff, &desc[i].leader_idx))
2617 goto out_free;
2618
2619 if (do_read_u32(ff, &desc[i].nr_members))
2620 goto out_free;
2621 }
2622
2623 /*
2624 * Rebuild group relationship based on the group_desc
2625 */
2626 session = container_of(ff->ph, struct perf_session, header);
2627 session->evlist->nr_groups = nr_groups;
2628
2629 i = nr = 0;
2630 evlist__for_each_entry(session->evlist, evsel) {
2631 if (evsel->idx == (int) desc[i].leader_idx) {
2632 evsel->leader = evsel;
2633 /* {anon_group} is a dummy name */
2634 if (strcmp(desc[i].name, "{anon_group}")) {
2635 evsel->group_name = desc[i].name;
2636 desc[i].name = NULL;
2637 }
2638 evsel->core.nr_members = desc[i].nr_members;
2639
2640 if (i >= nr_groups || nr > 0) {
2641 pr_debug("invalid group desc\n");
2642 goto out_free;
2643 }
2644
2645 leader = evsel;
2646 nr = evsel->core.nr_members - 1;
2647 i++;
2648 } else if (nr) {
2649 /* This is a group member */
2650 evsel->leader = leader;
2651
2652 nr--;
2653 }
2654 }
2655
2656 if (i != nr_groups || nr != 0) {
2657 pr_debug("invalid group desc\n");
2658 goto out_free;
2659 }
2660
2661 ret = 0;
2662out_free:
2663 for (i = 0; i < nr_groups; i++)
2664 zfree(&desc[i].name);
2665 free(desc);
2666
2667 return ret;
2668}
2669
2670static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2671{
2672 struct perf_session *session;
2673 int err;
2674
2675 session = container_of(ff->ph, struct perf_session, header);
2676
2677 err = auxtrace_index__process(ff->fd, ff->size, session,
2678 ff->ph->needs_swap);
2679 if (err < 0)
2680 pr_err("Failed to process auxtrace index\n");
2681 return err;
2682}
2683
2684static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2685{
2686 struct cpu_cache_level *caches;
2687 u32 cnt, i, version;
2688
2689 if (do_read_u32(ff, &version))
2690 return -1;
2691
2692 if (version != 1)
2693 return -1;
2694
2695 if (do_read_u32(ff, &cnt))
2696 return -1;
2697
2698 caches = zalloc(sizeof(*caches) * cnt);
2699 if (!caches)
2700 return -1;
2701
2702 for (i = 0; i < cnt; i++) {
2703 struct cpu_cache_level c;
2704
2705 #define _R(v) \
2706 if (do_read_u32(ff, &c.v))\
2707 goto out_free_caches; \
2708
2709 _R(level)
2710 _R(line_size)
2711 _R(sets)
2712 _R(ways)
2713 #undef _R
2714
2715 #define _R(v) \
2716 c.v = do_read_string(ff); \
2717 if (!c.v) \
2718 goto out_free_caches;
2719
2720 _R(type)
2721 _R(size)
2722 _R(map)
2723 #undef _R
2724
2725 caches[i] = c;
2726 }
2727
2728 ff->ph->env.caches = caches;
2729 ff->ph->env.caches_cnt = cnt;
2730 return 0;
2731out_free_caches:
2732 free(caches);
2733 return -1;
2734}
2735
2736static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2737{
2738 struct perf_session *session;
2739 u64 first_sample_time, last_sample_time;
2740 int ret;
2741
2742 session = container_of(ff->ph, struct perf_session, header);
2743
2744 ret = do_read_u64(ff, &first_sample_time);
2745 if (ret)
2746 return -1;
2747
2748 ret = do_read_u64(ff, &last_sample_time);
2749 if (ret)
2750 return -1;
2751
2752 session->evlist->first_sample_time = first_sample_time;
2753 session->evlist->last_sample_time = last_sample_time;
2754 return 0;
2755}
2756
2757static int process_mem_topology(struct feat_fd *ff,
2758 void *data __maybe_unused)
2759{
2760 struct memory_node *nodes;
2761 u64 version, i, nr, bsize;
2762 int ret = -1;
2763
2764 if (do_read_u64(ff, &version))
2765 return -1;
2766
2767 if (version != 1)
2768 return -1;
2769
2770 if (do_read_u64(ff, &bsize))
2771 return -1;
2772
2773 if (do_read_u64(ff, &nr))
2774 return -1;
2775
2776 nodes = zalloc(sizeof(*nodes) * nr);
2777 if (!nodes)
2778 return -1;
2779
2780 for (i = 0; i < nr; i++) {
2781 struct memory_node n;
2782
2783 #define _R(v) \
2784 if (do_read_u64(ff, &n.v)) \
2785 goto out; \
2786
2787 _R(node)
2788 _R(size)
2789
2790 #undef _R
2791
2792 if (do_read_bitmap(ff, &n.set, &n.size))
2793 goto out;
2794
2795 nodes[i] = n;
2796 }
2797
2798 ff->ph->env.memory_bsize = bsize;
2799 ff->ph->env.memory_nodes = nodes;
2800 ff->ph->env.nr_memory_nodes = nr;
2801 ret = 0;
2802
2803out:
2804 if (ret)
2805 free(nodes);
2806 return ret;
2807}
2808
2809static int process_clockid(struct feat_fd *ff,
2810 void *data __maybe_unused)
2811{
2812 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2813 return -1;
2814
2815 return 0;
2816}
2817
2818static int process_clock_data(struct feat_fd *ff,
2819 void *_data __maybe_unused)
2820{
2821 u32 data32;
2822 u64 data64;
2823
2824 /* version */
2825 if (do_read_u32(ff, &data32))
2826 return -1;
2827
2828 if (data32 != 1)
2829 return -1;
2830
2831 /* clockid */
2832 if (do_read_u32(ff, &data32))
2833 return -1;
2834
2835 ff->ph->env.clock.clockid = data32;
2836
2837 /* TOD ref time */
2838 if (do_read_u64(ff, &data64))
2839 return -1;
2840
2841 ff->ph->env.clock.tod_ns = data64;
2842
2843 /* clockid ref time */
2844 if (do_read_u64(ff, &data64))
2845 return -1;
2846
2847 ff->ph->env.clock.clockid_ns = data64;
2848 ff->ph->env.clock.enabled = true;
2849 return 0;
2850}
2851
2852static int process_dir_format(struct feat_fd *ff,
2853 void *_data __maybe_unused)
2854{
2855 struct perf_session *session;
2856 struct perf_data *data;
2857
2858 session = container_of(ff->ph, struct perf_session, header);
2859 data = session->data;
2860
2861 if (WARN_ON(!perf_data__is_dir(data)))
2862 return -1;
2863
2864 return do_read_u64(ff, &data->dir.version);
2865}
2866
2867#ifdef HAVE_LIBBPF_SUPPORT
2868static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2869{
2870 struct bpf_prog_info_linear *info_linear;
2871 struct bpf_prog_info_node *info_node;
2872 struct perf_env *env = &ff->ph->env;
2873 u32 count, i;
2874 int err = -1;
2875
2876 if (ff->ph->needs_swap) {
2877 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2878 return 0;
2879 }
2880
2881 if (do_read_u32(ff, &count))
2882 return -1;
2883
2884 down_write(&env->bpf_progs.lock);
2885
2886 for (i = 0; i < count; ++i) {
2887 u32 info_len, data_len;
2888
2889 info_linear = NULL;
2890 info_node = NULL;
2891 if (do_read_u32(ff, &info_len))
2892 goto out;
2893 if (do_read_u32(ff, &data_len))
2894 goto out;
2895
2896 if (info_len > sizeof(struct bpf_prog_info)) {
2897 pr_warning("detected invalid bpf_prog_info\n");
2898 goto out;
2899 }
2900
2901 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2902 data_len);
2903 if (!info_linear)
2904 goto out;
2905 info_linear->info_len = sizeof(struct bpf_prog_info);
2906 info_linear->data_len = data_len;
2907 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2908 goto out;
2909 if (__do_read(ff, &info_linear->info, info_len))
2910 goto out;
2911 if (info_len < sizeof(struct bpf_prog_info))
2912 memset(((void *)(&info_linear->info)) + info_len, 0,
2913 sizeof(struct bpf_prog_info) - info_len);
2914
2915 if (__do_read(ff, info_linear->data, data_len))
2916 goto out;
2917
2918 info_node = malloc(sizeof(struct bpf_prog_info_node));
2919 if (!info_node)
2920 goto out;
2921
2922 /* after reading from file, translate offset to address */
2923 bpf_program__bpil_offs_to_addr(info_linear);
2924 info_node->info_linear = info_linear;
2925 perf_env__insert_bpf_prog_info(env, info_node);
2926 }
2927
2928 up_write(&env->bpf_progs.lock);
2929 return 0;
2930out:
2931 free(info_linear);
2932 free(info_node);
2933 up_write(&env->bpf_progs.lock);
2934 return err;
2935}
2936#else // HAVE_LIBBPF_SUPPORT
2937static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2938{
2939 return 0;
2940}
2941#endif // HAVE_LIBBPF_SUPPORT
2942
2943static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2944{
2945 struct perf_env *env = &ff->ph->env;
2946 struct btf_node *node = NULL;
2947 u32 count, i;
2948 int err = -1;
2949
2950 if (ff->ph->needs_swap) {
2951 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2952 return 0;
2953 }
2954
2955 if (do_read_u32(ff, &count))
2956 return -1;
2957
2958 down_write(&env->bpf_progs.lock);
2959
2960 for (i = 0; i < count; ++i) {
2961 u32 id, data_size;
2962
2963 if (do_read_u32(ff, &id))
2964 goto out;
2965 if (do_read_u32(ff, &data_size))
2966 goto out;
2967
2968 node = malloc(sizeof(struct btf_node) + data_size);
2969 if (!node)
2970 goto out;
2971
2972 node->id = id;
2973 node->data_size = data_size;
2974
2975 if (__do_read(ff, node->data, data_size))
2976 goto out;
2977
2978 perf_env__insert_btf(env, node);
2979 node = NULL;
2980 }
2981
2982 err = 0;
2983out:
2984 up_write(&env->bpf_progs.lock);
2985 free(node);
2986 return err;
2987}
2988
2989static int process_compressed(struct feat_fd *ff,
2990 void *data __maybe_unused)
2991{
2992 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2993 return -1;
2994
2995 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2996 return -1;
2997
2998 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2999 return -1;
3000
3001 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3002 return -1;
3003
3004 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3005 return -1;
3006
3007 return 0;
3008}
3009
3010static int process_cpu_pmu_caps(struct feat_fd *ff,
3011 void *data __maybe_unused)
3012{
3013 char *name, *value;
3014 struct strbuf sb;
3015 u32 nr_caps;
3016
3017 if (do_read_u32(ff, &nr_caps))
3018 return -1;
3019
3020 if (!nr_caps) {
3021 pr_debug("cpu pmu capabilities not available\n");
3022 return 0;
3023 }
3024
3025 ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3026
3027 if (strbuf_init(&sb, 128) < 0)
3028 return -1;
3029
3030 while (nr_caps--) {
3031 name = do_read_string(ff);
3032 if (!name)
3033 goto error;
3034
3035 value = do_read_string(ff);
3036 if (!value)
3037 goto free_name;
3038
3039 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3040 goto free_value;
3041
3042 /* include a NULL character at the end */
3043 if (strbuf_add(&sb, "", 1) < 0)
3044 goto free_value;
3045
3046 if (!strcmp(name, "branches"))
3047 ff->ph->env.max_branches = atoi(value);
3048
3049 free(value);
3050 free(name);
3051 }
3052 ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3053 return 0;
3054
3055free_value:
3056 free(value);
3057free_name:
3058 free(name);
3059error:
3060 strbuf_release(&sb);
3061 return -1;
3062}
3063
3064#define FEAT_OPR(n, func, __full_only) \
3065 [HEADER_##n] = { \
3066 .name = __stringify(n), \
3067 .write = write_##func, \
3068 .print = print_##func, \
3069 .full_only = __full_only, \
3070 .process = process_##func, \
3071 .synthesize = true \
3072 }
3073
3074#define FEAT_OPN(n, func, __full_only) \
3075 [HEADER_##n] = { \
3076 .name = __stringify(n), \
3077 .write = write_##func, \
3078 .print = print_##func, \
3079 .full_only = __full_only, \
3080 .process = process_##func \
3081 }
3082
3083/* feature_ops not implemented: */
3084#define print_tracing_data NULL
3085#define print_build_id NULL
3086
3087#define process_branch_stack NULL
3088#define process_stat NULL
3089
3090// Only used in util/synthetic-events.c
3091const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3092
3093const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3094 FEAT_OPN(TRACING_DATA, tracing_data, false),
3095 FEAT_OPN(BUILD_ID, build_id, false),
3096 FEAT_OPR(HOSTNAME, hostname, false),
3097 FEAT_OPR(OSRELEASE, osrelease, false),
3098 FEAT_OPR(VERSION, version, false),
3099 FEAT_OPR(ARCH, arch, false),
3100 FEAT_OPR(NRCPUS, nrcpus, false),
3101 FEAT_OPR(CPUDESC, cpudesc, false),
3102 FEAT_OPR(CPUID, cpuid, false),
3103 FEAT_OPR(TOTAL_MEM, total_mem, false),
3104 FEAT_OPR(EVENT_DESC, event_desc, false),
3105 FEAT_OPR(CMDLINE, cmdline, false),
3106 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3107 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3108 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3109 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3110 FEAT_OPR(GROUP_DESC, group_desc, false),
3111 FEAT_OPN(AUXTRACE, auxtrace, false),
3112 FEAT_OPN(STAT, stat, false),
3113 FEAT_OPN(CACHE, cache, true),
3114 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3115 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3116 FEAT_OPR(CLOCKID, clockid, false),
3117 FEAT_OPN(DIR_FORMAT, dir_format, false),
3118 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3119 FEAT_OPR(BPF_BTF, bpf_btf, false),
3120 FEAT_OPR(COMPRESSED, compressed, false),
3121 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3122 FEAT_OPR(CLOCK_DATA, clock_data, false),
3123};
3124
3125struct header_print_data {
3126 FILE *fp;
3127 bool full; /* extended list of headers */
3128};
3129
3130static int perf_file_section__fprintf_info(struct perf_file_section *section,
3131 struct perf_header *ph,
3132 int feat, int fd, void *data)
3133{
3134 struct header_print_data *hd = data;
3135 struct feat_fd ff;
3136
3137 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3138 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3139 "%d, continuing...\n", section->offset, feat);
3140 return 0;
3141 }
3142 if (feat >= HEADER_LAST_FEATURE) {
3143 pr_warning("unknown feature %d\n", feat);
3144 return 0;
3145 }
3146 if (!feat_ops[feat].print)
3147 return 0;
3148
3149 ff = (struct feat_fd) {
3150 .fd = fd,
3151 .ph = ph,
3152 };
3153
3154 if (!feat_ops[feat].full_only || hd->full)
3155 feat_ops[feat].print(&ff, hd->fp);
3156 else
3157 fprintf(hd->fp, "# %s info available, use -I to display\n",
3158 feat_ops[feat].name);
3159
3160 return 0;
3161}
3162
3163int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3164{
3165 struct header_print_data hd;
3166 struct perf_header *header = &session->header;
3167 int fd = perf_data__fd(session->data);
3168 struct stat st;
3169 time_t stctime;
3170 int ret, bit;
3171
3172 hd.fp = fp;
3173 hd.full = full;
3174
3175 ret = fstat(fd, &st);
3176 if (ret == -1)
3177 return -1;
3178
3179 stctime = st.st_mtime;
3180 fprintf(fp, "# captured on : %s", ctime(&stctime));
3181
3182 fprintf(fp, "# header version : %u\n", header->version);
3183 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3184 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3185 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3186
3187 perf_header__process_sections(header, fd, &hd,
3188 perf_file_section__fprintf_info);
3189
3190 if (session->data->is_pipe)
3191 return 0;
3192
3193 fprintf(fp, "# missing features: ");
3194 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3195 if (bit)
3196 fprintf(fp, "%s ", feat_ops[bit].name);
3197 }
3198
3199 fprintf(fp, "\n");
3200 return 0;
3201}
3202
3203static int do_write_feat(struct feat_fd *ff, int type,
3204 struct perf_file_section **p,
3205 struct evlist *evlist)
3206{
3207 int err;
3208 int ret = 0;
3209
3210 if (perf_header__has_feat(ff->ph, type)) {
3211 if (!feat_ops[type].write)
3212 return -1;
3213
3214 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3215 return -1;
3216
3217 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3218
3219 err = feat_ops[type].write(ff, evlist);
3220 if (err < 0) {
3221 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3222
3223 /* undo anything written */
3224 lseek(ff->fd, (*p)->offset, SEEK_SET);
3225
3226 return -1;
3227 }
3228 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3229 (*p)++;
3230 }
3231 return ret;
3232}
3233
3234static int perf_header__adds_write(struct perf_header *header,
3235 struct evlist *evlist, int fd)
3236{
3237 int nr_sections;
3238 struct feat_fd ff;
3239 struct perf_file_section *feat_sec, *p;
3240 int sec_size;
3241 u64 sec_start;
3242 int feat;
3243 int err;
3244
3245 ff = (struct feat_fd){
3246 .fd = fd,
3247 .ph = header,
3248 };
3249
3250 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3251 if (!nr_sections)
3252 return 0;
3253
3254 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3255 if (feat_sec == NULL)
3256 return -ENOMEM;
3257
3258 sec_size = sizeof(*feat_sec) * nr_sections;
3259
3260 sec_start = header->feat_offset;
3261 lseek(fd, sec_start + sec_size, SEEK_SET);
3262
3263 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3264 if (do_write_feat(&ff, feat, &p, evlist))
3265 perf_header__clear_feat(header, feat);
3266 }
3267
3268 lseek(fd, sec_start, SEEK_SET);
3269 /*
3270 * may write more than needed due to dropped feature, but
3271 * this is okay, reader will skip the missing entries
3272 */
3273 err = do_write(&ff, feat_sec, sec_size);
3274 if (err < 0)
3275 pr_debug("failed to write feature section\n");
3276 free(feat_sec);
3277 return err;
3278}
3279
3280int perf_header__write_pipe(int fd)
3281{
3282 struct perf_pipe_file_header f_header;
3283 struct feat_fd ff;
3284 int err;
3285
3286 ff = (struct feat_fd){ .fd = fd };
3287
3288 f_header = (struct perf_pipe_file_header){
3289 .magic = PERF_MAGIC,
3290 .size = sizeof(f_header),
3291 };
3292
3293 err = do_write(&ff, &f_header, sizeof(f_header));
3294 if (err < 0) {
3295 pr_debug("failed to write perf pipe header\n");
3296 return err;
3297 }
3298
3299 return 0;
3300}
3301
3302int perf_session__write_header(struct perf_session *session,
3303 struct evlist *evlist,
3304 int fd, bool at_exit)
3305{
3306 struct perf_file_header f_header;
3307 struct perf_file_attr f_attr;
3308 struct perf_header *header = &session->header;
3309 struct evsel *evsel;
3310 struct feat_fd ff;
3311 u64 attr_offset;
3312 int err;
3313
3314 ff = (struct feat_fd){ .fd = fd};
3315 lseek(fd, sizeof(f_header), SEEK_SET);
3316
3317 evlist__for_each_entry(session->evlist, evsel) {
3318 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3319 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3320 if (err < 0) {
3321 pr_debug("failed to write perf header\n");
3322 return err;
3323 }
3324 }
3325
3326 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3327
3328 evlist__for_each_entry(evlist, evsel) {
3329 f_attr = (struct perf_file_attr){
3330 .attr = evsel->core.attr,
3331 .ids = {
3332 .offset = evsel->id_offset,
3333 .size = evsel->core.ids * sizeof(u64),
3334 }
3335 };
3336 err = do_write(&ff, &f_attr, sizeof(f_attr));
3337 if (err < 0) {
3338 pr_debug("failed to write perf header attribute\n");
3339 return err;
3340 }
3341 }
3342
3343 if (!header->data_offset)
3344 header->data_offset = lseek(fd, 0, SEEK_CUR);
3345 header->feat_offset = header->data_offset + header->data_size;
3346
3347 if (at_exit) {
3348 err = perf_header__adds_write(header, evlist, fd);
3349 if (err < 0)
3350 return err;
3351 }
3352
3353 f_header = (struct perf_file_header){
3354 .magic = PERF_MAGIC,
3355 .size = sizeof(f_header),
3356 .attr_size = sizeof(f_attr),
3357 .attrs = {
3358 .offset = attr_offset,
3359 .size = evlist->core.nr_entries * sizeof(f_attr),
3360 },
3361 .data = {
3362 .offset = header->data_offset,
3363 .size = header->data_size,
3364 },
3365 /* event_types is ignored, store zeros */
3366 };
3367
3368 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3369
3370 lseek(fd, 0, SEEK_SET);
3371 err = do_write(&ff, &f_header, sizeof(f_header));
3372 if (err < 0) {
3373 pr_debug("failed to write perf header\n");
3374 return err;
3375 }
3376 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3377
3378 return 0;
3379}
3380
3381static int perf_header__getbuffer64(struct perf_header *header,
3382 int fd, void *buf, size_t size)
3383{
3384 if (readn(fd, buf, size) <= 0)
3385 return -1;
3386
3387 if (header->needs_swap)
3388 mem_bswap_64(buf, size);
3389
3390 return 0;
3391}
3392
3393int perf_header__process_sections(struct perf_header *header, int fd,
3394 void *data,
3395 int (*process)(struct perf_file_section *section,
3396 struct perf_header *ph,
3397 int feat, int fd, void *data))
3398{
3399 struct perf_file_section *feat_sec, *sec;
3400 int nr_sections;
3401 int sec_size;
3402 int feat;
3403 int err;
3404
3405 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3406 if (!nr_sections)
3407 return 0;
3408
3409 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3410 if (!feat_sec)
3411 return -1;
3412
3413 sec_size = sizeof(*feat_sec) * nr_sections;
3414
3415 lseek(fd, header->feat_offset, SEEK_SET);
3416
3417 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3418 if (err < 0)
3419 goto out_free;
3420
3421 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3422 err = process(sec++, header, feat, fd, data);
3423 if (err < 0)
3424 goto out_free;
3425 }
3426 err = 0;
3427out_free:
3428 free(feat_sec);
3429 return err;
3430}
3431
3432static const int attr_file_abi_sizes[] = {
3433 [0] = PERF_ATTR_SIZE_VER0,
3434 [1] = PERF_ATTR_SIZE_VER1,
3435 [2] = PERF_ATTR_SIZE_VER2,
3436 [3] = PERF_ATTR_SIZE_VER3,
3437 [4] = PERF_ATTR_SIZE_VER4,
3438 0,
3439};
3440
3441/*
3442 * In the legacy file format, the magic number is not used to encode endianness.
3443 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3444 * on ABI revisions, we need to try all combinations for all endianness to
3445 * detect the endianness.
3446 */
3447static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3448{
3449 uint64_t ref_size, attr_size;
3450 int i;
3451
3452 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3453 ref_size = attr_file_abi_sizes[i]
3454 + sizeof(struct perf_file_section);
3455 if (hdr_sz != ref_size) {
3456 attr_size = bswap_64(hdr_sz);
3457 if (attr_size != ref_size)
3458 continue;
3459
3460 ph->needs_swap = true;
3461 }
3462 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3463 i,
3464 ph->needs_swap);
3465 return 0;
3466 }
3467 /* could not determine endianness */
3468 return -1;
3469}
3470
3471#define PERF_PIPE_HDR_VER0 16
3472
3473static const size_t attr_pipe_abi_sizes[] = {
3474 [0] = PERF_PIPE_HDR_VER0,
3475 0,
3476};
3477
3478/*
3479 * In the legacy pipe format, there is an implicit assumption that endiannesss
3480 * between host recording the samples, and host parsing the samples is the
3481 * same. This is not always the case given that the pipe output may always be
3482 * redirected into a file and analyzed on a different machine with possibly a
3483 * different endianness and perf_event ABI revsions in the perf tool itself.
3484 */
3485static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3486{
3487 u64 attr_size;
3488 int i;
3489
3490 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3491 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3492 attr_size = bswap_64(hdr_sz);
3493 if (attr_size != hdr_sz)
3494 continue;
3495
3496 ph->needs_swap = true;
3497 }
3498 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3499 return 0;
3500 }
3501 return -1;
3502}
3503
3504bool is_perf_magic(u64 magic)
3505{
3506 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3507 || magic == __perf_magic2
3508 || magic == __perf_magic2_sw)
3509 return true;
3510
3511 return false;
3512}
3513
3514static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3515 bool is_pipe, struct perf_header *ph)
3516{
3517 int ret;
3518
3519 /* check for legacy format */
3520 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3521 if (ret == 0) {
3522 ph->version = PERF_HEADER_VERSION_1;
3523 pr_debug("legacy perf.data format\n");
3524 if (is_pipe)
3525 return try_all_pipe_abis(hdr_sz, ph);
3526
3527 return try_all_file_abis(hdr_sz, ph);
3528 }
3529 /*
3530 * the new magic number serves two purposes:
3531 * - unique number to identify actual perf.data files
3532 * - encode endianness of file
3533 */
3534 ph->version = PERF_HEADER_VERSION_2;
3535
3536 /* check magic number with one endianness */
3537 if (magic == __perf_magic2)
3538 return 0;
3539
3540 /* check magic number with opposite endianness */
3541 if (magic != __perf_magic2_sw)
3542 return -1;
3543
3544 ph->needs_swap = true;
3545
3546 return 0;
3547}
3548
3549int perf_file_header__read(struct perf_file_header *header,
3550 struct perf_header *ph, int fd)
3551{
3552 ssize_t ret;
3553
3554 lseek(fd, 0, SEEK_SET);
3555
3556 ret = readn(fd, header, sizeof(*header));
3557 if (ret <= 0)
3558 return -1;
3559
3560 if (check_magic_endian(header->magic,
3561 header->attr_size, false, ph) < 0) {
3562 pr_debug("magic/endian check failed\n");
3563 return -1;
3564 }
3565
3566 if (ph->needs_swap) {
3567 mem_bswap_64(header, offsetof(struct perf_file_header,
3568 adds_features));
3569 }
3570
3571 if (header->size != sizeof(*header)) {
3572 /* Support the previous format */
3573 if (header->size == offsetof(typeof(*header), adds_features))
3574 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3575 else
3576 return -1;
3577 } else if (ph->needs_swap) {
3578 /*
3579 * feature bitmap is declared as an array of unsigned longs --
3580 * not good since its size can differ between the host that
3581 * generated the data file and the host analyzing the file.
3582 *
3583 * We need to handle endianness, but we don't know the size of
3584 * the unsigned long where the file was generated. Take a best
3585 * guess at determining it: try 64-bit swap first (ie., file
3586 * created on a 64-bit host), and check if the hostname feature
3587 * bit is set (this feature bit is forced on as of fbe96f2).
3588 * If the bit is not, undo the 64-bit swap and try a 32-bit
3589 * swap. If the hostname bit is still not set (e.g., older data
3590 * file), punt and fallback to the original behavior --
3591 * clearing all feature bits and setting buildid.
3592 */
3593 mem_bswap_64(&header->adds_features,
3594 BITS_TO_U64(HEADER_FEAT_BITS));
3595
3596 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3597 /* unswap as u64 */
3598 mem_bswap_64(&header->adds_features,
3599 BITS_TO_U64(HEADER_FEAT_BITS));
3600
3601 /* unswap as u32 */
3602 mem_bswap_32(&header->adds_features,
3603 BITS_TO_U32(HEADER_FEAT_BITS));
3604 }
3605
3606 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3607 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3608 set_bit(HEADER_BUILD_ID, header->adds_features);
3609 }
3610 }
3611
3612 memcpy(&ph->adds_features, &header->adds_features,
3613 sizeof(ph->adds_features));
3614
3615 ph->data_offset = header->data.offset;
3616 ph->data_size = header->data.size;
3617 ph->feat_offset = header->data.offset + header->data.size;
3618 return 0;
3619}
3620
3621static int perf_file_section__process(struct perf_file_section *section,
3622 struct perf_header *ph,
3623 int feat, int fd, void *data)
3624{
3625 struct feat_fd fdd = {
3626 .fd = fd,
3627 .ph = ph,
3628 .size = section->size,
3629 .offset = section->offset,
3630 };
3631
3632 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3633 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3634 "%d, continuing...\n", section->offset, feat);
3635 return 0;
3636 }
3637
3638 if (feat >= HEADER_LAST_FEATURE) {
3639 pr_debug("unknown feature %d, continuing...\n", feat);
3640 return 0;
3641 }
3642
3643 if (!feat_ops[feat].process)
3644 return 0;
3645
3646 return feat_ops[feat].process(&fdd, data);
3647}
3648
3649static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3650 struct perf_header *ph, int fd,
3651 bool repipe)
3652{
3653 struct feat_fd ff = {
3654 .fd = STDOUT_FILENO,
3655 .ph = ph,
3656 };
3657 ssize_t ret;
3658
3659 ret = readn(fd, header, sizeof(*header));
3660 if (ret <= 0)
3661 return -1;
3662
3663 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3664 pr_debug("endian/magic failed\n");
3665 return -1;
3666 }
3667
3668 if (ph->needs_swap)
3669 header->size = bswap_64(header->size);
3670
3671 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3672 return -1;
3673
3674 return 0;
3675}
3676
3677static int perf_header__read_pipe(struct perf_session *session)
3678{
3679 struct perf_header *header = &session->header;
3680 struct perf_pipe_file_header f_header;
3681
3682 if (perf_file_header__read_pipe(&f_header, header,
3683 perf_data__fd(session->data),
3684 session->repipe) < 0) {
3685 pr_debug("incompatible file format\n");
3686 return -EINVAL;
3687 }
3688
3689 return f_header.size == sizeof(f_header) ? 0 : -1;
3690}
3691
3692static int read_attr(int fd, struct perf_header *ph,
3693 struct perf_file_attr *f_attr)
3694{
3695 struct perf_event_attr *attr = &f_attr->attr;
3696 size_t sz, left;
3697 size_t our_sz = sizeof(f_attr->attr);
3698 ssize_t ret;
3699
3700 memset(f_attr, 0, sizeof(*f_attr));
3701
3702 /* read minimal guaranteed structure */
3703 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3704 if (ret <= 0) {
3705 pr_debug("cannot read %d bytes of header attr\n",
3706 PERF_ATTR_SIZE_VER0);
3707 return -1;
3708 }
3709
3710 /* on file perf_event_attr size */
3711 sz = attr->size;
3712
3713 if (ph->needs_swap)
3714 sz = bswap_32(sz);
3715
3716 if (sz == 0) {
3717 /* assume ABI0 */
3718 sz = PERF_ATTR_SIZE_VER0;
3719 } else if (sz > our_sz) {
3720 pr_debug("file uses a more recent and unsupported ABI"
3721 " (%zu bytes extra)\n", sz - our_sz);
3722 return -1;
3723 }
3724 /* what we have not yet read and that we know about */
3725 left = sz - PERF_ATTR_SIZE_VER0;
3726 if (left) {
3727 void *ptr = attr;
3728 ptr += PERF_ATTR_SIZE_VER0;
3729
3730 ret = readn(fd, ptr, left);
3731 }
3732 /* read perf_file_section, ids are read in caller */
3733 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3734
3735 return ret <= 0 ? -1 : 0;
3736}
3737
3738static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3739 struct tep_handle *pevent)
3740{
3741 struct tep_event *event;
3742 char bf[128];
3743
3744 /* already prepared */
3745 if (evsel->tp_format)
3746 return 0;
3747
3748 if (pevent == NULL) {
3749 pr_debug("broken or missing trace data\n");
3750 return -1;
3751 }
3752
3753 event = tep_find_event(pevent, evsel->core.attr.config);
3754 if (event == NULL) {
3755 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3756 return -1;
3757 }
3758
3759 if (!evsel->name) {
3760 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3761 evsel->name = strdup(bf);
3762 if (evsel->name == NULL)
3763 return -1;
3764 }
3765
3766 evsel->tp_format = event;
3767 return 0;
3768}
3769
3770static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3771 struct tep_handle *pevent)
3772{
3773 struct evsel *pos;
3774
3775 evlist__for_each_entry(evlist, pos) {
3776 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3777 perf_evsel__prepare_tracepoint_event(pos, pevent))
3778 return -1;
3779 }
3780
3781 return 0;
3782}
3783
3784int perf_session__read_header(struct perf_session *session)
3785{
3786 struct perf_data *data = session->data;
3787 struct perf_header *header = &session->header;
3788 struct perf_file_header f_header;
3789 struct perf_file_attr f_attr;
3790 u64 f_id;
3791 int nr_attrs, nr_ids, i, j, err;
3792 int fd = perf_data__fd(data);
3793
3794 session->evlist = evlist__new();
3795 if (session->evlist == NULL)
3796 return -ENOMEM;
3797
3798 session->evlist->env = &header->env;
3799 session->machines.host.env = &header->env;
3800
3801 /*
3802 * We can read 'pipe' data event from regular file,
3803 * check for the pipe header regardless of source.
3804 */
3805 err = perf_header__read_pipe(session);
3806 if (!err || (err && perf_data__is_pipe(data))) {
3807 data->is_pipe = true;
3808 return err;
3809 }
3810
3811 if (perf_file_header__read(&f_header, header, fd) < 0)
3812 return -EINVAL;
3813
3814 /*
3815 * Sanity check that perf.data was written cleanly; data size is
3816 * initialized to 0 and updated only if the on_exit function is run.
3817 * If data size is still 0 then the file contains only partial
3818 * information. Just warn user and process it as much as it can.
3819 */
3820 if (f_header.data.size == 0) {
3821 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3822 "Was the 'perf record' command properly terminated?\n",
3823 data->file.path);
3824 }
3825
3826 if (f_header.attr_size == 0) {
3827 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3828 "Was the 'perf record' command properly terminated?\n",
3829 data->file.path);
3830 return -EINVAL;
3831 }
3832
3833 nr_attrs = f_header.attrs.size / f_header.attr_size;
3834 lseek(fd, f_header.attrs.offset, SEEK_SET);
3835
3836 for (i = 0; i < nr_attrs; i++) {
3837 struct evsel *evsel;
3838 off_t tmp;
3839
3840 if (read_attr(fd, header, &f_attr) < 0)
3841 goto out_errno;
3842
3843 if (header->needs_swap) {
3844 f_attr.ids.size = bswap_64(f_attr.ids.size);
3845 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3846 perf_event__attr_swap(&f_attr.attr);
3847 }
3848
3849 tmp = lseek(fd, 0, SEEK_CUR);
3850 evsel = evsel__new(&f_attr.attr);
3851
3852 if (evsel == NULL)
3853 goto out_delete_evlist;
3854
3855 evsel->needs_swap = header->needs_swap;
3856 /*
3857 * Do it before so that if perf_evsel__alloc_id fails, this
3858 * entry gets purged too at evlist__delete().
3859 */
3860 evlist__add(session->evlist, evsel);
3861
3862 nr_ids = f_attr.ids.size / sizeof(u64);
3863 /*
3864 * We don't have the cpu and thread maps on the header, so
3865 * for allocating the perf_sample_id table we fake 1 cpu and
3866 * hattr->ids threads.
3867 */
3868 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3869 goto out_delete_evlist;
3870
3871 lseek(fd, f_attr.ids.offset, SEEK_SET);
3872
3873 for (j = 0; j < nr_ids; j++) {
3874 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3875 goto out_errno;
3876
3877 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3878 }
3879
3880 lseek(fd, tmp, SEEK_SET);
3881 }
3882
3883 perf_header__process_sections(header, fd, &session->tevent,
3884 perf_file_section__process);
3885
3886 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3887 session->tevent.pevent))
3888 goto out_delete_evlist;
3889
3890 return 0;
3891out_errno:
3892 return -errno;
3893
3894out_delete_evlist:
3895 evlist__delete(session->evlist);
3896 session->evlist = NULL;
3897 return -ENOMEM;
3898}
3899
3900int perf_event__process_feature(struct perf_session *session,
3901 union perf_event *event)
3902{
3903 struct perf_tool *tool = session->tool;
3904 struct feat_fd ff = { .fd = 0 };
3905 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3906 int type = fe->header.type;
3907 u64 feat = fe->feat_id;
3908
3909 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3910 pr_warning("invalid record type %d in pipe-mode\n", type);
3911 return 0;
3912 }
3913 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3914 pr_warning("invalid record type %d in pipe-mode\n", type);
3915 return -1;
3916 }
3917
3918 if (!feat_ops[feat].process)
3919 return 0;
3920
3921 ff.buf = (void *)fe->data;
3922 ff.size = event->header.size - sizeof(*fe);
3923 ff.ph = &session->header;
3924
3925 if (feat_ops[feat].process(&ff, NULL))
3926 return -1;
3927
3928 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3929 return 0;
3930
3931 if (!feat_ops[feat].full_only ||
3932 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3933 feat_ops[feat].print(&ff, stdout);
3934 } else {
3935 fprintf(stdout, "# %s info available, use -I to display\n",
3936 feat_ops[feat].name);
3937 }
3938
3939 return 0;
3940}
3941
3942size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3943{
3944 struct perf_record_event_update *ev = &event->event_update;
3945 struct perf_record_event_update_scale *ev_scale;
3946 struct perf_record_event_update_cpus *ev_cpus;
3947 struct perf_cpu_map *map;
3948 size_t ret;
3949
3950 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3951
3952 switch (ev->type) {
3953 case PERF_EVENT_UPDATE__SCALE:
3954 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3955 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3956 break;
3957 case PERF_EVENT_UPDATE__UNIT:
3958 ret += fprintf(fp, "... unit: %s\n", ev->data);
3959 break;
3960 case PERF_EVENT_UPDATE__NAME:
3961 ret += fprintf(fp, "... name: %s\n", ev->data);
3962 break;
3963 case PERF_EVENT_UPDATE__CPUS:
3964 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3965 ret += fprintf(fp, "... ");
3966
3967 map = cpu_map__new_data(&ev_cpus->cpus);
3968 if (map)
3969 ret += cpu_map__fprintf(map, fp);
3970 else
3971 ret += fprintf(fp, "failed to get cpus\n");
3972 break;
3973 default:
3974 ret += fprintf(fp, "... unknown type\n");
3975 break;
3976 }
3977
3978 return ret;
3979}
3980
3981int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3982 union perf_event *event,
3983 struct evlist **pevlist)
3984{
3985 u32 i, ids, n_ids;
3986 struct evsel *evsel;
3987 struct evlist *evlist = *pevlist;
3988
3989 if (evlist == NULL) {
3990 *pevlist = evlist = evlist__new();
3991 if (evlist == NULL)
3992 return -ENOMEM;
3993 }
3994
3995 evsel = evsel__new(&event->attr.attr);
3996 if (evsel == NULL)
3997 return -ENOMEM;
3998
3999 evlist__add(evlist, evsel);
4000
4001 ids = event->header.size;
4002 ids -= (void *)&event->attr.id - (void *)event;
4003 n_ids = ids / sizeof(u64);
4004 /*
4005 * We don't have the cpu and thread maps on the header, so
4006 * for allocating the perf_sample_id table we fake 1 cpu and
4007 * hattr->ids threads.
4008 */
4009 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4010 return -ENOMEM;
4011
4012 for (i = 0; i < n_ids; i++) {
4013 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4014 }
4015
4016 return 0;
4017}
4018
4019int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4020 union perf_event *event,
4021 struct evlist **pevlist)
4022{
4023 struct perf_record_event_update *ev = &event->event_update;
4024 struct perf_record_event_update_scale *ev_scale;
4025 struct perf_record_event_update_cpus *ev_cpus;
4026 struct evlist *evlist;
4027 struct evsel *evsel;
4028 struct perf_cpu_map *map;
4029
4030 if (!pevlist || *pevlist == NULL)
4031 return -EINVAL;
4032
4033 evlist = *pevlist;
4034
4035 evsel = perf_evlist__id2evsel(evlist, ev->id);
4036 if (evsel == NULL)
4037 return -EINVAL;
4038
4039 switch (ev->type) {
4040 case PERF_EVENT_UPDATE__UNIT:
4041 evsel->unit = strdup(ev->data);
4042 break;
4043 case PERF_EVENT_UPDATE__NAME:
4044 evsel->name = strdup(ev->data);
4045 break;
4046 case PERF_EVENT_UPDATE__SCALE:
4047 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4048 evsel->scale = ev_scale->scale;
4049 break;
4050 case PERF_EVENT_UPDATE__CPUS:
4051 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4052
4053 map = cpu_map__new_data(&ev_cpus->cpus);
4054 if (map)
4055 evsel->core.own_cpus = map;
4056 else
4057 pr_err("failed to get event_update cpus\n");
4058 default:
4059 break;
4060 }
4061
4062 return 0;
4063}
4064
4065int perf_event__process_tracing_data(struct perf_session *session,
4066 union perf_event *event)
4067{
4068 ssize_t size_read, padding, size = event->tracing_data.size;
4069 int fd = perf_data__fd(session->data);
4070 char buf[BUFSIZ];
4071
4072 /*
4073 * The pipe fd is already in proper place and in any case
4074 * we can't move it, and we'd screw the case where we read
4075 * 'pipe' data from regular file. The trace_report reads
4076 * data from 'fd' so we need to set it directly behind the
4077 * event, where the tracing data starts.
4078 */
4079 if (!perf_data__is_pipe(session->data)) {
4080 off_t offset = lseek(fd, 0, SEEK_CUR);
4081
4082 /* setup for reading amidst mmap */
4083 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4084 SEEK_SET);
4085 }
4086
4087 size_read = trace_report(fd, &session->tevent,
4088 session->repipe);
4089 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4090
4091 if (readn(fd, buf, padding) < 0) {
4092 pr_err("%s: reading input file", __func__);
4093 return -1;
4094 }
4095 if (session->repipe) {
4096 int retw = write(STDOUT_FILENO, buf, padding);
4097 if (retw <= 0 || retw != padding) {
4098 pr_err("%s: repiping tracing data padding", __func__);
4099 return -1;
4100 }
4101 }
4102
4103 if (size_read + padding != size) {
4104 pr_err("%s: tracing data size mismatch", __func__);
4105 return -1;
4106 }
4107
4108 perf_evlist__prepare_tracepoint_events(session->evlist,
4109 session->tevent.pevent);
4110
4111 return size_read + padding;
4112}
4113
4114int perf_event__process_build_id(struct perf_session *session,
4115 union perf_event *event)
4116{
4117 __event_process_build_id(&event->build_id,
4118 event->build_id.filename,
4119 session);
4120 return 0;
4121}