Loading...
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122#include <linux/if_vlan.h>
123#include <linux/ip.h>
124#include <net/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/pci.h>
133#include <linux/inetdevice.h>
134#include <linux/cpu_rmap.h>
135#include <linux/net_tstamp.h>
136#include <linux/static_key.h>
137#include <net/flow_keys.h>
138
139#include "net-sysfs.h"
140
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147/*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175#define PTYPE_HASH_SIZE (16)
176#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178static DEFINE_SPINLOCK(ptype_lock);
179static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180static struct list_head ptype_all __read_mostly; /* Taps */
181
182/*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201DEFINE_RWLOCK(dev_base_lock);
202EXPORT_SYMBOL(dev_base_lock);
203
204static inline void dev_base_seq_inc(struct net *net)
205{
206 while (++net->dev_base_seq == 0);
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219}
220
221static inline void rps_lock(struct softnet_data *sd)
222{
223#ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225#endif
226}
227
228static inline void rps_unlock(struct softnet_data *sd)
229{
230#ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232#endif
233}
234
235/* Device list insertion */
236static int list_netdevice(struct net_device *dev)
237{
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252}
253
254/* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257static void unlist_netdevice(struct net_device *dev)
258{
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269}
270
271/*
272 * Our notifier list
273 */
274
275static RAW_NOTIFIER_HEAD(netdev_chain);
276
277/*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285#ifdef CONFIG_LOCKDEP
286/*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328{
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336}
337
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346}
347
348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349{
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356}
357#else
358static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360{
361}
362static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363{
364}
365#endif
366
367/*******************************************************************************
368
369 Protocol management and registration routines
370
371*******************************************************************************/
372
373/*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389static inline struct list_head *ptype_head(const struct packet_type *pt)
390{
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395}
396
397/**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410void dev_add_pack(struct packet_type *pt)
411{
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417}
418EXPORT_SYMBOL(dev_add_pack);
419
420/**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433void __dev_remove_pack(struct packet_type *pt)
434{
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448out:
449 spin_unlock(&ptype_lock);
450}
451EXPORT_SYMBOL(__dev_remove_pack);
452
453/**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465void dev_remove_pack(struct packet_type *pt)
466{
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470}
471EXPORT_SYMBOL(dev_remove_pack);
472
473/******************************************************************************
474
475 Device Boot-time Settings Routines
476
477*******************************************************************************/
478
479/* Boot time configuration table */
480static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482/**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491static int netdev_boot_setup_add(char *name, struct ifmap *map)
492{
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507}
508
509/**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518int netdev_boot_setup_check(struct net_device *dev)
519{
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534}
535EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538/**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548unsigned long netdev_boot_base(const char *prefix, int unit)
549{
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567}
568
569/*
570 * Saves at boot time configured settings for any netdevice.
571 */
572int __init netdev_boot_setup(char *str)
573{
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594}
595
596__setup("netdev=", netdev_boot_setup);
597
598/*******************************************************************************
599
600 Device Interface Subroutines
601
602*******************************************************************************/
603
604/**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616struct net_device *__dev_get_by_name(struct net *net, const char *name)
617{
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627}
628EXPORT_SYMBOL(__dev_get_by_name);
629
630/**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643{
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653}
654EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656/**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668struct net_device *dev_get_by_name(struct net *net, const char *name)
669{
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678}
679EXPORT_SYMBOL(dev_get_by_name);
680
681/**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694{
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704}
705EXPORT_SYMBOL(__dev_get_by_index);
706
707/**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719{
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729}
730EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733/**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744struct net_device *dev_get_by_index(struct net *net, int ifindex)
745{
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754}
755EXPORT_SYMBOL(dev_get_by_index);
756
757/**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773{
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782}
783EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786{
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795}
796EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799{
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811}
812EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814/**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827{
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838}
839EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841/**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849bool dev_valid_name(const char *name)
850{
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864}
865EXPORT_SYMBOL(dev_valid_name);
866
867/**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883{
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931}
932
933/**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947int dev_alloc_name(struct net_device *dev, const char *name)
948{
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959}
960EXPORT_SYMBOL(dev_alloc_name);
961
962static int dev_get_valid_name(struct net_device *dev, const char *name)
963{
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980}
981
982/**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990int dev_change_name(struct net_device *dev, const char *newname)
991{
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046}
1047
1048/**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057{
1058 char *new_ifalias;
1059
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!new_ifalias)
1075 return -ENOMEM;
1076 dev->ifalias = new_ifalias;
1077
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1080}
1081
1082
1083/**
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed features.
1088 */
1089void netdev_features_change(struct net_device *dev)
1090{
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092}
1093EXPORT_SYMBOL(netdev_features_change);
1094
1095/**
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1102 */
1103void netdev_state_change(struct net_device *dev)
1104{
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 }
1109}
1110EXPORT_SYMBOL(netdev_state_change);
1111
1112int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113{
1114 return call_netdevice_notifiers(event, dev);
1115}
1116EXPORT_SYMBOL(netdev_bonding_change);
1117
1118/**
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1122 *
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1126 */
1127
1128void dev_load(struct net *net, const char *name)
1129{
1130 struct net_device *dev;
1131 int no_module;
1132
1133 rcu_read_lock();
1134 dev = dev_get_by_name_rcu(net, name);
1135 rcu_read_unlock();
1136
1137 no_module = !dev;
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 name);
1144 }
1145}
1146EXPORT_SYMBOL(dev_load);
1147
1148static int __dev_open(struct net_device *dev)
1149{
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1152
1153 ASSERT_RTNL();
1154
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1157
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1162
1163 set_bit(__LINK_STATE_START, &dev->state);
1164
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1167
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1170
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 add_device_randomness(dev->dev_addr, dev->addr_len);
1179 }
1180
1181 return ret;
1182}
1183
1184/**
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1187 *
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1192 *
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1195 */
1196int dev_open(struct net_device *dev)
1197{
1198 int ret;
1199
1200 if (dev->flags & IFF_UP)
1201 return 0;
1202
1203 ret = __dev_open(dev);
1204 if (ret < 0)
1205 return ret;
1206
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1209
1210 return ret;
1211}
1212EXPORT_SYMBOL(dev_open);
1213
1214static int __dev_close_many(struct list_head *head)
1215{
1216 struct net_device *dev;
1217
1218 ASSERT_RTNL();
1219 might_sleep();
1220
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223
1224 clear_bit(__LINK_STATE_START, &dev->state);
1225
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1228 *
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1231 */
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 }
1234
1235 dev_deactivate_many(head);
1236
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1252 }
1253
1254 return 0;
1255}
1256
1257static int __dev_close(struct net_device *dev)
1258{
1259 int retval;
1260 LIST_HEAD(single);
1261
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1264 list_del(&single);
1265 return retval;
1266}
1267
1268static int dev_close_many(struct list_head *head)
1269{
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1272
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1276
1277 __dev_close_many(head);
1278
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 }
1283
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1286 return 0;
1287}
1288
1289/**
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1292 *
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 * chain.
1297 */
1298int dev_close(struct net_device *dev)
1299{
1300 if (dev->flags & IFF_UP) {
1301 LIST_HEAD(single);
1302
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1305 list_del(&single);
1306 }
1307 return 0;
1308}
1309EXPORT_SYMBOL(dev_close);
1310
1311
1312/**
1313 * dev_disable_lro - disable Large Receive Offload on a device
1314 * @dev: device
1315 *
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1319 */
1320void dev_disable_lro(struct net_device *dev)
1321{
1322 /*
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1325 */
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1328
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1331
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1334}
1335EXPORT_SYMBOL(dev_disable_lro);
1336
1337
1338static int dev_boot_phase = 1;
1339
1340/**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354int register_netdevice_notifier(struct notifier_block *nb)
1355{
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 goto outroll;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401outroll:
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1403 goto unlock;
1404}
1405EXPORT_SYMBOL(register_netdevice_notifier);
1406
1407/**
1408 * unregister_netdevice_notifier - unregister a network notifier block
1409 * @nb: notifier
1410 *
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1415 *
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1419 */
1420
1421int unregister_netdevice_notifier(struct notifier_block *nb)
1422{
1423 struct net_device *dev;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431
1432 for_each_net(net) {
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 }
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 }
1441 }
1442unlock:
1443 rtnl_unlock();
1444 return err;
1445}
1446EXPORT_SYMBOL(unregister_netdevice_notifier);
1447
1448/**
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1452 *
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1455 */
1456
1457int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458{
1459 ASSERT_RTNL();
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1461}
1462EXPORT_SYMBOL(call_netdevice_notifiers);
1463
1464static struct static_key netstamp_needed __read_mostly;
1465#ifdef HAVE_JUMP_LABEL
1466/* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
1469 */
1470static atomic_t netstamp_needed_deferred;
1471#endif
1472
1473void net_enable_timestamp(void)
1474{
1475#ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477
1478 if (deferred) {
1479 while (--deferred)
1480 static_key_slow_dec(&netstamp_needed);
1481 return;
1482 }
1483#endif
1484 WARN_ON(in_interrupt());
1485 static_key_slow_inc(&netstamp_needed);
1486}
1487EXPORT_SYMBOL(net_enable_timestamp);
1488
1489void net_disable_timestamp(void)
1490{
1491#ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1495 }
1496#endif
1497 static_key_slow_dec(&netstamp_needed);
1498}
1499EXPORT_SYMBOL(net_disable_timestamp);
1500
1501static inline void net_timestamp_set(struct sk_buff *skb)
1502{
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1506}
1507
1508#define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1512 } \
1513
1514static int net_hwtstamp_validate(struct ifreq *ifr)
1515{
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1521
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1524
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1527
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1530
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1537 }
1538
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1557 }
1558
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1561
1562 return 0;
1563}
1564
1565static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1567{
1568 unsigned int len;
1569
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1572
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1576
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1579 */
1580 if (skb_is_gso(skb))
1581 return true;
1582
1583 return false;
1584}
1585
1586/**
1587 * dev_forward_skb - loopback an skb to another netif
1588 *
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1591 *
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1595 *
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1599 *
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1603 */
1604int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605{
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1611 }
1612 }
1613
1614 skb_orphan(skb);
1615 nf_reset(skb);
1616
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 skb->skb_iif = 0;
1623 skb->dev = dev;
1624 skb_dst_drop(skb);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1628 skb->mark = 0;
1629 secpath_reset(skb);
1630 nf_reset(skb);
1631 return netif_rx(skb);
1632}
1633EXPORT_SYMBOL_GPL(dev_forward_skb);
1634
1635static inline int deliver_skb(struct sk_buff *skb,
1636 struct packet_type *pt_prev,
1637 struct net_device *orig_dev)
1638{
1639 atomic_inc(&skb->users);
1640 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1641}
1642
1643static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1644{
1645 if (ptype->af_packet_priv == NULL)
1646 return false;
1647
1648 if (ptype->id_match)
1649 return ptype->id_match(ptype, skb->sk);
1650 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1651 return true;
1652
1653 return false;
1654}
1655
1656/*
1657 * Support routine. Sends outgoing frames to any network
1658 * taps currently in use.
1659 */
1660
1661static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1662{
1663 struct packet_type *ptype;
1664 struct sk_buff *skb2 = NULL;
1665 struct packet_type *pt_prev = NULL;
1666
1667 rcu_read_lock();
1668 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1669 /* Never send packets back to the socket
1670 * they originated from - MvS (miquels@drinkel.ow.org)
1671 */
1672 if ((ptype->dev == dev || !ptype->dev) &&
1673 (!skb_loop_sk(ptype, skb))) {
1674 if (pt_prev) {
1675 deliver_skb(skb2, pt_prev, skb->dev);
1676 pt_prev = ptype;
1677 continue;
1678 }
1679
1680 skb2 = skb_clone(skb, GFP_ATOMIC);
1681 if (!skb2)
1682 break;
1683
1684 net_timestamp_set(skb2);
1685
1686 /* skb->nh should be correctly
1687 set by sender, so that the second statement is
1688 just protection against buggy protocols.
1689 */
1690 skb_reset_mac_header(skb2);
1691
1692 if (skb_network_header(skb2) < skb2->data ||
1693 skb2->network_header > skb2->tail) {
1694 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1695 ntohs(skb2->protocol),
1696 dev->name);
1697 skb_reset_network_header(skb2);
1698 }
1699
1700 skb2->transport_header = skb2->network_header;
1701 skb2->pkt_type = PACKET_OUTGOING;
1702 pt_prev = ptype;
1703 }
1704 }
1705 if (pt_prev)
1706 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1707 rcu_read_unlock();
1708}
1709
1710/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1711 * @dev: Network device
1712 * @txq: number of queues available
1713 *
1714 * If real_num_tx_queues is changed the tc mappings may no longer be
1715 * valid. To resolve this verify the tc mapping remains valid and if
1716 * not NULL the mapping. With no priorities mapping to this
1717 * offset/count pair it will no longer be used. In the worst case TC0
1718 * is invalid nothing can be done so disable priority mappings. If is
1719 * expected that drivers will fix this mapping if they can before
1720 * calling netif_set_real_num_tx_queues.
1721 */
1722static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1723{
1724 int i;
1725 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1726
1727 /* If TC0 is invalidated disable TC mapping */
1728 if (tc->offset + tc->count > txq) {
1729 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1730 dev->num_tc = 0;
1731 return;
1732 }
1733
1734 /* Invalidated prio to tc mappings set to TC0 */
1735 for (i = 1; i < TC_BITMASK + 1; i++) {
1736 int q = netdev_get_prio_tc_map(dev, i);
1737
1738 tc = &dev->tc_to_txq[q];
1739 if (tc->offset + tc->count > txq) {
1740 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1741 i, q);
1742 netdev_set_prio_tc_map(dev, i, 0);
1743 }
1744 }
1745}
1746
1747/*
1748 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1749 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1750 */
1751int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1752{
1753 int rc;
1754
1755 if (txq < 1 || txq > dev->num_tx_queues)
1756 return -EINVAL;
1757
1758 if (dev->reg_state == NETREG_REGISTERED ||
1759 dev->reg_state == NETREG_UNREGISTERING) {
1760 ASSERT_RTNL();
1761
1762 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1763 txq);
1764 if (rc)
1765 return rc;
1766
1767 if (dev->num_tc)
1768 netif_setup_tc(dev, txq);
1769
1770 if (txq < dev->real_num_tx_queues)
1771 qdisc_reset_all_tx_gt(dev, txq);
1772 }
1773
1774 dev->real_num_tx_queues = txq;
1775 return 0;
1776}
1777EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1778
1779#ifdef CONFIG_RPS
1780/**
1781 * netif_set_real_num_rx_queues - set actual number of RX queues used
1782 * @dev: Network device
1783 * @rxq: Actual number of RX queues
1784 *
1785 * This must be called either with the rtnl_lock held or before
1786 * registration of the net device. Returns 0 on success, or a
1787 * negative error code. If called before registration, it always
1788 * succeeds.
1789 */
1790int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1791{
1792 int rc;
1793
1794 if (rxq < 1 || rxq > dev->num_rx_queues)
1795 return -EINVAL;
1796
1797 if (dev->reg_state == NETREG_REGISTERED) {
1798 ASSERT_RTNL();
1799
1800 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1801 rxq);
1802 if (rc)
1803 return rc;
1804 }
1805
1806 dev->real_num_rx_queues = rxq;
1807 return 0;
1808}
1809EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1810#endif
1811
1812static inline void __netif_reschedule(struct Qdisc *q)
1813{
1814 struct softnet_data *sd;
1815 unsigned long flags;
1816
1817 local_irq_save(flags);
1818 sd = &__get_cpu_var(softnet_data);
1819 q->next_sched = NULL;
1820 *sd->output_queue_tailp = q;
1821 sd->output_queue_tailp = &q->next_sched;
1822 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1823 local_irq_restore(flags);
1824}
1825
1826void __netif_schedule(struct Qdisc *q)
1827{
1828 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1829 __netif_reschedule(q);
1830}
1831EXPORT_SYMBOL(__netif_schedule);
1832
1833void dev_kfree_skb_irq(struct sk_buff *skb)
1834{
1835 if (atomic_dec_and_test(&skb->users)) {
1836 struct softnet_data *sd;
1837 unsigned long flags;
1838
1839 local_irq_save(flags);
1840 sd = &__get_cpu_var(softnet_data);
1841 skb->next = sd->completion_queue;
1842 sd->completion_queue = skb;
1843 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1844 local_irq_restore(flags);
1845 }
1846}
1847EXPORT_SYMBOL(dev_kfree_skb_irq);
1848
1849void dev_kfree_skb_any(struct sk_buff *skb)
1850{
1851 if (in_irq() || irqs_disabled())
1852 dev_kfree_skb_irq(skb);
1853 else
1854 dev_kfree_skb(skb);
1855}
1856EXPORT_SYMBOL(dev_kfree_skb_any);
1857
1858
1859/**
1860 * netif_device_detach - mark device as removed
1861 * @dev: network device
1862 *
1863 * Mark device as removed from system and therefore no longer available.
1864 */
1865void netif_device_detach(struct net_device *dev)
1866{
1867 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1868 netif_running(dev)) {
1869 netif_tx_stop_all_queues(dev);
1870 }
1871}
1872EXPORT_SYMBOL(netif_device_detach);
1873
1874/**
1875 * netif_device_attach - mark device as attached
1876 * @dev: network device
1877 *
1878 * Mark device as attached from system and restart if needed.
1879 */
1880void netif_device_attach(struct net_device *dev)
1881{
1882 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 netif_running(dev)) {
1884 netif_tx_wake_all_queues(dev);
1885 __netdev_watchdog_up(dev);
1886 }
1887}
1888EXPORT_SYMBOL(netif_device_attach);
1889
1890static void skb_warn_bad_offload(const struct sk_buff *skb)
1891{
1892 static const netdev_features_t null_features = 0;
1893 struct net_device *dev = skb->dev;
1894 const char *driver = "";
1895
1896 if (dev && dev->dev.parent)
1897 driver = dev_driver_string(dev->dev.parent);
1898
1899 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1900 "gso_type=%d ip_summed=%d\n",
1901 driver, dev ? &dev->features : &null_features,
1902 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1903 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1904 skb_shinfo(skb)->gso_type, skb->ip_summed);
1905}
1906
1907/*
1908 * Invalidate hardware checksum when packet is to be mangled, and
1909 * complete checksum manually on outgoing path.
1910 */
1911int skb_checksum_help(struct sk_buff *skb)
1912{
1913 __wsum csum;
1914 int ret = 0, offset;
1915
1916 if (skb->ip_summed == CHECKSUM_COMPLETE)
1917 goto out_set_summed;
1918
1919 if (unlikely(skb_shinfo(skb)->gso_size)) {
1920 skb_warn_bad_offload(skb);
1921 return -EINVAL;
1922 }
1923
1924 offset = skb_checksum_start_offset(skb);
1925 BUG_ON(offset >= skb_headlen(skb));
1926 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1927
1928 offset += skb->csum_offset;
1929 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1930
1931 if (skb_cloned(skb) &&
1932 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1933 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1934 if (ret)
1935 goto out;
1936 }
1937
1938 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1939out_set_summed:
1940 skb->ip_summed = CHECKSUM_NONE;
1941out:
1942 return ret;
1943}
1944EXPORT_SYMBOL(skb_checksum_help);
1945
1946/**
1947 * skb_gso_segment - Perform segmentation on skb.
1948 * @skb: buffer to segment
1949 * @features: features for the output path (see dev->features)
1950 *
1951 * This function segments the given skb and returns a list of segments.
1952 *
1953 * It may return NULL if the skb requires no segmentation. This is
1954 * only possible when GSO is used for verifying header integrity.
1955 */
1956struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1957 netdev_features_t features)
1958{
1959 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1960 struct packet_type *ptype;
1961 __be16 type = skb->protocol;
1962 int vlan_depth = ETH_HLEN;
1963 int err;
1964
1965 while (type == htons(ETH_P_8021Q)) {
1966 struct vlan_hdr *vh;
1967
1968 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1969 return ERR_PTR(-EINVAL);
1970
1971 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1972 type = vh->h_vlan_encapsulated_proto;
1973 vlan_depth += VLAN_HLEN;
1974 }
1975
1976 skb_reset_mac_header(skb);
1977 skb->mac_len = skb->network_header - skb->mac_header;
1978 __skb_pull(skb, skb->mac_len);
1979
1980 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1981 skb_warn_bad_offload(skb);
1982
1983 if (skb_header_cloned(skb) &&
1984 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1985 return ERR_PTR(err);
1986 }
1987
1988 rcu_read_lock();
1989 list_for_each_entry_rcu(ptype,
1990 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1991 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993 err = ptype->gso_send_check(skb);
1994 segs = ERR_PTR(err);
1995 if (err || skb_gso_ok(skb, features))
1996 break;
1997 __skb_push(skb, (skb->data -
1998 skb_network_header(skb)));
1999 }
2000 segs = ptype->gso_segment(skb, features);
2001 break;
2002 }
2003 }
2004 rcu_read_unlock();
2005
2006 __skb_push(skb, skb->data - skb_mac_header(skb));
2007
2008 return segs;
2009}
2010EXPORT_SYMBOL(skb_gso_segment);
2011
2012/* Take action when hardware reception checksum errors are detected. */
2013#ifdef CONFIG_BUG
2014void netdev_rx_csum_fault(struct net_device *dev)
2015{
2016 if (net_ratelimit()) {
2017 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2018 dump_stack();
2019 }
2020}
2021EXPORT_SYMBOL(netdev_rx_csum_fault);
2022#endif
2023
2024/* Actually, we should eliminate this check as soon as we know, that:
2025 * 1. IOMMU is present and allows to map all the memory.
2026 * 2. No high memory really exists on this machine.
2027 */
2028
2029static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2030{
2031#ifdef CONFIG_HIGHMEM
2032 int i;
2033 if (!(dev->features & NETIF_F_HIGHDMA)) {
2034 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2035 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2036 if (PageHighMem(skb_frag_page(frag)))
2037 return 1;
2038 }
2039 }
2040
2041 if (PCI_DMA_BUS_IS_PHYS) {
2042 struct device *pdev = dev->dev.parent;
2043
2044 if (!pdev)
2045 return 0;
2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2049 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2050 return 1;
2051 }
2052 }
2053#endif
2054 return 0;
2055}
2056
2057struct dev_gso_cb {
2058 void (*destructor)(struct sk_buff *skb);
2059};
2060
2061#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2062
2063static void dev_gso_skb_destructor(struct sk_buff *skb)
2064{
2065 struct dev_gso_cb *cb;
2066
2067 do {
2068 struct sk_buff *nskb = skb->next;
2069
2070 skb->next = nskb->next;
2071 nskb->next = NULL;
2072 kfree_skb(nskb);
2073 } while (skb->next);
2074
2075 cb = DEV_GSO_CB(skb);
2076 if (cb->destructor)
2077 cb->destructor(skb);
2078}
2079
2080/**
2081 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2082 * @skb: buffer to segment
2083 * @features: device features as applicable to this skb
2084 *
2085 * This function segments the given skb and stores the list of segments
2086 * in skb->next.
2087 */
2088static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2089{
2090 struct sk_buff *segs;
2091
2092 segs = skb_gso_segment(skb, features);
2093
2094 /* Verifying header integrity only. */
2095 if (!segs)
2096 return 0;
2097
2098 if (IS_ERR(segs))
2099 return PTR_ERR(segs);
2100
2101 skb->next = segs;
2102 DEV_GSO_CB(skb)->destructor = skb->destructor;
2103 skb->destructor = dev_gso_skb_destructor;
2104
2105 return 0;
2106}
2107
2108static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2109{
2110 return ((features & NETIF_F_GEN_CSUM) ||
2111 ((features & NETIF_F_V4_CSUM) &&
2112 protocol == htons(ETH_P_IP)) ||
2113 ((features & NETIF_F_V6_CSUM) &&
2114 protocol == htons(ETH_P_IPV6)) ||
2115 ((features & NETIF_F_FCOE_CRC) &&
2116 protocol == htons(ETH_P_FCOE)));
2117}
2118
2119static netdev_features_t harmonize_features(struct sk_buff *skb,
2120 __be16 protocol, netdev_features_t features)
2121{
2122 if (!can_checksum_protocol(features, protocol)) {
2123 features &= ~NETIF_F_ALL_CSUM;
2124 features &= ~NETIF_F_SG;
2125 } else if (illegal_highdma(skb->dev, skb)) {
2126 features &= ~NETIF_F_SG;
2127 }
2128
2129 return features;
2130}
2131
2132netdev_features_t netif_skb_features(struct sk_buff *skb)
2133{
2134 __be16 protocol = skb->protocol;
2135 netdev_features_t features = skb->dev->features;
2136
2137 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2138 features &= ~NETIF_F_GSO_MASK;
2139
2140 if (protocol == htons(ETH_P_8021Q)) {
2141 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2142 protocol = veh->h_vlan_encapsulated_proto;
2143 } else if (!vlan_tx_tag_present(skb)) {
2144 return harmonize_features(skb, protocol, features);
2145 }
2146
2147 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2148
2149 if (protocol != htons(ETH_P_8021Q)) {
2150 return harmonize_features(skb, protocol, features);
2151 } else {
2152 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2153 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2154 return harmonize_features(skb, protocol, features);
2155 }
2156}
2157EXPORT_SYMBOL(netif_skb_features);
2158
2159/*
2160 * Returns true if either:
2161 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2162 * 2. skb is fragmented and the device does not support SG, or if
2163 * at least one of fragments is in highmem and device does not
2164 * support DMA from it.
2165 */
2166static inline int skb_needs_linearize(struct sk_buff *skb,
2167 int features)
2168{
2169 return skb_is_nonlinear(skb) &&
2170 ((skb_has_frag_list(skb) &&
2171 !(features & NETIF_F_FRAGLIST)) ||
2172 (skb_shinfo(skb)->nr_frags &&
2173 !(features & NETIF_F_SG)));
2174}
2175
2176int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2177 struct netdev_queue *txq)
2178{
2179 const struct net_device_ops *ops = dev->netdev_ops;
2180 int rc = NETDEV_TX_OK;
2181 unsigned int skb_len;
2182
2183 if (likely(!skb->next)) {
2184 netdev_features_t features;
2185
2186 /*
2187 * If device doesn't need skb->dst, release it right now while
2188 * its hot in this cpu cache
2189 */
2190 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2191 skb_dst_drop(skb);
2192
2193 if (!list_empty(&ptype_all))
2194 dev_queue_xmit_nit(skb, dev);
2195
2196 features = netif_skb_features(skb);
2197
2198 if (vlan_tx_tag_present(skb) &&
2199 !(features & NETIF_F_HW_VLAN_TX)) {
2200 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2201 if (unlikely(!skb))
2202 goto out;
2203
2204 skb->vlan_tci = 0;
2205 }
2206
2207 if (netif_needs_gso(skb, features)) {
2208 if (unlikely(dev_gso_segment(skb, features)))
2209 goto out_kfree_skb;
2210 if (skb->next)
2211 goto gso;
2212 } else {
2213 if (skb_needs_linearize(skb, features) &&
2214 __skb_linearize(skb))
2215 goto out_kfree_skb;
2216
2217 /* If packet is not checksummed and device does not
2218 * support checksumming for this protocol, complete
2219 * checksumming here.
2220 */
2221 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2222 skb_set_transport_header(skb,
2223 skb_checksum_start_offset(skb));
2224 if (!(features & NETIF_F_ALL_CSUM) &&
2225 skb_checksum_help(skb))
2226 goto out_kfree_skb;
2227 }
2228 }
2229
2230 skb_len = skb->len;
2231 rc = ops->ndo_start_xmit(skb, dev);
2232 trace_net_dev_xmit(skb, rc, dev, skb_len);
2233 if (rc == NETDEV_TX_OK)
2234 txq_trans_update(txq);
2235 return rc;
2236 }
2237
2238gso:
2239 do {
2240 struct sk_buff *nskb = skb->next;
2241
2242 skb->next = nskb->next;
2243 nskb->next = NULL;
2244
2245 /*
2246 * If device doesn't need nskb->dst, release it right now while
2247 * its hot in this cpu cache
2248 */
2249 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2250 skb_dst_drop(nskb);
2251
2252 skb_len = nskb->len;
2253 rc = ops->ndo_start_xmit(nskb, dev);
2254 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2255 if (unlikely(rc != NETDEV_TX_OK)) {
2256 if (rc & ~NETDEV_TX_MASK)
2257 goto out_kfree_gso_skb;
2258 nskb->next = skb->next;
2259 skb->next = nskb;
2260 return rc;
2261 }
2262 txq_trans_update(txq);
2263 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2264 return NETDEV_TX_BUSY;
2265 } while (skb->next);
2266
2267out_kfree_gso_skb:
2268 if (likely(skb->next == NULL))
2269 skb->destructor = DEV_GSO_CB(skb)->destructor;
2270out_kfree_skb:
2271 kfree_skb(skb);
2272out:
2273 return rc;
2274}
2275
2276static u32 hashrnd __read_mostly;
2277
2278/*
2279 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2280 * to be used as a distribution range.
2281 */
2282u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2283 unsigned int num_tx_queues)
2284{
2285 u32 hash;
2286 u16 qoffset = 0;
2287 u16 qcount = num_tx_queues;
2288
2289 if (skb_rx_queue_recorded(skb)) {
2290 hash = skb_get_rx_queue(skb);
2291 while (unlikely(hash >= num_tx_queues))
2292 hash -= num_tx_queues;
2293 return hash;
2294 }
2295
2296 if (dev->num_tc) {
2297 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2298 qoffset = dev->tc_to_txq[tc].offset;
2299 qcount = dev->tc_to_txq[tc].count;
2300 }
2301
2302 if (skb->sk && skb->sk->sk_hash)
2303 hash = skb->sk->sk_hash;
2304 else
2305 hash = (__force u16) skb->protocol;
2306 hash = jhash_1word(hash, hashrnd);
2307
2308 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2309}
2310EXPORT_SYMBOL(__skb_tx_hash);
2311
2312static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2313{
2314 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2315 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2316 dev->name, queue_index,
2317 dev->real_num_tx_queues);
2318 return 0;
2319 }
2320 return queue_index;
2321}
2322
2323static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2324{
2325#ifdef CONFIG_XPS
2326 struct xps_dev_maps *dev_maps;
2327 struct xps_map *map;
2328 int queue_index = -1;
2329
2330 rcu_read_lock();
2331 dev_maps = rcu_dereference(dev->xps_maps);
2332 if (dev_maps) {
2333 map = rcu_dereference(
2334 dev_maps->cpu_map[raw_smp_processor_id()]);
2335 if (map) {
2336 if (map->len == 1)
2337 queue_index = map->queues[0];
2338 else {
2339 u32 hash;
2340 if (skb->sk && skb->sk->sk_hash)
2341 hash = skb->sk->sk_hash;
2342 else
2343 hash = (__force u16) skb->protocol ^
2344 skb->rxhash;
2345 hash = jhash_1word(hash, hashrnd);
2346 queue_index = map->queues[
2347 ((u64)hash * map->len) >> 32];
2348 }
2349 if (unlikely(queue_index >= dev->real_num_tx_queues))
2350 queue_index = -1;
2351 }
2352 }
2353 rcu_read_unlock();
2354
2355 return queue_index;
2356#else
2357 return -1;
2358#endif
2359}
2360
2361static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2362 struct sk_buff *skb)
2363{
2364 int queue_index;
2365 const struct net_device_ops *ops = dev->netdev_ops;
2366
2367 if (dev->real_num_tx_queues == 1)
2368 queue_index = 0;
2369 else if (ops->ndo_select_queue) {
2370 queue_index = ops->ndo_select_queue(dev, skb);
2371 queue_index = dev_cap_txqueue(dev, queue_index);
2372 } else {
2373 struct sock *sk = skb->sk;
2374 queue_index = sk_tx_queue_get(sk);
2375
2376 if (queue_index < 0 || skb->ooo_okay ||
2377 queue_index >= dev->real_num_tx_queues) {
2378 int old_index = queue_index;
2379
2380 queue_index = get_xps_queue(dev, skb);
2381 if (queue_index < 0)
2382 queue_index = skb_tx_hash(dev, skb);
2383
2384 if (queue_index != old_index && sk) {
2385 struct dst_entry *dst =
2386 rcu_dereference_check(sk->sk_dst_cache, 1);
2387
2388 if (dst && skb_dst(skb) == dst)
2389 sk_tx_queue_set(sk, queue_index);
2390 }
2391 }
2392 }
2393
2394 skb_set_queue_mapping(skb, queue_index);
2395 return netdev_get_tx_queue(dev, queue_index);
2396}
2397
2398static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2399 struct net_device *dev,
2400 struct netdev_queue *txq)
2401{
2402 spinlock_t *root_lock = qdisc_lock(q);
2403 bool contended;
2404 int rc;
2405
2406 qdisc_skb_cb(skb)->pkt_len = skb->len;
2407 qdisc_calculate_pkt_len(skb, q);
2408 /*
2409 * Heuristic to force contended enqueues to serialize on a
2410 * separate lock before trying to get qdisc main lock.
2411 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2412 * and dequeue packets faster.
2413 */
2414 contended = qdisc_is_running(q);
2415 if (unlikely(contended))
2416 spin_lock(&q->busylock);
2417
2418 spin_lock(root_lock);
2419 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2420 kfree_skb(skb);
2421 rc = NET_XMIT_DROP;
2422 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2423 qdisc_run_begin(q)) {
2424 /*
2425 * This is a work-conserving queue; there are no old skbs
2426 * waiting to be sent out; and the qdisc is not running -
2427 * xmit the skb directly.
2428 */
2429 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2430 skb_dst_force(skb);
2431
2432 qdisc_bstats_update(q, skb);
2433
2434 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2435 if (unlikely(contended)) {
2436 spin_unlock(&q->busylock);
2437 contended = false;
2438 }
2439 __qdisc_run(q);
2440 } else
2441 qdisc_run_end(q);
2442
2443 rc = NET_XMIT_SUCCESS;
2444 } else {
2445 skb_dst_force(skb);
2446 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2447 if (qdisc_run_begin(q)) {
2448 if (unlikely(contended)) {
2449 spin_unlock(&q->busylock);
2450 contended = false;
2451 }
2452 __qdisc_run(q);
2453 }
2454 }
2455 spin_unlock(root_lock);
2456 if (unlikely(contended))
2457 spin_unlock(&q->busylock);
2458 return rc;
2459}
2460
2461#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2462static void skb_update_prio(struct sk_buff *skb)
2463{
2464 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2465
2466 if (!skb->priority && skb->sk && map) {
2467 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2468
2469 if (prioidx < map->priomap_len)
2470 skb->priority = map->priomap[prioidx];
2471 }
2472}
2473#else
2474#define skb_update_prio(skb)
2475#endif
2476
2477static DEFINE_PER_CPU(int, xmit_recursion);
2478#define RECURSION_LIMIT 10
2479
2480/**
2481 * dev_queue_xmit - transmit a buffer
2482 * @skb: buffer to transmit
2483 *
2484 * Queue a buffer for transmission to a network device. The caller must
2485 * have set the device and priority and built the buffer before calling
2486 * this function. The function can be called from an interrupt.
2487 *
2488 * A negative errno code is returned on a failure. A success does not
2489 * guarantee the frame will be transmitted as it may be dropped due
2490 * to congestion or traffic shaping.
2491 *
2492 * -----------------------------------------------------------------------------------
2493 * I notice this method can also return errors from the queue disciplines,
2494 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2495 * be positive.
2496 *
2497 * Regardless of the return value, the skb is consumed, so it is currently
2498 * difficult to retry a send to this method. (You can bump the ref count
2499 * before sending to hold a reference for retry if you are careful.)
2500 *
2501 * When calling this method, interrupts MUST be enabled. This is because
2502 * the BH enable code must have IRQs enabled so that it will not deadlock.
2503 * --BLG
2504 */
2505int dev_queue_xmit(struct sk_buff *skb)
2506{
2507 struct net_device *dev = skb->dev;
2508 struct netdev_queue *txq;
2509 struct Qdisc *q;
2510 int rc = -ENOMEM;
2511
2512 /* Disable soft irqs for various locks below. Also
2513 * stops preemption for RCU.
2514 */
2515 rcu_read_lock_bh();
2516
2517 skb_update_prio(skb);
2518
2519 txq = dev_pick_tx(dev, skb);
2520 q = rcu_dereference_bh(txq->qdisc);
2521
2522#ifdef CONFIG_NET_CLS_ACT
2523 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2524#endif
2525 trace_net_dev_queue(skb);
2526 if (q->enqueue) {
2527 rc = __dev_xmit_skb(skb, q, dev, txq);
2528 goto out;
2529 }
2530
2531 /* The device has no queue. Common case for software devices:
2532 loopback, all the sorts of tunnels...
2533
2534 Really, it is unlikely that netif_tx_lock protection is necessary
2535 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2536 counters.)
2537 However, it is possible, that they rely on protection
2538 made by us here.
2539
2540 Check this and shot the lock. It is not prone from deadlocks.
2541 Either shot noqueue qdisc, it is even simpler 8)
2542 */
2543 if (dev->flags & IFF_UP) {
2544 int cpu = smp_processor_id(); /* ok because BHs are off */
2545
2546 if (txq->xmit_lock_owner != cpu) {
2547
2548 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2549 goto recursion_alert;
2550
2551 HARD_TX_LOCK(dev, txq, cpu);
2552
2553 if (!netif_xmit_stopped(txq)) {
2554 __this_cpu_inc(xmit_recursion);
2555 rc = dev_hard_start_xmit(skb, dev, txq);
2556 __this_cpu_dec(xmit_recursion);
2557 if (dev_xmit_complete(rc)) {
2558 HARD_TX_UNLOCK(dev, txq);
2559 goto out;
2560 }
2561 }
2562 HARD_TX_UNLOCK(dev, txq);
2563 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2564 dev->name);
2565 } else {
2566 /* Recursion is detected! It is possible,
2567 * unfortunately
2568 */
2569recursion_alert:
2570 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2571 dev->name);
2572 }
2573 }
2574
2575 rc = -ENETDOWN;
2576 rcu_read_unlock_bh();
2577
2578 kfree_skb(skb);
2579 return rc;
2580out:
2581 rcu_read_unlock_bh();
2582 return rc;
2583}
2584EXPORT_SYMBOL(dev_queue_xmit);
2585
2586
2587/*=======================================================================
2588 Receiver routines
2589 =======================================================================*/
2590
2591int netdev_max_backlog __read_mostly = 1000;
2592int netdev_tstamp_prequeue __read_mostly = 1;
2593int netdev_budget __read_mostly = 300;
2594int weight_p __read_mostly = 64; /* old backlog weight */
2595
2596/* Called with irq disabled */
2597static inline void ____napi_schedule(struct softnet_data *sd,
2598 struct napi_struct *napi)
2599{
2600 list_add_tail(&napi->poll_list, &sd->poll_list);
2601 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2602}
2603
2604/*
2605 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2606 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2607 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2608 * if hash is a canonical 4-tuple hash over transport ports.
2609 */
2610void __skb_get_rxhash(struct sk_buff *skb)
2611{
2612 struct flow_keys keys;
2613 u32 hash;
2614
2615 if (!skb_flow_dissect(skb, &keys))
2616 return;
2617
2618 if (keys.ports) {
2619 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2620 swap(keys.port16[0], keys.port16[1]);
2621 skb->l4_rxhash = 1;
2622 }
2623
2624 /* get a consistent hash (same value on both flow directions) */
2625 if ((__force u32)keys.dst < (__force u32)keys.src)
2626 swap(keys.dst, keys.src);
2627
2628 hash = jhash_3words((__force u32)keys.dst,
2629 (__force u32)keys.src,
2630 (__force u32)keys.ports, hashrnd);
2631 if (!hash)
2632 hash = 1;
2633
2634 skb->rxhash = hash;
2635}
2636EXPORT_SYMBOL(__skb_get_rxhash);
2637
2638#ifdef CONFIG_RPS
2639
2640/* One global table that all flow-based protocols share. */
2641struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2642EXPORT_SYMBOL(rps_sock_flow_table);
2643
2644struct static_key rps_needed __read_mostly;
2645
2646static struct rps_dev_flow *
2647set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2648 struct rps_dev_flow *rflow, u16 next_cpu)
2649{
2650 if (next_cpu != RPS_NO_CPU) {
2651#ifdef CONFIG_RFS_ACCEL
2652 struct netdev_rx_queue *rxqueue;
2653 struct rps_dev_flow_table *flow_table;
2654 struct rps_dev_flow *old_rflow;
2655 u32 flow_id;
2656 u16 rxq_index;
2657 int rc;
2658
2659 /* Should we steer this flow to a different hardware queue? */
2660 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2661 !(dev->features & NETIF_F_NTUPLE))
2662 goto out;
2663 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2664 if (rxq_index == skb_get_rx_queue(skb))
2665 goto out;
2666
2667 rxqueue = dev->_rx + rxq_index;
2668 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2669 if (!flow_table)
2670 goto out;
2671 flow_id = skb->rxhash & flow_table->mask;
2672 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2673 rxq_index, flow_id);
2674 if (rc < 0)
2675 goto out;
2676 old_rflow = rflow;
2677 rflow = &flow_table->flows[flow_id];
2678 rflow->filter = rc;
2679 if (old_rflow->filter == rflow->filter)
2680 old_rflow->filter = RPS_NO_FILTER;
2681 out:
2682#endif
2683 rflow->last_qtail =
2684 per_cpu(softnet_data, next_cpu).input_queue_head;
2685 }
2686
2687 rflow->cpu = next_cpu;
2688 return rflow;
2689}
2690
2691/*
2692 * get_rps_cpu is called from netif_receive_skb and returns the target
2693 * CPU from the RPS map of the receiving queue for a given skb.
2694 * rcu_read_lock must be held on entry.
2695 */
2696static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2697 struct rps_dev_flow **rflowp)
2698{
2699 struct netdev_rx_queue *rxqueue;
2700 struct rps_map *map;
2701 struct rps_dev_flow_table *flow_table;
2702 struct rps_sock_flow_table *sock_flow_table;
2703 int cpu = -1;
2704 u16 tcpu;
2705
2706 if (skb_rx_queue_recorded(skb)) {
2707 u16 index = skb_get_rx_queue(skb);
2708 if (unlikely(index >= dev->real_num_rx_queues)) {
2709 WARN_ONCE(dev->real_num_rx_queues > 1,
2710 "%s received packet on queue %u, but number "
2711 "of RX queues is %u\n",
2712 dev->name, index, dev->real_num_rx_queues);
2713 goto done;
2714 }
2715 rxqueue = dev->_rx + index;
2716 } else
2717 rxqueue = dev->_rx;
2718
2719 map = rcu_dereference(rxqueue->rps_map);
2720 if (map) {
2721 if (map->len == 1 &&
2722 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2723 tcpu = map->cpus[0];
2724 if (cpu_online(tcpu))
2725 cpu = tcpu;
2726 goto done;
2727 }
2728 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2729 goto done;
2730 }
2731
2732 skb_reset_network_header(skb);
2733 if (!skb_get_rxhash(skb))
2734 goto done;
2735
2736 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2737 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2738 if (flow_table && sock_flow_table) {
2739 u16 next_cpu;
2740 struct rps_dev_flow *rflow;
2741
2742 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2743 tcpu = rflow->cpu;
2744
2745 next_cpu = sock_flow_table->ents[skb->rxhash &
2746 sock_flow_table->mask];
2747
2748 /*
2749 * If the desired CPU (where last recvmsg was done) is
2750 * different from current CPU (one in the rx-queue flow
2751 * table entry), switch if one of the following holds:
2752 * - Current CPU is unset (equal to RPS_NO_CPU).
2753 * - Current CPU is offline.
2754 * - The current CPU's queue tail has advanced beyond the
2755 * last packet that was enqueued using this table entry.
2756 * This guarantees that all previous packets for the flow
2757 * have been dequeued, thus preserving in order delivery.
2758 */
2759 if (unlikely(tcpu != next_cpu) &&
2760 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2761 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2762 rflow->last_qtail)) >= 0))
2763 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2764
2765 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2766 *rflowp = rflow;
2767 cpu = tcpu;
2768 goto done;
2769 }
2770 }
2771
2772 if (map) {
2773 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2774
2775 if (cpu_online(tcpu)) {
2776 cpu = tcpu;
2777 goto done;
2778 }
2779 }
2780
2781done:
2782 return cpu;
2783}
2784
2785#ifdef CONFIG_RFS_ACCEL
2786
2787/**
2788 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2789 * @dev: Device on which the filter was set
2790 * @rxq_index: RX queue index
2791 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2792 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2793 *
2794 * Drivers that implement ndo_rx_flow_steer() should periodically call
2795 * this function for each installed filter and remove the filters for
2796 * which it returns %true.
2797 */
2798bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2799 u32 flow_id, u16 filter_id)
2800{
2801 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2802 struct rps_dev_flow_table *flow_table;
2803 struct rps_dev_flow *rflow;
2804 bool expire = true;
2805 int cpu;
2806
2807 rcu_read_lock();
2808 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2809 if (flow_table && flow_id <= flow_table->mask) {
2810 rflow = &flow_table->flows[flow_id];
2811 cpu = ACCESS_ONCE(rflow->cpu);
2812 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2813 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2814 rflow->last_qtail) <
2815 (int)(10 * flow_table->mask)))
2816 expire = false;
2817 }
2818 rcu_read_unlock();
2819 return expire;
2820}
2821EXPORT_SYMBOL(rps_may_expire_flow);
2822
2823#endif /* CONFIG_RFS_ACCEL */
2824
2825/* Called from hardirq (IPI) context */
2826static void rps_trigger_softirq(void *data)
2827{
2828 struct softnet_data *sd = data;
2829
2830 ____napi_schedule(sd, &sd->backlog);
2831 sd->received_rps++;
2832}
2833
2834#endif /* CONFIG_RPS */
2835
2836/*
2837 * Check if this softnet_data structure is another cpu one
2838 * If yes, queue it to our IPI list and return 1
2839 * If no, return 0
2840 */
2841static int rps_ipi_queued(struct softnet_data *sd)
2842{
2843#ifdef CONFIG_RPS
2844 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2845
2846 if (sd != mysd) {
2847 sd->rps_ipi_next = mysd->rps_ipi_list;
2848 mysd->rps_ipi_list = sd;
2849
2850 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2851 return 1;
2852 }
2853#endif /* CONFIG_RPS */
2854 return 0;
2855}
2856
2857/*
2858 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2859 * queue (may be a remote CPU queue).
2860 */
2861static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2862 unsigned int *qtail)
2863{
2864 struct softnet_data *sd;
2865 unsigned long flags;
2866
2867 sd = &per_cpu(softnet_data, cpu);
2868
2869 local_irq_save(flags);
2870
2871 rps_lock(sd);
2872 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2873 if (skb_queue_len(&sd->input_pkt_queue)) {
2874enqueue:
2875 __skb_queue_tail(&sd->input_pkt_queue, skb);
2876 input_queue_tail_incr_save(sd, qtail);
2877 rps_unlock(sd);
2878 local_irq_restore(flags);
2879 return NET_RX_SUCCESS;
2880 }
2881
2882 /* Schedule NAPI for backlog device
2883 * We can use non atomic operation since we own the queue lock
2884 */
2885 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2886 if (!rps_ipi_queued(sd))
2887 ____napi_schedule(sd, &sd->backlog);
2888 }
2889 goto enqueue;
2890 }
2891
2892 sd->dropped++;
2893 rps_unlock(sd);
2894
2895 local_irq_restore(flags);
2896
2897 atomic_long_inc(&skb->dev->rx_dropped);
2898 kfree_skb(skb);
2899 return NET_RX_DROP;
2900}
2901
2902/**
2903 * netif_rx - post buffer to the network code
2904 * @skb: buffer to post
2905 *
2906 * This function receives a packet from a device driver and queues it for
2907 * the upper (protocol) levels to process. It always succeeds. The buffer
2908 * may be dropped during processing for congestion control or by the
2909 * protocol layers.
2910 *
2911 * return values:
2912 * NET_RX_SUCCESS (no congestion)
2913 * NET_RX_DROP (packet was dropped)
2914 *
2915 */
2916
2917int netif_rx(struct sk_buff *skb)
2918{
2919 int ret;
2920
2921 /* if netpoll wants it, pretend we never saw it */
2922 if (netpoll_rx(skb))
2923 return NET_RX_DROP;
2924
2925 net_timestamp_check(netdev_tstamp_prequeue, skb);
2926
2927 trace_netif_rx(skb);
2928#ifdef CONFIG_RPS
2929 if (static_key_false(&rps_needed)) {
2930 struct rps_dev_flow voidflow, *rflow = &voidflow;
2931 int cpu;
2932
2933 preempt_disable();
2934 rcu_read_lock();
2935
2936 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2937 if (cpu < 0)
2938 cpu = smp_processor_id();
2939
2940 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2941
2942 rcu_read_unlock();
2943 preempt_enable();
2944 } else
2945#endif
2946 {
2947 unsigned int qtail;
2948 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2949 put_cpu();
2950 }
2951 return ret;
2952}
2953EXPORT_SYMBOL(netif_rx);
2954
2955int netif_rx_ni(struct sk_buff *skb)
2956{
2957 int err;
2958
2959 preempt_disable();
2960 err = netif_rx(skb);
2961 if (local_softirq_pending())
2962 do_softirq();
2963 preempt_enable();
2964
2965 return err;
2966}
2967EXPORT_SYMBOL(netif_rx_ni);
2968
2969static void net_tx_action(struct softirq_action *h)
2970{
2971 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2972
2973 if (sd->completion_queue) {
2974 struct sk_buff *clist;
2975
2976 local_irq_disable();
2977 clist = sd->completion_queue;
2978 sd->completion_queue = NULL;
2979 local_irq_enable();
2980
2981 while (clist) {
2982 struct sk_buff *skb = clist;
2983 clist = clist->next;
2984
2985 WARN_ON(atomic_read(&skb->users));
2986 trace_kfree_skb(skb, net_tx_action);
2987 __kfree_skb(skb);
2988 }
2989 }
2990
2991 if (sd->output_queue) {
2992 struct Qdisc *head;
2993
2994 local_irq_disable();
2995 head = sd->output_queue;
2996 sd->output_queue = NULL;
2997 sd->output_queue_tailp = &sd->output_queue;
2998 local_irq_enable();
2999
3000 while (head) {
3001 struct Qdisc *q = head;
3002 spinlock_t *root_lock;
3003
3004 head = head->next_sched;
3005
3006 root_lock = qdisc_lock(q);
3007 if (spin_trylock(root_lock)) {
3008 smp_mb__before_clear_bit();
3009 clear_bit(__QDISC_STATE_SCHED,
3010 &q->state);
3011 qdisc_run(q);
3012 spin_unlock(root_lock);
3013 } else {
3014 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3015 &q->state)) {
3016 __netif_reschedule(q);
3017 } else {
3018 smp_mb__before_clear_bit();
3019 clear_bit(__QDISC_STATE_SCHED,
3020 &q->state);
3021 }
3022 }
3023 }
3024 }
3025}
3026
3027#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3028 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3029/* This hook is defined here for ATM LANE */
3030int (*br_fdb_test_addr_hook)(struct net_device *dev,
3031 unsigned char *addr) __read_mostly;
3032EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3033#endif
3034
3035#ifdef CONFIG_NET_CLS_ACT
3036/* TODO: Maybe we should just force sch_ingress to be compiled in
3037 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3038 * a compare and 2 stores extra right now if we dont have it on
3039 * but have CONFIG_NET_CLS_ACT
3040 * NOTE: This doesn't stop any functionality; if you dont have
3041 * the ingress scheduler, you just can't add policies on ingress.
3042 *
3043 */
3044static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3045{
3046 struct net_device *dev = skb->dev;
3047 u32 ttl = G_TC_RTTL(skb->tc_verd);
3048 int result = TC_ACT_OK;
3049 struct Qdisc *q;
3050
3051 if (unlikely(MAX_RED_LOOP < ttl++)) {
3052 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3053 skb->skb_iif, dev->ifindex);
3054 return TC_ACT_SHOT;
3055 }
3056
3057 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3058 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3059
3060 q = rxq->qdisc;
3061 if (q != &noop_qdisc) {
3062 spin_lock(qdisc_lock(q));
3063 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3064 result = qdisc_enqueue_root(skb, q);
3065 spin_unlock(qdisc_lock(q));
3066 }
3067
3068 return result;
3069}
3070
3071static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3072 struct packet_type **pt_prev,
3073 int *ret, struct net_device *orig_dev)
3074{
3075 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3076
3077 if (!rxq || rxq->qdisc == &noop_qdisc)
3078 goto out;
3079
3080 if (*pt_prev) {
3081 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3082 *pt_prev = NULL;
3083 }
3084
3085 switch (ing_filter(skb, rxq)) {
3086 case TC_ACT_SHOT:
3087 case TC_ACT_STOLEN:
3088 kfree_skb(skb);
3089 return NULL;
3090 }
3091
3092out:
3093 skb->tc_verd = 0;
3094 return skb;
3095}
3096#endif
3097
3098/**
3099 * netdev_rx_handler_register - register receive handler
3100 * @dev: device to register a handler for
3101 * @rx_handler: receive handler to register
3102 * @rx_handler_data: data pointer that is used by rx handler
3103 *
3104 * Register a receive hander for a device. This handler will then be
3105 * called from __netif_receive_skb. A negative errno code is returned
3106 * on a failure.
3107 *
3108 * The caller must hold the rtnl_mutex.
3109 *
3110 * For a general description of rx_handler, see enum rx_handler_result.
3111 */
3112int netdev_rx_handler_register(struct net_device *dev,
3113 rx_handler_func_t *rx_handler,
3114 void *rx_handler_data)
3115{
3116 ASSERT_RTNL();
3117
3118 if (dev->rx_handler)
3119 return -EBUSY;
3120
3121 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3122 rcu_assign_pointer(dev->rx_handler, rx_handler);
3123
3124 return 0;
3125}
3126EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3127
3128/**
3129 * netdev_rx_handler_unregister - unregister receive handler
3130 * @dev: device to unregister a handler from
3131 *
3132 * Unregister a receive hander from a device.
3133 *
3134 * The caller must hold the rtnl_mutex.
3135 */
3136void netdev_rx_handler_unregister(struct net_device *dev)
3137{
3138
3139 ASSERT_RTNL();
3140 RCU_INIT_POINTER(dev->rx_handler, NULL);
3141 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3142}
3143EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3144
3145static int __netif_receive_skb(struct sk_buff *skb)
3146{
3147 struct packet_type *ptype, *pt_prev;
3148 rx_handler_func_t *rx_handler;
3149 struct net_device *orig_dev;
3150 struct net_device *null_or_dev;
3151 bool deliver_exact = false;
3152 int ret = NET_RX_DROP;
3153 __be16 type;
3154
3155 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3156
3157 trace_netif_receive_skb(skb);
3158
3159 /* if we've gotten here through NAPI, check netpoll */
3160 if (netpoll_receive_skb(skb))
3161 return NET_RX_DROP;
3162
3163 if (!skb->skb_iif)
3164 skb->skb_iif = skb->dev->ifindex;
3165 orig_dev = skb->dev;
3166
3167 skb_reset_network_header(skb);
3168 skb_reset_transport_header(skb);
3169 skb_reset_mac_len(skb);
3170
3171 pt_prev = NULL;
3172
3173 rcu_read_lock();
3174
3175another_round:
3176
3177 __this_cpu_inc(softnet_data.processed);
3178
3179 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3180 skb = vlan_untag(skb);
3181 if (unlikely(!skb))
3182 goto out;
3183 }
3184
3185#ifdef CONFIG_NET_CLS_ACT
3186 if (skb->tc_verd & TC_NCLS) {
3187 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3188 goto ncls;
3189 }
3190#endif
3191
3192 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3193 if (!ptype->dev || ptype->dev == skb->dev) {
3194 if (pt_prev)
3195 ret = deliver_skb(skb, pt_prev, orig_dev);
3196 pt_prev = ptype;
3197 }
3198 }
3199
3200#ifdef CONFIG_NET_CLS_ACT
3201 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3202 if (!skb)
3203 goto out;
3204ncls:
3205#endif
3206
3207 rx_handler = rcu_dereference(skb->dev->rx_handler);
3208 if (vlan_tx_tag_present(skb)) {
3209 if (pt_prev) {
3210 ret = deliver_skb(skb, pt_prev, orig_dev);
3211 pt_prev = NULL;
3212 }
3213 if (vlan_do_receive(&skb, !rx_handler))
3214 goto another_round;
3215 else if (unlikely(!skb))
3216 goto out;
3217 }
3218
3219 if (rx_handler) {
3220 if (pt_prev) {
3221 ret = deliver_skb(skb, pt_prev, orig_dev);
3222 pt_prev = NULL;
3223 }
3224 switch (rx_handler(&skb)) {
3225 case RX_HANDLER_CONSUMED:
3226 goto out;
3227 case RX_HANDLER_ANOTHER:
3228 goto another_round;
3229 case RX_HANDLER_EXACT:
3230 deliver_exact = true;
3231 case RX_HANDLER_PASS:
3232 break;
3233 default:
3234 BUG();
3235 }
3236 }
3237
3238 /* deliver only exact match when indicated */
3239 null_or_dev = deliver_exact ? skb->dev : NULL;
3240
3241 type = skb->protocol;
3242 list_for_each_entry_rcu(ptype,
3243 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3244 if (ptype->type == type &&
3245 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3246 ptype->dev == orig_dev)) {
3247 if (pt_prev)
3248 ret = deliver_skb(skb, pt_prev, orig_dev);
3249 pt_prev = ptype;
3250 }
3251 }
3252
3253 if (pt_prev) {
3254 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3255 } else {
3256 atomic_long_inc(&skb->dev->rx_dropped);
3257 kfree_skb(skb);
3258 /* Jamal, now you will not able to escape explaining
3259 * me how you were going to use this. :-)
3260 */
3261 ret = NET_RX_DROP;
3262 }
3263
3264out:
3265 rcu_read_unlock();
3266 return ret;
3267}
3268
3269/**
3270 * netif_receive_skb - process receive buffer from network
3271 * @skb: buffer to process
3272 *
3273 * netif_receive_skb() is the main receive data processing function.
3274 * It always succeeds. The buffer may be dropped during processing
3275 * for congestion control or by the protocol layers.
3276 *
3277 * This function may only be called from softirq context and interrupts
3278 * should be enabled.
3279 *
3280 * Return values (usually ignored):
3281 * NET_RX_SUCCESS: no congestion
3282 * NET_RX_DROP: packet was dropped
3283 */
3284int netif_receive_skb(struct sk_buff *skb)
3285{
3286 net_timestamp_check(netdev_tstamp_prequeue, skb);
3287
3288 if (skb_defer_rx_timestamp(skb))
3289 return NET_RX_SUCCESS;
3290
3291#ifdef CONFIG_RPS
3292 if (static_key_false(&rps_needed)) {
3293 struct rps_dev_flow voidflow, *rflow = &voidflow;
3294 int cpu, ret;
3295
3296 rcu_read_lock();
3297
3298 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3299
3300 if (cpu >= 0) {
3301 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3302 rcu_read_unlock();
3303 return ret;
3304 }
3305 rcu_read_unlock();
3306 }
3307#endif
3308 return __netif_receive_skb(skb);
3309}
3310EXPORT_SYMBOL(netif_receive_skb);
3311
3312/* Network device is going away, flush any packets still pending
3313 * Called with irqs disabled.
3314 */
3315static void flush_backlog(void *arg)
3316{
3317 struct net_device *dev = arg;
3318 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3319 struct sk_buff *skb, *tmp;
3320
3321 rps_lock(sd);
3322 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3323 if (skb->dev == dev) {
3324 __skb_unlink(skb, &sd->input_pkt_queue);
3325 kfree_skb(skb);
3326 input_queue_head_incr(sd);
3327 }
3328 }
3329 rps_unlock(sd);
3330
3331 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3332 if (skb->dev == dev) {
3333 __skb_unlink(skb, &sd->process_queue);
3334 kfree_skb(skb);
3335 input_queue_head_incr(sd);
3336 }
3337 }
3338}
3339
3340static int napi_gro_complete(struct sk_buff *skb)
3341{
3342 struct packet_type *ptype;
3343 __be16 type = skb->protocol;
3344 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3345 int err = -ENOENT;
3346
3347 if (NAPI_GRO_CB(skb)->count == 1) {
3348 skb_shinfo(skb)->gso_size = 0;
3349 goto out;
3350 }
3351
3352 rcu_read_lock();
3353 list_for_each_entry_rcu(ptype, head, list) {
3354 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3355 continue;
3356
3357 err = ptype->gro_complete(skb);
3358 break;
3359 }
3360 rcu_read_unlock();
3361
3362 if (err) {
3363 WARN_ON(&ptype->list == head);
3364 kfree_skb(skb);
3365 return NET_RX_SUCCESS;
3366 }
3367
3368out:
3369 return netif_receive_skb(skb);
3370}
3371
3372inline void napi_gro_flush(struct napi_struct *napi)
3373{
3374 struct sk_buff *skb, *next;
3375
3376 for (skb = napi->gro_list; skb; skb = next) {
3377 next = skb->next;
3378 skb->next = NULL;
3379 napi_gro_complete(skb);
3380 }
3381
3382 napi->gro_count = 0;
3383 napi->gro_list = NULL;
3384}
3385EXPORT_SYMBOL(napi_gro_flush);
3386
3387enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3388{
3389 struct sk_buff **pp = NULL;
3390 struct packet_type *ptype;
3391 __be16 type = skb->protocol;
3392 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3393 int same_flow;
3394 int mac_len;
3395 enum gro_result ret;
3396
3397 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3398 goto normal;
3399
3400 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3401 goto normal;
3402
3403 rcu_read_lock();
3404 list_for_each_entry_rcu(ptype, head, list) {
3405 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3406 continue;
3407
3408 skb_set_network_header(skb, skb_gro_offset(skb));
3409 mac_len = skb->network_header - skb->mac_header;
3410 skb->mac_len = mac_len;
3411 NAPI_GRO_CB(skb)->same_flow = 0;
3412 NAPI_GRO_CB(skb)->flush = 0;
3413 NAPI_GRO_CB(skb)->free = 0;
3414
3415 pp = ptype->gro_receive(&napi->gro_list, skb);
3416 break;
3417 }
3418 rcu_read_unlock();
3419
3420 if (&ptype->list == head)
3421 goto normal;
3422
3423 same_flow = NAPI_GRO_CB(skb)->same_flow;
3424 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3425
3426 if (pp) {
3427 struct sk_buff *nskb = *pp;
3428
3429 *pp = nskb->next;
3430 nskb->next = NULL;
3431 napi_gro_complete(nskb);
3432 napi->gro_count--;
3433 }
3434
3435 if (same_flow)
3436 goto ok;
3437
3438 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3439 goto normal;
3440
3441 napi->gro_count++;
3442 NAPI_GRO_CB(skb)->count = 1;
3443 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3444 skb->next = napi->gro_list;
3445 napi->gro_list = skb;
3446 ret = GRO_HELD;
3447
3448pull:
3449 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3450 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3451
3452 BUG_ON(skb->end - skb->tail < grow);
3453
3454 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3455
3456 skb->tail += grow;
3457 skb->data_len -= grow;
3458
3459 skb_shinfo(skb)->frags[0].page_offset += grow;
3460 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3461
3462 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3463 skb_frag_unref(skb, 0);
3464 memmove(skb_shinfo(skb)->frags,
3465 skb_shinfo(skb)->frags + 1,
3466 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3467 }
3468 }
3469
3470ok:
3471 return ret;
3472
3473normal:
3474 ret = GRO_NORMAL;
3475 goto pull;
3476}
3477EXPORT_SYMBOL(dev_gro_receive);
3478
3479static inline gro_result_t
3480__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3481{
3482 struct sk_buff *p;
3483 unsigned int maclen = skb->dev->hard_header_len;
3484
3485 for (p = napi->gro_list; p; p = p->next) {
3486 unsigned long diffs;
3487
3488 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3489 diffs |= p->vlan_tci ^ skb->vlan_tci;
3490 if (maclen == ETH_HLEN)
3491 diffs |= compare_ether_header(skb_mac_header(p),
3492 skb_gro_mac_header(skb));
3493 else if (!diffs)
3494 diffs = memcmp(skb_mac_header(p),
3495 skb_gro_mac_header(skb),
3496 maclen);
3497 NAPI_GRO_CB(p)->same_flow = !diffs;
3498 NAPI_GRO_CB(p)->flush = 0;
3499 }
3500
3501 return dev_gro_receive(napi, skb);
3502}
3503
3504gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3505{
3506 switch (ret) {
3507 case GRO_NORMAL:
3508 if (netif_receive_skb(skb))
3509 ret = GRO_DROP;
3510 break;
3511
3512 case GRO_DROP:
3513 kfree_skb(skb);
3514 break;
3515
3516 case GRO_MERGED_FREE:
3517 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3518 kmem_cache_free(skbuff_head_cache, skb);
3519 else
3520 __kfree_skb(skb);
3521 break;
3522
3523 case GRO_HELD:
3524 case GRO_MERGED:
3525 break;
3526 }
3527
3528 return ret;
3529}
3530EXPORT_SYMBOL(napi_skb_finish);
3531
3532void skb_gro_reset_offset(struct sk_buff *skb)
3533{
3534 NAPI_GRO_CB(skb)->data_offset = 0;
3535 NAPI_GRO_CB(skb)->frag0 = NULL;
3536 NAPI_GRO_CB(skb)->frag0_len = 0;
3537
3538 if (skb->mac_header == skb->tail &&
3539 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3540 NAPI_GRO_CB(skb)->frag0 =
3541 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3542 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3543 }
3544}
3545EXPORT_SYMBOL(skb_gro_reset_offset);
3546
3547gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3548{
3549 skb_gro_reset_offset(skb);
3550
3551 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3552}
3553EXPORT_SYMBOL(napi_gro_receive);
3554
3555static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3556{
3557 __skb_pull(skb, skb_headlen(skb));
3558 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3559 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3560 skb->vlan_tci = 0;
3561 skb->dev = napi->dev;
3562 skb->skb_iif = 0;
3563
3564 napi->skb = skb;
3565}
3566
3567struct sk_buff *napi_get_frags(struct napi_struct *napi)
3568{
3569 struct sk_buff *skb = napi->skb;
3570
3571 if (!skb) {
3572 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3573 if (skb)
3574 napi->skb = skb;
3575 }
3576 return skb;
3577}
3578EXPORT_SYMBOL(napi_get_frags);
3579
3580gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3581 gro_result_t ret)
3582{
3583 switch (ret) {
3584 case GRO_NORMAL:
3585 case GRO_HELD:
3586 skb->protocol = eth_type_trans(skb, skb->dev);
3587
3588 if (ret == GRO_HELD)
3589 skb_gro_pull(skb, -ETH_HLEN);
3590 else if (netif_receive_skb(skb))
3591 ret = GRO_DROP;
3592 break;
3593
3594 case GRO_DROP:
3595 case GRO_MERGED_FREE:
3596 napi_reuse_skb(napi, skb);
3597 break;
3598
3599 case GRO_MERGED:
3600 break;
3601 }
3602
3603 return ret;
3604}
3605EXPORT_SYMBOL(napi_frags_finish);
3606
3607static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3608{
3609 struct sk_buff *skb = napi->skb;
3610 struct ethhdr *eth;
3611 unsigned int hlen;
3612 unsigned int off;
3613
3614 napi->skb = NULL;
3615
3616 skb_reset_mac_header(skb);
3617 skb_gro_reset_offset(skb);
3618
3619 off = skb_gro_offset(skb);
3620 hlen = off + sizeof(*eth);
3621 eth = skb_gro_header_fast(skb, off);
3622 if (skb_gro_header_hard(skb, hlen)) {
3623 eth = skb_gro_header_slow(skb, hlen, off);
3624 if (unlikely(!eth)) {
3625 napi_reuse_skb(napi, skb);
3626 skb = NULL;
3627 goto out;
3628 }
3629 }
3630
3631 skb_gro_pull(skb, sizeof(*eth));
3632
3633 /*
3634 * This works because the only protocols we care about don't require
3635 * special handling. We'll fix it up properly at the end.
3636 */
3637 skb->protocol = eth->h_proto;
3638
3639out:
3640 return skb;
3641}
3642
3643gro_result_t napi_gro_frags(struct napi_struct *napi)
3644{
3645 struct sk_buff *skb = napi_frags_skb(napi);
3646
3647 if (!skb)
3648 return GRO_DROP;
3649
3650 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3651}
3652EXPORT_SYMBOL(napi_gro_frags);
3653
3654/*
3655 * net_rps_action sends any pending IPI's for rps.
3656 * Note: called with local irq disabled, but exits with local irq enabled.
3657 */
3658static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3659{
3660#ifdef CONFIG_RPS
3661 struct softnet_data *remsd = sd->rps_ipi_list;
3662
3663 if (remsd) {
3664 sd->rps_ipi_list = NULL;
3665
3666 local_irq_enable();
3667
3668 /* Send pending IPI's to kick RPS processing on remote cpus. */
3669 while (remsd) {
3670 struct softnet_data *next = remsd->rps_ipi_next;
3671
3672 if (cpu_online(remsd->cpu))
3673 __smp_call_function_single(remsd->cpu,
3674 &remsd->csd, 0);
3675 remsd = next;
3676 }
3677 } else
3678#endif
3679 local_irq_enable();
3680}
3681
3682static int process_backlog(struct napi_struct *napi, int quota)
3683{
3684 int work = 0;
3685 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3686
3687#ifdef CONFIG_RPS
3688 /* Check if we have pending ipi, its better to send them now,
3689 * not waiting net_rx_action() end.
3690 */
3691 if (sd->rps_ipi_list) {
3692 local_irq_disable();
3693 net_rps_action_and_irq_enable(sd);
3694 }
3695#endif
3696 napi->weight = weight_p;
3697 local_irq_disable();
3698 while (work < quota) {
3699 struct sk_buff *skb;
3700 unsigned int qlen;
3701
3702 while ((skb = __skb_dequeue(&sd->process_queue))) {
3703 local_irq_enable();
3704 __netif_receive_skb(skb);
3705 local_irq_disable();
3706 input_queue_head_incr(sd);
3707 if (++work >= quota) {
3708 local_irq_enable();
3709 return work;
3710 }
3711 }
3712
3713 rps_lock(sd);
3714 qlen = skb_queue_len(&sd->input_pkt_queue);
3715 if (qlen)
3716 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3717 &sd->process_queue);
3718
3719 if (qlen < quota - work) {
3720 /*
3721 * Inline a custom version of __napi_complete().
3722 * only current cpu owns and manipulates this napi,
3723 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3724 * we can use a plain write instead of clear_bit(),
3725 * and we dont need an smp_mb() memory barrier.
3726 */
3727 list_del(&napi->poll_list);
3728 napi->state = 0;
3729
3730 quota = work + qlen;
3731 }
3732 rps_unlock(sd);
3733 }
3734 local_irq_enable();
3735
3736 return work;
3737}
3738
3739/**
3740 * __napi_schedule - schedule for receive
3741 * @n: entry to schedule
3742 *
3743 * The entry's receive function will be scheduled to run
3744 */
3745void __napi_schedule(struct napi_struct *n)
3746{
3747 unsigned long flags;
3748
3749 local_irq_save(flags);
3750 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3751 local_irq_restore(flags);
3752}
3753EXPORT_SYMBOL(__napi_schedule);
3754
3755void __napi_complete(struct napi_struct *n)
3756{
3757 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3758 BUG_ON(n->gro_list);
3759
3760 list_del(&n->poll_list);
3761 smp_mb__before_clear_bit();
3762 clear_bit(NAPI_STATE_SCHED, &n->state);
3763}
3764EXPORT_SYMBOL(__napi_complete);
3765
3766void napi_complete(struct napi_struct *n)
3767{
3768 unsigned long flags;
3769
3770 /*
3771 * don't let napi dequeue from the cpu poll list
3772 * just in case its running on a different cpu
3773 */
3774 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3775 return;
3776
3777 napi_gro_flush(n);
3778 local_irq_save(flags);
3779 __napi_complete(n);
3780 local_irq_restore(flags);
3781}
3782EXPORT_SYMBOL(napi_complete);
3783
3784void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3785 int (*poll)(struct napi_struct *, int), int weight)
3786{
3787 INIT_LIST_HEAD(&napi->poll_list);
3788 napi->gro_count = 0;
3789 napi->gro_list = NULL;
3790 napi->skb = NULL;
3791 napi->poll = poll;
3792 napi->weight = weight;
3793 list_add(&napi->dev_list, &dev->napi_list);
3794 napi->dev = dev;
3795#ifdef CONFIG_NETPOLL
3796 spin_lock_init(&napi->poll_lock);
3797 napi->poll_owner = -1;
3798#endif
3799 set_bit(NAPI_STATE_SCHED, &napi->state);
3800}
3801EXPORT_SYMBOL(netif_napi_add);
3802
3803void netif_napi_del(struct napi_struct *napi)
3804{
3805 struct sk_buff *skb, *next;
3806
3807 list_del_init(&napi->dev_list);
3808 napi_free_frags(napi);
3809
3810 for (skb = napi->gro_list; skb; skb = next) {
3811 next = skb->next;
3812 skb->next = NULL;
3813 kfree_skb(skb);
3814 }
3815
3816 napi->gro_list = NULL;
3817 napi->gro_count = 0;
3818}
3819EXPORT_SYMBOL(netif_napi_del);
3820
3821static void net_rx_action(struct softirq_action *h)
3822{
3823 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3824 unsigned long time_limit = jiffies + 2;
3825 int budget = netdev_budget;
3826 void *have;
3827
3828 local_irq_disable();
3829
3830 while (!list_empty(&sd->poll_list)) {
3831 struct napi_struct *n;
3832 int work, weight;
3833
3834 /* If softirq window is exhuasted then punt.
3835 * Allow this to run for 2 jiffies since which will allow
3836 * an average latency of 1.5/HZ.
3837 */
3838 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3839 goto softnet_break;
3840
3841 local_irq_enable();
3842
3843 /* Even though interrupts have been re-enabled, this
3844 * access is safe because interrupts can only add new
3845 * entries to the tail of this list, and only ->poll()
3846 * calls can remove this head entry from the list.
3847 */
3848 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3849
3850 have = netpoll_poll_lock(n);
3851
3852 weight = n->weight;
3853
3854 /* This NAPI_STATE_SCHED test is for avoiding a race
3855 * with netpoll's poll_napi(). Only the entity which
3856 * obtains the lock and sees NAPI_STATE_SCHED set will
3857 * actually make the ->poll() call. Therefore we avoid
3858 * accidentally calling ->poll() when NAPI is not scheduled.
3859 */
3860 work = 0;
3861 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3862 work = n->poll(n, weight);
3863 trace_napi_poll(n);
3864 }
3865
3866 WARN_ON_ONCE(work > weight);
3867
3868 budget -= work;
3869
3870 local_irq_disable();
3871
3872 /* Drivers must not modify the NAPI state if they
3873 * consume the entire weight. In such cases this code
3874 * still "owns" the NAPI instance and therefore can
3875 * move the instance around on the list at-will.
3876 */
3877 if (unlikely(work == weight)) {
3878 if (unlikely(napi_disable_pending(n))) {
3879 local_irq_enable();
3880 napi_complete(n);
3881 local_irq_disable();
3882 } else
3883 list_move_tail(&n->poll_list, &sd->poll_list);
3884 }
3885
3886 netpoll_poll_unlock(have);
3887 }
3888out:
3889 net_rps_action_and_irq_enable(sd);
3890
3891#ifdef CONFIG_NET_DMA
3892 /*
3893 * There may not be any more sk_buffs coming right now, so push
3894 * any pending DMA copies to hardware
3895 */
3896 dma_issue_pending_all();
3897#endif
3898
3899 return;
3900
3901softnet_break:
3902 sd->time_squeeze++;
3903 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3904 goto out;
3905}
3906
3907static gifconf_func_t *gifconf_list[NPROTO];
3908
3909/**
3910 * register_gifconf - register a SIOCGIF handler
3911 * @family: Address family
3912 * @gifconf: Function handler
3913 *
3914 * Register protocol dependent address dumping routines. The handler
3915 * that is passed must not be freed or reused until it has been replaced
3916 * by another handler.
3917 */
3918int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3919{
3920 if (family >= NPROTO)
3921 return -EINVAL;
3922 gifconf_list[family] = gifconf;
3923 return 0;
3924}
3925EXPORT_SYMBOL(register_gifconf);
3926
3927
3928/*
3929 * Map an interface index to its name (SIOCGIFNAME)
3930 */
3931
3932/*
3933 * We need this ioctl for efficient implementation of the
3934 * if_indextoname() function required by the IPv6 API. Without
3935 * it, we would have to search all the interfaces to find a
3936 * match. --pb
3937 */
3938
3939static int dev_ifname(struct net *net, struct ifreq __user *arg)
3940{
3941 struct net_device *dev;
3942 struct ifreq ifr;
3943
3944 /*
3945 * Fetch the caller's info block.
3946 */
3947
3948 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3949 return -EFAULT;
3950
3951 rcu_read_lock();
3952 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3953 if (!dev) {
3954 rcu_read_unlock();
3955 return -ENODEV;
3956 }
3957
3958 strcpy(ifr.ifr_name, dev->name);
3959 rcu_read_unlock();
3960
3961 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3962 return -EFAULT;
3963 return 0;
3964}
3965
3966/*
3967 * Perform a SIOCGIFCONF call. This structure will change
3968 * size eventually, and there is nothing I can do about it.
3969 * Thus we will need a 'compatibility mode'.
3970 */
3971
3972static int dev_ifconf(struct net *net, char __user *arg)
3973{
3974 struct ifconf ifc;
3975 struct net_device *dev;
3976 char __user *pos;
3977 int len;
3978 int total;
3979 int i;
3980
3981 /*
3982 * Fetch the caller's info block.
3983 */
3984
3985 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3986 return -EFAULT;
3987
3988 pos = ifc.ifc_buf;
3989 len = ifc.ifc_len;
3990
3991 /*
3992 * Loop over the interfaces, and write an info block for each.
3993 */
3994
3995 total = 0;
3996 for_each_netdev(net, dev) {
3997 for (i = 0; i < NPROTO; i++) {
3998 if (gifconf_list[i]) {
3999 int done;
4000 if (!pos)
4001 done = gifconf_list[i](dev, NULL, 0);
4002 else
4003 done = gifconf_list[i](dev, pos + total,
4004 len - total);
4005 if (done < 0)
4006 return -EFAULT;
4007 total += done;
4008 }
4009 }
4010 }
4011
4012 /*
4013 * All done. Write the updated control block back to the caller.
4014 */
4015 ifc.ifc_len = total;
4016
4017 /*
4018 * Both BSD and Solaris return 0 here, so we do too.
4019 */
4020 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4021}
4022
4023#ifdef CONFIG_PROC_FS
4024
4025#define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4026
4027#define get_bucket(x) ((x) >> BUCKET_SPACE)
4028#define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4029#define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4030
4031static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4032{
4033 struct net *net = seq_file_net(seq);
4034 struct net_device *dev;
4035 struct hlist_node *p;
4036 struct hlist_head *h;
4037 unsigned int count = 0, offset = get_offset(*pos);
4038
4039 h = &net->dev_name_head[get_bucket(*pos)];
4040 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4041 if (++count == offset)
4042 return dev;
4043 }
4044
4045 return NULL;
4046}
4047
4048static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4049{
4050 struct net_device *dev;
4051 unsigned int bucket;
4052
4053 do {
4054 dev = dev_from_same_bucket(seq, pos);
4055 if (dev)
4056 return dev;
4057
4058 bucket = get_bucket(*pos) + 1;
4059 *pos = set_bucket_offset(bucket, 1);
4060 } while (bucket < NETDEV_HASHENTRIES);
4061
4062 return NULL;
4063}
4064
4065/*
4066 * This is invoked by the /proc filesystem handler to display a device
4067 * in detail.
4068 */
4069void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4070 __acquires(RCU)
4071{
4072 rcu_read_lock();
4073 if (!*pos)
4074 return SEQ_START_TOKEN;
4075
4076 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4077 return NULL;
4078
4079 return dev_from_bucket(seq, pos);
4080}
4081
4082void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4083{
4084 ++*pos;
4085 return dev_from_bucket(seq, pos);
4086}
4087
4088void dev_seq_stop(struct seq_file *seq, void *v)
4089 __releases(RCU)
4090{
4091 rcu_read_unlock();
4092}
4093
4094static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4095{
4096 struct rtnl_link_stats64 temp;
4097 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4098
4099 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4100 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4101 dev->name, stats->rx_bytes, stats->rx_packets,
4102 stats->rx_errors,
4103 stats->rx_dropped + stats->rx_missed_errors,
4104 stats->rx_fifo_errors,
4105 stats->rx_length_errors + stats->rx_over_errors +
4106 stats->rx_crc_errors + stats->rx_frame_errors,
4107 stats->rx_compressed, stats->multicast,
4108 stats->tx_bytes, stats->tx_packets,
4109 stats->tx_errors, stats->tx_dropped,
4110 stats->tx_fifo_errors, stats->collisions,
4111 stats->tx_carrier_errors +
4112 stats->tx_aborted_errors +
4113 stats->tx_window_errors +
4114 stats->tx_heartbeat_errors,
4115 stats->tx_compressed);
4116}
4117
4118/*
4119 * Called from the PROCfs module. This now uses the new arbitrary sized
4120 * /proc/net interface to create /proc/net/dev
4121 */
4122static int dev_seq_show(struct seq_file *seq, void *v)
4123{
4124 if (v == SEQ_START_TOKEN)
4125 seq_puts(seq, "Inter-| Receive "
4126 " | Transmit\n"
4127 " face |bytes packets errs drop fifo frame "
4128 "compressed multicast|bytes packets errs "
4129 "drop fifo colls carrier compressed\n");
4130 else
4131 dev_seq_printf_stats(seq, v);
4132 return 0;
4133}
4134
4135static struct softnet_data *softnet_get_online(loff_t *pos)
4136{
4137 struct softnet_data *sd = NULL;
4138
4139 while (*pos < nr_cpu_ids)
4140 if (cpu_online(*pos)) {
4141 sd = &per_cpu(softnet_data, *pos);
4142 break;
4143 } else
4144 ++*pos;
4145 return sd;
4146}
4147
4148static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4149{
4150 return softnet_get_online(pos);
4151}
4152
4153static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4154{
4155 ++*pos;
4156 return softnet_get_online(pos);
4157}
4158
4159static void softnet_seq_stop(struct seq_file *seq, void *v)
4160{
4161}
4162
4163static int softnet_seq_show(struct seq_file *seq, void *v)
4164{
4165 struct softnet_data *sd = v;
4166
4167 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4168 sd->processed, sd->dropped, sd->time_squeeze, 0,
4169 0, 0, 0, 0, /* was fastroute */
4170 sd->cpu_collision, sd->received_rps);
4171 return 0;
4172}
4173
4174static const struct seq_operations dev_seq_ops = {
4175 .start = dev_seq_start,
4176 .next = dev_seq_next,
4177 .stop = dev_seq_stop,
4178 .show = dev_seq_show,
4179};
4180
4181static int dev_seq_open(struct inode *inode, struct file *file)
4182{
4183 return seq_open_net(inode, file, &dev_seq_ops,
4184 sizeof(struct seq_net_private));
4185}
4186
4187static const struct file_operations dev_seq_fops = {
4188 .owner = THIS_MODULE,
4189 .open = dev_seq_open,
4190 .read = seq_read,
4191 .llseek = seq_lseek,
4192 .release = seq_release_net,
4193};
4194
4195static const struct seq_operations softnet_seq_ops = {
4196 .start = softnet_seq_start,
4197 .next = softnet_seq_next,
4198 .stop = softnet_seq_stop,
4199 .show = softnet_seq_show,
4200};
4201
4202static int softnet_seq_open(struct inode *inode, struct file *file)
4203{
4204 return seq_open(file, &softnet_seq_ops);
4205}
4206
4207static const struct file_operations softnet_seq_fops = {
4208 .owner = THIS_MODULE,
4209 .open = softnet_seq_open,
4210 .read = seq_read,
4211 .llseek = seq_lseek,
4212 .release = seq_release,
4213};
4214
4215static void *ptype_get_idx(loff_t pos)
4216{
4217 struct packet_type *pt = NULL;
4218 loff_t i = 0;
4219 int t;
4220
4221 list_for_each_entry_rcu(pt, &ptype_all, list) {
4222 if (i == pos)
4223 return pt;
4224 ++i;
4225 }
4226
4227 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4228 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4229 if (i == pos)
4230 return pt;
4231 ++i;
4232 }
4233 }
4234 return NULL;
4235}
4236
4237static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4238 __acquires(RCU)
4239{
4240 rcu_read_lock();
4241 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4242}
4243
4244static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4245{
4246 struct packet_type *pt;
4247 struct list_head *nxt;
4248 int hash;
4249
4250 ++*pos;
4251 if (v == SEQ_START_TOKEN)
4252 return ptype_get_idx(0);
4253
4254 pt = v;
4255 nxt = pt->list.next;
4256 if (pt->type == htons(ETH_P_ALL)) {
4257 if (nxt != &ptype_all)
4258 goto found;
4259 hash = 0;
4260 nxt = ptype_base[0].next;
4261 } else
4262 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4263
4264 while (nxt == &ptype_base[hash]) {
4265 if (++hash >= PTYPE_HASH_SIZE)
4266 return NULL;
4267 nxt = ptype_base[hash].next;
4268 }
4269found:
4270 return list_entry(nxt, struct packet_type, list);
4271}
4272
4273static void ptype_seq_stop(struct seq_file *seq, void *v)
4274 __releases(RCU)
4275{
4276 rcu_read_unlock();
4277}
4278
4279static int ptype_seq_show(struct seq_file *seq, void *v)
4280{
4281 struct packet_type *pt = v;
4282
4283 if (v == SEQ_START_TOKEN)
4284 seq_puts(seq, "Type Device Function\n");
4285 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4286 if (pt->type == htons(ETH_P_ALL))
4287 seq_puts(seq, "ALL ");
4288 else
4289 seq_printf(seq, "%04x", ntohs(pt->type));
4290
4291 seq_printf(seq, " %-8s %pF\n",
4292 pt->dev ? pt->dev->name : "", pt->func);
4293 }
4294
4295 return 0;
4296}
4297
4298static const struct seq_operations ptype_seq_ops = {
4299 .start = ptype_seq_start,
4300 .next = ptype_seq_next,
4301 .stop = ptype_seq_stop,
4302 .show = ptype_seq_show,
4303};
4304
4305static int ptype_seq_open(struct inode *inode, struct file *file)
4306{
4307 return seq_open_net(inode, file, &ptype_seq_ops,
4308 sizeof(struct seq_net_private));
4309}
4310
4311static const struct file_operations ptype_seq_fops = {
4312 .owner = THIS_MODULE,
4313 .open = ptype_seq_open,
4314 .read = seq_read,
4315 .llseek = seq_lseek,
4316 .release = seq_release_net,
4317};
4318
4319
4320static int __net_init dev_proc_net_init(struct net *net)
4321{
4322 int rc = -ENOMEM;
4323
4324 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4325 goto out;
4326 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4327 goto out_dev;
4328 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4329 goto out_softnet;
4330
4331 if (wext_proc_init(net))
4332 goto out_ptype;
4333 rc = 0;
4334out:
4335 return rc;
4336out_ptype:
4337 proc_net_remove(net, "ptype");
4338out_softnet:
4339 proc_net_remove(net, "softnet_stat");
4340out_dev:
4341 proc_net_remove(net, "dev");
4342 goto out;
4343}
4344
4345static void __net_exit dev_proc_net_exit(struct net *net)
4346{
4347 wext_proc_exit(net);
4348
4349 proc_net_remove(net, "ptype");
4350 proc_net_remove(net, "softnet_stat");
4351 proc_net_remove(net, "dev");
4352}
4353
4354static struct pernet_operations __net_initdata dev_proc_ops = {
4355 .init = dev_proc_net_init,
4356 .exit = dev_proc_net_exit,
4357};
4358
4359static int __init dev_proc_init(void)
4360{
4361 return register_pernet_subsys(&dev_proc_ops);
4362}
4363#else
4364#define dev_proc_init() 0
4365#endif /* CONFIG_PROC_FS */
4366
4367
4368/**
4369 * netdev_set_master - set up master pointer
4370 * @slave: slave device
4371 * @master: new master device
4372 *
4373 * Changes the master device of the slave. Pass %NULL to break the
4374 * bonding. The caller must hold the RTNL semaphore. On a failure
4375 * a negative errno code is returned. On success the reference counts
4376 * are adjusted and the function returns zero.
4377 */
4378int netdev_set_master(struct net_device *slave, struct net_device *master)
4379{
4380 struct net_device *old = slave->master;
4381
4382 ASSERT_RTNL();
4383
4384 if (master) {
4385 if (old)
4386 return -EBUSY;
4387 dev_hold(master);
4388 }
4389
4390 slave->master = master;
4391
4392 if (old)
4393 dev_put(old);
4394 return 0;
4395}
4396EXPORT_SYMBOL(netdev_set_master);
4397
4398/**
4399 * netdev_set_bond_master - set up bonding master/slave pair
4400 * @slave: slave device
4401 * @master: new master device
4402 *
4403 * Changes the master device of the slave. Pass %NULL to break the
4404 * bonding. The caller must hold the RTNL semaphore. On a failure
4405 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4406 * to the routing socket and the function returns zero.
4407 */
4408int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4409{
4410 int err;
4411
4412 ASSERT_RTNL();
4413
4414 err = netdev_set_master(slave, master);
4415 if (err)
4416 return err;
4417 if (master)
4418 slave->flags |= IFF_SLAVE;
4419 else
4420 slave->flags &= ~IFF_SLAVE;
4421
4422 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4423 return 0;
4424}
4425EXPORT_SYMBOL(netdev_set_bond_master);
4426
4427static void dev_change_rx_flags(struct net_device *dev, int flags)
4428{
4429 const struct net_device_ops *ops = dev->netdev_ops;
4430
4431 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4432 ops->ndo_change_rx_flags(dev, flags);
4433}
4434
4435static int __dev_set_promiscuity(struct net_device *dev, int inc)
4436{
4437 unsigned int old_flags = dev->flags;
4438 uid_t uid;
4439 gid_t gid;
4440
4441 ASSERT_RTNL();
4442
4443 dev->flags |= IFF_PROMISC;
4444 dev->promiscuity += inc;
4445 if (dev->promiscuity == 0) {
4446 /*
4447 * Avoid overflow.
4448 * If inc causes overflow, untouch promisc and return error.
4449 */
4450 if (inc < 0)
4451 dev->flags &= ~IFF_PROMISC;
4452 else {
4453 dev->promiscuity -= inc;
4454 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4455 dev->name);
4456 return -EOVERFLOW;
4457 }
4458 }
4459 if (dev->flags != old_flags) {
4460 pr_info("device %s %s promiscuous mode\n",
4461 dev->name,
4462 dev->flags & IFF_PROMISC ? "entered" : "left");
4463 if (audit_enabled) {
4464 current_uid_gid(&uid, &gid);
4465 audit_log(current->audit_context, GFP_ATOMIC,
4466 AUDIT_ANOM_PROMISCUOUS,
4467 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4468 dev->name, (dev->flags & IFF_PROMISC),
4469 (old_flags & IFF_PROMISC),
4470 audit_get_loginuid(current),
4471 uid, gid,
4472 audit_get_sessionid(current));
4473 }
4474
4475 dev_change_rx_flags(dev, IFF_PROMISC);
4476 }
4477 return 0;
4478}
4479
4480/**
4481 * dev_set_promiscuity - update promiscuity count on a device
4482 * @dev: device
4483 * @inc: modifier
4484 *
4485 * Add or remove promiscuity from a device. While the count in the device
4486 * remains above zero the interface remains promiscuous. Once it hits zero
4487 * the device reverts back to normal filtering operation. A negative inc
4488 * value is used to drop promiscuity on the device.
4489 * Return 0 if successful or a negative errno code on error.
4490 */
4491int dev_set_promiscuity(struct net_device *dev, int inc)
4492{
4493 unsigned int old_flags = dev->flags;
4494 int err;
4495
4496 err = __dev_set_promiscuity(dev, inc);
4497 if (err < 0)
4498 return err;
4499 if (dev->flags != old_flags)
4500 dev_set_rx_mode(dev);
4501 return err;
4502}
4503EXPORT_SYMBOL(dev_set_promiscuity);
4504
4505/**
4506 * dev_set_allmulti - update allmulti count on a device
4507 * @dev: device
4508 * @inc: modifier
4509 *
4510 * Add or remove reception of all multicast frames to a device. While the
4511 * count in the device remains above zero the interface remains listening
4512 * to all interfaces. Once it hits zero the device reverts back to normal
4513 * filtering operation. A negative @inc value is used to drop the counter
4514 * when releasing a resource needing all multicasts.
4515 * Return 0 if successful or a negative errno code on error.
4516 */
4517
4518int dev_set_allmulti(struct net_device *dev, int inc)
4519{
4520 unsigned int old_flags = dev->flags;
4521
4522 ASSERT_RTNL();
4523
4524 dev->flags |= IFF_ALLMULTI;
4525 dev->allmulti += inc;
4526 if (dev->allmulti == 0) {
4527 /*
4528 * Avoid overflow.
4529 * If inc causes overflow, untouch allmulti and return error.
4530 */
4531 if (inc < 0)
4532 dev->flags &= ~IFF_ALLMULTI;
4533 else {
4534 dev->allmulti -= inc;
4535 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4536 dev->name);
4537 return -EOVERFLOW;
4538 }
4539 }
4540 if (dev->flags ^ old_flags) {
4541 dev_change_rx_flags(dev, IFF_ALLMULTI);
4542 dev_set_rx_mode(dev);
4543 }
4544 return 0;
4545}
4546EXPORT_SYMBOL(dev_set_allmulti);
4547
4548/*
4549 * Upload unicast and multicast address lists to device and
4550 * configure RX filtering. When the device doesn't support unicast
4551 * filtering it is put in promiscuous mode while unicast addresses
4552 * are present.
4553 */
4554void __dev_set_rx_mode(struct net_device *dev)
4555{
4556 const struct net_device_ops *ops = dev->netdev_ops;
4557
4558 /* dev_open will call this function so the list will stay sane. */
4559 if (!(dev->flags&IFF_UP))
4560 return;
4561
4562 if (!netif_device_present(dev))
4563 return;
4564
4565 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4566 /* Unicast addresses changes may only happen under the rtnl,
4567 * therefore calling __dev_set_promiscuity here is safe.
4568 */
4569 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4570 __dev_set_promiscuity(dev, 1);
4571 dev->uc_promisc = true;
4572 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4573 __dev_set_promiscuity(dev, -1);
4574 dev->uc_promisc = false;
4575 }
4576 }
4577
4578 if (ops->ndo_set_rx_mode)
4579 ops->ndo_set_rx_mode(dev);
4580}
4581
4582void dev_set_rx_mode(struct net_device *dev)
4583{
4584 netif_addr_lock_bh(dev);
4585 __dev_set_rx_mode(dev);
4586 netif_addr_unlock_bh(dev);
4587}
4588
4589/**
4590 * dev_get_flags - get flags reported to userspace
4591 * @dev: device
4592 *
4593 * Get the combination of flag bits exported through APIs to userspace.
4594 */
4595unsigned int dev_get_flags(const struct net_device *dev)
4596{
4597 unsigned int flags;
4598
4599 flags = (dev->flags & ~(IFF_PROMISC |
4600 IFF_ALLMULTI |
4601 IFF_RUNNING |
4602 IFF_LOWER_UP |
4603 IFF_DORMANT)) |
4604 (dev->gflags & (IFF_PROMISC |
4605 IFF_ALLMULTI));
4606
4607 if (netif_running(dev)) {
4608 if (netif_oper_up(dev))
4609 flags |= IFF_RUNNING;
4610 if (netif_carrier_ok(dev))
4611 flags |= IFF_LOWER_UP;
4612 if (netif_dormant(dev))
4613 flags |= IFF_DORMANT;
4614 }
4615
4616 return flags;
4617}
4618EXPORT_SYMBOL(dev_get_flags);
4619
4620int __dev_change_flags(struct net_device *dev, unsigned int flags)
4621{
4622 unsigned int old_flags = dev->flags;
4623 int ret;
4624
4625 ASSERT_RTNL();
4626
4627 /*
4628 * Set the flags on our device.
4629 */
4630
4631 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4632 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4633 IFF_AUTOMEDIA)) |
4634 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4635 IFF_ALLMULTI));
4636
4637 /*
4638 * Load in the correct multicast list now the flags have changed.
4639 */
4640
4641 if ((old_flags ^ flags) & IFF_MULTICAST)
4642 dev_change_rx_flags(dev, IFF_MULTICAST);
4643
4644 dev_set_rx_mode(dev);
4645
4646 /*
4647 * Have we downed the interface. We handle IFF_UP ourselves
4648 * according to user attempts to set it, rather than blindly
4649 * setting it.
4650 */
4651
4652 ret = 0;
4653 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4654 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4655
4656 if (!ret)
4657 dev_set_rx_mode(dev);
4658 }
4659
4660 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4661 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4662
4663 dev->gflags ^= IFF_PROMISC;
4664 dev_set_promiscuity(dev, inc);
4665 }
4666
4667 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4668 is important. Some (broken) drivers set IFF_PROMISC, when
4669 IFF_ALLMULTI is requested not asking us and not reporting.
4670 */
4671 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4672 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4673
4674 dev->gflags ^= IFF_ALLMULTI;
4675 dev_set_allmulti(dev, inc);
4676 }
4677
4678 return ret;
4679}
4680
4681void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4682{
4683 unsigned int changes = dev->flags ^ old_flags;
4684
4685 if (changes & IFF_UP) {
4686 if (dev->flags & IFF_UP)
4687 call_netdevice_notifiers(NETDEV_UP, dev);
4688 else
4689 call_netdevice_notifiers(NETDEV_DOWN, dev);
4690 }
4691
4692 if (dev->flags & IFF_UP &&
4693 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4694 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4695}
4696
4697/**
4698 * dev_change_flags - change device settings
4699 * @dev: device
4700 * @flags: device state flags
4701 *
4702 * Change settings on device based state flags. The flags are
4703 * in the userspace exported format.
4704 */
4705int dev_change_flags(struct net_device *dev, unsigned int flags)
4706{
4707 int ret;
4708 unsigned int changes, old_flags = dev->flags;
4709
4710 ret = __dev_change_flags(dev, flags);
4711 if (ret < 0)
4712 return ret;
4713
4714 changes = old_flags ^ dev->flags;
4715 if (changes)
4716 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4717
4718 __dev_notify_flags(dev, old_flags);
4719 return ret;
4720}
4721EXPORT_SYMBOL(dev_change_flags);
4722
4723/**
4724 * dev_set_mtu - Change maximum transfer unit
4725 * @dev: device
4726 * @new_mtu: new transfer unit
4727 *
4728 * Change the maximum transfer size of the network device.
4729 */
4730int dev_set_mtu(struct net_device *dev, int new_mtu)
4731{
4732 const struct net_device_ops *ops = dev->netdev_ops;
4733 int err;
4734
4735 if (new_mtu == dev->mtu)
4736 return 0;
4737
4738 /* MTU must be positive. */
4739 if (new_mtu < 0)
4740 return -EINVAL;
4741
4742 if (!netif_device_present(dev))
4743 return -ENODEV;
4744
4745 err = 0;
4746 if (ops->ndo_change_mtu)
4747 err = ops->ndo_change_mtu(dev, new_mtu);
4748 else
4749 dev->mtu = new_mtu;
4750
4751 if (!err && dev->flags & IFF_UP)
4752 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4753 return err;
4754}
4755EXPORT_SYMBOL(dev_set_mtu);
4756
4757/**
4758 * dev_set_group - Change group this device belongs to
4759 * @dev: device
4760 * @new_group: group this device should belong to
4761 */
4762void dev_set_group(struct net_device *dev, int new_group)
4763{
4764 dev->group = new_group;
4765}
4766EXPORT_SYMBOL(dev_set_group);
4767
4768/**
4769 * dev_set_mac_address - Change Media Access Control Address
4770 * @dev: device
4771 * @sa: new address
4772 *
4773 * Change the hardware (MAC) address of the device
4774 */
4775int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4776{
4777 const struct net_device_ops *ops = dev->netdev_ops;
4778 int err;
4779
4780 if (!ops->ndo_set_mac_address)
4781 return -EOPNOTSUPP;
4782 if (sa->sa_family != dev->type)
4783 return -EINVAL;
4784 if (!netif_device_present(dev))
4785 return -ENODEV;
4786 err = ops->ndo_set_mac_address(dev, sa);
4787 if (!err)
4788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4789 add_device_randomness(dev->dev_addr, dev->addr_len);
4790 return err;
4791}
4792EXPORT_SYMBOL(dev_set_mac_address);
4793
4794/*
4795 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4796 */
4797static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4798{
4799 int err;
4800 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4801
4802 if (!dev)
4803 return -ENODEV;
4804
4805 switch (cmd) {
4806 case SIOCGIFFLAGS: /* Get interface flags */
4807 ifr->ifr_flags = (short) dev_get_flags(dev);
4808 return 0;
4809
4810 case SIOCGIFMETRIC: /* Get the metric on the interface
4811 (currently unused) */
4812 ifr->ifr_metric = 0;
4813 return 0;
4814
4815 case SIOCGIFMTU: /* Get the MTU of a device */
4816 ifr->ifr_mtu = dev->mtu;
4817 return 0;
4818
4819 case SIOCGIFHWADDR:
4820 if (!dev->addr_len)
4821 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4822 else
4823 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4824 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4825 ifr->ifr_hwaddr.sa_family = dev->type;
4826 return 0;
4827
4828 case SIOCGIFSLAVE:
4829 err = -EINVAL;
4830 break;
4831
4832 case SIOCGIFMAP:
4833 ifr->ifr_map.mem_start = dev->mem_start;
4834 ifr->ifr_map.mem_end = dev->mem_end;
4835 ifr->ifr_map.base_addr = dev->base_addr;
4836 ifr->ifr_map.irq = dev->irq;
4837 ifr->ifr_map.dma = dev->dma;
4838 ifr->ifr_map.port = dev->if_port;
4839 return 0;
4840
4841 case SIOCGIFINDEX:
4842 ifr->ifr_ifindex = dev->ifindex;
4843 return 0;
4844
4845 case SIOCGIFTXQLEN:
4846 ifr->ifr_qlen = dev->tx_queue_len;
4847 return 0;
4848
4849 default:
4850 /* dev_ioctl() should ensure this case
4851 * is never reached
4852 */
4853 WARN_ON(1);
4854 err = -ENOTTY;
4855 break;
4856
4857 }
4858 return err;
4859}
4860
4861/*
4862 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4863 */
4864static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4865{
4866 int err;
4867 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4868 const struct net_device_ops *ops;
4869
4870 if (!dev)
4871 return -ENODEV;
4872
4873 ops = dev->netdev_ops;
4874
4875 switch (cmd) {
4876 case SIOCSIFFLAGS: /* Set interface flags */
4877 return dev_change_flags(dev, ifr->ifr_flags);
4878
4879 case SIOCSIFMETRIC: /* Set the metric on the interface
4880 (currently unused) */
4881 return -EOPNOTSUPP;
4882
4883 case SIOCSIFMTU: /* Set the MTU of a device */
4884 return dev_set_mtu(dev, ifr->ifr_mtu);
4885
4886 case SIOCSIFHWADDR:
4887 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4888
4889 case SIOCSIFHWBROADCAST:
4890 if (ifr->ifr_hwaddr.sa_family != dev->type)
4891 return -EINVAL;
4892 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4893 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4894 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4895 return 0;
4896
4897 case SIOCSIFMAP:
4898 if (ops->ndo_set_config) {
4899 if (!netif_device_present(dev))
4900 return -ENODEV;
4901 return ops->ndo_set_config(dev, &ifr->ifr_map);
4902 }
4903 return -EOPNOTSUPP;
4904
4905 case SIOCADDMULTI:
4906 if (!ops->ndo_set_rx_mode ||
4907 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4908 return -EINVAL;
4909 if (!netif_device_present(dev))
4910 return -ENODEV;
4911 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4912
4913 case SIOCDELMULTI:
4914 if (!ops->ndo_set_rx_mode ||
4915 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4916 return -EINVAL;
4917 if (!netif_device_present(dev))
4918 return -ENODEV;
4919 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4920
4921 case SIOCSIFTXQLEN:
4922 if (ifr->ifr_qlen < 0)
4923 return -EINVAL;
4924 dev->tx_queue_len = ifr->ifr_qlen;
4925 return 0;
4926
4927 case SIOCSIFNAME:
4928 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4929 return dev_change_name(dev, ifr->ifr_newname);
4930
4931 case SIOCSHWTSTAMP:
4932 err = net_hwtstamp_validate(ifr);
4933 if (err)
4934 return err;
4935 /* fall through */
4936
4937 /*
4938 * Unknown or private ioctl
4939 */
4940 default:
4941 if ((cmd >= SIOCDEVPRIVATE &&
4942 cmd <= SIOCDEVPRIVATE + 15) ||
4943 cmd == SIOCBONDENSLAVE ||
4944 cmd == SIOCBONDRELEASE ||
4945 cmd == SIOCBONDSETHWADDR ||
4946 cmd == SIOCBONDSLAVEINFOQUERY ||
4947 cmd == SIOCBONDINFOQUERY ||
4948 cmd == SIOCBONDCHANGEACTIVE ||
4949 cmd == SIOCGMIIPHY ||
4950 cmd == SIOCGMIIREG ||
4951 cmd == SIOCSMIIREG ||
4952 cmd == SIOCBRADDIF ||
4953 cmd == SIOCBRDELIF ||
4954 cmd == SIOCSHWTSTAMP ||
4955 cmd == SIOCWANDEV) {
4956 err = -EOPNOTSUPP;
4957 if (ops->ndo_do_ioctl) {
4958 if (netif_device_present(dev))
4959 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4960 else
4961 err = -ENODEV;
4962 }
4963 } else
4964 err = -EINVAL;
4965
4966 }
4967 return err;
4968}
4969
4970/*
4971 * This function handles all "interface"-type I/O control requests. The actual
4972 * 'doing' part of this is dev_ifsioc above.
4973 */
4974
4975/**
4976 * dev_ioctl - network device ioctl
4977 * @net: the applicable net namespace
4978 * @cmd: command to issue
4979 * @arg: pointer to a struct ifreq in user space
4980 *
4981 * Issue ioctl functions to devices. This is normally called by the
4982 * user space syscall interfaces but can sometimes be useful for
4983 * other purposes. The return value is the return from the syscall if
4984 * positive or a negative errno code on error.
4985 */
4986
4987int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4988{
4989 struct ifreq ifr;
4990 int ret;
4991 char *colon;
4992
4993 /* One special case: SIOCGIFCONF takes ifconf argument
4994 and requires shared lock, because it sleeps writing
4995 to user space.
4996 */
4997
4998 if (cmd == SIOCGIFCONF) {
4999 rtnl_lock();
5000 ret = dev_ifconf(net, (char __user *) arg);
5001 rtnl_unlock();
5002 return ret;
5003 }
5004 if (cmd == SIOCGIFNAME)
5005 return dev_ifname(net, (struct ifreq __user *)arg);
5006
5007 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5008 return -EFAULT;
5009
5010 ifr.ifr_name[IFNAMSIZ-1] = 0;
5011
5012 colon = strchr(ifr.ifr_name, ':');
5013 if (colon)
5014 *colon = 0;
5015
5016 /*
5017 * See which interface the caller is talking about.
5018 */
5019
5020 switch (cmd) {
5021 /*
5022 * These ioctl calls:
5023 * - can be done by all.
5024 * - atomic and do not require locking.
5025 * - return a value
5026 */
5027 case SIOCGIFFLAGS:
5028 case SIOCGIFMETRIC:
5029 case SIOCGIFMTU:
5030 case SIOCGIFHWADDR:
5031 case SIOCGIFSLAVE:
5032 case SIOCGIFMAP:
5033 case SIOCGIFINDEX:
5034 case SIOCGIFTXQLEN:
5035 dev_load(net, ifr.ifr_name);
5036 rcu_read_lock();
5037 ret = dev_ifsioc_locked(net, &ifr, cmd);
5038 rcu_read_unlock();
5039 if (!ret) {
5040 if (colon)
5041 *colon = ':';
5042 if (copy_to_user(arg, &ifr,
5043 sizeof(struct ifreq)))
5044 ret = -EFAULT;
5045 }
5046 return ret;
5047
5048 case SIOCETHTOOL:
5049 dev_load(net, ifr.ifr_name);
5050 rtnl_lock();
5051 ret = dev_ethtool(net, &ifr);
5052 rtnl_unlock();
5053 if (!ret) {
5054 if (colon)
5055 *colon = ':';
5056 if (copy_to_user(arg, &ifr,
5057 sizeof(struct ifreq)))
5058 ret = -EFAULT;
5059 }
5060 return ret;
5061
5062 /*
5063 * These ioctl calls:
5064 * - require superuser power.
5065 * - require strict serialization.
5066 * - return a value
5067 */
5068 case SIOCGMIIPHY:
5069 case SIOCGMIIREG:
5070 case SIOCSIFNAME:
5071 if (!capable(CAP_NET_ADMIN))
5072 return -EPERM;
5073 dev_load(net, ifr.ifr_name);
5074 rtnl_lock();
5075 ret = dev_ifsioc(net, &ifr, cmd);
5076 rtnl_unlock();
5077 if (!ret) {
5078 if (colon)
5079 *colon = ':';
5080 if (copy_to_user(arg, &ifr,
5081 sizeof(struct ifreq)))
5082 ret = -EFAULT;
5083 }
5084 return ret;
5085
5086 /*
5087 * These ioctl calls:
5088 * - require superuser power.
5089 * - require strict serialization.
5090 * - do not return a value
5091 */
5092 case SIOCSIFFLAGS:
5093 case SIOCSIFMETRIC:
5094 case SIOCSIFMTU:
5095 case SIOCSIFMAP:
5096 case SIOCSIFHWADDR:
5097 case SIOCSIFSLAVE:
5098 case SIOCADDMULTI:
5099 case SIOCDELMULTI:
5100 case SIOCSIFHWBROADCAST:
5101 case SIOCSIFTXQLEN:
5102 case SIOCSMIIREG:
5103 case SIOCBONDENSLAVE:
5104 case SIOCBONDRELEASE:
5105 case SIOCBONDSETHWADDR:
5106 case SIOCBONDCHANGEACTIVE:
5107 case SIOCBRADDIF:
5108 case SIOCBRDELIF:
5109 case SIOCSHWTSTAMP:
5110 if (!capable(CAP_NET_ADMIN))
5111 return -EPERM;
5112 /* fall through */
5113 case SIOCBONDSLAVEINFOQUERY:
5114 case SIOCBONDINFOQUERY:
5115 dev_load(net, ifr.ifr_name);
5116 rtnl_lock();
5117 ret = dev_ifsioc(net, &ifr, cmd);
5118 rtnl_unlock();
5119 return ret;
5120
5121 case SIOCGIFMEM:
5122 /* Get the per device memory space. We can add this but
5123 * currently do not support it */
5124 case SIOCSIFMEM:
5125 /* Set the per device memory buffer space.
5126 * Not applicable in our case */
5127 case SIOCSIFLINK:
5128 return -ENOTTY;
5129
5130 /*
5131 * Unknown or private ioctl.
5132 */
5133 default:
5134 if (cmd == SIOCWANDEV ||
5135 (cmd >= SIOCDEVPRIVATE &&
5136 cmd <= SIOCDEVPRIVATE + 15)) {
5137 dev_load(net, ifr.ifr_name);
5138 rtnl_lock();
5139 ret = dev_ifsioc(net, &ifr, cmd);
5140 rtnl_unlock();
5141 if (!ret && copy_to_user(arg, &ifr,
5142 sizeof(struct ifreq)))
5143 ret = -EFAULT;
5144 return ret;
5145 }
5146 /* Take care of Wireless Extensions */
5147 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5148 return wext_handle_ioctl(net, &ifr, cmd, arg);
5149 return -ENOTTY;
5150 }
5151}
5152
5153
5154/**
5155 * dev_new_index - allocate an ifindex
5156 * @net: the applicable net namespace
5157 *
5158 * Returns a suitable unique value for a new device interface
5159 * number. The caller must hold the rtnl semaphore or the
5160 * dev_base_lock to be sure it remains unique.
5161 */
5162static int dev_new_index(struct net *net)
5163{
5164 static int ifindex;
5165 for (;;) {
5166 if (++ifindex <= 0)
5167 ifindex = 1;
5168 if (!__dev_get_by_index(net, ifindex))
5169 return ifindex;
5170 }
5171}
5172
5173/* Delayed registration/unregisteration */
5174static LIST_HEAD(net_todo_list);
5175
5176static void net_set_todo(struct net_device *dev)
5177{
5178 list_add_tail(&dev->todo_list, &net_todo_list);
5179}
5180
5181static void rollback_registered_many(struct list_head *head)
5182{
5183 struct net_device *dev, *tmp;
5184
5185 BUG_ON(dev_boot_phase);
5186 ASSERT_RTNL();
5187
5188 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5189 /* Some devices call without registering
5190 * for initialization unwind. Remove those
5191 * devices and proceed with the remaining.
5192 */
5193 if (dev->reg_state == NETREG_UNINITIALIZED) {
5194 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5195 dev->name, dev);
5196
5197 WARN_ON(1);
5198 list_del(&dev->unreg_list);
5199 continue;
5200 }
5201 dev->dismantle = true;
5202 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5203 }
5204
5205 /* If device is running, close it first. */
5206 dev_close_many(head);
5207
5208 list_for_each_entry(dev, head, unreg_list) {
5209 /* And unlink it from device chain. */
5210 unlist_netdevice(dev);
5211
5212 dev->reg_state = NETREG_UNREGISTERING;
5213 }
5214
5215 synchronize_net();
5216
5217 list_for_each_entry(dev, head, unreg_list) {
5218 /* Shutdown queueing discipline. */
5219 dev_shutdown(dev);
5220
5221
5222 /* Notify protocols, that we are about to destroy
5223 this device. They should clean all the things.
5224 */
5225 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5226
5227 if (!dev->rtnl_link_ops ||
5228 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5229 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5230
5231 /*
5232 * Flush the unicast and multicast chains
5233 */
5234 dev_uc_flush(dev);
5235 dev_mc_flush(dev);
5236
5237 if (dev->netdev_ops->ndo_uninit)
5238 dev->netdev_ops->ndo_uninit(dev);
5239
5240 /* Notifier chain MUST detach us from master device. */
5241 WARN_ON(dev->master);
5242
5243 /* Remove entries from kobject tree */
5244 netdev_unregister_kobject(dev);
5245 }
5246
5247 /* Process any work delayed until the end of the batch */
5248 dev = list_first_entry(head, struct net_device, unreg_list);
5249 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5250
5251 synchronize_net();
5252
5253 list_for_each_entry(dev, head, unreg_list)
5254 dev_put(dev);
5255}
5256
5257static void rollback_registered(struct net_device *dev)
5258{
5259 LIST_HEAD(single);
5260
5261 list_add(&dev->unreg_list, &single);
5262 rollback_registered_many(&single);
5263 list_del(&single);
5264}
5265
5266static netdev_features_t netdev_fix_features(struct net_device *dev,
5267 netdev_features_t features)
5268{
5269 /* Fix illegal checksum combinations */
5270 if ((features & NETIF_F_HW_CSUM) &&
5271 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5272 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5273 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5274 }
5275
5276 /* Fix illegal SG+CSUM combinations. */
5277 if ((features & NETIF_F_SG) &&
5278 !(features & NETIF_F_ALL_CSUM)) {
5279 netdev_dbg(dev,
5280 "Dropping NETIF_F_SG since no checksum feature.\n");
5281 features &= ~NETIF_F_SG;
5282 }
5283
5284 /* TSO requires that SG is present as well. */
5285 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5286 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5287 features &= ~NETIF_F_ALL_TSO;
5288 }
5289
5290 /* TSO ECN requires that TSO is present as well. */
5291 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5292 features &= ~NETIF_F_TSO_ECN;
5293
5294 /* Software GSO depends on SG. */
5295 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5296 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5297 features &= ~NETIF_F_GSO;
5298 }
5299
5300 /* UFO needs SG and checksumming */
5301 if (features & NETIF_F_UFO) {
5302 /* maybe split UFO into V4 and V6? */
5303 if (!((features & NETIF_F_GEN_CSUM) ||
5304 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5305 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5306 netdev_dbg(dev,
5307 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5308 features &= ~NETIF_F_UFO;
5309 }
5310
5311 if (!(features & NETIF_F_SG)) {
5312 netdev_dbg(dev,
5313 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5314 features &= ~NETIF_F_UFO;
5315 }
5316 }
5317
5318 return features;
5319}
5320
5321int __netdev_update_features(struct net_device *dev)
5322{
5323 netdev_features_t features;
5324 int err = 0;
5325
5326 ASSERT_RTNL();
5327
5328 features = netdev_get_wanted_features(dev);
5329
5330 if (dev->netdev_ops->ndo_fix_features)
5331 features = dev->netdev_ops->ndo_fix_features(dev, features);
5332
5333 /* driver might be less strict about feature dependencies */
5334 features = netdev_fix_features(dev, features);
5335
5336 if (dev->features == features)
5337 return 0;
5338
5339 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5340 &dev->features, &features);
5341
5342 if (dev->netdev_ops->ndo_set_features)
5343 err = dev->netdev_ops->ndo_set_features(dev, features);
5344
5345 if (unlikely(err < 0)) {
5346 netdev_err(dev,
5347 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5348 err, &features, &dev->features);
5349 return -1;
5350 }
5351
5352 if (!err)
5353 dev->features = features;
5354
5355 return 1;
5356}
5357
5358/**
5359 * netdev_update_features - recalculate device features
5360 * @dev: the device to check
5361 *
5362 * Recalculate dev->features set and send notifications if it
5363 * has changed. Should be called after driver or hardware dependent
5364 * conditions might have changed that influence the features.
5365 */
5366void netdev_update_features(struct net_device *dev)
5367{
5368 if (__netdev_update_features(dev))
5369 netdev_features_change(dev);
5370}
5371EXPORT_SYMBOL(netdev_update_features);
5372
5373/**
5374 * netdev_change_features - recalculate device features
5375 * @dev: the device to check
5376 *
5377 * Recalculate dev->features set and send notifications even
5378 * if they have not changed. Should be called instead of
5379 * netdev_update_features() if also dev->vlan_features might
5380 * have changed to allow the changes to be propagated to stacked
5381 * VLAN devices.
5382 */
5383void netdev_change_features(struct net_device *dev)
5384{
5385 __netdev_update_features(dev);
5386 netdev_features_change(dev);
5387}
5388EXPORT_SYMBOL(netdev_change_features);
5389
5390/**
5391 * netif_stacked_transfer_operstate - transfer operstate
5392 * @rootdev: the root or lower level device to transfer state from
5393 * @dev: the device to transfer operstate to
5394 *
5395 * Transfer operational state from root to device. This is normally
5396 * called when a stacking relationship exists between the root
5397 * device and the device(a leaf device).
5398 */
5399void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5400 struct net_device *dev)
5401{
5402 if (rootdev->operstate == IF_OPER_DORMANT)
5403 netif_dormant_on(dev);
5404 else
5405 netif_dormant_off(dev);
5406
5407 if (netif_carrier_ok(rootdev)) {
5408 if (!netif_carrier_ok(dev))
5409 netif_carrier_on(dev);
5410 } else {
5411 if (netif_carrier_ok(dev))
5412 netif_carrier_off(dev);
5413 }
5414}
5415EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5416
5417#ifdef CONFIG_RPS
5418static int netif_alloc_rx_queues(struct net_device *dev)
5419{
5420 unsigned int i, count = dev->num_rx_queues;
5421 struct netdev_rx_queue *rx;
5422
5423 BUG_ON(count < 1);
5424
5425 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5426 if (!rx) {
5427 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5428 return -ENOMEM;
5429 }
5430 dev->_rx = rx;
5431
5432 for (i = 0; i < count; i++)
5433 rx[i].dev = dev;
5434 return 0;
5435}
5436#endif
5437
5438static void netdev_init_one_queue(struct net_device *dev,
5439 struct netdev_queue *queue, void *_unused)
5440{
5441 /* Initialize queue lock */
5442 spin_lock_init(&queue->_xmit_lock);
5443 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5444 queue->xmit_lock_owner = -1;
5445 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5446 queue->dev = dev;
5447#ifdef CONFIG_BQL
5448 dql_init(&queue->dql, HZ);
5449#endif
5450}
5451
5452static int netif_alloc_netdev_queues(struct net_device *dev)
5453{
5454 unsigned int count = dev->num_tx_queues;
5455 struct netdev_queue *tx;
5456
5457 BUG_ON(count < 1);
5458
5459 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5460 if (!tx) {
5461 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5462 return -ENOMEM;
5463 }
5464 dev->_tx = tx;
5465
5466 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5467 spin_lock_init(&dev->tx_global_lock);
5468
5469 return 0;
5470}
5471
5472/**
5473 * register_netdevice - register a network device
5474 * @dev: device to register
5475 *
5476 * Take a completed network device structure and add it to the kernel
5477 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5478 * chain. 0 is returned on success. A negative errno code is returned
5479 * on a failure to set up the device, or if the name is a duplicate.
5480 *
5481 * Callers must hold the rtnl semaphore. You may want
5482 * register_netdev() instead of this.
5483 *
5484 * BUGS:
5485 * The locking appears insufficient to guarantee two parallel registers
5486 * will not get the same name.
5487 */
5488
5489int register_netdevice(struct net_device *dev)
5490{
5491 int ret;
5492 struct net *net = dev_net(dev);
5493
5494 BUG_ON(dev_boot_phase);
5495 ASSERT_RTNL();
5496
5497 might_sleep();
5498
5499 /* When net_device's are persistent, this will be fatal. */
5500 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5501 BUG_ON(!net);
5502
5503 spin_lock_init(&dev->addr_list_lock);
5504 netdev_set_addr_lockdep_class(dev);
5505
5506 dev->iflink = -1;
5507
5508 ret = dev_get_valid_name(dev, dev->name);
5509 if (ret < 0)
5510 goto out;
5511
5512 /* Init, if this function is available */
5513 if (dev->netdev_ops->ndo_init) {
5514 ret = dev->netdev_ops->ndo_init(dev);
5515 if (ret) {
5516 if (ret > 0)
5517 ret = -EIO;
5518 goto out;
5519 }
5520 }
5521
5522 dev->ifindex = dev_new_index(net);
5523 if (dev->iflink == -1)
5524 dev->iflink = dev->ifindex;
5525
5526 /* Transfer changeable features to wanted_features and enable
5527 * software offloads (GSO and GRO).
5528 */
5529 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5530 dev->features |= NETIF_F_SOFT_FEATURES;
5531 dev->wanted_features = dev->features & dev->hw_features;
5532
5533 /* Turn on no cache copy if HW is doing checksum */
5534 if (!(dev->flags & IFF_LOOPBACK)) {
5535 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5536 if (dev->features & NETIF_F_ALL_CSUM) {
5537 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5538 dev->features |= NETIF_F_NOCACHE_COPY;
5539 }
5540 }
5541
5542 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5543 */
5544 dev->vlan_features |= NETIF_F_HIGHDMA;
5545
5546 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5547 ret = notifier_to_errno(ret);
5548 if (ret)
5549 goto err_uninit;
5550
5551 ret = netdev_register_kobject(dev);
5552 if (ret)
5553 goto err_uninit;
5554 dev->reg_state = NETREG_REGISTERED;
5555
5556 __netdev_update_features(dev);
5557
5558 /*
5559 * Default initial state at registry is that the
5560 * device is present.
5561 */
5562
5563 set_bit(__LINK_STATE_PRESENT, &dev->state);
5564
5565 dev_init_scheduler(dev);
5566 dev_hold(dev);
5567 list_netdevice(dev);
5568 add_device_randomness(dev->dev_addr, dev->addr_len);
5569
5570 /* Notify protocols, that a new device appeared. */
5571 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5572 ret = notifier_to_errno(ret);
5573 if (ret) {
5574 rollback_registered(dev);
5575 dev->reg_state = NETREG_UNREGISTERED;
5576 }
5577 /*
5578 * Prevent userspace races by waiting until the network
5579 * device is fully setup before sending notifications.
5580 */
5581 if (!dev->rtnl_link_ops ||
5582 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5583 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5584
5585out:
5586 return ret;
5587
5588err_uninit:
5589 if (dev->netdev_ops->ndo_uninit)
5590 dev->netdev_ops->ndo_uninit(dev);
5591 goto out;
5592}
5593EXPORT_SYMBOL(register_netdevice);
5594
5595/**
5596 * init_dummy_netdev - init a dummy network device for NAPI
5597 * @dev: device to init
5598 *
5599 * This takes a network device structure and initialize the minimum
5600 * amount of fields so it can be used to schedule NAPI polls without
5601 * registering a full blown interface. This is to be used by drivers
5602 * that need to tie several hardware interfaces to a single NAPI
5603 * poll scheduler due to HW limitations.
5604 */
5605int init_dummy_netdev(struct net_device *dev)
5606{
5607 /* Clear everything. Note we don't initialize spinlocks
5608 * are they aren't supposed to be taken by any of the
5609 * NAPI code and this dummy netdev is supposed to be
5610 * only ever used for NAPI polls
5611 */
5612 memset(dev, 0, sizeof(struct net_device));
5613
5614 /* make sure we BUG if trying to hit standard
5615 * register/unregister code path
5616 */
5617 dev->reg_state = NETREG_DUMMY;
5618
5619 /* NAPI wants this */
5620 INIT_LIST_HEAD(&dev->napi_list);
5621
5622 /* a dummy interface is started by default */
5623 set_bit(__LINK_STATE_PRESENT, &dev->state);
5624 set_bit(__LINK_STATE_START, &dev->state);
5625
5626 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5627 * because users of this 'device' dont need to change
5628 * its refcount.
5629 */
5630
5631 return 0;
5632}
5633EXPORT_SYMBOL_GPL(init_dummy_netdev);
5634
5635
5636/**
5637 * register_netdev - register a network device
5638 * @dev: device to register
5639 *
5640 * Take a completed network device structure and add it to the kernel
5641 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5642 * chain. 0 is returned on success. A negative errno code is returned
5643 * on a failure to set up the device, or if the name is a duplicate.
5644 *
5645 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5646 * and expands the device name if you passed a format string to
5647 * alloc_netdev.
5648 */
5649int register_netdev(struct net_device *dev)
5650{
5651 int err;
5652
5653 rtnl_lock();
5654 err = register_netdevice(dev);
5655 rtnl_unlock();
5656 return err;
5657}
5658EXPORT_SYMBOL(register_netdev);
5659
5660int netdev_refcnt_read(const struct net_device *dev)
5661{
5662 int i, refcnt = 0;
5663
5664 for_each_possible_cpu(i)
5665 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5666 return refcnt;
5667}
5668EXPORT_SYMBOL(netdev_refcnt_read);
5669
5670/*
5671 * netdev_wait_allrefs - wait until all references are gone.
5672 *
5673 * This is called when unregistering network devices.
5674 *
5675 * Any protocol or device that holds a reference should register
5676 * for netdevice notification, and cleanup and put back the
5677 * reference if they receive an UNREGISTER event.
5678 * We can get stuck here if buggy protocols don't correctly
5679 * call dev_put.
5680 */
5681static void netdev_wait_allrefs(struct net_device *dev)
5682{
5683 unsigned long rebroadcast_time, warning_time;
5684 int refcnt;
5685
5686 linkwatch_forget_dev(dev);
5687
5688 rebroadcast_time = warning_time = jiffies;
5689 refcnt = netdev_refcnt_read(dev);
5690
5691 while (refcnt != 0) {
5692 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5693 rtnl_lock();
5694
5695 /* Rebroadcast unregister notification */
5696 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5697 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5698 * should have already handle it the first time */
5699
5700 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5701 &dev->state)) {
5702 /* We must not have linkwatch events
5703 * pending on unregister. If this
5704 * happens, we simply run the queue
5705 * unscheduled, resulting in a noop
5706 * for this device.
5707 */
5708 linkwatch_run_queue();
5709 }
5710
5711 __rtnl_unlock();
5712
5713 rebroadcast_time = jiffies;
5714 }
5715
5716 msleep(250);
5717
5718 refcnt = netdev_refcnt_read(dev);
5719
5720 if (time_after(jiffies, warning_time + 10 * HZ)) {
5721 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5722 dev->name, refcnt);
5723 warning_time = jiffies;
5724 }
5725 }
5726}
5727
5728/* The sequence is:
5729 *
5730 * rtnl_lock();
5731 * ...
5732 * register_netdevice(x1);
5733 * register_netdevice(x2);
5734 * ...
5735 * unregister_netdevice(y1);
5736 * unregister_netdevice(y2);
5737 * ...
5738 * rtnl_unlock();
5739 * free_netdev(y1);
5740 * free_netdev(y2);
5741 *
5742 * We are invoked by rtnl_unlock().
5743 * This allows us to deal with problems:
5744 * 1) We can delete sysfs objects which invoke hotplug
5745 * without deadlocking with linkwatch via keventd.
5746 * 2) Since we run with the RTNL semaphore not held, we can sleep
5747 * safely in order to wait for the netdev refcnt to drop to zero.
5748 *
5749 * We must not return until all unregister events added during
5750 * the interval the lock was held have been completed.
5751 */
5752void netdev_run_todo(void)
5753{
5754 struct list_head list;
5755
5756 /* Snapshot list, allow later requests */
5757 list_replace_init(&net_todo_list, &list);
5758
5759 __rtnl_unlock();
5760
5761 /* Wait for rcu callbacks to finish before attempting to drain
5762 * the device list. This usually avoids a 250ms wait.
5763 */
5764 if (!list_empty(&list))
5765 rcu_barrier();
5766
5767 while (!list_empty(&list)) {
5768 struct net_device *dev
5769 = list_first_entry(&list, struct net_device, todo_list);
5770 list_del(&dev->todo_list);
5771
5772 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5773 pr_err("network todo '%s' but state %d\n",
5774 dev->name, dev->reg_state);
5775 dump_stack();
5776 continue;
5777 }
5778
5779 dev->reg_state = NETREG_UNREGISTERED;
5780
5781 on_each_cpu(flush_backlog, dev, 1);
5782
5783 netdev_wait_allrefs(dev);
5784
5785 /* paranoia */
5786 BUG_ON(netdev_refcnt_read(dev));
5787 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5788 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5789 WARN_ON(dev->dn_ptr);
5790
5791 if (dev->destructor)
5792 dev->destructor(dev);
5793
5794 /* Free network device */
5795 kobject_put(&dev->dev.kobj);
5796 }
5797}
5798
5799/* Convert net_device_stats to rtnl_link_stats64. They have the same
5800 * fields in the same order, with only the type differing.
5801 */
5802void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5803 const struct net_device_stats *netdev_stats)
5804{
5805#if BITS_PER_LONG == 64
5806 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5807 memcpy(stats64, netdev_stats, sizeof(*stats64));
5808#else
5809 size_t i, n = sizeof(*stats64) / sizeof(u64);
5810 const unsigned long *src = (const unsigned long *)netdev_stats;
5811 u64 *dst = (u64 *)stats64;
5812
5813 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5814 sizeof(*stats64) / sizeof(u64));
5815 for (i = 0; i < n; i++)
5816 dst[i] = src[i];
5817#endif
5818}
5819EXPORT_SYMBOL(netdev_stats_to_stats64);
5820
5821/**
5822 * dev_get_stats - get network device statistics
5823 * @dev: device to get statistics from
5824 * @storage: place to store stats
5825 *
5826 * Get network statistics from device. Return @storage.
5827 * The device driver may provide its own method by setting
5828 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5829 * otherwise the internal statistics structure is used.
5830 */
5831struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5832 struct rtnl_link_stats64 *storage)
5833{
5834 const struct net_device_ops *ops = dev->netdev_ops;
5835
5836 if (ops->ndo_get_stats64) {
5837 memset(storage, 0, sizeof(*storage));
5838 ops->ndo_get_stats64(dev, storage);
5839 } else if (ops->ndo_get_stats) {
5840 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5841 } else {
5842 netdev_stats_to_stats64(storage, &dev->stats);
5843 }
5844 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5845 return storage;
5846}
5847EXPORT_SYMBOL(dev_get_stats);
5848
5849struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5850{
5851 struct netdev_queue *queue = dev_ingress_queue(dev);
5852
5853#ifdef CONFIG_NET_CLS_ACT
5854 if (queue)
5855 return queue;
5856 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5857 if (!queue)
5858 return NULL;
5859 netdev_init_one_queue(dev, queue, NULL);
5860 queue->qdisc = &noop_qdisc;
5861 queue->qdisc_sleeping = &noop_qdisc;
5862 rcu_assign_pointer(dev->ingress_queue, queue);
5863#endif
5864 return queue;
5865}
5866
5867/**
5868 * alloc_netdev_mqs - allocate network device
5869 * @sizeof_priv: size of private data to allocate space for
5870 * @name: device name format string
5871 * @setup: callback to initialize device
5872 * @txqs: the number of TX subqueues to allocate
5873 * @rxqs: the number of RX subqueues to allocate
5874 *
5875 * Allocates a struct net_device with private data area for driver use
5876 * and performs basic initialization. Also allocates subquue structs
5877 * for each queue on the device.
5878 */
5879struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5880 void (*setup)(struct net_device *),
5881 unsigned int txqs, unsigned int rxqs)
5882{
5883 struct net_device *dev;
5884 size_t alloc_size;
5885 struct net_device *p;
5886
5887 BUG_ON(strlen(name) >= sizeof(dev->name));
5888
5889 if (txqs < 1) {
5890 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5891 return NULL;
5892 }
5893
5894#ifdef CONFIG_RPS
5895 if (rxqs < 1) {
5896 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5897 return NULL;
5898 }
5899#endif
5900
5901 alloc_size = sizeof(struct net_device);
5902 if (sizeof_priv) {
5903 /* ensure 32-byte alignment of private area */
5904 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5905 alloc_size += sizeof_priv;
5906 }
5907 /* ensure 32-byte alignment of whole construct */
5908 alloc_size += NETDEV_ALIGN - 1;
5909
5910 p = kzalloc(alloc_size, GFP_KERNEL);
5911 if (!p) {
5912 pr_err("alloc_netdev: Unable to allocate device\n");
5913 return NULL;
5914 }
5915
5916 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5917 dev->padded = (char *)dev - (char *)p;
5918
5919 dev->pcpu_refcnt = alloc_percpu(int);
5920 if (!dev->pcpu_refcnt)
5921 goto free_p;
5922
5923 if (dev_addr_init(dev))
5924 goto free_pcpu;
5925
5926 dev_mc_init(dev);
5927 dev_uc_init(dev);
5928
5929 dev_net_set(dev, &init_net);
5930
5931 dev->gso_max_size = GSO_MAX_SIZE;
5932 dev->gso_max_segs = GSO_MAX_SEGS;
5933
5934 INIT_LIST_HEAD(&dev->napi_list);
5935 INIT_LIST_HEAD(&dev->unreg_list);
5936 INIT_LIST_HEAD(&dev->link_watch_list);
5937 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5938 setup(dev);
5939
5940 dev->num_tx_queues = txqs;
5941 dev->real_num_tx_queues = txqs;
5942 if (netif_alloc_netdev_queues(dev))
5943 goto free_all;
5944
5945#ifdef CONFIG_RPS
5946 dev->num_rx_queues = rxqs;
5947 dev->real_num_rx_queues = rxqs;
5948 if (netif_alloc_rx_queues(dev))
5949 goto free_all;
5950#endif
5951
5952 strcpy(dev->name, name);
5953 dev->group = INIT_NETDEV_GROUP;
5954 return dev;
5955
5956free_all:
5957 free_netdev(dev);
5958 return NULL;
5959
5960free_pcpu:
5961 free_percpu(dev->pcpu_refcnt);
5962 kfree(dev->_tx);
5963#ifdef CONFIG_RPS
5964 kfree(dev->_rx);
5965#endif
5966
5967free_p:
5968 kfree(p);
5969 return NULL;
5970}
5971EXPORT_SYMBOL(alloc_netdev_mqs);
5972
5973/**
5974 * free_netdev - free network device
5975 * @dev: device
5976 *
5977 * This function does the last stage of destroying an allocated device
5978 * interface. The reference to the device object is released.
5979 * If this is the last reference then it will be freed.
5980 */
5981void free_netdev(struct net_device *dev)
5982{
5983 struct napi_struct *p, *n;
5984
5985 release_net(dev_net(dev));
5986
5987 kfree(dev->_tx);
5988#ifdef CONFIG_RPS
5989 kfree(dev->_rx);
5990#endif
5991
5992 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5993
5994 /* Flush device addresses */
5995 dev_addr_flush(dev);
5996
5997 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5998 netif_napi_del(p);
5999
6000 free_percpu(dev->pcpu_refcnt);
6001 dev->pcpu_refcnt = NULL;
6002
6003 /* Compatibility with error handling in drivers */
6004 if (dev->reg_state == NETREG_UNINITIALIZED) {
6005 kfree((char *)dev - dev->padded);
6006 return;
6007 }
6008
6009 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6010 dev->reg_state = NETREG_RELEASED;
6011
6012 /* will free via device release */
6013 put_device(&dev->dev);
6014}
6015EXPORT_SYMBOL(free_netdev);
6016
6017/**
6018 * synchronize_net - Synchronize with packet receive processing
6019 *
6020 * Wait for packets currently being received to be done.
6021 * Does not block later packets from starting.
6022 */
6023void synchronize_net(void)
6024{
6025 might_sleep();
6026 if (rtnl_is_locked())
6027 synchronize_rcu_expedited();
6028 else
6029 synchronize_rcu();
6030}
6031EXPORT_SYMBOL(synchronize_net);
6032
6033/**
6034 * unregister_netdevice_queue - remove device from the kernel
6035 * @dev: device
6036 * @head: list
6037 *
6038 * This function shuts down a device interface and removes it
6039 * from the kernel tables.
6040 * If head not NULL, device is queued to be unregistered later.
6041 *
6042 * Callers must hold the rtnl semaphore. You may want
6043 * unregister_netdev() instead of this.
6044 */
6045
6046void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6047{
6048 ASSERT_RTNL();
6049
6050 if (head) {
6051 list_move_tail(&dev->unreg_list, head);
6052 } else {
6053 rollback_registered(dev);
6054 /* Finish processing unregister after unlock */
6055 net_set_todo(dev);
6056 }
6057}
6058EXPORT_SYMBOL(unregister_netdevice_queue);
6059
6060/**
6061 * unregister_netdevice_many - unregister many devices
6062 * @head: list of devices
6063 */
6064void unregister_netdevice_many(struct list_head *head)
6065{
6066 struct net_device *dev;
6067
6068 if (!list_empty(head)) {
6069 rollback_registered_many(head);
6070 list_for_each_entry(dev, head, unreg_list)
6071 net_set_todo(dev);
6072 }
6073}
6074EXPORT_SYMBOL(unregister_netdevice_many);
6075
6076/**
6077 * unregister_netdev - remove device from the kernel
6078 * @dev: device
6079 *
6080 * This function shuts down a device interface and removes it
6081 * from the kernel tables.
6082 *
6083 * This is just a wrapper for unregister_netdevice that takes
6084 * the rtnl semaphore. In general you want to use this and not
6085 * unregister_netdevice.
6086 */
6087void unregister_netdev(struct net_device *dev)
6088{
6089 rtnl_lock();
6090 unregister_netdevice(dev);
6091 rtnl_unlock();
6092}
6093EXPORT_SYMBOL(unregister_netdev);
6094
6095/**
6096 * dev_change_net_namespace - move device to different nethost namespace
6097 * @dev: device
6098 * @net: network namespace
6099 * @pat: If not NULL name pattern to try if the current device name
6100 * is already taken in the destination network namespace.
6101 *
6102 * This function shuts down a device interface and moves it
6103 * to a new network namespace. On success 0 is returned, on
6104 * a failure a netagive errno code is returned.
6105 *
6106 * Callers must hold the rtnl semaphore.
6107 */
6108
6109int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6110{
6111 int err;
6112
6113 ASSERT_RTNL();
6114
6115 /* Don't allow namespace local devices to be moved. */
6116 err = -EINVAL;
6117 if (dev->features & NETIF_F_NETNS_LOCAL)
6118 goto out;
6119
6120 /* Ensure the device has been registrered */
6121 err = -EINVAL;
6122 if (dev->reg_state != NETREG_REGISTERED)
6123 goto out;
6124
6125 /* Get out if there is nothing todo */
6126 err = 0;
6127 if (net_eq(dev_net(dev), net))
6128 goto out;
6129
6130 /* Pick the destination device name, and ensure
6131 * we can use it in the destination network namespace.
6132 */
6133 err = -EEXIST;
6134 if (__dev_get_by_name(net, dev->name)) {
6135 /* We get here if we can't use the current device name */
6136 if (!pat)
6137 goto out;
6138 if (dev_get_valid_name(dev, pat) < 0)
6139 goto out;
6140 }
6141
6142 /*
6143 * And now a mini version of register_netdevice unregister_netdevice.
6144 */
6145
6146 /* If device is running close it first. */
6147 dev_close(dev);
6148
6149 /* And unlink it from device chain */
6150 err = -ENODEV;
6151 unlist_netdevice(dev);
6152
6153 synchronize_net();
6154
6155 /* Shutdown queueing discipline. */
6156 dev_shutdown(dev);
6157
6158 /* Notify protocols, that we are about to destroy
6159 this device. They should clean all the things.
6160
6161 Note that dev->reg_state stays at NETREG_REGISTERED.
6162 This is wanted because this way 8021q and macvlan know
6163 the device is just moving and can keep their slaves up.
6164 */
6165 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6166 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6167 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6168
6169 /*
6170 * Flush the unicast and multicast chains
6171 */
6172 dev_uc_flush(dev);
6173 dev_mc_flush(dev);
6174
6175 /* Actually switch the network namespace */
6176 dev_net_set(dev, net);
6177
6178 /* If there is an ifindex conflict assign a new one */
6179 if (__dev_get_by_index(net, dev->ifindex)) {
6180 int iflink = (dev->iflink == dev->ifindex);
6181 dev->ifindex = dev_new_index(net);
6182 if (iflink)
6183 dev->iflink = dev->ifindex;
6184 }
6185
6186 /* Fixup kobjects */
6187 err = device_rename(&dev->dev, dev->name);
6188 WARN_ON(err);
6189
6190 /* Add the device back in the hashes */
6191 list_netdevice(dev);
6192
6193 /* Notify protocols, that a new device appeared. */
6194 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6195
6196 /*
6197 * Prevent userspace races by waiting until the network
6198 * device is fully setup before sending notifications.
6199 */
6200 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6201
6202 synchronize_net();
6203 err = 0;
6204out:
6205 return err;
6206}
6207EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6208
6209static int dev_cpu_callback(struct notifier_block *nfb,
6210 unsigned long action,
6211 void *ocpu)
6212{
6213 struct sk_buff **list_skb;
6214 struct sk_buff *skb;
6215 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6216 struct softnet_data *sd, *oldsd;
6217
6218 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6219 return NOTIFY_OK;
6220
6221 local_irq_disable();
6222 cpu = smp_processor_id();
6223 sd = &per_cpu(softnet_data, cpu);
6224 oldsd = &per_cpu(softnet_data, oldcpu);
6225
6226 /* Find end of our completion_queue. */
6227 list_skb = &sd->completion_queue;
6228 while (*list_skb)
6229 list_skb = &(*list_skb)->next;
6230 /* Append completion queue from offline CPU. */
6231 *list_skb = oldsd->completion_queue;
6232 oldsd->completion_queue = NULL;
6233
6234 /* Append output queue from offline CPU. */
6235 if (oldsd->output_queue) {
6236 *sd->output_queue_tailp = oldsd->output_queue;
6237 sd->output_queue_tailp = oldsd->output_queue_tailp;
6238 oldsd->output_queue = NULL;
6239 oldsd->output_queue_tailp = &oldsd->output_queue;
6240 }
6241 /* Append NAPI poll list from offline CPU. */
6242 if (!list_empty(&oldsd->poll_list)) {
6243 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6244 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6245 }
6246
6247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6248 local_irq_enable();
6249
6250 /* Process offline CPU's input_pkt_queue */
6251 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6252 netif_rx(skb);
6253 input_queue_head_incr(oldsd);
6254 }
6255 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6256 netif_rx(skb);
6257 input_queue_head_incr(oldsd);
6258 }
6259
6260 return NOTIFY_OK;
6261}
6262
6263
6264/**
6265 * netdev_increment_features - increment feature set by one
6266 * @all: current feature set
6267 * @one: new feature set
6268 * @mask: mask feature set
6269 *
6270 * Computes a new feature set after adding a device with feature set
6271 * @one to the master device with current feature set @all. Will not
6272 * enable anything that is off in @mask. Returns the new feature set.
6273 */
6274netdev_features_t netdev_increment_features(netdev_features_t all,
6275 netdev_features_t one, netdev_features_t mask)
6276{
6277 if (mask & NETIF_F_GEN_CSUM)
6278 mask |= NETIF_F_ALL_CSUM;
6279 mask |= NETIF_F_VLAN_CHALLENGED;
6280
6281 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6282 all &= one | ~NETIF_F_ALL_FOR_ALL;
6283
6284 /* If one device supports hw checksumming, set for all. */
6285 if (all & NETIF_F_GEN_CSUM)
6286 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6287
6288 return all;
6289}
6290EXPORT_SYMBOL(netdev_increment_features);
6291
6292static struct hlist_head *netdev_create_hash(void)
6293{
6294 int i;
6295 struct hlist_head *hash;
6296
6297 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6298 if (hash != NULL)
6299 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6300 INIT_HLIST_HEAD(&hash[i]);
6301
6302 return hash;
6303}
6304
6305/* Initialize per network namespace state */
6306static int __net_init netdev_init(struct net *net)
6307{
6308 if (net != &init_net)
6309 INIT_LIST_HEAD(&net->dev_base_head);
6310
6311 net->dev_name_head = netdev_create_hash();
6312 if (net->dev_name_head == NULL)
6313 goto err_name;
6314
6315 net->dev_index_head = netdev_create_hash();
6316 if (net->dev_index_head == NULL)
6317 goto err_idx;
6318
6319 return 0;
6320
6321err_idx:
6322 kfree(net->dev_name_head);
6323err_name:
6324 return -ENOMEM;
6325}
6326
6327/**
6328 * netdev_drivername - network driver for the device
6329 * @dev: network device
6330 *
6331 * Determine network driver for device.
6332 */
6333const char *netdev_drivername(const struct net_device *dev)
6334{
6335 const struct device_driver *driver;
6336 const struct device *parent;
6337 const char *empty = "";
6338
6339 parent = dev->dev.parent;
6340 if (!parent)
6341 return empty;
6342
6343 driver = parent->driver;
6344 if (driver && driver->name)
6345 return driver->name;
6346 return empty;
6347}
6348
6349int __netdev_printk(const char *level, const struct net_device *dev,
6350 struct va_format *vaf)
6351{
6352 int r;
6353
6354 if (dev && dev->dev.parent)
6355 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6356 netdev_name(dev), vaf);
6357 else if (dev)
6358 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6359 else
6360 r = printk("%s(NULL net_device): %pV", level, vaf);
6361
6362 return r;
6363}
6364EXPORT_SYMBOL(__netdev_printk);
6365
6366int netdev_printk(const char *level, const struct net_device *dev,
6367 const char *format, ...)
6368{
6369 struct va_format vaf;
6370 va_list args;
6371 int r;
6372
6373 va_start(args, format);
6374
6375 vaf.fmt = format;
6376 vaf.va = &args;
6377
6378 r = __netdev_printk(level, dev, &vaf);
6379 va_end(args);
6380
6381 return r;
6382}
6383EXPORT_SYMBOL(netdev_printk);
6384
6385#define define_netdev_printk_level(func, level) \
6386int func(const struct net_device *dev, const char *fmt, ...) \
6387{ \
6388 int r; \
6389 struct va_format vaf; \
6390 va_list args; \
6391 \
6392 va_start(args, fmt); \
6393 \
6394 vaf.fmt = fmt; \
6395 vaf.va = &args; \
6396 \
6397 r = __netdev_printk(level, dev, &vaf); \
6398 va_end(args); \
6399 \
6400 return r; \
6401} \
6402EXPORT_SYMBOL(func);
6403
6404define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6405define_netdev_printk_level(netdev_alert, KERN_ALERT);
6406define_netdev_printk_level(netdev_crit, KERN_CRIT);
6407define_netdev_printk_level(netdev_err, KERN_ERR);
6408define_netdev_printk_level(netdev_warn, KERN_WARNING);
6409define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6410define_netdev_printk_level(netdev_info, KERN_INFO);
6411
6412static void __net_exit netdev_exit(struct net *net)
6413{
6414 kfree(net->dev_name_head);
6415 kfree(net->dev_index_head);
6416}
6417
6418static struct pernet_operations __net_initdata netdev_net_ops = {
6419 .init = netdev_init,
6420 .exit = netdev_exit,
6421};
6422
6423static void __net_exit default_device_exit(struct net *net)
6424{
6425 struct net_device *dev, *aux;
6426 /*
6427 * Push all migratable network devices back to the
6428 * initial network namespace
6429 */
6430 rtnl_lock();
6431 for_each_netdev_safe(net, dev, aux) {
6432 int err;
6433 char fb_name[IFNAMSIZ];
6434
6435 /* Ignore unmoveable devices (i.e. loopback) */
6436 if (dev->features & NETIF_F_NETNS_LOCAL)
6437 continue;
6438
6439 /* Leave virtual devices for the generic cleanup */
6440 if (dev->rtnl_link_ops)
6441 continue;
6442
6443 /* Push remaining network devices to init_net */
6444 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6445 err = dev_change_net_namespace(dev, &init_net, fb_name);
6446 if (err) {
6447 pr_emerg("%s: failed to move %s to init_net: %d\n",
6448 __func__, dev->name, err);
6449 BUG();
6450 }
6451 }
6452 rtnl_unlock();
6453}
6454
6455static void __net_exit default_device_exit_batch(struct list_head *net_list)
6456{
6457 /* At exit all network devices most be removed from a network
6458 * namespace. Do this in the reverse order of registration.
6459 * Do this across as many network namespaces as possible to
6460 * improve batching efficiency.
6461 */
6462 struct net_device *dev;
6463 struct net *net;
6464 LIST_HEAD(dev_kill_list);
6465
6466 rtnl_lock();
6467 list_for_each_entry(net, net_list, exit_list) {
6468 for_each_netdev_reverse(net, dev) {
6469 if (dev->rtnl_link_ops)
6470 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6471 else
6472 unregister_netdevice_queue(dev, &dev_kill_list);
6473 }
6474 }
6475 unregister_netdevice_many(&dev_kill_list);
6476 list_del(&dev_kill_list);
6477 rtnl_unlock();
6478}
6479
6480static struct pernet_operations __net_initdata default_device_ops = {
6481 .exit = default_device_exit,
6482 .exit_batch = default_device_exit_batch,
6483};
6484
6485/*
6486 * Initialize the DEV module. At boot time this walks the device list and
6487 * unhooks any devices that fail to initialise (normally hardware not
6488 * present) and leaves us with a valid list of present and active devices.
6489 *
6490 */
6491
6492/*
6493 * This is called single threaded during boot, so no need
6494 * to take the rtnl semaphore.
6495 */
6496static int __init net_dev_init(void)
6497{
6498 int i, rc = -ENOMEM;
6499
6500 BUG_ON(!dev_boot_phase);
6501
6502 if (dev_proc_init())
6503 goto out;
6504
6505 if (netdev_kobject_init())
6506 goto out;
6507
6508 INIT_LIST_HEAD(&ptype_all);
6509 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6510 INIT_LIST_HEAD(&ptype_base[i]);
6511
6512 if (register_pernet_subsys(&netdev_net_ops))
6513 goto out;
6514
6515 /*
6516 * Initialise the packet receive queues.
6517 */
6518
6519 for_each_possible_cpu(i) {
6520 struct softnet_data *sd = &per_cpu(softnet_data, i);
6521
6522 memset(sd, 0, sizeof(*sd));
6523 skb_queue_head_init(&sd->input_pkt_queue);
6524 skb_queue_head_init(&sd->process_queue);
6525 sd->completion_queue = NULL;
6526 INIT_LIST_HEAD(&sd->poll_list);
6527 sd->output_queue = NULL;
6528 sd->output_queue_tailp = &sd->output_queue;
6529#ifdef CONFIG_RPS
6530 sd->csd.func = rps_trigger_softirq;
6531 sd->csd.info = sd;
6532 sd->csd.flags = 0;
6533 sd->cpu = i;
6534#endif
6535
6536 sd->backlog.poll = process_backlog;
6537 sd->backlog.weight = weight_p;
6538 sd->backlog.gro_list = NULL;
6539 sd->backlog.gro_count = 0;
6540 }
6541
6542 dev_boot_phase = 0;
6543
6544 /* The loopback device is special if any other network devices
6545 * is present in a network namespace the loopback device must
6546 * be present. Since we now dynamically allocate and free the
6547 * loopback device ensure this invariant is maintained by
6548 * keeping the loopback device as the first device on the
6549 * list of network devices. Ensuring the loopback devices
6550 * is the first device that appears and the last network device
6551 * that disappears.
6552 */
6553 if (register_pernet_device(&loopback_net_ops))
6554 goto out;
6555
6556 if (register_pernet_device(&default_device_ops))
6557 goto out;
6558
6559 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6560 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6561
6562 hotcpu_notifier(dev_cpu_callback, 0);
6563 dst_init();
6564 dev_mcast_init();
6565 rc = 0;
6566out:
6567 return rc;
6568}
6569
6570subsys_initcall(net_dev_init);
6571
6572static int __init initialize_hashrnd(void)
6573{
6574 get_random_bytes(&hashrnd, sizeof(hashrnd));
6575 return 0;
6576}
6577
6578late_initcall_sync(initialize_hashrnd);
6579
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/bpf.h>
95#include <linux/bpf_trace.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <net/busy_poll.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/dst_metadata.h>
103#include <net/pkt_sched.h>
104#include <net/pkt_cls.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/module.h>
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
113#include <net/iw_handler.h>
114#include <asm/current.h>
115#include <linux/audit.h>
116#include <linux/dmaengine.h>
117#include <linux/err.h>
118#include <linux/ctype.h>
119#include <linux/if_arp.h>
120#include <linux/if_vlan.h>
121#include <linux/ip.h>
122#include <net/ip.h>
123#include <net/mpls.h>
124#include <linux/ipv6.h>
125#include <linux/in.h>
126#include <linux/jhash.h>
127#include <linux/random.h>
128#include <trace/events/napi.h>
129#include <trace/events/net.h>
130#include <trace/events/skb.h>
131#include <linux/inetdevice.h>
132#include <linux/cpu_rmap.h>
133#include <linux/static_key.h>
134#include <linux/hashtable.h>
135#include <linux/vmalloc.h>
136#include <linux/if_macvlan.h>
137#include <linux/errqueue.h>
138#include <linux/hrtimer.h>
139#include <linux/netfilter_ingress.h>
140#include <linux/crash_dump.h>
141#include <linux/sctp.h>
142#include <net/udp_tunnel.h>
143#include <linux/net_namespace.h>
144#include <linux/indirect_call_wrapper.h>
145#include <net/devlink.h>
146#include <linux/pm_runtime.h>
147
148#include "net-sysfs.h"
149
150#define MAX_GRO_SKBS 8
151
152/* This should be increased if a protocol with a bigger head is added. */
153#define GRO_MAX_HEAD (MAX_HEADER + 128)
154
155static DEFINE_SPINLOCK(ptype_lock);
156static DEFINE_SPINLOCK(offload_lock);
157struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158struct list_head ptype_all __read_mostly; /* Taps */
159static struct list_head offload_base __read_mostly;
160
161static int netif_rx_internal(struct sk_buff *skb);
162static int call_netdevice_notifiers_info(unsigned long val,
163 struct netdev_notifier_info *info);
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static DECLARE_RWSEM(devnet_rename_sem);
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 const char *name)
235{
236 struct netdev_name_node *name_node;
237
238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 if (!name_node)
240 return NULL;
241 INIT_HLIST_NODE(&name_node->hlist);
242 name_node->dev = dev;
243 name_node->name = name;
244 return name_node;
245}
246
247static struct netdev_name_node *
248netdev_name_node_head_alloc(struct net_device *dev)
249{
250 struct netdev_name_node *name_node;
251
252 name_node = netdev_name_node_alloc(dev, dev->name);
253 if (!name_node)
254 return NULL;
255 INIT_LIST_HEAD(&name_node->list);
256 return name_node;
257}
258
259static void netdev_name_node_free(struct netdev_name_node *name_node)
260{
261 kfree(name_node);
262}
263
264static void netdev_name_node_add(struct net *net,
265 struct netdev_name_node *name_node)
266{
267 hlist_add_head_rcu(&name_node->hlist,
268 dev_name_hash(net, name_node->name));
269}
270
271static void netdev_name_node_del(struct netdev_name_node *name_node)
272{
273 hlist_del_rcu(&name_node->hlist);
274}
275
276static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 const char *name)
278{
279 struct hlist_head *head = dev_name_hash(net, name);
280 struct netdev_name_node *name_node;
281
282 hlist_for_each_entry(name_node, head, hlist)
283 if (!strcmp(name_node->name, name))
284 return name_node;
285 return NULL;
286}
287
288static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 const char *name)
290{
291 struct hlist_head *head = dev_name_hash(net, name);
292 struct netdev_name_node *name_node;
293
294 hlist_for_each_entry_rcu(name_node, head, hlist)
295 if (!strcmp(name_node->name, name))
296 return name_node;
297 return NULL;
298}
299
300int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301{
302 struct netdev_name_node *name_node;
303 struct net *net = dev_net(dev);
304
305 name_node = netdev_name_node_lookup(net, name);
306 if (name_node)
307 return -EEXIST;
308 name_node = netdev_name_node_alloc(dev, name);
309 if (!name_node)
310 return -ENOMEM;
311 netdev_name_node_add(net, name_node);
312 /* The node that holds dev->name acts as a head of per-device list. */
313 list_add_tail(&name_node->list, &dev->name_node->list);
314
315 return 0;
316}
317EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320{
321 list_del(&name_node->list);
322 netdev_name_node_del(name_node);
323 kfree(name_node->name);
324 netdev_name_node_free(name_node);
325}
326
327int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (!name_node)
334 return -ENOENT;
335 /* lookup might have found our primary name or a name belonging
336 * to another device.
337 */
338 if (name_node == dev->name_node || name_node->dev != dev)
339 return -EINVAL;
340
341 __netdev_name_node_alt_destroy(name_node);
342
343 return 0;
344}
345EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347static void netdev_name_node_alt_flush(struct net_device *dev)
348{
349 struct netdev_name_node *name_node, *tmp;
350
351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 __netdev_name_node_alt_destroy(name_node);
353}
354
355/* Device list insertion */
356static void list_netdevice(struct net_device *dev)
357{
358 struct net *net = dev_net(dev);
359
360 ASSERT_RTNL();
361
362 write_lock_bh(&dev_base_lock);
363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 netdev_name_node_add(net, dev->name_node);
365 hlist_add_head_rcu(&dev->index_hlist,
366 dev_index_hash(net, dev->ifindex));
367 write_unlock_bh(&dev_base_lock);
368
369 dev_base_seq_inc(net);
370}
371
372/* Device list removal
373 * caller must respect a RCU grace period before freeing/reusing dev
374 */
375static void unlist_netdevice(struct net_device *dev)
376{
377 ASSERT_RTNL();
378
379 /* Unlink dev from the device chain */
380 write_lock_bh(&dev_base_lock);
381 list_del_rcu(&dev->dev_list);
382 netdev_name_node_del(dev->name_node);
383 hlist_del_rcu(&dev->index_hlist);
384 write_unlock_bh(&dev_base_lock);
385
386 dev_base_seq_inc(dev_net(dev));
387}
388
389/*
390 * Our notifier list
391 */
392
393static RAW_NOTIFIER_HEAD(netdev_chain);
394
395/*
396 * Device drivers call our routines to queue packets here. We empty the
397 * queue in the local softnet handler.
398 */
399
400DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401EXPORT_PER_CPU_SYMBOL(softnet_data);
402
403#ifdef CONFIG_LOCKDEP
404/*
405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406 * according to dev->type
407 */
408static const unsigned short netdev_lock_type[] = {
409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425static const char *const netdev_lock_name[] = {
426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444
445static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446{
447 int i;
448
449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 if (netdev_lock_type[i] == dev_type)
451 return i;
452 /* the last key is used by default */
453 return ARRAY_SIZE(netdev_lock_type) - 1;
454}
455
456static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 unsigned short dev_type)
458{
459 int i;
460
461 i = netdev_lock_pos(dev_type);
462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 netdev_lock_name[i]);
464}
465
466static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467{
468 int i;
469
470 i = netdev_lock_pos(dev->type);
471 lockdep_set_class_and_name(&dev->addr_list_lock,
472 &netdev_addr_lock_key[i],
473 netdev_lock_name[i]);
474}
475#else
476static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 unsigned short dev_type)
478{
479}
480
481static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482{
483}
484#endif
485
486/*******************************************************************************
487 *
488 * Protocol management and registration routines
489 *
490 *******************************************************************************/
491
492
493/*
494 * Add a protocol ID to the list. Now that the input handler is
495 * smarter we can dispense with all the messy stuff that used to be
496 * here.
497 *
498 * BEWARE!!! Protocol handlers, mangling input packets,
499 * MUST BE last in hash buckets and checking protocol handlers
500 * MUST start from promiscuous ptype_all chain in net_bh.
501 * It is true now, do not change it.
502 * Explanation follows: if protocol handler, mangling packet, will
503 * be the first on list, it is not able to sense, that packet
504 * is cloned and should be copied-on-write, so that it will
505 * change it and subsequent readers will get broken packet.
506 * --ANK (980803)
507 */
508
509static inline struct list_head *ptype_head(const struct packet_type *pt)
510{
511 if (pt->type == htons(ETH_P_ALL))
512 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513 else
514 return pt->dev ? &pt->dev->ptype_specific :
515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516}
517
518/**
519 * dev_add_pack - add packet handler
520 * @pt: packet type declaration
521 *
522 * Add a protocol handler to the networking stack. The passed &packet_type
523 * is linked into kernel lists and may not be freed until it has been
524 * removed from the kernel lists.
525 *
526 * This call does not sleep therefore it can not
527 * guarantee all CPU's that are in middle of receiving packets
528 * will see the new packet type (until the next received packet).
529 */
530
531void dev_add_pack(struct packet_type *pt)
532{
533 struct list_head *head = ptype_head(pt);
534
535 spin_lock(&ptype_lock);
536 list_add_rcu(&pt->list, head);
537 spin_unlock(&ptype_lock);
538}
539EXPORT_SYMBOL(dev_add_pack);
540
541/**
542 * __dev_remove_pack - remove packet handler
543 * @pt: packet type declaration
544 *
545 * Remove a protocol handler that was previously added to the kernel
546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
547 * from the kernel lists and can be freed or reused once this function
548 * returns.
549 *
550 * The packet type might still be in use by receivers
551 * and must not be freed until after all the CPU's have gone
552 * through a quiescent state.
553 */
554void __dev_remove_pack(struct packet_type *pt)
555{
556 struct list_head *head = ptype_head(pt);
557 struct packet_type *pt1;
558
559 spin_lock(&ptype_lock);
560
561 list_for_each_entry(pt1, head, list) {
562 if (pt == pt1) {
563 list_del_rcu(&pt->list);
564 goto out;
565 }
566 }
567
568 pr_warn("dev_remove_pack: %p not found\n", pt);
569out:
570 spin_unlock(&ptype_lock);
571}
572EXPORT_SYMBOL(__dev_remove_pack);
573
574/**
575 * dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * This call sleeps to guarantee that no CPU is looking at the packet
584 * type after return.
585 */
586void dev_remove_pack(struct packet_type *pt)
587{
588 __dev_remove_pack(pt);
589
590 synchronize_net();
591}
592EXPORT_SYMBOL(dev_remove_pack);
593
594
595/**
596 * dev_add_offload - register offload handlers
597 * @po: protocol offload declaration
598 *
599 * Add protocol offload handlers to the networking stack. The passed
600 * &proto_offload is linked into kernel lists and may not be freed until
601 * it has been removed from the kernel lists.
602 *
603 * This call does not sleep therefore it can not
604 * guarantee all CPU's that are in middle of receiving packets
605 * will see the new offload handlers (until the next received packet).
606 */
607void dev_add_offload(struct packet_offload *po)
608{
609 struct packet_offload *elem;
610
611 spin_lock(&offload_lock);
612 list_for_each_entry(elem, &offload_base, list) {
613 if (po->priority < elem->priority)
614 break;
615 }
616 list_add_rcu(&po->list, elem->list.prev);
617 spin_unlock(&offload_lock);
618}
619EXPORT_SYMBOL(dev_add_offload);
620
621/**
622 * __dev_remove_offload - remove offload handler
623 * @po: packet offload declaration
624 *
625 * Remove a protocol offload handler that was previously added to the
626 * kernel offload handlers by dev_add_offload(). The passed &offload_type
627 * is removed from the kernel lists and can be freed or reused once this
628 * function returns.
629 *
630 * The packet type might still be in use by receivers
631 * and must not be freed until after all the CPU's have gone
632 * through a quiescent state.
633 */
634static void __dev_remove_offload(struct packet_offload *po)
635{
636 struct list_head *head = &offload_base;
637 struct packet_offload *po1;
638
639 spin_lock(&offload_lock);
640
641 list_for_each_entry(po1, head, list) {
642 if (po == po1) {
643 list_del_rcu(&po->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_offload: %p not found\n", po);
649out:
650 spin_unlock(&offload_lock);
651}
652
653/**
654 * dev_remove_offload - remove packet offload handler
655 * @po: packet offload declaration
656 *
657 * Remove a packet offload handler that was previously added to the kernel
658 * offload handlers by dev_add_offload(). The passed &offload_type is
659 * removed from the kernel lists and can be freed or reused once this
660 * function returns.
661 *
662 * This call sleeps to guarantee that no CPU is looking at the packet
663 * type after return.
664 */
665void dev_remove_offload(struct packet_offload *po)
666{
667 __dev_remove_offload(po);
668
669 synchronize_net();
670}
671EXPORT_SYMBOL(dev_remove_offload);
672
673/******************************************************************************
674 *
675 * Device Boot-time Settings Routines
676 *
677 ******************************************************************************/
678
679/* Boot time configuration table */
680static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682/**
683 * netdev_boot_setup_add - add new setup entry
684 * @name: name of the device
685 * @map: configured settings for the device
686 *
687 * Adds new setup entry to the dev_boot_setup list. The function
688 * returns 0 on error and 1 on success. This is a generic routine to
689 * all netdevices.
690 */
691static int netdev_boot_setup_add(char *name, struct ifmap *map)
692{
693 struct netdev_boot_setup *s;
694 int i;
695
696 s = dev_boot_setup;
697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 memset(s[i].name, 0, sizeof(s[i].name));
700 strlcpy(s[i].name, name, IFNAMSIZ);
701 memcpy(&s[i].map, map, sizeof(s[i].map));
702 break;
703 }
704 }
705
706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707}
708
709/**
710 * netdev_boot_setup_check - check boot time settings
711 * @dev: the netdevice
712 *
713 * Check boot time settings for the device.
714 * The found settings are set for the device to be used
715 * later in the device probing.
716 * Returns 0 if no settings found, 1 if they are.
717 */
718int netdev_boot_setup_check(struct net_device *dev)
719{
720 struct netdev_boot_setup *s = dev_boot_setup;
721 int i;
722
723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 !strcmp(dev->name, s[i].name)) {
726 dev->irq = s[i].map.irq;
727 dev->base_addr = s[i].map.base_addr;
728 dev->mem_start = s[i].map.mem_start;
729 dev->mem_end = s[i].map.mem_end;
730 return 1;
731 }
732 }
733 return 0;
734}
735EXPORT_SYMBOL(netdev_boot_setup_check);
736
737
738/**
739 * netdev_boot_base - get address from boot time settings
740 * @prefix: prefix for network device
741 * @unit: id for network device
742 *
743 * Check boot time settings for the base address of device.
744 * The found settings are set for the device to be used
745 * later in the device probing.
746 * Returns 0 if no settings found.
747 */
748unsigned long netdev_boot_base(const char *prefix, int unit)
749{
750 const struct netdev_boot_setup *s = dev_boot_setup;
751 char name[IFNAMSIZ];
752 int i;
753
754 sprintf(name, "%s%d", prefix, unit);
755
756 /*
757 * If device already registered then return base of 1
758 * to indicate not to probe for this interface
759 */
760 if (__dev_get_by_name(&init_net, name))
761 return 1;
762
763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 if (!strcmp(name, s[i].name))
765 return s[i].map.base_addr;
766 return 0;
767}
768
769/*
770 * Saves at boot time configured settings for any netdevice.
771 */
772int __init netdev_boot_setup(char *str)
773{
774 int ints[5];
775 struct ifmap map;
776
777 str = get_options(str, ARRAY_SIZE(ints), ints);
778 if (!str || !*str)
779 return 0;
780
781 /* Save settings */
782 memset(&map, 0, sizeof(map));
783 if (ints[0] > 0)
784 map.irq = ints[1];
785 if (ints[0] > 1)
786 map.base_addr = ints[2];
787 if (ints[0] > 2)
788 map.mem_start = ints[3];
789 if (ints[0] > 3)
790 map.mem_end = ints[4];
791
792 /* Add new entry to the list */
793 return netdev_boot_setup_add(str, &map);
794}
795
796__setup("netdev=", netdev_boot_setup);
797
798/*******************************************************************************
799 *
800 * Device Interface Subroutines
801 *
802 *******************************************************************************/
803
804/**
805 * dev_get_iflink - get 'iflink' value of a interface
806 * @dev: targeted interface
807 *
808 * Indicates the ifindex the interface is linked to.
809 * Physical interfaces have the same 'ifindex' and 'iflink' values.
810 */
811
812int dev_get_iflink(const struct net_device *dev)
813{
814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 return dev->netdev_ops->ndo_get_iflink(dev);
816
817 return dev->ifindex;
818}
819EXPORT_SYMBOL(dev_get_iflink);
820
821/**
822 * dev_fill_metadata_dst - Retrieve tunnel egress information.
823 * @dev: targeted interface
824 * @skb: The packet.
825 *
826 * For better visibility of tunnel traffic OVS needs to retrieve
827 * egress tunnel information for a packet. Following API allows
828 * user to get this info.
829 */
830int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831{
832 struct ip_tunnel_info *info;
833
834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
835 return -EINVAL;
836
837 info = skb_tunnel_info_unclone(skb);
838 if (!info)
839 return -ENOMEM;
840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 return -EINVAL;
842
843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844}
845EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
847/**
848 * __dev_get_by_name - find a device by its name
849 * @net: the applicable net namespace
850 * @name: name to find
851 *
852 * Find an interface by name. Must be called under RTNL semaphore
853 * or @dev_base_lock. If the name is found a pointer to the device
854 * is returned. If the name is not found then %NULL is returned. The
855 * reference counters are not incremented so the caller must be
856 * careful with locks.
857 */
858
859struct net_device *__dev_get_by_name(struct net *net, const char *name)
860{
861 struct netdev_name_node *node_name;
862
863 node_name = netdev_name_node_lookup(net, name);
864 return node_name ? node_name->dev : NULL;
865}
866EXPORT_SYMBOL(__dev_get_by_name);
867
868/**
869 * dev_get_by_name_rcu - find a device by its name
870 * @net: the applicable net namespace
871 * @name: name to find
872 *
873 * Find an interface by name.
874 * If the name is found a pointer to the device is returned.
875 * If the name is not found then %NULL is returned.
876 * The reference counters are not incremented so the caller must be
877 * careful with locks. The caller must hold RCU lock.
878 */
879
880struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881{
882 struct netdev_name_node *node_name;
883
884 node_name = netdev_name_node_lookup_rcu(net, name);
885 return node_name ? node_name->dev : NULL;
886}
887EXPORT_SYMBOL(dev_get_by_name_rcu);
888
889/**
890 * dev_get_by_name - find a device by its name
891 * @net: the applicable net namespace
892 * @name: name to find
893 *
894 * Find an interface by name. This can be called from any
895 * context and does its own locking. The returned handle has
896 * the usage count incremented and the caller must use dev_put() to
897 * release it when it is no longer needed. %NULL is returned if no
898 * matching device is found.
899 */
900
901struct net_device *dev_get_by_name(struct net *net, const char *name)
902{
903 struct net_device *dev;
904
905 rcu_read_lock();
906 dev = dev_get_by_name_rcu(net, name);
907 if (dev)
908 dev_hold(dev);
909 rcu_read_unlock();
910 return dev;
911}
912EXPORT_SYMBOL(dev_get_by_name);
913
914/**
915 * __dev_get_by_index - find a device by its ifindex
916 * @net: the applicable net namespace
917 * @ifindex: index of device
918 *
919 * Search for an interface by index. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not
921 * had its reference counter increased so the caller must be careful
922 * about locking. The caller must hold either the RTNL semaphore
923 * or @dev_base_lock.
924 */
925
926struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927{
928 struct net_device *dev;
929 struct hlist_head *head = dev_index_hash(net, ifindex);
930
931 hlist_for_each_entry(dev, head, index_hlist)
932 if (dev->ifindex == ifindex)
933 return dev;
934
935 return NULL;
936}
937EXPORT_SYMBOL(__dev_get_by_index);
938
939/**
940 * dev_get_by_index_rcu - find a device by its ifindex
941 * @net: the applicable net namespace
942 * @ifindex: index of device
943 *
944 * Search for an interface by index. Returns %NULL if the device
945 * is not found or a pointer to the device. The device has not
946 * had its reference counter increased so the caller must be careful
947 * about locking. The caller must hold RCU lock.
948 */
949
950struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951{
952 struct net_device *dev;
953 struct hlist_head *head = dev_index_hash(net, ifindex);
954
955 hlist_for_each_entry_rcu(dev, head, index_hlist)
956 if (dev->ifindex == ifindex)
957 return dev;
958
959 return NULL;
960}
961EXPORT_SYMBOL(dev_get_by_index_rcu);
962
963
964/**
965 * dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns NULL if the device
970 * is not found or a pointer to the device. The device returned has
971 * had a reference added and the pointer is safe until the user calls
972 * dev_put to indicate they have finished with it.
973 */
974
975struct net_device *dev_get_by_index(struct net *net, int ifindex)
976{
977 struct net_device *dev;
978
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
981 if (dev)
982 dev_hold(dev);
983 rcu_read_unlock();
984 return dev;
985}
986EXPORT_SYMBOL(dev_get_by_index);
987
988/**
989 * dev_get_by_napi_id - find a device by napi_id
990 * @napi_id: ID of the NAPI struct
991 *
992 * Search for an interface by NAPI ID. Returns %NULL if the device
993 * is not found or a pointer to the device. The device has not had
994 * its reference counter increased so the caller must be careful
995 * about locking. The caller must hold RCU lock.
996 */
997
998struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999{
1000 struct napi_struct *napi;
1001
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004 if (napi_id < MIN_NAPI_ID)
1005 return NULL;
1006
1007 napi = napi_by_id(napi_id);
1008
1009 return napi ? napi->dev : NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_napi_id);
1012
1013/**
1014 * netdev_get_name - get a netdevice name, knowing its ifindex.
1015 * @net: network namespace
1016 * @name: a pointer to the buffer where the name will be stored.
1017 * @ifindex: the ifindex of the interface to get the name from.
1018 */
1019int netdev_get_name(struct net *net, char *name, int ifindex)
1020{
1021 struct net_device *dev;
1022 int ret;
1023
1024 down_read(&devnet_rename_sem);
1025 rcu_read_lock();
1026
1027 dev = dev_get_by_index_rcu(net, ifindex);
1028 if (!dev) {
1029 ret = -ENODEV;
1030 goto out;
1031 }
1032
1033 strcpy(name, dev->name);
1034
1035 ret = 0;
1036out:
1037 rcu_read_unlock();
1038 up_read(&devnet_rename_sem);
1039 return ret;
1040}
1041
1042/**
1043 * dev_getbyhwaddr_rcu - find a device by its hardware address
1044 * @net: the applicable net namespace
1045 * @type: media type of device
1046 * @ha: hardware address
1047 *
1048 * Search for an interface by MAC address. Returns NULL if the device
1049 * is not found or a pointer to the device.
1050 * The caller must hold RCU or RTNL.
1051 * The returned device has not had its ref count increased
1052 * and the caller must therefore be careful about locking
1053 *
1054 */
1055
1056struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 const char *ha)
1058{
1059 struct net_device *dev;
1060
1061 for_each_netdev_rcu(net, dev)
1062 if (dev->type == type &&
1063 !memcmp(dev->dev_addr, ha, dev->addr_len))
1064 return dev;
1065
1066 return NULL;
1067}
1068EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069
1070struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071{
1072 struct net_device *dev;
1073
1074 ASSERT_RTNL();
1075 for_each_netdev(net, dev)
1076 if (dev->type == type)
1077 return dev;
1078
1079 return NULL;
1080}
1081EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
1083struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084{
1085 struct net_device *dev, *ret = NULL;
1086
1087 rcu_read_lock();
1088 for_each_netdev_rcu(net, dev)
1089 if (dev->type == type) {
1090 dev_hold(dev);
1091 ret = dev;
1092 break;
1093 }
1094 rcu_read_unlock();
1095 return ret;
1096}
1097EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099/**
1100 * __dev_get_by_flags - find any device with given flags
1101 * @net: the applicable net namespace
1102 * @if_flags: IFF_* values
1103 * @mask: bitmask of bits in if_flags to check
1104 *
1105 * Search for any interface with the given flags. Returns NULL if a device
1106 * is not found or a pointer to the device. Must be called inside
1107 * rtnl_lock(), and result refcount is unchanged.
1108 */
1109
1110struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 unsigned short mask)
1112{
1113 struct net_device *dev, *ret;
1114
1115 ASSERT_RTNL();
1116
1117 ret = NULL;
1118 for_each_netdev(net, dev) {
1119 if (((dev->flags ^ if_flags) & mask) == 0) {
1120 ret = dev;
1121 break;
1122 }
1123 }
1124 return ret;
1125}
1126EXPORT_SYMBOL(__dev_get_by_flags);
1127
1128/**
1129 * dev_valid_name - check if name is okay for network device
1130 * @name: name string
1131 *
1132 * Network device names need to be valid file names to
1133 * to allow sysfs to work. We also disallow any kind of
1134 * whitespace.
1135 */
1136bool dev_valid_name(const char *name)
1137{
1138 if (*name == '\0')
1139 return false;
1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141 return false;
1142 if (!strcmp(name, ".") || !strcmp(name, ".."))
1143 return false;
1144
1145 while (*name) {
1146 if (*name == '/' || *name == ':' || isspace(*name))
1147 return false;
1148 name++;
1149 }
1150 return true;
1151}
1152EXPORT_SYMBOL(dev_valid_name);
1153
1154/**
1155 * __dev_alloc_name - allocate a name for a device
1156 * @net: network namespace to allocate the device name in
1157 * @name: name format string
1158 * @buf: scratch buffer and result name string
1159 *
1160 * Passed a format string - eg "lt%d" it will try and find a suitable
1161 * id. It scans list of devices to build up a free map, then chooses
1162 * the first empty slot. The caller must hold the dev_base or rtnl lock
1163 * while allocating the name and adding the device in order to avoid
1164 * duplicates.
1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166 * Returns the number of the unit assigned or a negative errno code.
1167 */
1168
1169static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170{
1171 int i = 0;
1172 const char *p;
1173 const int max_netdevices = 8*PAGE_SIZE;
1174 unsigned long *inuse;
1175 struct net_device *d;
1176
1177 if (!dev_valid_name(name))
1178 return -EINVAL;
1179
1180 p = strchr(name, '%');
1181 if (p) {
1182 /*
1183 * Verify the string as this thing may have come from
1184 * the user. There must be either one "%d" and no other "%"
1185 * characters.
1186 */
1187 if (p[1] != 'd' || strchr(p + 2, '%'))
1188 return -EINVAL;
1189
1190 /* Use one page as a bit array of possible slots */
1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192 if (!inuse)
1193 return -ENOMEM;
1194
1195 for_each_netdev(net, d) {
1196 if (!sscanf(d->name, name, &i))
1197 continue;
1198 if (i < 0 || i >= max_netdevices)
1199 continue;
1200
1201 /* avoid cases where sscanf is not exact inverse of printf */
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!strncmp(buf, d->name, IFNAMSIZ))
1204 set_bit(i, inuse);
1205 }
1206
1207 i = find_first_zero_bit(inuse, max_netdevices);
1208 free_page((unsigned long) inuse);
1209 }
1210
1211 snprintf(buf, IFNAMSIZ, name, i);
1212 if (!__dev_get_by_name(net, buf))
1213 return i;
1214
1215 /* It is possible to run out of possible slots
1216 * when the name is long and there isn't enough space left
1217 * for the digits, or if all bits are used.
1218 */
1219 return -ENFILE;
1220}
1221
1222static int dev_alloc_name_ns(struct net *net,
1223 struct net_device *dev,
1224 const char *name)
1225{
1226 char buf[IFNAMSIZ];
1227 int ret;
1228
1229 BUG_ON(!net);
1230 ret = __dev_alloc_name(net, name, buf);
1231 if (ret >= 0)
1232 strlcpy(dev->name, buf, IFNAMSIZ);
1233 return ret;
1234}
1235
1236/**
1237 * dev_alloc_name - allocate a name for a device
1238 * @dev: device
1239 * @name: name format string
1240 *
1241 * Passed a format string - eg "lt%d" it will try and find a suitable
1242 * id. It scans list of devices to build up a free map, then chooses
1243 * the first empty slot. The caller must hold the dev_base or rtnl lock
1244 * while allocating the name and adding the device in order to avoid
1245 * duplicates.
1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247 * Returns the number of the unit assigned or a negative errno code.
1248 */
1249
1250int dev_alloc_name(struct net_device *dev, const char *name)
1251{
1252 return dev_alloc_name_ns(dev_net(dev), dev, name);
1253}
1254EXPORT_SYMBOL(dev_alloc_name);
1255
1256static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 const char *name)
1258{
1259 BUG_ON(!net);
1260
1261 if (!dev_valid_name(name))
1262 return -EINVAL;
1263
1264 if (strchr(name, '%'))
1265 return dev_alloc_name_ns(net, dev, name);
1266 else if (__dev_get_by_name(net, name))
1267 return -EEXIST;
1268 else if (dev->name != name)
1269 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271 return 0;
1272}
1273
1274/**
1275 * dev_change_name - change name of a device
1276 * @dev: device
1277 * @newname: name (or format string) must be at least IFNAMSIZ
1278 *
1279 * Change name of a device, can pass format strings "eth%d".
1280 * for wildcarding.
1281 */
1282int dev_change_name(struct net_device *dev, const char *newname)
1283{
1284 unsigned char old_assign_type;
1285 char oldname[IFNAMSIZ];
1286 int err = 0;
1287 int ret;
1288 struct net *net;
1289
1290 ASSERT_RTNL();
1291 BUG_ON(!dev_net(dev));
1292
1293 net = dev_net(dev);
1294
1295 /* Some auto-enslaved devices e.g. failover slaves are
1296 * special, as userspace might rename the device after
1297 * the interface had been brought up and running since
1298 * the point kernel initiated auto-enslavement. Allow
1299 * live name change even when these slave devices are
1300 * up and running.
1301 *
1302 * Typically, users of these auto-enslaving devices
1303 * don't actually care about slave name change, as
1304 * they are supposed to operate on master interface
1305 * directly.
1306 */
1307 if (dev->flags & IFF_UP &&
1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309 return -EBUSY;
1310
1311 down_write(&devnet_rename_sem);
1312
1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 up_write(&devnet_rename_sem);
1315 return 0;
1316 }
1317
1318 memcpy(oldname, dev->name, IFNAMSIZ);
1319
1320 err = dev_get_valid_name(net, dev, newname);
1321 if (err < 0) {
1322 up_write(&devnet_rename_sem);
1323 return err;
1324 }
1325
1326 if (oldname[0] && !strchr(oldname, '%'))
1327 netdev_info(dev, "renamed from %s\n", oldname);
1328
1329 old_assign_type = dev->name_assign_type;
1330 dev->name_assign_type = NET_NAME_RENAMED;
1331
1332rollback:
1333 ret = device_rename(&dev->dev, dev->name);
1334 if (ret) {
1335 memcpy(dev->name, oldname, IFNAMSIZ);
1336 dev->name_assign_type = old_assign_type;
1337 up_write(&devnet_rename_sem);
1338 return ret;
1339 }
1340
1341 up_write(&devnet_rename_sem);
1342
1343 netdev_adjacent_rename_links(dev, oldname);
1344
1345 write_lock_bh(&dev_base_lock);
1346 netdev_name_node_del(dev->name_node);
1347 write_unlock_bh(&dev_base_lock);
1348
1349 synchronize_rcu();
1350
1351 write_lock_bh(&dev_base_lock);
1352 netdev_name_node_add(net, dev->name_node);
1353 write_unlock_bh(&dev_base_lock);
1354
1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 ret = notifier_to_errno(ret);
1357
1358 if (ret) {
1359 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360 if (err >= 0) {
1361 err = ret;
1362 down_write(&devnet_rename_sem);
1363 memcpy(dev->name, oldname, IFNAMSIZ);
1364 memcpy(oldname, newname, IFNAMSIZ);
1365 dev->name_assign_type = old_assign_type;
1366 old_assign_type = NET_NAME_RENAMED;
1367 goto rollback;
1368 } else {
1369 pr_err("%s: name change rollback failed: %d\n",
1370 dev->name, ret);
1371 }
1372 }
1373
1374 return err;
1375}
1376
1377/**
1378 * dev_set_alias - change ifalias of a device
1379 * @dev: device
1380 * @alias: name up to IFALIASZ
1381 * @len: limit of bytes to copy from info
1382 *
1383 * Set ifalias for a device,
1384 */
1385int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386{
1387 struct dev_ifalias *new_alias = NULL;
1388
1389 if (len >= IFALIASZ)
1390 return -EINVAL;
1391
1392 if (len) {
1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 if (!new_alias)
1395 return -ENOMEM;
1396
1397 memcpy(new_alias->ifalias, alias, len);
1398 new_alias->ifalias[len] = 0;
1399 }
1400
1401 mutex_lock(&ifalias_mutex);
1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 mutex_is_locked(&ifalias_mutex));
1404 mutex_unlock(&ifalias_mutex);
1405
1406 if (new_alias)
1407 kfree_rcu(new_alias, rcuhead);
1408
1409 return len;
1410}
1411EXPORT_SYMBOL(dev_set_alias);
1412
1413/**
1414 * dev_get_alias - get ifalias of a device
1415 * @dev: device
1416 * @name: buffer to store name of ifalias
1417 * @len: size of buffer
1418 *
1419 * get ifalias for a device. Caller must make sure dev cannot go
1420 * away, e.g. rcu read lock or own a reference count to device.
1421 */
1422int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423{
1424 const struct dev_ifalias *alias;
1425 int ret = 0;
1426
1427 rcu_read_lock();
1428 alias = rcu_dereference(dev->ifalias);
1429 if (alias)
1430 ret = snprintf(name, len, "%s", alias->ifalias);
1431 rcu_read_unlock();
1432
1433 return ret;
1434}
1435
1436/**
1437 * netdev_features_change - device changes features
1438 * @dev: device to cause notification
1439 *
1440 * Called to indicate a device has changed features.
1441 */
1442void netdev_features_change(struct net_device *dev)
1443{
1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445}
1446EXPORT_SYMBOL(netdev_features_change);
1447
1448/**
1449 * netdev_state_change - device changes state
1450 * @dev: device to cause notification
1451 *
1452 * Called to indicate a device has changed state. This function calls
1453 * the notifier chains for netdev_chain and sends a NEWLINK message
1454 * to the routing socket.
1455 */
1456void netdev_state_change(struct net_device *dev)
1457{
1458 if (dev->flags & IFF_UP) {
1459 struct netdev_notifier_change_info change_info = {
1460 .info.dev = dev,
1461 };
1462
1463 call_netdevice_notifiers_info(NETDEV_CHANGE,
1464 &change_info.info);
1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466 }
1467}
1468EXPORT_SYMBOL(netdev_state_change);
1469
1470/**
1471 * netdev_notify_peers - notify network peers about existence of @dev
1472 * @dev: network device
1473 *
1474 * Generate traffic such that interested network peers are aware of
1475 * @dev, such as by generating a gratuitous ARP. This may be used when
1476 * a device wants to inform the rest of the network about some sort of
1477 * reconfiguration such as a failover event or virtual machine
1478 * migration.
1479 */
1480void netdev_notify_peers(struct net_device *dev)
1481{
1482 rtnl_lock();
1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485 rtnl_unlock();
1486}
1487EXPORT_SYMBOL(netdev_notify_peers);
1488
1489static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490{
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492 int ret;
1493
1494 ASSERT_RTNL();
1495
1496 if (!netif_device_present(dev)) {
1497 /* may be detached because parent is runtime-suspended */
1498 if (dev->dev.parent)
1499 pm_runtime_resume(dev->dev.parent);
1500 if (!netif_device_present(dev))
1501 return -ENODEV;
1502 }
1503
1504 /* Block netpoll from trying to do any rx path servicing.
1505 * If we don't do this there is a chance ndo_poll_controller
1506 * or ndo_poll may be running while we open the device
1507 */
1508 netpoll_poll_disable(dev);
1509
1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 ret = notifier_to_errno(ret);
1512 if (ret)
1513 return ret;
1514
1515 set_bit(__LINK_STATE_START, &dev->state);
1516
1517 if (ops->ndo_validate_addr)
1518 ret = ops->ndo_validate_addr(dev);
1519
1520 if (!ret && ops->ndo_open)
1521 ret = ops->ndo_open(dev);
1522
1523 netpoll_poll_enable(dev);
1524
1525 if (ret)
1526 clear_bit(__LINK_STATE_START, &dev->state);
1527 else {
1528 dev->flags |= IFF_UP;
1529 dev_set_rx_mode(dev);
1530 dev_activate(dev);
1531 add_device_randomness(dev->dev_addr, dev->addr_len);
1532 }
1533
1534 return ret;
1535}
1536
1537/**
1538 * dev_open - prepare an interface for use.
1539 * @dev: device to open
1540 * @extack: netlink extended ack
1541 *
1542 * Takes a device from down to up state. The device's private open
1543 * function is invoked and then the multicast lists are loaded. Finally
1544 * the device is moved into the up state and a %NETDEV_UP message is
1545 * sent to the netdev notifier chain.
1546 *
1547 * Calling this function on an active interface is a nop. On a failure
1548 * a negative errno code is returned.
1549 */
1550int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551{
1552 int ret;
1553
1554 if (dev->flags & IFF_UP)
1555 return 0;
1556
1557 ret = __dev_open(dev, extack);
1558 if (ret < 0)
1559 return ret;
1560
1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL(dev_open);
1567
1568static void __dev_close_many(struct list_head *head)
1569{
1570 struct net_device *dev;
1571
1572 ASSERT_RTNL();
1573 might_sleep();
1574
1575 list_for_each_entry(dev, head, close_list) {
1576 /* Temporarily disable netpoll until the interface is down */
1577 netpoll_poll_disable(dev);
1578
1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580
1581 clear_bit(__LINK_STATE_START, &dev->state);
1582
1583 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584 * can be even on different cpu. So just clear netif_running().
1585 *
1586 * dev->stop() will invoke napi_disable() on all of it's
1587 * napi_struct instances on this device.
1588 */
1589 smp_mb__after_atomic(); /* Commit netif_running(). */
1590 }
1591
1592 dev_deactivate_many(head);
1593
1594 list_for_each_entry(dev, head, close_list) {
1595 const struct net_device_ops *ops = dev->netdev_ops;
1596
1597 /*
1598 * Call the device specific close. This cannot fail.
1599 * Only if device is UP
1600 *
1601 * We allow it to be called even after a DETACH hot-plug
1602 * event.
1603 */
1604 if (ops->ndo_stop)
1605 ops->ndo_stop(dev);
1606
1607 dev->flags &= ~IFF_UP;
1608 netpoll_poll_enable(dev);
1609 }
1610}
1611
1612static void __dev_close(struct net_device *dev)
1613{
1614 LIST_HEAD(single);
1615
1616 list_add(&dev->close_list, &single);
1617 __dev_close_many(&single);
1618 list_del(&single);
1619}
1620
1621void dev_close_many(struct list_head *head, bool unlink)
1622{
1623 struct net_device *dev, *tmp;
1624
1625 /* Remove the devices that don't need to be closed */
1626 list_for_each_entry_safe(dev, tmp, head, close_list)
1627 if (!(dev->flags & IFF_UP))
1628 list_del_init(&dev->close_list);
1629
1630 __dev_close_many(head);
1631
1632 list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 call_netdevice_notifiers(NETDEV_DOWN, dev);
1635 if (unlink)
1636 list_del_init(&dev->close_list);
1637 }
1638}
1639EXPORT_SYMBOL(dev_close_many);
1640
1641/**
1642 * dev_close - shutdown an interface.
1643 * @dev: device to shutdown
1644 *
1645 * This function moves an active device into down state. A
1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648 * chain.
1649 */
1650void dev_close(struct net_device *dev)
1651{
1652 if (dev->flags & IFF_UP) {
1653 LIST_HEAD(single);
1654
1655 list_add(&dev->close_list, &single);
1656 dev_close_many(&single, true);
1657 list_del(&single);
1658 }
1659}
1660EXPORT_SYMBOL(dev_close);
1661
1662
1663/**
1664 * dev_disable_lro - disable Large Receive Offload on a device
1665 * @dev: device
1666 *
1667 * Disable Large Receive Offload (LRO) on a net device. Must be
1668 * called under RTNL. This is needed if received packets may be
1669 * forwarded to another interface.
1670 */
1671void dev_disable_lro(struct net_device *dev)
1672{
1673 struct net_device *lower_dev;
1674 struct list_head *iter;
1675
1676 dev->wanted_features &= ~NETIF_F_LRO;
1677 netdev_update_features(dev);
1678
1679 if (unlikely(dev->features & NETIF_F_LRO))
1680 netdev_WARN(dev, "failed to disable LRO!\n");
1681
1682 netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 dev_disable_lro(lower_dev);
1684}
1685EXPORT_SYMBOL(dev_disable_lro);
1686
1687/**
1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689 * @dev: device
1690 *
1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1692 * called under RTNL. This is needed if Generic XDP is installed on
1693 * the device.
1694 */
1695static void dev_disable_gro_hw(struct net_device *dev)
1696{
1697 dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 netdev_update_features(dev);
1699
1700 if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702}
1703
1704const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705{
1706#define N(val) \
1707 case NETDEV_##val: \
1708 return "NETDEV_" __stringify(val);
1709 switch (cmd) {
1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719 N(PRE_CHANGEADDR)
1720 }
1721#undef N
1722 return "UNKNOWN_NETDEV_EVENT";
1723}
1724EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
1726static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 struct net_device *dev)
1728{
1729 struct netdev_notifier_info info = {
1730 .dev = dev,
1731 };
1732
1733 return nb->notifier_call(nb, val, &info);
1734}
1735
1736static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 struct net_device *dev)
1738{
1739 int err;
1740
1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 err = notifier_to_errno(err);
1743 if (err)
1744 return err;
1745
1746 if (!(dev->flags & IFF_UP))
1747 return 0;
1748
1749 call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 return 0;
1751}
1752
1753static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 struct net_device *dev)
1755{
1756 if (dev->flags & IFF_UP) {
1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 dev);
1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 }
1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762}
1763
1764static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 struct net *net)
1766{
1767 struct net_device *dev;
1768 int err;
1769
1770 for_each_netdev(net, dev) {
1771 err = call_netdevice_register_notifiers(nb, dev);
1772 if (err)
1773 goto rollback;
1774 }
1775 return 0;
1776
1777rollback:
1778 for_each_netdev_continue_reverse(net, dev)
1779 call_netdevice_unregister_notifiers(nb, dev);
1780 return err;
1781}
1782
1783static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 struct net *net)
1785{
1786 struct net_device *dev;
1787
1788 for_each_netdev(net, dev)
1789 call_netdevice_unregister_notifiers(nb, dev);
1790}
1791
1792static int dev_boot_phase = 1;
1793
1794/**
1795 * register_netdevice_notifier - register a network notifier block
1796 * @nb: notifier
1797 *
1798 * Register a notifier to be called when network device events occur.
1799 * The notifier passed is linked into the kernel structures and must
1800 * not be reused until it has been unregistered. A negative errno code
1801 * is returned on a failure.
1802 *
1803 * When registered all registration and up events are replayed
1804 * to the new notifier to allow device to have a race free
1805 * view of the network device list.
1806 */
1807
1808int register_netdevice_notifier(struct notifier_block *nb)
1809{
1810 struct net *net;
1811 int err;
1812
1813 /* Close race with setup_net() and cleanup_net() */
1814 down_write(&pernet_ops_rwsem);
1815 rtnl_lock();
1816 err = raw_notifier_chain_register(&netdev_chain, nb);
1817 if (err)
1818 goto unlock;
1819 if (dev_boot_phase)
1820 goto unlock;
1821 for_each_net(net) {
1822 err = call_netdevice_register_net_notifiers(nb, net);
1823 if (err)
1824 goto rollback;
1825 }
1826
1827unlock:
1828 rtnl_unlock();
1829 up_write(&pernet_ops_rwsem);
1830 return err;
1831
1832rollback:
1833 for_each_net_continue_reverse(net)
1834 call_netdevice_unregister_net_notifiers(nb, net);
1835
1836 raw_notifier_chain_unregister(&netdev_chain, nb);
1837 goto unlock;
1838}
1839EXPORT_SYMBOL(register_netdevice_notifier);
1840
1841/**
1842 * unregister_netdevice_notifier - unregister a network notifier block
1843 * @nb: notifier
1844 *
1845 * Unregister a notifier previously registered by
1846 * register_netdevice_notifier(). The notifier is unlinked into the
1847 * kernel structures and may then be reused. A negative errno code
1848 * is returned on a failure.
1849 *
1850 * After unregistering unregister and down device events are synthesized
1851 * for all devices on the device list to the removed notifier to remove
1852 * the need for special case cleanup code.
1853 */
1854
1855int unregister_netdevice_notifier(struct notifier_block *nb)
1856{
1857 struct net *net;
1858 int err;
1859
1860 /* Close race with setup_net() and cleanup_net() */
1861 down_write(&pernet_ops_rwsem);
1862 rtnl_lock();
1863 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864 if (err)
1865 goto unlock;
1866
1867 for_each_net(net)
1868 call_netdevice_unregister_net_notifiers(nb, net);
1869
1870unlock:
1871 rtnl_unlock();
1872 up_write(&pernet_ops_rwsem);
1873 return err;
1874}
1875EXPORT_SYMBOL(unregister_netdevice_notifier);
1876
1877static int __register_netdevice_notifier_net(struct net *net,
1878 struct notifier_block *nb,
1879 bool ignore_call_fail)
1880{
1881 int err;
1882
1883 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 if (err)
1885 return err;
1886 if (dev_boot_phase)
1887 return 0;
1888
1889 err = call_netdevice_register_net_notifiers(nb, net);
1890 if (err && !ignore_call_fail)
1891 goto chain_unregister;
1892
1893 return 0;
1894
1895chain_unregister:
1896 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 return err;
1898}
1899
1900static int __unregister_netdevice_notifier_net(struct net *net,
1901 struct notifier_block *nb)
1902{
1903 int err;
1904
1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 if (err)
1907 return err;
1908
1909 call_netdevice_unregister_net_notifiers(nb, net);
1910 return 0;
1911}
1912
1913/**
1914 * register_netdevice_notifier_net - register a per-netns network notifier block
1915 * @net: network namespace
1916 * @nb: notifier
1917 *
1918 * Register a notifier to be called when network device events occur.
1919 * The notifier passed is linked into the kernel structures and must
1920 * not be reused until it has been unregistered. A negative errno code
1921 * is returned on a failure.
1922 *
1923 * When registered all registration and up events are replayed
1924 * to the new notifier to allow device to have a race free
1925 * view of the network device list.
1926 */
1927
1928int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929{
1930 int err;
1931
1932 rtnl_lock();
1933 err = __register_netdevice_notifier_net(net, nb, false);
1934 rtnl_unlock();
1935 return err;
1936}
1937EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939/**
1940 * unregister_netdevice_notifier_net - unregister a per-netns
1941 * network notifier block
1942 * @net: network namespace
1943 * @nb: notifier
1944 *
1945 * Unregister a notifier previously registered by
1946 * register_netdevice_notifier(). The notifier is unlinked into the
1947 * kernel structures and may then be reused. A negative errno code
1948 * is returned on a failure.
1949 *
1950 * After unregistering unregister and down device events are synthesized
1951 * for all devices on the device list to the removed notifier to remove
1952 * the need for special case cleanup code.
1953 */
1954
1955int unregister_netdevice_notifier_net(struct net *net,
1956 struct notifier_block *nb)
1957{
1958 int err;
1959
1960 rtnl_lock();
1961 err = __unregister_netdevice_notifier_net(net, nb);
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966
1967int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 struct notifier_block *nb,
1969 struct netdev_net_notifier *nn)
1970{
1971 int err;
1972
1973 rtnl_lock();
1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 if (!err) {
1976 nn->nb = nb;
1977 list_add(&nn->list, &dev->net_notifier_list);
1978 }
1979 rtnl_unlock();
1980 return err;
1981}
1982EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 struct notifier_block *nb,
1986 struct netdev_net_notifier *nn)
1987{
1988 int err;
1989
1990 rtnl_lock();
1991 list_del(&nn->list);
1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 rtnl_unlock();
1994 return err;
1995}
1996EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 struct net *net)
2000{
2001 struct netdev_net_notifier *nn;
2002
2003 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 __register_netdevice_notifier_net(net, nn->nb, true);
2006 }
2007}
2008
2009/**
2010 * call_netdevice_notifiers_info - call all network notifier blocks
2011 * @val: value passed unmodified to notifier function
2012 * @info: notifier information data
2013 *
2014 * Call all network notifier blocks. Parameters and return value
2015 * are as for raw_notifier_call_chain().
2016 */
2017
2018static int call_netdevice_notifiers_info(unsigned long val,
2019 struct netdev_notifier_info *info)
2020{
2021 struct net *net = dev_net(info->dev);
2022 int ret;
2023
2024 ASSERT_RTNL();
2025
2026 /* Run per-netns notifier block chain first, then run the global one.
2027 * Hopefully, one day, the global one is going to be removed after
2028 * all notifier block registrators get converted to be per-netns.
2029 */
2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 if (ret & NOTIFY_STOP_MASK)
2032 return ret;
2033 return raw_notifier_call_chain(&netdev_chain, val, info);
2034}
2035
2036static int call_netdevice_notifiers_extack(unsigned long val,
2037 struct net_device *dev,
2038 struct netlink_ext_ack *extack)
2039{
2040 struct netdev_notifier_info info = {
2041 .dev = dev,
2042 .extack = extack,
2043 };
2044
2045 return call_netdevice_notifiers_info(val, &info);
2046}
2047
2048/**
2049 * call_netdevice_notifiers - call all network notifier blocks
2050 * @val: value passed unmodified to notifier function
2051 * @dev: net_device pointer passed unmodified to notifier function
2052 *
2053 * Call all network notifier blocks. Parameters and return value
2054 * are as for raw_notifier_call_chain().
2055 */
2056
2057int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058{
2059 return call_netdevice_notifiers_extack(val, dev, NULL);
2060}
2061EXPORT_SYMBOL(call_netdevice_notifiers);
2062
2063/**
2064 * call_netdevice_notifiers_mtu - call all network notifier blocks
2065 * @val: value passed unmodified to notifier function
2066 * @dev: net_device pointer passed unmodified to notifier function
2067 * @arg: additional u32 argument passed to the notifier function
2068 *
2069 * Call all network notifier blocks. Parameters and return value
2070 * are as for raw_notifier_call_chain().
2071 */
2072static int call_netdevice_notifiers_mtu(unsigned long val,
2073 struct net_device *dev, u32 arg)
2074{
2075 struct netdev_notifier_info_ext info = {
2076 .info.dev = dev,
2077 .ext.mtu = arg,
2078 };
2079
2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082 return call_netdevice_notifiers_info(val, &info.info);
2083}
2084
2085#ifdef CONFIG_NET_INGRESS
2086static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087
2088void net_inc_ingress_queue(void)
2089{
2090 static_branch_inc(&ingress_needed_key);
2091}
2092EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094void net_dec_ingress_queue(void)
2095{
2096 static_branch_dec(&ingress_needed_key);
2097}
2098EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099#endif
2100
2101#ifdef CONFIG_NET_EGRESS
2102static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103
2104void net_inc_egress_queue(void)
2105{
2106 static_branch_inc(&egress_needed_key);
2107}
2108EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110void net_dec_egress_queue(void)
2111{
2112 static_branch_dec(&egress_needed_key);
2113}
2114EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115#endif
2116
2117static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118#ifdef CONFIG_JUMP_LABEL
2119static atomic_t netstamp_needed_deferred;
2120static atomic_t netstamp_wanted;
2121static void netstamp_clear(struct work_struct *work)
2122{
2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124 int wanted;
2125
2126 wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 if (wanted > 0)
2128 static_branch_enable(&netstamp_needed_key);
2129 else
2130 static_branch_disable(&netstamp_needed_key);
2131}
2132static DECLARE_WORK(netstamp_work, netstamp_clear);
2133#endif
2134
2135void net_enable_timestamp(void)
2136{
2137#ifdef CONFIG_JUMP_LABEL
2138 int wanted;
2139
2140 while (1) {
2141 wanted = atomic_read(&netstamp_wanted);
2142 if (wanted <= 0)
2143 break;
2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 return;
2146 }
2147 atomic_inc(&netstamp_needed_deferred);
2148 schedule_work(&netstamp_work);
2149#else
2150 static_branch_inc(&netstamp_needed_key);
2151#endif
2152}
2153EXPORT_SYMBOL(net_enable_timestamp);
2154
2155void net_disable_timestamp(void)
2156{
2157#ifdef CONFIG_JUMP_LABEL
2158 int wanted;
2159
2160 while (1) {
2161 wanted = atomic_read(&netstamp_wanted);
2162 if (wanted <= 1)
2163 break;
2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 return;
2166 }
2167 atomic_dec(&netstamp_needed_deferred);
2168 schedule_work(&netstamp_work);
2169#else
2170 static_branch_dec(&netstamp_needed_key);
2171#endif
2172}
2173EXPORT_SYMBOL(net_disable_timestamp);
2174
2175static inline void net_timestamp_set(struct sk_buff *skb)
2176{
2177 skb->tstamp = 0;
2178 if (static_branch_unlikely(&netstamp_needed_key))
2179 __net_timestamp(skb);
2180}
2181
2182#define net_timestamp_check(COND, SKB) \
2183 if (static_branch_unlikely(&netstamp_needed_key)) { \
2184 if ((COND) && !(SKB)->tstamp) \
2185 __net_timestamp(SKB); \
2186 } \
2187
2188bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189{
2190 unsigned int len;
2191
2192 if (!(dev->flags & IFF_UP))
2193 return false;
2194
2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 if (skb->len <= len)
2197 return true;
2198
2199 /* if TSO is enabled, we don't care about the length as the packet
2200 * could be forwarded without being segmented before
2201 */
2202 if (skb_is_gso(skb))
2203 return true;
2204
2205 return false;
2206}
2207EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208
2209int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210{
2211 int ret = ____dev_forward_skb(dev, skb);
2212
2213 if (likely(!ret)) {
2214 skb->protocol = eth_type_trans(skb, dev);
2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 }
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
2222/**
2223 * dev_forward_skb - loopback an skb to another netif
2224 *
2225 * @dev: destination network device
2226 * @skb: buffer to forward
2227 *
2228 * return values:
2229 * NET_RX_SUCCESS (no congestion)
2230 * NET_RX_DROP (packet was dropped, but freed)
2231 *
2232 * dev_forward_skb can be used for injecting an skb from the
2233 * start_xmit function of one device into the receive queue
2234 * of another device.
2235 *
2236 * The receiving device may be in another namespace, so
2237 * we have to clear all information in the skb that could
2238 * impact namespace isolation.
2239 */
2240int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241{
2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243}
2244EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
2246static inline int deliver_skb(struct sk_buff *skb,
2247 struct packet_type *pt_prev,
2248 struct net_device *orig_dev)
2249{
2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251 return -ENOMEM;
2252 refcount_inc(&skb->users);
2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254}
2255
2256static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 struct packet_type **pt,
2258 struct net_device *orig_dev,
2259 __be16 type,
2260 struct list_head *ptype_list)
2261{
2262 struct packet_type *ptype, *pt_prev = *pt;
2263
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->type != type)
2266 continue;
2267 if (pt_prev)
2268 deliver_skb(skb, pt_prev, orig_dev);
2269 pt_prev = ptype;
2270 }
2271 *pt = pt_prev;
2272}
2273
2274static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275{
2276 if (!ptype->af_packet_priv || !skb->sk)
2277 return false;
2278
2279 if (ptype->id_match)
2280 return ptype->id_match(ptype, skb->sk);
2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 return true;
2283
2284 return false;
2285}
2286
2287/**
2288 * dev_nit_active - return true if any network interface taps are in use
2289 *
2290 * @dev: network device to check for the presence of taps
2291 */
2292bool dev_nit_active(struct net_device *dev)
2293{
2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295}
2296EXPORT_SYMBOL_GPL(dev_nit_active);
2297
2298/*
2299 * Support routine. Sends outgoing frames to any network
2300 * taps currently in use.
2301 */
2302
2303void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304{
2305 struct packet_type *ptype;
2306 struct sk_buff *skb2 = NULL;
2307 struct packet_type *pt_prev = NULL;
2308 struct list_head *ptype_list = &ptype_all;
2309
2310 rcu_read_lock();
2311again:
2312 list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 if (ptype->ignore_outgoing)
2314 continue;
2315
2316 /* Never send packets back to the socket
2317 * they originated from - MvS (miquels@drinkel.ow.org)
2318 */
2319 if (skb_loop_sk(ptype, skb))
2320 continue;
2321
2322 if (pt_prev) {
2323 deliver_skb(skb2, pt_prev, skb->dev);
2324 pt_prev = ptype;
2325 continue;
2326 }
2327
2328 /* need to clone skb, done only once */
2329 skb2 = skb_clone(skb, GFP_ATOMIC);
2330 if (!skb2)
2331 goto out_unlock;
2332
2333 net_timestamp_set(skb2);
2334
2335 /* skb->nh should be correctly
2336 * set by sender, so that the second statement is
2337 * just protection against buggy protocols.
2338 */
2339 skb_reset_mac_header(skb2);
2340
2341 if (skb_network_header(skb2) < skb2->data ||
2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 ntohs(skb2->protocol),
2345 dev->name);
2346 skb_reset_network_header(skb2);
2347 }
2348
2349 skb2->transport_header = skb2->network_header;
2350 skb2->pkt_type = PACKET_OUTGOING;
2351 pt_prev = ptype;
2352 }
2353
2354 if (ptype_list == &ptype_all) {
2355 ptype_list = &dev->ptype_all;
2356 goto again;
2357 }
2358out_unlock:
2359 if (pt_prev) {
2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 else
2363 kfree_skb(skb2);
2364 }
2365 rcu_read_unlock();
2366}
2367EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368
2369/**
2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371 * @dev: Network device
2372 * @txq: number of queues available
2373 *
2374 * If real_num_tx_queues is changed the tc mappings may no longer be
2375 * valid. To resolve this verify the tc mapping remains valid and if
2376 * not NULL the mapping. With no priorities mapping to this
2377 * offset/count pair it will no longer be used. In the worst case TC0
2378 * is invalid nothing can be done so disable priority mappings. If is
2379 * expected that drivers will fix this mapping if they can before
2380 * calling netif_set_real_num_tx_queues.
2381 */
2382static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383{
2384 int i;
2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387 /* If TC0 is invalidated disable TC mapping */
2388 if (tc->offset + tc->count > txq) {
2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390 dev->num_tc = 0;
2391 return;
2392 }
2393
2394 /* Invalidated prio to tc mappings set to TC0 */
2395 for (i = 1; i < TC_BITMASK + 1; i++) {
2396 int q = netdev_get_prio_tc_map(dev, i);
2397
2398 tc = &dev->tc_to_txq[q];
2399 if (tc->offset + tc->count > txq) {
2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 i, q);
2402 netdev_set_prio_tc_map(dev, i, 0);
2403 }
2404 }
2405}
2406
2407int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408{
2409 if (dev->num_tc) {
2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 int i;
2412
2413 /* walk through the TCs and see if it falls into any of them */
2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 if ((txq - tc->offset) < tc->count)
2416 return i;
2417 }
2418
2419 /* didn't find it, just return -1 to indicate no match */
2420 return -1;
2421 }
2422
2423 return 0;
2424}
2425EXPORT_SYMBOL(netdev_txq_to_tc);
2426
2427#ifdef CONFIG_XPS
2428struct static_key xps_needed __read_mostly;
2429EXPORT_SYMBOL(xps_needed);
2430struct static_key xps_rxqs_needed __read_mostly;
2431EXPORT_SYMBOL(xps_rxqs_needed);
2432static DEFINE_MUTEX(xps_map_mutex);
2433#define xmap_dereference(P) \
2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
2436static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 int tci, u16 index)
2438{
2439 struct xps_map *map = NULL;
2440 int pos;
2441
2442 if (dev_maps)
2443 map = xmap_dereference(dev_maps->attr_map[tci]);
2444 if (!map)
2445 return false;
2446
2447 for (pos = map->len; pos--;) {
2448 if (map->queues[pos] != index)
2449 continue;
2450
2451 if (map->len > 1) {
2452 map->queues[pos] = map->queues[--map->len];
2453 break;
2454 }
2455
2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 kfree_rcu(map, rcu);
2458 return false;
2459 }
2460
2461 return true;
2462}
2463
2464static bool remove_xps_queue_cpu(struct net_device *dev,
2465 struct xps_dev_maps *dev_maps,
2466 int cpu, u16 offset, u16 count)
2467{
2468 int num_tc = dev->num_tc ? : 1;
2469 bool active = false;
2470 int tci;
2471
2472 for (tci = cpu * num_tc; num_tc--; tci++) {
2473 int i, j;
2474
2475 for (i = count, j = offset; i--; j++) {
2476 if (!remove_xps_queue(dev_maps, tci, j))
2477 break;
2478 }
2479
2480 active |= i < 0;
2481 }
2482
2483 return active;
2484}
2485
2486static void reset_xps_maps(struct net_device *dev,
2487 struct xps_dev_maps *dev_maps,
2488 bool is_rxqs_map)
2489{
2490 if (is_rxqs_map) {
2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 } else {
2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 }
2496 static_key_slow_dec_cpuslocked(&xps_needed);
2497 kfree_rcu(dev_maps, rcu);
2498}
2499
2500static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 u16 offset, u16 count, bool is_rxqs_map)
2503{
2504 bool active = false;
2505 int i, j;
2506
2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 j < nr_ids;)
2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 count);
2511 if (!active)
2512 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513
2514 if (!is_rxqs_map) {
2515 for (i = offset + (count - 1); count--; i--) {
2516 netdev_queue_numa_node_write(
2517 netdev_get_tx_queue(dev, i),
2518 NUMA_NO_NODE);
2519 }
2520 }
2521}
2522
2523static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 u16 count)
2525{
2526 const unsigned long *possible_mask = NULL;
2527 struct xps_dev_maps *dev_maps;
2528 unsigned int nr_ids;
2529
2530 if (!static_key_false(&xps_needed))
2531 return;
2532
2533 cpus_read_lock();
2534 mutex_lock(&xps_map_mutex);
2535
2536 if (static_key_false(&xps_rxqs_needed)) {
2537 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 if (dev_maps) {
2539 nr_ids = dev->num_rx_queues;
2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 offset, count, true);
2542 }
2543 }
2544
2545 dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 if (!dev_maps)
2547 goto out_no_maps;
2548
2549 if (num_possible_cpus() > 1)
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 nr_ids = nr_cpu_ids;
2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 false);
2554
2555out_no_maps:
2556 mutex_unlock(&xps_map_mutex);
2557 cpus_read_unlock();
2558}
2559
2560static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561{
2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563}
2564
2565static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 u16 index, bool is_rxqs_map)
2567{
2568 struct xps_map *new_map;
2569 int alloc_len = XPS_MIN_MAP_ALLOC;
2570 int i, pos;
2571
2572 for (pos = 0; map && pos < map->len; pos++) {
2573 if (map->queues[pos] != index)
2574 continue;
2575 return map;
2576 }
2577
2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579 if (map) {
2580 if (pos < map->alloc_len)
2581 return map;
2582
2583 alloc_len = map->alloc_len * 2;
2584 }
2585
2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 * map
2588 */
2589 if (is_rxqs_map)
2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 else
2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 cpu_to_node(attr_index));
2594 if (!new_map)
2595 return NULL;
2596
2597 for (i = 0; i < pos; i++)
2598 new_map->queues[i] = map->queues[i];
2599 new_map->alloc_len = alloc_len;
2600 new_map->len = pos;
2601
2602 return new_map;
2603}
2604
2605/* Must be called under cpus_read_lock */
2606int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 u16 index, bool is_rxqs_map)
2608{
2609 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 int i, j, tci, numa_node_id = -2;
2612 int maps_sz, num_tc = 1, tc = 0;
2613 struct xps_map *map, *new_map;
2614 bool active = false;
2615 unsigned int nr_ids;
2616
2617 if (dev->num_tc) {
2618 /* Do not allow XPS on subordinate device directly */
2619 num_tc = dev->num_tc;
2620 if (num_tc < 0)
2621 return -EINVAL;
2622
2623 /* If queue belongs to subordinate dev use its map */
2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
2626 tc = netdev_txq_to_tc(dev, index);
2627 if (tc < 0)
2628 return -EINVAL;
2629 }
2630
2631 mutex_lock(&xps_map_mutex);
2632 if (is_rxqs_map) {
2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 nr_ids = dev->num_rx_queues;
2636 } else {
2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 if (num_possible_cpus() > 1) {
2639 online_mask = cpumask_bits(cpu_online_mask);
2640 possible_mask = cpumask_bits(cpu_possible_mask);
2641 }
2642 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 nr_ids = nr_cpu_ids;
2644 }
2645
2646 if (maps_sz < L1_CACHE_BYTES)
2647 maps_sz = L1_CACHE_BYTES;
2648
2649 /* allocate memory for queue storage */
2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 j < nr_ids;) {
2652 if (!new_dev_maps)
2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 if (!new_dev_maps) {
2655 mutex_unlock(&xps_map_mutex);
2656 return -ENOMEM;
2657 }
2658
2659 tci = j * num_tc + tc;
2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661 NULL;
2662
2663 map = expand_xps_map(map, j, index, is_rxqs_map);
2664 if (!map)
2665 goto error;
2666
2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668 }
2669
2670 if (!new_dev_maps)
2671 goto out_no_new_maps;
2672
2673 if (!dev_maps) {
2674 /* Increment static keys at most once per type */
2675 static_key_slow_inc_cpuslocked(&xps_needed);
2676 if (is_rxqs_map)
2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 }
2679
2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 j < nr_ids;) {
2682 /* copy maps belonging to foreign traffic classes */
2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 /* fill in the new device map from the old device map */
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 }
2688
2689 /* We need to explicitly update tci as prevous loop
2690 * could break out early if dev_maps is NULL.
2691 */
2692 tci = j * num_tc + tc;
2693
2694 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 netif_attr_test_online(j, online_mask, nr_ids)) {
2696 /* add tx-queue to CPU/rx-queue maps */
2697 int pos = 0;
2698
2699 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 while ((pos < map->len) && (map->queues[pos] != index))
2701 pos++;
2702
2703 if (pos == map->len)
2704 map->queues[map->len++] = index;
2705#ifdef CONFIG_NUMA
2706 if (!is_rxqs_map) {
2707 if (numa_node_id == -2)
2708 numa_node_id = cpu_to_node(j);
2709 else if (numa_node_id != cpu_to_node(j))
2710 numa_node_id = -1;
2711 }
2712#endif
2713 } else if (dev_maps) {
2714 /* fill in the new device map from the old device map */
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 }
2718
2719 /* copy maps belonging to foreign traffic classes */
2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 /* fill in the new device map from the old device map */
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 }
2725 }
2726
2727 if (is_rxqs_map)
2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 else
2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731
2732 /* Cleanup old maps */
2733 if (!dev_maps)
2734 goto out_no_old_maps;
2735
2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 j < nr_ids;) {
2738 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 map = xmap_dereference(dev_maps->attr_map[tci]);
2741 if (map && map != new_map)
2742 kfree_rcu(map, rcu);
2743 }
2744 }
2745
2746 kfree_rcu(dev_maps, rcu);
2747
2748out_no_old_maps:
2749 dev_maps = new_dev_maps;
2750 active = true;
2751
2752out_no_new_maps:
2753 if (!is_rxqs_map) {
2754 /* update Tx queue numa node */
2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 (numa_node_id >= 0) ?
2757 numa_node_id : NUMA_NO_NODE);
2758 }
2759
2760 if (!dev_maps)
2761 goto out_no_maps;
2762
2763 /* removes tx-queue from unused CPUs/rx-queues */
2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 j < nr_ids;) {
2766 for (i = tc, tci = j * num_tc; i--; tci++)
2767 active |= remove_xps_queue(dev_maps, tci, index);
2768 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 !netif_attr_test_online(j, online_mask, nr_ids))
2770 active |= remove_xps_queue(dev_maps, tci, index);
2771 for (i = num_tc - tc, tci++; --i; tci++)
2772 active |= remove_xps_queue(dev_maps, tci, index);
2773 }
2774
2775 /* free map if not active */
2776 if (!active)
2777 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778
2779out_no_maps:
2780 mutex_unlock(&xps_map_mutex);
2781
2782 return 0;
2783error:
2784 /* remove any maps that we added */
2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 j < nr_ids;) {
2787 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789 map = dev_maps ?
2790 xmap_dereference(dev_maps->attr_map[tci]) :
2791 NULL;
2792 if (new_map && new_map != map)
2793 kfree(new_map);
2794 }
2795 }
2796
2797 mutex_unlock(&xps_map_mutex);
2798
2799 kfree(new_dev_maps);
2800 return -ENOMEM;
2801}
2802EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803
2804int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 u16 index)
2806{
2807 int ret;
2808
2809 cpus_read_lock();
2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 cpus_read_unlock();
2812
2813 return ret;
2814}
2815EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817#endif
2818static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819{
2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822 /* Unbind any subordinate channels */
2823 while (txq-- != &dev->_tx[0]) {
2824 if (txq->sb_dev)
2825 netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 }
2827}
2828
2829void netdev_reset_tc(struct net_device *dev)
2830{
2831#ifdef CONFIG_XPS
2832 netif_reset_xps_queues_gt(dev, 0);
2833#endif
2834 netdev_unbind_all_sb_channels(dev);
2835
2836 /* Reset TC configuration of device */
2837 dev->num_tc = 0;
2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840}
2841EXPORT_SYMBOL(netdev_reset_tc);
2842
2843int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844{
2845 if (tc >= dev->num_tc)
2846 return -EINVAL;
2847
2848#ifdef CONFIG_XPS
2849 netif_reset_xps_queues(dev, offset, count);
2850#endif
2851 dev->tc_to_txq[tc].count = count;
2852 dev->tc_to_txq[tc].offset = offset;
2853 return 0;
2854}
2855EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858{
2859 if (num_tc > TC_MAX_QUEUE)
2860 return -EINVAL;
2861
2862#ifdef CONFIG_XPS
2863 netif_reset_xps_queues_gt(dev, 0);
2864#endif
2865 netdev_unbind_all_sb_channels(dev);
2866
2867 dev->num_tc = num_tc;
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_set_num_tc);
2871
2872void netdev_unbind_sb_channel(struct net_device *dev,
2873 struct net_device *sb_dev)
2874{
2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877#ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(sb_dev, 0);
2879#endif
2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883 while (txq-- != &dev->_tx[0]) {
2884 if (txq->sb_dev == sb_dev)
2885 txq->sb_dev = NULL;
2886 }
2887}
2888EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 struct net_device *sb_dev,
2892 u8 tc, u16 count, u16 offset)
2893{
2894 /* Make certain the sb_dev and dev are already configured */
2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 return -EINVAL;
2897
2898 /* We cannot hand out queues we don't have */
2899 if ((offset + count) > dev->real_num_tx_queues)
2900 return -EINVAL;
2901
2902 /* Record the mapping */
2903 sb_dev->tc_to_txq[tc].count = count;
2904 sb_dev->tc_to_txq[tc].offset = offset;
2905
2906 /* Provide a way for Tx queue to find the tc_to_txq map or
2907 * XPS map for itself.
2908 */
2909 while (count--)
2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912 return 0;
2913}
2914EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917{
2918 /* Do not use a multiqueue device to represent a subordinate channel */
2919 if (netif_is_multiqueue(dev))
2920 return -ENODEV;
2921
2922 /* We allow channels 1 - 32767 to be used for subordinate channels.
2923 * Channel 0 is meant to be "native" mode and used only to represent
2924 * the main root device. We allow writing 0 to reset the device back
2925 * to normal mode after being used as a subordinate channel.
2926 */
2927 if (channel > S16_MAX)
2928 return -EINVAL;
2929
2930 dev->num_tc = -channel;
2931
2932 return 0;
2933}
2934EXPORT_SYMBOL(netdev_set_sb_channel);
2935
2936/*
2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939 */
2940int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941{
2942 bool disabling;
2943 int rc;
2944
2945 disabling = txq < dev->real_num_tx_queues;
2946
2947 if (txq < 1 || txq > dev->num_tx_queues)
2948 return -EINVAL;
2949
2950 if (dev->reg_state == NETREG_REGISTERED ||
2951 dev->reg_state == NETREG_UNREGISTERING) {
2952 ASSERT_RTNL();
2953
2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 txq);
2956 if (rc)
2957 return rc;
2958
2959 if (dev->num_tc)
2960 netif_setup_tc(dev, txq);
2961
2962 dev->real_num_tx_queues = txq;
2963
2964 if (disabling) {
2965 synchronize_net();
2966 qdisc_reset_all_tx_gt(dev, txq);
2967#ifdef CONFIG_XPS
2968 netif_reset_xps_queues_gt(dev, txq);
2969#endif
2970 }
2971 } else {
2972 dev->real_num_tx_queues = txq;
2973 }
2974
2975 return 0;
2976}
2977EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978
2979#ifdef CONFIG_SYSFS
2980/**
2981 * netif_set_real_num_rx_queues - set actual number of RX queues used
2982 * @dev: Network device
2983 * @rxq: Actual number of RX queues
2984 *
2985 * This must be called either with the rtnl_lock held or before
2986 * registration of the net device. Returns 0 on success, or a
2987 * negative error code. If called before registration, it always
2988 * succeeds.
2989 */
2990int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991{
2992 int rc;
2993
2994 if (rxq < 1 || rxq > dev->num_rx_queues)
2995 return -EINVAL;
2996
2997 if (dev->reg_state == NETREG_REGISTERED) {
2998 ASSERT_RTNL();
2999
3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 rxq);
3002 if (rc)
3003 return rc;
3004 }
3005
3006 dev->real_num_rx_queues = rxq;
3007 return 0;
3008}
3009EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010#endif
3011
3012/**
3013 * netif_get_num_default_rss_queues - default number of RSS queues
3014 *
3015 * This routine should set an upper limit on the number of RSS queues
3016 * used by default by multiqueue devices.
3017 */
3018int netif_get_num_default_rss_queues(void)
3019{
3020 return is_kdump_kernel() ?
3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022}
3023EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3025static void __netif_reschedule(struct Qdisc *q)
3026{
3027 struct softnet_data *sd;
3028 unsigned long flags;
3029
3030 local_irq_save(flags);
3031 sd = this_cpu_ptr(&softnet_data);
3032 q->next_sched = NULL;
3033 *sd->output_queue_tailp = q;
3034 sd->output_queue_tailp = &q->next_sched;
3035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 local_irq_restore(flags);
3037}
3038
3039void __netif_schedule(struct Qdisc *q)
3040{
3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 __netif_reschedule(q);
3043}
3044EXPORT_SYMBOL(__netif_schedule);
3045
3046struct dev_kfree_skb_cb {
3047 enum skb_free_reason reason;
3048};
3049
3050static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051{
3052 return (struct dev_kfree_skb_cb *)skb->cb;
3053}
3054
3055void netif_schedule_queue(struct netdev_queue *txq)
3056{
3057 rcu_read_lock();
3058 if (!netif_xmit_stopped(txq)) {
3059 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061 __netif_schedule(q);
3062 }
3063 rcu_read_unlock();
3064}
3065EXPORT_SYMBOL(netif_schedule_queue);
3066
3067void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068{
3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 struct Qdisc *q;
3071
3072 rcu_read_lock();
3073 q = rcu_dereference(dev_queue->qdisc);
3074 __netif_schedule(q);
3075 rcu_read_unlock();
3076 }
3077}
3078EXPORT_SYMBOL(netif_tx_wake_queue);
3079
3080void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081{
3082 unsigned long flags;
3083
3084 if (unlikely(!skb))
3085 return;
3086
3087 if (likely(refcount_read(&skb->users) == 1)) {
3088 smp_rmb();
3089 refcount_set(&skb->users, 0);
3090 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3091 return;
3092 }
3093 get_kfree_skb_cb(skb)->reason = reason;
3094 local_irq_save(flags);
3095 skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 __this_cpu_write(softnet_data.completion_queue, skb);
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
3099}
3100EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101
3102void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103{
3104 if (in_irq() || irqs_disabled())
3105 __dev_kfree_skb_irq(skb, reason);
3106 else
3107 dev_kfree_skb(skb);
3108}
3109EXPORT_SYMBOL(__dev_kfree_skb_any);
3110
3111
3112/**
3113 * netif_device_detach - mark device as removed
3114 * @dev: network device
3115 *
3116 * Mark device as removed from system and therefore no longer available.
3117 */
3118void netif_device_detach(struct net_device *dev)
3119{
3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 netif_running(dev)) {
3122 netif_tx_stop_all_queues(dev);
3123 }
3124}
3125EXPORT_SYMBOL(netif_device_detach);
3126
3127/**
3128 * netif_device_attach - mark device as attached
3129 * @dev: network device
3130 *
3131 * Mark device as attached from system and restart if needed.
3132 */
3133void netif_device_attach(struct net_device *dev)
3134{
3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 netif_running(dev)) {
3137 netif_tx_wake_all_queues(dev);
3138 __netdev_watchdog_up(dev);
3139 }
3140}
3141EXPORT_SYMBOL(netif_device_attach);
3142
3143/*
3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145 * to be used as a distribution range.
3146 */
3147static u16 skb_tx_hash(const struct net_device *dev,
3148 const struct net_device *sb_dev,
3149 struct sk_buff *skb)
3150{
3151 u32 hash;
3152 u16 qoffset = 0;
3153 u16 qcount = dev->real_num_tx_queues;
3154
3155 if (dev->num_tc) {
3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158 qoffset = sb_dev->tc_to_txq[tc].offset;
3159 qcount = sb_dev->tc_to_txq[tc].count;
3160 }
3161
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
3164 if (hash >= qoffset)
3165 hash -= qoffset;
3166 while (unlikely(hash >= qcount))
3167 hash -= qcount;
3168 return hash + qoffset;
3169 }
3170
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172}
3173
3174static void skb_warn_bad_offload(const struct sk_buff *skb)
3175{
3176 static const netdev_features_t null_features;
3177 struct net_device *dev = skb->dev;
3178 const char *name = "";
3179
3180 if (!net_ratelimit())
3181 return;
3182
3183 if (dev) {
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3186 else
3187 name = netdev_name(dev);
3188 }
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 name, dev ? &dev->features : &null_features,
3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193}
3194
3195/*
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3198 */
3199int skb_checksum_help(struct sk_buff *skb)
3200{
3201 __wsum csum;
3202 int ret = 0, offset;
3203
3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 goto out_set_summed;
3206
3207 if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 skb_warn_bad_offload(skb);
3209 return -EINVAL;
3210 }
3211
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3214 */
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3217 if (ret)
3218 goto out;
3219 }
3220
3221 offset = skb_checksum_start_offset(skb);
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 if (ret)
3230 goto out;
3231
3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233out_set_summed:
3234 skb->ip_summed = CHECKSUM_NONE;
3235out:
3236 return ret;
3237}
3238EXPORT_SYMBOL(skb_checksum_help);
3239
3240int skb_crc32c_csum_help(struct sk_buff *skb)
3241{
3242 __le32 crc32c_csum;
3243 int ret = 0, offset, start;
3244
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 goto out;
3247
3248 if (unlikely(skb_is_gso(skb)))
3249 goto out;
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 if (ret)
3268 goto out;
3269
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3272 crc32c_csum_stub));
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
3275 skb->csum_not_inet = 0;
3276out:
3277 return ret;
3278}
3279
3280__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281{
3282 __be16 type = skb->protocol;
3283
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3286 struct ethhdr *eth;
3287
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 return 0;
3290
3291 eth = (struct ethhdr *)skb->data;
3292 type = eth->h_proto;
3293 }
3294
3295 return __vlan_get_protocol(skb, type, depth);
3296}
3297
3298/**
3299 * skb_mac_gso_segment - mac layer segmentation handler.
3300 * @skb: buffer to segment
3301 * @features: features for the output path (see dev->features)
3302 */
3303struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 netdev_features_t features)
3305{
3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 struct packet_offload *ptype;
3308 int vlan_depth = skb->mac_len;
3309 __be16 type = skb_network_protocol(skb, &vlan_depth);
3310
3311 if (unlikely(!type))
3312 return ERR_PTR(-EINVAL);
3313
3314 __skb_pull(skb, vlan_depth);
3315
3316 rcu_read_lock();
3317 list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 segs = ptype->callbacks.gso_segment(skb, features);
3320 break;
3321 }
3322 }
3323 rcu_read_unlock();
3324
3325 __skb_push(skb, skb->data - skb_mac_header(skb));
3326
3327 return segs;
3328}
3329EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332/* openvswitch calls this on rx path, so we need a different check.
3333 */
3334static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335{
3336 if (tx_path)
3337 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 skb->ip_summed != CHECKSUM_UNNECESSARY;
3339
3340 return skb->ip_summed == CHECKSUM_NONE;
3341}
3342
3343/**
3344 * __skb_gso_segment - Perform segmentation on skb.
3345 * @skb: buffer to segment
3346 * @features: features for the output path (see dev->features)
3347 * @tx_path: whether it is called in TX path
3348 *
3349 * This function segments the given skb and returns a list of segments.
3350 *
3351 * It may return NULL if the skb requires no segmentation. This is
3352 * only possible when GSO is used for verifying header integrity.
3353 *
3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355 */
3356struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 netdev_features_t features, bool tx_path)
3358{
3359 struct sk_buff *segs;
3360
3361 if (unlikely(skb_needs_check(skb, tx_path))) {
3362 int err;
3363
3364 /* We're going to init ->check field in TCP or UDP header */
3365 err = skb_cow_head(skb, 0);
3366 if (err < 0)
3367 return ERR_PTR(err);
3368 }
3369
3370 /* Only report GSO partial support if it will enable us to
3371 * support segmentation on this frame without needing additional
3372 * work.
3373 */
3374 if (features & NETIF_F_GSO_PARTIAL) {
3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 struct net_device *dev = skb->dev;
3377
3378 partial_features |= dev->features & dev->gso_partial_features;
3379 if (!skb_gso_ok(skb, features | partial_features))
3380 features &= ~NETIF_F_GSO_PARTIAL;
3381 }
3382
3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 SKB_GSO_CB(skb)->encap_level = 0;
3388
3389 skb_reset_mac_header(skb);
3390 skb_reset_mac_len(skb);
3391
3392 segs = skb_mac_gso_segment(skb, features);
3393
3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 skb_warn_bad_offload(skb);
3396
3397 return segs;
3398}
3399EXPORT_SYMBOL(__skb_gso_segment);
3400
3401/* Take action when hardware reception checksum errors are detected. */
3402#ifdef CONFIG_BUG
3403void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404{
3405 if (net_ratelimit()) {
3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 skb_dump(KERN_ERR, skb, true);
3408 dump_stack();
3409 }
3410}
3411EXPORT_SYMBOL(netdev_rx_csum_fault);
3412#endif
3413
3414/* XXX: check that highmem exists at all on the given machine. */
3415static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416{
3417#ifdef CONFIG_HIGHMEM
3418 int i;
3419
3420 if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423
3424 if (PageHighMem(skb_frag_page(frag)))
3425 return 1;
3426 }
3427 }
3428#endif
3429 return 0;
3430}
3431
3432/* If MPLS offload request, verify we are testing hardware MPLS features
3433 * instead of standard features for the netdev.
3434 */
3435#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 netdev_features_t features,
3438 __be16 type)
3439{
3440 if (eth_p_mpls(type))
3441 features &= skb->dev->mpls_features;
3442
3443 return features;
3444}
3445#else
3446static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 netdev_features_t features,
3448 __be16 type)
3449{
3450 return features;
3451}
3452#endif
3453
3454static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 netdev_features_t features)
3456{
3457 __be16 type;
3458
3459 type = skb_network_protocol(skb, NULL);
3460 features = net_mpls_features(skb, features, type);
3461
3462 if (skb->ip_summed != CHECKSUM_NONE &&
3463 !can_checksum_protocol(features, type)) {
3464 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3465 }
3466 if (illegal_highdma(skb->dev, skb))
3467 features &= ~NETIF_F_SG;
3468
3469 return features;
3470}
3471
3472netdev_features_t passthru_features_check(struct sk_buff *skb,
3473 struct net_device *dev,
3474 netdev_features_t features)
3475{
3476 return features;
3477}
3478EXPORT_SYMBOL(passthru_features_check);
3479
3480static netdev_features_t dflt_features_check(struct sk_buff *skb,
3481 struct net_device *dev,
3482 netdev_features_t features)
3483{
3484 return vlan_features_check(skb, features);
3485}
3486
3487static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3492
3493 if (gso_segs > dev->gso_max_segs)
3494 return features & ~NETIF_F_GSO_MASK;
3495
3496 /* Support for GSO partial features requires software
3497 * intervention before we can actually process the packets
3498 * so we need to strip support for any partial features now
3499 * and we can pull them back in after we have partially
3500 * segmented the frame.
3501 */
3502 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503 features &= ~dev->gso_partial_features;
3504
3505 /* Make sure to clear the IPv4 ID mangling feature if the
3506 * IPv4 header has the potential to be fragmented.
3507 */
3508 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509 struct iphdr *iph = skb->encapsulation ?
3510 inner_ip_hdr(skb) : ip_hdr(skb);
3511
3512 if (!(iph->frag_off & htons(IP_DF)))
3513 features &= ~NETIF_F_TSO_MANGLEID;
3514 }
3515
3516 return features;
3517}
3518
3519netdev_features_t netif_skb_features(struct sk_buff *skb)
3520{
3521 struct net_device *dev = skb->dev;
3522 netdev_features_t features = dev->features;
3523
3524 if (skb_is_gso(skb))
3525 features = gso_features_check(skb, dev, features);
3526
3527 /* If encapsulation offload request, verify we are testing
3528 * hardware encapsulation features instead of standard
3529 * features for the netdev
3530 */
3531 if (skb->encapsulation)
3532 features &= dev->hw_enc_features;
3533
3534 if (skb_vlan_tagged(skb))
3535 features = netdev_intersect_features(features,
3536 dev->vlan_features |
3537 NETIF_F_HW_VLAN_CTAG_TX |
3538 NETIF_F_HW_VLAN_STAG_TX);
3539
3540 if (dev->netdev_ops->ndo_features_check)
3541 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3542 features);
3543 else
3544 features &= dflt_features_check(skb, dev, features);
3545
3546 return harmonize_features(skb, features);
3547}
3548EXPORT_SYMBOL(netif_skb_features);
3549
3550static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3551 struct netdev_queue *txq, bool more)
3552{
3553 unsigned int len;
3554 int rc;
3555
3556 if (dev_nit_active(dev))
3557 dev_queue_xmit_nit(skb, dev);
3558
3559 len = skb->len;
3560 trace_net_dev_start_xmit(skb, dev);
3561 rc = netdev_start_xmit(skb, dev, txq, more);
3562 trace_net_dev_xmit(skb, rc, dev, len);
3563
3564 return rc;
3565}
3566
3567struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568 struct netdev_queue *txq, int *ret)
3569{
3570 struct sk_buff *skb = first;
3571 int rc = NETDEV_TX_OK;
3572
3573 while (skb) {
3574 struct sk_buff *next = skb->next;
3575
3576 skb_mark_not_on_list(skb);
3577 rc = xmit_one(skb, dev, txq, next != NULL);
3578 if (unlikely(!dev_xmit_complete(rc))) {
3579 skb->next = next;
3580 goto out;
3581 }
3582
3583 skb = next;
3584 if (netif_tx_queue_stopped(txq) && skb) {
3585 rc = NETDEV_TX_BUSY;
3586 break;
3587 }
3588 }
3589
3590out:
3591 *ret = rc;
3592 return skb;
3593}
3594
3595static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596 netdev_features_t features)
3597{
3598 if (skb_vlan_tag_present(skb) &&
3599 !vlan_hw_offload_capable(features, skb->vlan_proto))
3600 skb = __vlan_hwaccel_push_inside(skb);
3601 return skb;
3602}
3603
3604int skb_csum_hwoffload_help(struct sk_buff *skb,
3605 const netdev_features_t features)
3606{
3607 if (unlikely(skb->csum_not_inet))
3608 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609 skb_crc32c_csum_help(skb);
3610
3611 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3612}
3613EXPORT_SYMBOL(skb_csum_hwoffload_help);
3614
3615static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3616{
3617 netdev_features_t features;
3618
3619 features = netif_skb_features(skb);
3620 skb = validate_xmit_vlan(skb, features);
3621 if (unlikely(!skb))
3622 goto out_null;
3623
3624 skb = sk_validate_xmit_skb(skb, dev);
3625 if (unlikely(!skb))
3626 goto out_null;
3627
3628 if (netif_needs_gso(skb, features)) {
3629 struct sk_buff *segs;
3630
3631 segs = skb_gso_segment(skb, features);
3632 if (IS_ERR(segs)) {
3633 goto out_kfree_skb;
3634 } else if (segs) {
3635 consume_skb(skb);
3636 skb = segs;
3637 }
3638 } else {
3639 if (skb_needs_linearize(skb, features) &&
3640 __skb_linearize(skb))
3641 goto out_kfree_skb;
3642
3643 /* If packet is not checksummed and device does not
3644 * support checksumming for this protocol, complete
3645 * checksumming here.
3646 */
3647 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648 if (skb->encapsulation)
3649 skb_set_inner_transport_header(skb,
3650 skb_checksum_start_offset(skb));
3651 else
3652 skb_set_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 if (skb_csum_hwoffload_help(skb, features))
3655 goto out_kfree_skb;
3656 }
3657 }
3658
3659 skb = validate_xmit_xfrm(skb, features, again);
3660
3661 return skb;
3662
3663out_kfree_skb:
3664 kfree_skb(skb);
3665out_null:
3666 atomic_long_inc(&dev->tx_dropped);
3667 return NULL;
3668}
3669
3670struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3671{
3672 struct sk_buff *next, *head = NULL, *tail;
3673
3674 for (; skb != NULL; skb = next) {
3675 next = skb->next;
3676 skb_mark_not_on_list(skb);
3677
3678 /* in case skb wont be segmented, point to itself */
3679 skb->prev = skb;
3680
3681 skb = validate_xmit_skb(skb, dev, again);
3682 if (!skb)
3683 continue;
3684
3685 if (!head)
3686 head = skb;
3687 else
3688 tail->next = skb;
3689 /* If skb was segmented, skb->prev points to
3690 * the last segment. If not, it still contains skb.
3691 */
3692 tail = skb->prev;
3693 }
3694 return head;
3695}
3696EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3697
3698static void qdisc_pkt_len_init(struct sk_buff *skb)
3699{
3700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3701
3702 qdisc_skb_cb(skb)->pkt_len = skb->len;
3703
3704 /* To get more precise estimation of bytes sent on wire,
3705 * we add to pkt_len the headers size of all segments
3706 */
3707 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3708 unsigned int hdr_len;
3709 u16 gso_segs = shinfo->gso_segs;
3710
3711 /* mac layer + network layer */
3712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3713
3714 /* + transport layer */
3715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716 const struct tcphdr *th;
3717 struct tcphdr _tcphdr;
3718
3719 th = skb_header_pointer(skb, skb_transport_offset(skb),
3720 sizeof(_tcphdr), &_tcphdr);
3721 if (likely(th))
3722 hdr_len += __tcp_hdrlen(th);
3723 } else {
3724 struct udphdr _udphdr;
3725
3726 if (skb_header_pointer(skb, skb_transport_offset(skb),
3727 sizeof(_udphdr), &_udphdr))
3728 hdr_len += sizeof(struct udphdr);
3729 }
3730
3731 if (shinfo->gso_type & SKB_GSO_DODGY)
3732 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733 shinfo->gso_size);
3734
3735 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3736 }
3737}
3738
3739static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740 struct net_device *dev,
3741 struct netdev_queue *txq)
3742{
3743 spinlock_t *root_lock = qdisc_lock(q);
3744 struct sk_buff *to_free = NULL;
3745 bool contended;
3746 int rc;
3747
3748 qdisc_calculate_pkt_len(skb, q);
3749
3750 if (q->flags & TCQ_F_NOLOCK) {
3751 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3752 qdisc_run(q);
3753
3754 if (unlikely(to_free))
3755 kfree_skb_list(to_free);
3756 return rc;
3757 }
3758
3759 /*
3760 * Heuristic to force contended enqueues to serialize on a
3761 * separate lock before trying to get qdisc main lock.
3762 * This permits qdisc->running owner to get the lock more
3763 * often and dequeue packets faster.
3764 */
3765 contended = qdisc_is_running(q);
3766 if (unlikely(contended))
3767 spin_lock(&q->busylock);
3768
3769 spin_lock(root_lock);
3770 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3771 __qdisc_drop(skb, &to_free);
3772 rc = NET_XMIT_DROP;
3773 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3774 qdisc_run_begin(q)) {
3775 /*
3776 * This is a work-conserving queue; there are no old skbs
3777 * waiting to be sent out; and the qdisc is not running -
3778 * xmit the skb directly.
3779 */
3780
3781 qdisc_bstats_update(q, skb);
3782
3783 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3784 if (unlikely(contended)) {
3785 spin_unlock(&q->busylock);
3786 contended = false;
3787 }
3788 __qdisc_run(q);
3789 }
3790
3791 qdisc_run_end(q);
3792 rc = NET_XMIT_SUCCESS;
3793 } else {
3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 if (qdisc_run_begin(q)) {
3796 if (unlikely(contended)) {
3797 spin_unlock(&q->busylock);
3798 contended = false;
3799 }
3800 __qdisc_run(q);
3801 qdisc_run_end(q);
3802 }
3803 }
3804 spin_unlock(root_lock);
3805 if (unlikely(to_free))
3806 kfree_skb_list(to_free);
3807 if (unlikely(contended))
3808 spin_unlock(&q->busylock);
3809 return rc;
3810}
3811
3812#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3813static void skb_update_prio(struct sk_buff *skb)
3814{
3815 const struct netprio_map *map;
3816 const struct sock *sk;
3817 unsigned int prioidx;
3818
3819 if (skb->priority)
3820 return;
3821 map = rcu_dereference_bh(skb->dev->priomap);
3822 if (!map)
3823 return;
3824 sk = skb_to_full_sk(skb);
3825 if (!sk)
3826 return;
3827
3828 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3829
3830 if (prioidx < map->priomap_len)
3831 skb->priority = map->priomap[prioidx];
3832}
3833#else
3834#define skb_update_prio(skb)
3835#endif
3836
3837/**
3838 * dev_loopback_xmit - loop back @skb
3839 * @net: network namespace this loopback is happening in
3840 * @sk: sk needed to be a netfilter okfn
3841 * @skb: buffer to transmit
3842 */
3843int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3844{
3845 skb_reset_mac_header(skb);
3846 __skb_pull(skb, skb_network_offset(skb));
3847 skb->pkt_type = PACKET_LOOPBACK;
3848 skb->ip_summed = CHECKSUM_UNNECESSARY;
3849 WARN_ON(!skb_dst(skb));
3850 skb_dst_force(skb);
3851 netif_rx_ni(skb);
3852 return 0;
3853}
3854EXPORT_SYMBOL(dev_loopback_xmit);
3855
3856#ifdef CONFIG_NET_EGRESS
3857static struct sk_buff *
3858sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3859{
3860 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3861 struct tcf_result cl_res;
3862
3863 if (!miniq)
3864 return skb;
3865
3866 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3867 mini_qdisc_bstats_cpu_update(miniq, skb);
3868
3869 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3870 case TC_ACT_OK:
3871 case TC_ACT_RECLASSIFY:
3872 skb->tc_index = TC_H_MIN(cl_res.classid);
3873 break;
3874 case TC_ACT_SHOT:
3875 mini_qdisc_qstats_cpu_drop(miniq);
3876 *ret = NET_XMIT_DROP;
3877 kfree_skb(skb);
3878 return NULL;
3879 case TC_ACT_STOLEN:
3880 case TC_ACT_QUEUED:
3881 case TC_ACT_TRAP:
3882 *ret = NET_XMIT_SUCCESS;
3883 consume_skb(skb);
3884 return NULL;
3885 case TC_ACT_REDIRECT:
3886 /* No need to push/pop skb's mac_header here on egress! */
3887 skb_do_redirect(skb);
3888 *ret = NET_XMIT_SUCCESS;
3889 return NULL;
3890 default:
3891 break;
3892 }
3893
3894 return skb;
3895}
3896#endif /* CONFIG_NET_EGRESS */
3897
3898#ifdef CONFIG_XPS
3899static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900 struct xps_dev_maps *dev_maps, unsigned int tci)
3901{
3902 struct xps_map *map;
3903 int queue_index = -1;
3904
3905 if (dev->num_tc) {
3906 tci *= dev->num_tc;
3907 tci += netdev_get_prio_tc_map(dev, skb->priority);
3908 }
3909
3910 map = rcu_dereference(dev_maps->attr_map[tci]);
3911 if (map) {
3912 if (map->len == 1)
3913 queue_index = map->queues[0];
3914 else
3915 queue_index = map->queues[reciprocal_scale(
3916 skb_get_hash(skb), map->len)];
3917 if (unlikely(queue_index >= dev->real_num_tx_queues))
3918 queue_index = -1;
3919 }
3920 return queue_index;
3921}
3922#endif
3923
3924static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925 struct sk_buff *skb)
3926{
3927#ifdef CONFIG_XPS
3928 struct xps_dev_maps *dev_maps;
3929 struct sock *sk = skb->sk;
3930 int queue_index = -1;
3931
3932 if (!static_key_false(&xps_needed))
3933 return -1;
3934
3935 rcu_read_lock();
3936 if (!static_key_false(&xps_rxqs_needed))
3937 goto get_cpus_map;
3938
3939 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3940 if (dev_maps) {
3941 int tci = sk_rx_queue_get(sk);
3942
3943 if (tci >= 0 && tci < dev->num_rx_queues)
3944 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3945 tci);
3946 }
3947
3948get_cpus_map:
3949 if (queue_index < 0) {
3950 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3951 if (dev_maps) {
3952 unsigned int tci = skb->sender_cpu - 1;
3953
3954 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3955 tci);
3956 }
3957 }
3958 rcu_read_unlock();
3959
3960 return queue_index;
3961#else
3962 return -1;
3963#endif
3964}
3965
3966u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3967 struct net_device *sb_dev)
3968{
3969 return 0;
3970}
3971EXPORT_SYMBOL(dev_pick_tx_zero);
3972
3973u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3974 struct net_device *sb_dev)
3975{
3976 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3977}
3978EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3979
3980u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
3982{
3983 struct sock *sk = skb->sk;
3984 int queue_index = sk_tx_queue_get(sk);
3985
3986 sb_dev = sb_dev ? : dev;
3987
3988 if (queue_index < 0 || skb->ooo_okay ||
3989 queue_index >= dev->real_num_tx_queues) {
3990 int new_index = get_xps_queue(dev, sb_dev, skb);
3991
3992 if (new_index < 0)
3993 new_index = skb_tx_hash(dev, sb_dev, skb);
3994
3995 if (queue_index != new_index && sk &&
3996 sk_fullsock(sk) &&
3997 rcu_access_pointer(sk->sk_dst_cache))
3998 sk_tx_queue_set(sk, new_index);
3999
4000 queue_index = new_index;
4001 }
4002
4003 return queue_index;
4004}
4005EXPORT_SYMBOL(netdev_pick_tx);
4006
4007struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008 struct sk_buff *skb,
4009 struct net_device *sb_dev)
4010{
4011 int queue_index = 0;
4012
4013#ifdef CONFIG_XPS
4014 u32 sender_cpu = skb->sender_cpu - 1;
4015
4016 if (sender_cpu >= (u32)NR_CPUS)
4017 skb->sender_cpu = raw_smp_processor_id() + 1;
4018#endif
4019
4020 if (dev->real_num_tx_queues != 1) {
4021 const struct net_device_ops *ops = dev->netdev_ops;
4022
4023 if (ops->ndo_select_queue)
4024 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4025 else
4026 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4027
4028 queue_index = netdev_cap_txqueue(dev, queue_index);
4029 }
4030
4031 skb_set_queue_mapping(skb, queue_index);
4032 return netdev_get_tx_queue(dev, queue_index);
4033}
4034
4035/**
4036 * __dev_queue_xmit - transmit a buffer
4037 * @skb: buffer to transmit
4038 * @sb_dev: suboordinate device used for L2 forwarding offload
4039 *
4040 * Queue a buffer for transmission to a network device. The caller must
4041 * have set the device and priority and built the buffer before calling
4042 * this function. The function can be called from an interrupt.
4043 *
4044 * A negative errno code is returned on a failure. A success does not
4045 * guarantee the frame will be transmitted as it may be dropped due
4046 * to congestion or traffic shaping.
4047 *
4048 * -----------------------------------------------------------------------------------
4049 * I notice this method can also return errors from the queue disciplines,
4050 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4051 * be positive.
4052 *
4053 * Regardless of the return value, the skb is consumed, so it is currently
4054 * difficult to retry a send to this method. (You can bump the ref count
4055 * before sending to hold a reference for retry if you are careful.)
4056 *
4057 * When calling this method, interrupts MUST be enabled. This is because
4058 * the BH enable code must have IRQs enabled so that it will not deadlock.
4059 * --BLG
4060 */
4061static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4062{
4063 struct net_device *dev = skb->dev;
4064 struct netdev_queue *txq;
4065 struct Qdisc *q;
4066 int rc = -ENOMEM;
4067 bool again = false;
4068
4069 skb_reset_mac_header(skb);
4070
4071 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4073
4074 /* Disable soft irqs for various locks below. Also
4075 * stops preemption for RCU.
4076 */
4077 rcu_read_lock_bh();
4078
4079 skb_update_prio(skb);
4080
4081 qdisc_pkt_len_init(skb);
4082#ifdef CONFIG_NET_CLS_ACT
4083 skb->tc_at_ingress = 0;
4084# ifdef CONFIG_NET_EGRESS
4085 if (static_branch_unlikely(&egress_needed_key)) {
4086 skb = sch_handle_egress(skb, &rc, dev);
4087 if (!skb)
4088 goto out;
4089 }
4090# endif
4091#endif
4092 /* If device/qdisc don't need skb->dst, release it right now while
4093 * its hot in this cpu cache.
4094 */
4095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4096 skb_dst_drop(skb);
4097 else
4098 skb_dst_force(skb);
4099
4100 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4101 q = rcu_dereference_bh(txq->qdisc);
4102
4103 trace_net_dev_queue(skb);
4104 if (q->enqueue) {
4105 rc = __dev_xmit_skb(skb, q, dev, txq);
4106 goto out;
4107 }
4108
4109 /* The device has no queue. Common case for software devices:
4110 * loopback, all the sorts of tunnels...
4111
4112 * Really, it is unlikely that netif_tx_lock protection is necessary
4113 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4114 * counters.)
4115 * However, it is possible, that they rely on protection
4116 * made by us here.
4117
4118 * Check this and shot the lock. It is not prone from deadlocks.
4119 *Either shot noqueue qdisc, it is even simpler 8)
4120 */
4121 if (dev->flags & IFF_UP) {
4122 int cpu = smp_processor_id(); /* ok because BHs are off */
4123
4124 if (txq->xmit_lock_owner != cpu) {
4125 if (dev_xmit_recursion())
4126 goto recursion_alert;
4127
4128 skb = validate_xmit_skb(skb, dev, &again);
4129 if (!skb)
4130 goto out;
4131
4132 HARD_TX_LOCK(dev, txq, cpu);
4133
4134 if (!netif_xmit_stopped(txq)) {
4135 dev_xmit_recursion_inc();
4136 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 dev_xmit_recursion_dec();
4138 if (dev_xmit_complete(rc)) {
4139 HARD_TX_UNLOCK(dev, txq);
4140 goto out;
4141 }
4142 }
4143 HARD_TX_UNLOCK(dev, txq);
4144 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 dev->name);
4146 } else {
4147 /* Recursion is detected! It is possible,
4148 * unfortunately
4149 */
4150recursion_alert:
4151 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 dev->name);
4153 }
4154 }
4155
4156 rc = -ENETDOWN;
4157 rcu_read_unlock_bh();
4158
4159 atomic_long_inc(&dev->tx_dropped);
4160 kfree_skb_list(skb);
4161 return rc;
4162out:
4163 rcu_read_unlock_bh();
4164 return rc;
4165}
4166
4167int dev_queue_xmit(struct sk_buff *skb)
4168{
4169 return __dev_queue_xmit(skb, NULL);
4170}
4171EXPORT_SYMBOL(dev_queue_xmit);
4172
4173int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174{
4175 return __dev_queue_xmit(skb, sb_dev);
4176}
4177EXPORT_SYMBOL(dev_queue_xmit_accel);
4178
4179int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180{
4181 struct net_device *dev = skb->dev;
4182 struct sk_buff *orig_skb = skb;
4183 struct netdev_queue *txq;
4184 int ret = NETDEV_TX_BUSY;
4185 bool again = false;
4186
4187 if (unlikely(!netif_running(dev) ||
4188 !netif_carrier_ok(dev)))
4189 goto drop;
4190
4191 skb = validate_xmit_skb_list(skb, dev, &again);
4192 if (skb != orig_skb)
4193 goto drop;
4194
4195 skb_set_queue_mapping(skb, queue_id);
4196 txq = skb_get_tx_queue(dev, skb);
4197
4198 local_bh_disable();
4199
4200 dev_xmit_recursion_inc();
4201 HARD_TX_LOCK(dev, txq, smp_processor_id());
4202 if (!netif_xmit_frozen_or_drv_stopped(txq))
4203 ret = netdev_start_xmit(skb, dev, txq, false);
4204 HARD_TX_UNLOCK(dev, txq);
4205 dev_xmit_recursion_dec();
4206
4207 local_bh_enable();
4208
4209 if (!dev_xmit_complete(ret))
4210 kfree_skb(skb);
4211
4212 return ret;
4213drop:
4214 atomic_long_inc(&dev->tx_dropped);
4215 kfree_skb_list(skb);
4216 return NET_XMIT_DROP;
4217}
4218EXPORT_SYMBOL(dev_direct_xmit);
4219
4220/*************************************************************************
4221 * Receiver routines
4222 *************************************************************************/
4223
4224int netdev_max_backlog __read_mostly = 1000;
4225EXPORT_SYMBOL(netdev_max_backlog);
4226
4227int netdev_tstamp_prequeue __read_mostly = 1;
4228int netdev_budget __read_mostly = 300;
4229/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4231int weight_p __read_mostly = 64; /* old backlog weight */
4232int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4233int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4234int dev_rx_weight __read_mostly = 64;
4235int dev_tx_weight __read_mostly = 64;
4236/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237int gro_normal_batch __read_mostly = 8;
4238
4239/* Called with irq disabled */
4240static inline void ____napi_schedule(struct softnet_data *sd,
4241 struct napi_struct *napi)
4242{
4243 list_add_tail(&napi->poll_list, &sd->poll_list);
4244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4245}
4246
4247#ifdef CONFIG_RPS
4248
4249/* One global table that all flow-based protocols share. */
4250struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4251EXPORT_SYMBOL(rps_sock_flow_table);
4252u32 rps_cpu_mask __read_mostly;
4253EXPORT_SYMBOL(rps_cpu_mask);
4254
4255struct static_key_false rps_needed __read_mostly;
4256EXPORT_SYMBOL(rps_needed);
4257struct static_key_false rfs_needed __read_mostly;
4258EXPORT_SYMBOL(rfs_needed);
4259
4260static struct rps_dev_flow *
4261set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262 struct rps_dev_flow *rflow, u16 next_cpu)
4263{
4264 if (next_cpu < nr_cpu_ids) {
4265#ifdef CONFIG_RFS_ACCEL
4266 struct netdev_rx_queue *rxqueue;
4267 struct rps_dev_flow_table *flow_table;
4268 struct rps_dev_flow *old_rflow;
4269 u32 flow_id;
4270 u16 rxq_index;
4271 int rc;
4272
4273 /* Should we steer this flow to a different hardware queue? */
4274 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275 !(dev->features & NETIF_F_NTUPLE))
4276 goto out;
4277 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278 if (rxq_index == skb_get_rx_queue(skb))
4279 goto out;
4280
4281 rxqueue = dev->_rx + rxq_index;
4282 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4283 if (!flow_table)
4284 goto out;
4285 flow_id = skb_get_hash(skb) & flow_table->mask;
4286 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287 rxq_index, flow_id);
4288 if (rc < 0)
4289 goto out;
4290 old_rflow = rflow;
4291 rflow = &flow_table->flows[flow_id];
4292 rflow->filter = rc;
4293 if (old_rflow->filter == rflow->filter)
4294 old_rflow->filter = RPS_NO_FILTER;
4295 out:
4296#endif
4297 rflow->last_qtail =
4298 per_cpu(softnet_data, next_cpu).input_queue_head;
4299 }
4300
4301 rflow->cpu = next_cpu;
4302 return rflow;
4303}
4304
4305/*
4306 * get_rps_cpu is called from netif_receive_skb and returns the target
4307 * CPU from the RPS map of the receiving queue for a given skb.
4308 * rcu_read_lock must be held on entry.
4309 */
4310static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 struct rps_dev_flow **rflowp)
4312{
4313 const struct rps_sock_flow_table *sock_flow_table;
4314 struct netdev_rx_queue *rxqueue = dev->_rx;
4315 struct rps_dev_flow_table *flow_table;
4316 struct rps_map *map;
4317 int cpu = -1;
4318 u32 tcpu;
4319 u32 hash;
4320
4321 if (skb_rx_queue_recorded(skb)) {
4322 u16 index = skb_get_rx_queue(skb);
4323
4324 if (unlikely(index >= dev->real_num_rx_queues)) {
4325 WARN_ONCE(dev->real_num_rx_queues > 1,
4326 "%s received packet on queue %u, but number "
4327 "of RX queues is %u\n",
4328 dev->name, index, dev->real_num_rx_queues);
4329 goto done;
4330 }
4331 rxqueue += index;
4332 }
4333
4334 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4335
4336 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4337 map = rcu_dereference(rxqueue->rps_map);
4338 if (!flow_table && !map)
4339 goto done;
4340
4341 skb_reset_network_header(skb);
4342 hash = skb_get_hash(skb);
4343 if (!hash)
4344 goto done;
4345
4346 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347 if (flow_table && sock_flow_table) {
4348 struct rps_dev_flow *rflow;
4349 u32 next_cpu;
4350 u32 ident;
4351
4352 /* First check into global flow table if there is a match */
4353 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354 if ((ident ^ hash) & ~rps_cpu_mask)
4355 goto try_rps;
4356
4357 next_cpu = ident & rps_cpu_mask;
4358
4359 /* OK, now we know there is a match,
4360 * we can look at the local (per receive queue) flow table
4361 */
4362 rflow = &flow_table->flows[hash & flow_table->mask];
4363 tcpu = rflow->cpu;
4364
4365 /*
4366 * If the desired CPU (where last recvmsg was done) is
4367 * different from current CPU (one in the rx-queue flow
4368 * table entry), switch if one of the following holds:
4369 * - Current CPU is unset (>= nr_cpu_ids).
4370 * - Current CPU is offline.
4371 * - The current CPU's queue tail has advanced beyond the
4372 * last packet that was enqueued using this table entry.
4373 * This guarantees that all previous packets for the flow
4374 * have been dequeued, thus preserving in order delivery.
4375 */
4376 if (unlikely(tcpu != next_cpu) &&
4377 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4378 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4379 rflow->last_qtail)) >= 0)) {
4380 tcpu = next_cpu;
4381 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4382 }
4383
4384 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4385 *rflowp = rflow;
4386 cpu = tcpu;
4387 goto done;
4388 }
4389 }
4390
4391try_rps:
4392
4393 if (map) {
4394 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4395 if (cpu_online(tcpu)) {
4396 cpu = tcpu;
4397 goto done;
4398 }
4399 }
4400
4401done:
4402 return cpu;
4403}
4404
4405#ifdef CONFIG_RFS_ACCEL
4406
4407/**
4408 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409 * @dev: Device on which the filter was set
4410 * @rxq_index: RX queue index
4411 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4413 *
4414 * Drivers that implement ndo_rx_flow_steer() should periodically call
4415 * this function for each installed filter and remove the filters for
4416 * which it returns %true.
4417 */
4418bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419 u32 flow_id, u16 filter_id)
4420{
4421 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422 struct rps_dev_flow_table *flow_table;
4423 struct rps_dev_flow *rflow;
4424 bool expire = true;
4425 unsigned int cpu;
4426
4427 rcu_read_lock();
4428 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429 if (flow_table && flow_id <= flow_table->mask) {
4430 rflow = &flow_table->flows[flow_id];
4431 cpu = READ_ONCE(rflow->cpu);
4432 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4433 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434 rflow->last_qtail) <
4435 (int)(10 * flow_table->mask)))
4436 expire = false;
4437 }
4438 rcu_read_unlock();
4439 return expire;
4440}
4441EXPORT_SYMBOL(rps_may_expire_flow);
4442
4443#endif /* CONFIG_RFS_ACCEL */
4444
4445/* Called from hardirq (IPI) context */
4446static void rps_trigger_softirq(void *data)
4447{
4448 struct softnet_data *sd = data;
4449
4450 ____napi_schedule(sd, &sd->backlog);
4451 sd->received_rps++;
4452}
4453
4454#endif /* CONFIG_RPS */
4455
4456/*
4457 * Check if this softnet_data structure is another cpu one
4458 * If yes, queue it to our IPI list and return 1
4459 * If no, return 0
4460 */
4461static int rps_ipi_queued(struct softnet_data *sd)
4462{
4463#ifdef CONFIG_RPS
4464 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4465
4466 if (sd != mysd) {
4467 sd->rps_ipi_next = mysd->rps_ipi_list;
4468 mysd->rps_ipi_list = sd;
4469
4470 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471 return 1;
4472 }
4473#endif /* CONFIG_RPS */
4474 return 0;
4475}
4476
4477#ifdef CONFIG_NET_FLOW_LIMIT
4478int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4479#endif
4480
4481static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4482{
4483#ifdef CONFIG_NET_FLOW_LIMIT
4484 struct sd_flow_limit *fl;
4485 struct softnet_data *sd;
4486 unsigned int old_flow, new_flow;
4487
4488 if (qlen < (netdev_max_backlog >> 1))
4489 return false;
4490
4491 sd = this_cpu_ptr(&softnet_data);
4492
4493 rcu_read_lock();
4494 fl = rcu_dereference(sd->flow_limit);
4495 if (fl) {
4496 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4497 old_flow = fl->history[fl->history_head];
4498 fl->history[fl->history_head] = new_flow;
4499
4500 fl->history_head++;
4501 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4502
4503 if (likely(fl->buckets[old_flow]))
4504 fl->buckets[old_flow]--;
4505
4506 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4507 fl->count++;
4508 rcu_read_unlock();
4509 return true;
4510 }
4511 }
4512 rcu_read_unlock();
4513#endif
4514 return false;
4515}
4516
4517/*
4518 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519 * queue (may be a remote CPU queue).
4520 */
4521static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522 unsigned int *qtail)
4523{
4524 struct softnet_data *sd;
4525 unsigned long flags;
4526 unsigned int qlen;
4527
4528 sd = &per_cpu(softnet_data, cpu);
4529
4530 local_irq_save(flags);
4531
4532 rps_lock(sd);
4533 if (!netif_running(skb->dev))
4534 goto drop;
4535 qlen = skb_queue_len(&sd->input_pkt_queue);
4536 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4537 if (qlen) {
4538enqueue:
4539 __skb_queue_tail(&sd->input_pkt_queue, skb);
4540 input_queue_tail_incr_save(sd, qtail);
4541 rps_unlock(sd);
4542 local_irq_restore(flags);
4543 return NET_RX_SUCCESS;
4544 }
4545
4546 /* Schedule NAPI for backlog device
4547 * We can use non atomic operation since we own the queue lock
4548 */
4549 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4550 if (!rps_ipi_queued(sd))
4551 ____napi_schedule(sd, &sd->backlog);
4552 }
4553 goto enqueue;
4554 }
4555
4556drop:
4557 sd->dropped++;
4558 rps_unlock(sd);
4559
4560 local_irq_restore(flags);
4561
4562 atomic_long_inc(&skb->dev->rx_dropped);
4563 kfree_skb(skb);
4564 return NET_RX_DROP;
4565}
4566
4567static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4568{
4569 struct net_device *dev = skb->dev;
4570 struct netdev_rx_queue *rxqueue;
4571
4572 rxqueue = dev->_rx;
4573
4574 if (skb_rx_queue_recorded(skb)) {
4575 u16 index = skb_get_rx_queue(skb);
4576
4577 if (unlikely(index >= dev->real_num_rx_queues)) {
4578 WARN_ONCE(dev->real_num_rx_queues > 1,
4579 "%s received packet on queue %u, but number "
4580 "of RX queues is %u\n",
4581 dev->name, index, dev->real_num_rx_queues);
4582
4583 return rxqueue; /* Return first rxqueue */
4584 }
4585 rxqueue += index;
4586 }
4587 return rxqueue;
4588}
4589
4590static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4591 struct xdp_buff *xdp,
4592 struct bpf_prog *xdp_prog)
4593{
4594 struct netdev_rx_queue *rxqueue;
4595 void *orig_data, *orig_data_end;
4596 u32 metalen, act = XDP_DROP;
4597 __be16 orig_eth_type;
4598 struct ethhdr *eth;
4599 bool orig_bcast;
4600 int hlen, off;
4601 u32 mac_len;
4602
4603 /* Reinjected packets coming from act_mirred or similar should
4604 * not get XDP generic processing.
4605 */
4606 if (skb_is_redirected(skb))
4607 return XDP_PASS;
4608
4609 /* XDP packets must be linear and must have sufficient headroom
4610 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611 * native XDP provides, thus we need to do it here as well.
4612 */
4613 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4614 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616 int troom = skb->tail + skb->data_len - skb->end;
4617
4618 /* In case we have to go down the path and also linearize,
4619 * then lets do the pskb_expand_head() work just once here.
4620 */
4621 if (pskb_expand_head(skb,
4622 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4624 goto do_drop;
4625 if (skb_linearize(skb))
4626 goto do_drop;
4627 }
4628
4629 /* The XDP program wants to see the packet starting at the MAC
4630 * header.
4631 */
4632 mac_len = skb->data - skb_mac_header(skb);
4633 hlen = skb_headlen(skb) + mac_len;
4634 xdp->data = skb->data - mac_len;
4635 xdp->data_meta = xdp->data;
4636 xdp->data_end = xdp->data + hlen;
4637 xdp->data_hard_start = skb->data - skb_headroom(skb);
4638
4639 /* SKB "head" area always have tailroom for skb_shared_info */
4640 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4642
4643 orig_data_end = xdp->data_end;
4644 orig_data = xdp->data;
4645 eth = (struct ethhdr *)xdp->data;
4646 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647 orig_eth_type = eth->h_proto;
4648
4649 rxqueue = netif_get_rxqueue(skb);
4650 xdp->rxq = &rxqueue->xdp_rxq;
4651
4652 act = bpf_prog_run_xdp(xdp_prog, xdp);
4653
4654 /* check if bpf_xdp_adjust_head was used */
4655 off = xdp->data - orig_data;
4656 if (off) {
4657 if (off > 0)
4658 __skb_pull(skb, off);
4659 else if (off < 0)
4660 __skb_push(skb, -off);
4661
4662 skb->mac_header += off;
4663 skb_reset_network_header(skb);
4664 }
4665
4666 /* check if bpf_xdp_adjust_tail was used */
4667 off = xdp->data_end - orig_data_end;
4668 if (off != 0) {
4669 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4670 skb->len += off; /* positive on grow, negative on shrink */
4671 }
4672
4673 /* check if XDP changed eth hdr such SKB needs update */
4674 eth = (struct ethhdr *)xdp->data;
4675 if ((orig_eth_type != eth->h_proto) ||
4676 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677 __skb_push(skb, ETH_HLEN);
4678 skb->protocol = eth_type_trans(skb, skb->dev);
4679 }
4680
4681 switch (act) {
4682 case XDP_REDIRECT:
4683 case XDP_TX:
4684 __skb_push(skb, mac_len);
4685 break;
4686 case XDP_PASS:
4687 metalen = xdp->data - xdp->data_meta;
4688 if (metalen)
4689 skb_metadata_set(skb, metalen);
4690 break;
4691 default:
4692 bpf_warn_invalid_xdp_action(act);
4693 fallthrough;
4694 case XDP_ABORTED:
4695 trace_xdp_exception(skb->dev, xdp_prog, act);
4696 fallthrough;
4697 case XDP_DROP:
4698 do_drop:
4699 kfree_skb(skb);
4700 break;
4701 }
4702
4703 return act;
4704}
4705
4706/* When doing generic XDP we have to bypass the qdisc layer and the
4707 * network taps in order to match in-driver-XDP behavior.
4708 */
4709void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4710{
4711 struct net_device *dev = skb->dev;
4712 struct netdev_queue *txq;
4713 bool free_skb = true;
4714 int cpu, rc;
4715
4716 txq = netdev_core_pick_tx(dev, skb, NULL);
4717 cpu = smp_processor_id();
4718 HARD_TX_LOCK(dev, txq, cpu);
4719 if (!netif_xmit_stopped(txq)) {
4720 rc = netdev_start_xmit(skb, dev, txq, 0);
4721 if (dev_xmit_complete(rc))
4722 free_skb = false;
4723 }
4724 HARD_TX_UNLOCK(dev, txq);
4725 if (free_skb) {
4726 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4727 kfree_skb(skb);
4728 }
4729}
4730
4731static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4732
4733int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4734{
4735 if (xdp_prog) {
4736 struct xdp_buff xdp;
4737 u32 act;
4738 int err;
4739
4740 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4741 if (act != XDP_PASS) {
4742 switch (act) {
4743 case XDP_REDIRECT:
4744 err = xdp_do_generic_redirect(skb->dev, skb,
4745 &xdp, xdp_prog);
4746 if (err)
4747 goto out_redir;
4748 break;
4749 case XDP_TX:
4750 generic_xdp_tx(skb, xdp_prog);
4751 break;
4752 }
4753 return XDP_DROP;
4754 }
4755 }
4756 return XDP_PASS;
4757out_redir:
4758 kfree_skb(skb);
4759 return XDP_DROP;
4760}
4761EXPORT_SYMBOL_GPL(do_xdp_generic);
4762
4763static int netif_rx_internal(struct sk_buff *skb)
4764{
4765 int ret;
4766
4767 net_timestamp_check(netdev_tstamp_prequeue, skb);
4768
4769 trace_netif_rx(skb);
4770
4771#ifdef CONFIG_RPS
4772 if (static_branch_unlikely(&rps_needed)) {
4773 struct rps_dev_flow voidflow, *rflow = &voidflow;
4774 int cpu;
4775
4776 preempt_disable();
4777 rcu_read_lock();
4778
4779 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4780 if (cpu < 0)
4781 cpu = smp_processor_id();
4782
4783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4784
4785 rcu_read_unlock();
4786 preempt_enable();
4787 } else
4788#endif
4789 {
4790 unsigned int qtail;
4791
4792 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4793 put_cpu();
4794 }
4795 return ret;
4796}
4797
4798/**
4799 * netif_rx - post buffer to the network code
4800 * @skb: buffer to post
4801 *
4802 * This function receives a packet from a device driver and queues it for
4803 * the upper (protocol) levels to process. It always succeeds. The buffer
4804 * may be dropped during processing for congestion control or by the
4805 * protocol layers.
4806 *
4807 * return values:
4808 * NET_RX_SUCCESS (no congestion)
4809 * NET_RX_DROP (packet was dropped)
4810 *
4811 */
4812
4813int netif_rx(struct sk_buff *skb)
4814{
4815 int ret;
4816
4817 trace_netif_rx_entry(skb);
4818
4819 ret = netif_rx_internal(skb);
4820 trace_netif_rx_exit(ret);
4821
4822 return ret;
4823}
4824EXPORT_SYMBOL(netif_rx);
4825
4826int netif_rx_ni(struct sk_buff *skb)
4827{
4828 int err;
4829
4830 trace_netif_rx_ni_entry(skb);
4831
4832 preempt_disable();
4833 err = netif_rx_internal(skb);
4834 if (local_softirq_pending())
4835 do_softirq();
4836 preempt_enable();
4837 trace_netif_rx_ni_exit(err);
4838
4839 return err;
4840}
4841EXPORT_SYMBOL(netif_rx_ni);
4842
4843static __latent_entropy void net_tx_action(struct softirq_action *h)
4844{
4845 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4846
4847 if (sd->completion_queue) {
4848 struct sk_buff *clist;
4849
4850 local_irq_disable();
4851 clist = sd->completion_queue;
4852 sd->completion_queue = NULL;
4853 local_irq_enable();
4854
4855 while (clist) {
4856 struct sk_buff *skb = clist;
4857
4858 clist = clist->next;
4859
4860 WARN_ON(refcount_read(&skb->users));
4861 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862 trace_consume_skb(skb);
4863 else
4864 trace_kfree_skb(skb, net_tx_action);
4865
4866 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4867 __kfree_skb(skb);
4868 else
4869 __kfree_skb_defer(skb);
4870 }
4871
4872 __kfree_skb_flush();
4873 }
4874
4875 if (sd->output_queue) {
4876 struct Qdisc *head;
4877
4878 local_irq_disable();
4879 head = sd->output_queue;
4880 sd->output_queue = NULL;
4881 sd->output_queue_tailp = &sd->output_queue;
4882 local_irq_enable();
4883
4884 while (head) {
4885 struct Qdisc *q = head;
4886 spinlock_t *root_lock = NULL;
4887
4888 head = head->next_sched;
4889
4890 if (!(q->flags & TCQ_F_NOLOCK)) {
4891 root_lock = qdisc_lock(q);
4892 spin_lock(root_lock);
4893 }
4894 /* We need to make sure head->next_sched is read
4895 * before clearing __QDISC_STATE_SCHED
4896 */
4897 smp_mb__before_atomic();
4898 clear_bit(__QDISC_STATE_SCHED, &q->state);
4899 qdisc_run(q);
4900 if (root_lock)
4901 spin_unlock(root_lock);
4902 }
4903 }
4904
4905 xfrm_dev_backlog(sd);
4906}
4907
4908#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4909/* This hook is defined here for ATM LANE */
4910int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911 unsigned char *addr) __read_mostly;
4912EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4913#endif
4914
4915static inline struct sk_buff *
4916sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917 struct net_device *orig_dev)
4918{
4919#ifdef CONFIG_NET_CLS_ACT
4920 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4921 struct tcf_result cl_res;
4922
4923 /* If there's at least one ingress present somewhere (so
4924 * we get here via enabled static key), remaining devices
4925 * that are not configured with an ingress qdisc will bail
4926 * out here.
4927 */
4928 if (!miniq)
4929 return skb;
4930
4931 if (*pt_prev) {
4932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4933 *pt_prev = NULL;
4934 }
4935
4936 qdisc_skb_cb(skb)->pkt_len = skb->len;
4937 skb->tc_at_ingress = 1;
4938 mini_qdisc_bstats_cpu_update(miniq, skb);
4939
4940 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4941 &cl_res, false)) {
4942 case TC_ACT_OK:
4943 case TC_ACT_RECLASSIFY:
4944 skb->tc_index = TC_H_MIN(cl_res.classid);
4945 break;
4946 case TC_ACT_SHOT:
4947 mini_qdisc_qstats_cpu_drop(miniq);
4948 kfree_skb(skb);
4949 return NULL;
4950 case TC_ACT_STOLEN:
4951 case TC_ACT_QUEUED:
4952 case TC_ACT_TRAP:
4953 consume_skb(skb);
4954 return NULL;
4955 case TC_ACT_REDIRECT:
4956 /* skb_mac_header check was done by cls/act_bpf, so
4957 * we can safely push the L2 header back before
4958 * redirecting to another netdev
4959 */
4960 __skb_push(skb, skb->mac_len);
4961 skb_do_redirect(skb);
4962 return NULL;
4963 case TC_ACT_CONSUMED:
4964 return NULL;
4965 default:
4966 break;
4967 }
4968#endif /* CONFIG_NET_CLS_ACT */
4969 return skb;
4970}
4971
4972/**
4973 * netdev_is_rx_handler_busy - check if receive handler is registered
4974 * @dev: device to check
4975 *
4976 * Check if a receive handler is already registered for a given device.
4977 * Return true if there one.
4978 *
4979 * The caller must hold the rtnl_mutex.
4980 */
4981bool netdev_is_rx_handler_busy(struct net_device *dev)
4982{
4983 ASSERT_RTNL();
4984 return dev && rtnl_dereference(dev->rx_handler);
4985}
4986EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4987
4988/**
4989 * netdev_rx_handler_register - register receive handler
4990 * @dev: device to register a handler for
4991 * @rx_handler: receive handler to register
4992 * @rx_handler_data: data pointer that is used by rx handler
4993 *
4994 * Register a receive handler for a device. This handler will then be
4995 * called from __netif_receive_skb. A negative errno code is returned
4996 * on a failure.
4997 *
4998 * The caller must hold the rtnl_mutex.
4999 *
5000 * For a general description of rx_handler, see enum rx_handler_result.
5001 */
5002int netdev_rx_handler_register(struct net_device *dev,
5003 rx_handler_func_t *rx_handler,
5004 void *rx_handler_data)
5005{
5006 if (netdev_is_rx_handler_busy(dev))
5007 return -EBUSY;
5008
5009 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5010 return -EINVAL;
5011
5012 /* Note: rx_handler_data must be set before rx_handler */
5013 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5014 rcu_assign_pointer(dev->rx_handler, rx_handler);
5015
5016 return 0;
5017}
5018EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5019
5020/**
5021 * netdev_rx_handler_unregister - unregister receive handler
5022 * @dev: device to unregister a handler from
5023 *
5024 * Unregister a receive handler from a device.
5025 *
5026 * The caller must hold the rtnl_mutex.
5027 */
5028void netdev_rx_handler_unregister(struct net_device *dev)
5029{
5030
5031 ASSERT_RTNL();
5032 RCU_INIT_POINTER(dev->rx_handler, NULL);
5033 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034 * section has a guarantee to see a non NULL rx_handler_data
5035 * as well.
5036 */
5037 synchronize_net();
5038 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5039}
5040EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5041
5042/*
5043 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044 * the special handling of PFMEMALLOC skbs.
5045 */
5046static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5047{
5048 switch (skb->protocol) {
5049 case htons(ETH_P_ARP):
5050 case htons(ETH_P_IP):
5051 case htons(ETH_P_IPV6):
5052 case htons(ETH_P_8021Q):
5053 case htons(ETH_P_8021AD):
5054 return true;
5055 default:
5056 return false;
5057 }
5058}
5059
5060static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061 int *ret, struct net_device *orig_dev)
5062{
5063 if (nf_hook_ingress_active(skb)) {
5064 int ingress_retval;
5065
5066 if (*pt_prev) {
5067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5068 *pt_prev = NULL;
5069 }
5070
5071 rcu_read_lock();
5072 ingress_retval = nf_hook_ingress(skb);
5073 rcu_read_unlock();
5074 return ingress_retval;
5075 }
5076 return 0;
5077}
5078
5079static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5080 struct packet_type **ppt_prev)
5081{
5082 struct packet_type *ptype, *pt_prev;
5083 rx_handler_func_t *rx_handler;
5084 struct sk_buff *skb = *pskb;
5085 struct net_device *orig_dev;
5086 bool deliver_exact = false;
5087 int ret = NET_RX_DROP;
5088 __be16 type;
5089
5090 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5091
5092 trace_netif_receive_skb(skb);
5093
5094 orig_dev = skb->dev;
5095
5096 skb_reset_network_header(skb);
5097 if (!skb_transport_header_was_set(skb))
5098 skb_reset_transport_header(skb);
5099 skb_reset_mac_len(skb);
5100
5101 pt_prev = NULL;
5102
5103another_round:
5104 skb->skb_iif = skb->dev->ifindex;
5105
5106 __this_cpu_inc(softnet_data.processed);
5107
5108 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5109 int ret2;
5110
5111 preempt_disable();
5112 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5113 preempt_enable();
5114
5115 if (ret2 != XDP_PASS) {
5116 ret = NET_RX_DROP;
5117 goto out;
5118 }
5119 skb_reset_mac_len(skb);
5120 }
5121
5122 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124 skb = skb_vlan_untag(skb);
5125 if (unlikely(!skb))
5126 goto out;
5127 }
5128
5129 if (skb_skip_tc_classify(skb))
5130 goto skip_classify;
5131
5132 if (pfmemalloc)
5133 goto skip_taps;
5134
5135 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5136 if (pt_prev)
5137 ret = deliver_skb(skb, pt_prev, orig_dev);
5138 pt_prev = ptype;
5139 }
5140
5141 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5142 if (pt_prev)
5143 ret = deliver_skb(skb, pt_prev, orig_dev);
5144 pt_prev = ptype;
5145 }
5146
5147skip_taps:
5148#ifdef CONFIG_NET_INGRESS
5149 if (static_branch_unlikely(&ingress_needed_key)) {
5150 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5151 if (!skb)
5152 goto out;
5153
5154 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5155 goto out;
5156 }
5157#endif
5158 skb_reset_redirect(skb);
5159skip_classify:
5160 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5161 goto drop;
5162
5163 if (skb_vlan_tag_present(skb)) {
5164 if (pt_prev) {
5165 ret = deliver_skb(skb, pt_prev, orig_dev);
5166 pt_prev = NULL;
5167 }
5168 if (vlan_do_receive(&skb))
5169 goto another_round;
5170 else if (unlikely(!skb))
5171 goto out;
5172 }
5173
5174 rx_handler = rcu_dereference(skb->dev->rx_handler);
5175 if (rx_handler) {
5176 if (pt_prev) {
5177 ret = deliver_skb(skb, pt_prev, orig_dev);
5178 pt_prev = NULL;
5179 }
5180 switch (rx_handler(&skb)) {
5181 case RX_HANDLER_CONSUMED:
5182 ret = NET_RX_SUCCESS;
5183 goto out;
5184 case RX_HANDLER_ANOTHER:
5185 goto another_round;
5186 case RX_HANDLER_EXACT:
5187 deliver_exact = true;
5188 case RX_HANDLER_PASS:
5189 break;
5190 default:
5191 BUG();
5192 }
5193 }
5194
5195 if (unlikely(skb_vlan_tag_present(skb))) {
5196check_vlan_id:
5197 if (skb_vlan_tag_get_id(skb)) {
5198 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5199 * find vlan device.
5200 */
5201 skb->pkt_type = PACKET_OTHERHOST;
5202 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204 /* Outer header is 802.1P with vlan 0, inner header is
5205 * 802.1Q or 802.1AD and vlan_do_receive() above could
5206 * not find vlan dev for vlan id 0.
5207 */
5208 __vlan_hwaccel_clear_tag(skb);
5209 skb = skb_vlan_untag(skb);
5210 if (unlikely(!skb))
5211 goto out;
5212 if (vlan_do_receive(&skb))
5213 /* After stripping off 802.1P header with vlan 0
5214 * vlan dev is found for inner header.
5215 */
5216 goto another_round;
5217 else if (unlikely(!skb))
5218 goto out;
5219 else
5220 /* We have stripped outer 802.1P vlan 0 header.
5221 * But could not find vlan dev.
5222 * check again for vlan id to set OTHERHOST.
5223 */
5224 goto check_vlan_id;
5225 }
5226 /* Note: we might in the future use prio bits
5227 * and set skb->priority like in vlan_do_receive()
5228 * For the time being, just ignore Priority Code Point
5229 */
5230 __vlan_hwaccel_clear_tag(skb);
5231 }
5232
5233 type = skb->protocol;
5234
5235 /* deliver only exact match when indicated */
5236 if (likely(!deliver_exact)) {
5237 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 &ptype_base[ntohs(type) &
5239 PTYPE_HASH_MASK]);
5240 }
5241
5242 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243 &orig_dev->ptype_specific);
5244
5245 if (unlikely(skb->dev != orig_dev)) {
5246 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247 &skb->dev->ptype_specific);
5248 }
5249
5250 if (pt_prev) {
5251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5252 goto drop;
5253 *ppt_prev = pt_prev;
5254 } else {
5255drop:
5256 if (!deliver_exact)
5257 atomic_long_inc(&skb->dev->rx_dropped);
5258 else
5259 atomic_long_inc(&skb->dev->rx_nohandler);
5260 kfree_skb(skb);
5261 /* Jamal, now you will not able to escape explaining
5262 * me how you were going to use this. :-)
5263 */
5264 ret = NET_RX_DROP;
5265 }
5266
5267out:
5268 /* The invariant here is that if *ppt_prev is not NULL
5269 * then skb should also be non-NULL.
5270 *
5271 * Apparently *ppt_prev assignment above holds this invariant due to
5272 * skb dereferencing near it.
5273 */
5274 *pskb = skb;
5275 return ret;
5276}
5277
5278static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5279{
5280 struct net_device *orig_dev = skb->dev;
5281 struct packet_type *pt_prev = NULL;
5282 int ret;
5283
5284 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5285 if (pt_prev)
5286 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287 skb->dev, pt_prev, orig_dev);
5288 return ret;
5289}
5290
5291/**
5292 * netif_receive_skb_core - special purpose version of netif_receive_skb
5293 * @skb: buffer to process
5294 *
5295 * More direct receive version of netif_receive_skb(). It should
5296 * only be used by callers that have a need to skip RPS and Generic XDP.
5297 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5298 *
5299 * This function may only be called from softirq context and interrupts
5300 * should be enabled.
5301 *
5302 * Return values (usually ignored):
5303 * NET_RX_SUCCESS: no congestion
5304 * NET_RX_DROP: packet was dropped
5305 */
5306int netif_receive_skb_core(struct sk_buff *skb)
5307{
5308 int ret;
5309
5310 rcu_read_lock();
5311 ret = __netif_receive_skb_one_core(skb, false);
5312 rcu_read_unlock();
5313
5314 return ret;
5315}
5316EXPORT_SYMBOL(netif_receive_skb_core);
5317
5318static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319 struct packet_type *pt_prev,
5320 struct net_device *orig_dev)
5321{
5322 struct sk_buff *skb, *next;
5323
5324 if (!pt_prev)
5325 return;
5326 if (list_empty(head))
5327 return;
5328 if (pt_prev->list_func != NULL)
5329 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330 ip_list_rcv, head, pt_prev, orig_dev);
5331 else
5332 list_for_each_entry_safe(skb, next, head, list) {
5333 skb_list_del_init(skb);
5334 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5335 }
5336}
5337
5338static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5339{
5340 /* Fast-path assumptions:
5341 * - There is no RX handler.
5342 * - Only one packet_type matches.
5343 * If either of these fails, we will end up doing some per-packet
5344 * processing in-line, then handling the 'last ptype' for the whole
5345 * sublist. This can't cause out-of-order delivery to any single ptype,
5346 * because the 'last ptype' must be constant across the sublist, and all
5347 * other ptypes are handled per-packet.
5348 */
5349 /* Current (common) ptype of sublist */
5350 struct packet_type *pt_curr = NULL;
5351 /* Current (common) orig_dev of sublist */
5352 struct net_device *od_curr = NULL;
5353 struct list_head sublist;
5354 struct sk_buff *skb, *next;
5355
5356 INIT_LIST_HEAD(&sublist);
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 struct net_device *orig_dev = skb->dev;
5359 struct packet_type *pt_prev = NULL;
5360
5361 skb_list_del_init(skb);
5362 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5363 if (!pt_prev)
5364 continue;
5365 if (pt_curr != pt_prev || od_curr != orig_dev) {
5366 /* dispatch old sublist */
5367 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368 /* start new sublist */
5369 INIT_LIST_HEAD(&sublist);
5370 pt_curr = pt_prev;
5371 od_curr = orig_dev;
5372 }
5373 list_add_tail(&skb->list, &sublist);
5374 }
5375
5376 /* dispatch final sublist */
5377 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5378}
5379
5380static int __netif_receive_skb(struct sk_buff *skb)
5381{
5382 int ret;
5383
5384 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5385 unsigned int noreclaim_flag;
5386
5387 /*
5388 * PFMEMALLOC skbs are special, they should
5389 * - be delivered to SOCK_MEMALLOC sockets only
5390 * - stay away from userspace
5391 * - have bounded memory usage
5392 *
5393 * Use PF_MEMALLOC as this saves us from propagating the allocation
5394 * context down to all allocation sites.
5395 */
5396 noreclaim_flag = memalloc_noreclaim_save();
5397 ret = __netif_receive_skb_one_core(skb, true);
5398 memalloc_noreclaim_restore(noreclaim_flag);
5399 } else
5400 ret = __netif_receive_skb_one_core(skb, false);
5401
5402 return ret;
5403}
5404
5405static void __netif_receive_skb_list(struct list_head *head)
5406{
5407 unsigned long noreclaim_flag = 0;
5408 struct sk_buff *skb, *next;
5409 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5410
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413 struct list_head sublist;
5414
5415 /* Handle the previous sublist */
5416 list_cut_before(&sublist, head, &skb->list);
5417 if (!list_empty(&sublist))
5418 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5419 pfmemalloc = !pfmemalloc;
5420 /* See comments in __netif_receive_skb */
5421 if (pfmemalloc)
5422 noreclaim_flag = memalloc_noreclaim_save();
5423 else
5424 memalloc_noreclaim_restore(noreclaim_flag);
5425 }
5426 }
5427 /* Handle the remaining sublist */
5428 if (!list_empty(head))
5429 __netif_receive_skb_list_core(head, pfmemalloc);
5430 /* Restore pflags */
5431 if (pfmemalloc)
5432 memalloc_noreclaim_restore(noreclaim_flag);
5433}
5434
5435static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5436{
5437 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5438 struct bpf_prog *new = xdp->prog;
5439 int ret = 0;
5440
5441 if (new) {
5442 u32 i;
5443
5444 /* generic XDP does not work with DEVMAPs that can
5445 * have a bpf_prog installed on an entry
5446 */
5447 for (i = 0; i < new->aux->used_map_cnt; i++) {
5448 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5449 return -EINVAL;
5450 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5451 return -EINVAL;
5452 }
5453 }
5454
5455 switch (xdp->command) {
5456 case XDP_SETUP_PROG:
5457 rcu_assign_pointer(dev->xdp_prog, new);
5458 if (old)
5459 bpf_prog_put(old);
5460
5461 if (old && !new) {
5462 static_branch_dec(&generic_xdp_needed_key);
5463 } else if (new && !old) {
5464 static_branch_inc(&generic_xdp_needed_key);
5465 dev_disable_lro(dev);
5466 dev_disable_gro_hw(dev);
5467 }
5468 break;
5469
5470 default:
5471 ret = -EINVAL;
5472 break;
5473 }
5474
5475 return ret;
5476}
5477
5478static int netif_receive_skb_internal(struct sk_buff *skb)
5479{
5480 int ret;
5481
5482 net_timestamp_check(netdev_tstamp_prequeue, skb);
5483
5484 if (skb_defer_rx_timestamp(skb))
5485 return NET_RX_SUCCESS;
5486
5487 rcu_read_lock();
5488#ifdef CONFIG_RPS
5489 if (static_branch_unlikely(&rps_needed)) {
5490 struct rps_dev_flow voidflow, *rflow = &voidflow;
5491 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492
5493 if (cpu >= 0) {
5494 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5495 rcu_read_unlock();
5496 return ret;
5497 }
5498 }
5499#endif
5500 ret = __netif_receive_skb(skb);
5501 rcu_read_unlock();
5502 return ret;
5503}
5504
5505static void netif_receive_skb_list_internal(struct list_head *head)
5506{
5507 struct sk_buff *skb, *next;
5508 struct list_head sublist;
5509
5510 INIT_LIST_HEAD(&sublist);
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
5513 skb_list_del_init(skb);
5514 if (!skb_defer_rx_timestamp(skb))
5515 list_add_tail(&skb->list, &sublist);
5516 }
5517 list_splice_init(&sublist, head);
5518
5519 rcu_read_lock();
5520#ifdef CONFIG_RPS
5521 if (static_branch_unlikely(&rps_needed)) {
5522 list_for_each_entry_safe(skb, next, head, list) {
5523 struct rps_dev_flow voidflow, *rflow = &voidflow;
5524 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5525
5526 if (cpu >= 0) {
5527 /* Will be handled, remove from list */
5528 skb_list_del_init(skb);
5529 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5530 }
5531 }
5532 }
5533#endif
5534 __netif_receive_skb_list(head);
5535 rcu_read_unlock();
5536}
5537
5538/**
5539 * netif_receive_skb - process receive buffer from network
5540 * @skb: buffer to process
5541 *
5542 * netif_receive_skb() is the main receive data processing function.
5543 * It always succeeds. The buffer may be dropped during processing
5544 * for congestion control or by the protocol layers.
5545 *
5546 * This function may only be called from softirq context and interrupts
5547 * should be enabled.
5548 *
5549 * Return values (usually ignored):
5550 * NET_RX_SUCCESS: no congestion
5551 * NET_RX_DROP: packet was dropped
5552 */
5553int netif_receive_skb(struct sk_buff *skb)
5554{
5555 int ret;
5556
5557 trace_netif_receive_skb_entry(skb);
5558
5559 ret = netif_receive_skb_internal(skb);
5560 trace_netif_receive_skb_exit(ret);
5561
5562 return ret;
5563}
5564EXPORT_SYMBOL(netif_receive_skb);
5565
5566/**
5567 * netif_receive_skb_list - process many receive buffers from network
5568 * @head: list of skbs to process.
5569 *
5570 * Since return value of netif_receive_skb() is normally ignored, and
5571 * wouldn't be meaningful for a list, this function returns void.
5572 *
5573 * This function may only be called from softirq context and interrupts
5574 * should be enabled.
5575 */
5576void netif_receive_skb_list(struct list_head *head)
5577{
5578 struct sk_buff *skb;
5579
5580 if (list_empty(head))
5581 return;
5582 if (trace_netif_receive_skb_list_entry_enabled()) {
5583 list_for_each_entry(skb, head, list)
5584 trace_netif_receive_skb_list_entry(skb);
5585 }
5586 netif_receive_skb_list_internal(head);
5587 trace_netif_receive_skb_list_exit(0);
5588}
5589EXPORT_SYMBOL(netif_receive_skb_list);
5590
5591static DEFINE_PER_CPU(struct work_struct, flush_works);
5592
5593/* Network device is going away, flush any packets still pending */
5594static void flush_backlog(struct work_struct *work)
5595{
5596 struct sk_buff *skb, *tmp;
5597 struct softnet_data *sd;
5598
5599 local_bh_disable();
5600 sd = this_cpu_ptr(&softnet_data);
5601
5602 local_irq_disable();
5603 rps_lock(sd);
5604 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5605 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5606 __skb_unlink(skb, &sd->input_pkt_queue);
5607 dev_kfree_skb_irq(skb);
5608 input_queue_head_incr(sd);
5609 }
5610 }
5611 rps_unlock(sd);
5612 local_irq_enable();
5613
5614 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5615 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5616 __skb_unlink(skb, &sd->process_queue);
5617 kfree_skb(skb);
5618 input_queue_head_incr(sd);
5619 }
5620 }
5621 local_bh_enable();
5622}
5623
5624static void flush_all_backlogs(void)
5625{
5626 unsigned int cpu;
5627
5628 get_online_cpus();
5629
5630 for_each_online_cpu(cpu)
5631 queue_work_on(cpu, system_highpri_wq,
5632 per_cpu_ptr(&flush_works, cpu));
5633
5634 for_each_online_cpu(cpu)
5635 flush_work(per_cpu_ptr(&flush_works, cpu));
5636
5637 put_online_cpus();
5638}
5639
5640/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641static void gro_normal_list(struct napi_struct *napi)
5642{
5643 if (!napi->rx_count)
5644 return;
5645 netif_receive_skb_list_internal(&napi->rx_list);
5646 INIT_LIST_HEAD(&napi->rx_list);
5647 napi->rx_count = 0;
5648}
5649
5650/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651 * pass the whole batch up to the stack.
5652 */
5653static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5654{
5655 list_add_tail(&skb->list, &napi->rx_list);
5656 if (++napi->rx_count >= gro_normal_batch)
5657 gro_normal_list(napi);
5658}
5659
5660INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5662static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5663{
5664 struct packet_offload *ptype;
5665 __be16 type = skb->protocol;
5666 struct list_head *head = &offload_base;
5667 int err = -ENOENT;
5668
5669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5670
5671 if (NAPI_GRO_CB(skb)->count == 1) {
5672 skb_shinfo(skb)->gso_size = 0;
5673 goto out;
5674 }
5675
5676 rcu_read_lock();
5677 list_for_each_entry_rcu(ptype, head, list) {
5678 if (ptype->type != type || !ptype->callbacks.gro_complete)
5679 continue;
5680
5681 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682 ipv6_gro_complete, inet_gro_complete,
5683 skb, 0);
5684 break;
5685 }
5686 rcu_read_unlock();
5687
5688 if (err) {
5689 WARN_ON(&ptype->list == head);
5690 kfree_skb(skb);
5691 return NET_RX_SUCCESS;
5692 }
5693
5694out:
5695 gro_normal_one(napi, skb);
5696 return NET_RX_SUCCESS;
5697}
5698
5699static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5700 bool flush_old)
5701{
5702 struct list_head *head = &napi->gro_hash[index].list;
5703 struct sk_buff *skb, *p;
5704
5705 list_for_each_entry_safe_reverse(skb, p, head, list) {
5706 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5707 return;
5708 skb_list_del_init(skb);
5709 napi_gro_complete(napi, skb);
5710 napi->gro_hash[index].count--;
5711 }
5712
5713 if (!napi->gro_hash[index].count)
5714 __clear_bit(index, &napi->gro_bitmask);
5715}
5716
5717/* napi->gro_hash[].list contains packets ordered by age.
5718 * youngest packets at the head of it.
5719 * Complete skbs in reverse order to reduce latencies.
5720 */
5721void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5722{
5723 unsigned long bitmask = napi->gro_bitmask;
5724 unsigned int i, base = ~0U;
5725
5726 while ((i = ffs(bitmask)) != 0) {
5727 bitmask >>= i;
5728 base += i;
5729 __napi_gro_flush_chain(napi, base, flush_old);
5730 }
5731}
5732EXPORT_SYMBOL(napi_gro_flush);
5733
5734static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735 struct sk_buff *skb)
5736{
5737 unsigned int maclen = skb->dev->hard_header_len;
5738 u32 hash = skb_get_hash_raw(skb);
5739 struct list_head *head;
5740 struct sk_buff *p;
5741
5742 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5743 list_for_each_entry(p, head, list) {
5744 unsigned long diffs;
5745
5746 NAPI_GRO_CB(p)->flush = 0;
5747
5748 if (hash != skb_get_hash_raw(p)) {
5749 NAPI_GRO_CB(p)->same_flow = 0;
5750 continue;
5751 }
5752
5753 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5754 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755 if (skb_vlan_tag_present(p))
5756 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5757 diffs |= skb_metadata_dst_cmp(p, skb);
5758 diffs |= skb_metadata_differs(p, skb);
5759 if (maclen == ETH_HLEN)
5760 diffs |= compare_ether_header(skb_mac_header(p),
5761 skb_mac_header(skb));
5762 else if (!diffs)
5763 diffs = memcmp(skb_mac_header(p),
5764 skb_mac_header(skb),
5765 maclen);
5766 NAPI_GRO_CB(p)->same_flow = !diffs;
5767 }
5768
5769 return head;
5770}
5771
5772static void skb_gro_reset_offset(struct sk_buff *skb)
5773{
5774 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775 const skb_frag_t *frag0 = &pinfo->frags[0];
5776
5777 NAPI_GRO_CB(skb)->data_offset = 0;
5778 NAPI_GRO_CB(skb)->frag0 = NULL;
5779 NAPI_GRO_CB(skb)->frag0_len = 0;
5780
5781 if (!skb_headlen(skb) && pinfo->nr_frags &&
5782 !PageHighMem(skb_frag_page(frag0))) {
5783 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5784 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785 skb_frag_size(frag0),
5786 skb->end - skb->tail);
5787 }
5788}
5789
5790static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5791{
5792 struct skb_shared_info *pinfo = skb_shinfo(skb);
5793
5794 BUG_ON(skb->end - skb->tail < grow);
5795
5796 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5797
5798 skb->data_len -= grow;
5799 skb->tail += grow;
5800
5801 skb_frag_off_add(&pinfo->frags[0], grow);
5802 skb_frag_size_sub(&pinfo->frags[0], grow);
5803
5804 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805 skb_frag_unref(skb, 0);
5806 memmove(pinfo->frags, pinfo->frags + 1,
5807 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5808 }
5809}
5810
5811static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5812{
5813 struct sk_buff *oldest;
5814
5815 oldest = list_last_entry(head, struct sk_buff, list);
5816
5817 /* We are called with head length >= MAX_GRO_SKBS, so this is
5818 * impossible.
5819 */
5820 if (WARN_ON_ONCE(!oldest))
5821 return;
5822
5823 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5824 * SKB to the chain.
5825 */
5826 skb_list_del_init(oldest);
5827 napi_gro_complete(napi, oldest);
5828}
5829
5830INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5831 struct sk_buff *));
5832INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5833 struct sk_buff *));
5834static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5835{
5836 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5837 struct list_head *head = &offload_base;
5838 struct packet_offload *ptype;
5839 __be16 type = skb->protocol;
5840 struct list_head *gro_head;
5841 struct sk_buff *pp = NULL;
5842 enum gro_result ret;
5843 int same_flow;
5844 int grow;
5845
5846 if (netif_elide_gro(skb->dev))
5847 goto normal;
5848
5849 gro_head = gro_list_prepare(napi, skb);
5850
5851 rcu_read_lock();
5852 list_for_each_entry_rcu(ptype, head, list) {
5853 if (ptype->type != type || !ptype->callbacks.gro_receive)
5854 continue;
5855
5856 skb_set_network_header(skb, skb_gro_offset(skb));
5857 skb_reset_mac_len(skb);
5858 NAPI_GRO_CB(skb)->same_flow = 0;
5859 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5860 NAPI_GRO_CB(skb)->free = 0;
5861 NAPI_GRO_CB(skb)->encap_mark = 0;
5862 NAPI_GRO_CB(skb)->recursion_counter = 0;
5863 NAPI_GRO_CB(skb)->is_fou = 0;
5864 NAPI_GRO_CB(skb)->is_atomic = 1;
5865 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5866
5867 /* Setup for GRO checksum validation */
5868 switch (skb->ip_summed) {
5869 case CHECKSUM_COMPLETE:
5870 NAPI_GRO_CB(skb)->csum = skb->csum;
5871 NAPI_GRO_CB(skb)->csum_valid = 1;
5872 NAPI_GRO_CB(skb)->csum_cnt = 0;
5873 break;
5874 case CHECKSUM_UNNECESSARY:
5875 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876 NAPI_GRO_CB(skb)->csum_valid = 0;
5877 break;
5878 default:
5879 NAPI_GRO_CB(skb)->csum_cnt = 0;
5880 NAPI_GRO_CB(skb)->csum_valid = 0;
5881 }
5882
5883 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884 ipv6_gro_receive, inet_gro_receive,
5885 gro_head, skb);
5886 break;
5887 }
5888 rcu_read_unlock();
5889
5890 if (&ptype->list == head)
5891 goto normal;
5892
5893 if (PTR_ERR(pp) == -EINPROGRESS) {
5894 ret = GRO_CONSUMED;
5895 goto ok;
5896 }
5897
5898 same_flow = NAPI_GRO_CB(skb)->same_flow;
5899 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5900
5901 if (pp) {
5902 skb_list_del_init(pp);
5903 napi_gro_complete(napi, pp);
5904 napi->gro_hash[hash].count--;
5905 }
5906
5907 if (same_flow)
5908 goto ok;
5909
5910 if (NAPI_GRO_CB(skb)->flush)
5911 goto normal;
5912
5913 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5914 gro_flush_oldest(napi, gro_head);
5915 } else {
5916 napi->gro_hash[hash].count++;
5917 }
5918 NAPI_GRO_CB(skb)->count = 1;
5919 NAPI_GRO_CB(skb)->age = jiffies;
5920 NAPI_GRO_CB(skb)->last = skb;
5921 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5922 list_add(&skb->list, gro_head);
5923 ret = GRO_HELD;
5924
5925pull:
5926 grow = skb_gro_offset(skb) - skb_headlen(skb);
5927 if (grow > 0)
5928 gro_pull_from_frag0(skb, grow);
5929ok:
5930 if (napi->gro_hash[hash].count) {
5931 if (!test_bit(hash, &napi->gro_bitmask))
5932 __set_bit(hash, &napi->gro_bitmask);
5933 } else if (test_bit(hash, &napi->gro_bitmask)) {
5934 __clear_bit(hash, &napi->gro_bitmask);
5935 }
5936
5937 return ret;
5938
5939normal:
5940 ret = GRO_NORMAL;
5941 goto pull;
5942}
5943
5944struct packet_offload *gro_find_receive_by_type(__be16 type)
5945{
5946 struct list_head *offload_head = &offload_base;
5947 struct packet_offload *ptype;
5948
5949 list_for_each_entry_rcu(ptype, offload_head, list) {
5950 if (ptype->type != type || !ptype->callbacks.gro_receive)
5951 continue;
5952 return ptype;
5953 }
5954 return NULL;
5955}
5956EXPORT_SYMBOL(gro_find_receive_by_type);
5957
5958struct packet_offload *gro_find_complete_by_type(__be16 type)
5959{
5960 struct list_head *offload_head = &offload_base;
5961 struct packet_offload *ptype;
5962
5963 list_for_each_entry_rcu(ptype, offload_head, list) {
5964 if (ptype->type != type || !ptype->callbacks.gro_complete)
5965 continue;
5966 return ptype;
5967 }
5968 return NULL;
5969}
5970EXPORT_SYMBOL(gro_find_complete_by_type);
5971
5972static void napi_skb_free_stolen_head(struct sk_buff *skb)
5973{
5974 skb_dst_drop(skb);
5975 skb_ext_put(skb);
5976 kmem_cache_free(skbuff_head_cache, skb);
5977}
5978
5979static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980 struct sk_buff *skb,
5981 gro_result_t ret)
5982{
5983 switch (ret) {
5984 case GRO_NORMAL:
5985 gro_normal_one(napi, skb);
5986 break;
5987
5988 case GRO_DROP:
5989 kfree_skb(skb);
5990 break;
5991
5992 case GRO_MERGED_FREE:
5993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994 napi_skb_free_stolen_head(skb);
5995 else
5996 __kfree_skb(skb);
5997 break;
5998
5999 case GRO_HELD:
6000 case GRO_MERGED:
6001 case GRO_CONSUMED:
6002 break;
6003 }
6004
6005 return ret;
6006}
6007
6008gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6009{
6010 gro_result_t ret;
6011
6012 skb_mark_napi_id(skb, napi);
6013 trace_napi_gro_receive_entry(skb);
6014
6015 skb_gro_reset_offset(skb);
6016
6017 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6018 trace_napi_gro_receive_exit(ret);
6019
6020 return ret;
6021}
6022EXPORT_SYMBOL(napi_gro_receive);
6023
6024static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6025{
6026 if (unlikely(skb->pfmemalloc)) {
6027 consume_skb(skb);
6028 return;
6029 }
6030 __skb_pull(skb, skb_headlen(skb));
6031 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6033 __vlan_hwaccel_clear_tag(skb);
6034 skb->dev = napi->dev;
6035 skb->skb_iif = 0;
6036
6037 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038 skb->pkt_type = PACKET_HOST;
6039
6040 skb->encapsulation = 0;
6041 skb_shinfo(skb)->gso_type = 0;
6042 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6043 skb_ext_reset(skb);
6044
6045 napi->skb = skb;
6046}
6047
6048struct sk_buff *napi_get_frags(struct napi_struct *napi)
6049{
6050 struct sk_buff *skb = napi->skb;
6051
6052 if (!skb) {
6053 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6054 if (skb) {
6055 napi->skb = skb;
6056 skb_mark_napi_id(skb, napi);
6057 }
6058 }
6059 return skb;
6060}
6061EXPORT_SYMBOL(napi_get_frags);
6062
6063static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064 struct sk_buff *skb,
6065 gro_result_t ret)
6066{
6067 switch (ret) {
6068 case GRO_NORMAL:
6069 case GRO_HELD:
6070 __skb_push(skb, ETH_HLEN);
6071 skb->protocol = eth_type_trans(skb, skb->dev);
6072 if (ret == GRO_NORMAL)
6073 gro_normal_one(napi, skb);
6074 break;
6075
6076 case GRO_DROP:
6077 napi_reuse_skb(napi, skb);
6078 break;
6079
6080 case GRO_MERGED_FREE:
6081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082 napi_skb_free_stolen_head(skb);
6083 else
6084 napi_reuse_skb(napi, skb);
6085 break;
6086
6087 case GRO_MERGED:
6088 case GRO_CONSUMED:
6089 break;
6090 }
6091
6092 return ret;
6093}
6094
6095/* Upper GRO stack assumes network header starts at gro_offset=0
6096 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097 * We copy ethernet header into skb->data to have a common layout.
6098 */
6099static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6100{
6101 struct sk_buff *skb = napi->skb;
6102 const struct ethhdr *eth;
6103 unsigned int hlen = sizeof(*eth);
6104
6105 napi->skb = NULL;
6106
6107 skb_reset_mac_header(skb);
6108 skb_gro_reset_offset(skb);
6109
6110 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111 eth = skb_gro_header_slow(skb, hlen, 0);
6112 if (unlikely(!eth)) {
6113 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114 __func__, napi->dev->name);
6115 napi_reuse_skb(napi, skb);
6116 return NULL;
6117 }
6118 } else {
6119 eth = (const struct ethhdr *)skb->data;
6120 gro_pull_from_frag0(skb, hlen);
6121 NAPI_GRO_CB(skb)->frag0 += hlen;
6122 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6123 }
6124 __skb_pull(skb, hlen);
6125
6126 /*
6127 * This works because the only protocols we care about don't require
6128 * special handling.
6129 * We'll fix it up properly in napi_frags_finish()
6130 */
6131 skb->protocol = eth->h_proto;
6132
6133 return skb;
6134}
6135
6136gro_result_t napi_gro_frags(struct napi_struct *napi)
6137{
6138 gro_result_t ret;
6139 struct sk_buff *skb = napi_frags_skb(napi);
6140
6141 if (!skb)
6142 return GRO_DROP;
6143
6144 trace_napi_gro_frags_entry(skb);
6145
6146 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147 trace_napi_gro_frags_exit(ret);
6148
6149 return ret;
6150}
6151EXPORT_SYMBOL(napi_gro_frags);
6152
6153/* Compute the checksum from gro_offset and return the folded value
6154 * after adding in any pseudo checksum.
6155 */
6156__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6157{
6158 __wsum wsum;
6159 __sum16 sum;
6160
6161 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6162
6163 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6165 /* See comments in __skb_checksum_complete(). */
6166 if (likely(!sum)) {
6167 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168 !skb->csum_complete_sw)
6169 netdev_rx_csum_fault(skb->dev, skb);
6170 }
6171
6172 NAPI_GRO_CB(skb)->csum = wsum;
6173 NAPI_GRO_CB(skb)->csum_valid = 1;
6174
6175 return sum;
6176}
6177EXPORT_SYMBOL(__skb_gro_checksum_complete);
6178
6179static void net_rps_send_ipi(struct softnet_data *remsd)
6180{
6181#ifdef CONFIG_RPS
6182 while (remsd) {
6183 struct softnet_data *next = remsd->rps_ipi_next;
6184
6185 if (cpu_online(remsd->cpu))
6186 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6187 remsd = next;
6188 }
6189#endif
6190}
6191
6192/*
6193 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6194 * Note: called with local irq disabled, but exits with local irq enabled.
6195 */
6196static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6197{
6198#ifdef CONFIG_RPS
6199 struct softnet_data *remsd = sd->rps_ipi_list;
6200
6201 if (remsd) {
6202 sd->rps_ipi_list = NULL;
6203
6204 local_irq_enable();
6205
6206 /* Send pending IPI's to kick RPS processing on remote cpus. */
6207 net_rps_send_ipi(remsd);
6208 } else
6209#endif
6210 local_irq_enable();
6211}
6212
6213static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6214{
6215#ifdef CONFIG_RPS
6216 return sd->rps_ipi_list != NULL;
6217#else
6218 return false;
6219#endif
6220}
6221
6222static int process_backlog(struct napi_struct *napi, int quota)
6223{
6224 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6225 bool again = true;
6226 int work = 0;
6227
6228 /* Check if we have pending ipi, its better to send them now,
6229 * not waiting net_rx_action() end.
6230 */
6231 if (sd_has_rps_ipi_waiting(sd)) {
6232 local_irq_disable();
6233 net_rps_action_and_irq_enable(sd);
6234 }
6235
6236 napi->weight = dev_rx_weight;
6237 while (again) {
6238 struct sk_buff *skb;
6239
6240 while ((skb = __skb_dequeue(&sd->process_queue))) {
6241 rcu_read_lock();
6242 __netif_receive_skb(skb);
6243 rcu_read_unlock();
6244 input_queue_head_incr(sd);
6245 if (++work >= quota)
6246 return work;
6247
6248 }
6249
6250 local_irq_disable();
6251 rps_lock(sd);
6252 if (skb_queue_empty(&sd->input_pkt_queue)) {
6253 /*
6254 * Inline a custom version of __napi_complete().
6255 * only current cpu owns and manipulates this napi,
6256 * and NAPI_STATE_SCHED is the only possible flag set
6257 * on backlog.
6258 * We can use a plain write instead of clear_bit(),
6259 * and we dont need an smp_mb() memory barrier.
6260 */
6261 napi->state = 0;
6262 again = false;
6263 } else {
6264 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265 &sd->process_queue);
6266 }
6267 rps_unlock(sd);
6268 local_irq_enable();
6269 }
6270
6271 return work;
6272}
6273
6274/**
6275 * __napi_schedule - schedule for receive
6276 * @n: entry to schedule
6277 *
6278 * The entry's receive function will be scheduled to run.
6279 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6280 */
6281void __napi_schedule(struct napi_struct *n)
6282{
6283 unsigned long flags;
6284
6285 local_irq_save(flags);
6286 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6287 local_irq_restore(flags);
6288}
6289EXPORT_SYMBOL(__napi_schedule);
6290
6291/**
6292 * napi_schedule_prep - check if napi can be scheduled
6293 * @n: napi context
6294 *
6295 * Test if NAPI routine is already running, and if not mark
6296 * it as running. This is used as a condition variable
6297 * insure only one NAPI poll instance runs. We also make
6298 * sure there is no pending NAPI disable.
6299 */
6300bool napi_schedule_prep(struct napi_struct *n)
6301{
6302 unsigned long val, new;
6303
6304 do {
6305 val = READ_ONCE(n->state);
6306 if (unlikely(val & NAPIF_STATE_DISABLE))
6307 return false;
6308 new = val | NAPIF_STATE_SCHED;
6309
6310 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6311 * This was suggested by Alexander Duyck, as compiler
6312 * emits better code than :
6313 * if (val & NAPIF_STATE_SCHED)
6314 * new |= NAPIF_STATE_MISSED;
6315 */
6316 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6317 NAPIF_STATE_MISSED;
6318 } while (cmpxchg(&n->state, val, new) != val);
6319
6320 return !(val & NAPIF_STATE_SCHED);
6321}
6322EXPORT_SYMBOL(napi_schedule_prep);
6323
6324/**
6325 * __napi_schedule_irqoff - schedule for receive
6326 * @n: entry to schedule
6327 *
6328 * Variant of __napi_schedule() assuming hard irqs are masked
6329 */
6330void __napi_schedule_irqoff(struct napi_struct *n)
6331{
6332 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6333}
6334EXPORT_SYMBOL(__napi_schedule_irqoff);
6335
6336bool napi_complete_done(struct napi_struct *n, int work_done)
6337{
6338 unsigned long flags, val, new, timeout = 0;
6339 bool ret = true;
6340
6341 /*
6342 * 1) Don't let napi dequeue from the cpu poll list
6343 * just in case its running on a different cpu.
6344 * 2) If we are busy polling, do nothing here, we have
6345 * the guarantee we will be called later.
6346 */
6347 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348 NAPIF_STATE_IN_BUSY_POLL)))
6349 return false;
6350
6351 if (work_done) {
6352 if (n->gro_bitmask)
6353 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6355 }
6356 if (n->defer_hard_irqs_count > 0) {
6357 n->defer_hard_irqs_count--;
6358 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359 if (timeout)
6360 ret = false;
6361 }
6362 if (n->gro_bitmask) {
6363 /* When the NAPI instance uses a timeout and keeps postponing
6364 * it, we need to bound somehow the time packets are kept in
6365 * the GRO layer
6366 */
6367 napi_gro_flush(n, !!timeout);
6368 }
6369
6370 gro_normal_list(n);
6371
6372 if (unlikely(!list_empty(&n->poll_list))) {
6373 /* If n->poll_list is not empty, we need to mask irqs */
6374 local_irq_save(flags);
6375 list_del_init(&n->poll_list);
6376 local_irq_restore(flags);
6377 }
6378
6379 do {
6380 val = READ_ONCE(n->state);
6381
6382 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6383
6384 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6385
6386 /* If STATE_MISSED was set, leave STATE_SCHED set,
6387 * because we will call napi->poll() one more time.
6388 * This C code was suggested by Alexander Duyck to help gcc.
6389 */
6390 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6391 NAPIF_STATE_SCHED;
6392 } while (cmpxchg(&n->state, val, new) != val);
6393
6394 if (unlikely(val & NAPIF_STATE_MISSED)) {
6395 __napi_schedule(n);
6396 return false;
6397 }
6398
6399 if (timeout)
6400 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401 HRTIMER_MODE_REL_PINNED);
6402 return ret;
6403}
6404EXPORT_SYMBOL(napi_complete_done);
6405
6406/* must be called under rcu_read_lock(), as we dont take a reference */
6407static struct napi_struct *napi_by_id(unsigned int napi_id)
6408{
6409 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410 struct napi_struct *napi;
6411
6412 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413 if (napi->napi_id == napi_id)
6414 return napi;
6415
6416 return NULL;
6417}
6418
6419#if defined(CONFIG_NET_RX_BUSY_POLL)
6420
6421#define BUSY_POLL_BUDGET 8
6422
6423static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6424{
6425 int rc;
6426
6427 /* Busy polling means there is a high chance device driver hard irq
6428 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429 * set in napi_schedule_prep().
6430 * Since we are about to call napi->poll() once more, we can safely
6431 * clear NAPI_STATE_MISSED.
6432 *
6433 * Note: x86 could use a single "lock and ..." instruction
6434 * to perform these two clear_bit()
6435 */
6436 clear_bit(NAPI_STATE_MISSED, &napi->state);
6437 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6438
6439 local_bh_disable();
6440
6441 /* All we really want here is to re-enable device interrupts.
6442 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6443 */
6444 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6445 /* We can't gro_normal_list() here, because napi->poll() might have
6446 * rearmed the napi (napi_complete_done()) in which case it could
6447 * already be running on another CPU.
6448 */
6449 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6450 netpoll_poll_unlock(have_poll_lock);
6451 if (rc == BUSY_POLL_BUDGET) {
6452 /* As the whole budget was spent, we still own the napi so can
6453 * safely handle the rx_list.
6454 */
6455 gro_normal_list(napi);
6456 __napi_schedule(napi);
6457 }
6458 local_bh_enable();
6459}
6460
6461void napi_busy_loop(unsigned int napi_id,
6462 bool (*loop_end)(void *, unsigned long),
6463 void *loop_end_arg)
6464{
6465 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6466 int (*napi_poll)(struct napi_struct *napi, int budget);
6467 void *have_poll_lock = NULL;
6468 struct napi_struct *napi;
6469
6470restart:
6471 napi_poll = NULL;
6472
6473 rcu_read_lock();
6474
6475 napi = napi_by_id(napi_id);
6476 if (!napi)
6477 goto out;
6478
6479 preempt_disable();
6480 for (;;) {
6481 int work = 0;
6482
6483 local_bh_disable();
6484 if (!napi_poll) {
6485 unsigned long val = READ_ONCE(napi->state);
6486
6487 /* If multiple threads are competing for this napi,
6488 * we avoid dirtying napi->state as much as we can.
6489 */
6490 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491 NAPIF_STATE_IN_BUSY_POLL))
6492 goto count;
6493 if (cmpxchg(&napi->state, val,
6494 val | NAPIF_STATE_IN_BUSY_POLL |
6495 NAPIF_STATE_SCHED) != val)
6496 goto count;
6497 have_poll_lock = netpoll_poll_lock(napi);
6498 napi_poll = napi->poll;
6499 }
6500 work = napi_poll(napi, BUSY_POLL_BUDGET);
6501 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6502 gro_normal_list(napi);
6503count:
6504 if (work > 0)
6505 __NET_ADD_STATS(dev_net(napi->dev),
6506 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6507 local_bh_enable();
6508
6509 if (!loop_end || loop_end(loop_end_arg, start_time))
6510 break;
6511
6512 if (unlikely(need_resched())) {
6513 if (napi_poll)
6514 busy_poll_stop(napi, have_poll_lock);
6515 preempt_enable();
6516 rcu_read_unlock();
6517 cond_resched();
6518 if (loop_end(loop_end_arg, start_time))
6519 return;
6520 goto restart;
6521 }
6522 cpu_relax();
6523 }
6524 if (napi_poll)
6525 busy_poll_stop(napi, have_poll_lock);
6526 preempt_enable();
6527out:
6528 rcu_read_unlock();
6529}
6530EXPORT_SYMBOL(napi_busy_loop);
6531
6532#endif /* CONFIG_NET_RX_BUSY_POLL */
6533
6534static void napi_hash_add(struct napi_struct *napi)
6535{
6536 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6538 return;
6539
6540 spin_lock(&napi_hash_lock);
6541
6542 /* 0..NR_CPUS range is reserved for sender_cpu use */
6543 do {
6544 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545 napi_gen_id = MIN_NAPI_ID;
6546 } while (napi_by_id(napi_gen_id));
6547 napi->napi_id = napi_gen_id;
6548
6549 hlist_add_head_rcu(&napi->napi_hash_node,
6550 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6551
6552 spin_unlock(&napi_hash_lock);
6553}
6554
6555/* Warning : caller is responsible to make sure rcu grace period
6556 * is respected before freeing memory containing @napi
6557 */
6558bool napi_hash_del(struct napi_struct *napi)
6559{
6560 bool rcu_sync_needed = false;
6561
6562 spin_lock(&napi_hash_lock);
6563
6564 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6565 rcu_sync_needed = true;
6566 hlist_del_rcu(&napi->napi_hash_node);
6567 }
6568 spin_unlock(&napi_hash_lock);
6569 return rcu_sync_needed;
6570}
6571EXPORT_SYMBOL_GPL(napi_hash_del);
6572
6573static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6574{
6575 struct napi_struct *napi;
6576
6577 napi = container_of(timer, struct napi_struct, timer);
6578
6579 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6580 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6581 */
6582 if (!napi_disable_pending(napi) &&
6583 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6584 __napi_schedule_irqoff(napi);
6585
6586 return HRTIMER_NORESTART;
6587}
6588
6589static void init_gro_hash(struct napi_struct *napi)
6590{
6591 int i;
6592
6593 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6594 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6595 napi->gro_hash[i].count = 0;
6596 }
6597 napi->gro_bitmask = 0;
6598}
6599
6600void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6601 int (*poll)(struct napi_struct *, int), int weight)
6602{
6603 INIT_LIST_HEAD(&napi->poll_list);
6604 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6605 napi->timer.function = napi_watchdog;
6606 init_gro_hash(napi);
6607 napi->skb = NULL;
6608 INIT_LIST_HEAD(&napi->rx_list);
6609 napi->rx_count = 0;
6610 napi->poll = poll;
6611 if (weight > NAPI_POLL_WEIGHT)
6612 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6613 weight);
6614 napi->weight = weight;
6615 napi->dev = dev;
6616#ifdef CONFIG_NETPOLL
6617 napi->poll_owner = -1;
6618#endif
6619 set_bit(NAPI_STATE_SCHED, &napi->state);
6620 set_bit(NAPI_STATE_NPSVC, &napi->state);
6621 list_add_rcu(&napi->dev_list, &dev->napi_list);
6622 napi_hash_add(napi);
6623}
6624EXPORT_SYMBOL(netif_napi_add);
6625
6626void napi_disable(struct napi_struct *n)
6627{
6628 might_sleep();
6629 set_bit(NAPI_STATE_DISABLE, &n->state);
6630
6631 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6632 msleep(1);
6633 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6634 msleep(1);
6635
6636 hrtimer_cancel(&n->timer);
6637
6638 clear_bit(NAPI_STATE_DISABLE, &n->state);
6639}
6640EXPORT_SYMBOL(napi_disable);
6641
6642static void flush_gro_hash(struct napi_struct *napi)
6643{
6644 int i;
6645
6646 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6647 struct sk_buff *skb, *n;
6648
6649 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6650 kfree_skb(skb);
6651 napi->gro_hash[i].count = 0;
6652 }
6653}
6654
6655/* Must be called in process context */
6656void netif_napi_del(struct napi_struct *napi)
6657{
6658 might_sleep();
6659 if (napi_hash_del(napi))
6660 synchronize_net();
6661 list_del_init(&napi->dev_list);
6662 napi_free_frags(napi);
6663
6664 flush_gro_hash(napi);
6665 napi->gro_bitmask = 0;
6666}
6667EXPORT_SYMBOL(netif_napi_del);
6668
6669static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6670{
6671 void *have;
6672 int work, weight;
6673
6674 list_del_init(&n->poll_list);
6675
6676 have = netpoll_poll_lock(n);
6677
6678 weight = n->weight;
6679
6680 /* This NAPI_STATE_SCHED test is for avoiding a race
6681 * with netpoll's poll_napi(). Only the entity which
6682 * obtains the lock and sees NAPI_STATE_SCHED set will
6683 * actually make the ->poll() call. Therefore we avoid
6684 * accidentally calling ->poll() when NAPI is not scheduled.
6685 */
6686 work = 0;
6687 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6688 work = n->poll(n, weight);
6689 trace_napi_poll(n, work, weight);
6690 }
6691
6692 if (unlikely(work > weight))
6693 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6694 n->poll, work, weight);
6695
6696 if (likely(work < weight))
6697 goto out_unlock;
6698
6699 /* Drivers must not modify the NAPI state if they
6700 * consume the entire weight. In such cases this code
6701 * still "owns" the NAPI instance and therefore can
6702 * move the instance around on the list at-will.
6703 */
6704 if (unlikely(napi_disable_pending(n))) {
6705 napi_complete(n);
6706 goto out_unlock;
6707 }
6708
6709 if (n->gro_bitmask) {
6710 /* flush too old packets
6711 * If HZ < 1000, flush all packets.
6712 */
6713 napi_gro_flush(n, HZ >= 1000);
6714 }
6715
6716 gro_normal_list(n);
6717
6718 /* Some drivers may have called napi_schedule
6719 * prior to exhausting their budget.
6720 */
6721 if (unlikely(!list_empty(&n->poll_list))) {
6722 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6723 n->dev ? n->dev->name : "backlog");
6724 goto out_unlock;
6725 }
6726
6727 list_add_tail(&n->poll_list, repoll);
6728
6729out_unlock:
6730 netpoll_poll_unlock(have);
6731
6732 return work;
6733}
6734
6735static __latent_entropy void net_rx_action(struct softirq_action *h)
6736{
6737 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738 unsigned long time_limit = jiffies +
6739 usecs_to_jiffies(netdev_budget_usecs);
6740 int budget = netdev_budget;
6741 LIST_HEAD(list);
6742 LIST_HEAD(repoll);
6743
6744 local_irq_disable();
6745 list_splice_init(&sd->poll_list, &list);
6746 local_irq_enable();
6747
6748 for (;;) {
6749 struct napi_struct *n;
6750
6751 if (list_empty(&list)) {
6752 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6753 goto out;
6754 break;
6755 }
6756
6757 n = list_first_entry(&list, struct napi_struct, poll_list);
6758 budget -= napi_poll(n, &repoll);
6759
6760 /* If softirq window is exhausted then punt.
6761 * Allow this to run for 2 jiffies since which will allow
6762 * an average latency of 1.5/HZ.
6763 */
6764 if (unlikely(budget <= 0 ||
6765 time_after_eq(jiffies, time_limit))) {
6766 sd->time_squeeze++;
6767 break;
6768 }
6769 }
6770
6771 local_irq_disable();
6772
6773 list_splice_tail_init(&sd->poll_list, &list);
6774 list_splice_tail(&repoll, &list);
6775 list_splice(&list, &sd->poll_list);
6776 if (!list_empty(&sd->poll_list))
6777 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6778
6779 net_rps_action_and_irq_enable(sd);
6780out:
6781 __kfree_skb_flush();
6782}
6783
6784struct netdev_adjacent {
6785 struct net_device *dev;
6786
6787 /* upper master flag, there can only be one master device per list */
6788 bool master;
6789
6790 /* lookup ignore flag */
6791 bool ignore;
6792
6793 /* counter for the number of times this device was added to us */
6794 u16 ref_nr;
6795
6796 /* private field for the users */
6797 void *private;
6798
6799 struct list_head list;
6800 struct rcu_head rcu;
6801};
6802
6803static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804 struct list_head *adj_list)
6805{
6806 struct netdev_adjacent *adj;
6807
6808 list_for_each_entry(adj, adj_list, list) {
6809 if (adj->dev == adj_dev)
6810 return adj;
6811 }
6812 return NULL;
6813}
6814
6815static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6816 struct netdev_nested_priv *priv)
6817{
6818 struct net_device *dev = (struct net_device *)priv->data;
6819
6820 return upper_dev == dev;
6821}
6822
6823/**
6824 * netdev_has_upper_dev - Check if device is linked to an upper device
6825 * @dev: device
6826 * @upper_dev: upper device to check
6827 *
6828 * Find out if a device is linked to specified upper device and return true
6829 * in case it is. Note that this checks only immediate upper device,
6830 * not through a complete stack of devices. The caller must hold the RTNL lock.
6831 */
6832bool netdev_has_upper_dev(struct net_device *dev,
6833 struct net_device *upper_dev)
6834{
6835 struct netdev_nested_priv priv = {
6836 .data = (void *)upper_dev,
6837 };
6838
6839 ASSERT_RTNL();
6840
6841 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6842 &priv);
6843}
6844EXPORT_SYMBOL(netdev_has_upper_dev);
6845
6846/**
6847 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6848 * @dev: device
6849 * @upper_dev: upper device to check
6850 *
6851 * Find out if a device is linked to specified upper device and return true
6852 * in case it is. Note that this checks the entire upper device chain.
6853 * The caller must hold rcu lock.
6854 */
6855
6856bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6857 struct net_device *upper_dev)
6858{
6859 struct netdev_nested_priv priv = {
6860 .data = (void *)upper_dev,
6861 };
6862
6863 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864 &priv);
6865}
6866EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6867
6868/**
6869 * netdev_has_any_upper_dev - Check if device is linked to some device
6870 * @dev: device
6871 *
6872 * Find out if a device is linked to an upper device and return true in case
6873 * it is. The caller must hold the RTNL lock.
6874 */
6875bool netdev_has_any_upper_dev(struct net_device *dev)
6876{
6877 ASSERT_RTNL();
6878
6879 return !list_empty(&dev->adj_list.upper);
6880}
6881EXPORT_SYMBOL(netdev_has_any_upper_dev);
6882
6883/**
6884 * netdev_master_upper_dev_get - Get master upper device
6885 * @dev: device
6886 *
6887 * Find a master upper device and return pointer to it or NULL in case
6888 * it's not there. The caller must hold the RTNL lock.
6889 */
6890struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6891{
6892 struct netdev_adjacent *upper;
6893
6894 ASSERT_RTNL();
6895
6896 if (list_empty(&dev->adj_list.upper))
6897 return NULL;
6898
6899 upper = list_first_entry(&dev->adj_list.upper,
6900 struct netdev_adjacent, list);
6901 if (likely(upper->master))
6902 return upper->dev;
6903 return NULL;
6904}
6905EXPORT_SYMBOL(netdev_master_upper_dev_get);
6906
6907static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6908{
6909 struct netdev_adjacent *upper;
6910
6911 ASSERT_RTNL();
6912
6913 if (list_empty(&dev->adj_list.upper))
6914 return NULL;
6915
6916 upper = list_first_entry(&dev->adj_list.upper,
6917 struct netdev_adjacent, list);
6918 if (likely(upper->master) && !upper->ignore)
6919 return upper->dev;
6920 return NULL;
6921}
6922
6923/**
6924 * netdev_has_any_lower_dev - Check if device is linked to some device
6925 * @dev: device
6926 *
6927 * Find out if a device is linked to a lower device and return true in case
6928 * it is. The caller must hold the RTNL lock.
6929 */
6930static bool netdev_has_any_lower_dev(struct net_device *dev)
6931{
6932 ASSERT_RTNL();
6933
6934 return !list_empty(&dev->adj_list.lower);
6935}
6936
6937void *netdev_adjacent_get_private(struct list_head *adj_list)
6938{
6939 struct netdev_adjacent *adj;
6940
6941 adj = list_entry(adj_list, struct netdev_adjacent, list);
6942
6943 return adj->private;
6944}
6945EXPORT_SYMBOL(netdev_adjacent_get_private);
6946
6947/**
6948 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6949 * @dev: device
6950 * @iter: list_head ** of the current position
6951 *
6952 * Gets the next device from the dev's upper list, starting from iter
6953 * position. The caller must hold RCU read lock.
6954 */
6955struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6956 struct list_head **iter)
6957{
6958 struct netdev_adjacent *upper;
6959
6960 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6961
6962 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6963
6964 if (&upper->list == &dev->adj_list.upper)
6965 return NULL;
6966
6967 *iter = &upper->list;
6968
6969 return upper->dev;
6970}
6971EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6972
6973static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6974 struct list_head **iter,
6975 bool *ignore)
6976{
6977 struct netdev_adjacent *upper;
6978
6979 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6980
6981 if (&upper->list == &dev->adj_list.upper)
6982 return NULL;
6983
6984 *iter = &upper->list;
6985 *ignore = upper->ignore;
6986
6987 return upper->dev;
6988}
6989
6990static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6991 struct list_head **iter)
6992{
6993 struct netdev_adjacent *upper;
6994
6995 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6996
6997 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6998
6999 if (&upper->list == &dev->adj_list.upper)
7000 return NULL;
7001
7002 *iter = &upper->list;
7003
7004 return upper->dev;
7005}
7006
7007static int __netdev_walk_all_upper_dev(struct net_device *dev,
7008 int (*fn)(struct net_device *dev,
7009 struct netdev_nested_priv *priv),
7010 struct netdev_nested_priv *priv)
7011{
7012 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7013 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7014 int ret, cur = 0;
7015 bool ignore;
7016
7017 now = dev;
7018 iter = &dev->adj_list.upper;
7019
7020 while (1) {
7021 if (now != dev) {
7022 ret = fn(now, priv);
7023 if (ret)
7024 return ret;
7025 }
7026
7027 next = NULL;
7028 while (1) {
7029 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7030 if (!udev)
7031 break;
7032 if (ignore)
7033 continue;
7034
7035 next = udev;
7036 niter = &udev->adj_list.upper;
7037 dev_stack[cur] = now;
7038 iter_stack[cur++] = iter;
7039 break;
7040 }
7041
7042 if (!next) {
7043 if (!cur)
7044 return 0;
7045 next = dev_stack[--cur];
7046 niter = iter_stack[cur];
7047 }
7048
7049 now = next;
7050 iter = niter;
7051 }
7052
7053 return 0;
7054}
7055
7056int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7057 int (*fn)(struct net_device *dev,
7058 struct netdev_nested_priv *priv),
7059 struct netdev_nested_priv *priv)
7060{
7061 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7062 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7063 int ret, cur = 0;
7064
7065 now = dev;
7066 iter = &dev->adj_list.upper;
7067
7068 while (1) {
7069 if (now != dev) {
7070 ret = fn(now, priv);
7071 if (ret)
7072 return ret;
7073 }
7074
7075 next = NULL;
7076 while (1) {
7077 udev = netdev_next_upper_dev_rcu(now, &iter);
7078 if (!udev)
7079 break;
7080
7081 next = udev;
7082 niter = &udev->adj_list.upper;
7083 dev_stack[cur] = now;
7084 iter_stack[cur++] = iter;
7085 break;
7086 }
7087
7088 if (!next) {
7089 if (!cur)
7090 return 0;
7091 next = dev_stack[--cur];
7092 niter = iter_stack[cur];
7093 }
7094
7095 now = next;
7096 iter = niter;
7097 }
7098
7099 return 0;
7100}
7101EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7102
7103static bool __netdev_has_upper_dev(struct net_device *dev,
7104 struct net_device *upper_dev)
7105{
7106 struct netdev_nested_priv priv = {
7107 .flags = 0,
7108 .data = (void *)upper_dev,
7109 };
7110
7111 ASSERT_RTNL();
7112
7113 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7114 &priv);
7115}
7116
7117/**
7118 * netdev_lower_get_next_private - Get the next ->private from the
7119 * lower neighbour list
7120 * @dev: device
7121 * @iter: list_head ** of the current position
7122 *
7123 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7124 * list, starting from iter position. The caller must hold either hold the
7125 * RTNL lock or its own locking that guarantees that the neighbour lower
7126 * list will remain unchanged.
7127 */
7128void *netdev_lower_get_next_private(struct net_device *dev,
7129 struct list_head **iter)
7130{
7131 struct netdev_adjacent *lower;
7132
7133 lower = list_entry(*iter, struct netdev_adjacent, list);
7134
7135 if (&lower->list == &dev->adj_list.lower)
7136 return NULL;
7137
7138 *iter = lower->list.next;
7139
7140 return lower->private;
7141}
7142EXPORT_SYMBOL(netdev_lower_get_next_private);
7143
7144/**
7145 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7146 * lower neighbour list, RCU
7147 * variant
7148 * @dev: device
7149 * @iter: list_head ** of the current position
7150 *
7151 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7152 * list, starting from iter position. The caller must hold RCU read lock.
7153 */
7154void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7155 struct list_head **iter)
7156{
7157 struct netdev_adjacent *lower;
7158
7159 WARN_ON_ONCE(!rcu_read_lock_held());
7160
7161 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7162
7163 if (&lower->list == &dev->adj_list.lower)
7164 return NULL;
7165
7166 *iter = &lower->list;
7167
7168 return lower->private;
7169}
7170EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7171
7172/**
7173 * netdev_lower_get_next - Get the next device from the lower neighbour
7174 * list
7175 * @dev: device
7176 * @iter: list_head ** of the current position
7177 *
7178 * Gets the next netdev_adjacent from the dev's lower neighbour
7179 * list, starting from iter position. The caller must hold RTNL lock or
7180 * its own locking that guarantees that the neighbour lower
7181 * list will remain unchanged.
7182 */
7183void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7184{
7185 struct netdev_adjacent *lower;
7186
7187 lower = list_entry(*iter, struct netdev_adjacent, list);
7188
7189 if (&lower->list == &dev->adj_list.lower)
7190 return NULL;
7191
7192 *iter = lower->list.next;
7193
7194 return lower->dev;
7195}
7196EXPORT_SYMBOL(netdev_lower_get_next);
7197
7198static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7199 struct list_head **iter)
7200{
7201 struct netdev_adjacent *lower;
7202
7203 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7204
7205 if (&lower->list == &dev->adj_list.lower)
7206 return NULL;
7207
7208 *iter = &lower->list;
7209
7210 return lower->dev;
7211}
7212
7213static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7214 struct list_head **iter,
7215 bool *ignore)
7216{
7217 struct netdev_adjacent *lower;
7218
7219 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7220
7221 if (&lower->list == &dev->adj_list.lower)
7222 return NULL;
7223
7224 *iter = &lower->list;
7225 *ignore = lower->ignore;
7226
7227 return lower->dev;
7228}
7229
7230int netdev_walk_all_lower_dev(struct net_device *dev,
7231 int (*fn)(struct net_device *dev,
7232 struct netdev_nested_priv *priv),
7233 struct netdev_nested_priv *priv)
7234{
7235 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7236 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7237 int ret, cur = 0;
7238
7239 now = dev;
7240 iter = &dev->adj_list.lower;
7241
7242 while (1) {
7243 if (now != dev) {
7244 ret = fn(now, priv);
7245 if (ret)
7246 return ret;
7247 }
7248
7249 next = NULL;
7250 while (1) {
7251 ldev = netdev_next_lower_dev(now, &iter);
7252 if (!ldev)
7253 break;
7254
7255 next = ldev;
7256 niter = &ldev->adj_list.lower;
7257 dev_stack[cur] = now;
7258 iter_stack[cur++] = iter;
7259 break;
7260 }
7261
7262 if (!next) {
7263 if (!cur)
7264 return 0;
7265 next = dev_stack[--cur];
7266 niter = iter_stack[cur];
7267 }
7268
7269 now = next;
7270 iter = niter;
7271 }
7272
7273 return 0;
7274}
7275EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7276
7277static int __netdev_walk_all_lower_dev(struct net_device *dev,
7278 int (*fn)(struct net_device *dev,
7279 struct netdev_nested_priv *priv),
7280 struct netdev_nested_priv *priv)
7281{
7282 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7284 int ret, cur = 0;
7285 bool ignore;
7286
7287 now = dev;
7288 iter = &dev->adj_list.lower;
7289
7290 while (1) {
7291 if (now != dev) {
7292 ret = fn(now, priv);
7293 if (ret)
7294 return ret;
7295 }
7296
7297 next = NULL;
7298 while (1) {
7299 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7300 if (!ldev)
7301 break;
7302 if (ignore)
7303 continue;
7304
7305 next = ldev;
7306 niter = &ldev->adj_list.lower;
7307 dev_stack[cur] = now;
7308 iter_stack[cur++] = iter;
7309 break;
7310 }
7311
7312 if (!next) {
7313 if (!cur)
7314 return 0;
7315 next = dev_stack[--cur];
7316 niter = iter_stack[cur];
7317 }
7318
7319 now = next;
7320 iter = niter;
7321 }
7322
7323 return 0;
7324}
7325
7326struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7327 struct list_head **iter)
7328{
7329 struct netdev_adjacent *lower;
7330
7331 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7332 if (&lower->list == &dev->adj_list.lower)
7333 return NULL;
7334
7335 *iter = &lower->list;
7336
7337 return lower->dev;
7338}
7339EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7340
7341static u8 __netdev_upper_depth(struct net_device *dev)
7342{
7343 struct net_device *udev;
7344 struct list_head *iter;
7345 u8 max_depth = 0;
7346 bool ignore;
7347
7348 for (iter = &dev->adj_list.upper,
7349 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7350 udev;
7351 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7352 if (ignore)
7353 continue;
7354 if (max_depth < udev->upper_level)
7355 max_depth = udev->upper_level;
7356 }
7357
7358 return max_depth;
7359}
7360
7361static u8 __netdev_lower_depth(struct net_device *dev)
7362{
7363 struct net_device *ldev;
7364 struct list_head *iter;
7365 u8 max_depth = 0;
7366 bool ignore;
7367
7368 for (iter = &dev->adj_list.lower,
7369 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7370 ldev;
7371 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7372 if (ignore)
7373 continue;
7374 if (max_depth < ldev->lower_level)
7375 max_depth = ldev->lower_level;
7376 }
7377
7378 return max_depth;
7379}
7380
7381static int __netdev_update_upper_level(struct net_device *dev,
7382 struct netdev_nested_priv *__unused)
7383{
7384 dev->upper_level = __netdev_upper_depth(dev) + 1;
7385 return 0;
7386}
7387
7388static int __netdev_update_lower_level(struct net_device *dev,
7389 struct netdev_nested_priv *priv)
7390{
7391 dev->lower_level = __netdev_lower_depth(dev) + 1;
7392
7393#ifdef CONFIG_LOCKDEP
7394 if (!priv)
7395 return 0;
7396
7397 if (priv->flags & NESTED_SYNC_IMM)
7398 dev->nested_level = dev->lower_level - 1;
7399 if (priv->flags & NESTED_SYNC_TODO)
7400 net_unlink_todo(dev);
7401#endif
7402 return 0;
7403}
7404
7405int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7406 int (*fn)(struct net_device *dev,
7407 struct netdev_nested_priv *priv),
7408 struct netdev_nested_priv *priv)
7409{
7410 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7411 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7412 int ret, cur = 0;
7413
7414 now = dev;
7415 iter = &dev->adj_list.lower;
7416
7417 while (1) {
7418 if (now != dev) {
7419 ret = fn(now, priv);
7420 if (ret)
7421 return ret;
7422 }
7423
7424 next = NULL;
7425 while (1) {
7426 ldev = netdev_next_lower_dev_rcu(now, &iter);
7427 if (!ldev)
7428 break;
7429
7430 next = ldev;
7431 niter = &ldev->adj_list.lower;
7432 dev_stack[cur] = now;
7433 iter_stack[cur++] = iter;
7434 break;
7435 }
7436
7437 if (!next) {
7438 if (!cur)
7439 return 0;
7440 next = dev_stack[--cur];
7441 niter = iter_stack[cur];
7442 }
7443
7444 now = next;
7445 iter = niter;
7446 }
7447
7448 return 0;
7449}
7450EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7451
7452/**
7453 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7454 * lower neighbour list, RCU
7455 * variant
7456 * @dev: device
7457 *
7458 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7459 * list. The caller must hold RCU read lock.
7460 */
7461void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7462{
7463 struct netdev_adjacent *lower;
7464
7465 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7466 struct netdev_adjacent, list);
7467 if (lower)
7468 return lower->private;
7469 return NULL;
7470}
7471EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7472
7473/**
7474 * netdev_master_upper_dev_get_rcu - Get master upper device
7475 * @dev: device
7476 *
7477 * Find a master upper device and return pointer to it or NULL in case
7478 * it's not there. The caller must hold the RCU read lock.
7479 */
7480struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7481{
7482 struct netdev_adjacent *upper;
7483
7484 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7485 struct netdev_adjacent, list);
7486 if (upper && likely(upper->master))
7487 return upper->dev;
7488 return NULL;
7489}
7490EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7491
7492static int netdev_adjacent_sysfs_add(struct net_device *dev,
7493 struct net_device *adj_dev,
7494 struct list_head *dev_list)
7495{
7496 char linkname[IFNAMSIZ+7];
7497
7498 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7499 "upper_%s" : "lower_%s", adj_dev->name);
7500 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7501 linkname);
7502}
7503static void netdev_adjacent_sysfs_del(struct net_device *dev,
7504 char *name,
7505 struct list_head *dev_list)
7506{
7507 char linkname[IFNAMSIZ+7];
7508
7509 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7510 "upper_%s" : "lower_%s", name);
7511 sysfs_remove_link(&(dev->dev.kobj), linkname);
7512}
7513
7514static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7515 struct net_device *adj_dev,
7516 struct list_head *dev_list)
7517{
7518 return (dev_list == &dev->adj_list.upper ||
7519 dev_list == &dev->adj_list.lower) &&
7520 net_eq(dev_net(dev), dev_net(adj_dev));
7521}
7522
7523static int __netdev_adjacent_dev_insert(struct net_device *dev,
7524 struct net_device *adj_dev,
7525 struct list_head *dev_list,
7526 void *private, bool master)
7527{
7528 struct netdev_adjacent *adj;
7529 int ret;
7530
7531 adj = __netdev_find_adj(adj_dev, dev_list);
7532
7533 if (adj) {
7534 adj->ref_nr += 1;
7535 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7536 dev->name, adj_dev->name, adj->ref_nr);
7537
7538 return 0;
7539 }
7540
7541 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7542 if (!adj)
7543 return -ENOMEM;
7544
7545 adj->dev = adj_dev;
7546 adj->master = master;
7547 adj->ref_nr = 1;
7548 adj->private = private;
7549 adj->ignore = false;
7550 dev_hold(adj_dev);
7551
7552 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7553 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7554
7555 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7556 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7557 if (ret)
7558 goto free_adj;
7559 }
7560
7561 /* Ensure that master link is always the first item in list. */
7562 if (master) {
7563 ret = sysfs_create_link(&(dev->dev.kobj),
7564 &(adj_dev->dev.kobj), "master");
7565 if (ret)
7566 goto remove_symlinks;
7567
7568 list_add_rcu(&adj->list, dev_list);
7569 } else {
7570 list_add_tail_rcu(&adj->list, dev_list);
7571 }
7572
7573 return 0;
7574
7575remove_symlinks:
7576 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7577 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7578free_adj:
7579 kfree(adj);
7580 dev_put(adj_dev);
7581
7582 return ret;
7583}
7584
7585static void __netdev_adjacent_dev_remove(struct net_device *dev,
7586 struct net_device *adj_dev,
7587 u16 ref_nr,
7588 struct list_head *dev_list)
7589{
7590 struct netdev_adjacent *adj;
7591
7592 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7593 dev->name, adj_dev->name, ref_nr);
7594
7595 adj = __netdev_find_adj(adj_dev, dev_list);
7596
7597 if (!adj) {
7598 pr_err("Adjacency does not exist for device %s from %s\n",
7599 dev->name, adj_dev->name);
7600 WARN_ON(1);
7601 return;
7602 }
7603
7604 if (adj->ref_nr > ref_nr) {
7605 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7606 dev->name, adj_dev->name, ref_nr,
7607 adj->ref_nr - ref_nr);
7608 adj->ref_nr -= ref_nr;
7609 return;
7610 }
7611
7612 if (adj->master)
7613 sysfs_remove_link(&(dev->dev.kobj), "master");
7614
7615 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7616 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7617
7618 list_del_rcu(&adj->list);
7619 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7620 adj_dev->name, dev->name, adj_dev->name);
7621 dev_put(adj_dev);
7622 kfree_rcu(adj, rcu);
7623}
7624
7625static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7626 struct net_device *upper_dev,
7627 struct list_head *up_list,
7628 struct list_head *down_list,
7629 void *private, bool master)
7630{
7631 int ret;
7632
7633 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7634 private, master);
7635 if (ret)
7636 return ret;
7637
7638 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7639 private, false);
7640 if (ret) {
7641 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7642 return ret;
7643 }
7644
7645 return 0;
7646}
7647
7648static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7649 struct net_device *upper_dev,
7650 u16 ref_nr,
7651 struct list_head *up_list,
7652 struct list_head *down_list)
7653{
7654 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7655 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7656}
7657
7658static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7659 struct net_device *upper_dev,
7660 void *private, bool master)
7661{
7662 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7663 &dev->adj_list.upper,
7664 &upper_dev->adj_list.lower,
7665 private, master);
7666}
7667
7668static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7669 struct net_device *upper_dev)
7670{
7671 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7672 &dev->adj_list.upper,
7673 &upper_dev->adj_list.lower);
7674}
7675
7676static int __netdev_upper_dev_link(struct net_device *dev,
7677 struct net_device *upper_dev, bool master,
7678 void *upper_priv, void *upper_info,
7679 struct netdev_nested_priv *priv,
7680 struct netlink_ext_ack *extack)
7681{
7682 struct netdev_notifier_changeupper_info changeupper_info = {
7683 .info = {
7684 .dev = dev,
7685 .extack = extack,
7686 },
7687 .upper_dev = upper_dev,
7688 .master = master,
7689 .linking = true,
7690 .upper_info = upper_info,
7691 };
7692 struct net_device *master_dev;
7693 int ret = 0;
7694
7695 ASSERT_RTNL();
7696
7697 if (dev == upper_dev)
7698 return -EBUSY;
7699
7700 /* To prevent loops, check if dev is not upper device to upper_dev. */
7701 if (__netdev_has_upper_dev(upper_dev, dev))
7702 return -EBUSY;
7703
7704 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7705 return -EMLINK;
7706
7707 if (!master) {
7708 if (__netdev_has_upper_dev(dev, upper_dev))
7709 return -EEXIST;
7710 } else {
7711 master_dev = __netdev_master_upper_dev_get(dev);
7712 if (master_dev)
7713 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7714 }
7715
7716 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7717 &changeupper_info.info);
7718 ret = notifier_to_errno(ret);
7719 if (ret)
7720 return ret;
7721
7722 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7723 master);
7724 if (ret)
7725 return ret;
7726
7727 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7728 &changeupper_info.info);
7729 ret = notifier_to_errno(ret);
7730 if (ret)
7731 goto rollback;
7732
7733 __netdev_update_upper_level(dev, NULL);
7734 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7735
7736 __netdev_update_lower_level(upper_dev, priv);
7737 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7738 priv);
7739
7740 return 0;
7741
7742rollback:
7743 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7744
7745 return ret;
7746}
7747
7748/**
7749 * netdev_upper_dev_link - Add a link to the upper device
7750 * @dev: device
7751 * @upper_dev: new upper device
7752 * @extack: netlink extended ack
7753 *
7754 * Adds a link to device which is upper to this one. The caller must hold
7755 * the RTNL lock. On a failure a negative errno code is returned.
7756 * On success the reference counts are adjusted and the function
7757 * returns zero.
7758 */
7759int netdev_upper_dev_link(struct net_device *dev,
7760 struct net_device *upper_dev,
7761 struct netlink_ext_ack *extack)
7762{
7763 struct netdev_nested_priv priv = {
7764 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7765 .data = NULL,
7766 };
7767
7768 return __netdev_upper_dev_link(dev, upper_dev, false,
7769 NULL, NULL, &priv, extack);
7770}
7771EXPORT_SYMBOL(netdev_upper_dev_link);
7772
7773/**
7774 * netdev_master_upper_dev_link - Add a master link to the upper device
7775 * @dev: device
7776 * @upper_dev: new upper device
7777 * @upper_priv: upper device private
7778 * @upper_info: upper info to be passed down via notifier
7779 * @extack: netlink extended ack
7780 *
7781 * Adds a link to device which is upper to this one. In this case, only
7782 * one master upper device can be linked, although other non-master devices
7783 * might be linked as well. The caller must hold the RTNL lock.
7784 * On a failure a negative errno code is returned. On success the reference
7785 * counts are adjusted and the function returns zero.
7786 */
7787int netdev_master_upper_dev_link(struct net_device *dev,
7788 struct net_device *upper_dev,
7789 void *upper_priv, void *upper_info,
7790 struct netlink_ext_ack *extack)
7791{
7792 struct netdev_nested_priv priv = {
7793 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7794 .data = NULL,
7795 };
7796
7797 return __netdev_upper_dev_link(dev, upper_dev, true,
7798 upper_priv, upper_info, &priv, extack);
7799}
7800EXPORT_SYMBOL(netdev_master_upper_dev_link);
7801
7802static void __netdev_upper_dev_unlink(struct net_device *dev,
7803 struct net_device *upper_dev,
7804 struct netdev_nested_priv *priv)
7805{
7806 struct netdev_notifier_changeupper_info changeupper_info = {
7807 .info = {
7808 .dev = dev,
7809 },
7810 .upper_dev = upper_dev,
7811 .linking = false,
7812 };
7813
7814 ASSERT_RTNL();
7815
7816 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7817
7818 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7819 &changeupper_info.info);
7820
7821 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7822
7823 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7824 &changeupper_info.info);
7825
7826 __netdev_update_upper_level(dev, NULL);
7827 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7828
7829 __netdev_update_lower_level(upper_dev, priv);
7830 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7831 priv);
7832}
7833
7834/**
7835 * netdev_upper_dev_unlink - Removes a link to upper device
7836 * @dev: device
7837 * @upper_dev: new upper device
7838 *
7839 * Removes a link to device which is upper to this one. The caller must hold
7840 * the RTNL lock.
7841 */
7842void netdev_upper_dev_unlink(struct net_device *dev,
7843 struct net_device *upper_dev)
7844{
7845 struct netdev_nested_priv priv = {
7846 .flags = NESTED_SYNC_TODO,
7847 .data = NULL,
7848 };
7849
7850 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7851}
7852EXPORT_SYMBOL(netdev_upper_dev_unlink);
7853
7854static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7855 struct net_device *lower_dev,
7856 bool val)
7857{
7858 struct netdev_adjacent *adj;
7859
7860 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7861 if (adj)
7862 adj->ignore = val;
7863
7864 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7865 if (adj)
7866 adj->ignore = val;
7867}
7868
7869static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7870 struct net_device *lower_dev)
7871{
7872 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7873}
7874
7875static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7876 struct net_device *lower_dev)
7877{
7878 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7879}
7880
7881int netdev_adjacent_change_prepare(struct net_device *old_dev,
7882 struct net_device *new_dev,
7883 struct net_device *dev,
7884 struct netlink_ext_ack *extack)
7885{
7886 struct netdev_nested_priv priv = {
7887 .flags = 0,
7888 .data = NULL,
7889 };
7890 int err;
7891
7892 if (!new_dev)
7893 return 0;
7894
7895 if (old_dev && new_dev != old_dev)
7896 netdev_adjacent_dev_disable(dev, old_dev);
7897 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7898 extack);
7899 if (err) {
7900 if (old_dev && new_dev != old_dev)
7901 netdev_adjacent_dev_enable(dev, old_dev);
7902 return err;
7903 }
7904
7905 return 0;
7906}
7907EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7908
7909void netdev_adjacent_change_commit(struct net_device *old_dev,
7910 struct net_device *new_dev,
7911 struct net_device *dev)
7912{
7913 struct netdev_nested_priv priv = {
7914 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7915 .data = NULL,
7916 };
7917
7918 if (!new_dev || !old_dev)
7919 return;
7920
7921 if (new_dev == old_dev)
7922 return;
7923
7924 netdev_adjacent_dev_enable(dev, old_dev);
7925 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7926}
7927EXPORT_SYMBOL(netdev_adjacent_change_commit);
7928
7929void netdev_adjacent_change_abort(struct net_device *old_dev,
7930 struct net_device *new_dev,
7931 struct net_device *dev)
7932{
7933 struct netdev_nested_priv priv = {
7934 .flags = 0,
7935 .data = NULL,
7936 };
7937
7938 if (!new_dev)
7939 return;
7940
7941 if (old_dev && new_dev != old_dev)
7942 netdev_adjacent_dev_enable(dev, old_dev);
7943
7944 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7945}
7946EXPORT_SYMBOL(netdev_adjacent_change_abort);
7947
7948/**
7949 * netdev_bonding_info_change - Dispatch event about slave change
7950 * @dev: device
7951 * @bonding_info: info to dispatch
7952 *
7953 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7954 * The caller must hold the RTNL lock.
7955 */
7956void netdev_bonding_info_change(struct net_device *dev,
7957 struct netdev_bonding_info *bonding_info)
7958{
7959 struct netdev_notifier_bonding_info info = {
7960 .info.dev = dev,
7961 };
7962
7963 memcpy(&info.bonding_info, bonding_info,
7964 sizeof(struct netdev_bonding_info));
7965 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7966 &info.info);
7967}
7968EXPORT_SYMBOL(netdev_bonding_info_change);
7969
7970/**
7971 * netdev_get_xmit_slave - Get the xmit slave of master device
7972 * @dev: device
7973 * @skb: The packet
7974 * @all_slaves: assume all the slaves are active
7975 *
7976 * The reference counters are not incremented so the caller must be
7977 * careful with locks. The caller must hold RCU lock.
7978 * %NULL is returned if no slave is found.
7979 */
7980
7981struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7982 struct sk_buff *skb,
7983 bool all_slaves)
7984{
7985 const struct net_device_ops *ops = dev->netdev_ops;
7986
7987 if (!ops->ndo_get_xmit_slave)
7988 return NULL;
7989 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7990}
7991EXPORT_SYMBOL(netdev_get_xmit_slave);
7992
7993static void netdev_adjacent_add_links(struct net_device *dev)
7994{
7995 struct netdev_adjacent *iter;
7996
7997 struct net *net = dev_net(dev);
7998
7999 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8000 if (!net_eq(net, dev_net(iter->dev)))
8001 continue;
8002 netdev_adjacent_sysfs_add(iter->dev, dev,
8003 &iter->dev->adj_list.lower);
8004 netdev_adjacent_sysfs_add(dev, iter->dev,
8005 &dev->adj_list.upper);
8006 }
8007
8008 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8009 if (!net_eq(net, dev_net(iter->dev)))
8010 continue;
8011 netdev_adjacent_sysfs_add(iter->dev, dev,
8012 &iter->dev->adj_list.upper);
8013 netdev_adjacent_sysfs_add(dev, iter->dev,
8014 &dev->adj_list.lower);
8015 }
8016}
8017
8018static void netdev_adjacent_del_links(struct net_device *dev)
8019{
8020 struct netdev_adjacent *iter;
8021
8022 struct net *net = dev_net(dev);
8023
8024 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8025 if (!net_eq(net, dev_net(iter->dev)))
8026 continue;
8027 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8028 &iter->dev->adj_list.lower);
8029 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8030 &dev->adj_list.upper);
8031 }
8032
8033 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8034 if (!net_eq(net, dev_net(iter->dev)))
8035 continue;
8036 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8037 &iter->dev->adj_list.upper);
8038 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8039 &dev->adj_list.lower);
8040 }
8041}
8042
8043void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8044{
8045 struct netdev_adjacent *iter;
8046
8047 struct net *net = dev_net(dev);
8048
8049 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8050 if (!net_eq(net, dev_net(iter->dev)))
8051 continue;
8052 netdev_adjacent_sysfs_del(iter->dev, oldname,
8053 &iter->dev->adj_list.lower);
8054 netdev_adjacent_sysfs_add(iter->dev, dev,
8055 &iter->dev->adj_list.lower);
8056 }
8057
8058 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8059 if (!net_eq(net, dev_net(iter->dev)))
8060 continue;
8061 netdev_adjacent_sysfs_del(iter->dev, oldname,
8062 &iter->dev->adj_list.upper);
8063 netdev_adjacent_sysfs_add(iter->dev, dev,
8064 &iter->dev->adj_list.upper);
8065 }
8066}
8067
8068void *netdev_lower_dev_get_private(struct net_device *dev,
8069 struct net_device *lower_dev)
8070{
8071 struct netdev_adjacent *lower;
8072
8073 if (!lower_dev)
8074 return NULL;
8075 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8076 if (!lower)
8077 return NULL;
8078
8079 return lower->private;
8080}
8081EXPORT_SYMBOL(netdev_lower_dev_get_private);
8082
8083
8084/**
8085 * netdev_lower_change - Dispatch event about lower device state change
8086 * @lower_dev: device
8087 * @lower_state_info: state to dispatch
8088 *
8089 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8090 * The caller must hold the RTNL lock.
8091 */
8092void netdev_lower_state_changed(struct net_device *lower_dev,
8093 void *lower_state_info)
8094{
8095 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8096 .info.dev = lower_dev,
8097 };
8098
8099 ASSERT_RTNL();
8100 changelowerstate_info.lower_state_info = lower_state_info;
8101 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8102 &changelowerstate_info.info);
8103}
8104EXPORT_SYMBOL(netdev_lower_state_changed);
8105
8106static void dev_change_rx_flags(struct net_device *dev, int flags)
8107{
8108 const struct net_device_ops *ops = dev->netdev_ops;
8109
8110 if (ops->ndo_change_rx_flags)
8111 ops->ndo_change_rx_flags(dev, flags);
8112}
8113
8114static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8115{
8116 unsigned int old_flags = dev->flags;
8117 kuid_t uid;
8118 kgid_t gid;
8119
8120 ASSERT_RTNL();
8121
8122 dev->flags |= IFF_PROMISC;
8123 dev->promiscuity += inc;
8124 if (dev->promiscuity == 0) {
8125 /*
8126 * Avoid overflow.
8127 * If inc causes overflow, untouch promisc and return error.
8128 */
8129 if (inc < 0)
8130 dev->flags &= ~IFF_PROMISC;
8131 else {
8132 dev->promiscuity -= inc;
8133 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8134 dev->name);
8135 return -EOVERFLOW;
8136 }
8137 }
8138 if (dev->flags != old_flags) {
8139 pr_info("device %s %s promiscuous mode\n",
8140 dev->name,
8141 dev->flags & IFF_PROMISC ? "entered" : "left");
8142 if (audit_enabled) {
8143 current_uid_gid(&uid, &gid);
8144 audit_log(audit_context(), GFP_ATOMIC,
8145 AUDIT_ANOM_PROMISCUOUS,
8146 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8147 dev->name, (dev->flags & IFF_PROMISC),
8148 (old_flags & IFF_PROMISC),
8149 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8150 from_kuid(&init_user_ns, uid),
8151 from_kgid(&init_user_ns, gid),
8152 audit_get_sessionid(current));
8153 }
8154
8155 dev_change_rx_flags(dev, IFF_PROMISC);
8156 }
8157 if (notify)
8158 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8159 return 0;
8160}
8161
8162/**
8163 * dev_set_promiscuity - update promiscuity count on a device
8164 * @dev: device
8165 * @inc: modifier
8166 *
8167 * Add or remove promiscuity from a device. While the count in the device
8168 * remains above zero the interface remains promiscuous. Once it hits zero
8169 * the device reverts back to normal filtering operation. A negative inc
8170 * value is used to drop promiscuity on the device.
8171 * Return 0 if successful or a negative errno code on error.
8172 */
8173int dev_set_promiscuity(struct net_device *dev, int inc)
8174{
8175 unsigned int old_flags = dev->flags;
8176 int err;
8177
8178 err = __dev_set_promiscuity(dev, inc, true);
8179 if (err < 0)
8180 return err;
8181 if (dev->flags != old_flags)
8182 dev_set_rx_mode(dev);
8183 return err;
8184}
8185EXPORT_SYMBOL(dev_set_promiscuity);
8186
8187static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8188{
8189 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8190
8191 ASSERT_RTNL();
8192
8193 dev->flags |= IFF_ALLMULTI;
8194 dev->allmulti += inc;
8195 if (dev->allmulti == 0) {
8196 /*
8197 * Avoid overflow.
8198 * If inc causes overflow, untouch allmulti and return error.
8199 */
8200 if (inc < 0)
8201 dev->flags &= ~IFF_ALLMULTI;
8202 else {
8203 dev->allmulti -= inc;
8204 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8205 dev->name);
8206 return -EOVERFLOW;
8207 }
8208 }
8209 if (dev->flags ^ old_flags) {
8210 dev_change_rx_flags(dev, IFF_ALLMULTI);
8211 dev_set_rx_mode(dev);
8212 if (notify)
8213 __dev_notify_flags(dev, old_flags,
8214 dev->gflags ^ old_gflags);
8215 }
8216 return 0;
8217}
8218
8219/**
8220 * dev_set_allmulti - update allmulti count on a device
8221 * @dev: device
8222 * @inc: modifier
8223 *
8224 * Add or remove reception of all multicast frames to a device. While the
8225 * count in the device remains above zero the interface remains listening
8226 * to all interfaces. Once it hits zero the device reverts back to normal
8227 * filtering operation. A negative @inc value is used to drop the counter
8228 * when releasing a resource needing all multicasts.
8229 * Return 0 if successful or a negative errno code on error.
8230 */
8231
8232int dev_set_allmulti(struct net_device *dev, int inc)
8233{
8234 return __dev_set_allmulti(dev, inc, true);
8235}
8236EXPORT_SYMBOL(dev_set_allmulti);
8237
8238/*
8239 * Upload unicast and multicast address lists to device and
8240 * configure RX filtering. When the device doesn't support unicast
8241 * filtering it is put in promiscuous mode while unicast addresses
8242 * are present.
8243 */
8244void __dev_set_rx_mode(struct net_device *dev)
8245{
8246 const struct net_device_ops *ops = dev->netdev_ops;
8247
8248 /* dev_open will call this function so the list will stay sane. */
8249 if (!(dev->flags&IFF_UP))
8250 return;
8251
8252 if (!netif_device_present(dev))
8253 return;
8254
8255 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8256 /* Unicast addresses changes may only happen under the rtnl,
8257 * therefore calling __dev_set_promiscuity here is safe.
8258 */
8259 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8260 __dev_set_promiscuity(dev, 1, false);
8261 dev->uc_promisc = true;
8262 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8263 __dev_set_promiscuity(dev, -1, false);
8264 dev->uc_promisc = false;
8265 }
8266 }
8267
8268 if (ops->ndo_set_rx_mode)
8269 ops->ndo_set_rx_mode(dev);
8270}
8271
8272void dev_set_rx_mode(struct net_device *dev)
8273{
8274 netif_addr_lock_bh(dev);
8275 __dev_set_rx_mode(dev);
8276 netif_addr_unlock_bh(dev);
8277}
8278
8279/**
8280 * dev_get_flags - get flags reported to userspace
8281 * @dev: device
8282 *
8283 * Get the combination of flag bits exported through APIs to userspace.
8284 */
8285unsigned int dev_get_flags(const struct net_device *dev)
8286{
8287 unsigned int flags;
8288
8289 flags = (dev->flags & ~(IFF_PROMISC |
8290 IFF_ALLMULTI |
8291 IFF_RUNNING |
8292 IFF_LOWER_UP |
8293 IFF_DORMANT)) |
8294 (dev->gflags & (IFF_PROMISC |
8295 IFF_ALLMULTI));
8296
8297 if (netif_running(dev)) {
8298 if (netif_oper_up(dev))
8299 flags |= IFF_RUNNING;
8300 if (netif_carrier_ok(dev))
8301 flags |= IFF_LOWER_UP;
8302 if (netif_dormant(dev))
8303 flags |= IFF_DORMANT;
8304 }
8305
8306 return flags;
8307}
8308EXPORT_SYMBOL(dev_get_flags);
8309
8310int __dev_change_flags(struct net_device *dev, unsigned int flags,
8311 struct netlink_ext_ack *extack)
8312{
8313 unsigned int old_flags = dev->flags;
8314 int ret;
8315
8316 ASSERT_RTNL();
8317
8318 /*
8319 * Set the flags on our device.
8320 */
8321
8322 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8323 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8324 IFF_AUTOMEDIA)) |
8325 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8326 IFF_ALLMULTI));
8327
8328 /*
8329 * Load in the correct multicast list now the flags have changed.
8330 */
8331
8332 if ((old_flags ^ flags) & IFF_MULTICAST)
8333 dev_change_rx_flags(dev, IFF_MULTICAST);
8334
8335 dev_set_rx_mode(dev);
8336
8337 /*
8338 * Have we downed the interface. We handle IFF_UP ourselves
8339 * according to user attempts to set it, rather than blindly
8340 * setting it.
8341 */
8342
8343 ret = 0;
8344 if ((old_flags ^ flags) & IFF_UP) {
8345 if (old_flags & IFF_UP)
8346 __dev_close(dev);
8347 else
8348 ret = __dev_open(dev, extack);
8349 }
8350
8351 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8352 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8353 unsigned int old_flags = dev->flags;
8354
8355 dev->gflags ^= IFF_PROMISC;
8356
8357 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8358 if (dev->flags != old_flags)
8359 dev_set_rx_mode(dev);
8360 }
8361
8362 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8363 * is important. Some (broken) drivers set IFF_PROMISC, when
8364 * IFF_ALLMULTI is requested not asking us and not reporting.
8365 */
8366 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8367 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8368
8369 dev->gflags ^= IFF_ALLMULTI;
8370 __dev_set_allmulti(dev, inc, false);
8371 }
8372
8373 return ret;
8374}
8375
8376void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8377 unsigned int gchanges)
8378{
8379 unsigned int changes = dev->flags ^ old_flags;
8380
8381 if (gchanges)
8382 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8383
8384 if (changes & IFF_UP) {
8385 if (dev->flags & IFF_UP)
8386 call_netdevice_notifiers(NETDEV_UP, dev);
8387 else
8388 call_netdevice_notifiers(NETDEV_DOWN, dev);
8389 }
8390
8391 if (dev->flags & IFF_UP &&
8392 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8393 struct netdev_notifier_change_info change_info = {
8394 .info = {
8395 .dev = dev,
8396 },
8397 .flags_changed = changes,
8398 };
8399
8400 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8401 }
8402}
8403
8404/**
8405 * dev_change_flags - change device settings
8406 * @dev: device
8407 * @flags: device state flags
8408 * @extack: netlink extended ack
8409 *
8410 * Change settings on device based state flags. The flags are
8411 * in the userspace exported format.
8412 */
8413int dev_change_flags(struct net_device *dev, unsigned int flags,
8414 struct netlink_ext_ack *extack)
8415{
8416 int ret;
8417 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8418
8419 ret = __dev_change_flags(dev, flags, extack);
8420 if (ret < 0)
8421 return ret;
8422
8423 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8424 __dev_notify_flags(dev, old_flags, changes);
8425 return ret;
8426}
8427EXPORT_SYMBOL(dev_change_flags);
8428
8429int __dev_set_mtu(struct net_device *dev, int new_mtu)
8430{
8431 const struct net_device_ops *ops = dev->netdev_ops;
8432
8433 if (ops->ndo_change_mtu)
8434 return ops->ndo_change_mtu(dev, new_mtu);
8435
8436 /* Pairs with all the lockless reads of dev->mtu in the stack */
8437 WRITE_ONCE(dev->mtu, new_mtu);
8438 return 0;
8439}
8440EXPORT_SYMBOL(__dev_set_mtu);
8441
8442int dev_validate_mtu(struct net_device *dev, int new_mtu,
8443 struct netlink_ext_ack *extack)
8444{
8445 /* MTU must be positive, and in range */
8446 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8447 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8448 return -EINVAL;
8449 }
8450
8451 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8452 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8453 return -EINVAL;
8454 }
8455 return 0;
8456}
8457
8458/**
8459 * dev_set_mtu_ext - Change maximum transfer unit
8460 * @dev: device
8461 * @new_mtu: new transfer unit
8462 * @extack: netlink extended ack
8463 *
8464 * Change the maximum transfer size of the network device.
8465 */
8466int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8467 struct netlink_ext_ack *extack)
8468{
8469 int err, orig_mtu;
8470
8471 if (new_mtu == dev->mtu)
8472 return 0;
8473
8474 err = dev_validate_mtu(dev, new_mtu, extack);
8475 if (err)
8476 return err;
8477
8478 if (!netif_device_present(dev))
8479 return -ENODEV;
8480
8481 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8482 err = notifier_to_errno(err);
8483 if (err)
8484 return err;
8485
8486 orig_mtu = dev->mtu;
8487 err = __dev_set_mtu(dev, new_mtu);
8488
8489 if (!err) {
8490 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8491 orig_mtu);
8492 err = notifier_to_errno(err);
8493 if (err) {
8494 /* setting mtu back and notifying everyone again,
8495 * so that they have a chance to revert changes.
8496 */
8497 __dev_set_mtu(dev, orig_mtu);
8498 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8499 new_mtu);
8500 }
8501 }
8502 return err;
8503}
8504
8505int dev_set_mtu(struct net_device *dev, int new_mtu)
8506{
8507 struct netlink_ext_ack extack;
8508 int err;
8509
8510 memset(&extack, 0, sizeof(extack));
8511 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8512 if (err && extack._msg)
8513 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8514 return err;
8515}
8516EXPORT_SYMBOL(dev_set_mtu);
8517
8518/**
8519 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8520 * @dev: device
8521 * @new_len: new tx queue length
8522 */
8523int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8524{
8525 unsigned int orig_len = dev->tx_queue_len;
8526 int res;
8527
8528 if (new_len != (unsigned int)new_len)
8529 return -ERANGE;
8530
8531 if (new_len != orig_len) {
8532 dev->tx_queue_len = new_len;
8533 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8534 res = notifier_to_errno(res);
8535 if (res)
8536 goto err_rollback;
8537 res = dev_qdisc_change_tx_queue_len(dev);
8538 if (res)
8539 goto err_rollback;
8540 }
8541
8542 return 0;
8543
8544err_rollback:
8545 netdev_err(dev, "refused to change device tx_queue_len\n");
8546 dev->tx_queue_len = orig_len;
8547 return res;
8548}
8549
8550/**
8551 * dev_set_group - Change group this device belongs to
8552 * @dev: device
8553 * @new_group: group this device should belong to
8554 */
8555void dev_set_group(struct net_device *dev, int new_group)
8556{
8557 dev->group = new_group;
8558}
8559EXPORT_SYMBOL(dev_set_group);
8560
8561/**
8562 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8563 * @dev: device
8564 * @addr: new address
8565 * @extack: netlink extended ack
8566 */
8567int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8568 struct netlink_ext_ack *extack)
8569{
8570 struct netdev_notifier_pre_changeaddr_info info = {
8571 .info.dev = dev,
8572 .info.extack = extack,
8573 .dev_addr = addr,
8574 };
8575 int rc;
8576
8577 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8578 return notifier_to_errno(rc);
8579}
8580EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8581
8582/**
8583 * dev_set_mac_address - Change Media Access Control Address
8584 * @dev: device
8585 * @sa: new address
8586 * @extack: netlink extended ack
8587 *
8588 * Change the hardware (MAC) address of the device
8589 */
8590int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8591 struct netlink_ext_ack *extack)
8592{
8593 const struct net_device_ops *ops = dev->netdev_ops;
8594 int err;
8595
8596 if (!ops->ndo_set_mac_address)
8597 return -EOPNOTSUPP;
8598 if (sa->sa_family != dev->type)
8599 return -EINVAL;
8600 if (!netif_device_present(dev))
8601 return -ENODEV;
8602 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8603 if (err)
8604 return err;
8605 err = ops->ndo_set_mac_address(dev, sa);
8606 if (err)
8607 return err;
8608 dev->addr_assign_type = NET_ADDR_SET;
8609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8610 add_device_randomness(dev->dev_addr, dev->addr_len);
8611 return 0;
8612}
8613EXPORT_SYMBOL(dev_set_mac_address);
8614
8615/**
8616 * dev_change_carrier - Change device carrier
8617 * @dev: device
8618 * @new_carrier: new value
8619 *
8620 * Change device carrier
8621 */
8622int dev_change_carrier(struct net_device *dev, bool new_carrier)
8623{
8624 const struct net_device_ops *ops = dev->netdev_ops;
8625
8626 if (!ops->ndo_change_carrier)
8627 return -EOPNOTSUPP;
8628 if (!netif_device_present(dev))
8629 return -ENODEV;
8630 return ops->ndo_change_carrier(dev, new_carrier);
8631}
8632EXPORT_SYMBOL(dev_change_carrier);
8633
8634/**
8635 * dev_get_phys_port_id - Get device physical port ID
8636 * @dev: device
8637 * @ppid: port ID
8638 *
8639 * Get device physical port ID
8640 */
8641int dev_get_phys_port_id(struct net_device *dev,
8642 struct netdev_phys_item_id *ppid)
8643{
8644 const struct net_device_ops *ops = dev->netdev_ops;
8645
8646 if (!ops->ndo_get_phys_port_id)
8647 return -EOPNOTSUPP;
8648 return ops->ndo_get_phys_port_id(dev, ppid);
8649}
8650EXPORT_SYMBOL(dev_get_phys_port_id);
8651
8652/**
8653 * dev_get_phys_port_name - Get device physical port name
8654 * @dev: device
8655 * @name: port name
8656 * @len: limit of bytes to copy to name
8657 *
8658 * Get device physical port name
8659 */
8660int dev_get_phys_port_name(struct net_device *dev,
8661 char *name, size_t len)
8662{
8663 const struct net_device_ops *ops = dev->netdev_ops;
8664 int err;
8665
8666 if (ops->ndo_get_phys_port_name) {
8667 err = ops->ndo_get_phys_port_name(dev, name, len);
8668 if (err != -EOPNOTSUPP)
8669 return err;
8670 }
8671 return devlink_compat_phys_port_name_get(dev, name, len);
8672}
8673EXPORT_SYMBOL(dev_get_phys_port_name);
8674
8675/**
8676 * dev_get_port_parent_id - Get the device's port parent identifier
8677 * @dev: network device
8678 * @ppid: pointer to a storage for the port's parent identifier
8679 * @recurse: allow/disallow recursion to lower devices
8680 *
8681 * Get the devices's port parent identifier
8682 */
8683int dev_get_port_parent_id(struct net_device *dev,
8684 struct netdev_phys_item_id *ppid,
8685 bool recurse)
8686{
8687 const struct net_device_ops *ops = dev->netdev_ops;
8688 struct netdev_phys_item_id first = { };
8689 struct net_device *lower_dev;
8690 struct list_head *iter;
8691 int err;
8692
8693 if (ops->ndo_get_port_parent_id) {
8694 err = ops->ndo_get_port_parent_id(dev, ppid);
8695 if (err != -EOPNOTSUPP)
8696 return err;
8697 }
8698
8699 err = devlink_compat_switch_id_get(dev, ppid);
8700 if (!err || err != -EOPNOTSUPP)
8701 return err;
8702
8703 if (!recurse)
8704 return -EOPNOTSUPP;
8705
8706 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8707 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8708 if (err)
8709 break;
8710 if (!first.id_len)
8711 first = *ppid;
8712 else if (memcmp(&first, ppid, sizeof(*ppid)))
8713 return -EOPNOTSUPP;
8714 }
8715
8716 return err;
8717}
8718EXPORT_SYMBOL(dev_get_port_parent_id);
8719
8720/**
8721 * netdev_port_same_parent_id - Indicate if two network devices have
8722 * the same port parent identifier
8723 * @a: first network device
8724 * @b: second network device
8725 */
8726bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8727{
8728 struct netdev_phys_item_id a_id = { };
8729 struct netdev_phys_item_id b_id = { };
8730
8731 if (dev_get_port_parent_id(a, &a_id, true) ||
8732 dev_get_port_parent_id(b, &b_id, true))
8733 return false;
8734
8735 return netdev_phys_item_id_same(&a_id, &b_id);
8736}
8737EXPORT_SYMBOL(netdev_port_same_parent_id);
8738
8739/**
8740 * dev_change_proto_down - update protocol port state information
8741 * @dev: device
8742 * @proto_down: new value
8743 *
8744 * This info can be used by switch drivers to set the phys state of the
8745 * port.
8746 */
8747int dev_change_proto_down(struct net_device *dev, bool proto_down)
8748{
8749 const struct net_device_ops *ops = dev->netdev_ops;
8750
8751 if (!ops->ndo_change_proto_down)
8752 return -EOPNOTSUPP;
8753 if (!netif_device_present(dev))
8754 return -ENODEV;
8755 return ops->ndo_change_proto_down(dev, proto_down);
8756}
8757EXPORT_SYMBOL(dev_change_proto_down);
8758
8759/**
8760 * dev_change_proto_down_generic - generic implementation for
8761 * ndo_change_proto_down that sets carrier according to
8762 * proto_down.
8763 *
8764 * @dev: device
8765 * @proto_down: new value
8766 */
8767int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8768{
8769 if (proto_down)
8770 netif_carrier_off(dev);
8771 else
8772 netif_carrier_on(dev);
8773 dev->proto_down = proto_down;
8774 return 0;
8775}
8776EXPORT_SYMBOL(dev_change_proto_down_generic);
8777
8778/**
8779 * dev_change_proto_down_reason - proto down reason
8780 *
8781 * @dev: device
8782 * @mask: proto down mask
8783 * @value: proto down value
8784 */
8785void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8786 u32 value)
8787{
8788 int b;
8789
8790 if (!mask) {
8791 dev->proto_down_reason = value;
8792 } else {
8793 for_each_set_bit(b, &mask, 32) {
8794 if (value & (1 << b))
8795 dev->proto_down_reason |= BIT(b);
8796 else
8797 dev->proto_down_reason &= ~BIT(b);
8798 }
8799 }
8800}
8801EXPORT_SYMBOL(dev_change_proto_down_reason);
8802
8803struct bpf_xdp_link {
8804 struct bpf_link link;
8805 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8806 int flags;
8807};
8808
8809static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8810{
8811 if (flags & XDP_FLAGS_HW_MODE)
8812 return XDP_MODE_HW;
8813 if (flags & XDP_FLAGS_DRV_MODE)
8814 return XDP_MODE_DRV;
8815 if (flags & XDP_FLAGS_SKB_MODE)
8816 return XDP_MODE_SKB;
8817 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8818}
8819
8820static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8821{
8822 switch (mode) {
8823 case XDP_MODE_SKB:
8824 return generic_xdp_install;
8825 case XDP_MODE_DRV:
8826 case XDP_MODE_HW:
8827 return dev->netdev_ops->ndo_bpf;
8828 default:
8829 return NULL;
8830 };
8831}
8832
8833static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8834 enum bpf_xdp_mode mode)
8835{
8836 return dev->xdp_state[mode].link;
8837}
8838
8839static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8840 enum bpf_xdp_mode mode)
8841{
8842 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8843
8844 if (link)
8845 return link->link.prog;
8846 return dev->xdp_state[mode].prog;
8847}
8848
8849u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8850{
8851 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8852
8853 return prog ? prog->aux->id : 0;
8854}
8855
8856static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8857 struct bpf_xdp_link *link)
8858{
8859 dev->xdp_state[mode].link = link;
8860 dev->xdp_state[mode].prog = NULL;
8861}
8862
8863static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8864 struct bpf_prog *prog)
8865{
8866 dev->xdp_state[mode].link = NULL;
8867 dev->xdp_state[mode].prog = prog;
8868}
8869
8870static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8871 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8872 u32 flags, struct bpf_prog *prog)
8873{
8874 struct netdev_bpf xdp;
8875 int err;
8876
8877 memset(&xdp, 0, sizeof(xdp));
8878 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8879 xdp.extack = extack;
8880 xdp.flags = flags;
8881 xdp.prog = prog;
8882
8883 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8884 * "moved" into driver), so they don't increment it on their own, but
8885 * they do decrement refcnt when program is detached or replaced.
8886 * Given net_device also owns link/prog, we need to bump refcnt here
8887 * to prevent drivers from underflowing it.
8888 */
8889 if (prog)
8890 bpf_prog_inc(prog);
8891 err = bpf_op(dev, &xdp);
8892 if (err) {
8893 if (prog)
8894 bpf_prog_put(prog);
8895 return err;
8896 }
8897
8898 if (mode != XDP_MODE_HW)
8899 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8900
8901 return 0;
8902}
8903
8904static void dev_xdp_uninstall(struct net_device *dev)
8905{
8906 struct bpf_xdp_link *link;
8907 struct bpf_prog *prog;
8908 enum bpf_xdp_mode mode;
8909 bpf_op_t bpf_op;
8910
8911 ASSERT_RTNL();
8912
8913 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8914 prog = dev_xdp_prog(dev, mode);
8915 if (!prog)
8916 continue;
8917
8918 bpf_op = dev_xdp_bpf_op(dev, mode);
8919 if (!bpf_op)
8920 continue;
8921
8922 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8923
8924 /* auto-detach link from net device */
8925 link = dev_xdp_link(dev, mode);
8926 if (link)
8927 link->dev = NULL;
8928 else
8929 bpf_prog_put(prog);
8930
8931 dev_xdp_set_link(dev, mode, NULL);
8932 }
8933}
8934
8935static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8936 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8937 struct bpf_prog *old_prog, u32 flags)
8938{
8939 struct bpf_prog *cur_prog;
8940 enum bpf_xdp_mode mode;
8941 bpf_op_t bpf_op;
8942 int err;
8943
8944 ASSERT_RTNL();
8945
8946 /* either link or prog attachment, never both */
8947 if (link && (new_prog || old_prog))
8948 return -EINVAL;
8949 /* link supports only XDP mode flags */
8950 if (link && (flags & ~XDP_FLAGS_MODES)) {
8951 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8952 return -EINVAL;
8953 }
8954 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8955 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8956 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8957 return -EINVAL;
8958 }
8959 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8960 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8961 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8962 return -EINVAL;
8963 }
8964
8965 mode = dev_xdp_mode(dev, flags);
8966 /* can't replace attached link */
8967 if (dev_xdp_link(dev, mode)) {
8968 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8969 return -EBUSY;
8970 }
8971
8972 cur_prog = dev_xdp_prog(dev, mode);
8973 /* can't replace attached prog with link */
8974 if (link && cur_prog) {
8975 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8976 return -EBUSY;
8977 }
8978 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8979 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8980 return -EEXIST;
8981 }
8982
8983 /* put effective new program into new_prog */
8984 if (link)
8985 new_prog = link->link.prog;
8986
8987 if (new_prog) {
8988 bool offload = mode == XDP_MODE_HW;
8989 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8990 ? XDP_MODE_DRV : XDP_MODE_SKB;
8991
8992 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8993 NL_SET_ERR_MSG(extack, "XDP program already attached");
8994 return -EBUSY;
8995 }
8996 if (!offload && dev_xdp_prog(dev, other_mode)) {
8997 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8998 return -EEXIST;
8999 }
9000 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9001 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9002 return -EINVAL;
9003 }
9004 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9005 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9006 return -EINVAL;
9007 }
9008 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9009 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9010 return -EINVAL;
9011 }
9012 }
9013
9014 /* don't call drivers if the effective program didn't change */
9015 if (new_prog != cur_prog) {
9016 bpf_op = dev_xdp_bpf_op(dev, mode);
9017 if (!bpf_op) {
9018 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9019 return -EOPNOTSUPP;
9020 }
9021
9022 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9023 if (err)
9024 return err;
9025 }
9026
9027 if (link)
9028 dev_xdp_set_link(dev, mode, link);
9029 else
9030 dev_xdp_set_prog(dev, mode, new_prog);
9031 if (cur_prog)
9032 bpf_prog_put(cur_prog);
9033
9034 return 0;
9035}
9036
9037static int dev_xdp_attach_link(struct net_device *dev,
9038 struct netlink_ext_ack *extack,
9039 struct bpf_xdp_link *link)
9040{
9041 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9042}
9043
9044static int dev_xdp_detach_link(struct net_device *dev,
9045 struct netlink_ext_ack *extack,
9046 struct bpf_xdp_link *link)
9047{
9048 enum bpf_xdp_mode mode;
9049 bpf_op_t bpf_op;
9050
9051 ASSERT_RTNL();
9052
9053 mode = dev_xdp_mode(dev, link->flags);
9054 if (dev_xdp_link(dev, mode) != link)
9055 return -EINVAL;
9056
9057 bpf_op = dev_xdp_bpf_op(dev, mode);
9058 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9059 dev_xdp_set_link(dev, mode, NULL);
9060 return 0;
9061}
9062
9063static void bpf_xdp_link_release(struct bpf_link *link)
9064{
9065 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9066
9067 rtnl_lock();
9068
9069 /* if racing with net_device's tear down, xdp_link->dev might be
9070 * already NULL, in which case link was already auto-detached
9071 */
9072 if (xdp_link->dev) {
9073 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9074 xdp_link->dev = NULL;
9075 }
9076
9077 rtnl_unlock();
9078}
9079
9080static int bpf_xdp_link_detach(struct bpf_link *link)
9081{
9082 bpf_xdp_link_release(link);
9083 return 0;
9084}
9085
9086static void bpf_xdp_link_dealloc(struct bpf_link *link)
9087{
9088 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9089
9090 kfree(xdp_link);
9091}
9092
9093static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9094 struct seq_file *seq)
9095{
9096 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9097 u32 ifindex = 0;
9098
9099 rtnl_lock();
9100 if (xdp_link->dev)
9101 ifindex = xdp_link->dev->ifindex;
9102 rtnl_unlock();
9103
9104 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9105}
9106
9107static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9108 struct bpf_link_info *info)
9109{
9110 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9111 u32 ifindex = 0;
9112
9113 rtnl_lock();
9114 if (xdp_link->dev)
9115 ifindex = xdp_link->dev->ifindex;
9116 rtnl_unlock();
9117
9118 info->xdp.ifindex = ifindex;
9119 return 0;
9120}
9121
9122static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9123 struct bpf_prog *old_prog)
9124{
9125 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9126 enum bpf_xdp_mode mode;
9127 bpf_op_t bpf_op;
9128 int err = 0;
9129
9130 rtnl_lock();
9131
9132 /* link might have been auto-released already, so fail */
9133 if (!xdp_link->dev) {
9134 err = -ENOLINK;
9135 goto out_unlock;
9136 }
9137
9138 if (old_prog && link->prog != old_prog) {
9139 err = -EPERM;
9140 goto out_unlock;
9141 }
9142 old_prog = link->prog;
9143 if (old_prog == new_prog) {
9144 /* no-op, don't disturb drivers */
9145 bpf_prog_put(new_prog);
9146 goto out_unlock;
9147 }
9148
9149 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9150 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9151 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9152 xdp_link->flags, new_prog);
9153 if (err)
9154 goto out_unlock;
9155
9156 old_prog = xchg(&link->prog, new_prog);
9157 bpf_prog_put(old_prog);
9158
9159out_unlock:
9160 rtnl_unlock();
9161 return err;
9162}
9163
9164static const struct bpf_link_ops bpf_xdp_link_lops = {
9165 .release = bpf_xdp_link_release,
9166 .dealloc = bpf_xdp_link_dealloc,
9167 .detach = bpf_xdp_link_detach,
9168 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9169 .fill_link_info = bpf_xdp_link_fill_link_info,
9170 .update_prog = bpf_xdp_link_update,
9171};
9172
9173int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9174{
9175 struct net *net = current->nsproxy->net_ns;
9176 struct bpf_link_primer link_primer;
9177 struct bpf_xdp_link *link;
9178 struct net_device *dev;
9179 int err, fd;
9180
9181 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9182 if (!dev)
9183 return -EINVAL;
9184
9185 link = kzalloc(sizeof(*link), GFP_USER);
9186 if (!link) {
9187 err = -ENOMEM;
9188 goto out_put_dev;
9189 }
9190
9191 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9192 link->dev = dev;
9193 link->flags = attr->link_create.flags;
9194
9195 err = bpf_link_prime(&link->link, &link_primer);
9196 if (err) {
9197 kfree(link);
9198 goto out_put_dev;
9199 }
9200
9201 rtnl_lock();
9202 err = dev_xdp_attach_link(dev, NULL, link);
9203 rtnl_unlock();
9204
9205 if (err) {
9206 bpf_link_cleanup(&link_primer);
9207 goto out_put_dev;
9208 }
9209
9210 fd = bpf_link_settle(&link_primer);
9211 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9212 dev_put(dev);
9213 return fd;
9214
9215out_put_dev:
9216 dev_put(dev);
9217 return err;
9218}
9219
9220/**
9221 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9222 * @dev: device
9223 * @extack: netlink extended ack
9224 * @fd: new program fd or negative value to clear
9225 * @expected_fd: old program fd that userspace expects to replace or clear
9226 * @flags: xdp-related flags
9227 *
9228 * Set or clear a bpf program for a device
9229 */
9230int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9231 int fd, int expected_fd, u32 flags)
9232{
9233 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9234 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9235 int err;
9236
9237 ASSERT_RTNL();
9238
9239 if (fd >= 0) {
9240 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9241 mode != XDP_MODE_SKB);
9242 if (IS_ERR(new_prog))
9243 return PTR_ERR(new_prog);
9244 }
9245
9246 if (expected_fd >= 0) {
9247 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9248 mode != XDP_MODE_SKB);
9249 if (IS_ERR(old_prog)) {
9250 err = PTR_ERR(old_prog);
9251 old_prog = NULL;
9252 goto err_out;
9253 }
9254 }
9255
9256 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9257
9258err_out:
9259 if (err && new_prog)
9260 bpf_prog_put(new_prog);
9261 if (old_prog)
9262 bpf_prog_put(old_prog);
9263 return err;
9264}
9265
9266/**
9267 * dev_new_index - allocate an ifindex
9268 * @net: the applicable net namespace
9269 *
9270 * Returns a suitable unique value for a new device interface
9271 * number. The caller must hold the rtnl semaphore or the
9272 * dev_base_lock to be sure it remains unique.
9273 */
9274static int dev_new_index(struct net *net)
9275{
9276 int ifindex = net->ifindex;
9277
9278 for (;;) {
9279 if (++ifindex <= 0)
9280 ifindex = 1;
9281 if (!__dev_get_by_index(net, ifindex))
9282 return net->ifindex = ifindex;
9283 }
9284}
9285
9286/* Delayed registration/unregisteration */
9287static LIST_HEAD(net_todo_list);
9288DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9289
9290static void net_set_todo(struct net_device *dev)
9291{
9292 list_add_tail(&dev->todo_list, &net_todo_list);
9293 dev_net(dev)->dev_unreg_count++;
9294}
9295
9296static void rollback_registered_many(struct list_head *head)
9297{
9298 struct net_device *dev, *tmp;
9299 LIST_HEAD(close_head);
9300
9301 BUG_ON(dev_boot_phase);
9302 ASSERT_RTNL();
9303
9304 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9305 /* Some devices call without registering
9306 * for initialization unwind. Remove those
9307 * devices and proceed with the remaining.
9308 */
9309 if (dev->reg_state == NETREG_UNINITIALIZED) {
9310 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9311 dev->name, dev);
9312
9313 WARN_ON(1);
9314 list_del(&dev->unreg_list);
9315 continue;
9316 }
9317 dev->dismantle = true;
9318 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9319 }
9320
9321 /* If device is running, close it first. */
9322 list_for_each_entry(dev, head, unreg_list)
9323 list_add_tail(&dev->close_list, &close_head);
9324 dev_close_many(&close_head, true);
9325
9326 list_for_each_entry(dev, head, unreg_list) {
9327 /* And unlink it from device chain. */
9328 unlist_netdevice(dev);
9329
9330 dev->reg_state = NETREG_UNREGISTERING;
9331 }
9332 flush_all_backlogs();
9333
9334 synchronize_net();
9335
9336 list_for_each_entry(dev, head, unreg_list) {
9337 struct sk_buff *skb = NULL;
9338
9339 /* Shutdown queueing discipline. */
9340 dev_shutdown(dev);
9341
9342 dev_xdp_uninstall(dev);
9343
9344 /* Notify protocols, that we are about to destroy
9345 * this device. They should clean all the things.
9346 */
9347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9348
9349 if (!dev->rtnl_link_ops ||
9350 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9351 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9352 GFP_KERNEL, NULL, 0);
9353
9354 /*
9355 * Flush the unicast and multicast chains
9356 */
9357 dev_uc_flush(dev);
9358 dev_mc_flush(dev);
9359
9360 netdev_name_node_alt_flush(dev);
9361 netdev_name_node_free(dev->name_node);
9362
9363 if (dev->netdev_ops->ndo_uninit)
9364 dev->netdev_ops->ndo_uninit(dev);
9365
9366 if (skb)
9367 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9368
9369 /* Notifier chain MUST detach us all upper devices. */
9370 WARN_ON(netdev_has_any_upper_dev(dev));
9371 WARN_ON(netdev_has_any_lower_dev(dev));
9372
9373 /* Remove entries from kobject tree */
9374 netdev_unregister_kobject(dev);
9375#ifdef CONFIG_XPS
9376 /* Remove XPS queueing entries */
9377 netif_reset_xps_queues_gt(dev, 0);
9378#endif
9379 }
9380
9381 synchronize_net();
9382
9383 list_for_each_entry(dev, head, unreg_list)
9384 dev_put(dev);
9385}
9386
9387static void rollback_registered(struct net_device *dev)
9388{
9389 LIST_HEAD(single);
9390
9391 list_add(&dev->unreg_list, &single);
9392 rollback_registered_many(&single);
9393 list_del(&single);
9394}
9395
9396static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9397 struct net_device *upper, netdev_features_t features)
9398{
9399 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9400 netdev_features_t feature;
9401 int feature_bit;
9402
9403 for_each_netdev_feature(upper_disables, feature_bit) {
9404 feature = __NETIF_F_BIT(feature_bit);
9405 if (!(upper->wanted_features & feature)
9406 && (features & feature)) {
9407 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9408 &feature, upper->name);
9409 features &= ~feature;
9410 }
9411 }
9412
9413 return features;
9414}
9415
9416static void netdev_sync_lower_features(struct net_device *upper,
9417 struct net_device *lower, netdev_features_t features)
9418{
9419 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9420 netdev_features_t feature;
9421 int feature_bit;
9422
9423 for_each_netdev_feature(upper_disables, feature_bit) {
9424 feature = __NETIF_F_BIT(feature_bit);
9425 if (!(features & feature) && (lower->features & feature)) {
9426 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9427 &feature, lower->name);
9428 lower->wanted_features &= ~feature;
9429 __netdev_update_features(lower);
9430
9431 if (unlikely(lower->features & feature))
9432 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9433 &feature, lower->name);
9434 else
9435 netdev_features_change(lower);
9436 }
9437 }
9438}
9439
9440static netdev_features_t netdev_fix_features(struct net_device *dev,
9441 netdev_features_t features)
9442{
9443 /* Fix illegal checksum combinations */
9444 if ((features & NETIF_F_HW_CSUM) &&
9445 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9446 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9447 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9448 }
9449
9450 /* TSO requires that SG is present as well. */
9451 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9452 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9453 features &= ~NETIF_F_ALL_TSO;
9454 }
9455
9456 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9457 !(features & NETIF_F_IP_CSUM)) {
9458 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9459 features &= ~NETIF_F_TSO;
9460 features &= ~NETIF_F_TSO_ECN;
9461 }
9462
9463 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9464 !(features & NETIF_F_IPV6_CSUM)) {
9465 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9466 features &= ~NETIF_F_TSO6;
9467 }
9468
9469 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9470 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9471 features &= ~NETIF_F_TSO_MANGLEID;
9472
9473 /* TSO ECN requires that TSO is present as well. */
9474 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9475 features &= ~NETIF_F_TSO_ECN;
9476
9477 /* Software GSO depends on SG. */
9478 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9479 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9480 features &= ~NETIF_F_GSO;
9481 }
9482
9483 /* GSO partial features require GSO partial be set */
9484 if ((features & dev->gso_partial_features) &&
9485 !(features & NETIF_F_GSO_PARTIAL)) {
9486 netdev_dbg(dev,
9487 "Dropping partially supported GSO features since no GSO partial.\n");
9488 features &= ~dev->gso_partial_features;
9489 }
9490
9491 if (!(features & NETIF_F_RXCSUM)) {
9492 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9493 * successfully merged by hardware must also have the
9494 * checksum verified by hardware. If the user does not
9495 * want to enable RXCSUM, logically, we should disable GRO_HW.
9496 */
9497 if (features & NETIF_F_GRO_HW) {
9498 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9499 features &= ~NETIF_F_GRO_HW;
9500 }
9501 }
9502
9503 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9504 if (features & NETIF_F_RXFCS) {
9505 if (features & NETIF_F_LRO) {
9506 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9507 features &= ~NETIF_F_LRO;
9508 }
9509
9510 if (features & NETIF_F_GRO_HW) {
9511 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9512 features &= ~NETIF_F_GRO_HW;
9513 }
9514 }
9515
9516 return features;
9517}
9518
9519int __netdev_update_features(struct net_device *dev)
9520{
9521 struct net_device *upper, *lower;
9522 netdev_features_t features;
9523 struct list_head *iter;
9524 int err = -1;
9525
9526 ASSERT_RTNL();
9527
9528 features = netdev_get_wanted_features(dev);
9529
9530 if (dev->netdev_ops->ndo_fix_features)
9531 features = dev->netdev_ops->ndo_fix_features(dev, features);
9532
9533 /* driver might be less strict about feature dependencies */
9534 features = netdev_fix_features(dev, features);
9535
9536 /* some features can't be enabled if they're off an an upper device */
9537 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9538 features = netdev_sync_upper_features(dev, upper, features);
9539
9540 if (dev->features == features)
9541 goto sync_lower;
9542
9543 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9544 &dev->features, &features);
9545
9546 if (dev->netdev_ops->ndo_set_features)
9547 err = dev->netdev_ops->ndo_set_features(dev, features);
9548 else
9549 err = 0;
9550
9551 if (unlikely(err < 0)) {
9552 netdev_err(dev,
9553 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9554 err, &features, &dev->features);
9555 /* return non-0 since some features might have changed and
9556 * it's better to fire a spurious notification than miss it
9557 */
9558 return -1;
9559 }
9560
9561sync_lower:
9562 /* some features must be disabled on lower devices when disabled
9563 * on an upper device (think: bonding master or bridge)
9564 */
9565 netdev_for_each_lower_dev(dev, lower, iter)
9566 netdev_sync_lower_features(dev, lower, features);
9567
9568 if (!err) {
9569 netdev_features_t diff = features ^ dev->features;
9570
9571 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9572 /* udp_tunnel_{get,drop}_rx_info both need
9573 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9574 * device, or they won't do anything.
9575 * Thus we need to update dev->features
9576 * *before* calling udp_tunnel_get_rx_info,
9577 * but *after* calling udp_tunnel_drop_rx_info.
9578 */
9579 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9580 dev->features = features;
9581 udp_tunnel_get_rx_info(dev);
9582 } else {
9583 udp_tunnel_drop_rx_info(dev);
9584 }
9585 }
9586
9587 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9588 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9589 dev->features = features;
9590 err |= vlan_get_rx_ctag_filter_info(dev);
9591 } else {
9592 vlan_drop_rx_ctag_filter_info(dev);
9593 }
9594 }
9595
9596 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9597 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9598 dev->features = features;
9599 err |= vlan_get_rx_stag_filter_info(dev);
9600 } else {
9601 vlan_drop_rx_stag_filter_info(dev);
9602 }
9603 }
9604
9605 dev->features = features;
9606 }
9607
9608 return err < 0 ? 0 : 1;
9609}
9610
9611/**
9612 * netdev_update_features - recalculate device features
9613 * @dev: the device to check
9614 *
9615 * Recalculate dev->features set and send notifications if it
9616 * has changed. Should be called after driver or hardware dependent
9617 * conditions might have changed that influence the features.
9618 */
9619void netdev_update_features(struct net_device *dev)
9620{
9621 if (__netdev_update_features(dev))
9622 netdev_features_change(dev);
9623}
9624EXPORT_SYMBOL(netdev_update_features);
9625
9626/**
9627 * netdev_change_features - recalculate device features
9628 * @dev: the device to check
9629 *
9630 * Recalculate dev->features set and send notifications even
9631 * if they have not changed. Should be called instead of
9632 * netdev_update_features() if also dev->vlan_features might
9633 * have changed to allow the changes to be propagated to stacked
9634 * VLAN devices.
9635 */
9636void netdev_change_features(struct net_device *dev)
9637{
9638 __netdev_update_features(dev);
9639 netdev_features_change(dev);
9640}
9641EXPORT_SYMBOL(netdev_change_features);
9642
9643/**
9644 * netif_stacked_transfer_operstate - transfer operstate
9645 * @rootdev: the root or lower level device to transfer state from
9646 * @dev: the device to transfer operstate to
9647 *
9648 * Transfer operational state from root to device. This is normally
9649 * called when a stacking relationship exists between the root
9650 * device and the device(a leaf device).
9651 */
9652void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9653 struct net_device *dev)
9654{
9655 if (rootdev->operstate == IF_OPER_DORMANT)
9656 netif_dormant_on(dev);
9657 else
9658 netif_dormant_off(dev);
9659
9660 if (rootdev->operstate == IF_OPER_TESTING)
9661 netif_testing_on(dev);
9662 else
9663 netif_testing_off(dev);
9664
9665 if (netif_carrier_ok(rootdev))
9666 netif_carrier_on(dev);
9667 else
9668 netif_carrier_off(dev);
9669}
9670EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9671
9672static int netif_alloc_rx_queues(struct net_device *dev)
9673{
9674 unsigned int i, count = dev->num_rx_queues;
9675 struct netdev_rx_queue *rx;
9676 size_t sz = count * sizeof(*rx);
9677 int err = 0;
9678
9679 BUG_ON(count < 1);
9680
9681 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9682 if (!rx)
9683 return -ENOMEM;
9684
9685 dev->_rx = rx;
9686
9687 for (i = 0; i < count; i++) {
9688 rx[i].dev = dev;
9689
9690 /* XDP RX-queue setup */
9691 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9692 if (err < 0)
9693 goto err_rxq_info;
9694 }
9695 return 0;
9696
9697err_rxq_info:
9698 /* Rollback successful reg's and free other resources */
9699 while (i--)
9700 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9701 kvfree(dev->_rx);
9702 dev->_rx = NULL;
9703 return err;
9704}
9705
9706static void netif_free_rx_queues(struct net_device *dev)
9707{
9708 unsigned int i, count = dev->num_rx_queues;
9709
9710 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9711 if (!dev->_rx)
9712 return;
9713
9714 for (i = 0; i < count; i++)
9715 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9716
9717 kvfree(dev->_rx);
9718}
9719
9720static void netdev_init_one_queue(struct net_device *dev,
9721 struct netdev_queue *queue, void *_unused)
9722{
9723 /* Initialize queue lock */
9724 spin_lock_init(&queue->_xmit_lock);
9725 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9726 queue->xmit_lock_owner = -1;
9727 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9728 queue->dev = dev;
9729#ifdef CONFIG_BQL
9730 dql_init(&queue->dql, HZ);
9731#endif
9732}
9733
9734static void netif_free_tx_queues(struct net_device *dev)
9735{
9736 kvfree(dev->_tx);
9737}
9738
9739static int netif_alloc_netdev_queues(struct net_device *dev)
9740{
9741 unsigned int count = dev->num_tx_queues;
9742 struct netdev_queue *tx;
9743 size_t sz = count * sizeof(*tx);
9744
9745 if (count < 1 || count > 0xffff)
9746 return -EINVAL;
9747
9748 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9749 if (!tx)
9750 return -ENOMEM;
9751
9752 dev->_tx = tx;
9753
9754 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9755 spin_lock_init(&dev->tx_global_lock);
9756
9757 return 0;
9758}
9759
9760void netif_tx_stop_all_queues(struct net_device *dev)
9761{
9762 unsigned int i;
9763
9764 for (i = 0; i < dev->num_tx_queues; i++) {
9765 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9766
9767 netif_tx_stop_queue(txq);
9768 }
9769}
9770EXPORT_SYMBOL(netif_tx_stop_all_queues);
9771
9772/**
9773 * register_netdevice - register a network device
9774 * @dev: device to register
9775 *
9776 * Take a completed network device structure and add it to the kernel
9777 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9778 * chain. 0 is returned on success. A negative errno code is returned
9779 * on a failure to set up the device, or if the name is a duplicate.
9780 *
9781 * Callers must hold the rtnl semaphore. You may want
9782 * register_netdev() instead of this.
9783 *
9784 * BUGS:
9785 * The locking appears insufficient to guarantee two parallel registers
9786 * will not get the same name.
9787 */
9788
9789int register_netdevice(struct net_device *dev)
9790{
9791 int ret;
9792 struct net *net = dev_net(dev);
9793
9794 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9795 NETDEV_FEATURE_COUNT);
9796 BUG_ON(dev_boot_phase);
9797 ASSERT_RTNL();
9798
9799 might_sleep();
9800
9801 /* When net_device's are persistent, this will be fatal. */
9802 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9803 BUG_ON(!net);
9804
9805 ret = ethtool_check_ops(dev->ethtool_ops);
9806 if (ret)
9807 return ret;
9808
9809 spin_lock_init(&dev->addr_list_lock);
9810 netdev_set_addr_lockdep_class(dev);
9811
9812 ret = dev_get_valid_name(net, dev, dev->name);
9813 if (ret < 0)
9814 goto out;
9815
9816 ret = -ENOMEM;
9817 dev->name_node = netdev_name_node_head_alloc(dev);
9818 if (!dev->name_node)
9819 goto out;
9820
9821 /* Init, if this function is available */
9822 if (dev->netdev_ops->ndo_init) {
9823 ret = dev->netdev_ops->ndo_init(dev);
9824 if (ret) {
9825 if (ret > 0)
9826 ret = -EIO;
9827 goto err_free_name;
9828 }
9829 }
9830
9831 if (((dev->hw_features | dev->features) &
9832 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9833 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9834 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9835 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9836 ret = -EINVAL;
9837 goto err_uninit;
9838 }
9839
9840 ret = -EBUSY;
9841 if (!dev->ifindex)
9842 dev->ifindex = dev_new_index(net);
9843 else if (__dev_get_by_index(net, dev->ifindex))
9844 goto err_uninit;
9845
9846 /* Transfer changeable features to wanted_features and enable
9847 * software offloads (GSO and GRO).
9848 */
9849 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9850 dev->features |= NETIF_F_SOFT_FEATURES;
9851
9852 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9853 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9854 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9855 }
9856
9857 dev->wanted_features = dev->features & dev->hw_features;
9858
9859 if (!(dev->flags & IFF_LOOPBACK))
9860 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9861
9862 /* If IPv4 TCP segmentation offload is supported we should also
9863 * allow the device to enable segmenting the frame with the option
9864 * of ignoring a static IP ID value. This doesn't enable the
9865 * feature itself but allows the user to enable it later.
9866 */
9867 if (dev->hw_features & NETIF_F_TSO)
9868 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9869 if (dev->vlan_features & NETIF_F_TSO)
9870 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9871 if (dev->mpls_features & NETIF_F_TSO)
9872 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9873 if (dev->hw_enc_features & NETIF_F_TSO)
9874 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9875
9876 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9877 */
9878 dev->vlan_features |= NETIF_F_HIGHDMA;
9879
9880 /* Make NETIF_F_SG inheritable to tunnel devices.
9881 */
9882 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9883
9884 /* Make NETIF_F_SG inheritable to MPLS.
9885 */
9886 dev->mpls_features |= NETIF_F_SG;
9887
9888 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9889 ret = notifier_to_errno(ret);
9890 if (ret)
9891 goto err_uninit;
9892
9893 ret = netdev_register_kobject(dev);
9894 if (ret) {
9895 dev->reg_state = NETREG_UNREGISTERED;
9896 goto err_uninit;
9897 }
9898 dev->reg_state = NETREG_REGISTERED;
9899
9900 __netdev_update_features(dev);
9901
9902 /*
9903 * Default initial state at registry is that the
9904 * device is present.
9905 */
9906
9907 set_bit(__LINK_STATE_PRESENT, &dev->state);
9908
9909 linkwatch_init_dev(dev);
9910
9911 dev_init_scheduler(dev);
9912 dev_hold(dev);
9913 list_netdevice(dev);
9914 add_device_randomness(dev->dev_addr, dev->addr_len);
9915
9916 /* If the device has permanent device address, driver should
9917 * set dev_addr and also addr_assign_type should be set to
9918 * NET_ADDR_PERM (default value).
9919 */
9920 if (dev->addr_assign_type == NET_ADDR_PERM)
9921 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9922
9923 /* Notify protocols, that a new device appeared. */
9924 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9925 ret = notifier_to_errno(ret);
9926 if (ret) {
9927 rollback_registered(dev);
9928 rcu_barrier();
9929
9930 dev->reg_state = NETREG_UNREGISTERED;
9931 /* We should put the kobject that hold in
9932 * netdev_unregister_kobject(), otherwise
9933 * the net device cannot be freed when
9934 * driver calls free_netdev(), because the
9935 * kobject is being hold.
9936 */
9937 kobject_put(&dev->dev.kobj);
9938 }
9939 /*
9940 * Prevent userspace races by waiting until the network
9941 * device is fully setup before sending notifications.
9942 */
9943 if (!dev->rtnl_link_ops ||
9944 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9945 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9946
9947out:
9948 return ret;
9949
9950err_uninit:
9951 if (dev->netdev_ops->ndo_uninit)
9952 dev->netdev_ops->ndo_uninit(dev);
9953 if (dev->priv_destructor)
9954 dev->priv_destructor(dev);
9955err_free_name:
9956 netdev_name_node_free(dev->name_node);
9957 goto out;
9958}
9959EXPORT_SYMBOL(register_netdevice);
9960
9961/**
9962 * init_dummy_netdev - init a dummy network device for NAPI
9963 * @dev: device to init
9964 *
9965 * This takes a network device structure and initialize the minimum
9966 * amount of fields so it can be used to schedule NAPI polls without
9967 * registering a full blown interface. This is to be used by drivers
9968 * that need to tie several hardware interfaces to a single NAPI
9969 * poll scheduler due to HW limitations.
9970 */
9971int init_dummy_netdev(struct net_device *dev)
9972{
9973 /* Clear everything. Note we don't initialize spinlocks
9974 * are they aren't supposed to be taken by any of the
9975 * NAPI code and this dummy netdev is supposed to be
9976 * only ever used for NAPI polls
9977 */
9978 memset(dev, 0, sizeof(struct net_device));
9979
9980 /* make sure we BUG if trying to hit standard
9981 * register/unregister code path
9982 */
9983 dev->reg_state = NETREG_DUMMY;
9984
9985 /* NAPI wants this */
9986 INIT_LIST_HEAD(&dev->napi_list);
9987
9988 /* a dummy interface is started by default */
9989 set_bit(__LINK_STATE_PRESENT, &dev->state);
9990 set_bit(__LINK_STATE_START, &dev->state);
9991
9992 /* napi_busy_loop stats accounting wants this */
9993 dev_net_set(dev, &init_net);
9994
9995 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9996 * because users of this 'device' dont need to change
9997 * its refcount.
9998 */
9999
10000 return 0;
10001}
10002EXPORT_SYMBOL_GPL(init_dummy_netdev);
10003
10004
10005/**
10006 * register_netdev - register a network device
10007 * @dev: device to register
10008 *
10009 * Take a completed network device structure and add it to the kernel
10010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10011 * chain. 0 is returned on success. A negative errno code is returned
10012 * on a failure to set up the device, or if the name is a duplicate.
10013 *
10014 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10015 * and expands the device name if you passed a format string to
10016 * alloc_netdev.
10017 */
10018int register_netdev(struct net_device *dev)
10019{
10020 int err;
10021
10022 if (rtnl_lock_killable())
10023 return -EINTR;
10024 err = register_netdevice(dev);
10025 rtnl_unlock();
10026 return err;
10027}
10028EXPORT_SYMBOL(register_netdev);
10029
10030int netdev_refcnt_read(const struct net_device *dev)
10031{
10032 int i, refcnt = 0;
10033
10034 for_each_possible_cpu(i)
10035 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10036 return refcnt;
10037}
10038EXPORT_SYMBOL(netdev_refcnt_read);
10039
10040/**
10041 * netdev_wait_allrefs - wait until all references are gone.
10042 * @dev: target net_device
10043 *
10044 * This is called when unregistering network devices.
10045 *
10046 * Any protocol or device that holds a reference should register
10047 * for netdevice notification, and cleanup and put back the
10048 * reference if they receive an UNREGISTER event.
10049 * We can get stuck here if buggy protocols don't correctly
10050 * call dev_put.
10051 */
10052static void netdev_wait_allrefs(struct net_device *dev)
10053{
10054 unsigned long rebroadcast_time, warning_time;
10055 int refcnt;
10056
10057 linkwatch_forget_dev(dev);
10058
10059 rebroadcast_time = warning_time = jiffies;
10060 refcnt = netdev_refcnt_read(dev);
10061
10062 while (refcnt != 0) {
10063 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10064 rtnl_lock();
10065
10066 /* Rebroadcast unregister notification */
10067 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10068
10069 __rtnl_unlock();
10070 rcu_barrier();
10071 rtnl_lock();
10072
10073 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10074 &dev->state)) {
10075 /* We must not have linkwatch events
10076 * pending on unregister. If this
10077 * happens, we simply run the queue
10078 * unscheduled, resulting in a noop
10079 * for this device.
10080 */
10081 linkwatch_run_queue();
10082 }
10083
10084 __rtnl_unlock();
10085
10086 rebroadcast_time = jiffies;
10087 }
10088
10089 msleep(250);
10090
10091 refcnt = netdev_refcnt_read(dev);
10092
10093 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10094 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10095 dev->name, refcnt);
10096 warning_time = jiffies;
10097 }
10098 }
10099}
10100
10101/* The sequence is:
10102 *
10103 * rtnl_lock();
10104 * ...
10105 * register_netdevice(x1);
10106 * register_netdevice(x2);
10107 * ...
10108 * unregister_netdevice(y1);
10109 * unregister_netdevice(y2);
10110 * ...
10111 * rtnl_unlock();
10112 * free_netdev(y1);
10113 * free_netdev(y2);
10114 *
10115 * We are invoked by rtnl_unlock().
10116 * This allows us to deal with problems:
10117 * 1) We can delete sysfs objects which invoke hotplug
10118 * without deadlocking with linkwatch via keventd.
10119 * 2) Since we run with the RTNL semaphore not held, we can sleep
10120 * safely in order to wait for the netdev refcnt to drop to zero.
10121 *
10122 * We must not return until all unregister events added during
10123 * the interval the lock was held have been completed.
10124 */
10125void netdev_run_todo(void)
10126{
10127 struct list_head list;
10128#ifdef CONFIG_LOCKDEP
10129 struct list_head unlink_list;
10130
10131 list_replace_init(&net_unlink_list, &unlink_list);
10132
10133 while (!list_empty(&unlink_list)) {
10134 struct net_device *dev = list_first_entry(&unlink_list,
10135 struct net_device,
10136 unlink_list);
10137 list_del(&dev->unlink_list);
10138 dev->nested_level = dev->lower_level - 1;
10139 }
10140#endif
10141
10142 /* Snapshot list, allow later requests */
10143 list_replace_init(&net_todo_list, &list);
10144
10145 __rtnl_unlock();
10146
10147
10148 /* Wait for rcu callbacks to finish before next phase */
10149 if (!list_empty(&list))
10150 rcu_barrier();
10151
10152 while (!list_empty(&list)) {
10153 struct net_device *dev
10154 = list_first_entry(&list, struct net_device, todo_list);
10155 list_del(&dev->todo_list);
10156
10157 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10158 pr_err("network todo '%s' but state %d\n",
10159 dev->name, dev->reg_state);
10160 dump_stack();
10161 continue;
10162 }
10163
10164 dev->reg_state = NETREG_UNREGISTERED;
10165
10166 netdev_wait_allrefs(dev);
10167
10168 /* paranoia */
10169 BUG_ON(netdev_refcnt_read(dev));
10170 BUG_ON(!list_empty(&dev->ptype_all));
10171 BUG_ON(!list_empty(&dev->ptype_specific));
10172 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10173 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10174#if IS_ENABLED(CONFIG_DECNET)
10175 WARN_ON(dev->dn_ptr);
10176#endif
10177 if (dev->priv_destructor)
10178 dev->priv_destructor(dev);
10179 if (dev->needs_free_netdev)
10180 free_netdev(dev);
10181
10182 /* Report a network device has been unregistered */
10183 rtnl_lock();
10184 dev_net(dev)->dev_unreg_count--;
10185 __rtnl_unlock();
10186 wake_up(&netdev_unregistering_wq);
10187
10188 /* Free network device */
10189 kobject_put(&dev->dev.kobj);
10190 }
10191}
10192
10193/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10194 * all the same fields in the same order as net_device_stats, with only
10195 * the type differing, but rtnl_link_stats64 may have additional fields
10196 * at the end for newer counters.
10197 */
10198void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10199 const struct net_device_stats *netdev_stats)
10200{
10201#if BITS_PER_LONG == 64
10202 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10203 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10204 /* zero out counters that only exist in rtnl_link_stats64 */
10205 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10206 sizeof(*stats64) - sizeof(*netdev_stats));
10207#else
10208 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10209 const unsigned long *src = (const unsigned long *)netdev_stats;
10210 u64 *dst = (u64 *)stats64;
10211
10212 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10213 for (i = 0; i < n; i++)
10214 dst[i] = src[i];
10215 /* zero out counters that only exist in rtnl_link_stats64 */
10216 memset((char *)stats64 + n * sizeof(u64), 0,
10217 sizeof(*stats64) - n * sizeof(u64));
10218#endif
10219}
10220EXPORT_SYMBOL(netdev_stats_to_stats64);
10221
10222/**
10223 * dev_get_stats - get network device statistics
10224 * @dev: device to get statistics from
10225 * @storage: place to store stats
10226 *
10227 * Get network statistics from device. Return @storage.
10228 * The device driver may provide its own method by setting
10229 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10230 * otherwise the internal statistics structure is used.
10231 */
10232struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10233 struct rtnl_link_stats64 *storage)
10234{
10235 const struct net_device_ops *ops = dev->netdev_ops;
10236
10237 if (ops->ndo_get_stats64) {
10238 memset(storage, 0, sizeof(*storage));
10239 ops->ndo_get_stats64(dev, storage);
10240 } else if (ops->ndo_get_stats) {
10241 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10242 } else {
10243 netdev_stats_to_stats64(storage, &dev->stats);
10244 }
10245 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10246 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10247 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10248 return storage;
10249}
10250EXPORT_SYMBOL(dev_get_stats);
10251
10252struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10253{
10254 struct netdev_queue *queue = dev_ingress_queue(dev);
10255
10256#ifdef CONFIG_NET_CLS_ACT
10257 if (queue)
10258 return queue;
10259 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10260 if (!queue)
10261 return NULL;
10262 netdev_init_one_queue(dev, queue, NULL);
10263 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10264 queue->qdisc_sleeping = &noop_qdisc;
10265 rcu_assign_pointer(dev->ingress_queue, queue);
10266#endif
10267 return queue;
10268}
10269
10270static const struct ethtool_ops default_ethtool_ops;
10271
10272void netdev_set_default_ethtool_ops(struct net_device *dev,
10273 const struct ethtool_ops *ops)
10274{
10275 if (dev->ethtool_ops == &default_ethtool_ops)
10276 dev->ethtool_ops = ops;
10277}
10278EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10279
10280void netdev_freemem(struct net_device *dev)
10281{
10282 char *addr = (char *)dev - dev->padded;
10283
10284 kvfree(addr);
10285}
10286
10287/**
10288 * alloc_netdev_mqs - allocate network device
10289 * @sizeof_priv: size of private data to allocate space for
10290 * @name: device name format string
10291 * @name_assign_type: origin of device name
10292 * @setup: callback to initialize device
10293 * @txqs: the number of TX subqueues to allocate
10294 * @rxqs: the number of RX subqueues to allocate
10295 *
10296 * Allocates a struct net_device with private data area for driver use
10297 * and performs basic initialization. Also allocates subqueue structs
10298 * for each queue on the device.
10299 */
10300struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10301 unsigned char name_assign_type,
10302 void (*setup)(struct net_device *),
10303 unsigned int txqs, unsigned int rxqs)
10304{
10305 struct net_device *dev;
10306 unsigned int alloc_size;
10307 struct net_device *p;
10308
10309 BUG_ON(strlen(name) >= sizeof(dev->name));
10310
10311 if (txqs < 1) {
10312 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10313 return NULL;
10314 }
10315
10316 if (rxqs < 1) {
10317 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10318 return NULL;
10319 }
10320
10321 alloc_size = sizeof(struct net_device);
10322 if (sizeof_priv) {
10323 /* ensure 32-byte alignment of private area */
10324 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10325 alloc_size += sizeof_priv;
10326 }
10327 /* ensure 32-byte alignment of whole construct */
10328 alloc_size += NETDEV_ALIGN - 1;
10329
10330 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10331 if (!p)
10332 return NULL;
10333
10334 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10335 dev->padded = (char *)dev - (char *)p;
10336
10337 dev->pcpu_refcnt = alloc_percpu(int);
10338 if (!dev->pcpu_refcnt)
10339 goto free_dev;
10340
10341 if (dev_addr_init(dev))
10342 goto free_pcpu;
10343
10344 dev_mc_init(dev);
10345 dev_uc_init(dev);
10346
10347 dev_net_set(dev, &init_net);
10348
10349 dev->gso_max_size = GSO_MAX_SIZE;
10350 dev->gso_max_segs = GSO_MAX_SEGS;
10351 dev->upper_level = 1;
10352 dev->lower_level = 1;
10353#ifdef CONFIG_LOCKDEP
10354 dev->nested_level = 0;
10355 INIT_LIST_HEAD(&dev->unlink_list);
10356#endif
10357
10358 INIT_LIST_HEAD(&dev->napi_list);
10359 INIT_LIST_HEAD(&dev->unreg_list);
10360 INIT_LIST_HEAD(&dev->close_list);
10361 INIT_LIST_HEAD(&dev->link_watch_list);
10362 INIT_LIST_HEAD(&dev->adj_list.upper);
10363 INIT_LIST_HEAD(&dev->adj_list.lower);
10364 INIT_LIST_HEAD(&dev->ptype_all);
10365 INIT_LIST_HEAD(&dev->ptype_specific);
10366 INIT_LIST_HEAD(&dev->net_notifier_list);
10367#ifdef CONFIG_NET_SCHED
10368 hash_init(dev->qdisc_hash);
10369#endif
10370 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10371 setup(dev);
10372
10373 if (!dev->tx_queue_len) {
10374 dev->priv_flags |= IFF_NO_QUEUE;
10375 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10376 }
10377
10378 dev->num_tx_queues = txqs;
10379 dev->real_num_tx_queues = txqs;
10380 if (netif_alloc_netdev_queues(dev))
10381 goto free_all;
10382
10383 dev->num_rx_queues = rxqs;
10384 dev->real_num_rx_queues = rxqs;
10385 if (netif_alloc_rx_queues(dev))
10386 goto free_all;
10387
10388 strcpy(dev->name, name);
10389 dev->name_assign_type = name_assign_type;
10390 dev->group = INIT_NETDEV_GROUP;
10391 if (!dev->ethtool_ops)
10392 dev->ethtool_ops = &default_ethtool_ops;
10393
10394 nf_hook_ingress_init(dev);
10395
10396 return dev;
10397
10398free_all:
10399 free_netdev(dev);
10400 return NULL;
10401
10402free_pcpu:
10403 free_percpu(dev->pcpu_refcnt);
10404free_dev:
10405 netdev_freemem(dev);
10406 return NULL;
10407}
10408EXPORT_SYMBOL(alloc_netdev_mqs);
10409
10410/**
10411 * free_netdev - free network device
10412 * @dev: device
10413 *
10414 * This function does the last stage of destroying an allocated device
10415 * interface. The reference to the device object is released. If this
10416 * is the last reference then it will be freed.Must be called in process
10417 * context.
10418 */
10419void free_netdev(struct net_device *dev)
10420{
10421 struct napi_struct *p, *n;
10422
10423 might_sleep();
10424 netif_free_tx_queues(dev);
10425 netif_free_rx_queues(dev);
10426
10427 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10428
10429 /* Flush device addresses */
10430 dev_addr_flush(dev);
10431
10432 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10433 netif_napi_del(p);
10434
10435 free_percpu(dev->pcpu_refcnt);
10436 dev->pcpu_refcnt = NULL;
10437 free_percpu(dev->xdp_bulkq);
10438 dev->xdp_bulkq = NULL;
10439
10440 /* Compatibility with error handling in drivers */
10441 if (dev->reg_state == NETREG_UNINITIALIZED) {
10442 netdev_freemem(dev);
10443 return;
10444 }
10445
10446 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10447 dev->reg_state = NETREG_RELEASED;
10448
10449 /* will free via device release */
10450 put_device(&dev->dev);
10451}
10452EXPORT_SYMBOL(free_netdev);
10453
10454/**
10455 * synchronize_net - Synchronize with packet receive processing
10456 *
10457 * Wait for packets currently being received to be done.
10458 * Does not block later packets from starting.
10459 */
10460void synchronize_net(void)
10461{
10462 might_sleep();
10463 if (rtnl_is_locked())
10464 synchronize_rcu_expedited();
10465 else
10466 synchronize_rcu();
10467}
10468EXPORT_SYMBOL(synchronize_net);
10469
10470/**
10471 * unregister_netdevice_queue - remove device from the kernel
10472 * @dev: device
10473 * @head: list
10474 *
10475 * This function shuts down a device interface and removes it
10476 * from the kernel tables.
10477 * If head not NULL, device is queued to be unregistered later.
10478 *
10479 * Callers must hold the rtnl semaphore. You may want
10480 * unregister_netdev() instead of this.
10481 */
10482
10483void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10484{
10485 ASSERT_RTNL();
10486
10487 if (head) {
10488 list_move_tail(&dev->unreg_list, head);
10489 } else {
10490 rollback_registered(dev);
10491 /* Finish processing unregister after unlock */
10492 net_set_todo(dev);
10493 }
10494}
10495EXPORT_SYMBOL(unregister_netdevice_queue);
10496
10497/**
10498 * unregister_netdevice_many - unregister many devices
10499 * @head: list of devices
10500 *
10501 * Note: As most callers use a stack allocated list_head,
10502 * we force a list_del() to make sure stack wont be corrupted later.
10503 */
10504void unregister_netdevice_many(struct list_head *head)
10505{
10506 struct net_device *dev;
10507
10508 if (!list_empty(head)) {
10509 rollback_registered_many(head);
10510 list_for_each_entry(dev, head, unreg_list)
10511 net_set_todo(dev);
10512 list_del(head);
10513 }
10514}
10515EXPORT_SYMBOL(unregister_netdevice_many);
10516
10517/**
10518 * unregister_netdev - remove device from the kernel
10519 * @dev: device
10520 *
10521 * This function shuts down a device interface and removes it
10522 * from the kernel tables.
10523 *
10524 * This is just a wrapper for unregister_netdevice that takes
10525 * the rtnl semaphore. In general you want to use this and not
10526 * unregister_netdevice.
10527 */
10528void unregister_netdev(struct net_device *dev)
10529{
10530 rtnl_lock();
10531 unregister_netdevice(dev);
10532 rtnl_unlock();
10533}
10534EXPORT_SYMBOL(unregister_netdev);
10535
10536/**
10537 * dev_change_net_namespace - move device to different nethost namespace
10538 * @dev: device
10539 * @net: network namespace
10540 * @pat: If not NULL name pattern to try if the current device name
10541 * is already taken in the destination network namespace.
10542 *
10543 * This function shuts down a device interface and moves it
10544 * to a new network namespace. On success 0 is returned, on
10545 * a failure a netagive errno code is returned.
10546 *
10547 * Callers must hold the rtnl semaphore.
10548 */
10549
10550int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10551{
10552 struct net *net_old = dev_net(dev);
10553 int err, new_nsid, new_ifindex;
10554
10555 ASSERT_RTNL();
10556
10557 /* Don't allow namespace local devices to be moved. */
10558 err = -EINVAL;
10559 if (dev->features & NETIF_F_NETNS_LOCAL)
10560 goto out;
10561
10562 /* Ensure the device has been registrered */
10563 if (dev->reg_state != NETREG_REGISTERED)
10564 goto out;
10565
10566 /* Get out if there is nothing todo */
10567 err = 0;
10568 if (net_eq(net_old, net))
10569 goto out;
10570
10571 /* Pick the destination device name, and ensure
10572 * we can use it in the destination network namespace.
10573 */
10574 err = -EEXIST;
10575 if (__dev_get_by_name(net, dev->name)) {
10576 /* We get here if we can't use the current device name */
10577 if (!pat)
10578 goto out;
10579 err = dev_get_valid_name(net, dev, pat);
10580 if (err < 0)
10581 goto out;
10582 }
10583
10584 /*
10585 * And now a mini version of register_netdevice unregister_netdevice.
10586 */
10587
10588 /* If device is running close it first. */
10589 dev_close(dev);
10590
10591 /* And unlink it from device chain */
10592 unlist_netdevice(dev);
10593
10594 synchronize_net();
10595
10596 /* Shutdown queueing discipline. */
10597 dev_shutdown(dev);
10598
10599 /* Notify protocols, that we are about to destroy
10600 * this device. They should clean all the things.
10601 *
10602 * Note that dev->reg_state stays at NETREG_REGISTERED.
10603 * This is wanted because this way 8021q and macvlan know
10604 * the device is just moving and can keep their slaves up.
10605 */
10606 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10607 rcu_barrier();
10608
10609 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10610 /* If there is an ifindex conflict assign a new one */
10611 if (__dev_get_by_index(net, dev->ifindex))
10612 new_ifindex = dev_new_index(net);
10613 else
10614 new_ifindex = dev->ifindex;
10615
10616 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10617 new_ifindex);
10618
10619 /*
10620 * Flush the unicast and multicast chains
10621 */
10622 dev_uc_flush(dev);
10623 dev_mc_flush(dev);
10624
10625 /* Send a netdev-removed uevent to the old namespace */
10626 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10627 netdev_adjacent_del_links(dev);
10628
10629 /* Move per-net netdevice notifiers that are following the netdevice */
10630 move_netdevice_notifiers_dev_net(dev, net);
10631
10632 /* Actually switch the network namespace */
10633 dev_net_set(dev, net);
10634 dev->ifindex = new_ifindex;
10635
10636 /* Send a netdev-add uevent to the new namespace */
10637 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10638 netdev_adjacent_add_links(dev);
10639
10640 /* Fixup kobjects */
10641 err = device_rename(&dev->dev, dev->name);
10642 WARN_ON(err);
10643
10644 /* Adapt owner in case owning user namespace of target network
10645 * namespace is different from the original one.
10646 */
10647 err = netdev_change_owner(dev, net_old, net);
10648 WARN_ON(err);
10649
10650 /* Add the device back in the hashes */
10651 list_netdevice(dev);
10652
10653 /* Notify protocols, that a new device appeared. */
10654 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10655
10656 /*
10657 * Prevent userspace races by waiting until the network
10658 * device is fully setup before sending notifications.
10659 */
10660 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10661
10662 synchronize_net();
10663 err = 0;
10664out:
10665 return err;
10666}
10667EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10668
10669static int dev_cpu_dead(unsigned int oldcpu)
10670{
10671 struct sk_buff **list_skb;
10672 struct sk_buff *skb;
10673 unsigned int cpu;
10674 struct softnet_data *sd, *oldsd, *remsd = NULL;
10675
10676 local_irq_disable();
10677 cpu = smp_processor_id();
10678 sd = &per_cpu(softnet_data, cpu);
10679 oldsd = &per_cpu(softnet_data, oldcpu);
10680
10681 /* Find end of our completion_queue. */
10682 list_skb = &sd->completion_queue;
10683 while (*list_skb)
10684 list_skb = &(*list_skb)->next;
10685 /* Append completion queue from offline CPU. */
10686 *list_skb = oldsd->completion_queue;
10687 oldsd->completion_queue = NULL;
10688
10689 /* Append output queue from offline CPU. */
10690 if (oldsd->output_queue) {
10691 *sd->output_queue_tailp = oldsd->output_queue;
10692 sd->output_queue_tailp = oldsd->output_queue_tailp;
10693 oldsd->output_queue = NULL;
10694 oldsd->output_queue_tailp = &oldsd->output_queue;
10695 }
10696 /* Append NAPI poll list from offline CPU, with one exception :
10697 * process_backlog() must be called by cpu owning percpu backlog.
10698 * We properly handle process_queue & input_pkt_queue later.
10699 */
10700 while (!list_empty(&oldsd->poll_list)) {
10701 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10702 struct napi_struct,
10703 poll_list);
10704
10705 list_del_init(&napi->poll_list);
10706 if (napi->poll == process_backlog)
10707 napi->state = 0;
10708 else
10709 ____napi_schedule(sd, napi);
10710 }
10711
10712 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10713 local_irq_enable();
10714
10715#ifdef CONFIG_RPS
10716 remsd = oldsd->rps_ipi_list;
10717 oldsd->rps_ipi_list = NULL;
10718#endif
10719 /* send out pending IPI's on offline CPU */
10720 net_rps_send_ipi(remsd);
10721
10722 /* Process offline CPU's input_pkt_queue */
10723 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10724 netif_rx_ni(skb);
10725 input_queue_head_incr(oldsd);
10726 }
10727 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10728 netif_rx_ni(skb);
10729 input_queue_head_incr(oldsd);
10730 }
10731
10732 return 0;
10733}
10734
10735/**
10736 * netdev_increment_features - increment feature set by one
10737 * @all: current feature set
10738 * @one: new feature set
10739 * @mask: mask feature set
10740 *
10741 * Computes a new feature set after adding a device with feature set
10742 * @one to the master device with current feature set @all. Will not
10743 * enable anything that is off in @mask. Returns the new feature set.
10744 */
10745netdev_features_t netdev_increment_features(netdev_features_t all,
10746 netdev_features_t one, netdev_features_t mask)
10747{
10748 if (mask & NETIF_F_HW_CSUM)
10749 mask |= NETIF_F_CSUM_MASK;
10750 mask |= NETIF_F_VLAN_CHALLENGED;
10751
10752 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10753 all &= one | ~NETIF_F_ALL_FOR_ALL;
10754
10755 /* If one device supports hw checksumming, set for all. */
10756 if (all & NETIF_F_HW_CSUM)
10757 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10758
10759 return all;
10760}
10761EXPORT_SYMBOL(netdev_increment_features);
10762
10763static struct hlist_head * __net_init netdev_create_hash(void)
10764{
10765 int i;
10766 struct hlist_head *hash;
10767
10768 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10769 if (hash != NULL)
10770 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10771 INIT_HLIST_HEAD(&hash[i]);
10772
10773 return hash;
10774}
10775
10776/* Initialize per network namespace state */
10777static int __net_init netdev_init(struct net *net)
10778{
10779 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10780 8 * sizeof_field(struct napi_struct, gro_bitmask));
10781
10782 if (net != &init_net)
10783 INIT_LIST_HEAD(&net->dev_base_head);
10784
10785 net->dev_name_head = netdev_create_hash();
10786 if (net->dev_name_head == NULL)
10787 goto err_name;
10788
10789 net->dev_index_head = netdev_create_hash();
10790 if (net->dev_index_head == NULL)
10791 goto err_idx;
10792
10793 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10794
10795 return 0;
10796
10797err_idx:
10798 kfree(net->dev_name_head);
10799err_name:
10800 return -ENOMEM;
10801}
10802
10803/**
10804 * netdev_drivername - network driver for the device
10805 * @dev: network device
10806 *
10807 * Determine network driver for device.
10808 */
10809const char *netdev_drivername(const struct net_device *dev)
10810{
10811 const struct device_driver *driver;
10812 const struct device *parent;
10813 const char *empty = "";
10814
10815 parent = dev->dev.parent;
10816 if (!parent)
10817 return empty;
10818
10819 driver = parent->driver;
10820 if (driver && driver->name)
10821 return driver->name;
10822 return empty;
10823}
10824
10825static void __netdev_printk(const char *level, const struct net_device *dev,
10826 struct va_format *vaf)
10827{
10828 if (dev && dev->dev.parent) {
10829 dev_printk_emit(level[1] - '0',
10830 dev->dev.parent,
10831 "%s %s %s%s: %pV",
10832 dev_driver_string(dev->dev.parent),
10833 dev_name(dev->dev.parent),
10834 netdev_name(dev), netdev_reg_state(dev),
10835 vaf);
10836 } else if (dev) {
10837 printk("%s%s%s: %pV",
10838 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10839 } else {
10840 printk("%s(NULL net_device): %pV", level, vaf);
10841 }
10842}
10843
10844void netdev_printk(const char *level, const struct net_device *dev,
10845 const char *format, ...)
10846{
10847 struct va_format vaf;
10848 va_list args;
10849
10850 va_start(args, format);
10851
10852 vaf.fmt = format;
10853 vaf.va = &args;
10854
10855 __netdev_printk(level, dev, &vaf);
10856
10857 va_end(args);
10858}
10859EXPORT_SYMBOL(netdev_printk);
10860
10861#define define_netdev_printk_level(func, level) \
10862void func(const struct net_device *dev, const char *fmt, ...) \
10863{ \
10864 struct va_format vaf; \
10865 va_list args; \
10866 \
10867 va_start(args, fmt); \
10868 \
10869 vaf.fmt = fmt; \
10870 vaf.va = &args; \
10871 \
10872 __netdev_printk(level, dev, &vaf); \
10873 \
10874 va_end(args); \
10875} \
10876EXPORT_SYMBOL(func);
10877
10878define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10879define_netdev_printk_level(netdev_alert, KERN_ALERT);
10880define_netdev_printk_level(netdev_crit, KERN_CRIT);
10881define_netdev_printk_level(netdev_err, KERN_ERR);
10882define_netdev_printk_level(netdev_warn, KERN_WARNING);
10883define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10884define_netdev_printk_level(netdev_info, KERN_INFO);
10885
10886static void __net_exit netdev_exit(struct net *net)
10887{
10888 kfree(net->dev_name_head);
10889 kfree(net->dev_index_head);
10890 if (net != &init_net)
10891 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10892}
10893
10894static struct pernet_operations __net_initdata netdev_net_ops = {
10895 .init = netdev_init,
10896 .exit = netdev_exit,
10897};
10898
10899static void __net_exit default_device_exit(struct net *net)
10900{
10901 struct net_device *dev, *aux;
10902 /*
10903 * Push all migratable network devices back to the
10904 * initial network namespace
10905 */
10906 rtnl_lock();
10907 for_each_netdev_safe(net, dev, aux) {
10908 int err;
10909 char fb_name[IFNAMSIZ];
10910
10911 /* Ignore unmoveable devices (i.e. loopback) */
10912 if (dev->features & NETIF_F_NETNS_LOCAL)
10913 continue;
10914
10915 /* Leave virtual devices for the generic cleanup */
10916 if (dev->rtnl_link_ops)
10917 continue;
10918
10919 /* Push remaining network devices to init_net */
10920 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10921 if (__dev_get_by_name(&init_net, fb_name))
10922 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10923 err = dev_change_net_namespace(dev, &init_net, fb_name);
10924 if (err) {
10925 pr_emerg("%s: failed to move %s to init_net: %d\n",
10926 __func__, dev->name, err);
10927 BUG();
10928 }
10929 }
10930 rtnl_unlock();
10931}
10932
10933static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10934{
10935 /* Return with the rtnl_lock held when there are no network
10936 * devices unregistering in any network namespace in net_list.
10937 */
10938 struct net *net;
10939 bool unregistering;
10940 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10941
10942 add_wait_queue(&netdev_unregistering_wq, &wait);
10943 for (;;) {
10944 unregistering = false;
10945 rtnl_lock();
10946 list_for_each_entry(net, net_list, exit_list) {
10947 if (net->dev_unreg_count > 0) {
10948 unregistering = true;
10949 break;
10950 }
10951 }
10952 if (!unregistering)
10953 break;
10954 __rtnl_unlock();
10955
10956 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10957 }
10958 remove_wait_queue(&netdev_unregistering_wq, &wait);
10959}
10960
10961static void __net_exit default_device_exit_batch(struct list_head *net_list)
10962{
10963 /* At exit all network devices most be removed from a network
10964 * namespace. Do this in the reverse order of registration.
10965 * Do this across as many network namespaces as possible to
10966 * improve batching efficiency.
10967 */
10968 struct net_device *dev;
10969 struct net *net;
10970 LIST_HEAD(dev_kill_list);
10971
10972 /* To prevent network device cleanup code from dereferencing
10973 * loopback devices or network devices that have been freed
10974 * wait here for all pending unregistrations to complete,
10975 * before unregistring the loopback device and allowing the
10976 * network namespace be freed.
10977 *
10978 * The netdev todo list containing all network devices
10979 * unregistrations that happen in default_device_exit_batch
10980 * will run in the rtnl_unlock() at the end of
10981 * default_device_exit_batch.
10982 */
10983 rtnl_lock_unregistering(net_list);
10984 list_for_each_entry(net, net_list, exit_list) {
10985 for_each_netdev_reverse(net, dev) {
10986 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10987 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10988 else
10989 unregister_netdevice_queue(dev, &dev_kill_list);
10990 }
10991 }
10992 unregister_netdevice_many(&dev_kill_list);
10993 rtnl_unlock();
10994}
10995
10996static struct pernet_operations __net_initdata default_device_ops = {
10997 .exit = default_device_exit,
10998 .exit_batch = default_device_exit_batch,
10999};
11000
11001/*
11002 * Initialize the DEV module. At boot time this walks the device list and
11003 * unhooks any devices that fail to initialise (normally hardware not
11004 * present) and leaves us with a valid list of present and active devices.
11005 *
11006 */
11007
11008/*
11009 * This is called single threaded during boot, so no need
11010 * to take the rtnl semaphore.
11011 */
11012static int __init net_dev_init(void)
11013{
11014 int i, rc = -ENOMEM;
11015
11016 BUG_ON(!dev_boot_phase);
11017
11018 if (dev_proc_init())
11019 goto out;
11020
11021 if (netdev_kobject_init())
11022 goto out;
11023
11024 INIT_LIST_HEAD(&ptype_all);
11025 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11026 INIT_LIST_HEAD(&ptype_base[i]);
11027
11028 INIT_LIST_HEAD(&offload_base);
11029
11030 if (register_pernet_subsys(&netdev_net_ops))
11031 goto out;
11032
11033 /*
11034 * Initialise the packet receive queues.
11035 */
11036
11037 for_each_possible_cpu(i) {
11038 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11039 struct softnet_data *sd = &per_cpu(softnet_data, i);
11040
11041 INIT_WORK(flush, flush_backlog);
11042
11043 skb_queue_head_init(&sd->input_pkt_queue);
11044 skb_queue_head_init(&sd->process_queue);
11045#ifdef CONFIG_XFRM_OFFLOAD
11046 skb_queue_head_init(&sd->xfrm_backlog);
11047#endif
11048 INIT_LIST_HEAD(&sd->poll_list);
11049 sd->output_queue_tailp = &sd->output_queue;
11050#ifdef CONFIG_RPS
11051 sd->csd.func = rps_trigger_softirq;
11052 sd->csd.info = sd;
11053 sd->cpu = i;
11054#endif
11055
11056 init_gro_hash(&sd->backlog);
11057 sd->backlog.poll = process_backlog;
11058 sd->backlog.weight = weight_p;
11059 }
11060
11061 dev_boot_phase = 0;
11062
11063 /* The loopback device is special if any other network devices
11064 * is present in a network namespace the loopback device must
11065 * be present. Since we now dynamically allocate and free the
11066 * loopback device ensure this invariant is maintained by
11067 * keeping the loopback device as the first device on the
11068 * list of network devices. Ensuring the loopback devices
11069 * is the first device that appears and the last network device
11070 * that disappears.
11071 */
11072 if (register_pernet_device(&loopback_net_ops))
11073 goto out;
11074
11075 if (register_pernet_device(&default_device_ops))
11076 goto out;
11077
11078 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11079 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11080
11081 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11082 NULL, dev_cpu_dead);
11083 WARN_ON(rc < 0);
11084 rc = 0;
11085out:
11086 return rc;
11087}
11088
11089subsys_initcall(net_dev_init);