Loading...
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13
14#include "util/parse-options.h"
15#include "util/trace-event.h"
16
17#include "util/debug.h"
18
19#include <sys/prctl.h>
20#include <sys/resource.h>
21
22#include <semaphore.h>
23#include <pthread.h>
24#include <math.h>
25
26static const char *input_name;
27
28static char default_sort_order[] = "avg, max, switch, runtime";
29static const char *sort_order = default_sort_order;
30
31static int profile_cpu = -1;
32
33#define PR_SET_NAME 15 /* Set process name */
34#define MAX_CPUS 4096
35
36static u64 run_measurement_overhead;
37static u64 sleep_measurement_overhead;
38
39#define COMM_LEN 20
40#define SYM_LEN 129
41
42#define MAX_PID 65536
43
44static unsigned long nr_tasks;
45
46struct sched_atom;
47
48struct task_desc {
49 unsigned long nr;
50 unsigned long pid;
51 char comm[COMM_LEN];
52
53 unsigned long nr_events;
54 unsigned long curr_event;
55 struct sched_atom **atoms;
56
57 pthread_t thread;
58 sem_t sleep_sem;
59
60 sem_t ready_for_work;
61 sem_t work_done_sem;
62
63 u64 cpu_usage;
64};
65
66enum sched_event_type {
67 SCHED_EVENT_RUN,
68 SCHED_EVENT_SLEEP,
69 SCHED_EVENT_WAKEUP,
70 SCHED_EVENT_MIGRATION,
71};
72
73struct sched_atom {
74 enum sched_event_type type;
75 int specific_wait;
76 u64 timestamp;
77 u64 duration;
78 unsigned long nr;
79 sem_t *wait_sem;
80 struct task_desc *wakee;
81};
82
83static struct task_desc *pid_to_task[MAX_PID];
84
85static struct task_desc **tasks;
86
87static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
88static u64 start_time;
89
90static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
91
92static unsigned long nr_run_events;
93static unsigned long nr_sleep_events;
94static unsigned long nr_wakeup_events;
95
96static unsigned long nr_sleep_corrections;
97static unsigned long nr_run_events_optimized;
98
99static unsigned long targetless_wakeups;
100static unsigned long multitarget_wakeups;
101
102static u64 cpu_usage;
103static u64 runavg_cpu_usage;
104static u64 parent_cpu_usage;
105static u64 runavg_parent_cpu_usage;
106
107static unsigned long nr_runs;
108static u64 sum_runtime;
109static u64 sum_fluct;
110static u64 run_avg;
111
112static unsigned int replay_repeat = 10;
113static unsigned long nr_timestamps;
114static unsigned long nr_unordered_timestamps;
115static unsigned long nr_state_machine_bugs;
116static unsigned long nr_context_switch_bugs;
117static unsigned long nr_events;
118static unsigned long nr_lost_chunks;
119static unsigned long nr_lost_events;
120
121#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
122
123enum thread_state {
124 THREAD_SLEEPING = 0,
125 THREAD_WAIT_CPU,
126 THREAD_SCHED_IN,
127 THREAD_IGNORE
128};
129
130struct work_atom {
131 struct list_head list;
132 enum thread_state state;
133 u64 sched_out_time;
134 u64 wake_up_time;
135 u64 sched_in_time;
136 u64 runtime;
137};
138
139struct work_atoms {
140 struct list_head work_list;
141 struct thread *thread;
142 struct rb_node node;
143 u64 max_lat;
144 u64 max_lat_at;
145 u64 total_lat;
146 u64 nb_atoms;
147 u64 total_runtime;
148};
149
150typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
151
152static struct rb_root atom_root, sorted_atom_root;
153
154static u64 all_runtime;
155static u64 all_count;
156
157
158static u64 get_nsecs(void)
159{
160 struct timespec ts;
161
162 clock_gettime(CLOCK_MONOTONIC, &ts);
163
164 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
165}
166
167static void burn_nsecs(u64 nsecs)
168{
169 u64 T0 = get_nsecs(), T1;
170
171 do {
172 T1 = get_nsecs();
173 } while (T1 + run_measurement_overhead < T0 + nsecs);
174}
175
176static void sleep_nsecs(u64 nsecs)
177{
178 struct timespec ts;
179
180 ts.tv_nsec = nsecs % 999999999;
181 ts.tv_sec = nsecs / 999999999;
182
183 nanosleep(&ts, NULL);
184}
185
186static void calibrate_run_measurement_overhead(void)
187{
188 u64 T0, T1, delta, min_delta = 1000000000ULL;
189 int i;
190
191 for (i = 0; i < 10; i++) {
192 T0 = get_nsecs();
193 burn_nsecs(0);
194 T1 = get_nsecs();
195 delta = T1-T0;
196 min_delta = min(min_delta, delta);
197 }
198 run_measurement_overhead = min_delta;
199
200 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
201}
202
203static void calibrate_sleep_measurement_overhead(void)
204{
205 u64 T0, T1, delta, min_delta = 1000000000ULL;
206 int i;
207
208 for (i = 0; i < 10; i++) {
209 T0 = get_nsecs();
210 sleep_nsecs(10000);
211 T1 = get_nsecs();
212 delta = T1-T0;
213 min_delta = min(min_delta, delta);
214 }
215 min_delta -= 10000;
216 sleep_measurement_overhead = min_delta;
217
218 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219}
220
221static struct sched_atom *
222get_new_event(struct task_desc *task, u64 timestamp)
223{
224 struct sched_atom *event = zalloc(sizeof(*event));
225 unsigned long idx = task->nr_events;
226 size_t size;
227
228 event->timestamp = timestamp;
229 event->nr = idx;
230
231 task->nr_events++;
232 size = sizeof(struct sched_atom *) * task->nr_events;
233 task->atoms = realloc(task->atoms, size);
234 BUG_ON(!task->atoms);
235
236 task->atoms[idx] = event;
237
238 return event;
239}
240
241static struct sched_atom *last_event(struct task_desc *task)
242{
243 if (!task->nr_events)
244 return NULL;
245
246 return task->atoms[task->nr_events - 1];
247}
248
249static void
250add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
251{
252 struct sched_atom *event, *curr_event = last_event(task);
253
254 /*
255 * optimize an existing RUN event by merging this one
256 * to it:
257 */
258 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
259 nr_run_events_optimized++;
260 curr_event->duration += duration;
261 return;
262 }
263
264 event = get_new_event(task, timestamp);
265
266 event->type = SCHED_EVENT_RUN;
267 event->duration = duration;
268
269 nr_run_events++;
270}
271
272static void
273add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
274 struct task_desc *wakee)
275{
276 struct sched_atom *event, *wakee_event;
277
278 event = get_new_event(task, timestamp);
279 event->type = SCHED_EVENT_WAKEUP;
280 event->wakee = wakee;
281
282 wakee_event = last_event(wakee);
283 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
284 targetless_wakeups++;
285 return;
286 }
287 if (wakee_event->wait_sem) {
288 multitarget_wakeups++;
289 return;
290 }
291
292 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
293 sem_init(wakee_event->wait_sem, 0, 0);
294 wakee_event->specific_wait = 1;
295 event->wait_sem = wakee_event->wait_sem;
296
297 nr_wakeup_events++;
298}
299
300static void
301add_sched_event_sleep(struct task_desc *task, u64 timestamp,
302 u64 task_state __used)
303{
304 struct sched_atom *event = get_new_event(task, timestamp);
305
306 event->type = SCHED_EVENT_SLEEP;
307
308 nr_sleep_events++;
309}
310
311static struct task_desc *register_pid(unsigned long pid, const char *comm)
312{
313 struct task_desc *task;
314
315 BUG_ON(pid >= MAX_PID);
316
317 task = pid_to_task[pid];
318
319 if (task)
320 return task;
321
322 task = zalloc(sizeof(*task));
323 task->pid = pid;
324 task->nr = nr_tasks;
325 strcpy(task->comm, comm);
326 /*
327 * every task starts in sleeping state - this gets ignored
328 * if there's no wakeup pointing to this sleep state:
329 */
330 add_sched_event_sleep(task, 0, 0);
331
332 pid_to_task[pid] = task;
333 nr_tasks++;
334 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
335 BUG_ON(!tasks);
336 tasks[task->nr] = task;
337
338 if (verbose)
339 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
340
341 return task;
342}
343
344
345static void print_task_traces(void)
346{
347 struct task_desc *task;
348 unsigned long i;
349
350 for (i = 0; i < nr_tasks; i++) {
351 task = tasks[i];
352 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
353 task->nr, task->comm, task->pid, task->nr_events);
354 }
355}
356
357static void add_cross_task_wakeups(void)
358{
359 struct task_desc *task1, *task2;
360 unsigned long i, j;
361
362 for (i = 0; i < nr_tasks; i++) {
363 task1 = tasks[i];
364 j = i + 1;
365 if (j == nr_tasks)
366 j = 0;
367 task2 = tasks[j];
368 add_sched_event_wakeup(task1, 0, task2);
369 }
370}
371
372static void
373process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
374{
375 int ret = 0;
376
377 switch (atom->type) {
378 case SCHED_EVENT_RUN:
379 burn_nsecs(atom->duration);
380 break;
381 case SCHED_EVENT_SLEEP:
382 if (atom->wait_sem)
383 ret = sem_wait(atom->wait_sem);
384 BUG_ON(ret);
385 break;
386 case SCHED_EVENT_WAKEUP:
387 if (atom->wait_sem)
388 ret = sem_post(atom->wait_sem);
389 BUG_ON(ret);
390 break;
391 case SCHED_EVENT_MIGRATION:
392 break;
393 default:
394 BUG_ON(1);
395 }
396}
397
398static u64 get_cpu_usage_nsec_parent(void)
399{
400 struct rusage ru;
401 u64 sum;
402 int err;
403
404 err = getrusage(RUSAGE_SELF, &ru);
405 BUG_ON(err);
406
407 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
408 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
409
410 return sum;
411}
412
413static int self_open_counters(void)
414{
415 struct perf_event_attr attr;
416 int fd;
417
418 memset(&attr, 0, sizeof(attr));
419
420 attr.type = PERF_TYPE_SOFTWARE;
421 attr.config = PERF_COUNT_SW_TASK_CLOCK;
422
423 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
424
425 if (fd < 0)
426 die("Error: sys_perf_event_open() syscall returned"
427 "with %d (%s)\n", fd, strerror(errno));
428 return fd;
429}
430
431static u64 get_cpu_usage_nsec_self(int fd)
432{
433 u64 runtime;
434 int ret;
435
436 ret = read(fd, &runtime, sizeof(runtime));
437 BUG_ON(ret != sizeof(runtime));
438
439 return runtime;
440}
441
442static void *thread_func(void *ctx)
443{
444 struct task_desc *this_task = ctx;
445 u64 cpu_usage_0, cpu_usage_1;
446 unsigned long i, ret;
447 char comm2[22];
448 int fd;
449
450 sprintf(comm2, ":%s", this_task->comm);
451 prctl(PR_SET_NAME, comm2);
452 fd = self_open_counters();
453
454again:
455 ret = sem_post(&this_task->ready_for_work);
456 BUG_ON(ret);
457 ret = pthread_mutex_lock(&start_work_mutex);
458 BUG_ON(ret);
459 ret = pthread_mutex_unlock(&start_work_mutex);
460 BUG_ON(ret);
461
462 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
463
464 for (i = 0; i < this_task->nr_events; i++) {
465 this_task->curr_event = i;
466 process_sched_event(this_task, this_task->atoms[i]);
467 }
468
469 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
470 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
471 ret = sem_post(&this_task->work_done_sem);
472 BUG_ON(ret);
473
474 ret = pthread_mutex_lock(&work_done_wait_mutex);
475 BUG_ON(ret);
476 ret = pthread_mutex_unlock(&work_done_wait_mutex);
477 BUG_ON(ret);
478
479 goto again;
480}
481
482static void create_tasks(void)
483{
484 struct task_desc *task;
485 pthread_attr_t attr;
486 unsigned long i;
487 int err;
488
489 err = pthread_attr_init(&attr);
490 BUG_ON(err);
491 err = pthread_attr_setstacksize(&attr,
492 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
493 BUG_ON(err);
494 err = pthread_mutex_lock(&start_work_mutex);
495 BUG_ON(err);
496 err = pthread_mutex_lock(&work_done_wait_mutex);
497 BUG_ON(err);
498 for (i = 0; i < nr_tasks; i++) {
499 task = tasks[i];
500 sem_init(&task->sleep_sem, 0, 0);
501 sem_init(&task->ready_for_work, 0, 0);
502 sem_init(&task->work_done_sem, 0, 0);
503 task->curr_event = 0;
504 err = pthread_create(&task->thread, &attr, thread_func, task);
505 BUG_ON(err);
506 }
507}
508
509static void wait_for_tasks(void)
510{
511 u64 cpu_usage_0, cpu_usage_1;
512 struct task_desc *task;
513 unsigned long i, ret;
514
515 start_time = get_nsecs();
516 cpu_usage = 0;
517 pthread_mutex_unlock(&work_done_wait_mutex);
518
519 for (i = 0; i < nr_tasks; i++) {
520 task = tasks[i];
521 ret = sem_wait(&task->ready_for_work);
522 BUG_ON(ret);
523 sem_init(&task->ready_for_work, 0, 0);
524 }
525 ret = pthread_mutex_lock(&work_done_wait_mutex);
526 BUG_ON(ret);
527
528 cpu_usage_0 = get_cpu_usage_nsec_parent();
529
530 pthread_mutex_unlock(&start_work_mutex);
531
532 for (i = 0; i < nr_tasks; i++) {
533 task = tasks[i];
534 ret = sem_wait(&task->work_done_sem);
535 BUG_ON(ret);
536 sem_init(&task->work_done_sem, 0, 0);
537 cpu_usage += task->cpu_usage;
538 task->cpu_usage = 0;
539 }
540
541 cpu_usage_1 = get_cpu_usage_nsec_parent();
542 if (!runavg_cpu_usage)
543 runavg_cpu_usage = cpu_usage;
544 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
545
546 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
547 if (!runavg_parent_cpu_usage)
548 runavg_parent_cpu_usage = parent_cpu_usage;
549 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
550 parent_cpu_usage)/10;
551
552 ret = pthread_mutex_lock(&start_work_mutex);
553 BUG_ON(ret);
554
555 for (i = 0; i < nr_tasks; i++) {
556 task = tasks[i];
557 sem_init(&task->sleep_sem, 0, 0);
558 task->curr_event = 0;
559 }
560}
561
562static void run_one_test(void)
563{
564 u64 T0, T1, delta, avg_delta, fluct;
565
566 T0 = get_nsecs();
567 wait_for_tasks();
568 T1 = get_nsecs();
569
570 delta = T1 - T0;
571 sum_runtime += delta;
572 nr_runs++;
573
574 avg_delta = sum_runtime / nr_runs;
575 if (delta < avg_delta)
576 fluct = avg_delta - delta;
577 else
578 fluct = delta - avg_delta;
579 sum_fluct += fluct;
580 if (!run_avg)
581 run_avg = delta;
582 run_avg = (run_avg*9 + delta)/10;
583
584 printf("#%-3ld: %0.3f, ",
585 nr_runs, (double)delta/1000000.0);
586
587 printf("ravg: %0.2f, ",
588 (double)run_avg/1e6);
589
590 printf("cpu: %0.2f / %0.2f",
591 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
592
593#if 0
594 /*
595 * rusage statistics done by the parent, these are less
596 * accurate than the sum_exec_runtime based statistics:
597 */
598 printf(" [%0.2f / %0.2f]",
599 (double)parent_cpu_usage/1e6,
600 (double)runavg_parent_cpu_usage/1e6);
601#endif
602
603 printf("\n");
604
605 if (nr_sleep_corrections)
606 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
607 nr_sleep_corrections = 0;
608}
609
610static void test_calibrations(void)
611{
612 u64 T0, T1;
613
614 T0 = get_nsecs();
615 burn_nsecs(1e6);
616 T1 = get_nsecs();
617
618 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
619
620 T0 = get_nsecs();
621 sleep_nsecs(1e6);
622 T1 = get_nsecs();
623
624 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
625}
626
627#define FILL_FIELD(ptr, field, event, data) \
628 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
629
630#define FILL_ARRAY(ptr, array, event, data) \
631do { \
632 void *__array = raw_field_ptr(event, #array, data); \
633 memcpy(ptr.array, __array, sizeof(ptr.array)); \
634} while(0)
635
636#define FILL_COMMON_FIELDS(ptr, event, data) \
637do { \
638 FILL_FIELD(ptr, common_type, event, data); \
639 FILL_FIELD(ptr, common_flags, event, data); \
640 FILL_FIELD(ptr, common_preempt_count, event, data); \
641 FILL_FIELD(ptr, common_pid, event, data); \
642 FILL_FIELD(ptr, common_tgid, event, data); \
643} while (0)
644
645
646
647struct trace_switch_event {
648 u32 size;
649
650 u16 common_type;
651 u8 common_flags;
652 u8 common_preempt_count;
653 u32 common_pid;
654 u32 common_tgid;
655
656 char prev_comm[16];
657 u32 prev_pid;
658 u32 prev_prio;
659 u64 prev_state;
660 char next_comm[16];
661 u32 next_pid;
662 u32 next_prio;
663};
664
665struct trace_runtime_event {
666 u32 size;
667
668 u16 common_type;
669 u8 common_flags;
670 u8 common_preempt_count;
671 u32 common_pid;
672 u32 common_tgid;
673
674 char comm[16];
675 u32 pid;
676 u64 runtime;
677 u64 vruntime;
678};
679
680struct trace_wakeup_event {
681 u32 size;
682
683 u16 common_type;
684 u8 common_flags;
685 u8 common_preempt_count;
686 u32 common_pid;
687 u32 common_tgid;
688
689 char comm[16];
690 u32 pid;
691
692 u32 prio;
693 u32 success;
694 u32 cpu;
695};
696
697struct trace_fork_event {
698 u32 size;
699
700 u16 common_type;
701 u8 common_flags;
702 u8 common_preempt_count;
703 u32 common_pid;
704 u32 common_tgid;
705
706 char parent_comm[16];
707 u32 parent_pid;
708 char child_comm[16];
709 u32 child_pid;
710};
711
712struct trace_migrate_task_event {
713 u32 size;
714
715 u16 common_type;
716 u8 common_flags;
717 u8 common_preempt_count;
718 u32 common_pid;
719 u32 common_tgid;
720
721 char comm[16];
722 u32 pid;
723
724 u32 prio;
725 u32 cpu;
726};
727
728struct trace_sched_handler {
729 void (*switch_event)(struct trace_switch_event *,
730 struct machine *,
731 struct event_format *,
732 int cpu,
733 u64 timestamp,
734 struct thread *thread);
735
736 void (*runtime_event)(struct trace_runtime_event *,
737 struct machine *,
738 struct event_format *,
739 int cpu,
740 u64 timestamp,
741 struct thread *thread);
742
743 void (*wakeup_event)(struct trace_wakeup_event *,
744 struct machine *,
745 struct event_format *,
746 int cpu,
747 u64 timestamp,
748 struct thread *thread);
749
750 void (*fork_event)(struct trace_fork_event *,
751 struct event_format *,
752 int cpu,
753 u64 timestamp,
754 struct thread *thread);
755
756 void (*migrate_task_event)(struct trace_migrate_task_event *,
757 struct machine *machine,
758 struct event_format *,
759 int cpu,
760 u64 timestamp,
761 struct thread *thread);
762};
763
764
765static void
766replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
767 struct machine *machine __used,
768 struct event_format *event,
769 int cpu __used,
770 u64 timestamp __used,
771 struct thread *thread __used)
772{
773 struct task_desc *waker, *wakee;
774
775 if (verbose) {
776 printf("sched_wakeup event %p\n", event);
777
778 printf(" ... pid %d woke up %s/%d\n",
779 wakeup_event->common_pid,
780 wakeup_event->comm,
781 wakeup_event->pid);
782 }
783
784 waker = register_pid(wakeup_event->common_pid, "<unknown>");
785 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
786
787 add_sched_event_wakeup(waker, timestamp, wakee);
788}
789
790static u64 cpu_last_switched[MAX_CPUS];
791
792static void
793replay_switch_event(struct trace_switch_event *switch_event,
794 struct machine *machine __used,
795 struct event_format *event,
796 int cpu,
797 u64 timestamp,
798 struct thread *thread __used)
799{
800 struct task_desc *prev, __used *next;
801 u64 timestamp0;
802 s64 delta;
803
804 if (verbose)
805 printf("sched_switch event %p\n", event);
806
807 if (cpu >= MAX_CPUS || cpu < 0)
808 return;
809
810 timestamp0 = cpu_last_switched[cpu];
811 if (timestamp0)
812 delta = timestamp - timestamp0;
813 else
814 delta = 0;
815
816 if (delta < 0)
817 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
818
819 if (verbose) {
820 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
821 switch_event->prev_comm, switch_event->prev_pid,
822 switch_event->next_comm, switch_event->next_pid,
823 delta);
824 }
825
826 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
827 next = register_pid(switch_event->next_pid, switch_event->next_comm);
828
829 cpu_last_switched[cpu] = timestamp;
830
831 add_sched_event_run(prev, timestamp, delta);
832 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
833}
834
835
836static void
837replay_fork_event(struct trace_fork_event *fork_event,
838 struct event_format *event,
839 int cpu __used,
840 u64 timestamp __used,
841 struct thread *thread __used)
842{
843 if (verbose) {
844 printf("sched_fork event %p\n", event);
845 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
846 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
847 }
848 register_pid(fork_event->parent_pid, fork_event->parent_comm);
849 register_pid(fork_event->child_pid, fork_event->child_comm);
850}
851
852static struct trace_sched_handler replay_ops = {
853 .wakeup_event = replay_wakeup_event,
854 .switch_event = replay_switch_event,
855 .fork_event = replay_fork_event,
856};
857
858struct sort_dimension {
859 const char *name;
860 sort_fn_t cmp;
861 struct list_head list;
862};
863
864static LIST_HEAD(cmp_pid);
865
866static int
867thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
868{
869 struct sort_dimension *sort;
870 int ret = 0;
871
872 BUG_ON(list_empty(list));
873
874 list_for_each_entry(sort, list, list) {
875 ret = sort->cmp(l, r);
876 if (ret)
877 return ret;
878 }
879
880 return ret;
881}
882
883static struct work_atoms *
884thread_atoms_search(struct rb_root *root, struct thread *thread,
885 struct list_head *sort_list)
886{
887 struct rb_node *node = root->rb_node;
888 struct work_atoms key = { .thread = thread };
889
890 while (node) {
891 struct work_atoms *atoms;
892 int cmp;
893
894 atoms = container_of(node, struct work_atoms, node);
895
896 cmp = thread_lat_cmp(sort_list, &key, atoms);
897 if (cmp > 0)
898 node = node->rb_left;
899 else if (cmp < 0)
900 node = node->rb_right;
901 else {
902 BUG_ON(thread != atoms->thread);
903 return atoms;
904 }
905 }
906 return NULL;
907}
908
909static void
910__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
911 struct list_head *sort_list)
912{
913 struct rb_node **new = &(root->rb_node), *parent = NULL;
914
915 while (*new) {
916 struct work_atoms *this;
917 int cmp;
918
919 this = container_of(*new, struct work_atoms, node);
920 parent = *new;
921
922 cmp = thread_lat_cmp(sort_list, data, this);
923
924 if (cmp > 0)
925 new = &((*new)->rb_left);
926 else
927 new = &((*new)->rb_right);
928 }
929
930 rb_link_node(&data->node, parent, new);
931 rb_insert_color(&data->node, root);
932}
933
934static void thread_atoms_insert(struct thread *thread)
935{
936 struct work_atoms *atoms = zalloc(sizeof(*atoms));
937 if (!atoms)
938 die("No memory");
939
940 atoms->thread = thread;
941 INIT_LIST_HEAD(&atoms->work_list);
942 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
943}
944
945static void
946latency_fork_event(struct trace_fork_event *fork_event __used,
947 struct event_format *event __used,
948 int cpu __used,
949 u64 timestamp __used,
950 struct thread *thread __used)
951{
952 /* should insert the newcomer */
953}
954
955__used
956static char sched_out_state(struct trace_switch_event *switch_event)
957{
958 const char *str = TASK_STATE_TO_CHAR_STR;
959
960 return str[switch_event->prev_state];
961}
962
963static void
964add_sched_out_event(struct work_atoms *atoms,
965 char run_state,
966 u64 timestamp)
967{
968 struct work_atom *atom = zalloc(sizeof(*atom));
969 if (!atom)
970 die("Non memory");
971
972 atom->sched_out_time = timestamp;
973
974 if (run_state == 'R') {
975 atom->state = THREAD_WAIT_CPU;
976 atom->wake_up_time = atom->sched_out_time;
977 }
978
979 list_add_tail(&atom->list, &atoms->work_list);
980}
981
982static void
983add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
984{
985 struct work_atom *atom;
986
987 BUG_ON(list_empty(&atoms->work_list));
988
989 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
990
991 atom->runtime += delta;
992 atoms->total_runtime += delta;
993}
994
995static void
996add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
997{
998 struct work_atom *atom;
999 u64 delta;
1000
1001 if (list_empty(&atoms->work_list))
1002 return;
1003
1004 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005
1006 if (atom->state != THREAD_WAIT_CPU)
1007 return;
1008
1009 if (timestamp < atom->wake_up_time) {
1010 atom->state = THREAD_IGNORE;
1011 return;
1012 }
1013
1014 atom->state = THREAD_SCHED_IN;
1015 atom->sched_in_time = timestamp;
1016
1017 delta = atom->sched_in_time - atom->wake_up_time;
1018 atoms->total_lat += delta;
1019 if (delta > atoms->max_lat) {
1020 atoms->max_lat = delta;
1021 atoms->max_lat_at = timestamp;
1022 }
1023 atoms->nb_atoms++;
1024}
1025
1026static void
1027latency_switch_event(struct trace_switch_event *switch_event,
1028 struct machine *machine,
1029 struct event_format *event __used,
1030 int cpu,
1031 u64 timestamp,
1032 struct thread *thread __used)
1033{
1034 struct work_atoms *out_events, *in_events;
1035 struct thread *sched_out, *sched_in;
1036 u64 timestamp0;
1037 s64 delta;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041 timestamp0 = cpu_last_switched[cpu];
1042 cpu_last_switched[cpu] = timestamp;
1043 if (timestamp0)
1044 delta = timestamp - timestamp0;
1045 else
1046 delta = 0;
1047
1048 if (delta < 0)
1049 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050
1051
1052 sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1053 sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1054
1055 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056 if (!out_events) {
1057 thread_atoms_insert(sched_out);
1058 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1059 if (!out_events)
1060 die("out-event: Internal tree error");
1061 }
1062 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1063
1064 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065 if (!in_events) {
1066 thread_atoms_insert(sched_in);
1067 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1068 if (!in_events)
1069 die("in-event: Internal tree error");
1070 /*
1071 * Take came in we have not heard about yet,
1072 * add in an initial atom in runnable state:
1073 */
1074 add_sched_out_event(in_events, 'R', timestamp);
1075 }
1076 add_sched_in_event(in_events, timestamp);
1077}
1078
1079static void
1080latency_runtime_event(struct trace_runtime_event *runtime_event,
1081 struct machine *machine,
1082 struct event_format *event __used,
1083 int cpu,
1084 u64 timestamp,
1085 struct thread *this_thread __used)
1086{
1087 struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1088 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1089
1090 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1091 if (!atoms) {
1092 thread_atoms_insert(thread);
1093 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1094 if (!atoms)
1095 die("in-event: Internal tree error");
1096 add_sched_out_event(atoms, 'R', timestamp);
1097 }
1098
1099 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1100}
1101
1102static void
1103latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1104 struct machine *machine,
1105 struct event_format *__event __used,
1106 int cpu __used,
1107 u64 timestamp,
1108 struct thread *thread __used)
1109{
1110 struct work_atoms *atoms;
1111 struct work_atom *atom;
1112 struct thread *wakee;
1113
1114 /* Note for later, it may be interesting to observe the failing cases */
1115 if (!wakeup_event->success)
1116 return;
1117
1118 wakee = machine__findnew_thread(machine, wakeup_event->pid);
1119 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1120 if (!atoms) {
1121 thread_atoms_insert(wakee);
1122 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1123 if (!atoms)
1124 die("wakeup-event: Internal tree error");
1125 add_sched_out_event(atoms, 'S', timestamp);
1126 }
1127
1128 BUG_ON(list_empty(&atoms->work_list));
1129
1130 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1131
1132 /*
1133 * You WILL be missing events if you've recorded only
1134 * one CPU, or are only looking at only one, so don't
1135 * make useless noise.
1136 */
1137 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1138 nr_state_machine_bugs++;
1139
1140 nr_timestamps++;
1141 if (atom->sched_out_time > timestamp) {
1142 nr_unordered_timestamps++;
1143 return;
1144 }
1145
1146 atom->state = THREAD_WAIT_CPU;
1147 atom->wake_up_time = timestamp;
1148}
1149
1150static void
1151latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1152 struct machine *machine,
1153 struct event_format *__event __used,
1154 int cpu __used,
1155 u64 timestamp,
1156 struct thread *thread __used)
1157{
1158 struct work_atoms *atoms;
1159 struct work_atom *atom;
1160 struct thread *migrant;
1161
1162 /*
1163 * Only need to worry about migration when profiling one CPU.
1164 */
1165 if (profile_cpu == -1)
1166 return;
1167
1168 migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1169 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170 if (!atoms) {
1171 thread_atoms_insert(migrant);
1172 register_pid(migrant->pid, migrant->comm);
1173 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1174 if (!atoms)
1175 die("migration-event: Internal tree error");
1176 add_sched_out_event(atoms, 'R', timestamp);
1177 }
1178
1179 BUG_ON(list_empty(&atoms->work_list));
1180
1181 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1182 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183
1184 nr_timestamps++;
1185
1186 if (atom->sched_out_time > timestamp)
1187 nr_unordered_timestamps++;
1188}
1189
1190static struct trace_sched_handler lat_ops = {
1191 .wakeup_event = latency_wakeup_event,
1192 .switch_event = latency_switch_event,
1193 .runtime_event = latency_runtime_event,
1194 .fork_event = latency_fork_event,
1195 .migrate_task_event = latency_migrate_task_event,
1196};
1197
1198static void output_lat_thread(struct work_atoms *work_list)
1199{
1200 int i;
1201 int ret;
1202 u64 avg;
1203
1204 if (!work_list->nb_atoms)
1205 return;
1206 /*
1207 * Ignore idle threads:
1208 */
1209 if (!strcmp(work_list->thread->comm, "swapper"))
1210 return;
1211
1212 all_runtime += work_list->total_runtime;
1213 all_count += work_list->nb_atoms;
1214
1215 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1216
1217 for (i = 0; i < 24 - ret; i++)
1218 printf(" ");
1219
1220 avg = work_list->total_lat / work_list->nb_atoms;
1221
1222 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1223 (double)work_list->total_runtime / 1e6,
1224 work_list->nb_atoms, (double)avg / 1e6,
1225 (double)work_list->max_lat / 1e6,
1226 (double)work_list->max_lat_at / 1e9);
1227}
1228
1229static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230{
1231 if (l->thread->pid < r->thread->pid)
1232 return -1;
1233 if (l->thread->pid > r->thread->pid)
1234 return 1;
1235
1236 return 0;
1237}
1238
1239static struct sort_dimension pid_sort_dimension = {
1240 .name = "pid",
1241 .cmp = pid_cmp,
1242};
1243
1244static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245{
1246 u64 avgl, avgr;
1247
1248 if (!l->nb_atoms)
1249 return -1;
1250
1251 if (!r->nb_atoms)
1252 return 1;
1253
1254 avgl = l->total_lat / l->nb_atoms;
1255 avgr = r->total_lat / r->nb_atoms;
1256
1257 if (avgl < avgr)
1258 return -1;
1259 if (avgl > avgr)
1260 return 1;
1261
1262 return 0;
1263}
1264
1265static struct sort_dimension avg_sort_dimension = {
1266 .name = "avg",
1267 .cmp = avg_cmp,
1268};
1269
1270static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271{
1272 if (l->max_lat < r->max_lat)
1273 return -1;
1274 if (l->max_lat > r->max_lat)
1275 return 1;
1276
1277 return 0;
1278}
1279
1280static struct sort_dimension max_sort_dimension = {
1281 .name = "max",
1282 .cmp = max_cmp,
1283};
1284
1285static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286{
1287 if (l->nb_atoms < r->nb_atoms)
1288 return -1;
1289 if (l->nb_atoms > r->nb_atoms)
1290 return 1;
1291
1292 return 0;
1293}
1294
1295static struct sort_dimension switch_sort_dimension = {
1296 .name = "switch",
1297 .cmp = switch_cmp,
1298};
1299
1300static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301{
1302 if (l->total_runtime < r->total_runtime)
1303 return -1;
1304 if (l->total_runtime > r->total_runtime)
1305 return 1;
1306
1307 return 0;
1308}
1309
1310static struct sort_dimension runtime_sort_dimension = {
1311 .name = "runtime",
1312 .cmp = runtime_cmp,
1313};
1314
1315static struct sort_dimension *available_sorts[] = {
1316 &pid_sort_dimension,
1317 &avg_sort_dimension,
1318 &max_sort_dimension,
1319 &switch_sort_dimension,
1320 &runtime_sort_dimension,
1321};
1322
1323#define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324
1325static LIST_HEAD(sort_list);
1326
1327static int sort_dimension__add(const char *tok, struct list_head *list)
1328{
1329 int i;
1330
1331 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1332 if (!strcmp(available_sorts[i]->name, tok)) {
1333 list_add_tail(&available_sorts[i]->list, list);
1334
1335 return 0;
1336 }
1337 }
1338
1339 return -1;
1340}
1341
1342static void setup_sorting(void);
1343
1344static void sort_lat(void)
1345{
1346 struct rb_node *node;
1347
1348 for (;;) {
1349 struct work_atoms *data;
1350 node = rb_first(&atom_root);
1351 if (!node)
1352 break;
1353
1354 rb_erase(node, &atom_root);
1355 data = rb_entry(node, struct work_atoms, node);
1356 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1357 }
1358}
1359
1360static struct trace_sched_handler *trace_handler;
1361
1362static void
1363process_sched_wakeup_event(struct perf_tool *tool __used,
1364 struct event_format *event,
1365 struct perf_sample *sample,
1366 struct machine *machine,
1367 struct thread *thread)
1368{
1369 void *data = sample->raw_data;
1370 struct trace_wakeup_event wakeup_event;
1371
1372 FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374 FILL_ARRAY(wakeup_event, comm, event, data);
1375 FILL_FIELD(wakeup_event, pid, event, data);
1376 FILL_FIELD(wakeup_event, prio, event, data);
1377 FILL_FIELD(wakeup_event, success, event, data);
1378 FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380 if (trace_handler->wakeup_event)
1381 trace_handler->wakeup_event(&wakeup_event, machine, event,
1382 sample->cpu, sample->time, thread);
1383}
1384
1385/*
1386 * Track the current task - that way we can know whether there's any
1387 * weird events, such as a task being switched away that is not current.
1388 */
1389static int max_cpu;
1390
1391static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392
1393static struct thread *curr_thread[MAX_CPUS];
1394
1395static char next_shortname1 = 'A';
1396static char next_shortname2 = '0';
1397
1398static void
1399map_switch_event(struct trace_switch_event *switch_event,
1400 struct machine *machine,
1401 struct event_format *event __used,
1402 int this_cpu,
1403 u64 timestamp,
1404 struct thread *thread __used)
1405{
1406 struct thread *sched_out __used, *sched_in;
1407 int new_shortname;
1408 u64 timestamp0;
1409 s64 delta;
1410 int cpu;
1411
1412 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414 if (this_cpu > max_cpu)
1415 max_cpu = this_cpu;
1416
1417 timestamp0 = cpu_last_switched[this_cpu];
1418 cpu_last_switched[this_cpu] = timestamp;
1419 if (timestamp0)
1420 delta = timestamp - timestamp0;
1421 else
1422 delta = 0;
1423
1424 if (delta < 0)
1425 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1426
1427
1428 sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1429 sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1430
1431 curr_thread[this_cpu] = sched_in;
1432
1433 printf(" ");
1434
1435 new_shortname = 0;
1436 if (!sched_in->shortname[0]) {
1437 sched_in->shortname[0] = next_shortname1;
1438 sched_in->shortname[1] = next_shortname2;
1439
1440 if (next_shortname1 < 'Z') {
1441 next_shortname1++;
1442 } else {
1443 next_shortname1='A';
1444 if (next_shortname2 < '9') {
1445 next_shortname2++;
1446 } else {
1447 next_shortname2='0';
1448 }
1449 }
1450 new_shortname = 1;
1451 }
1452
1453 for (cpu = 0; cpu <= max_cpu; cpu++) {
1454 if (cpu != this_cpu)
1455 printf(" ");
1456 else
1457 printf("*");
1458
1459 if (curr_thread[cpu]) {
1460 if (curr_thread[cpu]->pid)
1461 printf("%2s ", curr_thread[cpu]->shortname);
1462 else
1463 printf(". ");
1464 } else
1465 printf(" ");
1466 }
1467
1468 printf(" %12.6f secs ", (double)timestamp/1e9);
1469 if (new_shortname) {
1470 printf("%s => %s:%d\n",
1471 sched_in->shortname, sched_in->comm, sched_in->pid);
1472 } else {
1473 printf("\n");
1474 }
1475}
1476
1477static void
1478process_sched_switch_event(struct perf_tool *tool __used,
1479 struct event_format *event,
1480 struct perf_sample *sample,
1481 struct machine *machine,
1482 struct thread *thread)
1483{
1484 int this_cpu = sample->cpu;
1485 void *data = sample->raw_data;
1486 struct trace_switch_event switch_event;
1487
1488 FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490 FILL_ARRAY(switch_event, prev_comm, event, data);
1491 FILL_FIELD(switch_event, prev_pid, event, data);
1492 FILL_FIELD(switch_event, prev_prio, event, data);
1493 FILL_FIELD(switch_event, prev_state, event, data);
1494 FILL_ARRAY(switch_event, next_comm, event, data);
1495 FILL_FIELD(switch_event, next_pid, event, data);
1496 FILL_FIELD(switch_event, next_prio, event, data);
1497
1498 if (curr_pid[this_cpu] != (u32)-1) {
1499 /*
1500 * Are we trying to switch away a PID that is
1501 * not current?
1502 */
1503 if (curr_pid[this_cpu] != switch_event.prev_pid)
1504 nr_context_switch_bugs++;
1505 }
1506 if (trace_handler->switch_event)
1507 trace_handler->switch_event(&switch_event, machine, event,
1508 this_cpu, sample->time, thread);
1509
1510 curr_pid[this_cpu] = switch_event.next_pid;
1511}
1512
1513static void
1514process_sched_runtime_event(struct perf_tool *tool __used,
1515 struct event_format *event,
1516 struct perf_sample *sample,
1517 struct machine *machine,
1518 struct thread *thread)
1519{
1520 void *data = sample->raw_data;
1521 struct trace_runtime_event runtime_event;
1522
1523 FILL_ARRAY(runtime_event, comm, event, data);
1524 FILL_FIELD(runtime_event, pid, event, data);
1525 FILL_FIELD(runtime_event, runtime, event, data);
1526 FILL_FIELD(runtime_event, vruntime, event, data);
1527
1528 if (trace_handler->runtime_event)
1529 trace_handler->runtime_event(&runtime_event, machine, event,
1530 sample->cpu, sample->time, thread);
1531}
1532
1533static void
1534process_sched_fork_event(struct perf_tool *tool __used,
1535 struct event_format *event,
1536 struct perf_sample *sample,
1537 struct machine *machine __used,
1538 struct thread *thread)
1539{
1540 void *data = sample->raw_data;
1541 struct trace_fork_event fork_event;
1542
1543 FILL_COMMON_FIELDS(fork_event, event, data);
1544
1545 FILL_ARRAY(fork_event, parent_comm, event, data);
1546 FILL_FIELD(fork_event, parent_pid, event, data);
1547 FILL_ARRAY(fork_event, child_comm, event, data);
1548 FILL_FIELD(fork_event, child_pid, event, data);
1549
1550 if (trace_handler->fork_event)
1551 trace_handler->fork_event(&fork_event, event,
1552 sample->cpu, sample->time, thread);
1553}
1554
1555static void
1556process_sched_exit_event(struct perf_tool *tool __used,
1557 struct event_format *event,
1558 struct perf_sample *sample __used,
1559 struct machine *machine __used,
1560 struct thread *thread __used)
1561{
1562 if (verbose)
1563 printf("sched_exit event %p\n", event);
1564}
1565
1566static void
1567process_sched_migrate_task_event(struct perf_tool *tool __used,
1568 struct event_format *event,
1569 struct perf_sample *sample,
1570 struct machine *machine,
1571 struct thread *thread)
1572{
1573 void *data = sample->raw_data;
1574 struct trace_migrate_task_event migrate_task_event;
1575
1576 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1577
1578 FILL_ARRAY(migrate_task_event, comm, event, data);
1579 FILL_FIELD(migrate_task_event, pid, event, data);
1580 FILL_FIELD(migrate_task_event, prio, event, data);
1581 FILL_FIELD(migrate_task_event, cpu, event, data);
1582
1583 if (trace_handler->migrate_task_event)
1584 trace_handler->migrate_task_event(&migrate_task_event, machine,
1585 event, sample->cpu,
1586 sample->time, thread);
1587}
1588
1589typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event_format *event,
1590 struct perf_sample *sample,
1591 struct machine *machine,
1592 struct thread *thread);
1593
1594static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1595 union perf_event *event __used,
1596 struct perf_sample *sample,
1597 struct perf_evsel *evsel,
1598 struct machine *machine)
1599{
1600 struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601
1602 if (thread == NULL) {
1603 pr_debug("problem processing %s event, skipping it.\n",
1604 evsel->name);
1605 return -1;
1606 }
1607
1608 evsel->hists.stats.total_period += sample->period;
1609 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610
1611 if (evsel->handler.func != NULL) {
1612 tracepoint_handler f = evsel->handler.func;
1613
1614 if (evsel->handler.data == NULL)
1615 evsel->handler.data = trace_find_event(evsel->attr.config);
1616
1617 f(tool, evsel->handler.data, sample, machine, thread);
1618 }
1619
1620 return 0;
1621}
1622
1623static struct perf_tool perf_sched = {
1624 .sample = perf_sched__process_tracepoint_sample,
1625 .comm = perf_event__process_comm,
1626 .lost = perf_event__process_lost,
1627 .fork = perf_event__process_task,
1628 .ordered_samples = true,
1629};
1630
1631static void read_events(bool destroy, struct perf_session **psession)
1632{
1633 int err = -EINVAL;
1634 const struct perf_evsel_str_handler handlers[] = {
1635 { "sched:sched_switch", process_sched_switch_event, },
1636 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1637 { "sched:sched_wakeup", process_sched_wakeup_event, },
1638 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1639 { "sched:sched_process_fork", process_sched_fork_event, },
1640 { "sched:sched_process_exit", process_sched_exit_event, },
1641 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642 };
1643 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644 0, false, &perf_sched);
1645 if (session == NULL)
1646 die("No Memory");
1647
1648 err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1649 assert(err == 0);
1650
1651 if (perf_session__has_traces(session, "record -R")) {
1652 err = perf_session__process_events(session, &perf_sched);
1653 if (err)
1654 die("Failed to process events, error %d", err);
1655
1656 nr_events = session->hists.stats.nr_events[0];
1657 nr_lost_events = session->hists.stats.total_lost;
1658 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1659 }
1660
1661 if (destroy)
1662 perf_session__delete(session);
1663
1664 if (psession)
1665 *psession = session;
1666}
1667
1668static void print_bad_events(void)
1669{
1670 if (nr_unordered_timestamps && nr_timestamps) {
1671 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1672 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1673 nr_unordered_timestamps, nr_timestamps);
1674 }
1675 if (nr_lost_events && nr_events) {
1676 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1677 (double)nr_lost_events/(double)nr_events*100.0,
1678 nr_lost_events, nr_events, nr_lost_chunks);
1679 }
1680 if (nr_state_machine_bugs && nr_timestamps) {
1681 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1682 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1683 nr_state_machine_bugs, nr_timestamps);
1684 if (nr_lost_events)
1685 printf(" (due to lost events?)");
1686 printf("\n");
1687 }
1688 if (nr_context_switch_bugs && nr_timestamps) {
1689 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1690 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1691 nr_context_switch_bugs, nr_timestamps);
1692 if (nr_lost_events)
1693 printf(" (due to lost events?)");
1694 printf("\n");
1695 }
1696}
1697
1698static void __cmd_lat(void)
1699{
1700 struct rb_node *next;
1701 struct perf_session *session;
1702
1703 setup_pager();
1704 read_events(false, &session);
1705 sort_lat();
1706
1707 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1708 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1709 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1710
1711 next = rb_first(&sorted_atom_root);
1712
1713 while (next) {
1714 struct work_atoms *work_list;
1715
1716 work_list = rb_entry(next, struct work_atoms, node);
1717 output_lat_thread(work_list);
1718 next = rb_next(next);
1719 }
1720
1721 printf(" -----------------------------------------------------------------------------------------\n");
1722 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1723 (double)all_runtime/1e6, all_count);
1724
1725 printf(" ---------------------------------------------------\n");
1726
1727 print_bad_events();
1728 printf("\n");
1729
1730 perf_session__delete(session);
1731}
1732
1733static struct trace_sched_handler map_ops = {
1734 .wakeup_event = NULL,
1735 .switch_event = map_switch_event,
1736 .runtime_event = NULL,
1737 .fork_event = NULL,
1738};
1739
1740static void __cmd_map(void)
1741{
1742 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744 setup_pager();
1745 read_events(true, NULL);
1746 print_bad_events();
1747}
1748
1749static void __cmd_replay(void)
1750{
1751 unsigned long i;
1752
1753 calibrate_run_measurement_overhead();
1754 calibrate_sleep_measurement_overhead();
1755
1756 test_calibrations();
1757
1758 read_events(true, NULL);
1759
1760 printf("nr_run_events: %ld\n", nr_run_events);
1761 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1762 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1763
1764 if (targetless_wakeups)
1765 printf("target-less wakeups: %ld\n", targetless_wakeups);
1766 if (multitarget_wakeups)
1767 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768 if (nr_run_events_optimized)
1769 printf("run atoms optimized: %ld\n",
1770 nr_run_events_optimized);
1771
1772 print_task_traces();
1773 add_cross_task_wakeups();
1774
1775 create_tasks();
1776 printf("------------------------------------------------------------\n");
1777 for (i = 0; i < replay_repeat; i++)
1778 run_one_test();
1779}
1780
1781
1782static const char * const sched_usage[] = {
1783 "perf sched [<options>] {record|latency|map|replay|script}",
1784 NULL
1785};
1786
1787static const struct option sched_options[] = {
1788 OPT_STRING('i', "input", &input_name, "file",
1789 "input file name"),
1790 OPT_INCR('v', "verbose", &verbose,
1791 "be more verbose (show symbol address, etc)"),
1792 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793 "dump raw trace in ASCII"),
1794 OPT_END()
1795};
1796
1797static const char * const latency_usage[] = {
1798 "perf sched latency [<options>]",
1799 NULL
1800};
1801
1802static const struct option latency_options[] = {
1803 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804 "sort by key(s): runtime, switch, avg, max"),
1805 OPT_INCR('v', "verbose", &verbose,
1806 "be more verbose (show symbol address, etc)"),
1807 OPT_INTEGER('C', "CPU", &profile_cpu,
1808 "CPU to profile on"),
1809 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810 "dump raw trace in ASCII"),
1811 OPT_END()
1812};
1813
1814static const char * const replay_usage[] = {
1815 "perf sched replay [<options>]",
1816 NULL
1817};
1818
1819static const struct option replay_options[] = {
1820 OPT_UINTEGER('r', "repeat", &replay_repeat,
1821 "repeat the workload replay N times (-1: infinite)"),
1822 OPT_INCR('v', "verbose", &verbose,
1823 "be more verbose (show symbol address, etc)"),
1824 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825 "dump raw trace in ASCII"),
1826 OPT_END()
1827};
1828
1829static void setup_sorting(void)
1830{
1831 char *tmp, *tok, *str = strdup(sort_order);
1832
1833 for (tok = strtok_r(str, ", ", &tmp);
1834 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835 if (sort_dimension__add(tok, &sort_list) < 0) {
1836 error("Unknown --sort key: `%s'", tok);
1837 usage_with_options(latency_usage, latency_options);
1838 }
1839 }
1840
1841 free(str);
1842
1843 sort_dimension__add("pid", &cmp_pid);
1844}
1845
1846static const char *record_args[] = {
1847 "record",
1848 "-a",
1849 "-R",
1850 "-f",
1851 "-m", "1024",
1852 "-c", "1",
1853 "-e", "sched:sched_switch",
1854 "-e", "sched:sched_stat_wait",
1855 "-e", "sched:sched_stat_sleep",
1856 "-e", "sched:sched_stat_iowait",
1857 "-e", "sched:sched_stat_runtime",
1858 "-e", "sched:sched_process_exit",
1859 "-e", "sched:sched_process_fork",
1860 "-e", "sched:sched_wakeup",
1861 "-e", "sched:sched_migrate_task",
1862};
1863
1864static int __cmd_record(int argc, const char **argv)
1865{
1866 unsigned int rec_argc, i, j;
1867 const char **rec_argv;
1868
1869 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872 if (rec_argv == NULL)
1873 return -ENOMEM;
1874
1875 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1876 rec_argv[i] = strdup(record_args[i]);
1877
1878 for (j = 1; j < (unsigned int)argc; j++, i++)
1879 rec_argv[i] = argv[j];
1880
1881 BUG_ON(i != rec_argc);
1882
1883 return cmd_record(i, rec_argv, NULL);
1884}
1885
1886int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887{
1888 argc = parse_options(argc, argv, sched_options, sched_usage,
1889 PARSE_OPT_STOP_AT_NON_OPTION);
1890 if (!argc)
1891 usage_with_options(sched_usage, sched_options);
1892
1893 /*
1894 * Aliased to 'perf script' for now:
1895 */
1896 if (!strcmp(argv[0], "script"))
1897 return cmd_script(argc, argv, prefix);
1898
1899 symbol__init();
1900 if (!strncmp(argv[0], "rec", 3)) {
1901 return __cmd_record(argc, argv);
1902 } else if (!strncmp(argv[0], "lat", 3)) {
1903 trace_handler = &lat_ops;
1904 if (argc > 1) {
1905 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1906 if (argc)
1907 usage_with_options(latency_usage, latency_options);
1908 }
1909 setup_sorting();
1910 __cmd_lat();
1911 } else if (!strcmp(argv[0], "map")) {
1912 trace_handler = &map_ops;
1913 setup_sorting();
1914 __cmd_map();
1915 } else if (!strncmp(argv[0], "rep", 3)) {
1916 trace_handler = &replay_ops;
1917 if (argc) {
1918 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1919 if (argc)
1920 usage_with_options(replay_usage, replay_options);
1921 }
1922 __cmd_replay();
1923 } else {
1924 usage_with_options(sched_usage, sched_options);
1925 }
1926
1927 return 0;
1928}
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf.h"
4#include "perf-sys.h"
5
6#include "util/cpumap.h"
7#include "util/evlist.h"
8#include "util/evsel.h"
9#include "util/evsel_fprintf.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29
30#include <linux/kernel.h>
31#include <linux/log2.h>
32#include <linux/zalloc.h>
33#include <sys/prctl.h>
34#include <sys/resource.h>
35#include <inttypes.h>
36
37#include <errno.h>
38#include <semaphore.h>
39#include <pthread.h>
40#include <math.h>
41#include <api/fs/fs.h>
42#include <perf/cpumap.h>
43#include <linux/time64.h>
44#include <linux/err.h>
45
46#include <linux/ctype.h>
47
48#define PR_SET_NAME 15 /* Set process name */
49#define MAX_CPUS 4096
50#define COMM_LEN 20
51#define SYM_LEN 129
52#define MAX_PID 1024000
53
54static const char *cpu_list;
55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
56
57struct sched_atom;
58
59struct task_desc {
60 unsigned long nr;
61 unsigned long pid;
62 char comm[COMM_LEN];
63
64 unsigned long nr_events;
65 unsigned long curr_event;
66 struct sched_atom **atoms;
67
68 pthread_t thread;
69 sem_t sleep_sem;
70
71 sem_t ready_for_work;
72 sem_t work_done_sem;
73
74 u64 cpu_usage;
75};
76
77enum sched_event_type {
78 SCHED_EVENT_RUN,
79 SCHED_EVENT_SLEEP,
80 SCHED_EVENT_WAKEUP,
81 SCHED_EVENT_MIGRATION,
82};
83
84struct sched_atom {
85 enum sched_event_type type;
86 int specific_wait;
87 u64 timestamp;
88 u64 duration;
89 unsigned long nr;
90 sem_t *wait_sem;
91 struct task_desc *wakee;
92};
93
94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
95
96/* task state bitmask, copied from include/linux/sched.h */
97#define TASK_RUNNING 0
98#define TASK_INTERRUPTIBLE 1
99#define TASK_UNINTERRUPTIBLE 2
100#define __TASK_STOPPED 4
101#define __TASK_TRACED 8
102/* in tsk->exit_state */
103#define EXIT_DEAD 16
104#define EXIT_ZOMBIE 32
105#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
106/* in tsk->state again */
107#define TASK_DEAD 64
108#define TASK_WAKEKILL 128
109#define TASK_WAKING 256
110#define TASK_PARKED 512
111
112enum thread_state {
113 THREAD_SLEEPING = 0,
114 THREAD_WAIT_CPU,
115 THREAD_SCHED_IN,
116 THREAD_IGNORE
117};
118
119struct work_atom {
120 struct list_head list;
121 enum thread_state state;
122 u64 sched_out_time;
123 u64 wake_up_time;
124 u64 sched_in_time;
125 u64 runtime;
126};
127
128struct work_atoms {
129 struct list_head work_list;
130 struct thread *thread;
131 struct rb_node node;
132 u64 max_lat;
133 u64 max_lat_at;
134 u64 total_lat;
135 u64 nb_atoms;
136 u64 total_runtime;
137 int num_merged;
138};
139
140typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
141
142struct perf_sched;
143
144struct trace_sched_handler {
145 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
146 struct perf_sample *sample, struct machine *machine);
147
148 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
149 struct perf_sample *sample, struct machine *machine);
150
151 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
152 struct perf_sample *sample, struct machine *machine);
153
154 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
155 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
156 struct machine *machine);
157
158 int (*migrate_task_event)(struct perf_sched *sched,
159 struct evsel *evsel,
160 struct perf_sample *sample,
161 struct machine *machine);
162};
163
164#define COLOR_PIDS PERF_COLOR_BLUE
165#define COLOR_CPUS PERF_COLOR_BG_RED
166
167struct perf_sched_map {
168 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
169 int *comp_cpus;
170 bool comp;
171 struct perf_thread_map *color_pids;
172 const char *color_pids_str;
173 struct perf_cpu_map *color_cpus;
174 const char *color_cpus_str;
175 struct perf_cpu_map *cpus;
176 const char *cpus_str;
177};
178
179struct perf_sched {
180 struct perf_tool tool;
181 const char *sort_order;
182 unsigned long nr_tasks;
183 struct task_desc **pid_to_task;
184 struct task_desc **tasks;
185 const struct trace_sched_handler *tp_handler;
186 pthread_mutex_t start_work_mutex;
187 pthread_mutex_t work_done_wait_mutex;
188 int profile_cpu;
189/*
190 * Track the current task - that way we can know whether there's any
191 * weird events, such as a task being switched away that is not current.
192 */
193 int max_cpu;
194 u32 curr_pid[MAX_CPUS];
195 struct thread *curr_thread[MAX_CPUS];
196 char next_shortname1;
197 char next_shortname2;
198 unsigned int replay_repeat;
199 unsigned long nr_run_events;
200 unsigned long nr_sleep_events;
201 unsigned long nr_wakeup_events;
202 unsigned long nr_sleep_corrections;
203 unsigned long nr_run_events_optimized;
204 unsigned long targetless_wakeups;
205 unsigned long multitarget_wakeups;
206 unsigned long nr_runs;
207 unsigned long nr_timestamps;
208 unsigned long nr_unordered_timestamps;
209 unsigned long nr_context_switch_bugs;
210 unsigned long nr_events;
211 unsigned long nr_lost_chunks;
212 unsigned long nr_lost_events;
213 u64 run_measurement_overhead;
214 u64 sleep_measurement_overhead;
215 u64 start_time;
216 u64 cpu_usage;
217 u64 runavg_cpu_usage;
218 u64 parent_cpu_usage;
219 u64 runavg_parent_cpu_usage;
220 u64 sum_runtime;
221 u64 sum_fluct;
222 u64 run_avg;
223 u64 all_runtime;
224 u64 all_count;
225 u64 cpu_last_switched[MAX_CPUS];
226 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
227 struct list_head sort_list, cmp_pid;
228 bool force;
229 bool skip_merge;
230 struct perf_sched_map map;
231
232 /* options for timehist command */
233 bool summary;
234 bool summary_only;
235 bool idle_hist;
236 bool show_callchain;
237 unsigned int max_stack;
238 bool show_cpu_visual;
239 bool show_wakeups;
240 bool show_next;
241 bool show_migrations;
242 bool show_state;
243 u64 skipped_samples;
244 const char *time_str;
245 struct perf_time_interval ptime;
246 struct perf_time_interval hist_time;
247};
248
249/* per thread run time data */
250struct thread_runtime {
251 u64 last_time; /* time of previous sched in/out event */
252 u64 dt_run; /* run time */
253 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
254 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
255 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
256 u64 dt_delay; /* time between wakeup and sched-in */
257 u64 ready_to_run; /* time of wakeup */
258
259 struct stats run_stats;
260 u64 total_run_time;
261 u64 total_sleep_time;
262 u64 total_iowait_time;
263 u64 total_preempt_time;
264 u64 total_delay_time;
265
266 int last_state;
267
268 char shortname[3];
269 bool comm_changed;
270
271 u64 migrations;
272};
273
274/* per event run time data */
275struct evsel_runtime {
276 u64 *last_time; /* time this event was last seen per cpu */
277 u32 ncpu; /* highest cpu slot allocated */
278};
279
280/* per cpu idle time data */
281struct idle_thread_runtime {
282 struct thread_runtime tr;
283 struct thread *last_thread;
284 struct rb_root_cached sorted_root;
285 struct callchain_root callchain;
286 struct callchain_cursor cursor;
287};
288
289/* track idle times per cpu */
290static struct thread **idle_threads;
291static int idle_max_cpu;
292static char idle_comm[] = "<idle>";
293
294static u64 get_nsecs(void)
295{
296 struct timespec ts;
297
298 clock_gettime(CLOCK_MONOTONIC, &ts);
299
300 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
301}
302
303static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
304{
305 u64 T0 = get_nsecs(), T1;
306
307 do {
308 T1 = get_nsecs();
309 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
310}
311
312static void sleep_nsecs(u64 nsecs)
313{
314 struct timespec ts;
315
316 ts.tv_nsec = nsecs % 999999999;
317 ts.tv_sec = nsecs / 999999999;
318
319 nanosleep(&ts, NULL);
320}
321
322static void calibrate_run_measurement_overhead(struct perf_sched *sched)
323{
324 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
325 int i;
326
327 for (i = 0; i < 10; i++) {
328 T0 = get_nsecs();
329 burn_nsecs(sched, 0);
330 T1 = get_nsecs();
331 delta = T1-T0;
332 min_delta = min(min_delta, delta);
333 }
334 sched->run_measurement_overhead = min_delta;
335
336 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
337}
338
339static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
340{
341 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
342 int i;
343
344 for (i = 0; i < 10; i++) {
345 T0 = get_nsecs();
346 sleep_nsecs(10000);
347 T1 = get_nsecs();
348 delta = T1-T0;
349 min_delta = min(min_delta, delta);
350 }
351 min_delta -= 10000;
352 sched->sleep_measurement_overhead = min_delta;
353
354 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
355}
356
357static struct sched_atom *
358get_new_event(struct task_desc *task, u64 timestamp)
359{
360 struct sched_atom *event = zalloc(sizeof(*event));
361 unsigned long idx = task->nr_events;
362 size_t size;
363
364 event->timestamp = timestamp;
365 event->nr = idx;
366
367 task->nr_events++;
368 size = sizeof(struct sched_atom *) * task->nr_events;
369 task->atoms = realloc(task->atoms, size);
370 BUG_ON(!task->atoms);
371
372 task->atoms[idx] = event;
373
374 return event;
375}
376
377static struct sched_atom *last_event(struct task_desc *task)
378{
379 if (!task->nr_events)
380 return NULL;
381
382 return task->atoms[task->nr_events - 1];
383}
384
385static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
386 u64 timestamp, u64 duration)
387{
388 struct sched_atom *event, *curr_event = last_event(task);
389
390 /*
391 * optimize an existing RUN event by merging this one
392 * to it:
393 */
394 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
395 sched->nr_run_events_optimized++;
396 curr_event->duration += duration;
397 return;
398 }
399
400 event = get_new_event(task, timestamp);
401
402 event->type = SCHED_EVENT_RUN;
403 event->duration = duration;
404
405 sched->nr_run_events++;
406}
407
408static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
409 u64 timestamp, struct task_desc *wakee)
410{
411 struct sched_atom *event, *wakee_event;
412
413 event = get_new_event(task, timestamp);
414 event->type = SCHED_EVENT_WAKEUP;
415 event->wakee = wakee;
416
417 wakee_event = last_event(wakee);
418 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
419 sched->targetless_wakeups++;
420 return;
421 }
422 if (wakee_event->wait_sem) {
423 sched->multitarget_wakeups++;
424 return;
425 }
426
427 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
428 sem_init(wakee_event->wait_sem, 0, 0);
429 wakee_event->specific_wait = 1;
430 event->wait_sem = wakee_event->wait_sem;
431
432 sched->nr_wakeup_events++;
433}
434
435static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
436 u64 timestamp, u64 task_state __maybe_unused)
437{
438 struct sched_atom *event = get_new_event(task, timestamp);
439
440 event->type = SCHED_EVENT_SLEEP;
441
442 sched->nr_sleep_events++;
443}
444
445static struct task_desc *register_pid(struct perf_sched *sched,
446 unsigned long pid, const char *comm)
447{
448 struct task_desc *task;
449 static int pid_max;
450
451 if (sched->pid_to_task == NULL) {
452 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
453 pid_max = MAX_PID;
454 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
455 }
456 if (pid >= (unsigned long)pid_max) {
457 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
458 sizeof(struct task_desc *))) == NULL);
459 while (pid >= (unsigned long)pid_max)
460 sched->pid_to_task[pid_max++] = NULL;
461 }
462
463 task = sched->pid_to_task[pid];
464
465 if (task)
466 return task;
467
468 task = zalloc(sizeof(*task));
469 task->pid = pid;
470 task->nr = sched->nr_tasks;
471 strcpy(task->comm, comm);
472 /*
473 * every task starts in sleeping state - this gets ignored
474 * if there's no wakeup pointing to this sleep state:
475 */
476 add_sched_event_sleep(sched, task, 0, 0);
477
478 sched->pid_to_task[pid] = task;
479 sched->nr_tasks++;
480 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
481 BUG_ON(!sched->tasks);
482 sched->tasks[task->nr] = task;
483
484 if (verbose > 0)
485 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
486
487 return task;
488}
489
490
491static void print_task_traces(struct perf_sched *sched)
492{
493 struct task_desc *task;
494 unsigned long i;
495
496 for (i = 0; i < sched->nr_tasks; i++) {
497 task = sched->tasks[i];
498 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
499 task->nr, task->comm, task->pid, task->nr_events);
500 }
501}
502
503static void add_cross_task_wakeups(struct perf_sched *sched)
504{
505 struct task_desc *task1, *task2;
506 unsigned long i, j;
507
508 for (i = 0; i < sched->nr_tasks; i++) {
509 task1 = sched->tasks[i];
510 j = i + 1;
511 if (j == sched->nr_tasks)
512 j = 0;
513 task2 = sched->tasks[j];
514 add_sched_event_wakeup(sched, task1, 0, task2);
515 }
516}
517
518static void perf_sched__process_event(struct perf_sched *sched,
519 struct sched_atom *atom)
520{
521 int ret = 0;
522
523 switch (atom->type) {
524 case SCHED_EVENT_RUN:
525 burn_nsecs(sched, atom->duration);
526 break;
527 case SCHED_EVENT_SLEEP:
528 if (atom->wait_sem)
529 ret = sem_wait(atom->wait_sem);
530 BUG_ON(ret);
531 break;
532 case SCHED_EVENT_WAKEUP:
533 if (atom->wait_sem)
534 ret = sem_post(atom->wait_sem);
535 BUG_ON(ret);
536 break;
537 case SCHED_EVENT_MIGRATION:
538 break;
539 default:
540 BUG_ON(1);
541 }
542}
543
544static u64 get_cpu_usage_nsec_parent(void)
545{
546 struct rusage ru;
547 u64 sum;
548 int err;
549
550 err = getrusage(RUSAGE_SELF, &ru);
551 BUG_ON(err);
552
553 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
554 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
555
556 return sum;
557}
558
559static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
560{
561 struct perf_event_attr attr;
562 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
563 int fd;
564 struct rlimit limit;
565 bool need_privilege = false;
566
567 memset(&attr, 0, sizeof(attr));
568
569 attr.type = PERF_TYPE_SOFTWARE;
570 attr.config = PERF_COUNT_SW_TASK_CLOCK;
571
572force_again:
573 fd = sys_perf_event_open(&attr, 0, -1, -1,
574 perf_event_open_cloexec_flag());
575
576 if (fd < 0) {
577 if (errno == EMFILE) {
578 if (sched->force) {
579 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
580 limit.rlim_cur += sched->nr_tasks - cur_task;
581 if (limit.rlim_cur > limit.rlim_max) {
582 limit.rlim_max = limit.rlim_cur;
583 need_privilege = true;
584 }
585 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
586 if (need_privilege && errno == EPERM)
587 strcpy(info, "Need privilege\n");
588 } else
589 goto force_again;
590 } else
591 strcpy(info, "Have a try with -f option\n");
592 }
593 pr_err("Error: sys_perf_event_open() syscall returned "
594 "with %d (%s)\n%s", fd,
595 str_error_r(errno, sbuf, sizeof(sbuf)), info);
596 exit(EXIT_FAILURE);
597 }
598 return fd;
599}
600
601static u64 get_cpu_usage_nsec_self(int fd)
602{
603 u64 runtime;
604 int ret;
605
606 ret = read(fd, &runtime, sizeof(runtime));
607 BUG_ON(ret != sizeof(runtime));
608
609 return runtime;
610}
611
612struct sched_thread_parms {
613 struct task_desc *task;
614 struct perf_sched *sched;
615 int fd;
616};
617
618static void *thread_func(void *ctx)
619{
620 struct sched_thread_parms *parms = ctx;
621 struct task_desc *this_task = parms->task;
622 struct perf_sched *sched = parms->sched;
623 u64 cpu_usage_0, cpu_usage_1;
624 unsigned long i, ret;
625 char comm2[22];
626 int fd = parms->fd;
627
628 zfree(&parms);
629
630 sprintf(comm2, ":%s", this_task->comm);
631 prctl(PR_SET_NAME, comm2);
632 if (fd < 0)
633 return NULL;
634again:
635 ret = sem_post(&this_task->ready_for_work);
636 BUG_ON(ret);
637 ret = pthread_mutex_lock(&sched->start_work_mutex);
638 BUG_ON(ret);
639 ret = pthread_mutex_unlock(&sched->start_work_mutex);
640 BUG_ON(ret);
641
642 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
643
644 for (i = 0; i < this_task->nr_events; i++) {
645 this_task->curr_event = i;
646 perf_sched__process_event(sched, this_task->atoms[i]);
647 }
648
649 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
650 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
651 ret = sem_post(&this_task->work_done_sem);
652 BUG_ON(ret);
653
654 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
655 BUG_ON(ret);
656 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
657 BUG_ON(ret);
658
659 goto again;
660}
661
662static void create_tasks(struct perf_sched *sched)
663{
664 struct task_desc *task;
665 pthread_attr_t attr;
666 unsigned long i;
667 int err;
668
669 err = pthread_attr_init(&attr);
670 BUG_ON(err);
671 err = pthread_attr_setstacksize(&attr,
672 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
673 BUG_ON(err);
674 err = pthread_mutex_lock(&sched->start_work_mutex);
675 BUG_ON(err);
676 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
677 BUG_ON(err);
678 for (i = 0; i < sched->nr_tasks; i++) {
679 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680 BUG_ON(parms == NULL);
681 parms->task = task = sched->tasks[i];
682 parms->sched = sched;
683 parms->fd = self_open_counters(sched, i);
684 sem_init(&task->sleep_sem, 0, 0);
685 sem_init(&task->ready_for_work, 0, 0);
686 sem_init(&task->work_done_sem, 0, 0);
687 task->curr_event = 0;
688 err = pthread_create(&task->thread, &attr, thread_func, parms);
689 BUG_ON(err);
690 }
691}
692
693static void wait_for_tasks(struct perf_sched *sched)
694{
695 u64 cpu_usage_0, cpu_usage_1;
696 struct task_desc *task;
697 unsigned long i, ret;
698
699 sched->start_time = get_nsecs();
700 sched->cpu_usage = 0;
701 pthread_mutex_unlock(&sched->work_done_wait_mutex);
702
703 for (i = 0; i < sched->nr_tasks; i++) {
704 task = sched->tasks[i];
705 ret = sem_wait(&task->ready_for_work);
706 BUG_ON(ret);
707 sem_init(&task->ready_for_work, 0, 0);
708 }
709 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
710 BUG_ON(ret);
711
712 cpu_usage_0 = get_cpu_usage_nsec_parent();
713
714 pthread_mutex_unlock(&sched->start_work_mutex);
715
716 for (i = 0; i < sched->nr_tasks; i++) {
717 task = sched->tasks[i];
718 ret = sem_wait(&task->work_done_sem);
719 BUG_ON(ret);
720 sem_init(&task->work_done_sem, 0, 0);
721 sched->cpu_usage += task->cpu_usage;
722 task->cpu_usage = 0;
723 }
724
725 cpu_usage_1 = get_cpu_usage_nsec_parent();
726 if (!sched->runavg_cpu_usage)
727 sched->runavg_cpu_usage = sched->cpu_usage;
728 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
729
730 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
731 if (!sched->runavg_parent_cpu_usage)
732 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
733 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
734 sched->parent_cpu_usage)/sched->replay_repeat;
735
736 ret = pthread_mutex_lock(&sched->start_work_mutex);
737 BUG_ON(ret);
738
739 for (i = 0; i < sched->nr_tasks; i++) {
740 task = sched->tasks[i];
741 sem_init(&task->sleep_sem, 0, 0);
742 task->curr_event = 0;
743 }
744}
745
746static void run_one_test(struct perf_sched *sched)
747{
748 u64 T0, T1, delta, avg_delta, fluct;
749
750 T0 = get_nsecs();
751 wait_for_tasks(sched);
752 T1 = get_nsecs();
753
754 delta = T1 - T0;
755 sched->sum_runtime += delta;
756 sched->nr_runs++;
757
758 avg_delta = sched->sum_runtime / sched->nr_runs;
759 if (delta < avg_delta)
760 fluct = avg_delta - delta;
761 else
762 fluct = delta - avg_delta;
763 sched->sum_fluct += fluct;
764 if (!sched->run_avg)
765 sched->run_avg = delta;
766 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
767
768 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
769
770 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
771
772 printf("cpu: %0.2f / %0.2f",
773 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
774
775#if 0
776 /*
777 * rusage statistics done by the parent, these are less
778 * accurate than the sched->sum_exec_runtime based statistics:
779 */
780 printf(" [%0.2f / %0.2f]",
781 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
782 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
783#endif
784
785 printf("\n");
786
787 if (sched->nr_sleep_corrections)
788 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
789 sched->nr_sleep_corrections = 0;
790}
791
792static void test_calibrations(struct perf_sched *sched)
793{
794 u64 T0, T1;
795
796 T0 = get_nsecs();
797 burn_nsecs(sched, NSEC_PER_MSEC);
798 T1 = get_nsecs();
799
800 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
801
802 T0 = get_nsecs();
803 sleep_nsecs(NSEC_PER_MSEC);
804 T1 = get_nsecs();
805
806 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
807}
808
809static int
810replay_wakeup_event(struct perf_sched *sched,
811 struct evsel *evsel, struct perf_sample *sample,
812 struct machine *machine __maybe_unused)
813{
814 const char *comm = evsel__strval(evsel, sample, "comm");
815 const u32 pid = evsel__intval(evsel, sample, "pid");
816 struct task_desc *waker, *wakee;
817
818 if (verbose > 0) {
819 printf("sched_wakeup event %p\n", evsel);
820
821 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
822 }
823
824 waker = register_pid(sched, sample->tid, "<unknown>");
825 wakee = register_pid(sched, pid, comm);
826
827 add_sched_event_wakeup(sched, waker, sample->time, wakee);
828 return 0;
829}
830
831static int replay_switch_event(struct perf_sched *sched,
832 struct evsel *evsel,
833 struct perf_sample *sample,
834 struct machine *machine __maybe_unused)
835{
836 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
837 *next_comm = evsel__strval(evsel, sample, "next_comm");
838 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
839 next_pid = evsel__intval(evsel, sample, "next_pid");
840 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
841 struct task_desc *prev, __maybe_unused *next;
842 u64 timestamp0, timestamp = sample->time;
843 int cpu = sample->cpu;
844 s64 delta;
845
846 if (verbose > 0)
847 printf("sched_switch event %p\n", evsel);
848
849 if (cpu >= MAX_CPUS || cpu < 0)
850 return 0;
851
852 timestamp0 = sched->cpu_last_switched[cpu];
853 if (timestamp0)
854 delta = timestamp - timestamp0;
855 else
856 delta = 0;
857
858 if (delta < 0) {
859 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
860 return -1;
861 }
862
863 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
864 prev_comm, prev_pid, next_comm, next_pid, delta);
865
866 prev = register_pid(sched, prev_pid, prev_comm);
867 next = register_pid(sched, next_pid, next_comm);
868
869 sched->cpu_last_switched[cpu] = timestamp;
870
871 add_sched_event_run(sched, prev, timestamp, delta);
872 add_sched_event_sleep(sched, prev, timestamp, prev_state);
873
874 return 0;
875}
876
877static int replay_fork_event(struct perf_sched *sched,
878 union perf_event *event,
879 struct machine *machine)
880{
881 struct thread *child, *parent;
882
883 child = machine__findnew_thread(machine, event->fork.pid,
884 event->fork.tid);
885 parent = machine__findnew_thread(machine, event->fork.ppid,
886 event->fork.ptid);
887
888 if (child == NULL || parent == NULL) {
889 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
890 child, parent);
891 goto out_put;
892 }
893
894 if (verbose > 0) {
895 printf("fork event\n");
896 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
897 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
898 }
899
900 register_pid(sched, parent->tid, thread__comm_str(parent));
901 register_pid(sched, child->tid, thread__comm_str(child));
902out_put:
903 thread__put(child);
904 thread__put(parent);
905 return 0;
906}
907
908struct sort_dimension {
909 const char *name;
910 sort_fn_t cmp;
911 struct list_head list;
912};
913
914/*
915 * handle runtime stats saved per thread
916 */
917static struct thread_runtime *thread__init_runtime(struct thread *thread)
918{
919 struct thread_runtime *r;
920
921 r = zalloc(sizeof(struct thread_runtime));
922 if (!r)
923 return NULL;
924
925 init_stats(&r->run_stats);
926 thread__set_priv(thread, r);
927
928 return r;
929}
930
931static struct thread_runtime *thread__get_runtime(struct thread *thread)
932{
933 struct thread_runtime *tr;
934
935 tr = thread__priv(thread);
936 if (tr == NULL) {
937 tr = thread__init_runtime(thread);
938 if (tr == NULL)
939 pr_debug("Failed to malloc memory for runtime data.\n");
940 }
941
942 return tr;
943}
944
945static int
946thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
947{
948 struct sort_dimension *sort;
949 int ret = 0;
950
951 BUG_ON(list_empty(list));
952
953 list_for_each_entry(sort, list, list) {
954 ret = sort->cmp(l, r);
955 if (ret)
956 return ret;
957 }
958
959 return ret;
960}
961
962static struct work_atoms *
963thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
964 struct list_head *sort_list)
965{
966 struct rb_node *node = root->rb_root.rb_node;
967 struct work_atoms key = { .thread = thread };
968
969 while (node) {
970 struct work_atoms *atoms;
971 int cmp;
972
973 atoms = container_of(node, struct work_atoms, node);
974
975 cmp = thread_lat_cmp(sort_list, &key, atoms);
976 if (cmp > 0)
977 node = node->rb_left;
978 else if (cmp < 0)
979 node = node->rb_right;
980 else {
981 BUG_ON(thread != atoms->thread);
982 return atoms;
983 }
984 }
985 return NULL;
986}
987
988static void
989__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
990 struct list_head *sort_list)
991{
992 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
993 bool leftmost = true;
994
995 while (*new) {
996 struct work_atoms *this;
997 int cmp;
998
999 this = container_of(*new, struct work_atoms, node);
1000 parent = *new;
1001
1002 cmp = thread_lat_cmp(sort_list, data, this);
1003
1004 if (cmp > 0)
1005 new = &((*new)->rb_left);
1006 else {
1007 new = &((*new)->rb_right);
1008 leftmost = false;
1009 }
1010 }
1011
1012 rb_link_node(&data->node, parent, new);
1013 rb_insert_color_cached(&data->node, root, leftmost);
1014}
1015
1016static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1017{
1018 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1019 if (!atoms) {
1020 pr_err("No memory at %s\n", __func__);
1021 return -1;
1022 }
1023
1024 atoms->thread = thread__get(thread);
1025 INIT_LIST_HEAD(&atoms->work_list);
1026 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1027 return 0;
1028}
1029
1030static char sched_out_state(u64 prev_state)
1031{
1032 const char *str = TASK_STATE_TO_CHAR_STR;
1033
1034 return str[prev_state];
1035}
1036
1037static int
1038add_sched_out_event(struct work_atoms *atoms,
1039 char run_state,
1040 u64 timestamp)
1041{
1042 struct work_atom *atom = zalloc(sizeof(*atom));
1043 if (!atom) {
1044 pr_err("Non memory at %s", __func__);
1045 return -1;
1046 }
1047
1048 atom->sched_out_time = timestamp;
1049
1050 if (run_state == 'R') {
1051 atom->state = THREAD_WAIT_CPU;
1052 atom->wake_up_time = atom->sched_out_time;
1053 }
1054
1055 list_add_tail(&atom->list, &atoms->work_list);
1056 return 0;
1057}
1058
1059static void
1060add_runtime_event(struct work_atoms *atoms, u64 delta,
1061 u64 timestamp __maybe_unused)
1062{
1063 struct work_atom *atom;
1064
1065 BUG_ON(list_empty(&atoms->work_list));
1066
1067 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1068
1069 atom->runtime += delta;
1070 atoms->total_runtime += delta;
1071}
1072
1073static void
1074add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1075{
1076 struct work_atom *atom;
1077 u64 delta;
1078
1079 if (list_empty(&atoms->work_list))
1080 return;
1081
1082 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1083
1084 if (atom->state != THREAD_WAIT_CPU)
1085 return;
1086
1087 if (timestamp < atom->wake_up_time) {
1088 atom->state = THREAD_IGNORE;
1089 return;
1090 }
1091
1092 atom->state = THREAD_SCHED_IN;
1093 atom->sched_in_time = timestamp;
1094
1095 delta = atom->sched_in_time - atom->wake_up_time;
1096 atoms->total_lat += delta;
1097 if (delta > atoms->max_lat) {
1098 atoms->max_lat = delta;
1099 atoms->max_lat_at = timestamp;
1100 }
1101 atoms->nb_atoms++;
1102}
1103
1104static int latency_switch_event(struct perf_sched *sched,
1105 struct evsel *evsel,
1106 struct perf_sample *sample,
1107 struct machine *machine)
1108{
1109 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1110 next_pid = evsel__intval(evsel, sample, "next_pid");
1111 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1112 struct work_atoms *out_events, *in_events;
1113 struct thread *sched_out, *sched_in;
1114 u64 timestamp0, timestamp = sample->time;
1115 int cpu = sample->cpu, err = -1;
1116 s64 delta;
1117
1118 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1119
1120 timestamp0 = sched->cpu_last_switched[cpu];
1121 sched->cpu_last_switched[cpu] = timestamp;
1122 if (timestamp0)
1123 delta = timestamp - timestamp0;
1124 else
1125 delta = 0;
1126
1127 if (delta < 0) {
1128 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1129 return -1;
1130 }
1131
1132 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1133 sched_in = machine__findnew_thread(machine, -1, next_pid);
1134 if (sched_out == NULL || sched_in == NULL)
1135 goto out_put;
1136
1137 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1138 if (!out_events) {
1139 if (thread_atoms_insert(sched, sched_out))
1140 goto out_put;
1141 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1142 if (!out_events) {
1143 pr_err("out-event: Internal tree error");
1144 goto out_put;
1145 }
1146 }
1147 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1148 return -1;
1149
1150 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1151 if (!in_events) {
1152 if (thread_atoms_insert(sched, sched_in))
1153 goto out_put;
1154 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1155 if (!in_events) {
1156 pr_err("in-event: Internal tree error");
1157 goto out_put;
1158 }
1159 /*
1160 * Take came in we have not heard about yet,
1161 * add in an initial atom in runnable state:
1162 */
1163 if (add_sched_out_event(in_events, 'R', timestamp))
1164 goto out_put;
1165 }
1166 add_sched_in_event(in_events, timestamp);
1167 err = 0;
1168out_put:
1169 thread__put(sched_out);
1170 thread__put(sched_in);
1171 return err;
1172}
1173
1174static int latency_runtime_event(struct perf_sched *sched,
1175 struct evsel *evsel,
1176 struct perf_sample *sample,
1177 struct machine *machine)
1178{
1179 const u32 pid = evsel__intval(evsel, sample, "pid");
1180 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1181 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1182 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1183 u64 timestamp = sample->time;
1184 int cpu = sample->cpu, err = -1;
1185
1186 if (thread == NULL)
1187 return -1;
1188
1189 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1190 if (!atoms) {
1191 if (thread_atoms_insert(sched, thread))
1192 goto out_put;
1193 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1194 if (!atoms) {
1195 pr_err("in-event: Internal tree error");
1196 goto out_put;
1197 }
1198 if (add_sched_out_event(atoms, 'R', timestamp))
1199 goto out_put;
1200 }
1201
1202 add_runtime_event(atoms, runtime, timestamp);
1203 err = 0;
1204out_put:
1205 thread__put(thread);
1206 return err;
1207}
1208
1209static int latency_wakeup_event(struct perf_sched *sched,
1210 struct evsel *evsel,
1211 struct perf_sample *sample,
1212 struct machine *machine)
1213{
1214 const u32 pid = evsel__intval(evsel, sample, "pid");
1215 struct work_atoms *atoms;
1216 struct work_atom *atom;
1217 struct thread *wakee;
1218 u64 timestamp = sample->time;
1219 int err = -1;
1220
1221 wakee = machine__findnew_thread(machine, -1, pid);
1222 if (wakee == NULL)
1223 return -1;
1224 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1225 if (!atoms) {
1226 if (thread_atoms_insert(sched, wakee))
1227 goto out_put;
1228 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1229 if (!atoms) {
1230 pr_err("wakeup-event: Internal tree error");
1231 goto out_put;
1232 }
1233 if (add_sched_out_event(atoms, 'S', timestamp))
1234 goto out_put;
1235 }
1236
1237 BUG_ON(list_empty(&atoms->work_list));
1238
1239 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1240
1241 /*
1242 * As we do not guarantee the wakeup event happens when
1243 * task is out of run queue, also may happen when task is
1244 * on run queue and wakeup only change ->state to TASK_RUNNING,
1245 * then we should not set the ->wake_up_time when wake up a
1246 * task which is on run queue.
1247 *
1248 * You WILL be missing events if you've recorded only
1249 * one CPU, or are only looking at only one, so don't
1250 * skip in this case.
1251 */
1252 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1253 goto out_ok;
1254
1255 sched->nr_timestamps++;
1256 if (atom->sched_out_time > timestamp) {
1257 sched->nr_unordered_timestamps++;
1258 goto out_ok;
1259 }
1260
1261 atom->state = THREAD_WAIT_CPU;
1262 atom->wake_up_time = timestamp;
1263out_ok:
1264 err = 0;
1265out_put:
1266 thread__put(wakee);
1267 return err;
1268}
1269
1270static int latency_migrate_task_event(struct perf_sched *sched,
1271 struct evsel *evsel,
1272 struct perf_sample *sample,
1273 struct machine *machine)
1274{
1275 const u32 pid = evsel__intval(evsel, sample, "pid");
1276 u64 timestamp = sample->time;
1277 struct work_atoms *atoms;
1278 struct work_atom *atom;
1279 struct thread *migrant;
1280 int err = -1;
1281
1282 /*
1283 * Only need to worry about migration when profiling one CPU.
1284 */
1285 if (sched->profile_cpu == -1)
1286 return 0;
1287
1288 migrant = machine__findnew_thread(machine, -1, pid);
1289 if (migrant == NULL)
1290 return -1;
1291 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1292 if (!atoms) {
1293 if (thread_atoms_insert(sched, migrant))
1294 goto out_put;
1295 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1296 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1297 if (!atoms) {
1298 pr_err("migration-event: Internal tree error");
1299 goto out_put;
1300 }
1301 if (add_sched_out_event(atoms, 'R', timestamp))
1302 goto out_put;
1303 }
1304
1305 BUG_ON(list_empty(&atoms->work_list));
1306
1307 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1308 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1309
1310 sched->nr_timestamps++;
1311
1312 if (atom->sched_out_time > timestamp)
1313 sched->nr_unordered_timestamps++;
1314 err = 0;
1315out_put:
1316 thread__put(migrant);
1317 return err;
1318}
1319
1320static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1321{
1322 int i;
1323 int ret;
1324 u64 avg;
1325 char max_lat_at[32];
1326
1327 if (!work_list->nb_atoms)
1328 return;
1329 /*
1330 * Ignore idle threads:
1331 */
1332 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1333 return;
1334
1335 sched->all_runtime += work_list->total_runtime;
1336 sched->all_count += work_list->nb_atoms;
1337
1338 if (work_list->num_merged > 1)
1339 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1340 else
1341 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1342
1343 for (i = 0; i < 24 - ret; i++)
1344 printf(" ");
1345
1346 avg = work_list->total_lat / work_list->nb_atoms;
1347 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1348
1349 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1350 (double)work_list->total_runtime / NSEC_PER_MSEC,
1351 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1352 (double)work_list->max_lat / NSEC_PER_MSEC,
1353 max_lat_at);
1354}
1355
1356static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1357{
1358 if (l->thread == r->thread)
1359 return 0;
1360 if (l->thread->tid < r->thread->tid)
1361 return -1;
1362 if (l->thread->tid > r->thread->tid)
1363 return 1;
1364 return (int)(l->thread - r->thread);
1365}
1366
1367static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1368{
1369 u64 avgl, avgr;
1370
1371 if (!l->nb_atoms)
1372 return -1;
1373
1374 if (!r->nb_atoms)
1375 return 1;
1376
1377 avgl = l->total_lat / l->nb_atoms;
1378 avgr = r->total_lat / r->nb_atoms;
1379
1380 if (avgl < avgr)
1381 return -1;
1382 if (avgl > avgr)
1383 return 1;
1384
1385 return 0;
1386}
1387
1388static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1389{
1390 if (l->max_lat < r->max_lat)
1391 return -1;
1392 if (l->max_lat > r->max_lat)
1393 return 1;
1394
1395 return 0;
1396}
1397
1398static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1399{
1400 if (l->nb_atoms < r->nb_atoms)
1401 return -1;
1402 if (l->nb_atoms > r->nb_atoms)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1409{
1410 if (l->total_runtime < r->total_runtime)
1411 return -1;
1412 if (l->total_runtime > r->total_runtime)
1413 return 1;
1414
1415 return 0;
1416}
1417
1418static int sort_dimension__add(const char *tok, struct list_head *list)
1419{
1420 size_t i;
1421 static struct sort_dimension avg_sort_dimension = {
1422 .name = "avg",
1423 .cmp = avg_cmp,
1424 };
1425 static struct sort_dimension max_sort_dimension = {
1426 .name = "max",
1427 .cmp = max_cmp,
1428 };
1429 static struct sort_dimension pid_sort_dimension = {
1430 .name = "pid",
1431 .cmp = pid_cmp,
1432 };
1433 static struct sort_dimension runtime_sort_dimension = {
1434 .name = "runtime",
1435 .cmp = runtime_cmp,
1436 };
1437 static struct sort_dimension switch_sort_dimension = {
1438 .name = "switch",
1439 .cmp = switch_cmp,
1440 };
1441 struct sort_dimension *available_sorts[] = {
1442 &pid_sort_dimension,
1443 &avg_sort_dimension,
1444 &max_sort_dimension,
1445 &switch_sort_dimension,
1446 &runtime_sort_dimension,
1447 };
1448
1449 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1450 if (!strcmp(available_sorts[i]->name, tok)) {
1451 list_add_tail(&available_sorts[i]->list, list);
1452
1453 return 0;
1454 }
1455 }
1456
1457 return -1;
1458}
1459
1460static void perf_sched__sort_lat(struct perf_sched *sched)
1461{
1462 struct rb_node *node;
1463 struct rb_root_cached *root = &sched->atom_root;
1464again:
1465 for (;;) {
1466 struct work_atoms *data;
1467 node = rb_first_cached(root);
1468 if (!node)
1469 break;
1470
1471 rb_erase_cached(node, root);
1472 data = rb_entry(node, struct work_atoms, node);
1473 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1474 }
1475 if (root == &sched->atom_root) {
1476 root = &sched->merged_atom_root;
1477 goto again;
1478 }
1479}
1480
1481static int process_sched_wakeup_event(struct perf_tool *tool,
1482 struct evsel *evsel,
1483 struct perf_sample *sample,
1484 struct machine *machine)
1485{
1486 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1487
1488 if (sched->tp_handler->wakeup_event)
1489 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1490
1491 return 0;
1492}
1493
1494union map_priv {
1495 void *ptr;
1496 bool color;
1497};
1498
1499static bool thread__has_color(struct thread *thread)
1500{
1501 union map_priv priv = {
1502 .ptr = thread__priv(thread),
1503 };
1504
1505 return priv.color;
1506}
1507
1508static struct thread*
1509map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1510{
1511 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1512 union map_priv priv = {
1513 .color = false,
1514 };
1515
1516 if (!sched->map.color_pids || !thread || thread__priv(thread))
1517 return thread;
1518
1519 if (thread_map__has(sched->map.color_pids, tid))
1520 priv.color = true;
1521
1522 thread__set_priv(thread, priv.ptr);
1523 return thread;
1524}
1525
1526static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1527 struct perf_sample *sample, struct machine *machine)
1528{
1529 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1530 struct thread *sched_in;
1531 struct thread_runtime *tr;
1532 int new_shortname;
1533 u64 timestamp0, timestamp = sample->time;
1534 s64 delta;
1535 int i, this_cpu = sample->cpu;
1536 int cpus_nr;
1537 bool new_cpu = false;
1538 const char *color = PERF_COLOR_NORMAL;
1539 char stimestamp[32];
1540
1541 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1542
1543 if (this_cpu > sched->max_cpu)
1544 sched->max_cpu = this_cpu;
1545
1546 if (sched->map.comp) {
1547 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1548 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1549 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1550 new_cpu = true;
1551 }
1552 } else
1553 cpus_nr = sched->max_cpu;
1554
1555 timestamp0 = sched->cpu_last_switched[this_cpu];
1556 sched->cpu_last_switched[this_cpu] = timestamp;
1557 if (timestamp0)
1558 delta = timestamp - timestamp0;
1559 else
1560 delta = 0;
1561
1562 if (delta < 0) {
1563 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1564 return -1;
1565 }
1566
1567 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1568 if (sched_in == NULL)
1569 return -1;
1570
1571 tr = thread__get_runtime(sched_in);
1572 if (tr == NULL) {
1573 thread__put(sched_in);
1574 return -1;
1575 }
1576
1577 sched->curr_thread[this_cpu] = thread__get(sched_in);
1578
1579 printf(" ");
1580
1581 new_shortname = 0;
1582 if (!tr->shortname[0]) {
1583 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1584 /*
1585 * Don't allocate a letter-number for swapper:0
1586 * as a shortname. Instead, we use '.' for it.
1587 */
1588 tr->shortname[0] = '.';
1589 tr->shortname[1] = ' ';
1590 } else {
1591 tr->shortname[0] = sched->next_shortname1;
1592 tr->shortname[1] = sched->next_shortname2;
1593
1594 if (sched->next_shortname1 < 'Z') {
1595 sched->next_shortname1++;
1596 } else {
1597 sched->next_shortname1 = 'A';
1598 if (sched->next_shortname2 < '9')
1599 sched->next_shortname2++;
1600 else
1601 sched->next_shortname2 = '0';
1602 }
1603 }
1604 new_shortname = 1;
1605 }
1606
1607 for (i = 0; i < cpus_nr; i++) {
1608 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1609 struct thread *curr_thread = sched->curr_thread[cpu];
1610 struct thread_runtime *curr_tr;
1611 const char *pid_color = color;
1612 const char *cpu_color = color;
1613
1614 if (curr_thread && thread__has_color(curr_thread))
1615 pid_color = COLOR_PIDS;
1616
1617 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1618 continue;
1619
1620 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1621 cpu_color = COLOR_CPUS;
1622
1623 if (cpu != this_cpu)
1624 color_fprintf(stdout, color, " ");
1625 else
1626 color_fprintf(stdout, cpu_color, "*");
1627
1628 if (sched->curr_thread[cpu]) {
1629 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1630 if (curr_tr == NULL) {
1631 thread__put(sched_in);
1632 return -1;
1633 }
1634 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1635 } else
1636 color_fprintf(stdout, color, " ");
1637 }
1638
1639 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1640 goto out;
1641
1642 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1643 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1644 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1645 const char *pid_color = color;
1646
1647 if (thread__has_color(sched_in))
1648 pid_color = COLOR_PIDS;
1649
1650 color_fprintf(stdout, pid_color, "%s => %s:%d",
1651 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1652 tr->comm_changed = false;
1653 }
1654
1655 if (sched->map.comp && new_cpu)
1656 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1657
1658out:
1659 color_fprintf(stdout, color, "\n");
1660
1661 thread__put(sched_in);
1662
1663 return 0;
1664}
1665
1666static int process_sched_switch_event(struct perf_tool *tool,
1667 struct evsel *evsel,
1668 struct perf_sample *sample,
1669 struct machine *machine)
1670{
1671 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1672 int this_cpu = sample->cpu, err = 0;
1673 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1674 next_pid = evsel__intval(evsel, sample, "next_pid");
1675
1676 if (sched->curr_pid[this_cpu] != (u32)-1) {
1677 /*
1678 * Are we trying to switch away a PID that is
1679 * not current?
1680 */
1681 if (sched->curr_pid[this_cpu] != prev_pid)
1682 sched->nr_context_switch_bugs++;
1683 }
1684
1685 if (sched->tp_handler->switch_event)
1686 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1687
1688 sched->curr_pid[this_cpu] = next_pid;
1689 return err;
1690}
1691
1692static int process_sched_runtime_event(struct perf_tool *tool,
1693 struct evsel *evsel,
1694 struct perf_sample *sample,
1695 struct machine *machine)
1696{
1697 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698
1699 if (sched->tp_handler->runtime_event)
1700 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1701
1702 return 0;
1703}
1704
1705static int perf_sched__process_fork_event(struct perf_tool *tool,
1706 union perf_event *event,
1707 struct perf_sample *sample,
1708 struct machine *machine)
1709{
1710 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1711
1712 /* run the fork event through the perf machineruy */
1713 perf_event__process_fork(tool, event, sample, machine);
1714
1715 /* and then run additional processing needed for this command */
1716 if (sched->tp_handler->fork_event)
1717 return sched->tp_handler->fork_event(sched, event, machine);
1718
1719 return 0;
1720}
1721
1722static int process_sched_migrate_task_event(struct perf_tool *tool,
1723 struct evsel *evsel,
1724 struct perf_sample *sample,
1725 struct machine *machine)
1726{
1727 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729 if (sched->tp_handler->migrate_task_event)
1730 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1731
1732 return 0;
1733}
1734
1735typedef int (*tracepoint_handler)(struct perf_tool *tool,
1736 struct evsel *evsel,
1737 struct perf_sample *sample,
1738 struct machine *machine);
1739
1740static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1741 union perf_event *event __maybe_unused,
1742 struct perf_sample *sample,
1743 struct evsel *evsel,
1744 struct machine *machine)
1745{
1746 int err = 0;
1747
1748 if (evsel->handler != NULL) {
1749 tracepoint_handler f = evsel->handler;
1750 err = f(tool, evsel, sample, machine);
1751 }
1752
1753 return err;
1754}
1755
1756static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1757 union perf_event *event,
1758 struct perf_sample *sample,
1759 struct machine *machine)
1760{
1761 struct thread *thread;
1762 struct thread_runtime *tr;
1763 int err;
1764
1765 err = perf_event__process_comm(tool, event, sample, machine);
1766 if (err)
1767 return err;
1768
1769 thread = machine__find_thread(machine, sample->pid, sample->tid);
1770 if (!thread) {
1771 pr_err("Internal error: can't find thread\n");
1772 return -1;
1773 }
1774
1775 tr = thread__get_runtime(thread);
1776 if (tr == NULL) {
1777 thread__put(thread);
1778 return -1;
1779 }
1780
1781 tr->comm_changed = true;
1782 thread__put(thread);
1783
1784 return 0;
1785}
1786
1787static int perf_sched__read_events(struct perf_sched *sched)
1788{
1789 const struct evsel_str_handler handlers[] = {
1790 { "sched:sched_switch", process_sched_switch_event, },
1791 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1792 { "sched:sched_wakeup", process_sched_wakeup_event, },
1793 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1794 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1795 };
1796 struct perf_session *session;
1797 struct perf_data data = {
1798 .path = input_name,
1799 .mode = PERF_DATA_MODE_READ,
1800 .force = sched->force,
1801 };
1802 int rc = -1;
1803
1804 session = perf_session__new(&data, false, &sched->tool);
1805 if (IS_ERR(session)) {
1806 pr_debug("Error creating perf session");
1807 return PTR_ERR(session);
1808 }
1809
1810 symbol__init(&session->header.env);
1811
1812 if (perf_session__set_tracepoints_handlers(session, handlers))
1813 goto out_delete;
1814
1815 if (perf_session__has_traces(session, "record -R")) {
1816 int err = perf_session__process_events(session);
1817 if (err) {
1818 pr_err("Failed to process events, error %d", err);
1819 goto out_delete;
1820 }
1821
1822 sched->nr_events = session->evlist->stats.nr_events[0];
1823 sched->nr_lost_events = session->evlist->stats.total_lost;
1824 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1825 }
1826
1827 rc = 0;
1828out_delete:
1829 perf_session__delete(session);
1830 return rc;
1831}
1832
1833/*
1834 * scheduling times are printed as msec.usec
1835 */
1836static inline void print_sched_time(unsigned long long nsecs, int width)
1837{
1838 unsigned long msecs;
1839 unsigned long usecs;
1840
1841 msecs = nsecs / NSEC_PER_MSEC;
1842 nsecs -= msecs * NSEC_PER_MSEC;
1843 usecs = nsecs / NSEC_PER_USEC;
1844 printf("%*lu.%03lu ", width, msecs, usecs);
1845}
1846
1847/*
1848 * returns runtime data for event, allocating memory for it the
1849 * first time it is used.
1850 */
1851static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1852{
1853 struct evsel_runtime *r = evsel->priv;
1854
1855 if (r == NULL) {
1856 r = zalloc(sizeof(struct evsel_runtime));
1857 evsel->priv = r;
1858 }
1859
1860 return r;
1861}
1862
1863/*
1864 * save last time event was seen per cpu
1865 */
1866static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1867{
1868 struct evsel_runtime *r = evsel__get_runtime(evsel);
1869
1870 if (r == NULL)
1871 return;
1872
1873 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1874 int i, n = __roundup_pow_of_two(cpu+1);
1875 void *p = r->last_time;
1876
1877 p = realloc(r->last_time, n * sizeof(u64));
1878 if (!p)
1879 return;
1880
1881 r->last_time = p;
1882 for (i = r->ncpu; i < n; ++i)
1883 r->last_time[i] = (u64) 0;
1884
1885 r->ncpu = n;
1886 }
1887
1888 r->last_time[cpu] = timestamp;
1889}
1890
1891/* returns last time this event was seen on the given cpu */
1892static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1893{
1894 struct evsel_runtime *r = evsel__get_runtime(evsel);
1895
1896 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1897 return 0;
1898
1899 return r->last_time[cpu];
1900}
1901
1902static int comm_width = 30;
1903
1904static char *timehist_get_commstr(struct thread *thread)
1905{
1906 static char str[32];
1907 const char *comm = thread__comm_str(thread);
1908 pid_t tid = thread->tid;
1909 pid_t pid = thread->pid_;
1910 int n;
1911
1912 if (pid == 0)
1913 n = scnprintf(str, sizeof(str), "%s", comm);
1914
1915 else if (tid != pid)
1916 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1917
1918 else
1919 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1920
1921 if (n > comm_width)
1922 comm_width = n;
1923
1924 return str;
1925}
1926
1927static void timehist_header(struct perf_sched *sched)
1928{
1929 u32 ncpus = sched->max_cpu + 1;
1930 u32 i, j;
1931
1932 printf("%15s %6s ", "time", "cpu");
1933
1934 if (sched->show_cpu_visual) {
1935 printf(" ");
1936 for (i = 0, j = 0; i < ncpus; ++i) {
1937 printf("%x", j++);
1938 if (j > 15)
1939 j = 0;
1940 }
1941 printf(" ");
1942 }
1943
1944 printf(" %-*s %9s %9s %9s", comm_width,
1945 "task name", "wait time", "sch delay", "run time");
1946
1947 if (sched->show_state)
1948 printf(" %s", "state");
1949
1950 printf("\n");
1951
1952 /*
1953 * units row
1954 */
1955 printf("%15s %-6s ", "", "");
1956
1957 if (sched->show_cpu_visual)
1958 printf(" %*s ", ncpus, "");
1959
1960 printf(" %-*s %9s %9s %9s", comm_width,
1961 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1962
1963 if (sched->show_state)
1964 printf(" %5s", "");
1965
1966 printf("\n");
1967
1968 /*
1969 * separator
1970 */
1971 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1972
1973 if (sched->show_cpu_visual)
1974 printf(" %.*s ", ncpus, graph_dotted_line);
1975
1976 printf(" %.*s %.9s %.9s %.9s", comm_width,
1977 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1978 graph_dotted_line);
1979
1980 if (sched->show_state)
1981 printf(" %.5s", graph_dotted_line);
1982
1983 printf("\n");
1984}
1985
1986static char task_state_char(struct thread *thread, int state)
1987{
1988 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1989 unsigned bit = state ? ffs(state) : 0;
1990
1991 /* 'I' for idle */
1992 if (thread->tid == 0)
1993 return 'I';
1994
1995 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1996}
1997
1998static void timehist_print_sample(struct perf_sched *sched,
1999 struct evsel *evsel,
2000 struct perf_sample *sample,
2001 struct addr_location *al,
2002 struct thread *thread,
2003 u64 t, int state)
2004{
2005 struct thread_runtime *tr = thread__priv(thread);
2006 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2007 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2008 u32 max_cpus = sched->max_cpu + 1;
2009 char tstr[64];
2010 char nstr[30];
2011 u64 wait_time;
2012
2013 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2014 return;
2015
2016 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2017 printf("%15s [%04d] ", tstr, sample->cpu);
2018
2019 if (sched->show_cpu_visual) {
2020 u32 i;
2021 char c;
2022
2023 printf(" ");
2024 for (i = 0; i < max_cpus; ++i) {
2025 /* flag idle times with 'i'; others are sched events */
2026 if (i == sample->cpu)
2027 c = (thread->tid == 0) ? 'i' : 's';
2028 else
2029 c = ' ';
2030 printf("%c", c);
2031 }
2032 printf(" ");
2033 }
2034
2035 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2036
2037 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2038 print_sched_time(wait_time, 6);
2039
2040 print_sched_time(tr->dt_delay, 6);
2041 print_sched_time(tr->dt_run, 6);
2042
2043 if (sched->show_state)
2044 printf(" %5c ", task_state_char(thread, state));
2045
2046 if (sched->show_next) {
2047 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2048 printf(" %-*s", comm_width, nstr);
2049 }
2050
2051 if (sched->show_wakeups && !sched->show_next)
2052 printf(" %-*s", comm_width, "");
2053
2054 if (thread->tid == 0)
2055 goto out;
2056
2057 if (sched->show_callchain)
2058 printf(" ");
2059
2060 sample__fprintf_sym(sample, al, 0,
2061 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2062 EVSEL__PRINT_CALLCHAIN_ARROW |
2063 EVSEL__PRINT_SKIP_IGNORED,
2064 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2065
2066out:
2067 printf("\n");
2068}
2069
2070/*
2071 * Explanation of delta-time stats:
2072 *
2073 * t = time of current schedule out event
2074 * tprev = time of previous sched out event
2075 * also time of schedule-in event for current task
2076 * last_time = time of last sched change event for current task
2077 * (i.e, time process was last scheduled out)
2078 * ready_to_run = time of wakeup for current task
2079 *
2080 * -----|------------|------------|------------|------
2081 * last ready tprev t
2082 * time to run
2083 *
2084 * |-------- dt_wait --------|
2085 * |- dt_delay -|-- dt_run --|
2086 *
2087 * dt_run = run time of current task
2088 * dt_wait = time between last schedule out event for task and tprev
2089 * represents time spent off the cpu
2090 * dt_delay = time between wakeup and schedule-in of task
2091 */
2092
2093static void timehist_update_runtime_stats(struct thread_runtime *r,
2094 u64 t, u64 tprev)
2095{
2096 r->dt_delay = 0;
2097 r->dt_sleep = 0;
2098 r->dt_iowait = 0;
2099 r->dt_preempt = 0;
2100 r->dt_run = 0;
2101
2102 if (tprev) {
2103 r->dt_run = t - tprev;
2104 if (r->ready_to_run) {
2105 if (r->ready_to_run > tprev)
2106 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2107 else
2108 r->dt_delay = tprev - r->ready_to_run;
2109 }
2110
2111 if (r->last_time > tprev)
2112 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2113 else if (r->last_time) {
2114 u64 dt_wait = tprev - r->last_time;
2115
2116 if (r->last_state == TASK_RUNNING)
2117 r->dt_preempt = dt_wait;
2118 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2119 r->dt_iowait = dt_wait;
2120 else
2121 r->dt_sleep = dt_wait;
2122 }
2123 }
2124
2125 update_stats(&r->run_stats, r->dt_run);
2126
2127 r->total_run_time += r->dt_run;
2128 r->total_delay_time += r->dt_delay;
2129 r->total_sleep_time += r->dt_sleep;
2130 r->total_iowait_time += r->dt_iowait;
2131 r->total_preempt_time += r->dt_preempt;
2132}
2133
2134static bool is_idle_sample(struct perf_sample *sample,
2135 struct evsel *evsel)
2136{
2137 /* pid 0 == swapper == idle task */
2138 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2139 return evsel__intval(evsel, sample, "prev_pid") == 0;
2140
2141 return sample->pid == 0;
2142}
2143
2144static void save_task_callchain(struct perf_sched *sched,
2145 struct perf_sample *sample,
2146 struct evsel *evsel,
2147 struct machine *machine)
2148{
2149 struct callchain_cursor *cursor = &callchain_cursor;
2150 struct thread *thread;
2151
2152 /* want main thread for process - has maps */
2153 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2154 if (thread == NULL) {
2155 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2156 return;
2157 }
2158
2159 if (!sched->show_callchain || sample->callchain == NULL)
2160 return;
2161
2162 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2163 NULL, NULL, sched->max_stack + 2) != 0) {
2164 if (verbose > 0)
2165 pr_err("Failed to resolve callchain. Skipping\n");
2166
2167 return;
2168 }
2169
2170 callchain_cursor_commit(cursor);
2171
2172 while (true) {
2173 struct callchain_cursor_node *node;
2174 struct symbol *sym;
2175
2176 node = callchain_cursor_current(cursor);
2177 if (node == NULL)
2178 break;
2179
2180 sym = node->ms.sym;
2181 if (sym) {
2182 if (!strcmp(sym->name, "schedule") ||
2183 !strcmp(sym->name, "__schedule") ||
2184 !strcmp(sym->name, "preempt_schedule"))
2185 sym->ignore = 1;
2186 }
2187
2188 callchain_cursor_advance(cursor);
2189 }
2190}
2191
2192static int init_idle_thread(struct thread *thread)
2193{
2194 struct idle_thread_runtime *itr;
2195
2196 thread__set_comm(thread, idle_comm, 0);
2197
2198 itr = zalloc(sizeof(*itr));
2199 if (itr == NULL)
2200 return -ENOMEM;
2201
2202 init_stats(&itr->tr.run_stats);
2203 callchain_init(&itr->callchain);
2204 callchain_cursor_reset(&itr->cursor);
2205 thread__set_priv(thread, itr);
2206
2207 return 0;
2208}
2209
2210/*
2211 * Track idle stats per cpu by maintaining a local thread
2212 * struct for the idle task on each cpu.
2213 */
2214static int init_idle_threads(int ncpu)
2215{
2216 int i, ret;
2217
2218 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2219 if (!idle_threads)
2220 return -ENOMEM;
2221
2222 idle_max_cpu = ncpu;
2223
2224 /* allocate the actual thread struct if needed */
2225 for (i = 0; i < ncpu; ++i) {
2226 idle_threads[i] = thread__new(0, 0);
2227 if (idle_threads[i] == NULL)
2228 return -ENOMEM;
2229
2230 ret = init_idle_thread(idle_threads[i]);
2231 if (ret < 0)
2232 return ret;
2233 }
2234
2235 return 0;
2236}
2237
2238static void free_idle_threads(void)
2239{
2240 int i;
2241
2242 if (idle_threads == NULL)
2243 return;
2244
2245 for (i = 0; i < idle_max_cpu; ++i) {
2246 if ((idle_threads[i]))
2247 thread__delete(idle_threads[i]);
2248 }
2249
2250 free(idle_threads);
2251}
2252
2253static struct thread *get_idle_thread(int cpu)
2254{
2255 /*
2256 * expand/allocate array of pointers to local thread
2257 * structs if needed
2258 */
2259 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2260 int i, j = __roundup_pow_of_two(cpu+1);
2261 void *p;
2262
2263 p = realloc(idle_threads, j * sizeof(struct thread *));
2264 if (!p)
2265 return NULL;
2266
2267 idle_threads = (struct thread **) p;
2268 for (i = idle_max_cpu; i < j; ++i)
2269 idle_threads[i] = NULL;
2270
2271 idle_max_cpu = j;
2272 }
2273
2274 /* allocate a new thread struct if needed */
2275 if (idle_threads[cpu] == NULL) {
2276 idle_threads[cpu] = thread__new(0, 0);
2277
2278 if (idle_threads[cpu]) {
2279 if (init_idle_thread(idle_threads[cpu]) < 0)
2280 return NULL;
2281 }
2282 }
2283
2284 return idle_threads[cpu];
2285}
2286
2287static void save_idle_callchain(struct perf_sched *sched,
2288 struct idle_thread_runtime *itr,
2289 struct perf_sample *sample)
2290{
2291 if (!sched->show_callchain || sample->callchain == NULL)
2292 return;
2293
2294 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2295}
2296
2297static struct thread *timehist_get_thread(struct perf_sched *sched,
2298 struct perf_sample *sample,
2299 struct machine *machine,
2300 struct evsel *evsel)
2301{
2302 struct thread *thread;
2303
2304 if (is_idle_sample(sample, evsel)) {
2305 thread = get_idle_thread(sample->cpu);
2306 if (thread == NULL)
2307 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2308
2309 } else {
2310 /* there were samples with tid 0 but non-zero pid */
2311 thread = machine__findnew_thread(machine, sample->pid,
2312 sample->tid ?: sample->pid);
2313 if (thread == NULL) {
2314 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2315 sample->tid);
2316 }
2317
2318 save_task_callchain(sched, sample, evsel, machine);
2319 if (sched->idle_hist) {
2320 struct thread *idle;
2321 struct idle_thread_runtime *itr;
2322
2323 idle = get_idle_thread(sample->cpu);
2324 if (idle == NULL) {
2325 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2326 return NULL;
2327 }
2328
2329 itr = thread__priv(idle);
2330 if (itr == NULL)
2331 return NULL;
2332
2333 itr->last_thread = thread;
2334
2335 /* copy task callchain when entering to idle */
2336 if (evsel__intval(evsel, sample, "next_pid") == 0)
2337 save_idle_callchain(sched, itr, sample);
2338 }
2339 }
2340
2341 return thread;
2342}
2343
2344static bool timehist_skip_sample(struct perf_sched *sched,
2345 struct thread *thread,
2346 struct evsel *evsel,
2347 struct perf_sample *sample)
2348{
2349 bool rc = false;
2350
2351 if (thread__is_filtered(thread)) {
2352 rc = true;
2353 sched->skipped_samples++;
2354 }
2355
2356 if (sched->idle_hist) {
2357 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2358 rc = true;
2359 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2360 evsel__intval(evsel, sample, "next_pid") != 0)
2361 rc = true;
2362 }
2363
2364 return rc;
2365}
2366
2367static void timehist_print_wakeup_event(struct perf_sched *sched,
2368 struct evsel *evsel,
2369 struct perf_sample *sample,
2370 struct machine *machine,
2371 struct thread *awakened)
2372{
2373 struct thread *thread;
2374 char tstr[64];
2375
2376 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2377 if (thread == NULL)
2378 return;
2379
2380 /* show wakeup unless both awakee and awaker are filtered */
2381 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2382 timehist_skip_sample(sched, awakened, evsel, sample)) {
2383 return;
2384 }
2385
2386 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2387 printf("%15s [%04d] ", tstr, sample->cpu);
2388 if (sched->show_cpu_visual)
2389 printf(" %*s ", sched->max_cpu + 1, "");
2390
2391 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2392
2393 /* dt spacer */
2394 printf(" %9s %9s %9s ", "", "", "");
2395
2396 printf("awakened: %s", timehist_get_commstr(awakened));
2397
2398 printf("\n");
2399}
2400
2401static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2402 union perf_event *event __maybe_unused,
2403 struct evsel *evsel __maybe_unused,
2404 struct perf_sample *sample __maybe_unused,
2405 struct machine *machine __maybe_unused)
2406{
2407 return 0;
2408}
2409
2410static int timehist_sched_wakeup_event(struct perf_tool *tool,
2411 union perf_event *event __maybe_unused,
2412 struct evsel *evsel,
2413 struct perf_sample *sample,
2414 struct machine *machine)
2415{
2416 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2417 struct thread *thread;
2418 struct thread_runtime *tr = NULL;
2419 /* want pid of awakened task not pid in sample */
2420 const u32 pid = evsel__intval(evsel, sample, "pid");
2421
2422 thread = machine__findnew_thread(machine, 0, pid);
2423 if (thread == NULL)
2424 return -1;
2425
2426 tr = thread__get_runtime(thread);
2427 if (tr == NULL)
2428 return -1;
2429
2430 if (tr->ready_to_run == 0)
2431 tr->ready_to_run = sample->time;
2432
2433 /* show wakeups if requested */
2434 if (sched->show_wakeups &&
2435 !perf_time__skip_sample(&sched->ptime, sample->time))
2436 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2437
2438 return 0;
2439}
2440
2441static void timehist_print_migration_event(struct perf_sched *sched,
2442 struct evsel *evsel,
2443 struct perf_sample *sample,
2444 struct machine *machine,
2445 struct thread *migrated)
2446{
2447 struct thread *thread;
2448 char tstr[64];
2449 u32 max_cpus = sched->max_cpu + 1;
2450 u32 ocpu, dcpu;
2451
2452 if (sched->summary_only)
2453 return;
2454
2455 max_cpus = sched->max_cpu + 1;
2456 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2457 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2458
2459 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2460 if (thread == NULL)
2461 return;
2462
2463 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2464 timehist_skip_sample(sched, migrated, evsel, sample)) {
2465 return;
2466 }
2467
2468 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2469 printf("%15s [%04d] ", tstr, sample->cpu);
2470
2471 if (sched->show_cpu_visual) {
2472 u32 i;
2473 char c;
2474
2475 printf(" ");
2476 for (i = 0; i < max_cpus; ++i) {
2477 c = (i == sample->cpu) ? 'm' : ' ';
2478 printf("%c", c);
2479 }
2480 printf(" ");
2481 }
2482
2483 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2484
2485 /* dt spacer */
2486 printf(" %9s %9s %9s ", "", "", "");
2487
2488 printf("migrated: %s", timehist_get_commstr(migrated));
2489 printf(" cpu %d => %d", ocpu, dcpu);
2490
2491 printf("\n");
2492}
2493
2494static int timehist_migrate_task_event(struct perf_tool *tool,
2495 union perf_event *event __maybe_unused,
2496 struct evsel *evsel,
2497 struct perf_sample *sample,
2498 struct machine *machine)
2499{
2500 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2501 struct thread *thread;
2502 struct thread_runtime *tr = NULL;
2503 /* want pid of migrated task not pid in sample */
2504 const u32 pid = evsel__intval(evsel, sample, "pid");
2505
2506 thread = machine__findnew_thread(machine, 0, pid);
2507 if (thread == NULL)
2508 return -1;
2509
2510 tr = thread__get_runtime(thread);
2511 if (tr == NULL)
2512 return -1;
2513
2514 tr->migrations++;
2515
2516 /* show migrations if requested */
2517 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2518
2519 return 0;
2520}
2521
2522static int timehist_sched_change_event(struct perf_tool *tool,
2523 union perf_event *event,
2524 struct evsel *evsel,
2525 struct perf_sample *sample,
2526 struct machine *machine)
2527{
2528 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2529 struct perf_time_interval *ptime = &sched->ptime;
2530 struct addr_location al;
2531 struct thread *thread;
2532 struct thread_runtime *tr = NULL;
2533 u64 tprev, t = sample->time;
2534 int rc = 0;
2535 int state = evsel__intval(evsel, sample, "prev_state");
2536
2537 if (machine__resolve(machine, &al, sample) < 0) {
2538 pr_err("problem processing %d event. skipping it\n",
2539 event->header.type);
2540 rc = -1;
2541 goto out;
2542 }
2543
2544 thread = timehist_get_thread(sched, sample, machine, evsel);
2545 if (thread == NULL) {
2546 rc = -1;
2547 goto out;
2548 }
2549
2550 if (timehist_skip_sample(sched, thread, evsel, sample))
2551 goto out;
2552
2553 tr = thread__get_runtime(thread);
2554 if (tr == NULL) {
2555 rc = -1;
2556 goto out;
2557 }
2558
2559 tprev = evsel__get_time(evsel, sample->cpu);
2560
2561 /*
2562 * If start time given:
2563 * - sample time is under window user cares about - skip sample
2564 * - tprev is under window user cares about - reset to start of window
2565 */
2566 if (ptime->start && ptime->start > t)
2567 goto out;
2568
2569 if (tprev && ptime->start > tprev)
2570 tprev = ptime->start;
2571
2572 /*
2573 * If end time given:
2574 * - previous sched event is out of window - we are done
2575 * - sample time is beyond window user cares about - reset it
2576 * to close out stats for time window interest
2577 */
2578 if (ptime->end) {
2579 if (tprev > ptime->end)
2580 goto out;
2581
2582 if (t > ptime->end)
2583 t = ptime->end;
2584 }
2585
2586 if (!sched->idle_hist || thread->tid == 0) {
2587 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2588 timehist_update_runtime_stats(tr, t, tprev);
2589
2590 if (sched->idle_hist) {
2591 struct idle_thread_runtime *itr = (void *)tr;
2592 struct thread_runtime *last_tr;
2593
2594 BUG_ON(thread->tid != 0);
2595
2596 if (itr->last_thread == NULL)
2597 goto out;
2598
2599 /* add current idle time as last thread's runtime */
2600 last_tr = thread__get_runtime(itr->last_thread);
2601 if (last_tr == NULL)
2602 goto out;
2603
2604 timehist_update_runtime_stats(last_tr, t, tprev);
2605 /*
2606 * remove delta time of last thread as it's not updated
2607 * and otherwise it will show an invalid value next
2608 * time. we only care total run time and run stat.
2609 */
2610 last_tr->dt_run = 0;
2611 last_tr->dt_delay = 0;
2612 last_tr->dt_sleep = 0;
2613 last_tr->dt_iowait = 0;
2614 last_tr->dt_preempt = 0;
2615
2616 if (itr->cursor.nr)
2617 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2618
2619 itr->last_thread = NULL;
2620 }
2621 }
2622
2623 if (!sched->summary_only)
2624 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2625
2626out:
2627 if (sched->hist_time.start == 0 && t >= ptime->start)
2628 sched->hist_time.start = t;
2629 if (ptime->end == 0 || t <= ptime->end)
2630 sched->hist_time.end = t;
2631
2632 if (tr) {
2633 /* time of this sched_switch event becomes last time task seen */
2634 tr->last_time = sample->time;
2635
2636 /* last state is used to determine where to account wait time */
2637 tr->last_state = state;
2638
2639 /* sched out event for task so reset ready to run time */
2640 tr->ready_to_run = 0;
2641 }
2642
2643 evsel__save_time(evsel, sample->time, sample->cpu);
2644
2645 return rc;
2646}
2647
2648static int timehist_sched_switch_event(struct perf_tool *tool,
2649 union perf_event *event,
2650 struct evsel *evsel,
2651 struct perf_sample *sample,
2652 struct machine *machine __maybe_unused)
2653{
2654 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2655}
2656
2657static int process_lost(struct perf_tool *tool __maybe_unused,
2658 union perf_event *event,
2659 struct perf_sample *sample,
2660 struct machine *machine __maybe_unused)
2661{
2662 char tstr[64];
2663
2664 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2665 printf("%15s ", tstr);
2666 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2667
2668 return 0;
2669}
2670
2671
2672static void print_thread_runtime(struct thread *t,
2673 struct thread_runtime *r)
2674{
2675 double mean = avg_stats(&r->run_stats);
2676 float stddev;
2677
2678 printf("%*s %5d %9" PRIu64 " ",
2679 comm_width, timehist_get_commstr(t), t->ppid,
2680 (u64) r->run_stats.n);
2681
2682 print_sched_time(r->total_run_time, 8);
2683 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2684 print_sched_time(r->run_stats.min, 6);
2685 printf(" ");
2686 print_sched_time((u64) mean, 6);
2687 printf(" ");
2688 print_sched_time(r->run_stats.max, 6);
2689 printf(" ");
2690 printf("%5.2f", stddev);
2691 printf(" %5" PRIu64, r->migrations);
2692 printf("\n");
2693}
2694
2695static void print_thread_waittime(struct thread *t,
2696 struct thread_runtime *r)
2697{
2698 printf("%*s %5d %9" PRIu64 " ",
2699 comm_width, timehist_get_commstr(t), t->ppid,
2700 (u64) r->run_stats.n);
2701
2702 print_sched_time(r->total_run_time, 8);
2703 print_sched_time(r->total_sleep_time, 6);
2704 printf(" ");
2705 print_sched_time(r->total_iowait_time, 6);
2706 printf(" ");
2707 print_sched_time(r->total_preempt_time, 6);
2708 printf(" ");
2709 print_sched_time(r->total_delay_time, 6);
2710 printf("\n");
2711}
2712
2713struct total_run_stats {
2714 struct perf_sched *sched;
2715 u64 sched_count;
2716 u64 task_count;
2717 u64 total_run_time;
2718};
2719
2720static int __show_thread_runtime(struct thread *t, void *priv)
2721{
2722 struct total_run_stats *stats = priv;
2723 struct thread_runtime *r;
2724
2725 if (thread__is_filtered(t))
2726 return 0;
2727
2728 r = thread__priv(t);
2729 if (r && r->run_stats.n) {
2730 stats->task_count++;
2731 stats->sched_count += r->run_stats.n;
2732 stats->total_run_time += r->total_run_time;
2733
2734 if (stats->sched->show_state)
2735 print_thread_waittime(t, r);
2736 else
2737 print_thread_runtime(t, r);
2738 }
2739
2740 return 0;
2741}
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745 if (t->dead)
2746 return 0;
2747
2748 return __show_thread_runtime(t, priv);
2749}
2750
2751static int show_deadthread_runtime(struct thread *t, void *priv)
2752{
2753 if (!t->dead)
2754 return 0;
2755
2756 return __show_thread_runtime(t, priv);
2757}
2758
2759static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2760{
2761 const char *sep = " <- ";
2762 struct callchain_list *chain;
2763 size_t ret = 0;
2764 char bf[1024];
2765 bool first;
2766
2767 if (node == NULL)
2768 return 0;
2769
2770 ret = callchain__fprintf_folded(fp, node->parent);
2771 first = (ret == 0);
2772
2773 list_for_each_entry(chain, &node->val, list) {
2774 if (chain->ip >= PERF_CONTEXT_MAX)
2775 continue;
2776 if (chain->ms.sym && chain->ms.sym->ignore)
2777 continue;
2778 ret += fprintf(fp, "%s%s", first ? "" : sep,
2779 callchain_list__sym_name(chain, bf, sizeof(bf),
2780 false));
2781 first = false;
2782 }
2783
2784 return ret;
2785}
2786
2787static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2788{
2789 size_t ret = 0;
2790 FILE *fp = stdout;
2791 struct callchain_node *chain;
2792 struct rb_node *rb_node = rb_first_cached(root);
2793
2794 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2795 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2796 graph_dotted_line);
2797
2798 while (rb_node) {
2799 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2800 rb_node = rb_next(rb_node);
2801
2802 ret += fprintf(fp, " ");
2803 print_sched_time(chain->hit, 12);
2804 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2805 ret += fprintf(fp, " %8d ", chain->count);
2806 ret += callchain__fprintf_folded(fp, chain);
2807 ret += fprintf(fp, "\n");
2808 }
2809
2810 return ret;
2811}
2812
2813static void timehist_print_summary(struct perf_sched *sched,
2814 struct perf_session *session)
2815{
2816 struct machine *m = &session->machines.host;
2817 struct total_run_stats totals;
2818 u64 task_count;
2819 struct thread *t;
2820 struct thread_runtime *r;
2821 int i;
2822 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2823
2824 memset(&totals, 0, sizeof(totals));
2825 totals.sched = sched;
2826
2827 if (sched->idle_hist) {
2828 printf("\nIdle-time summary\n");
2829 printf("%*s parent sched-out ", comm_width, "comm");
2830 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2831 } else if (sched->show_state) {
2832 printf("\nWait-time summary\n");
2833 printf("%*s parent sched-in ", comm_width, "comm");
2834 printf(" run-time sleep iowait preempt delay\n");
2835 } else {
2836 printf("\nRuntime summary\n");
2837 printf("%*s parent sched-in ", comm_width, "comm");
2838 printf(" run-time min-run avg-run max-run stddev migrations\n");
2839 }
2840 printf("%*s (count) ", comm_width, "");
2841 printf(" (msec) (msec) (msec) (msec) %s\n",
2842 sched->show_state ? "(msec)" : "%");
2843 printf("%.117s\n", graph_dotted_line);
2844
2845 machine__for_each_thread(m, show_thread_runtime, &totals);
2846 task_count = totals.task_count;
2847 if (!task_count)
2848 printf("<no still running tasks>\n");
2849
2850 printf("\nTerminated tasks:\n");
2851 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2852 if (task_count == totals.task_count)
2853 printf("<no terminated tasks>\n");
2854
2855 /* CPU idle stats not tracked when samples were skipped */
2856 if (sched->skipped_samples && !sched->idle_hist)
2857 return;
2858
2859 printf("\nIdle stats:\n");
2860 for (i = 0; i < idle_max_cpu; ++i) {
2861 if (cpu_list && !test_bit(i, cpu_bitmap))
2862 continue;
2863
2864 t = idle_threads[i];
2865 if (!t)
2866 continue;
2867
2868 r = thread__priv(t);
2869 if (r && r->run_stats.n) {
2870 totals.sched_count += r->run_stats.n;
2871 printf(" CPU %2d idle for ", i);
2872 print_sched_time(r->total_run_time, 6);
2873 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2874 } else
2875 printf(" CPU %2d idle entire time window\n", i);
2876 }
2877
2878 if (sched->idle_hist && sched->show_callchain) {
2879 callchain_param.mode = CHAIN_FOLDED;
2880 callchain_param.value = CCVAL_PERIOD;
2881
2882 callchain_register_param(&callchain_param);
2883
2884 printf("\nIdle stats by callchain:\n");
2885 for (i = 0; i < idle_max_cpu; ++i) {
2886 struct idle_thread_runtime *itr;
2887
2888 t = idle_threads[i];
2889 if (!t)
2890 continue;
2891
2892 itr = thread__priv(t);
2893 if (itr == NULL)
2894 continue;
2895
2896 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2897 0, &callchain_param);
2898
2899 printf(" CPU %2d:", i);
2900 print_sched_time(itr->tr.total_run_time, 6);
2901 printf(" msec\n");
2902 timehist_print_idlehist_callchain(&itr->sorted_root);
2903 printf("\n");
2904 }
2905 }
2906
2907 printf("\n"
2908 " Total number of unique tasks: %" PRIu64 "\n"
2909 "Total number of context switches: %" PRIu64 "\n",
2910 totals.task_count, totals.sched_count);
2911
2912 printf(" Total run time (msec): ");
2913 print_sched_time(totals.total_run_time, 2);
2914 printf("\n");
2915
2916 printf(" Total scheduling time (msec): ");
2917 print_sched_time(hist_time, 2);
2918 printf(" (x %d)\n", sched->max_cpu);
2919}
2920
2921typedef int (*sched_handler)(struct perf_tool *tool,
2922 union perf_event *event,
2923 struct evsel *evsel,
2924 struct perf_sample *sample,
2925 struct machine *machine);
2926
2927static int perf_timehist__process_sample(struct perf_tool *tool,
2928 union perf_event *event,
2929 struct perf_sample *sample,
2930 struct evsel *evsel,
2931 struct machine *machine)
2932{
2933 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2934 int err = 0;
2935 int this_cpu = sample->cpu;
2936
2937 if (this_cpu > sched->max_cpu)
2938 sched->max_cpu = this_cpu;
2939
2940 if (evsel->handler != NULL) {
2941 sched_handler f = evsel->handler;
2942
2943 err = f(tool, event, evsel, sample, machine);
2944 }
2945
2946 return err;
2947}
2948
2949static int timehist_check_attr(struct perf_sched *sched,
2950 struct evlist *evlist)
2951{
2952 struct evsel *evsel;
2953 struct evsel_runtime *er;
2954
2955 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2956 er = evsel__get_runtime(evsel);
2957 if (er == NULL) {
2958 pr_err("Failed to allocate memory for evsel runtime data\n");
2959 return -1;
2960 }
2961
2962 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2963 pr_info("Samples do not have callchains.\n");
2964 sched->show_callchain = 0;
2965 symbol_conf.use_callchain = 0;
2966 }
2967 }
2968
2969 return 0;
2970}
2971
2972static int perf_sched__timehist(struct perf_sched *sched)
2973{
2974 struct evsel_str_handler handlers[] = {
2975 { "sched:sched_switch", timehist_sched_switch_event, },
2976 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2977 { "sched:sched_waking", timehist_sched_wakeup_event, },
2978 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2979 };
2980 const struct evsel_str_handler migrate_handlers[] = {
2981 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2982 };
2983 struct perf_data data = {
2984 .path = input_name,
2985 .mode = PERF_DATA_MODE_READ,
2986 .force = sched->force,
2987 };
2988
2989 struct perf_session *session;
2990 struct evlist *evlist;
2991 int err = -1;
2992
2993 /*
2994 * event handlers for timehist option
2995 */
2996 sched->tool.sample = perf_timehist__process_sample;
2997 sched->tool.mmap = perf_event__process_mmap;
2998 sched->tool.comm = perf_event__process_comm;
2999 sched->tool.exit = perf_event__process_exit;
3000 sched->tool.fork = perf_event__process_fork;
3001 sched->tool.lost = process_lost;
3002 sched->tool.attr = perf_event__process_attr;
3003 sched->tool.tracing_data = perf_event__process_tracing_data;
3004 sched->tool.build_id = perf_event__process_build_id;
3005
3006 sched->tool.ordered_events = true;
3007 sched->tool.ordering_requires_timestamps = true;
3008
3009 symbol_conf.use_callchain = sched->show_callchain;
3010
3011 session = perf_session__new(&data, false, &sched->tool);
3012 if (IS_ERR(session))
3013 return PTR_ERR(session);
3014
3015 if (cpu_list) {
3016 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3017 if (err < 0)
3018 goto out;
3019 }
3020
3021 evlist = session->evlist;
3022
3023 symbol__init(&session->header.env);
3024
3025 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3026 pr_err("Invalid time string\n");
3027 return -EINVAL;
3028 }
3029
3030 if (timehist_check_attr(sched, evlist) != 0)
3031 goto out;
3032
3033 setup_pager();
3034
3035 /* prefer sched_waking if it is captured */
3036 if (perf_evlist__find_tracepoint_by_name(session->evlist,
3037 "sched:sched_waking"))
3038 handlers[1].handler = timehist_sched_wakeup_ignore;
3039
3040 /* setup per-evsel handlers */
3041 if (perf_session__set_tracepoints_handlers(session, handlers))
3042 goto out;
3043
3044 /* sched_switch event at a minimum needs to exist */
3045 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3046 "sched:sched_switch")) {
3047 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3048 goto out;
3049 }
3050
3051 if (sched->show_migrations &&
3052 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3053 goto out;
3054
3055 /* pre-allocate struct for per-CPU idle stats */
3056 sched->max_cpu = session->header.env.nr_cpus_online;
3057 if (sched->max_cpu == 0)
3058 sched->max_cpu = 4;
3059 if (init_idle_threads(sched->max_cpu))
3060 goto out;
3061
3062 /* summary_only implies summary option, but don't overwrite summary if set */
3063 if (sched->summary_only)
3064 sched->summary = sched->summary_only;
3065
3066 if (!sched->summary_only)
3067 timehist_header(sched);
3068
3069 err = perf_session__process_events(session);
3070 if (err) {
3071 pr_err("Failed to process events, error %d", err);
3072 goto out;
3073 }
3074
3075 sched->nr_events = evlist->stats.nr_events[0];
3076 sched->nr_lost_events = evlist->stats.total_lost;
3077 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3078
3079 if (sched->summary)
3080 timehist_print_summary(sched, session);
3081
3082out:
3083 free_idle_threads();
3084 perf_session__delete(session);
3085
3086 return err;
3087}
3088
3089
3090static void print_bad_events(struct perf_sched *sched)
3091{
3092 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3093 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3094 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3095 sched->nr_unordered_timestamps, sched->nr_timestamps);
3096 }
3097 if (sched->nr_lost_events && sched->nr_events) {
3098 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3099 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3100 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3101 }
3102 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3103 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3104 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3105 sched->nr_context_switch_bugs, sched->nr_timestamps);
3106 if (sched->nr_lost_events)
3107 printf(" (due to lost events?)");
3108 printf("\n");
3109 }
3110}
3111
3112static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3113{
3114 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3115 struct work_atoms *this;
3116 const char *comm = thread__comm_str(data->thread), *this_comm;
3117 bool leftmost = true;
3118
3119 while (*new) {
3120 int cmp;
3121
3122 this = container_of(*new, struct work_atoms, node);
3123 parent = *new;
3124
3125 this_comm = thread__comm_str(this->thread);
3126 cmp = strcmp(comm, this_comm);
3127 if (cmp > 0) {
3128 new = &((*new)->rb_left);
3129 } else if (cmp < 0) {
3130 new = &((*new)->rb_right);
3131 leftmost = false;
3132 } else {
3133 this->num_merged++;
3134 this->total_runtime += data->total_runtime;
3135 this->nb_atoms += data->nb_atoms;
3136 this->total_lat += data->total_lat;
3137 list_splice(&data->work_list, &this->work_list);
3138 if (this->max_lat < data->max_lat) {
3139 this->max_lat = data->max_lat;
3140 this->max_lat_at = data->max_lat_at;
3141 }
3142 zfree(&data);
3143 return;
3144 }
3145 }
3146
3147 data->num_merged++;
3148 rb_link_node(&data->node, parent, new);
3149 rb_insert_color_cached(&data->node, root, leftmost);
3150}
3151
3152static void perf_sched__merge_lat(struct perf_sched *sched)
3153{
3154 struct work_atoms *data;
3155 struct rb_node *node;
3156
3157 if (sched->skip_merge)
3158 return;
3159
3160 while ((node = rb_first_cached(&sched->atom_root))) {
3161 rb_erase_cached(node, &sched->atom_root);
3162 data = rb_entry(node, struct work_atoms, node);
3163 __merge_work_atoms(&sched->merged_atom_root, data);
3164 }
3165}
3166
3167static int perf_sched__lat(struct perf_sched *sched)
3168{
3169 struct rb_node *next;
3170
3171 setup_pager();
3172
3173 if (perf_sched__read_events(sched))
3174 return -1;
3175
3176 perf_sched__merge_lat(sched);
3177 perf_sched__sort_lat(sched);
3178
3179 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3180 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3181 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3182
3183 next = rb_first_cached(&sched->sorted_atom_root);
3184
3185 while (next) {
3186 struct work_atoms *work_list;
3187
3188 work_list = rb_entry(next, struct work_atoms, node);
3189 output_lat_thread(sched, work_list);
3190 next = rb_next(next);
3191 thread__zput(work_list->thread);
3192 }
3193
3194 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3195 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3196 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3197
3198 printf(" ---------------------------------------------------\n");
3199
3200 print_bad_events(sched);
3201 printf("\n");
3202
3203 return 0;
3204}
3205
3206static int setup_map_cpus(struct perf_sched *sched)
3207{
3208 struct perf_cpu_map *map;
3209
3210 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3211
3212 if (sched->map.comp) {
3213 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3214 if (!sched->map.comp_cpus)
3215 return -1;
3216 }
3217
3218 if (!sched->map.cpus_str)
3219 return 0;
3220
3221 map = perf_cpu_map__new(sched->map.cpus_str);
3222 if (!map) {
3223 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3224 return -1;
3225 }
3226
3227 sched->map.cpus = map;
3228 return 0;
3229}
3230
3231static int setup_color_pids(struct perf_sched *sched)
3232{
3233 struct perf_thread_map *map;
3234
3235 if (!sched->map.color_pids_str)
3236 return 0;
3237
3238 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3239 if (!map) {
3240 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3241 return -1;
3242 }
3243
3244 sched->map.color_pids = map;
3245 return 0;
3246}
3247
3248static int setup_color_cpus(struct perf_sched *sched)
3249{
3250 struct perf_cpu_map *map;
3251
3252 if (!sched->map.color_cpus_str)
3253 return 0;
3254
3255 map = perf_cpu_map__new(sched->map.color_cpus_str);
3256 if (!map) {
3257 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3258 return -1;
3259 }
3260
3261 sched->map.color_cpus = map;
3262 return 0;
3263}
3264
3265static int perf_sched__map(struct perf_sched *sched)
3266{
3267 if (setup_map_cpus(sched))
3268 return -1;
3269
3270 if (setup_color_pids(sched))
3271 return -1;
3272
3273 if (setup_color_cpus(sched))
3274 return -1;
3275
3276 setup_pager();
3277 if (perf_sched__read_events(sched))
3278 return -1;
3279 print_bad_events(sched);
3280 return 0;
3281}
3282
3283static int perf_sched__replay(struct perf_sched *sched)
3284{
3285 unsigned long i;
3286
3287 calibrate_run_measurement_overhead(sched);
3288 calibrate_sleep_measurement_overhead(sched);
3289
3290 test_calibrations(sched);
3291
3292 if (perf_sched__read_events(sched))
3293 return -1;
3294
3295 printf("nr_run_events: %ld\n", sched->nr_run_events);
3296 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3297 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3298
3299 if (sched->targetless_wakeups)
3300 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3301 if (sched->multitarget_wakeups)
3302 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3303 if (sched->nr_run_events_optimized)
3304 printf("run atoms optimized: %ld\n",
3305 sched->nr_run_events_optimized);
3306
3307 print_task_traces(sched);
3308 add_cross_task_wakeups(sched);
3309
3310 create_tasks(sched);
3311 printf("------------------------------------------------------------\n");
3312 for (i = 0; i < sched->replay_repeat; i++)
3313 run_one_test(sched);
3314
3315 return 0;
3316}
3317
3318static void setup_sorting(struct perf_sched *sched, const struct option *options,
3319 const char * const usage_msg[])
3320{
3321 char *tmp, *tok, *str = strdup(sched->sort_order);
3322
3323 for (tok = strtok_r(str, ", ", &tmp);
3324 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3325 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3326 usage_with_options_msg(usage_msg, options,
3327 "Unknown --sort key: `%s'", tok);
3328 }
3329 }
3330
3331 free(str);
3332
3333 sort_dimension__add("pid", &sched->cmp_pid);
3334}
3335
3336static int __cmd_record(int argc, const char **argv)
3337{
3338 unsigned int rec_argc, i, j;
3339 const char **rec_argv;
3340 const char * const record_args[] = {
3341 "record",
3342 "-a",
3343 "-R",
3344 "-m", "1024",
3345 "-c", "1",
3346 "-e", "sched:sched_switch",
3347 "-e", "sched:sched_stat_wait",
3348 "-e", "sched:sched_stat_sleep",
3349 "-e", "sched:sched_stat_iowait",
3350 "-e", "sched:sched_stat_runtime",
3351 "-e", "sched:sched_process_fork",
3352 "-e", "sched:sched_wakeup_new",
3353 "-e", "sched:sched_migrate_task",
3354 };
3355 struct tep_event *waking_event;
3356
3357 /*
3358 * +2 for either "-e", "sched:sched_wakeup" or
3359 * "-e", "sched:sched_waking"
3360 */
3361 rec_argc = ARRAY_SIZE(record_args) + 2 + argc - 1;
3362 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3363
3364 if (rec_argv == NULL)
3365 return -ENOMEM;
3366
3367 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3368 rec_argv[i] = strdup(record_args[i]);
3369
3370 rec_argv[i++] = "-e";
3371 waking_event = trace_event__tp_format("sched", "sched_waking");
3372 if (!IS_ERR(waking_event))
3373 rec_argv[i++] = strdup("sched:sched_waking");
3374 else
3375 rec_argv[i++] = strdup("sched:sched_wakeup");
3376
3377 for (j = 1; j < (unsigned int)argc; j++, i++)
3378 rec_argv[i] = argv[j];
3379
3380 BUG_ON(i != rec_argc);
3381
3382 return cmd_record(i, rec_argv);
3383}
3384
3385int cmd_sched(int argc, const char **argv)
3386{
3387 static const char default_sort_order[] = "avg, max, switch, runtime";
3388 struct perf_sched sched = {
3389 .tool = {
3390 .sample = perf_sched__process_tracepoint_sample,
3391 .comm = perf_sched__process_comm,
3392 .namespaces = perf_event__process_namespaces,
3393 .lost = perf_event__process_lost,
3394 .fork = perf_sched__process_fork_event,
3395 .ordered_events = true,
3396 },
3397 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3398 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3399 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3400 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3401 .sort_order = default_sort_order,
3402 .replay_repeat = 10,
3403 .profile_cpu = -1,
3404 .next_shortname1 = 'A',
3405 .next_shortname2 = '0',
3406 .skip_merge = 0,
3407 .show_callchain = 1,
3408 .max_stack = 5,
3409 };
3410 const struct option sched_options[] = {
3411 OPT_STRING('i', "input", &input_name, "file",
3412 "input file name"),
3413 OPT_INCR('v', "verbose", &verbose,
3414 "be more verbose (show symbol address, etc)"),
3415 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3416 "dump raw trace in ASCII"),
3417 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3418 OPT_END()
3419 };
3420 const struct option latency_options[] = {
3421 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3422 "sort by key(s): runtime, switch, avg, max"),
3423 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3424 "CPU to profile on"),
3425 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3426 "latency stats per pid instead of per comm"),
3427 OPT_PARENT(sched_options)
3428 };
3429 const struct option replay_options[] = {
3430 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3431 "repeat the workload replay N times (-1: infinite)"),
3432 OPT_PARENT(sched_options)
3433 };
3434 const struct option map_options[] = {
3435 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3436 "map output in compact mode"),
3437 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3438 "highlight given pids in map"),
3439 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3440 "highlight given CPUs in map"),
3441 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3442 "display given CPUs in map"),
3443 OPT_PARENT(sched_options)
3444 };
3445 const struct option timehist_options[] = {
3446 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3447 "file", "vmlinux pathname"),
3448 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3449 "file", "kallsyms pathname"),
3450 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3451 "Display call chains if present (default on)"),
3452 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3453 "Maximum number of functions to display backtrace."),
3454 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3455 "Look for files with symbols relative to this directory"),
3456 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3457 "Show only syscall summary with statistics"),
3458 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3459 "Show all syscalls and summary with statistics"),
3460 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3461 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3462 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3463 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3464 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3465 OPT_STRING(0, "time", &sched.time_str, "str",
3466 "Time span for analysis (start,stop)"),
3467 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3468 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3469 "analyze events only for given process id(s)"),
3470 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3471 "analyze events only for given thread id(s)"),
3472 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3473 OPT_PARENT(sched_options)
3474 };
3475
3476 const char * const latency_usage[] = {
3477 "perf sched latency [<options>]",
3478 NULL
3479 };
3480 const char * const replay_usage[] = {
3481 "perf sched replay [<options>]",
3482 NULL
3483 };
3484 const char * const map_usage[] = {
3485 "perf sched map [<options>]",
3486 NULL
3487 };
3488 const char * const timehist_usage[] = {
3489 "perf sched timehist [<options>]",
3490 NULL
3491 };
3492 const char *const sched_subcommands[] = { "record", "latency", "map",
3493 "replay", "script",
3494 "timehist", NULL };
3495 const char *sched_usage[] = {
3496 NULL,
3497 NULL
3498 };
3499 struct trace_sched_handler lat_ops = {
3500 .wakeup_event = latency_wakeup_event,
3501 .switch_event = latency_switch_event,
3502 .runtime_event = latency_runtime_event,
3503 .migrate_task_event = latency_migrate_task_event,
3504 };
3505 struct trace_sched_handler map_ops = {
3506 .switch_event = map_switch_event,
3507 };
3508 struct trace_sched_handler replay_ops = {
3509 .wakeup_event = replay_wakeup_event,
3510 .switch_event = replay_switch_event,
3511 .fork_event = replay_fork_event,
3512 };
3513 unsigned int i;
3514
3515 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3516 sched.curr_pid[i] = -1;
3517
3518 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3519 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3520 if (!argc)
3521 usage_with_options(sched_usage, sched_options);
3522
3523 /*
3524 * Aliased to 'perf script' for now:
3525 */
3526 if (!strcmp(argv[0], "script"))
3527 return cmd_script(argc, argv);
3528
3529 if (!strncmp(argv[0], "rec", 3)) {
3530 return __cmd_record(argc, argv);
3531 } else if (!strncmp(argv[0], "lat", 3)) {
3532 sched.tp_handler = &lat_ops;
3533 if (argc > 1) {
3534 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3535 if (argc)
3536 usage_with_options(latency_usage, latency_options);
3537 }
3538 setup_sorting(&sched, latency_options, latency_usage);
3539 return perf_sched__lat(&sched);
3540 } else if (!strcmp(argv[0], "map")) {
3541 if (argc) {
3542 argc = parse_options(argc, argv, map_options, map_usage, 0);
3543 if (argc)
3544 usage_with_options(map_usage, map_options);
3545 }
3546 sched.tp_handler = &map_ops;
3547 setup_sorting(&sched, latency_options, latency_usage);
3548 return perf_sched__map(&sched);
3549 } else if (!strncmp(argv[0], "rep", 3)) {
3550 sched.tp_handler = &replay_ops;
3551 if (argc) {
3552 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3553 if (argc)
3554 usage_with_options(replay_usage, replay_options);
3555 }
3556 return perf_sched__replay(&sched);
3557 } else if (!strcmp(argv[0], "timehist")) {
3558 if (argc) {
3559 argc = parse_options(argc, argv, timehist_options,
3560 timehist_usage, 0);
3561 if (argc)
3562 usage_with_options(timehist_usage, timehist_options);
3563 }
3564 if ((sched.show_wakeups || sched.show_next) &&
3565 sched.summary_only) {
3566 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3567 parse_options_usage(timehist_usage, timehist_options, "s", true);
3568 if (sched.show_wakeups)
3569 parse_options_usage(NULL, timehist_options, "w", true);
3570 if (sched.show_next)
3571 parse_options_usage(NULL, timehist_options, "n", true);
3572 return -EINVAL;
3573 }
3574
3575 return perf_sched__timehist(&sched);
3576 } else {
3577 usage_with_options(sched_usage, sched_options);
3578 }
3579
3580 return 0;
3581}