Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/module.h>
25#include <linux/mm.h>
26#include <linux/init.h>
27#include <linux/kallsyms.h>
28#include <linux/kgdb.h>
29#include <linux/kdb.h>
30#include <linux/notifier.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/nmi.h>
34#include <linux/time.h>
35#include <linux/ptrace.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/kdebug.h>
39#include <linux/proc_fs.h>
40#include <linux/uaccess.h>
41#include <linux/slab.h>
42#include "kdb_private.h"
43
44#define GREP_LEN 256
45char kdb_grep_string[GREP_LEN];
46int kdb_grepping_flag;
47EXPORT_SYMBOL(kdb_grepping_flag);
48int kdb_grep_leading;
49int kdb_grep_trailing;
50
51/*
52 * Kernel debugger state flags
53 */
54int kdb_flags;
55atomic_t kdb_event;
56
57/*
58 * kdb_lock protects updates to kdb_initial_cpu. Used to
59 * single thread processors through the kernel debugger.
60 */
61int kdb_initial_cpu = -1; /* cpu number that owns kdb */
62int kdb_nextline = 1;
63int kdb_state; /* General KDB state */
64
65struct task_struct *kdb_current_task;
66EXPORT_SYMBOL(kdb_current_task);
67struct pt_regs *kdb_current_regs;
68
69const char *kdb_diemsg;
70static int kdb_go_count;
71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
72static unsigned int kdb_continue_catastrophic =
73 CONFIG_KDB_CONTINUE_CATASTROPHIC;
74#else
75static unsigned int kdb_continue_catastrophic;
76#endif
77
78/* kdb_commands describes the available commands. */
79static kdbtab_t *kdb_commands;
80#define KDB_BASE_CMD_MAX 50
81static int kdb_max_commands = KDB_BASE_CMD_MAX;
82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
83#define for_each_kdbcmd(cmd, num) \
84 for ((cmd) = kdb_base_commands, (num) = 0; \
85 num < kdb_max_commands; \
86 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87
88typedef struct _kdbmsg {
89 int km_diag; /* kdb diagnostic */
90 char *km_msg; /* Corresponding message text */
91} kdbmsg_t;
92
93#define KDBMSG(msgnum, text) \
94 { KDB_##msgnum, text }
95
96static kdbmsg_t kdbmsgs[] = {
97 KDBMSG(NOTFOUND, "Command Not Found"),
98 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
99 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
100 "8 is only allowed on 64 bit systems"),
101 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
102 KDBMSG(NOTENV, "Cannot find environment variable"),
103 KDBMSG(NOENVVALUE, "Environment variable should have value"),
104 KDBMSG(NOTIMP, "Command not implemented"),
105 KDBMSG(ENVFULL, "Environment full"),
106 KDBMSG(ENVBUFFULL, "Environment buffer full"),
107 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
108#ifdef CONFIG_CPU_XSCALE
109 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
110#else
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
112#endif
113 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
114 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
115 KDBMSG(BADMODE, "Invalid IDMODE"),
116 KDBMSG(BADINT, "Illegal numeric value"),
117 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
118 KDBMSG(BADREG, "Invalid register name"),
119 KDBMSG(BADCPUNUM, "Invalid cpu number"),
120 KDBMSG(BADLENGTH, "Invalid length field"),
121 KDBMSG(NOBP, "No Breakpoint exists"),
122 KDBMSG(BADADDR, "Invalid address"),
123};
124#undef KDBMSG
125
126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
127
128
129/*
130 * Initial environment. This is all kept static and local to
131 * this file. We don't want to rely on the memory allocation
132 * mechanisms in the kernel, so we use a very limited allocate-only
133 * heap for new and altered environment variables. The entire
134 * environment is limited to a fixed number of entries (add more
135 * to __env[] if required) and a fixed amount of heap (add more to
136 * KDB_ENVBUFSIZE if required).
137 */
138
139static char *__env[] = {
140#if defined(CONFIG_SMP)
141 "PROMPT=[%d]kdb> ",
142 "MOREPROMPT=[%d]more> ",
143#else
144 "PROMPT=kdb> ",
145 "MOREPROMPT=more> ",
146#endif
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = (sizeof(__env) / sizeof(char *));
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
686 if (!defcmd_set) {
687 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 argv[1]);
689 defcmd_set = save_defcmd_set;
690 return KDB_NOTIMP;
691 }
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 kfree(save_defcmd_set);
695 s = defcmd_set + defcmd_set_count;
696 memset(s, 0, sizeof(*s));
697 s->usable = 1;
698 s->name = kdb_strdup(argv[1], GFP_KDB);
699 s->usage = kdb_strdup(argv[2], GFP_KDB);
700 s->help = kdb_strdup(argv[3], GFP_KDB);
701 if (s->usage[0] == '"') {
702 strcpy(s->usage, s->usage+1);
703 s->usage[strlen(s->usage)-1] = '\0';
704 }
705 if (s->help[0] == '"') {
706 strcpy(s->help, s->help+1);
707 s->help[strlen(s->help)-1] = '\0';
708 }
709 ++defcmd_set_count;
710 defcmd_in_progress = 1;
711 return 0;
712}
713
714/*
715 * kdb_exec_defcmd - Execute the set of commands associated with this
716 * defcmd name.
717 * Inputs:
718 * argc argument count
719 * argv argument vector
720 * Returns:
721 * zero for success, a kdb diagnostic if error
722 */
723static int kdb_exec_defcmd(int argc, const char **argv)
724{
725 int i, ret;
726 struct defcmd_set *s;
727 if (argc != 0)
728 return KDB_ARGCOUNT;
729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
730 if (strcmp(s->name, argv[0]) == 0)
731 break;
732 }
733 if (i == defcmd_set_count) {
734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
735 argv[0]);
736 return KDB_NOTIMP;
737 }
738 for (i = 0; i < s->count; ++i) {
739 /* Recursive use of kdb_parse, do not use argv after
740 * this point */
741 argv = NULL;
742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
743 ret = kdb_parse(s->command[i]);
744 if (ret)
745 return ret;
746 }
747 return 0;
748}
749
750/* Command history */
751#define KDB_CMD_HISTORY_COUNT 32
752#define CMD_BUFLEN 200 /* kdb_printf: max printline
753 * size == 256 */
754static unsigned int cmd_head, cmd_tail;
755static unsigned int cmdptr;
756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
757static char cmd_cur[CMD_BUFLEN];
758
759/*
760 * The "str" argument may point to something like | grep xyz
761 */
762static void parse_grep(const char *str)
763{
764 int len;
765 char *cp = (char *)str, *cp2;
766
767 /* sanity check: we should have been called with the \ first */
768 if (*cp != '|')
769 return;
770 cp++;
771 while (isspace(*cp))
772 cp++;
773 if (strncmp(cp, "grep ", 5)) {
774 kdb_printf("invalid 'pipe', see grephelp\n");
775 return;
776 }
777 cp += 5;
778 while (isspace(*cp))
779 cp++;
780 cp2 = strchr(cp, '\n');
781 if (cp2)
782 *cp2 = '\0'; /* remove the trailing newline */
783 len = strlen(cp);
784 if (len == 0) {
785 kdb_printf("invalid 'pipe', see grephelp\n");
786 return;
787 }
788 /* now cp points to a nonzero length search string */
789 if (*cp == '"') {
790 /* allow it be "x y z" by removing the "'s - there must
791 be two of them */
792 cp++;
793 cp2 = strchr(cp, '"');
794 if (!cp2) {
795 kdb_printf("invalid quoted string, see grephelp\n");
796 return;
797 }
798 *cp2 = '\0'; /* end the string where the 2nd " was */
799 }
800 kdb_grep_leading = 0;
801 if (*cp == '^') {
802 kdb_grep_leading = 1;
803 cp++;
804 }
805 len = strlen(cp);
806 kdb_grep_trailing = 0;
807 if (*(cp+len-1) == '$') {
808 kdb_grep_trailing = 1;
809 *(cp+len-1) = '\0';
810 }
811 len = strlen(cp);
812 if (!len)
813 return;
814 if (len >= GREP_LEN) {
815 kdb_printf("search string too long\n");
816 return;
817 }
818 strcpy(kdb_grep_string, cp);
819 kdb_grepping_flag++;
820 return;
821}
822
823/*
824 * kdb_parse - Parse the command line, search the command table for a
825 * matching command and invoke the command function. This
826 * function may be called recursively, if it is, the second call
827 * will overwrite argv and cbuf. It is the caller's
828 * responsibility to save their argv if they recursively call
829 * kdb_parse().
830 * Parameters:
831 * cmdstr The input command line to be parsed.
832 * regs The registers at the time kdb was entered.
833 * Returns:
834 * Zero for success, a kdb diagnostic if failure.
835 * Remarks:
836 * Limited to 20 tokens.
837 *
838 * Real rudimentary tokenization. Basically only whitespace
839 * is considered a token delimeter (but special consideration
840 * is taken of the '=' sign as used by the 'set' command).
841 *
842 * The algorithm used to tokenize the input string relies on
843 * there being at least one whitespace (or otherwise useless)
844 * character between tokens as the character immediately following
845 * the token is altered in-place to a null-byte to terminate the
846 * token string.
847 */
848
849#define MAXARGC 20
850
851int kdb_parse(const char *cmdstr)
852{
853 static char *argv[MAXARGC];
854 static int argc;
855 static char cbuf[CMD_BUFLEN+2];
856 char *cp;
857 char *cpp, quoted;
858 kdbtab_t *tp;
859 int i, escaped, ignore_errors = 0, check_grep;
860
861 /*
862 * First tokenize the command string.
863 */
864 cp = (char *)cmdstr;
865 kdb_grepping_flag = check_grep = 0;
866
867 if (KDB_FLAG(CMD_INTERRUPT)) {
868 /* Previous command was interrupted, newline must not
869 * repeat the command */
870 KDB_FLAG_CLEAR(CMD_INTERRUPT);
871 KDB_STATE_SET(PAGER);
872 argc = 0; /* no repeat */
873 }
874
875 if (*cp != '\n' && *cp != '\0') {
876 argc = 0;
877 cpp = cbuf;
878 while (*cp) {
879 /* skip whitespace */
880 while (isspace(*cp))
881 cp++;
882 if ((*cp == '\0') || (*cp == '\n') ||
883 (*cp == '#' && !defcmd_in_progress))
884 break;
885 /* special case: check for | grep pattern */
886 if (*cp == '|') {
887 check_grep++;
888 break;
889 }
890 if (cpp >= cbuf + CMD_BUFLEN) {
891 kdb_printf("kdb_parse: command buffer "
892 "overflow, command ignored\n%s\n",
893 cmdstr);
894 return KDB_NOTFOUND;
895 }
896 if (argc >= MAXARGC - 1) {
897 kdb_printf("kdb_parse: too many arguments, "
898 "command ignored\n%s\n", cmdstr);
899 return KDB_NOTFOUND;
900 }
901 argv[argc++] = cpp;
902 escaped = 0;
903 quoted = '\0';
904 /* Copy to next unquoted and unescaped
905 * whitespace or '=' */
906 while (*cp && *cp != '\n' &&
907 (escaped || quoted || !isspace(*cp))) {
908 if (cpp >= cbuf + CMD_BUFLEN)
909 break;
910 if (escaped) {
911 escaped = 0;
912 *cpp++ = *cp++;
913 continue;
914 }
915 if (*cp == '\\') {
916 escaped = 1;
917 ++cp;
918 continue;
919 }
920 if (*cp == quoted)
921 quoted = '\0';
922 else if (*cp == '\'' || *cp == '"')
923 quoted = *cp;
924 *cpp = *cp++;
925 if (*cpp == '=' && !quoted)
926 break;
927 ++cpp;
928 }
929 *cpp++ = '\0'; /* Squash a ws or '=' character */
930 }
931 }
932 if (!argc)
933 return 0;
934 if (check_grep)
935 parse_grep(cp);
936 if (defcmd_in_progress) {
937 int result = kdb_defcmd2(cmdstr, argv[0]);
938 if (!defcmd_in_progress) {
939 argc = 0; /* avoid repeat on endefcmd */
940 *(argv[0]) = '\0';
941 }
942 return result;
943 }
944 if (argv[0][0] == '-' && argv[0][1] &&
945 (argv[0][1] < '0' || argv[0][1] > '9')) {
946 ignore_errors = 1;
947 ++argv[0];
948 }
949
950 for_each_kdbcmd(tp, i) {
951 if (tp->cmd_name) {
952 /*
953 * If this command is allowed to be abbreviated,
954 * check to see if this is it.
955 */
956
957 if (tp->cmd_minlen
958 && (strlen(argv[0]) <= tp->cmd_minlen)) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 tp->cmd_minlen) == 0) {
962 break;
963 }
964 }
965
966 if (strcmp(argv[0], tp->cmd_name) == 0)
967 break;
968 }
969 }
970
971 /*
972 * If we don't find a command by this name, see if the first
973 * few characters of this match any of the known commands.
974 * e.g., md1c20 should match md.
975 */
976 if (i == kdb_max_commands) {
977 for_each_kdbcmd(tp, i) {
978 if (tp->cmd_name) {
979 if (strncmp(argv[0],
980 tp->cmd_name,
981 strlen(tp->cmd_name)) == 0) {
982 break;
983 }
984 }
985 }
986 }
987
988 if (i < kdb_max_commands) {
989 int result;
990 KDB_STATE_SET(CMD);
991 result = (*tp->cmd_func)(argc-1, (const char **)argv);
992 if (result && ignore_errors && result > KDB_CMD_GO)
993 result = 0;
994 KDB_STATE_CLEAR(CMD);
995 switch (tp->cmd_repeat) {
996 case KDB_REPEAT_NONE:
997 argc = 0;
998 if (argv[0])
999 *(argv[0]) = '\0';
1000 break;
1001 case KDB_REPEAT_NO_ARGS:
1002 argc = 1;
1003 if (argv[1])
1004 *(argv[1]) = '\0';
1005 break;
1006 case KDB_REPEAT_WITH_ARGS:
1007 break;
1008 }
1009 return result;
1010 }
1011
1012 /*
1013 * If the input with which we were presented does not
1014 * map to an existing command, attempt to parse it as an
1015 * address argument and display the result. Useful for
1016 * obtaining the address of a variable, or the nearest symbol
1017 * to an address contained in a register.
1018 */
1019 {
1020 unsigned long value;
1021 char *name = NULL;
1022 long offset;
1023 int nextarg = 0;
1024
1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026 &value, &offset, &name)) {
1027 return KDB_NOTFOUND;
1028 }
1029
1030 kdb_printf("%s = ", argv[0]);
1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032 kdb_printf("\n");
1033 return 0;
1034 }
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P 16
1041#define CTRL_N 14
1042
1043 /* initial situation */
1044 if (cmd_head == cmd_tail)
1045 return 0;
1046 switch (*cmd) {
1047 case CTRL_P:
1048 if (cmdptr != cmd_tail)
1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051 return 1;
1052 case CTRL_N:
1053 if (cmdptr != cmd_head)
1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command. Reboot
1063 * the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067 emergency_restart();
1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069 while (1)
1070 cpu_relax();
1071 /* NOTREACHED */
1072 return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077 int old_lvl = console_loglevel;
1078 console_loglevel = 15;
1079 kdb_trap_printk++;
1080 show_regs(regs);
1081 kdb_trap_printk--;
1082 kdb_printf("\n");
1083 console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088 kdb_current_task = p;
1089
1090 if (kdb_task_has_cpu(p)) {
1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092 return;
1093 }
1094 kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb. This routine is invoked on a
1099 * specific processor, it is not global. The main kdb() routine
1100 * ensures that only one processor at a time is in this routine.
1101 * This code is called with the real reason code on the first
1102 * entry to a kdb session, thereafter it is called with reason
1103 * SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 * reason The reason KDB was invoked
1106 * error The hardware-defined error code
1107 * regs The exception frame at time of fault/breakpoint.
1108 * db_result Result code from the break or debug point.
1109 * Returns:
1110 * 0 KDB was invoked for an event which it wasn't responsible
1111 * 1 KDB handled the event for which it was invoked.
1112 * KDB_CMD_GO User typed 'go'.
1113 * KDB_CMD_CPU User switched to another cpu.
1114 * KDB_CMD_SS Single step.
1115 * KDB_CMD_SSB Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118 kdb_dbtrap_t db_result)
1119{
1120 char *cmdbuf;
1121 int diag;
1122 struct task_struct *kdb_current =
1123 kdb_curr_task(raw_smp_processor_id());
1124
1125 KDB_DEBUG_STATE("kdb_local 1", reason);
1126 kdb_go_count = 0;
1127 if (reason == KDB_REASON_DEBUG) {
1128 /* special case below */
1129 } else {
1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131 kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133 kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135 }
1136
1137 switch (reason) {
1138 case KDB_REASON_DEBUG:
1139 {
1140 /*
1141 * If re-entering kdb after a single step
1142 * command, don't print the message.
1143 */
1144 switch (db_result) {
1145 case KDB_DB_BPT:
1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147 kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149 kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152 instruction_pointer(regs));
1153 break;
1154 case KDB_DB_SSB:
1155 /*
1156 * In the midst of ssb command. Just return.
1157 */
1158 KDB_DEBUG_STATE("kdb_local 3", reason);
1159 return KDB_CMD_SSB; /* Continue with SSB command */
1160
1161 break;
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
1196 case KDB_REASON_NMI:
1197 kdb_printf("due to NonMaskable Interrupt @ "
1198 kdb_machreg_fmt "\n",
1199 instruction_pointer(regs));
1200 kdb_dumpregs(regs);
1201 break;
1202 case KDB_REASON_SSTEP:
1203 case KDB_REASON_BREAK:
1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205 reason == KDB_REASON_BREAK ?
1206 "Breakpoint" : "SS trap", instruction_pointer(regs));
1207 /*
1208 * Determine if this breakpoint is one that we
1209 * are interested in.
1210 */
1211 if (db_result != KDB_DB_BPT) {
1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 db_result);
1214 KDB_DEBUG_STATE("kdb_local 6", reason);
1215 return 0; /* Not for us, dismiss it */
1216 }
1217 break;
1218 case KDB_REASON_RECURSE:
1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220 instruction_pointer(regs));
1221 break;
1222 default:
1223 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224 KDB_DEBUG_STATE("kdb_local 8", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227
1228 while (1) {
1229 /*
1230 * Initialize pager context.
1231 */
1232 kdb_nextline = 1;
1233 KDB_STATE_CLEAR(SUPPRESS);
1234
1235 cmdbuf = cmd_cur;
1236 *cmdbuf = '\0';
1237 *(cmd_hist[cmd_head]) = '\0';
1238
1239 if (KDB_FLAG(ONLY_DO_DUMP)) {
1240 /* kdb is off but a catastrophic error requires a dump.
1241 * Take the dump and reboot.
1242 * Turn on logging so the kdb output appears in the log
1243 * buffer in the dump.
1244 */
1245 const char *setargs[] = { "set", "LOGGING", "1" };
1246 kdb_set(2, setargs);
1247 kdb_reboot(0, NULL);
1248 /*NOTREACHED*/
1249 }
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254 raw_smp_processor_id());
1255#else
1256 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258 if (defcmd_in_progress)
1259 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261 /*
1262 * Fetch command from keyboard
1263 */
1264 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265 if (*cmdbuf != '\n') {
1266 if (*cmdbuf < 32) {
1267 if (cmdptr == cmd_head) {
1268 strncpy(cmd_hist[cmd_head], cmd_cur,
1269 CMD_BUFLEN);
1270 *(cmd_hist[cmd_head] +
1271 strlen(cmd_hist[cmd_head])-1) = '\0';
1272 }
1273 if (!handle_ctrl_cmd(cmdbuf))
1274 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275 cmdbuf = cmd_cur;
1276 goto do_full_getstr;
1277 } else {
1278 strncpy(cmd_hist[cmd_head], cmd_cur,
1279 CMD_BUFLEN);
1280 }
1281
1282 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283 if (cmd_head == cmd_tail)
1284 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285 }
1286
1287 cmdptr = cmd_head;
1288 diag = kdb_parse(cmdbuf);
1289 if (diag == KDB_NOTFOUND) {
1290 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291 diag = 0;
1292 }
1293 if (diag == KDB_CMD_GO
1294 || diag == KDB_CMD_CPU
1295 || diag == KDB_CMD_SS
1296 || diag == KDB_CMD_SSB
1297 || diag == KDB_CMD_KGDB)
1298 break;
1299
1300 if (diag)
1301 kdb_cmderror(diag);
1302 }
1303 KDB_DEBUG_STATE("kdb_local 9", diag);
1304 return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 * for debugging.
1311 * Inputs:
1312 * text Identifies the debug point
1313 * value Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319 kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 * controlling cpu, all cpus are in this loop. One cpu is in
1325 * control and will issue the kdb prompt, the others will spin
1326 * until 'go' or cpu switch.
1327 *
1328 * To get a consistent view of the kernel stacks for all
1329 * processes, this routine is invoked from the main kdb code via
1330 * an architecture specific routine. kdba_main_loop is
1331 * responsible for making the kernel stacks consistent for all
1332 * processes, there should be no difference between a blocked
1333 * process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 * reason The reason KDB was invoked
1336 * error The hardware-defined error code
1337 * reason2 kdb's current reason code.
1338 * Initially error but can change
1339 * according to kdb state.
1340 * db_result Result code from break or debug point.
1341 * regs The exception frame at time of fault/breakpoint.
1342 * should always be valid.
1343 * Returns:
1344 * 0 KDB was invoked for an event which it wasn't responsible
1345 * 1 KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348 kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350 int result = 1;
1351 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1352 while (1) {
1353 /*
1354 * All processors except the one that is in control
1355 * will spin here.
1356 */
1357 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358 while (KDB_STATE(HOLD_CPU)) {
1359 /* state KDB is turned off by kdb_cpu to see if the
1360 * other cpus are still live, each cpu in this loop
1361 * turns it back on.
1362 */
1363 if (!KDB_STATE(KDB))
1364 KDB_STATE_SET(KDB);
1365 }
1366
1367 KDB_STATE_CLEAR(SUPPRESS);
1368 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369 if (KDB_STATE(LEAVING))
1370 break; /* Another cpu said 'go' */
1371 /* Still using kdb, this processor is in control */
1372 result = kdb_local(reason2, error, regs, db_result);
1373 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375 if (result == KDB_CMD_CPU)
1376 break;
1377
1378 if (result == KDB_CMD_SS) {
1379 KDB_STATE_SET(DOING_SS);
1380 break;
1381 }
1382
1383 if (result == KDB_CMD_SSB) {
1384 KDB_STATE_SET(DOING_SS);
1385 KDB_STATE_SET(DOING_SSB);
1386 break;
1387 }
1388
1389 if (result == KDB_CMD_KGDB) {
1390 if (!KDB_STATE(DOING_KGDB))
1391 kdb_printf("Entering please attach debugger "
1392 "or use $D#44+ or $3#33\n");
1393 break;
1394 }
1395 if (result && result != 1 && result != KDB_CMD_GO)
1396 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 result);
1398 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399 break;
1400 }
1401 if (KDB_STATE(DOING_SS))
1402 KDB_STATE_CLEAR(SSBPT);
1403
1404 /* Clean up any keyboard devices before leaving */
1405 kdb_kbd_cleanup_state();
1406
1407 return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 * mdr <addr arg>,<byte count>
1414 * Inputs:
1415 * addr Start address
1416 * count Number of bytes
1417 * Returns:
1418 * Always 0. Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422 unsigned char c;
1423 while (count--) {
1424 if (kdb_getarea(c, addr))
1425 return 0;
1426 kdb_printf("%02x", c);
1427 addr++;
1428 }
1429 kdb_printf("\n");
1430 return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 * 'md8' 'mdr' and 'mds' commands.
1436 *
1437 * md|mds [<addr arg> [<line count> [<radix>]]]
1438 * mdWcN [<addr arg> [<line count> [<radix>]]]
1439 * where W = is the width (1, 2, 4 or 8) and N is the count.
1440 * for eg., md1c20 reads 20 bytes, 1 at a time.
1441 * mdr <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444 int symbolic, int nosect, int bytesperword,
1445 int num, int repeat, int phys)
1446{
1447 /* print just one line of data */
1448 kdb_symtab_t symtab;
1449 char cbuf[32];
1450 char *c = cbuf;
1451 int i;
1452 unsigned long word;
1453
1454 memset(cbuf, '\0', sizeof(cbuf));
1455 if (phys)
1456 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457 else
1458 kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460 for (i = 0; i < num && repeat--; i++) {
1461 if (phys) {
1462 if (kdb_getphysword(&word, addr, bytesperword))
1463 break;
1464 } else if (kdb_getword(&word, addr, bytesperword))
1465 break;
1466 kdb_printf(fmtstr, word);
1467 if (symbolic)
1468 kdbnearsym(word, &symtab);
1469 else
1470 memset(&symtab, 0, sizeof(symtab));
1471 if (symtab.sym_name) {
1472 kdb_symbol_print(word, &symtab, 0);
1473 if (!nosect) {
1474 kdb_printf("\n");
1475 kdb_printf(" %s %s "
1476 kdb_machreg_fmt " "
1477 kdb_machreg_fmt " "
1478 kdb_machreg_fmt, symtab.mod_name,
1479 symtab.sec_name, symtab.sec_start,
1480 symtab.sym_start, symtab.sym_end);
1481 }
1482 addr += bytesperword;
1483 } else {
1484 union {
1485 u64 word;
1486 unsigned char c[8];
1487 } wc;
1488 unsigned char *cp;
1489#ifdef __BIG_ENDIAN
1490 cp = wc.c + 8 - bytesperword;
1491#else
1492 cp = wc.c;
1493#endif
1494 wc.word = word;
1495#define printable_char(c) \
1496 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497 switch (bytesperword) {
1498 case 8:
1499 *c++ = printable_char(*cp++);
1500 *c++ = printable_char(*cp++);
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 4;
1504 case 4:
1505 *c++ = printable_char(*cp++);
1506 *c++ = printable_char(*cp++);
1507 addr += 2;
1508 case 2:
1509 *c++ = printable_char(*cp++);
1510 addr++;
1511 case 1:
1512 *c++ = printable_char(*cp++);
1513 addr++;
1514 break;
1515 }
1516#undef printable_char
1517 }
1518 }
1519 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520 " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525 static unsigned long last_addr;
1526 static int last_radix, last_bytesperword, last_repeat;
1527 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528 int nosect = 0;
1529 char fmtchar, fmtstr[64];
1530 unsigned long addr;
1531 unsigned long word;
1532 long offset = 0;
1533 int symbolic = 0;
1534 int valid = 0;
1535 int phys = 0;
1536
1537 kdbgetintenv("MDCOUNT", &mdcount);
1538 kdbgetintenv("RADIX", &radix);
1539 kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541 /* Assume 'md <addr>' and start with environment values */
1542 repeat = mdcount * 16 / bytesperword;
1543
1544 if (strcmp(argv[0], "mdr") == 0) {
1545 if (argc != 2)
1546 return KDB_ARGCOUNT;
1547 valid = 1;
1548 } else if (isdigit(argv[0][2])) {
1549 bytesperword = (int)(argv[0][2] - '0');
1550 if (bytesperword == 0) {
1551 bytesperword = last_bytesperword;
1552 if (bytesperword == 0)
1553 bytesperword = 4;
1554 }
1555 last_bytesperword = bytesperword;
1556 repeat = mdcount * 16 / bytesperword;
1557 if (!argv[0][3])
1558 valid = 1;
1559 else if (argv[0][3] == 'c' && argv[0][4]) {
1560 char *p;
1561 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562 mdcount = ((repeat * bytesperword) + 15) / 16;
1563 valid = !*p;
1564 }
1565 last_repeat = repeat;
1566 } else if (strcmp(argv[0], "md") == 0)
1567 valid = 1;
1568 else if (strcmp(argv[0], "mds") == 0)
1569 valid = 1;
1570 else if (strcmp(argv[0], "mdp") == 0) {
1571 phys = valid = 1;
1572 }
1573 if (!valid)
1574 return KDB_NOTFOUND;
1575
1576 if (argc == 0) {
1577 if (last_addr == 0)
1578 return KDB_ARGCOUNT;
1579 addr = last_addr;
1580 radix = last_radix;
1581 bytesperword = last_bytesperword;
1582 repeat = last_repeat;
1583 mdcount = ((repeat * bytesperword) + 15) / 16;
1584 }
1585
1586 if (argc) {
1587 unsigned long val;
1588 int diag, nextarg = 1;
1589 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590 &offset, NULL);
1591 if (diag)
1592 return diag;
1593 if (argc > nextarg+2)
1594 return KDB_ARGCOUNT;
1595
1596 if (argc >= nextarg) {
1597 diag = kdbgetularg(argv[nextarg], &val);
1598 if (!diag) {
1599 mdcount = (int) val;
1600 repeat = mdcount * 16 / bytesperword;
1601 }
1602 }
1603 if (argc >= nextarg+1) {
1604 diag = kdbgetularg(argv[nextarg+1], &val);
1605 if (!diag)
1606 radix = (int) val;
1607 }
1608 }
1609
1610 if (strcmp(argv[0], "mdr") == 0)
1611 return kdb_mdr(addr, mdcount);
1612
1613 switch (radix) {
1614 case 10:
1615 fmtchar = 'd';
1616 break;
1617 case 16:
1618 fmtchar = 'x';
1619 break;
1620 case 8:
1621 fmtchar = 'o';
1622 break;
1623 default:
1624 return KDB_BADRADIX;
1625 }
1626
1627 last_radix = radix;
1628
1629 if (bytesperword > KDB_WORD_SIZE)
1630 return KDB_BADWIDTH;
1631
1632 switch (bytesperword) {
1633 case 8:
1634 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635 break;
1636 case 4:
1637 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638 break;
1639 case 2:
1640 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641 break;
1642 case 1:
1643 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644 break;
1645 default:
1646 return KDB_BADWIDTH;
1647 }
1648
1649 last_repeat = repeat;
1650 last_bytesperword = bytesperword;
1651
1652 if (strcmp(argv[0], "mds") == 0) {
1653 symbolic = 1;
1654 /* Do not save these changes as last_*, they are temporary mds
1655 * overrides.
1656 */
1657 bytesperword = KDB_WORD_SIZE;
1658 repeat = mdcount;
1659 kdbgetintenv("NOSECT", &nosect);
1660 }
1661
1662 /* Round address down modulo BYTESPERWORD */
1663
1664 addr &= ~(bytesperword-1);
1665
1666 while (repeat > 0) {
1667 unsigned long a;
1668 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670 if (KDB_FLAG(CMD_INTERRUPT))
1671 return 0;
1672 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673 if (phys) {
1674 if (kdb_getphysword(&word, a, bytesperword)
1675 || word)
1676 break;
1677 } else if (kdb_getword(&word, a, bytesperword) || word)
1678 break;
1679 }
1680 n = min(num, repeat);
1681 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682 num, repeat, phys);
1683 addr += bytesperword * n;
1684 repeat -= n;
1685 z = (z + num - 1) / num;
1686 if (z > 2) {
1687 int s = num * (z-2);
1688 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689 " zero suppressed\n",
1690 addr, addr + bytesperword * s - 1);
1691 addr += bytesperword * s;
1692 repeat -= s;
1693 }
1694 }
1695 last_addr = addr;
1696
1697 return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 * mm address-expression new-value
1703 * Remarks:
1704 * mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708 int diag;
1709 unsigned long addr;
1710 long offset = 0;
1711 unsigned long contents;
1712 int nextarg;
1713 int width;
1714
1715 if (argv[0][2] && !isdigit(argv[0][2]))
1716 return KDB_NOTFOUND;
1717
1718 if (argc < 2)
1719 return KDB_ARGCOUNT;
1720
1721 nextarg = 1;
1722 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723 if (diag)
1724 return diag;
1725
1726 if (nextarg > argc)
1727 return KDB_ARGCOUNT;
1728 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729 if (diag)
1730 return diag;
1731
1732 if (nextarg != argc + 1)
1733 return KDB_ARGCOUNT;
1734
1735 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736 diag = kdb_putword(addr, contents, width);
1737 if (diag)
1738 return diag;
1739
1740 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742 return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 * go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751 unsigned long addr;
1752 int diag;
1753 int nextarg;
1754 long offset;
1755
1756 if (raw_smp_processor_id() != kdb_initial_cpu) {
1757 kdb_printf("go must execute on the entry cpu, "
1758 "please use \"cpu %d\" and then execute go\n",
1759 kdb_initial_cpu);
1760 return KDB_BADCPUNUM;
1761 }
1762 if (argc == 1) {
1763 nextarg = 1;
1764 diag = kdbgetaddrarg(argc, argv, &nextarg,
1765 &addr, &offset, NULL);
1766 if (diag)
1767 return diag;
1768 } else if (argc) {
1769 return KDB_ARGCOUNT;
1770 }
1771
1772 diag = KDB_CMD_GO;
1773 if (KDB_FLAG(CATASTROPHIC)) {
1774 kdb_printf("Catastrophic error detected\n");
1775 kdb_printf("kdb_continue_catastrophic=%d, ",
1776 kdb_continue_catastrophic);
1777 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778 kdb_printf("type go a second time if you really want "
1779 "to continue\n");
1780 return 0;
1781 }
1782 if (kdb_continue_catastrophic == 2) {
1783 kdb_printf("forcing reboot\n");
1784 kdb_reboot(0, NULL);
1785 }
1786 kdb_printf("attempting to continue\n");
1787 }
1788 return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796 int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798 int i;
1799 char *rname;
1800 int rsize;
1801 u64 reg64;
1802 u32 reg32;
1803 u16 reg16;
1804 u8 reg8;
1805
1806 if (len)
1807 return len;
1808
1809 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810 rsize = dbg_reg_def[i].size * 2;
1811 if (rsize > 16)
1812 rsize = 2;
1813 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814 len = 0;
1815 kdb_printf("\n");
1816 }
1817 if (len)
1818 len += kdb_printf(" ");
1819 switch(dbg_reg_def[i].size * 8) {
1820 case 8:
1821 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %02x", rname, reg8);
1825 break;
1826 case 16:
1827 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %04x", rname, reg16);
1831 break;
1832 case 32:
1833 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1834 if (!rname)
1835 break;
1836 len += kdb_printf("%s: %08x", rname, reg32);
1837 break;
1838 case 64:
1839 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1840 if (!rname)
1841 break;
1842 len += kdb_printf("%s: %016llx", rname, reg64);
1843 break;
1844 default:
1845 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846 }
1847 }
1848 kdb_printf("\n");
1849#else
1850 if (len)
1851 return len;
1852
1853 kdb_dumpregs(kdb_current_regs);
1854#endif
1855 return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify) command.
1860 * rm register-name new-contents
1861 * Remarks:
1862 * Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867 int diag;
1868 const char *rname;
1869 int i;
1870 u64 reg64;
1871 u32 reg32;
1872 u16 reg16;
1873 u8 reg8;
1874
1875 if (argc != 2)
1876 return KDB_ARGCOUNT;
1877 /*
1878 * Allow presence or absence of leading '%' symbol.
1879 */
1880 rname = argv[1];
1881 if (*rname == '%')
1882 rname++;
1883
1884 diag = kdbgetu64arg(argv[2], ®64);
1885 if (diag)
1886 return diag;
1887
1888 diag = kdb_check_regs();
1889 if (diag)
1890 return diag;
1891
1892 diag = KDB_BADREG;
1893 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895 diag = 0;
1896 break;
1897 }
1898 }
1899 if (!diag) {
1900 switch(dbg_reg_def[i].size * 8) {
1901 case 8:
1902 reg8 = reg64;
1903 dbg_set_reg(i, ®8, kdb_current_regs);
1904 break;
1905 case 16:
1906 reg16 = reg64;
1907 dbg_set_reg(i, ®16, kdb_current_regs);
1908 break;
1909 case 32:
1910 reg32 = reg64;
1911 dbg_set_reg(i, ®32, kdb_current_regs);
1912 break;
1913 case 64:
1914 dbg_set_reg(i, ®64, kdb_current_regs);
1915 break;
1916 }
1917 }
1918 return diag;
1919#else
1920 kdb_printf("ERROR: Register set currently not implemented\n");
1921 return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 * sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
1933 if (argc != 1)
1934 return KDB_ARGCOUNT;
1935 kdb_trap_printk++;
1936 __handle_sysrq(*argv[1], false);
1937 kdb_trap_printk--;
1938
1939 return 0;
1940}
1941#endif /* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 * frame) command. This command takes an address and expects to
1946 * find an exception frame at that address, formats and prints
1947 * it.
1948 * regs address-expression
1949 * Remarks:
1950 * Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954 int diag;
1955 unsigned long addr;
1956 long offset;
1957 int nextarg;
1958
1959 if (argc != 1)
1960 return KDB_ARGCOUNT;
1961
1962 nextarg = 1;
1963 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964 if (diag)
1965 return diag;
1966 show_regs((struct pt_regs *)addr);
1967 return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1973 * currently loaded kernel modules.
1974 * Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978 struct module *mod;
1979
1980 if (argc != 0)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_printf("Module Size modstruct Used by\n");
1984 list_for_each_entry(mod, kdb_modules, list) {
1985
1986 kdb_printf("%-20s%8u 0x%p ", mod->name,
1987 mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989 kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991 if (mod->state == MODULE_STATE_GOING)
1992 kdb_printf(" (Unloading)");
1993 else if (mod->state == MODULE_STATE_COMING)
1994 kdb_printf(" (Loading)");
1995 else
1996 kdb_printf(" (Live)");
1997 kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000 {
2001 struct module_use *use;
2002 kdb_printf(" [ ");
2003 list_for_each_entry(use, &mod->source_list,
2004 source_list)
2005 kdb_printf("%s ", use->target->name);
2006 kdb_printf("]\n");
2007 }
2008#endif
2009 }
2010
2011 return 0;
2012}
2013
2014#endif /* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command. Display the
2018 * current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023 int i;
2024
2025 for (i = 0; i < __nenv; i++) {
2026 if (__env[i])
2027 kdb_printf("%s\n", __env[i]);
2028 }
2029
2030 if (KDB_DEBUG(MASK))
2031 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2032
2033 return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 * the contents of the syslog buffer.
2040 * dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044 int diag;
2045 int logging;
2046 int lines = 0;
2047 int adjust = 0;
2048 int n = 0;
2049 int skip = 0;
2050 struct kmsg_dumper dumper = { .active = 1 };
2051 size_t len;
2052 char buf[201];
2053
2054 if (argc > 2)
2055 return KDB_ARGCOUNT;
2056 if (argc) {
2057 char *cp;
2058 lines = simple_strtol(argv[1], &cp, 0);
2059 if (*cp)
2060 lines = 0;
2061 if (argc > 1) {
2062 adjust = simple_strtoul(argv[2], &cp, 0);
2063 if (*cp || adjust < 0)
2064 adjust = 0;
2065 }
2066 }
2067
2068 /* disable LOGGING if set */
2069 diag = kdbgetintenv("LOGGING", &logging);
2070 if (!diag && logging) {
2071 const char *setargs[] = { "set", "LOGGING", "0" };
2072 kdb_set(2, setargs);
2073 }
2074
2075 kmsg_dump_rewind_nolock(&dumper);
2076 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077 n++;
2078
2079 if (lines < 0) {
2080 if (adjust >= n)
2081 kdb_printf("buffer only contains %d lines, nothing "
2082 "printed\n", n);
2083 else if (adjust - lines >= n)
2084 kdb_printf("buffer only contains %d lines, last %d "
2085 "lines printed\n", n, n - adjust);
2086 skip = adjust;
2087 lines = abs(lines);
2088 } else if (lines > 0) {
2089 skip = n - lines - adjust;
2090 lines = abs(lines);
2091 if (adjust >= n) {
2092 kdb_printf("buffer only contains %d lines, "
2093 "nothing printed\n", n);
2094 skip = n;
2095 } else if (skip < 0) {
2096 lines += skip;
2097 skip = 0;
2098 kdb_printf("buffer only contains %d lines, first "
2099 "%d lines printed\n", n, lines);
2100 }
2101 } else {
2102 lines = n;
2103 }
2104
2105 if (skip >= n || skip < 0)
2106 return 0;
2107
2108 kmsg_dump_rewind_nolock(&dumper);
2109 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110 if (skip) {
2111 skip--;
2112 continue;
2113 }
2114 if (!lines--)
2115 break;
2116
2117 kdb_printf("%.*s\n", (int)len - 1, buf);
2118 }
2119
2120 return 0;
2121}
2122#endif /* CONFIG_PRINTK */
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 * cpu [<cpunum>]
2126 * Returns:
2127 * KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131 int i, start_cpu, first_print = 1;
2132 char state, prev_state = '?';
2133
2134 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135 kdb_printf("Available cpus: ");
2136 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137 if (!cpu_online(i)) {
2138 state = 'F'; /* cpu is offline */
2139 } else {
2140 state = ' '; /* cpu is responding to kdb */
2141 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142 state = 'I'; /* idle task */
2143 }
2144 if (state != prev_state) {
2145 if (prev_state != '?') {
2146 if (!first_print)
2147 kdb_printf(", ");
2148 first_print = 0;
2149 kdb_printf("%d", start_cpu);
2150 if (start_cpu < i-1)
2151 kdb_printf("-%d", i-1);
2152 if (prev_state != ' ')
2153 kdb_printf("(%c)", prev_state);
2154 }
2155 prev_state = state;
2156 start_cpu = i;
2157 }
2158 }
2159 /* print the trailing cpus, ignoring them if they are all offline */
2160 if (prev_state != 'F') {
2161 if (!first_print)
2162 kdb_printf(", ");
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174 unsigned long cpunum;
2175 int diag;
2176
2177 if (argc == 0) {
2178 kdb_cpu_status();
2179 return 0;
2180 }
2181
2182 if (argc != 1)
2183 return KDB_ARGCOUNT;
2184
2185 diag = kdbgetularg(argv[1], &cpunum);
2186 if (diag)
2187 return diag;
2188
2189 /*
2190 * Validate cpunum
2191 */
2192 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193 return KDB_BADCPUNUM;
2194
2195 dbg_switch_cpu = cpunum;
2196
2197 /*
2198 * Switch to other cpu
2199 */
2200 return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208 int idle = 0, daemon = 0;
2209 unsigned long mask_I = kdb_task_state_string("I"),
2210 mask_M = kdb_task_state_string("M");
2211 unsigned long cpu;
2212 const struct task_struct *p, *g;
2213 for_each_online_cpu(cpu) {
2214 p = kdb_curr_task(cpu);
2215 if (kdb_task_state(p, mask_I))
2216 ++idle;
2217 }
2218 kdb_do_each_thread(g, p) {
2219 if (kdb_task_state(p, mask_M))
2220 ++daemon;
2221 } kdb_while_each_thread(g, p);
2222 if (idle || daemon) {
2223 if (idle)
2224 kdb_printf("%d idle process%s (state I)%s\n",
2225 idle, idle == 1 ? "" : "es",
2226 daemon ? " and " : "");
2227 if (daemon)
2228 kdb_printf("%d sleeping system daemon (state M) "
2229 "process%s", daemon,
2230 daemon == 1 ? "" : "es");
2231 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232 }
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 * list of the active processes.
2238 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242 int cpu;
2243 unsigned long tmp;
2244
2245 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2246 return;
2247
2248 cpu = kdb_process_cpu(p);
2249 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2250 (void *)p, p->pid, p->parent->pid,
2251 kdb_task_has_cpu(p), kdb_process_cpu(p),
2252 kdb_task_state_char(p),
2253 (void *)(&p->thread),
2254 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255 p->comm);
2256 if (kdb_task_has_cpu(p)) {
2257 if (!KDB_TSK(cpu)) {
2258 kdb_printf(" Error: no saved data for this cpu\n");
2259 } else {
2260 if (KDB_TSK(cpu) != p)
2261 kdb_printf(" Error: does not match running "
2262 "process table (0x%p)\n", KDB_TSK(cpu));
2263 }
2264 }
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269 struct task_struct *g, *p;
2270 unsigned long mask, cpu;
2271
2272 if (argc == 0)
2273 kdb_ps_suppressed();
2274 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2275 (int)(2*sizeof(void *))+2, "Task Addr",
2276 (int)(2*sizeof(void *))+2, "Thread");
2277 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278 /* Run the active tasks first */
2279 for_each_online_cpu(cpu) {
2280 if (KDB_FLAG(CMD_INTERRUPT))
2281 return 0;
2282 p = kdb_curr_task(cpu);
2283 if (kdb_task_state(p, mask))
2284 kdb_ps1(p);
2285 }
2286 kdb_printf("\n");
2287 /* Now the real tasks */
2288 kdb_do_each_thread(g, p) {
2289 if (KDB_FLAG(CMD_INTERRUPT))
2290 return 0;
2291 if (kdb_task_state(p, mask))
2292 kdb_ps1(p);
2293 } kdb_while_each_thread(g, p);
2294
2295 return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 * the currently active process.
2301 * pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305 struct task_struct *p;
2306 unsigned long val;
2307 int diag;
2308
2309 if (argc > 1)
2310 return KDB_ARGCOUNT;
2311
2312 if (argc) {
2313 if (strcmp(argv[1], "R") == 0) {
2314 p = KDB_TSK(kdb_initial_cpu);
2315 } else {
2316 diag = kdbgetularg(argv[1], &val);
2317 if (diag)
2318 return KDB_BADINT;
2319
2320 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2321 if (!p) {
2322 kdb_printf("No task with pid=%d\n", (pid_t)val);
2323 return 0;
2324 }
2325 }
2326 kdb_set_current_task(p);
2327 }
2328 kdb_printf("KDB current process is %s(pid=%d)\n",
2329 kdb_current_task->comm,
2330 kdb_current_task->pid);
2331
2332 return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 * linked list and executes an arbitrary command for each
2338 * element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342 int diag = 0;
2343 unsigned long addr;
2344 long offset = 0;
2345 unsigned long va;
2346 unsigned long linkoffset;
2347 int nextarg;
2348 const char *command;
2349
2350 if (argc != 3)
2351 return KDB_ARGCOUNT;
2352
2353 nextarg = 1;
2354 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355 if (diag)
2356 return diag;
2357
2358 diag = kdbgetularg(argv[2], &linkoffset);
2359 if (diag)
2360 return diag;
2361
2362 /*
2363 * Using the starting address as
2364 * the first element in the list, and assuming that
2365 * the list ends with a null pointer.
2366 */
2367
2368 va = addr;
2369 command = kdb_strdup(argv[3], GFP_KDB);
2370 if (!command) {
2371 kdb_printf("%s: cannot duplicate command\n", __func__);
2372 return 0;
2373 }
2374 /* Recursive use of kdb_parse, do not use argv after this point */
2375 argv = NULL;
2376
2377 while (va) {
2378 char buf[80];
2379
2380 if (KDB_FLAG(CMD_INTERRUPT))
2381 goto out;
2382
2383 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384 diag = kdb_parse(buf);
2385 if (diag)
2386 goto out;
2387
2388 addr = va + linkoffset;
2389 if (kdb_getword(&va, addr, sizeof(va)))
2390 goto out;
2391 }
2392
2393out:
2394 kfree(command);
2395 return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400 return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408 kdbtab_t *kt;
2409 int i;
2410
2411 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412 kdb_printf("-----------------------------"
2413 "-----------------------------\n");
2414 for_each_kdbcmd(kt, i) {
2415 if (kt->cmd_name)
2416 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417 kt->cmd_usage, kt->cmd_help);
2418 if (KDB_FLAG(CMD_INTERRUPT))
2419 return 0;
2420 }
2421 return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429 long sig, pid;
2430 char *endp;
2431 struct task_struct *p;
2432 struct siginfo info;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if (sig >= 0) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 info.si_signo = sig;
2462 info.si_errno = 0;
2463 info.si_code = SI_USER;
2464 info.si_pid = pid; /* same capabilities as process being signalled */
2465 info.si_uid = 0; /* kdb has root authority */
2466 kdb_send_sig_info(p, &info);
2467 return 0;
2468}
2469
2470struct kdb_tm {
2471 int tm_sec; /* seconds */
2472 int tm_min; /* minutes */
2473 int tm_hour; /* hours */
2474 int tm_mday; /* day of the month */
2475 int tm_mon; /* month */
2476 int tm_year; /* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481 /* This will work from 1970-2099, 2100 is not a leap year */
2482 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483 31, 30, 31, 30, 31 };
2484 memset(tm, 0, sizeof(*tm));
2485 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2486 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2488 tm->tm_min = tm->tm_sec / 60 % 60;
2489 tm->tm_hour = tm->tm_sec / 60 / 60;
2490 tm->tm_sec = tm->tm_sec % 60;
2491 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492 tm->tm_mday %= (4*365+1);
2493 mon_day[1] = 29;
2494 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495 tm->tm_mday -= mon_day[tm->tm_mon];
2496 if (++tm->tm_mon == 12) {
2497 tm->tm_mon = 0;
2498 ++tm->tm_year;
2499 mon_day[1] = 28;
2500 }
2501 }
2502 ++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512 struct timespec uptime;
2513 do_posix_clock_monotonic_gettime(&uptime);
2514 memset(val, 0, sizeof(*val));
2515 val->uptime = uptime.tv_sec;
2516 val->loads[0] = avenrun[0];
2517 val->loads[1] = avenrun[1];
2518 val->loads[2] = avenrun[2];
2519 val->procs = nr_threads-1;
2520 si_meminfo(val);
2521
2522 return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530 struct timespec now;
2531 struct kdb_tm tm;
2532 struct sysinfo val;
2533
2534 if (argc)
2535 return KDB_ARGCOUNT;
2536
2537 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2538 kdb_printf("release %s\n", init_uts_ns.name.release);
2539 kdb_printf("version %s\n", init_uts_ns.name.version);
2540 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2541 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2542 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2544
2545 now = __current_kernel_time();
2546 kdb_gmtime(&now, &tm);
2547 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2548 "tz_minuteswest %d\n",
2549 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550 tm.tm_hour, tm.tm_min, tm.tm_sec,
2551 sys_tz.tz_minuteswest);
2552
2553 kdb_sysinfo(&val);
2554 kdb_printf("uptime ");
2555 if (val.uptime > (24*60*60)) {
2556 int days = val.uptime / (24*60*60);
2557 val.uptime %= (24*60*60);
2558 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559 }
2560 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572 /* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2575 "Buffers: %8lu kB\n",
2576 val.totalram, val.freeram, val.bufferram);
2577 return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585 char fmtstr[64];
2586 int cpu, diag, nextarg = 1;
2587 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589 if (argc < 1 || argc > 3)
2590 return KDB_ARGCOUNT;
2591
2592 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593 if (diag)
2594 return diag;
2595
2596 if (argc >= 2) {
2597 diag = kdbgetularg(argv[2], &bytesperword);
2598 if (diag)
2599 return diag;
2600 }
2601 if (!bytesperword)
2602 bytesperword = KDB_WORD_SIZE;
2603 else if (bytesperword > KDB_WORD_SIZE)
2604 return KDB_BADWIDTH;
2605 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606 if (argc >= 3) {
2607 diag = kdbgetularg(argv[3], &whichcpu);
2608 if (diag)
2609 return diag;
2610 if (!cpu_online(whichcpu)) {
2611 kdb_printf("cpu %ld is not online\n", whichcpu);
2612 return KDB_BADCPUNUM;
2613 }
2614 }
2615
2616 /* Most architectures use __per_cpu_offset[cpu], some use
2617 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618 */
2619#ifdef __per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628 for_each_online_cpu(cpu) {
2629 if (KDB_FLAG(CMD_INTERRUPT))
2630 return 0;
2631
2632 if (whichcpu != ~0UL && whichcpu != cpu)
2633 continue;
2634 addr = symaddr + KDB_PCU(cpu);
2635 diag = kdb_getword(&val, addr, bytesperword);
2636 if (diag) {
2637 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638 "read, diag=%d\n", cpu, addr, diag);
2639 continue;
2640 }
2641 kdb_printf("%5d ", cpu);
2642 kdb_md_line(fmtstr, addr,
2643 bytesperword == KDB_WORD_SIZE,
2644 1, bytesperword, 1, 1, 0);
2645 }
2646#undef KDB_PCU
2647 return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655 kdb_printf("Usage of cmd args | grep pattern:\n");
2656 kdb_printf(" Any command's output may be filtered through an ");
2657 kdb_printf("emulated 'pipe'.\n");
2658 kdb_printf(" 'grep' is just a key word.\n");
2659 kdb_printf(" The pattern may include a very limited set of "
2660 "metacharacters:\n");
2661 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2662 kdb_printf(" And if there are spaces in the pattern, you may "
2663 "quote it:\n");
2664 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665 " or \"^pat tern$\"\n");
2666 return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * debugger command.
2672 * Inputs:
2673 * cmd Command name
2674 * func Function to execute the command
2675 * usage A simple usage string showing arguments
2676 * help A simple help string describing command
2677 * repeat Does the command auto repeat on enter?
2678 * Returns:
2679 * zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50 /* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683 kdb_func_t func,
2684 char *usage,
2685 char *help,
2686 short minlen,
2687 kdb_repeat_t repeat)
2688{
2689 int i;
2690 kdbtab_t *kp;
2691
2692 /*
2693 * Brute force method to determine duplicates
2694 */
2695 for_each_kdbcmd(kp, i) {
2696 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697 kdb_printf("Duplicate kdb command registered: "
2698 "%s, func %p help %s\n", cmd, func, help);
2699 return 1;
2700 }
2701 }
2702
2703 /*
2704 * Insert command into first available location in table
2705 */
2706 for_each_kdbcmd(kp, i) {
2707 if (kp->cmd_name == NULL)
2708 break;
2709 }
2710
2711 if (i >= kdb_max_commands) {
2712 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714 if (!new) {
2715 kdb_printf("Could not allocate new kdb_command "
2716 "table\n");
2717 return 1;
2718 }
2719 if (kdb_commands) {
2720 memcpy(new, kdb_commands,
2721 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722 kfree(kdb_commands);
2723 }
2724 memset(new + kdb_max_commands, 0,
2725 kdb_command_extend * sizeof(*new));
2726 kdb_commands = new;
2727 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728 kdb_max_commands += kdb_command_extend;
2729 }
2730
2731 kp->cmd_name = cmd;
2732 kp->cmd_func = func;
2733 kp->cmd_usage = usage;
2734 kp->cmd_help = help;
2735 kp->cmd_flags = 0;
2736 kp->cmd_minlen = minlen;
2737 kp->cmd_repeat = repeat;
2738
2739 return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 * not need to specify a repeat state. Equivalent to
2747 * kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 * cmd Command name
2750 * func Function to execute the command
2751 * usage A simple usage string showing arguments
2752 * help A simple help string describing command
2753 * Returns:
2754 * zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757 kdb_func_t func,
2758 char *usage,
2759 char *help,
2760 short minlen)
2761{
2762 return kdb_register_repeat(cmd, func, usage, help, minlen,
2763 KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 * debugger command. It is generally called when a module which
2770 * implements kdb commands is unloaded.
2771 * Inputs:
2772 * cmd Command name
2773 * Returns:
2774 * zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778 int i;
2779 kdbtab_t *kp;
2780
2781 /*
2782 * find the command.
2783 */
2784 for_each_kdbcmd(kp, i) {
2785 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786 kp->cmd_name = NULL;
2787 return 0;
2788 }
2789 }
2790
2791 /* Couldn't find it. */
2792 return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799 int i;
2800 kdbtab_t *kp;
2801
2802 for_each_kdbcmd(kp, i)
2803 kp->cmd_name = NULL;
2804
2805 kdb_register_repeat("md", kdb_md, "<vaddr>",
2806 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807 KDB_REPEAT_NO_ARGS);
2808 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817 "Continue Execution", 1, KDB_REPEAT_NONE);
2818 kdb_register_repeat("rd", kdb_rd, "",
2819 "Display Registers", 0, KDB_REPEAT_NONE);
2820 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821 "Modify Registers", 0, KDB_REPEAT_NONE);
2822 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823 "Display exception frame", 0, KDB_REPEAT_NONE);
2824 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825 "Stack traceback", 1, KDB_REPEAT_NONE);
2826 kdb_register_repeat("btp", kdb_bt, "<pid>",
2827 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829 "Display stack all processes", 0, KDB_REPEAT_NONE);
2830 kdb_register_repeat("btc", kdb_bt, "",
2831 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833 "Backtrace process given its struct task address", 0,
2834 KDB_REPEAT_NONE);
2835 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837 kdb_register_repeat("env", kdb_env, "",
2838 "Show environment variables", 0, KDB_REPEAT_NONE);
2839 kdb_register_repeat("set", kdb_set, "",
2840 "Set environment variables", 0, KDB_REPEAT_NONE);
2841 kdb_register_repeat("help", kdb_help, "",
2842 "Display Help Message", 1, KDB_REPEAT_NONE);
2843 kdb_register_repeat("?", kdb_help, "",
2844 "Display Help Message", 0, KDB_REPEAT_NONE);
2845 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847 kdb_register_repeat("kgdb", kdb_kgdb, "",
2848 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850 "Display active task list", 0, KDB_REPEAT_NONE);
2851 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852 "Switch to another task", 0, KDB_REPEAT_NONE);
2853 kdb_register_repeat("reboot", kdb_reboot, "",
2854 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_repeat("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860 kdb_register_repeat("sr", kdb_sr, "<key>",
2861 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2862#endif
2863#if defined(CONFIG_PRINTK)
2864 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2866#endif
2867 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("summary", kdb_summary, "",
2872 "Summarize the system", 4, KDB_REPEAT_NONE);
2873 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875 kdb_register_repeat("grephelp", kdb_grep_help, "",
2876 "Display help on | grep", 0, KDB_REPEAT_NONE);
2877}
2878
2879/* Execute any commands defined in kdb_cmds. */
2880static void __init kdb_cmd_init(void)
2881{
2882 int i, diag;
2883 for (i = 0; kdb_cmds[i]; ++i) {
2884 diag = kdb_parse(kdb_cmds[i]);
2885 if (diag)
2886 kdb_printf("kdb command %s failed, kdb diag %d\n",
2887 kdb_cmds[i], diag);
2888 }
2889 if (defcmd_in_progress) {
2890 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891 kdb_parse("endefcmd");
2892 }
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899 int i;
2900
2901 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902 return;
2903 for (i = kdb_init_lvl; i < lvl; i++) {
2904 switch (i) {
2905 case KDB_NOT_INITIALIZED:
2906 kdb_inittab(); /* Initialize Command Table */
2907 kdb_initbptab(); /* Initialize Breakpoints */
2908 break;
2909 case KDB_INIT_EARLY:
2910 kdb_cmd_init(); /* Build kdb_cmds tables */
2911 break;
2912 }
2913 }
2914 kdb_init_lvl = lvl;
2915}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_commands describes the available commands. */
88static kdbtab_t *kdb_commands;
89#define KDB_BASE_CMD_MAX 50
90static int kdb_max_commands = KDB_BASE_CMD_MAX;
91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
92#define for_each_kdbcmd(cmd, num) \
93 for ((cmd) = kdb_base_commands, (num) = 0; \
94 num < kdb_max_commands; \
95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
96
97typedef struct _kdbmsg {
98 int km_diag; /* kdb diagnostic */
99 char *km_msg; /* Corresponding message text */
100} kdbmsg_t;
101
102#define KDBMSG(msgnum, text) \
103 { KDB_##msgnum, text }
104
105static kdbmsg_t kdbmsgs[] = {
106 KDBMSG(NOTFOUND, "Command Not Found"),
107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
109 "8 is only allowed on 64 bit systems"),
110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
111 KDBMSG(NOTENV, "Cannot find environment variable"),
112 KDBMSG(NOENVVALUE, "Environment variable should have value"),
113 KDBMSG(NOTIMP, "Command not implemented"),
114 KDBMSG(ENVFULL, "Environment full"),
115 KDBMSG(ENVBUFFULL, "Environment buffer full"),
116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
117#ifdef CONFIG_CPU_XSCALE
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
119#else
120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
121#endif
122 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
124 KDBMSG(BADMODE, "Invalid IDMODE"),
125 KDBMSG(BADINT, "Illegal numeric value"),
126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
127 KDBMSG(BADREG, "Invalid register name"),
128 KDBMSG(BADCPUNUM, "Invalid cpu number"),
129 KDBMSG(BADLENGTH, "Invalid length field"),
130 KDBMSG(NOBP, "No Breakpoint exists"),
131 KDBMSG(BADADDR, "Invalid address"),
132 KDBMSG(NOPERM, "Permission denied"),
133};
134#undef KDBMSG
135
136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
137
138
139/*
140 * Initial environment. This is all kept static and local to
141 * this file. We don't want to rely on the memory allocation
142 * mechanisms in the kernel, so we use a very limited allocate-only
143 * heap for new and altered environment variables. The entire
144 * environment is limited to a fixed number of entries (add more
145 * to __env[] if required) and a fixed amount of heap (add more to
146 * KDB_ENVBUFSIZE if required).
147 */
148
149static char *__env[] = {
150#if defined(CONFIG_SMP)
151 "PROMPT=[%d]kdb> ",
152#else
153 "PROMPT=kdb> ",
154#endif
155 "MOREPROMPT=more> ",
156 "RADIX=16",
157 "MDCOUNT=8", /* lines of md output */
158 KDB_PLATFORM_ENV,
159 "DTABCOUNT=30",
160 "NOSECT=1",
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185};
186
187static const int __nenv = ARRAY_SIZE(__env);
188
189struct task_struct *kdb_curr_task(int cpu)
190{
191 struct task_struct *p = curr_task(cpu);
192#ifdef _TIF_MCA_INIT
193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
194 p = krp->p;
195#endif
196 return p;
197}
198
199/*
200 * Check whether the flags of the current command and the permissions
201 * of the kdb console has allow a command to be run.
202 */
203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
204 bool no_args)
205{
206 /* permissions comes from userspace so needs massaging slightly */
207 permissions &= KDB_ENABLE_MASK;
208 permissions |= KDB_ENABLE_ALWAYS_SAFE;
209
210 /* some commands change group when launched with no arguments */
211 if (no_args)
212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
213
214 flags |= KDB_ENABLE_ALL;
215
216 return permissions & flags;
217}
218
219/*
220 * kdbgetenv - This function will return the character string value of
221 * an environment variable.
222 * Parameters:
223 * match A character string representing an environment variable.
224 * Returns:
225 * NULL No environment variable matches 'match'
226 * char* Pointer to string value of environment variable.
227 */
228char *kdbgetenv(const char *match)
229{
230 char **ep = __env;
231 int matchlen = strlen(match);
232 int i;
233
234 for (i = 0; i < __nenv; i++) {
235 char *e = *ep++;
236
237 if (!e)
238 continue;
239
240 if ((strncmp(match, e, matchlen) == 0)
241 && ((e[matchlen] == '\0')
242 || (e[matchlen] == '='))) {
243 char *cp = strchr(e, '=');
244 return cp ? ++cp : "";
245 }
246 }
247 return NULL;
248}
249
250/*
251 * kdballocenv - This function is used to allocate bytes for
252 * environment entries.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 * Remarks:
260 * We use a static environment buffer (envbuffer) to hold the values
261 * of dynamically generated environment variables (see kdb_set). Buffer
262 * space once allocated is never free'd, so over time, the amount of space
263 * (currently 512 bytes) will be exhausted if env variables are changed
264 * frequently.
265 */
266static char *kdballocenv(size_t bytes)
267{
268#define KDB_ENVBUFSIZE 512
269 static char envbuffer[KDB_ENVBUFSIZE];
270 static int envbufsize;
271 char *ep = NULL;
272
273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
274 ep = &envbuffer[envbufsize];
275 envbufsize += bytes;
276 }
277 return ep;
278}
279
280/*
281 * kdbgetulenv - This function will return the value of an unsigned
282 * long-valued environment variable.
283 * Parameters:
284 * match A character string representing a numeric value
285 * Outputs:
286 * *value the unsigned long represntation of the env variable 'match'
287 * Returns:
288 * Zero on success, a kdb diagnostic on failure.
289 */
290static int kdbgetulenv(const char *match, unsigned long *value)
291{
292 char *ep;
293
294 ep = kdbgetenv(match);
295 if (!ep)
296 return KDB_NOTENV;
297 if (strlen(ep) == 0)
298 return KDB_NOENVVALUE;
299
300 *value = simple_strtoul(ep, NULL, 0);
301
302 return 0;
303}
304
305/*
306 * kdbgetintenv - This function will return the value of an
307 * integer-valued environment variable.
308 * Parameters:
309 * match A character string representing an integer-valued env variable
310 * Outputs:
311 * *value the integer representation of the environment variable 'match'
312 * Returns:
313 * Zero on success, a kdb diagnostic on failure.
314 */
315int kdbgetintenv(const char *match, int *value)
316{
317 unsigned long val;
318 int diag;
319
320 diag = kdbgetulenv(match, &val);
321 if (!diag)
322 *value = (int) val;
323 return diag;
324}
325
326/*
327 * kdbgetularg - This function will convert a numeric string into an
328 * unsigned long value.
329 * Parameters:
330 * arg A character string representing a numeric value
331 * Outputs:
332 * *value the unsigned long represntation of arg.
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetularg(const char *arg, unsigned long *value)
337{
338 char *endp;
339 unsigned long val;
340
341 val = simple_strtoul(arg, &endp, 0);
342
343 if (endp == arg) {
344 /*
345 * Also try base 16, for us folks too lazy to type the
346 * leading 0x...
347 */
348 val = simple_strtoul(arg, &endp, 16);
349 if (endp == arg)
350 return KDB_BADINT;
351 }
352
353 *value = val;
354
355 return 0;
356}
357
358int kdbgetu64arg(const char *arg, u64 *value)
359{
360 char *endp;
361 u64 val;
362
363 val = simple_strtoull(arg, &endp, 0);
364
365 if (endp == arg) {
366
367 val = simple_strtoull(arg, &endp, 16);
368 if (endp == arg)
369 return KDB_BADINT;
370 }
371
372 *value = val;
373
374 return 0;
375}
376
377/*
378 * kdb_set - This function implements the 'set' command. Alter an
379 * existing environment variable or create a new one.
380 */
381int kdb_set(int argc, const char **argv)
382{
383 int i;
384 char *ep;
385 size_t varlen, vallen;
386
387 /*
388 * we can be invoked two ways:
389 * set var=value argv[1]="var", argv[2]="value"
390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
391 * - if the latter, shift 'em down.
392 */
393 if (argc == 3) {
394 argv[2] = argv[3];
395 argc--;
396 }
397
398 if (argc != 2)
399 return KDB_ARGCOUNT;
400
401 /*
402 * Censor sensitive variables
403 */
404 if (strcmp(argv[1], "PROMPT") == 0 &&
405 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
406 return KDB_NOPERM;
407
408 /*
409 * Check for internal variables
410 */
411 if (strcmp(argv[1], "KDBDEBUG") == 0) {
412 unsigned int debugflags;
413 char *cp;
414
415 debugflags = simple_strtoul(argv[2], &cp, 0);
416 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
417 kdb_printf("kdb: illegal debug flags '%s'\n",
418 argv[2]);
419 return 0;
420 }
421 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
422 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
423
424 return 0;
425 }
426
427 /*
428 * Tokenizer squashed the '=' sign. argv[1] is variable
429 * name, argv[2] = value.
430 */
431 varlen = strlen(argv[1]);
432 vallen = strlen(argv[2]);
433 ep = kdballocenv(varlen + vallen + 2);
434 if (ep == (char *)0)
435 return KDB_ENVBUFFULL;
436
437 sprintf(ep, "%s=%s", argv[1], argv[2]);
438
439 ep[varlen+vallen+1] = '\0';
440
441 for (i = 0; i < __nenv; i++) {
442 if (__env[i]
443 && ((strncmp(__env[i], argv[1], varlen) == 0)
444 && ((__env[i][varlen] == '\0')
445 || (__env[i][varlen] == '=')))) {
446 __env[i] = ep;
447 return 0;
448 }
449 }
450
451 /*
452 * Wasn't existing variable. Fit into slot.
453 */
454 for (i = 0; i < __nenv-1; i++) {
455 if (__env[i] == (char *)0) {
456 __env[i] = ep;
457 return 0;
458 }
459 }
460
461 return KDB_ENVFULL;
462}
463
464static int kdb_check_regs(void)
465{
466 if (!kdb_current_regs) {
467 kdb_printf("No current kdb registers."
468 " You may need to select another task\n");
469 return KDB_BADREG;
470 }
471 return 0;
472}
473
474/*
475 * kdbgetaddrarg - This function is responsible for parsing an
476 * address-expression and returning the value of the expression,
477 * symbol name, and offset to the caller.
478 *
479 * The argument may consist of a numeric value (decimal or
480 * hexidecimal), a symbol name, a register name (preceded by the
481 * percent sign), an environment variable with a numeric value
482 * (preceded by a dollar sign) or a simple arithmetic expression
483 * consisting of a symbol name, +/-, and a numeric constant value
484 * (offset).
485 * Parameters:
486 * argc - count of arguments in argv
487 * argv - argument vector
488 * *nextarg - index to next unparsed argument in argv[]
489 * regs - Register state at time of KDB entry
490 * Outputs:
491 * *value - receives the value of the address-expression
492 * *offset - receives the offset specified, if any
493 * *name - receives the symbol name, if any
494 * *nextarg - index to next unparsed argument in argv[]
495 * Returns:
496 * zero is returned on success, a kdb diagnostic code is
497 * returned on error.
498 */
499int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
500 unsigned long *value, long *offset,
501 char **name)
502{
503 unsigned long addr;
504 unsigned long off = 0;
505 int positive;
506 int diag;
507 int found = 0;
508 char *symname;
509 char symbol = '\0';
510 char *cp;
511 kdb_symtab_t symtab;
512
513 /*
514 * If the enable flags prohibit both arbitrary memory access
515 * and flow control then there are no reasonable grounds to
516 * provide symbol lookup.
517 */
518 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
519 kdb_cmd_enabled, false))
520 return KDB_NOPERM;
521
522 /*
523 * Process arguments which follow the following syntax:
524 *
525 * symbol | numeric-address [+/- numeric-offset]
526 * %register
527 * $environment-variable
528 */
529
530 if (*nextarg > argc)
531 return KDB_ARGCOUNT;
532
533 symname = (char *)argv[*nextarg];
534
535 /*
536 * If there is no whitespace between the symbol
537 * or address and the '+' or '-' symbols, we
538 * remember the character and replace it with a
539 * null so the symbol/value can be properly parsed
540 */
541 cp = strpbrk(symname, "+-");
542 if (cp != NULL) {
543 symbol = *cp;
544 *cp++ = '\0';
545 }
546
547 if (symname[0] == '$') {
548 diag = kdbgetulenv(&symname[1], &addr);
549 if (diag)
550 return diag;
551 } else if (symname[0] == '%') {
552 diag = kdb_check_regs();
553 if (diag)
554 return diag;
555 /* Implement register values with % at a later time as it is
556 * arch optional.
557 */
558 return KDB_NOTIMP;
559 } else {
560 found = kdbgetsymval(symname, &symtab);
561 if (found) {
562 addr = symtab.sym_start;
563 } else {
564 diag = kdbgetularg(argv[*nextarg], &addr);
565 if (diag)
566 return diag;
567 }
568 }
569
570 if (!found)
571 found = kdbnearsym(addr, &symtab);
572
573 (*nextarg)++;
574
575 if (name)
576 *name = symname;
577 if (value)
578 *value = addr;
579 if (offset && name && *name)
580 *offset = addr - symtab.sym_start;
581
582 if ((*nextarg > argc)
583 && (symbol == '\0'))
584 return 0;
585
586 /*
587 * check for +/- and offset
588 */
589
590 if (symbol == '\0') {
591 if ((argv[*nextarg][0] != '+')
592 && (argv[*nextarg][0] != '-')) {
593 /*
594 * Not our argument. Return.
595 */
596 return 0;
597 } else {
598 positive = (argv[*nextarg][0] == '+');
599 (*nextarg)++;
600 }
601 } else
602 positive = (symbol == '+');
603
604 /*
605 * Now there must be an offset!
606 */
607 if ((*nextarg > argc)
608 && (symbol == '\0')) {
609 return KDB_INVADDRFMT;
610 }
611
612 if (!symbol) {
613 cp = (char *)argv[*nextarg];
614 (*nextarg)++;
615 }
616
617 diag = kdbgetularg(cp, &off);
618 if (diag)
619 return diag;
620
621 if (!positive)
622 off = -off;
623
624 if (offset)
625 *offset += off;
626
627 if (value)
628 *value += off;
629
630 return 0;
631}
632
633static void kdb_cmderror(int diag)
634{
635 int i;
636
637 if (diag >= 0) {
638 kdb_printf("no error detected (diagnostic is %d)\n", diag);
639 return;
640 }
641
642 for (i = 0; i < __nkdb_err; i++) {
643 if (kdbmsgs[i].km_diag == diag) {
644 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
645 return;
646 }
647 }
648
649 kdb_printf("Unknown diag %d\n", -diag);
650}
651
652/*
653 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
654 * command which defines one command as a set of other commands,
655 * terminated by endefcmd. kdb_defcmd processes the initial
656 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
657 * the following commands until 'endefcmd'.
658 * Inputs:
659 * argc argument count
660 * argv argument vector
661 * Returns:
662 * zero for success, a kdb diagnostic if error
663 */
664struct defcmd_set {
665 int count;
666 bool usable;
667 char *name;
668 char *usage;
669 char *help;
670 char **command;
671};
672static struct defcmd_set *defcmd_set;
673static int defcmd_set_count;
674static bool defcmd_in_progress;
675
676/* Forward references */
677static int kdb_exec_defcmd(int argc, const char **argv);
678
679static int kdb_defcmd2(const char *cmdstr, const char *argv0)
680{
681 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
682 char **save_command = s->command;
683 if (strcmp(argv0, "endefcmd") == 0) {
684 defcmd_in_progress = false;
685 if (!s->count)
686 s->usable = false;
687 if (s->usable)
688 /* macros are always safe because when executed each
689 * internal command re-enters kdb_parse() and is
690 * safety checked individually.
691 */
692 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
693 s->help, 0,
694 KDB_ENABLE_ALWAYS_SAFE);
695 return 0;
696 }
697 if (!s->usable)
698 return KDB_NOTIMP;
699 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
700 if (!s->command) {
701 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
702 cmdstr);
703 s->usable = false;
704 return KDB_NOTIMP;
705 }
706 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
707 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
708 kfree(save_command);
709 return 0;
710}
711
712static int kdb_defcmd(int argc, const char **argv)
713{
714 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
715 if (defcmd_in_progress) {
716 kdb_printf("kdb: nested defcmd detected, assuming missing "
717 "endefcmd\n");
718 kdb_defcmd2("endefcmd", "endefcmd");
719 }
720 if (argc == 0) {
721 int i;
722 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
723 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
724 s->usage, s->help);
725 for (i = 0; i < s->count; ++i)
726 kdb_printf("%s", s->command[i]);
727 kdb_printf("endefcmd\n");
728 }
729 return 0;
730 }
731 if (argc != 3)
732 return KDB_ARGCOUNT;
733 if (in_dbg_master()) {
734 kdb_printf("Command only available during kdb_init()\n");
735 return KDB_NOTIMP;
736 }
737 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
738 GFP_KDB);
739 if (!defcmd_set)
740 goto fail_defcmd;
741 memcpy(defcmd_set, save_defcmd_set,
742 defcmd_set_count * sizeof(*defcmd_set));
743 s = defcmd_set + defcmd_set_count;
744 memset(s, 0, sizeof(*s));
745 s->usable = true;
746 s->name = kdb_strdup(argv[1], GFP_KDB);
747 if (!s->name)
748 goto fail_name;
749 s->usage = kdb_strdup(argv[2], GFP_KDB);
750 if (!s->usage)
751 goto fail_usage;
752 s->help = kdb_strdup(argv[3], GFP_KDB);
753 if (!s->help)
754 goto fail_help;
755 if (s->usage[0] == '"') {
756 strcpy(s->usage, argv[2]+1);
757 s->usage[strlen(s->usage)-1] = '\0';
758 }
759 if (s->help[0] == '"') {
760 strcpy(s->help, argv[3]+1);
761 s->help[strlen(s->help)-1] = '\0';
762 }
763 ++defcmd_set_count;
764 defcmd_in_progress = true;
765 kfree(save_defcmd_set);
766 return 0;
767fail_help:
768 kfree(s->usage);
769fail_usage:
770 kfree(s->name);
771fail_name:
772 kfree(defcmd_set);
773fail_defcmd:
774 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
775 defcmd_set = save_defcmd_set;
776 return KDB_NOTIMP;
777}
778
779/*
780 * kdb_exec_defcmd - Execute the set of commands associated with this
781 * defcmd name.
782 * Inputs:
783 * argc argument count
784 * argv argument vector
785 * Returns:
786 * zero for success, a kdb diagnostic if error
787 */
788static int kdb_exec_defcmd(int argc, const char **argv)
789{
790 int i, ret;
791 struct defcmd_set *s;
792 if (argc != 0)
793 return KDB_ARGCOUNT;
794 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
795 if (strcmp(s->name, argv[0]) == 0)
796 break;
797 }
798 if (i == defcmd_set_count) {
799 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
800 argv[0]);
801 return KDB_NOTIMP;
802 }
803 for (i = 0; i < s->count; ++i) {
804 /* Recursive use of kdb_parse, do not use argv after
805 * this point */
806 argv = NULL;
807 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
808 ret = kdb_parse(s->command[i]);
809 if (ret)
810 return ret;
811 }
812 return 0;
813}
814
815/* Command history */
816#define KDB_CMD_HISTORY_COUNT 32
817#define CMD_BUFLEN 200 /* kdb_printf: max printline
818 * size == 256 */
819static unsigned int cmd_head, cmd_tail;
820static unsigned int cmdptr;
821static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
822static char cmd_cur[CMD_BUFLEN];
823
824/*
825 * The "str" argument may point to something like | grep xyz
826 */
827static void parse_grep(const char *str)
828{
829 int len;
830 char *cp = (char *)str, *cp2;
831
832 /* sanity check: we should have been called with the \ first */
833 if (*cp != '|')
834 return;
835 cp++;
836 while (isspace(*cp))
837 cp++;
838 if (!str_has_prefix(cp, "grep ")) {
839 kdb_printf("invalid 'pipe', see grephelp\n");
840 return;
841 }
842 cp += 5;
843 while (isspace(*cp))
844 cp++;
845 cp2 = strchr(cp, '\n');
846 if (cp2)
847 *cp2 = '\0'; /* remove the trailing newline */
848 len = strlen(cp);
849 if (len == 0) {
850 kdb_printf("invalid 'pipe', see grephelp\n");
851 return;
852 }
853 /* now cp points to a nonzero length search string */
854 if (*cp == '"') {
855 /* allow it be "x y z" by removing the "'s - there must
856 be two of them */
857 cp++;
858 cp2 = strchr(cp, '"');
859 if (!cp2) {
860 kdb_printf("invalid quoted string, see grephelp\n");
861 return;
862 }
863 *cp2 = '\0'; /* end the string where the 2nd " was */
864 }
865 kdb_grep_leading = 0;
866 if (*cp == '^') {
867 kdb_grep_leading = 1;
868 cp++;
869 }
870 len = strlen(cp);
871 kdb_grep_trailing = 0;
872 if (*(cp+len-1) == '$') {
873 kdb_grep_trailing = 1;
874 *(cp+len-1) = '\0';
875 }
876 len = strlen(cp);
877 if (!len)
878 return;
879 if (len >= KDB_GREP_STRLEN) {
880 kdb_printf("search string too long\n");
881 return;
882 }
883 strcpy(kdb_grep_string, cp);
884 kdb_grepping_flag++;
885 return;
886}
887
888/*
889 * kdb_parse - Parse the command line, search the command table for a
890 * matching command and invoke the command function. This
891 * function may be called recursively, if it is, the second call
892 * will overwrite argv and cbuf. It is the caller's
893 * responsibility to save their argv if they recursively call
894 * kdb_parse().
895 * Parameters:
896 * cmdstr The input command line to be parsed.
897 * regs The registers at the time kdb was entered.
898 * Returns:
899 * Zero for success, a kdb diagnostic if failure.
900 * Remarks:
901 * Limited to 20 tokens.
902 *
903 * Real rudimentary tokenization. Basically only whitespace
904 * is considered a token delimeter (but special consideration
905 * is taken of the '=' sign as used by the 'set' command).
906 *
907 * The algorithm used to tokenize the input string relies on
908 * there being at least one whitespace (or otherwise useless)
909 * character between tokens as the character immediately following
910 * the token is altered in-place to a null-byte to terminate the
911 * token string.
912 */
913
914#define MAXARGC 20
915
916int kdb_parse(const char *cmdstr)
917{
918 static char *argv[MAXARGC];
919 static int argc;
920 static char cbuf[CMD_BUFLEN+2];
921 char *cp;
922 char *cpp, quoted;
923 kdbtab_t *tp;
924 int i, escaped, ignore_errors = 0, check_grep = 0;
925
926 /*
927 * First tokenize the command string.
928 */
929 cp = (char *)cmdstr;
930
931 if (KDB_FLAG(CMD_INTERRUPT)) {
932 /* Previous command was interrupted, newline must not
933 * repeat the command */
934 KDB_FLAG_CLEAR(CMD_INTERRUPT);
935 KDB_STATE_SET(PAGER);
936 argc = 0; /* no repeat */
937 }
938
939 if (*cp != '\n' && *cp != '\0') {
940 argc = 0;
941 cpp = cbuf;
942 while (*cp) {
943 /* skip whitespace */
944 while (isspace(*cp))
945 cp++;
946 if ((*cp == '\0') || (*cp == '\n') ||
947 (*cp == '#' && !defcmd_in_progress))
948 break;
949 /* special case: check for | grep pattern */
950 if (*cp == '|') {
951 check_grep++;
952 break;
953 }
954 if (cpp >= cbuf + CMD_BUFLEN) {
955 kdb_printf("kdb_parse: command buffer "
956 "overflow, command ignored\n%s\n",
957 cmdstr);
958 return KDB_NOTFOUND;
959 }
960 if (argc >= MAXARGC - 1) {
961 kdb_printf("kdb_parse: too many arguments, "
962 "command ignored\n%s\n", cmdstr);
963 return KDB_NOTFOUND;
964 }
965 argv[argc++] = cpp;
966 escaped = 0;
967 quoted = '\0';
968 /* Copy to next unquoted and unescaped
969 * whitespace or '=' */
970 while (*cp && *cp != '\n' &&
971 (escaped || quoted || !isspace(*cp))) {
972 if (cpp >= cbuf + CMD_BUFLEN)
973 break;
974 if (escaped) {
975 escaped = 0;
976 *cpp++ = *cp++;
977 continue;
978 }
979 if (*cp == '\\') {
980 escaped = 1;
981 ++cp;
982 continue;
983 }
984 if (*cp == quoted)
985 quoted = '\0';
986 else if (*cp == '\'' || *cp == '"')
987 quoted = *cp;
988 *cpp = *cp++;
989 if (*cpp == '=' && !quoted)
990 break;
991 ++cpp;
992 }
993 *cpp++ = '\0'; /* Squash a ws or '=' character */
994 }
995 }
996 if (!argc)
997 return 0;
998 if (check_grep)
999 parse_grep(cp);
1000 if (defcmd_in_progress) {
1001 int result = kdb_defcmd2(cmdstr, argv[0]);
1002 if (!defcmd_in_progress) {
1003 argc = 0; /* avoid repeat on endefcmd */
1004 *(argv[0]) = '\0';
1005 }
1006 return result;
1007 }
1008 if (argv[0][0] == '-' && argv[0][1] &&
1009 (argv[0][1] < '0' || argv[0][1] > '9')) {
1010 ignore_errors = 1;
1011 ++argv[0];
1012 }
1013
1014 for_each_kdbcmd(tp, i) {
1015 if (tp->cmd_name) {
1016 /*
1017 * If this command is allowed to be abbreviated,
1018 * check to see if this is it.
1019 */
1020
1021 if (tp->cmd_minlen
1022 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1023 if (strncmp(argv[0],
1024 tp->cmd_name,
1025 tp->cmd_minlen) == 0) {
1026 break;
1027 }
1028 }
1029
1030 if (strcmp(argv[0], tp->cmd_name) == 0)
1031 break;
1032 }
1033 }
1034
1035 /*
1036 * If we don't find a command by this name, see if the first
1037 * few characters of this match any of the known commands.
1038 * e.g., md1c20 should match md.
1039 */
1040 if (i == kdb_max_commands) {
1041 for_each_kdbcmd(tp, i) {
1042 if (tp->cmd_name) {
1043 if (strncmp(argv[0],
1044 tp->cmd_name,
1045 strlen(tp->cmd_name)) == 0) {
1046 break;
1047 }
1048 }
1049 }
1050 }
1051
1052 if (i < kdb_max_commands) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 kdb_curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197 kdb_go_count = 0;
1198 if (reason == KDB_REASON_DEBUG) {
1199 /* special case below */
1200 } else {
1201 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1202 kdb_current, kdb_current ? kdb_current->pid : 0);
1203#if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206 }
1207
1208 switch (reason) {
1209 case KDB_REASON_DEBUG:
1210 {
1211 /*
1212 * If re-entering kdb after a single step
1213 * command, don't print the message.
1214 */
1215 switch (db_result) {
1216 case KDB_DB_BPT:
1217 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1218 kdb_current, kdb_current->pid);
1219#if defined(CONFIG_SMP)
1220 kdb_printf("on processor %d ", raw_smp_processor_id());
1221#endif
1222 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1223 instruction_pointer(regs));
1224 break;
1225 case KDB_DB_SS:
1226 break;
1227 case KDB_DB_SSBPT:
1228 KDB_DEBUG_STATE("kdb_local 4", reason);
1229 return 1; /* kdba_db_trap did the work */
1230 default:
1231 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232 db_result);
1233 break;
1234 }
1235
1236 }
1237 break;
1238 case KDB_REASON_ENTER:
1239 if (KDB_STATE(KEYBOARD))
1240 kdb_printf("due to Keyboard Entry\n");
1241 else
1242 kdb_printf("due to KDB_ENTER()\n");
1243 break;
1244 case KDB_REASON_KEYBOARD:
1245 KDB_STATE_SET(KEYBOARD);
1246 kdb_printf("due to Keyboard Entry\n");
1247 break;
1248 case KDB_REASON_ENTER_SLAVE:
1249 /* drop through, slaves only get released via cpu switch */
1250 case KDB_REASON_SWITCH:
1251 kdb_printf("due to cpu switch\n");
1252 break;
1253 case KDB_REASON_OOPS:
1254 kdb_printf("Oops: %s\n", kdb_diemsg);
1255 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1256 instruction_pointer(regs));
1257 kdb_dumpregs(regs);
1258 break;
1259 case KDB_REASON_SYSTEM_NMI:
1260 kdb_printf("due to System NonMaskable Interrupt\n");
1261 break;
1262 case KDB_REASON_NMI:
1263 kdb_printf("due to NonMaskable Interrupt @ "
1264 kdb_machreg_fmt "\n",
1265 instruction_pointer(regs));
1266 break;
1267 case KDB_REASON_SSTEP:
1268 case KDB_REASON_BREAK:
1269 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1270 reason == KDB_REASON_BREAK ?
1271 "Breakpoint" : "SS trap", instruction_pointer(regs));
1272 /*
1273 * Determine if this breakpoint is one that we
1274 * are interested in.
1275 */
1276 if (db_result != KDB_DB_BPT) {
1277 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1278 db_result);
1279 KDB_DEBUG_STATE("kdb_local 6", reason);
1280 return 0; /* Not for us, dismiss it */
1281 }
1282 break;
1283 case KDB_REASON_RECURSE:
1284 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1285 instruction_pointer(regs));
1286 break;
1287 default:
1288 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1289 KDB_DEBUG_STATE("kdb_local 8", reason);
1290 return 0; /* Not for us, dismiss it */
1291 }
1292
1293 while (1) {
1294 /*
1295 * Initialize pager context.
1296 */
1297 kdb_nextline = 1;
1298 KDB_STATE_CLEAR(SUPPRESS);
1299 kdb_grepping_flag = 0;
1300 /* ensure the old search does not leak into '/' commands */
1301 kdb_grep_string[0] = '\0';
1302
1303 cmdbuf = cmd_cur;
1304 *cmdbuf = '\0';
1305 *(cmd_hist[cmd_head]) = '\0';
1306
1307do_full_getstr:
1308 /* PROMPT can only be set if we have MEM_READ permission. */
1309 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1310 raw_smp_processor_id());
1311 if (defcmd_in_progress)
1312 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1313
1314 /*
1315 * Fetch command from keyboard
1316 */
1317 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1318 if (*cmdbuf != '\n') {
1319 if (*cmdbuf < 32) {
1320 if (cmdptr == cmd_head) {
1321 strscpy(cmd_hist[cmd_head], cmd_cur,
1322 CMD_BUFLEN);
1323 *(cmd_hist[cmd_head] +
1324 strlen(cmd_hist[cmd_head])-1) = '\0';
1325 }
1326 if (!handle_ctrl_cmd(cmdbuf))
1327 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1328 cmdbuf = cmd_cur;
1329 goto do_full_getstr;
1330 } else {
1331 strscpy(cmd_hist[cmd_head], cmd_cur,
1332 CMD_BUFLEN);
1333 }
1334
1335 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1336 if (cmd_head == cmd_tail)
1337 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338 }
1339
1340 cmdptr = cmd_head;
1341 diag = kdb_parse(cmdbuf);
1342 if (diag == KDB_NOTFOUND) {
1343 drop_newline(cmdbuf);
1344 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1345 diag = 0;
1346 }
1347 if (diag == KDB_CMD_GO
1348 || diag == KDB_CMD_CPU
1349 || diag == KDB_CMD_SS
1350 || diag == KDB_CMD_KGDB)
1351 break;
1352
1353 if (diag)
1354 kdb_cmderror(diag);
1355 }
1356 KDB_DEBUG_STATE("kdb_local 9", diag);
1357 return diag;
1358}
1359
1360
1361/*
1362 * kdb_print_state - Print the state data for the current processor
1363 * for debugging.
1364 * Inputs:
1365 * text Identifies the debug point
1366 * value Any integer value to be printed, e.g. reason code.
1367 */
1368void kdb_print_state(const char *text, int value)
1369{
1370 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1371 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1372 kdb_state);
1373}
1374
1375/*
1376 * kdb_main_loop - After initial setup and assignment of the
1377 * controlling cpu, all cpus are in this loop. One cpu is in
1378 * control and will issue the kdb prompt, the others will spin
1379 * until 'go' or cpu switch.
1380 *
1381 * To get a consistent view of the kernel stacks for all
1382 * processes, this routine is invoked from the main kdb code via
1383 * an architecture specific routine. kdba_main_loop is
1384 * responsible for making the kernel stacks consistent for all
1385 * processes, there should be no difference between a blocked
1386 * process and a running process as far as kdb is concerned.
1387 * Inputs:
1388 * reason The reason KDB was invoked
1389 * error The hardware-defined error code
1390 * reason2 kdb's current reason code.
1391 * Initially error but can change
1392 * according to kdb state.
1393 * db_result Result code from break or debug point.
1394 * regs The exception frame at time of fault/breakpoint.
1395 * should always be valid.
1396 * Returns:
1397 * 0 KDB was invoked for an event which it wasn't responsible
1398 * 1 KDB handled the event for which it was invoked.
1399 */
1400int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1401 kdb_dbtrap_t db_result, struct pt_regs *regs)
1402{
1403 int result = 1;
1404 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1405 while (1) {
1406 /*
1407 * All processors except the one that is in control
1408 * will spin here.
1409 */
1410 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1411 while (KDB_STATE(HOLD_CPU)) {
1412 /* state KDB is turned off by kdb_cpu to see if the
1413 * other cpus are still live, each cpu in this loop
1414 * turns it back on.
1415 */
1416 if (!KDB_STATE(KDB))
1417 KDB_STATE_SET(KDB);
1418 }
1419
1420 KDB_STATE_CLEAR(SUPPRESS);
1421 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1422 if (KDB_STATE(LEAVING))
1423 break; /* Another cpu said 'go' */
1424 /* Still using kdb, this processor is in control */
1425 result = kdb_local(reason2, error, regs, db_result);
1426 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1427
1428 if (result == KDB_CMD_CPU)
1429 break;
1430
1431 if (result == KDB_CMD_SS) {
1432 KDB_STATE_SET(DOING_SS);
1433 break;
1434 }
1435
1436 if (result == KDB_CMD_KGDB) {
1437 if (!KDB_STATE(DOING_KGDB))
1438 kdb_printf("Entering please attach debugger "
1439 "or use $D#44+ or $3#33\n");
1440 break;
1441 }
1442 if (result && result != 1 && result != KDB_CMD_GO)
1443 kdb_printf("\nUnexpected kdb_local return code %d\n",
1444 result);
1445 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1446 break;
1447 }
1448 if (KDB_STATE(DOING_SS))
1449 KDB_STATE_CLEAR(SSBPT);
1450
1451 /* Clean up any keyboard devices before leaving */
1452 kdb_kbd_cleanup_state();
1453
1454 return result;
1455}
1456
1457/*
1458 * kdb_mdr - This function implements the guts of the 'mdr', memory
1459 * read command.
1460 * mdr <addr arg>,<byte count>
1461 * Inputs:
1462 * addr Start address
1463 * count Number of bytes
1464 * Returns:
1465 * Always 0. Any errors are detected and printed by kdb_getarea.
1466 */
1467static int kdb_mdr(unsigned long addr, unsigned int count)
1468{
1469 unsigned char c;
1470 while (count--) {
1471 if (kdb_getarea(c, addr))
1472 return 0;
1473 kdb_printf("%02x", c);
1474 addr++;
1475 }
1476 kdb_printf("\n");
1477 return 0;
1478}
1479
1480/*
1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1482 * 'md8' 'mdr' and 'mds' commands.
1483 *
1484 * md|mds [<addr arg> [<line count> [<radix>]]]
1485 * mdWcN [<addr arg> [<line count> [<radix>]]]
1486 * where W = is the width (1, 2, 4 or 8) and N is the count.
1487 * for eg., md1c20 reads 20 bytes, 1 at a time.
1488 * mdr <addr arg>,<byte count>
1489 */
1490static void kdb_md_line(const char *fmtstr, unsigned long addr,
1491 int symbolic, int nosect, int bytesperword,
1492 int num, int repeat, int phys)
1493{
1494 /* print just one line of data */
1495 kdb_symtab_t symtab;
1496 char cbuf[32];
1497 char *c = cbuf;
1498 int i;
1499 int j;
1500 unsigned long word;
1501
1502 memset(cbuf, '\0', sizeof(cbuf));
1503 if (phys)
1504 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1505 else
1506 kdb_printf(kdb_machreg_fmt0 " ", addr);
1507
1508 for (i = 0; i < num && repeat--; i++) {
1509 if (phys) {
1510 if (kdb_getphysword(&word, addr, bytesperword))
1511 break;
1512 } else if (kdb_getword(&word, addr, bytesperword))
1513 break;
1514 kdb_printf(fmtstr, word);
1515 if (symbolic)
1516 kdbnearsym(word, &symtab);
1517 else
1518 memset(&symtab, 0, sizeof(symtab));
1519 if (symtab.sym_name) {
1520 kdb_symbol_print(word, &symtab, 0);
1521 if (!nosect) {
1522 kdb_printf("\n");
1523 kdb_printf(" %s %s "
1524 kdb_machreg_fmt " "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt, symtab.mod_name,
1527 symtab.sec_name, symtab.sec_start,
1528 symtab.sym_start, symtab.sym_end);
1529 }
1530 addr += bytesperword;
1531 } else {
1532 union {
1533 u64 word;
1534 unsigned char c[8];
1535 } wc;
1536 unsigned char *cp;
1537#ifdef __BIG_ENDIAN
1538 cp = wc.c + 8 - bytesperword;
1539#else
1540 cp = wc.c;
1541#endif
1542 wc.word = word;
1543#define printable_char(c) \
1544 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1545 for (j = 0; j < bytesperword; j++)
1546 *c++ = printable_char(*cp++);
1547 addr += bytesperword;
1548#undef printable_char
1549 }
1550 }
1551 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1552 " ", cbuf);
1553}
1554
1555static int kdb_md(int argc, const char **argv)
1556{
1557 static unsigned long last_addr;
1558 static int last_radix, last_bytesperword, last_repeat;
1559 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1560 int nosect = 0;
1561 char fmtchar, fmtstr[64];
1562 unsigned long addr;
1563 unsigned long word;
1564 long offset = 0;
1565 int symbolic = 0;
1566 int valid = 0;
1567 int phys = 0;
1568 int raw = 0;
1569
1570 kdbgetintenv("MDCOUNT", &mdcount);
1571 kdbgetintenv("RADIX", &radix);
1572 kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574 /* Assume 'md <addr>' and start with environment values */
1575 repeat = mdcount * 16 / bytesperword;
1576
1577 if (strcmp(argv[0], "mdr") == 0) {
1578 if (argc == 2 || (argc == 0 && last_addr != 0))
1579 valid = raw = 1;
1580 else
1581 return KDB_ARGCOUNT;
1582 } else if (isdigit(argv[0][2])) {
1583 bytesperword = (int)(argv[0][2] - '0');
1584 if (bytesperword == 0) {
1585 bytesperword = last_bytesperword;
1586 if (bytesperword == 0)
1587 bytesperword = 4;
1588 }
1589 last_bytesperword = bytesperword;
1590 repeat = mdcount * 16 / bytesperword;
1591 if (!argv[0][3])
1592 valid = 1;
1593 else if (argv[0][3] == 'c' && argv[0][4]) {
1594 char *p;
1595 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1596 mdcount = ((repeat * bytesperword) + 15) / 16;
1597 valid = !*p;
1598 }
1599 last_repeat = repeat;
1600 } else if (strcmp(argv[0], "md") == 0)
1601 valid = 1;
1602 else if (strcmp(argv[0], "mds") == 0)
1603 valid = 1;
1604 else if (strcmp(argv[0], "mdp") == 0) {
1605 phys = valid = 1;
1606 }
1607 if (!valid)
1608 return KDB_NOTFOUND;
1609
1610 if (argc == 0) {
1611 if (last_addr == 0)
1612 return KDB_ARGCOUNT;
1613 addr = last_addr;
1614 radix = last_radix;
1615 bytesperword = last_bytesperword;
1616 repeat = last_repeat;
1617 if (raw)
1618 mdcount = repeat;
1619 else
1620 mdcount = ((repeat * bytesperword) + 15) / 16;
1621 }
1622
1623 if (argc) {
1624 unsigned long val;
1625 int diag, nextarg = 1;
1626 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1627 &offset, NULL);
1628 if (diag)
1629 return diag;
1630 if (argc > nextarg+2)
1631 return KDB_ARGCOUNT;
1632
1633 if (argc >= nextarg) {
1634 diag = kdbgetularg(argv[nextarg], &val);
1635 if (!diag) {
1636 mdcount = (int) val;
1637 if (raw)
1638 repeat = mdcount;
1639 else
1640 repeat = mdcount * 16 / bytesperword;
1641 }
1642 }
1643 if (argc >= nextarg+1) {
1644 diag = kdbgetularg(argv[nextarg+1], &val);
1645 if (!diag)
1646 radix = (int) val;
1647 }
1648 }
1649
1650 if (strcmp(argv[0], "mdr") == 0) {
1651 int ret;
1652 last_addr = addr;
1653 ret = kdb_mdr(addr, mdcount);
1654 last_addr += mdcount;
1655 last_repeat = mdcount;
1656 last_bytesperword = bytesperword; // to make REPEAT happy
1657 return ret;
1658 }
1659
1660 switch (radix) {
1661 case 10:
1662 fmtchar = 'd';
1663 break;
1664 case 16:
1665 fmtchar = 'x';
1666 break;
1667 case 8:
1668 fmtchar = 'o';
1669 break;
1670 default:
1671 return KDB_BADRADIX;
1672 }
1673
1674 last_radix = radix;
1675
1676 if (bytesperword > KDB_WORD_SIZE)
1677 return KDB_BADWIDTH;
1678
1679 switch (bytesperword) {
1680 case 8:
1681 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1682 break;
1683 case 4:
1684 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1685 break;
1686 case 2:
1687 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1688 break;
1689 case 1:
1690 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1691 break;
1692 default:
1693 return KDB_BADWIDTH;
1694 }
1695
1696 last_repeat = repeat;
1697 last_bytesperword = bytesperword;
1698
1699 if (strcmp(argv[0], "mds") == 0) {
1700 symbolic = 1;
1701 /* Do not save these changes as last_*, they are temporary mds
1702 * overrides.
1703 */
1704 bytesperword = KDB_WORD_SIZE;
1705 repeat = mdcount;
1706 kdbgetintenv("NOSECT", &nosect);
1707 }
1708
1709 /* Round address down modulo BYTESPERWORD */
1710
1711 addr &= ~(bytesperword-1);
1712
1713 while (repeat > 0) {
1714 unsigned long a;
1715 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1716
1717 if (KDB_FLAG(CMD_INTERRUPT))
1718 return 0;
1719 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1720 if (phys) {
1721 if (kdb_getphysword(&word, a, bytesperword)
1722 || word)
1723 break;
1724 } else if (kdb_getword(&word, a, bytesperword) || word)
1725 break;
1726 }
1727 n = min(num, repeat);
1728 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1729 num, repeat, phys);
1730 addr += bytesperword * n;
1731 repeat -= n;
1732 z = (z + num - 1) / num;
1733 if (z > 2) {
1734 int s = num * (z-2);
1735 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1736 " zero suppressed\n",
1737 addr, addr + bytesperword * s - 1);
1738 addr += bytesperword * s;
1739 repeat -= s;
1740 }
1741 }
1742 last_addr = addr;
1743
1744 return 0;
1745}
1746
1747/*
1748 * kdb_mm - This function implements the 'mm' command.
1749 * mm address-expression new-value
1750 * Remarks:
1751 * mm works on machine words, mmW works on bytes.
1752 */
1753static int kdb_mm(int argc, const char **argv)
1754{
1755 int diag;
1756 unsigned long addr;
1757 long offset = 0;
1758 unsigned long contents;
1759 int nextarg;
1760 int width;
1761
1762 if (argv[0][2] && !isdigit(argv[0][2]))
1763 return KDB_NOTFOUND;
1764
1765 if (argc < 2)
1766 return KDB_ARGCOUNT;
1767
1768 nextarg = 1;
1769 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1770 if (diag)
1771 return diag;
1772
1773 if (nextarg > argc)
1774 return KDB_ARGCOUNT;
1775 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1776 if (diag)
1777 return diag;
1778
1779 if (nextarg != argc + 1)
1780 return KDB_ARGCOUNT;
1781
1782 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1783 diag = kdb_putword(addr, contents, width);
1784 if (diag)
1785 return diag;
1786
1787 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1788
1789 return 0;
1790}
1791
1792/*
1793 * kdb_go - This function implements the 'go' command.
1794 * go [address-expression]
1795 */
1796static int kdb_go(int argc, const char **argv)
1797{
1798 unsigned long addr;
1799 int diag;
1800 int nextarg;
1801 long offset;
1802
1803 if (raw_smp_processor_id() != kdb_initial_cpu) {
1804 kdb_printf("go must execute on the entry cpu, "
1805 "please use \"cpu %d\" and then execute go\n",
1806 kdb_initial_cpu);
1807 return KDB_BADCPUNUM;
1808 }
1809 if (argc == 1) {
1810 nextarg = 1;
1811 diag = kdbgetaddrarg(argc, argv, &nextarg,
1812 &addr, &offset, NULL);
1813 if (diag)
1814 return diag;
1815 } else if (argc) {
1816 return KDB_ARGCOUNT;
1817 }
1818
1819 diag = KDB_CMD_GO;
1820 if (KDB_FLAG(CATASTROPHIC)) {
1821 kdb_printf("Catastrophic error detected\n");
1822 kdb_printf("kdb_continue_catastrophic=%d, ",
1823 kdb_continue_catastrophic);
1824 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1825 kdb_printf("type go a second time if you really want "
1826 "to continue\n");
1827 return 0;
1828 }
1829 if (kdb_continue_catastrophic == 2) {
1830 kdb_printf("forcing reboot\n");
1831 kdb_reboot(0, NULL);
1832 }
1833 kdb_printf("attempting to continue\n");
1834 }
1835 return diag;
1836}
1837
1838/*
1839 * kdb_rd - This function implements the 'rd' command.
1840 */
1841static int kdb_rd(int argc, const char **argv)
1842{
1843 int len = kdb_check_regs();
1844#if DBG_MAX_REG_NUM > 0
1845 int i;
1846 char *rname;
1847 int rsize;
1848 u64 reg64;
1849 u32 reg32;
1850 u16 reg16;
1851 u8 reg8;
1852
1853 if (len)
1854 return len;
1855
1856 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1857 rsize = dbg_reg_def[i].size * 2;
1858 if (rsize > 16)
1859 rsize = 2;
1860 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1861 len = 0;
1862 kdb_printf("\n");
1863 }
1864 if (len)
1865 len += kdb_printf(" ");
1866 switch(dbg_reg_def[i].size * 8) {
1867 case 8:
1868 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1869 if (!rname)
1870 break;
1871 len += kdb_printf("%s: %02x", rname, reg8);
1872 break;
1873 case 16:
1874 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1875 if (!rname)
1876 break;
1877 len += kdb_printf("%s: %04x", rname, reg16);
1878 break;
1879 case 32:
1880 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1881 if (!rname)
1882 break;
1883 len += kdb_printf("%s: %08x", rname, reg32);
1884 break;
1885 case 64:
1886 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1887 if (!rname)
1888 break;
1889 len += kdb_printf("%s: %016llx", rname, reg64);
1890 break;
1891 default:
1892 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1893 }
1894 }
1895 kdb_printf("\n");
1896#else
1897 if (len)
1898 return len;
1899
1900 kdb_dumpregs(kdb_current_regs);
1901#endif
1902 return 0;
1903}
1904
1905/*
1906 * kdb_rm - This function implements the 'rm' (register modify) command.
1907 * rm register-name new-contents
1908 * Remarks:
1909 * Allows register modification with the same restrictions as gdb
1910 */
1911static int kdb_rm(int argc, const char **argv)
1912{
1913#if DBG_MAX_REG_NUM > 0
1914 int diag;
1915 const char *rname;
1916 int i;
1917 u64 reg64;
1918 u32 reg32;
1919 u16 reg16;
1920 u8 reg8;
1921
1922 if (argc != 2)
1923 return KDB_ARGCOUNT;
1924 /*
1925 * Allow presence or absence of leading '%' symbol.
1926 */
1927 rname = argv[1];
1928 if (*rname == '%')
1929 rname++;
1930
1931 diag = kdbgetu64arg(argv[2], ®64);
1932 if (diag)
1933 return diag;
1934
1935 diag = kdb_check_regs();
1936 if (diag)
1937 return diag;
1938
1939 diag = KDB_BADREG;
1940 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1941 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1942 diag = 0;
1943 break;
1944 }
1945 }
1946 if (!diag) {
1947 switch(dbg_reg_def[i].size * 8) {
1948 case 8:
1949 reg8 = reg64;
1950 dbg_set_reg(i, ®8, kdb_current_regs);
1951 break;
1952 case 16:
1953 reg16 = reg64;
1954 dbg_set_reg(i, ®16, kdb_current_regs);
1955 break;
1956 case 32:
1957 reg32 = reg64;
1958 dbg_set_reg(i, ®32, kdb_current_regs);
1959 break;
1960 case 64:
1961 dbg_set_reg(i, ®64, kdb_current_regs);
1962 break;
1963 }
1964 }
1965 return diag;
1966#else
1967 kdb_printf("ERROR: Register set currently not implemented\n");
1968 return 0;
1969#endif
1970}
1971
1972#if defined(CONFIG_MAGIC_SYSRQ)
1973/*
1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1975 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1976 * sr <magic-sysrq-code>
1977 */
1978static int kdb_sr(int argc, const char **argv)
1979{
1980 bool check_mask =
1981 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1982
1983 if (argc != 1)
1984 return KDB_ARGCOUNT;
1985
1986 kdb_trap_printk++;
1987 __handle_sysrq(*argv[1], check_mask);
1988 kdb_trap_printk--;
1989
1990 return 0;
1991}
1992#endif /* CONFIG_MAGIC_SYSRQ */
1993
1994/*
1995 * kdb_ef - This function implements the 'regs' (display exception
1996 * frame) command. This command takes an address and expects to
1997 * find an exception frame at that address, formats and prints
1998 * it.
1999 * regs address-expression
2000 * Remarks:
2001 * Not done yet.
2002 */
2003static int kdb_ef(int argc, const char **argv)
2004{
2005 int diag;
2006 unsigned long addr;
2007 long offset;
2008 int nextarg;
2009
2010 if (argc != 1)
2011 return KDB_ARGCOUNT;
2012
2013 nextarg = 1;
2014 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2015 if (diag)
2016 return diag;
2017 show_regs((struct pt_regs *)addr);
2018 return 0;
2019}
2020
2021#if defined(CONFIG_MODULES)
2022/*
2023 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2024 * currently loaded kernel modules.
2025 * Mostly taken from userland lsmod.
2026 */
2027static int kdb_lsmod(int argc, const char **argv)
2028{
2029 struct module *mod;
2030
2031 if (argc != 0)
2032 return KDB_ARGCOUNT;
2033
2034 kdb_printf("Module Size modstruct Used by\n");
2035 list_for_each_entry(mod, kdb_modules, list) {
2036 if (mod->state == MODULE_STATE_UNFORMED)
2037 continue;
2038
2039 kdb_printf("%-20s%8u 0x%px ", mod->name,
2040 mod->core_layout.size, (void *)mod);
2041#ifdef CONFIG_MODULE_UNLOAD
2042 kdb_printf("%4d ", module_refcount(mod));
2043#endif
2044 if (mod->state == MODULE_STATE_GOING)
2045 kdb_printf(" (Unloading)");
2046 else if (mod->state == MODULE_STATE_COMING)
2047 kdb_printf(" (Loading)");
2048 else
2049 kdb_printf(" (Live)");
2050 kdb_printf(" 0x%px", mod->core_layout.base);
2051
2052#ifdef CONFIG_MODULE_UNLOAD
2053 {
2054 struct module_use *use;
2055 kdb_printf(" [ ");
2056 list_for_each_entry(use, &mod->source_list,
2057 source_list)
2058 kdb_printf("%s ", use->target->name);
2059 kdb_printf("]\n");
2060 }
2061#endif
2062 }
2063
2064 return 0;
2065}
2066
2067#endif /* CONFIG_MODULES */
2068
2069/*
2070 * kdb_env - This function implements the 'env' command. Display the
2071 * current environment variables.
2072 */
2073
2074static int kdb_env(int argc, const char **argv)
2075{
2076 int i;
2077
2078 for (i = 0; i < __nenv; i++) {
2079 if (__env[i])
2080 kdb_printf("%s\n", __env[i]);
2081 }
2082
2083 if (KDB_DEBUG(MASK))
2084 kdb_printf("KDBDEBUG=0x%x\n",
2085 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2086
2087 return 0;
2088}
2089
2090#ifdef CONFIG_PRINTK
2091/*
2092 * kdb_dmesg - This function implements the 'dmesg' command to display
2093 * the contents of the syslog buffer.
2094 * dmesg [lines] [adjust]
2095 */
2096static int kdb_dmesg(int argc, const char **argv)
2097{
2098 int diag;
2099 int logging;
2100 int lines = 0;
2101 int adjust = 0;
2102 int n = 0;
2103 int skip = 0;
2104 struct kmsg_dumper dumper = { .active = 1 };
2105 size_t len;
2106 char buf[201];
2107
2108 if (argc > 2)
2109 return KDB_ARGCOUNT;
2110 if (argc) {
2111 char *cp;
2112 lines = simple_strtol(argv[1], &cp, 0);
2113 if (*cp)
2114 lines = 0;
2115 if (argc > 1) {
2116 adjust = simple_strtoul(argv[2], &cp, 0);
2117 if (*cp || adjust < 0)
2118 adjust = 0;
2119 }
2120 }
2121
2122 /* disable LOGGING if set */
2123 diag = kdbgetintenv("LOGGING", &logging);
2124 if (!diag && logging) {
2125 const char *setargs[] = { "set", "LOGGING", "0" };
2126 kdb_set(2, setargs);
2127 }
2128
2129 kmsg_dump_rewind_nolock(&dumper);
2130 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2131 n++;
2132
2133 if (lines < 0) {
2134 if (adjust >= n)
2135 kdb_printf("buffer only contains %d lines, nothing "
2136 "printed\n", n);
2137 else if (adjust - lines >= n)
2138 kdb_printf("buffer only contains %d lines, last %d "
2139 "lines printed\n", n, n - adjust);
2140 skip = adjust;
2141 lines = abs(lines);
2142 } else if (lines > 0) {
2143 skip = n - lines - adjust;
2144 lines = abs(lines);
2145 if (adjust >= n) {
2146 kdb_printf("buffer only contains %d lines, "
2147 "nothing printed\n", n);
2148 skip = n;
2149 } else if (skip < 0) {
2150 lines += skip;
2151 skip = 0;
2152 kdb_printf("buffer only contains %d lines, first "
2153 "%d lines printed\n", n, lines);
2154 }
2155 } else {
2156 lines = n;
2157 }
2158
2159 if (skip >= n || skip < 0)
2160 return 0;
2161
2162 kmsg_dump_rewind_nolock(&dumper);
2163 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2164 if (skip) {
2165 skip--;
2166 continue;
2167 }
2168 if (!lines--)
2169 break;
2170 if (KDB_FLAG(CMD_INTERRUPT))
2171 return 0;
2172
2173 kdb_printf("%.*s\n", (int)len - 1, buf);
2174 }
2175
2176 return 0;
2177}
2178#endif /* CONFIG_PRINTK */
2179
2180/* Make sure we balance enable/disable calls, must disable first. */
2181static atomic_t kdb_nmi_disabled;
2182
2183static int kdb_disable_nmi(int argc, const char *argv[])
2184{
2185 if (atomic_read(&kdb_nmi_disabled))
2186 return 0;
2187 atomic_set(&kdb_nmi_disabled, 1);
2188 arch_kgdb_ops.enable_nmi(0);
2189 return 0;
2190}
2191
2192static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2193{
2194 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2195 return -EINVAL;
2196 arch_kgdb_ops.enable_nmi(1);
2197 return 0;
2198}
2199
2200static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2201 .set = kdb_param_enable_nmi,
2202};
2203module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2204
2205/*
2206 * kdb_cpu - This function implements the 'cpu' command.
2207 * cpu [<cpunum>]
2208 * Returns:
2209 * KDB_CMD_CPU for success, a kdb diagnostic if error
2210 */
2211static void kdb_cpu_status(void)
2212{
2213 int i, start_cpu, first_print = 1;
2214 char state, prev_state = '?';
2215
2216 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2217 kdb_printf("Available cpus: ");
2218 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2219 if (!cpu_online(i)) {
2220 state = 'F'; /* cpu is offline */
2221 } else if (!kgdb_info[i].enter_kgdb) {
2222 state = 'D'; /* cpu is online but unresponsive */
2223 } else {
2224 state = ' '; /* cpu is responding to kdb */
2225 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2226 state = 'I'; /* idle task */
2227 }
2228 if (state != prev_state) {
2229 if (prev_state != '?') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 first_print = 0;
2233 kdb_printf("%d", start_cpu);
2234 if (start_cpu < i-1)
2235 kdb_printf("-%d", i-1);
2236 if (prev_state != ' ')
2237 kdb_printf("(%c)", prev_state);
2238 }
2239 prev_state = state;
2240 start_cpu = i;
2241 }
2242 }
2243 /* print the trailing cpus, ignoring them if they are all offline */
2244 if (prev_state != 'F') {
2245 if (!first_print)
2246 kdb_printf(", ");
2247 kdb_printf("%d", start_cpu);
2248 if (start_cpu < i-1)
2249 kdb_printf("-%d", i-1);
2250 if (prev_state != ' ')
2251 kdb_printf("(%c)", prev_state);
2252 }
2253 kdb_printf("\n");
2254}
2255
2256static int kdb_cpu(int argc, const char **argv)
2257{
2258 unsigned long cpunum;
2259 int diag;
2260
2261 if (argc == 0) {
2262 kdb_cpu_status();
2263 return 0;
2264 }
2265
2266 if (argc != 1)
2267 return KDB_ARGCOUNT;
2268
2269 diag = kdbgetularg(argv[1], &cpunum);
2270 if (diag)
2271 return diag;
2272
2273 /*
2274 * Validate cpunum
2275 */
2276 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2277 return KDB_BADCPUNUM;
2278
2279 dbg_switch_cpu = cpunum;
2280
2281 /*
2282 * Switch to other cpu
2283 */
2284 return KDB_CMD_CPU;
2285}
2286
2287/* The user may not realize that ps/bta with no parameters does not print idle
2288 * or sleeping system daemon processes, so tell them how many were suppressed.
2289 */
2290void kdb_ps_suppressed(void)
2291{
2292 int idle = 0, daemon = 0;
2293 unsigned long mask_I = kdb_task_state_string("I"),
2294 mask_M = kdb_task_state_string("M");
2295 unsigned long cpu;
2296 const struct task_struct *p, *g;
2297 for_each_online_cpu(cpu) {
2298 p = kdb_curr_task(cpu);
2299 if (kdb_task_state(p, mask_I))
2300 ++idle;
2301 }
2302 kdb_do_each_thread(g, p) {
2303 if (kdb_task_state(p, mask_M))
2304 ++daemon;
2305 } kdb_while_each_thread(g, p);
2306 if (idle || daemon) {
2307 if (idle)
2308 kdb_printf("%d idle process%s (state I)%s\n",
2309 idle, idle == 1 ? "" : "es",
2310 daemon ? " and " : "");
2311 if (daemon)
2312 kdb_printf("%d sleeping system daemon (state M) "
2313 "process%s", daemon,
2314 daemon == 1 ? "" : "es");
2315 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2316 }
2317}
2318
2319/*
2320 * kdb_ps - This function implements the 'ps' command which shows a
2321 * list of the active processes.
2322 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2323 */
2324void kdb_ps1(const struct task_struct *p)
2325{
2326 int cpu;
2327 unsigned long tmp;
2328
2329 if (!p ||
2330 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2331 return;
2332
2333 cpu = kdb_process_cpu(p);
2334 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2335 (void *)p, p->pid, p->parent->pid,
2336 kdb_task_has_cpu(p), kdb_process_cpu(p),
2337 kdb_task_state_char(p),
2338 (void *)(&p->thread),
2339 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2340 p->comm);
2341 if (kdb_task_has_cpu(p)) {
2342 if (!KDB_TSK(cpu)) {
2343 kdb_printf(" Error: no saved data for this cpu\n");
2344 } else {
2345 if (KDB_TSK(cpu) != p)
2346 kdb_printf(" Error: does not match running "
2347 "process table (0x%px)\n", KDB_TSK(cpu));
2348 }
2349 }
2350}
2351
2352static int kdb_ps(int argc, const char **argv)
2353{
2354 struct task_struct *g, *p;
2355 unsigned long mask, cpu;
2356
2357 if (argc == 0)
2358 kdb_ps_suppressed();
2359 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2360 (int)(2*sizeof(void *))+2, "Task Addr",
2361 (int)(2*sizeof(void *))+2, "Thread");
2362 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2363 /* Run the active tasks first */
2364 for_each_online_cpu(cpu) {
2365 if (KDB_FLAG(CMD_INTERRUPT))
2366 return 0;
2367 p = kdb_curr_task(cpu);
2368 if (kdb_task_state(p, mask))
2369 kdb_ps1(p);
2370 }
2371 kdb_printf("\n");
2372 /* Now the real tasks */
2373 kdb_do_each_thread(g, p) {
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (kdb_task_state(p, mask))
2377 kdb_ps1(p);
2378 } kdb_while_each_thread(g, p);
2379
2380 return 0;
2381}
2382
2383/*
2384 * kdb_pid - This function implements the 'pid' command which switches
2385 * the currently active process.
2386 * pid [<pid> | R]
2387 */
2388static int kdb_pid(int argc, const char **argv)
2389{
2390 struct task_struct *p;
2391 unsigned long val;
2392 int diag;
2393
2394 if (argc > 1)
2395 return KDB_ARGCOUNT;
2396
2397 if (argc) {
2398 if (strcmp(argv[1], "R") == 0) {
2399 p = KDB_TSK(kdb_initial_cpu);
2400 } else {
2401 diag = kdbgetularg(argv[1], &val);
2402 if (diag)
2403 return KDB_BADINT;
2404
2405 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2406 if (!p) {
2407 kdb_printf("No task with pid=%d\n", (pid_t)val);
2408 return 0;
2409 }
2410 }
2411 kdb_set_current_task(p);
2412 }
2413 kdb_printf("KDB current process is %s(pid=%d)\n",
2414 kdb_current_task->comm,
2415 kdb_current_task->pid);
2416
2417 return 0;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 char *space = "";
2438 if (KDB_FLAG(CMD_INTERRUPT))
2439 return 0;
2440 if (!kt->cmd_name)
2441 continue;
2442 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2443 continue;
2444 if (strlen(kt->cmd_usage) > 20)
2445 space = "\n ";
2446 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2447 kt->cmd_usage, space, kt->cmd_help);
2448 }
2449 return 0;
2450}
2451
2452/*
2453 * kdb_kill - This function implements the 'kill' commands.
2454 */
2455static int kdb_kill(int argc, const char **argv)
2456{
2457 long sig, pid;
2458 char *endp;
2459 struct task_struct *p;
2460
2461 if (argc != 2)
2462 return KDB_ARGCOUNT;
2463
2464 sig = simple_strtol(argv[1], &endp, 0);
2465 if (*endp)
2466 return KDB_BADINT;
2467 if ((sig >= 0) || !valid_signal(-sig)) {
2468 kdb_printf("Invalid signal parameter.<-signal>\n");
2469 return 0;
2470 }
2471 sig = -sig;
2472
2473 pid = simple_strtol(argv[2], &endp, 0);
2474 if (*endp)
2475 return KDB_BADINT;
2476 if (pid <= 0) {
2477 kdb_printf("Process ID must be large than 0.\n");
2478 return 0;
2479 }
2480
2481 /* Find the process. */
2482 p = find_task_by_pid_ns(pid, &init_pid_ns);
2483 if (!p) {
2484 kdb_printf("The specified process isn't found.\n");
2485 return 0;
2486 }
2487 p = p->group_leader;
2488 kdb_send_sig(p, sig);
2489 return 0;
2490}
2491
2492/*
2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2494 * I cannot call that code directly from kdb, it has an unconditional
2495 * cli()/sti() and calls routines that take locks which can stop the debugger.
2496 */
2497static void kdb_sysinfo(struct sysinfo *val)
2498{
2499 u64 uptime = ktime_get_mono_fast_ns();
2500
2501 memset(val, 0, sizeof(*val));
2502 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2503 val->loads[0] = avenrun[0];
2504 val->loads[1] = avenrun[1];
2505 val->loads[2] = avenrun[2];
2506 val->procs = nr_threads-1;
2507 si_meminfo(val);
2508
2509 return;
2510}
2511
2512/*
2513 * kdb_summary - This function implements the 'summary' command.
2514 */
2515static int kdb_summary(int argc, const char **argv)
2516{
2517 time64_t now;
2518 struct tm tm;
2519 struct sysinfo val;
2520
2521 if (argc)
2522 return KDB_ARGCOUNT;
2523
2524 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2525 kdb_printf("release %s\n", init_uts_ns.name.release);
2526 kdb_printf("version %s\n", init_uts_ns.name.version);
2527 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2528 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2529 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2530
2531 now = __ktime_get_real_seconds();
2532 time64_to_tm(now, 0, &tm);
2533 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2534 "tz_minuteswest %d\n",
2535 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2536 tm.tm_hour, tm.tm_min, tm.tm_sec,
2537 sys_tz.tz_minuteswest);
2538
2539 kdb_sysinfo(&val);
2540 kdb_printf("uptime ");
2541 if (val.uptime > (24*60*60)) {
2542 int days = val.uptime / (24*60*60);
2543 val.uptime %= (24*60*60);
2544 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2545 }
2546 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2547
2548 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2549 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2550 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2551 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2552
2553 /* Display in kilobytes */
2554#define K(x) ((x) << (PAGE_SHIFT - 10))
2555 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2556 "Buffers: %8lu kB\n",
2557 K(val.totalram), K(val.freeram), K(val.bufferram));
2558 return 0;
2559}
2560
2561/*
2562 * kdb_per_cpu - This function implements the 'per_cpu' command.
2563 */
2564static int kdb_per_cpu(int argc, const char **argv)
2565{
2566 char fmtstr[64];
2567 int cpu, diag, nextarg = 1;
2568 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2569
2570 if (argc < 1 || argc > 3)
2571 return KDB_ARGCOUNT;
2572
2573 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2574 if (diag)
2575 return diag;
2576
2577 if (argc >= 2) {
2578 diag = kdbgetularg(argv[2], &bytesperword);
2579 if (diag)
2580 return diag;
2581 }
2582 if (!bytesperword)
2583 bytesperword = KDB_WORD_SIZE;
2584 else if (bytesperword > KDB_WORD_SIZE)
2585 return KDB_BADWIDTH;
2586 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2587 if (argc >= 3) {
2588 diag = kdbgetularg(argv[3], &whichcpu);
2589 if (diag)
2590 return diag;
2591 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2592 kdb_printf("cpu %ld is not online\n", whichcpu);
2593 return KDB_BADCPUNUM;
2594 }
2595 }
2596
2597 /* Most architectures use __per_cpu_offset[cpu], some use
2598 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2599 */
2600#ifdef __per_cpu_offset
2601#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2602#else
2603#ifdef CONFIG_SMP
2604#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2605#else
2606#define KDB_PCU(cpu) 0
2607#endif
2608#endif
2609 for_each_online_cpu(cpu) {
2610 if (KDB_FLAG(CMD_INTERRUPT))
2611 return 0;
2612
2613 if (whichcpu != ~0UL && whichcpu != cpu)
2614 continue;
2615 addr = symaddr + KDB_PCU(cpu);
2616 diag = kdb_getword(&val, addr, bytesperword);
2617 if (diag) {
2618 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2619 "read, diag=%d\n", cpu, addr, diag);
2620 continue;
2621 }
2622 kdb_printf("%5d ", cpu);
2623 kdb_md_line(fmtstr, addr,
2624 bytesperword == KDB_WORD_SIZE,
2625 1, bytesperword, 1, 1, 0);
2626 }
2627#undef KDB_PCU
2628 return 0;
2629}
2630
2631/*
2632 * display help for the use of cmd | grep pattern
2633 */
2634static int kdb_grep_help(int argc, const char **argv)
2635{
2636 kdb_printf("Usage of cmd args | grep pattern:\n");
2637 kdb_printf(" Any command's output may be filtered through an ");
2638 kdb_printf("emulated 'pipe'.\n");
2639 kdb_printf(" 'grep' is just a key word.\n");
2640 kdb_printf(" The pattern may include a very limited set of "
2641 "metacharacters:\n");
2642 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2643 kdb_printf(" And if there are spaces in the pattern, you may "
2644 "quote it:\n");
2645 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2646 " or \"^pat tern$\"\n");
2647 return 0;
2648}
2649
2650/*
2651 * kdb_register_flags - This function is used to register a kernel
2652 * debugger command.
2653 * Inputs:
2654 * cmd Command name
2655 * func Function to execute the command
2656 * usage A simple usage string showing arguments
2657 * help A simple help string describing command
2658 * repeat Does the command auto repeat on enter?
2659 * Returns:
2660 * zero for success, one if a duplicate command.
2661 */
2662#define kdb_command_extend 50 /* arbitrary */
2663int kdb_register_flags(char *cmd,
2664 kdb_func_t func,
2665 char *usage,
2666 char *help,
2667 short minlen,
2668 kdb_cmdflags_t flags)
2669{
2670 int i;
2671 kdbtab_t *kp;
2672
2673 /*
2674 * Brute force method to determine duplicates
2675 */
2676 for_each_kdbcmd(kp, i) {
2677 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2678 kdb_printf("Duplicate kdb command registered: "
2679 "%s, func %px help %s\n", cmd, func, help);
2680 return 1;
2681 }
2682 }
2683
2684 /*
2685 * Insert command into first available location in table
2686 */
2687 for_each_kdbcmd(kp, i) {
2688 if (kp->cmd_name == NULL)
2689 break;
2690 }
2691
2692 if (i >= kdb_max_commands) {
2693 kdbtab_t *new = kmalloc_array(kdb_max_commands -
2694 KDB_BASE_CMD_MAX +
2695 kdb_command_extend,
2696 sizeof(*new),
2697 GFP_KDB);
2698 if (!new) {
2699 kdb_printf("Could not allocate new kdb_command "
2700 "table\n");
2701 return 1;
2702 }
2703 if (kdb_commands) {
2704 memcpy(new, kdb_commands,
2705 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2706 kfree(kdb_commands);
2707 }
2708 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2709 kdb_command_extend * sizeof(*new));
2710 kdb_commands = new;
2711 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2712 kdb_max_commands += kdb_command_extend;
2713 }
2714
2715 kp->cmd_name = cmd;
2716 kp->cmd_func = func;
2717 kp->cmd_usage = usage;
2718 kp->cmd_help = help;
2719 kp->cmd_minlen = minlen;
2720 kp->cmd_flags = flags;
2721
2722 return 0;
2723}
2724EXPORT_SYMBOL_GPL(kdb_register_flags);
2725
2726
2727/*
2728 * kdb_register - Compatibility register function for commands that do
2729 * not need to specify a repeat state. Equivalent to
2730 * kdb_register_flags with flags set to 0.
2731 * Inputs:
2732 * cmd Command name
2733 * func Function to execute the command
2734 * usage A simple usage string showing arguments
2735 * help A simple help string describing command
2736 * Returns:
2737 * zero for success, one if a duplicate command.
2738 */
2739int kdb_register(char *cmd,
2740 kdb_func_t func,
2741 char *usage,
2742 char *help,
2743 short minlen)
2744{
2745 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2746}
2747EXPORT_SYMBOL_GPL(kdb_register);
2748
2749/*
2750 * kdb_unregister - This function is used to unregister a kernel
2751 * debugger command. It is generally called when a module which
2752 * implements kdb commands is unloaded.
2753 * Inputs:
2754 * cmd Command name
2755 * Returns:
2756 * zero for success, one command not registered.
2757 */
2758int kdb_unregister(char *cmd)
2759{
2760 int i;
2761 kdbtab_t *kp;
2762
2763 /*
2764 * find the command.
2765 */
2766 for_each_kdbcmd(kp, i) {
2767 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2768 kp->cmd_name = NULL;
2769 return 0;
2770 }
2771 }
2772
2773 /* Couldn't find it. */
2774 return 1;
2775}
2776EXPORT_SYMBOL_GPL(kdb_unregister);
2777
2778/* Initialize the kdb command table. */
2779static void __init kdb_inittab(void)
2780{
2781 int i;
2782 kdbtab_t *kp;
2783
2784 for_each_kdbcmd(kp, i)
2785 kp->cmd_name = NULL;
2786
2787 kdb_register_flags("md", kdb_md, "<vaddr>",
2788 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2789 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2790 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2791 "Display Raw Memory", 0,
2792 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2793 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2794 "Display Physical Memory", 0,
2795 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2796 kdb_register_flags("mds", kdb_md, "<vaddr>",
2797 "Display Memory Symbolically", 0,
2798 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2799 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2800 "Modify Memory Contents", 0,
2801 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2802 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2803 "Continue Execution", 1,
2804 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2805 kdb_register_flags("rd", kdb_rd, "",
2806 "Display Registers", 0,
2807 KDB_ENABLE_REG_READ);
2808 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2809 "Modify Registers", 0,
2810 KDB_ENABLE_REG_WRITE);
2811 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2812 "Display exception frame", 0,
2813 KDB_ENABLE_MEM_READ);
2814 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2815 "Stack traceback", 1,
2816 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2817 kdb_register_flags("btp", kdb_bt, "<pid>",
2818 "Display stack for process <pid>", 0,
2819 KDB_ENABLE_INSPECT);
2820 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2821 "Backtrace all processes matching state flag", 0,
2822 KDB_ENABLE_INSPECT);
2823 kdb_register_flags("btc", kdb_bt, "",
2824 "Backtrace current process on each cpu", 0,
2825 KDB_ENABLE_INSPECT);
2826 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2827 "Backtrace process given its struct task address", 0,
2828 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2829 kdb_register_flags("env", kdb_env, "",
2830 "Show environment variables", 0,
2831 KDB_ENABLE_ALWAYS_SAFE);
2832 kdb_register_flags("set", kdb_set, "",
2833 "Set environment variables", 0,
2834 KDB_ENABLE_ALWAYS_SAFE);
2835 kdb_register_flags("help", kdb_help, "",
2836 "Display Help Message", 1,
2837 KDB_ENABLE_ALWAYS_SAFE);
2838 kdb_register_flags("?", kdb_help, "",
2839 "Display Help Message", 0,
2840 KDB_ENABLE_ALWAYS_SAFE);
2841 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2842 "Switch to new cpu", 0,
2843 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2844 kdb_register_flags("kgdb", kdb_kgdb, "",
2845 "Enter kgdb mode", 0, 0);
2846 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2847 "Display active task list", 0,
2848 KDB_ENABLE_INSPECT);
2849 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2850 "Switch to another task", 0,
2851 KDB_ENABLE_INSPECT);
2852 kdb_register_flags("reboot", kdb_reboot, "",
2853 "Reboot the machine immediately", 0,
2854 KDB_ENABLE_REBOOT);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_flags("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0,
2858 KDB_ENABLE_INSPECT);
2859#endif
2860#if defined(CONFIG_MAGIC_SYSRQ)
2861 kdb_register_flags("sr", kdb_sr, "<key>",
2862 "Magic SysRq key", 0,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865#if defined(CONFIG_PRINTK)
2866 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2867 "Display syslog buffer", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
2869#endif
2870 if (arch_kgdb_ops.enable_nmi) {
2871 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2872 "Disable NMI entry to KDB", 0,
2873 KDB_ENABLE_ALWAYS_SAFE);
2874 }
2875 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2876 "Define a set of commands, down to endefcmd", 0,
2877 KDB_ENABLE_ALWAYS_SAFE);
2878 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2879 "Send a signal to a process", 0,
2880 KDB_ENABLE_SIGNAL);
2881 kdb_register_flags("summary", kdb_summary, "",
2882 "Summarize the system", 4,
2883 KDB_ENABLE_ALWAYS_SAFE);
2884 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2885 "Display per_cpu variables", 3,
2886 KDB_ENABLE_MEM_READ);
2887 kdb_register_flags("grephelp", kdb_grep_help, "",
2888 "Display help on | grep", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
2890}
2891
2892/* Execute any commands defined in kdb_cmds. */
2893static void __init kdb_cmd_init(void)
2894{
2895 int i, diag;
2896 for (i = 0; kdb_cmds[i]; ++i) {
2897 diag = kdb_parse(kdb_cmds[i]);
2898 if (diag)
2899 kdb_printf("kdb command %s failed, kdb diag %d\n",
2900 kdb_cmds[i], diag);
2901 }
2902 if (defcmd_in_progress) {
2903 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2904 kdb_parse("endefcmd");
2905 }
2906}
2907
2908/* Initialize kdb_printf, breakpoint tables and kdb state */
2909void __init kdb_init(int lvl)
2910{
2911 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2912 int i;
2913
2914 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2915 return;
2916 for (i = kdb_init_lvl; i < lvl; i++) {
2917 switch (i) {
2918 case KDB_NOT_INITIALIZED:
2919 kdb_inittab(); /* Initialize Command Table */
2920 kdb_initbptab(); /* Initialize Breakpoints */
2921 break;
2922 case KDB_INIT_EARLY:
2923 kdb_cmd_init(); /* Build kdb_cmds tables */
2924 break;
2925 }
2926 }
2927 kdb_init_lvl = lvl;
2928}