Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16
  17#include "tb.h"
  18
  19/* Switch NVM support */
  20
  21#define NVM_CSS			0x10
  22
  23struct nvm_auth_status {
  24	struct list_head list;
  25	uuid_t uuid;
  26	u32 status;
  27};
  28
  29enum nvm_write_ops {
  30	WRITE_AND_AUTHENTICATE = 1,
  31	WRITE_ONLY = 2,
  32};
  33
  34/*
  35 * Hold NVM authentication failure status per switch This information
  36 * needs to stay around even when the switch gets power cycled so we
  37 * keep it separately.
  38 */
  39static LIST_HEAD(nvm_auth_status_cache);
  40static DEFINE_MUTEX(nvm_auth_status_lock);
  41
  42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  43{
  44	struct nvm_auth_status *st;
  45
  46	list_for_each_entry(st, &nvm_auth_status_cache, list) {
  47		if (uuid_equal(&st->uuid, sw->uuid))
  48			return st;
  49	}
  50
  51	return NULL;
  52}
  53
  54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  55{
  56	struct nvm_auth_status *st;
  57
  58	mutex_lock(&nvm_auth_status_lock);
  59	st = __nvm_get_auth_status(sw);
  60	mutex_unlock(&nvm_auth_status_lock);
  61
  62	*status = st ? st->status : 0;
  63}
  64
  65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  66{
  67	struct nvm_auth_status *st;
  68
  69	if (WARN_ON(!sw->uuid))
  70		return;
  71
  72	mutex_lock(&nvm_auth_status_lock);
  73	st = __nvm_get_auth_status(sw);
  74
  75	if (!st) {
  76		st = kzalloc(sizeof(*st), GFP_KERNEL);
  77		if (!st)
  78			goto unlock;
  79
  80		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  81		INIT_LIST_HEAD(&st->list);
  82		list_add_tail(&st->list, &nvm_auth_status_cache);
  83	}
  84
  85	st->status = status;
  86unlock:
  87	mutex_unlock(&nvm_auth_status_lock);
  88}
  89
  90static void nvm_clear_auth_status(const struct tb_switch *sw)
  91{
  92	struct nvm_auth_status *st;
  93
  94	mutex_lock(&nvm_auth_status_lock);
  95	st = __nvm_get_auth_status(sw);
  96	if (st) {
  97		list_del(&st->list);
  98		kfree(st);
  99	}
 100	mutex_unlock(&nvm_auth_status_lock);
 101}
 102
 103static int nvm_validate_and_write(struct tb_switch *sw)
 104{
 105	unsigned int image_size, hdr_size;
 106	const u8 *buf = sw->nvm->buf;
 107	u16 ds_size;
 108	int ret;
 109
 110	if (!buf)
 111		return -EINVAL;
 112
 113	image_size = sw->nvm->buf_data_size;
 114	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 115		return -EINVAL;
 116
 117	/*
 118	 * FARB pointer must point inside the image and must at least
 119	 * contain parts of the digital section we will be reading here.
 120	 */
 121	hdr_size = (*(u32 *)buf) & 0xffffff;
 122	if (hdr_size + NVM_DEVID + 2 >= image_size)
 123		return -EINVAL;
 124
 125	/* Digital section start should be aligned to 4k page */
 126	if (!IS_ALIGNED(hdr_size, SZ_4K))
 127		return -EINVAL;
 128
 129	/*
 130	 * Read digital section size and check that it also fits inside
 131	 * the image.
 132	 */
 133	ds_size = *(u16 *)(buf + hdr_size);
 134	if (ds_size >= image_size)
 135		return -EINVAL;
 136
 137	if (!sw->safe_mode) {
 138		u16 device_id;
 139
 140		/*
 141		 * Make sure the device ID in the image matches the one
 142		 * we read from the switch config space.
 143		 */
 144		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 145		if (device_id != sw->config.device_id)
 146			return -EINVAL;
 147
 148		if (sw->generation < 3) {
 149			/* Write CSS headers first */
 150			ret = dma_port_flash_write(sw->dma_port,
 151				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 152				DMA_PORT_CSS_MAX_SIZE);
 153			if (ret)
 154				return ret;
 155		}
 156
 157		/* Skip headers in the image */
 158		buf += hdr_size;
 159		image_size -= hdr_size;
 160	}
 161
 162	if (tb_switch_is_usb4(sw))
 163		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
 164	else
 165		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 166	if (!ret)
 167		sw->nvm->flushed = true;
 168	return ret;
 169}
 170
 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
 172{
 173	int ret = 0;
 174
 175	/*
 176	 * Root switch NVM upgrade requires that we disconnect the
 177	 * existing paths first (in case it is not in safe mode
 178	 * already).
 179	 */
 180	if (!sw->safe_mode) {
 181		u32 status;
 182
 183		ret = tb_domain_disconnect_all_paths(sw->tb);
 184		if (ret)
 185			return ret;
 186		/*
 187		 * The host controller goes away pretty soon after this if
 188		 * everything goes well so getting timeout is expected.
 189		 */
 190		ret = dma_port_flash_update_auth(sw->dma_port);
 191		if (!ret || ret == -ETIMEDOUT)
 192			return 0;
 193
 194		/*
 195		 * Any error from update auth operation requires power
 196		 * cycling of the host router.
 197		 */
 198		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
 199		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
 200			nvm_set_auth_status(sw, status);
 201	}
 202
 203	/*
 204	 * From safe mode we can get out by just power cycling the
 205	 * switch.
 206	 */
 207	dma_port_power_cycle(sw->dma_port);
 208	return ret;
 209}
 210
 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
 212{
 213	int ret, retries = 10;
 214
 215	ret = dma_port_flash_update_auth(sw->dma_port);
 216	switch (ret) {
 217	case 0:
 218	case -ETIMEDOUT:
 219	case -EACCES:
 220	case -EINVAL:
 221		/* Power cycle is required */
 222		break;
 223	default:
 224		return ret;
 225	}
 226
 227	/*
 228	 * Poll here for the authentication status. It takes some time
 229	 * for the device to respond (we get timeout for a while). Once
 230	 * we get response the device needs to be power cycled in order
 231	 * to the new NVM to be taken into use.
 232	 */
 233	do {
 234		u32 status;
 235
 236		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 237		if (ret < 0 && ret != -ETIMEDOUT)
 238			return ret;
 239		if (ret > 0) {
 240			if (status) {
 241				tb_sw_warn(sw, "failed to authenticate NVM\n");
 242				nvm_set_auth_status(sw, status);
 243			}
 244
 245			tb_sw_info(sw, "power cycling the switch now\n");
 246			dma_port_power_cycle(sw->dma_port);
 247			return 0;
 248		}
 249
 250		msleep(500);
 251	} while (--retries);
 252
 253	return -ETIMEDOUT;
 254}
 255
 256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
 257{
 258	struct pci_dev *root_port;
 259
 260	/*
 261	 * During host router NVM upgrade we should not allow root port to
 262	 * go into D3cold because some root ports cannot trigger PME
 263	 * itself. To be on the safe side keep the root port in D0 during
 264	 * the whole upgrade process.
 265	 */
 266	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 267	if (root_port)
 268		pm_runtime_get_noresume(&root_port->dev);
 269}
 270
 271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
 272{
 273	struct pci_dev *root_port;
 274
 275	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 276	if (root_port)
 277		pm_runtime_put(&root_port->dev);
 278}
 279
 280static inline bool nvm_readable(struct tb_switch *sw)
 281{
 282	if (tb_switch_is_usb4(sw)) {
 283		/*
 284		 * USB4 devices must support NVM operations but it is
 285		 * optional for hosts. Therefore we query the NVM sector
 286		 * size here and if it is supported assume NVM
 287		 * operations are implemented.
 288		 */
 289		return usb4_switch_nvm_sector_size(sw) > 0;
 290	}
 291
 292	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
 293	return !!sw->dma_port;
 294}
 295
 296static inline bool nvm_upgradeable(struct tb_switch *sw)
 297{
 298	if (sw->no_nvm_upgrade)
 299		return false;
 300	return nvm_readable(sw);
 301}
 302
 303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
 304			   void *buf, size_t size)
 305{
 306	if (tb_switch_is_usb4(sw))
 307		return usb4_switch_nvm_read(sw, address, buf, size);
 308	return dma_port_flash_read(sw->dma_port, address, buf, size);
 309}
 310
 311static int nvm_authenticate(struct tb_switch *sw)
 312{
 313	int ret;
 314
 315	if (tb_switch_is_usb4(sw))
 316		return usb4_switch_nvm_authenticate(sw);
 317
 318	if (!tb_route(sw)) {
 319		nvm_authenticate_start_dma_port(sw);
 320		ret = nvm_authenticate_host_dma_port(sw);
 321	} else {
 322		ret = nvm_authenticate_device_dma_port(sw);
 323	}
 324
 325	return ret;
 326}
 327
 328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 329			      size_t bytes)
 330{
 331	struct tb_nvm *nvm = priv;
 332	struct tb_switch *sw = tb_to_switch(nvm->dev);
 333	int ret;
 334
 335	pm_runtime_get_sync(&sw->dev);
 336
 337	if (!mutex_trylock(&sw->tb->lock)) {
 338		ret = restart_syscall();
 339		goto out;
 340	}
 341
 342	ret = nvm_read(sw, offset, val, bytes);
 343	mutex_unlock(&sw->tb->lock);
 344
 345out:
 346	pm_runtime_mark_last_busy(&sw->dev);
 347	pm_runtime_put_autosuspend(&sw->dev);
 348
 349	return ret;
 350}
 351
 352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 353			       size_t bytes)
 354{
 355	struct tb_nvm *nvm = priv;
 356	struct tb_switch *sw = tb_to_switch(nvm->dev);
 357	int ret;
 358
 359	if (!mutex_trylock(&sw->tb->lock))
 360		return restart_syscall();
 361
 362	/*
 363	 * Since writing the NVM image might require some special steps,
 364	 * for example when CSS headers are written, we cache the image
 365	 * locally here and handle the special cases when the user asks
 366	 * us to authenticate the image.
 367	 */
 368	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
 369	mutex_unlock(&sw->tb->lock);
 370
 371	return ret;
 372}
 373
 374static int tb_switch_nvm_add(struct tb_switch *sw)
 375{
 376	struct tb_nvm *nvm;
 377	u32 val;
 378	int ret;
 379
 380	if (!nvm_readable(sw))
 381		return 0;
 382
 383	/*
 384	 * The NVM format of non-Intel hardware is not known so
 385	 * currently restrict NVM upgrade for Intel hardware. We may
 386	 * relax this in the future when we learn other NVM formats.
 387	 */
 388	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
 389	    sw->config.vendor_id != 0x8087) {
 390		dev_info(&sw->dev,
 391			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
 392			 sw->config.vendor_id);
 393		return 0;
 394	}
 395
 396	nvm = tb_nvm_alloc(&sw->dev);
 397	if (IS_ERR(nvm))
 398		return PTR_ERR(nvm);
 399
 400	/*
 401	 * If the switch is in safe-mode the only accessible portion of
 402	 * the NVM is the non-active one where userspace is expected to
 403	 * write new functional NVM.
 404	 */
 405	if (!sw->safe_mode) {
 406		u32 nvm_size, hdr_size;
 407
 408		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
 409		if (ret)
 410			goto err_nvm;
 411
 412		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 413		nvm_size = (SZ_1M << (val & 7)) / 8;
 414		nvm_size = (nvm_size - hdr_size) / 2;
 415
 416		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
 417		if (ret)
 418			goto err_nvm;
 419
 420		nvm->major = val >> 16;
 421		nvm->minor = val >> 8;
 422
 423		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
 424		if (ret)
 425			goto err_nvm;
 426	}
 427
 428	if (!sw->no_nvm_upgrade) {
 429		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
 430					    tb_switch_nvm_write);
 431		if (ret)
 432			goto err_nvm;
 433	}
 434
 435	sw->nvm = nvm;
 436	return 0;
 437
 438err_nvm:
 439	tb_nvm_free(nvm);
 440	return ret;
 441}
 442
 443static void tb_switch_nvm_remove(struct tb_switch *sw)
 444{
 445	struct tb_nvm *nvm;
 446
 447	nvm = sw->nvm;
 448	sw->nvm = NULL;
 449
 450	if (!nvm)
 451		return;
 452
 453	/* Remove authentication status in case the switch is unplugged */
 454	if (!nvm->authenticating)
 455		nvm_clear_auth_status(sw);
 456
 457	tb_nvm_free(nvm);
 458}
 459
 460/* port utility functions */
 461
 462static const char *tb_port_type(struct tb_regs_port_header *port)
 463{
 464	switch (port->type >> 16) {
 465	case 0:
 466		switch ((u8) port->type) {
 467		case 0:
 468			return "Inactive";
 469		case 1:
 470			return "Port";
 471		case 2:
 472			return "NHI";
 473		default:
 474			return "unknown";
 475		}
 476	case 0x2:
 477		return "Ethernet";
 478	case 0x8:
 479		return "SATA";
 480	case 0xe:
 481		return "DP/HDMI";
 482	case 0x10:
 483		return "PCIe";
 484	case 0x20:
 485		return "USB";
 486	default:
 487		return "unknown";
 488	}
 489}
 490
 491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 492{
 493	tb_dbg(tb,
 494	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 495	       port->port_number, port->vendor_id, port->device_id,
 496	       port->revision, port->thunderbolt_version, tb_port_type(port),
 497	       port->type);
 498	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 499	       port->max_in_hop_id, port->max_out_hop_id);
 500	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 501	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 502}
 503
 504/**
 505 * tb_port_state() - get connectedness state of a port
 506 *
 507 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 508 *
 509 * Return: Returns an enum tb_port_state on success or an error code on failure.
 510 */
 511static int tb_port_state(struct tb_port *port)
 512{
 513	struct tb_cap_phy phy;
 514	int res;
 515	if (port->cap_phy == 0) {
 516		tb_port_WARN(port, "does not have a PHY\n");
 517		return -EINVAL;
 518	}
 519	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 520	if (res)
 521		return res;
 522	return phy.state;
 523}
 524
 525/**
 526 * tb_wait_for_port() - wait for a port to become ready
 527 *
 528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 529 * wait_if_unplugged is set then we also wait if the port is in state
 530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 531 * switch resume). Otherwise we only wait if a device is registered but the link
 532 * has not yet been established.
 533 *
 534 * Return: Returns an error code on failure. Returns 0 if the port is not
 535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 536 * if the port is connected and in state TB_PORT_UP.
 537 */
 538int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 539{
 540	int retries = 10;
 541	int state;
 542	if (!port->cap_phy) {
 543		tb_port_WARN(port, "does not have PHY\n");
 544		return -EINVAL;
 545	}
 546	if (tb_is_upstream_port(port)) {
 547		tb_port_WARN(port, "is the upstream port\n");
 548		return -EINVAL;
 549	}
 550
 551	while (retries--) {
 552		state = tb_port_state(port);
 553		if (state < 0)
 554			return state;
 555		if (state == TB_PORT_DISABLED) {
 556			tb_port_dbg(port, "is disabled (state: 0)\n");
 557			return 0;
 558		}
 559		if (state == TB_PORT_UNPLUGGED) {
 560			if (wait_if_unplugged) {
 561				/* used during resume */
 562				tb_port_dbg(port,
 563					    "is unplugged (state: 7), retrying...\n");
 564				msleep(100);
 565				continue;
 566			}
 567			tb_port_dbg(port, "is unplugged (state: 7)\n");
 568			return 0;
 569		}
 570		if (state == TB_PORT_UP) {
 571			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 572			return 1;
 573		}
 574
 575		/*
 576		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 577		 * time.
 578		 */
 579		tb_port_dbg(port,
 580			    "is connected, link is not up (state: %d), retrying...\n",
 581			    state);
 582		msleep(100);
 583	}
 584	tb_port_warn(port,
 585		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 586	return 0;
 587}
 588
 589/**
 590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 591 *
 592 * Change the number of NFC credits allocated to @port by @credits. To remove
 593 * NFC credits pass a negative amount of credits.
 594 *
 595 * Return: Returns 0 on success or an error code on failure.
 596 */
 597int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 598{
 599	u32 nfc_credits;
 600
 601	if (credits == 0 || port->sw->is_unplugged)
 602		return 0;
 603
 604	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
 605	nfc_credits += credits;
 606
 607	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
 608		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
 609
 610	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
 611	port->config.nfc_credits |= nfc_credits;
 612
 613	return tb_port_write(port, &port->config.nfc_credits,
 614			     TB_CFG_PORT, ADP_CS_4, 1);
 615}
 616
 617/**
 618 * tb_port_set_initial_credits() - Set initial port link credits allocated
 619 * @port: Port to set the initial credits
 620 * @credits: Number of credits to to allocate
 621 *
 622 * Set initial credits value to be used for ingress shared buffering.
 623 */
 624int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
 625{
 626	u32 data;
 627	int ret;
 628
 629	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 630	if (ret)
 631		return ret;
 632
 633	data &= ~ADP_CS_5_LCA_MASK;
 634	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
 635
 636	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 637}
 638
 639/**
 640 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 641 *
 642 * Return: Returns 0 on success or an error code on failure.
 643 */
 644int tb_port_clear_counter(struct tb_port *port, int counter)
 645{
 646	u32 zero[3] = { 0, 0, 0 };
 647	tb_port_dbg(port, "clearing counter %d\n", counter);
 648	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 649}
 650
 651/**
 652 * tb_port_unlock() - Unlock downstream port
 653 * @port: Port to unlock
 654 *
 655 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
 656 * downstream router accessible for CM.
 657 */
 658int tb_port_unlock(struct tb_port *port)
 659{
 660	if (tb_switch_is_icm(port->sw))
 661		return 0;
 662	if (!tb_port_is_null(port))
 663		return -EINVAL;
 664	if (tb_switch_is_usb4(port->sw))
 665		return usb4_port_unlock(port);
 666	return 0;
 667}
 668
 669/**
 670 * tb_init_port() - initialize a port
 671 *
 672 * This is a helper method for tb_switch_alloc. Does not check or initialize
 673 * any downstream switches.
 674 *
 675 * Return: Returns 0 on success or an error code on failure.
 676 */
 677static int tb_init_port(struct tb_port *port)
 678{
 679	int res;
 680	int cap;
 681
 682	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 683	if (res) {
 684		if (res == -ENODEV) {
 685			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 686			       port->port);
 687			port->disabled = true;
 688			return 0;
 689		}
 690		return res;
 691	}
 692
 693	/* Port 0 is the switch itself and has no PHY. */
 694	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 695		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 696
 697		if (cap > 0)
 698			port->cap_phy = cap;
 699		else
 700			tb_port_WARN(port, "non switch port without a PHY\n");
 701
 702		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
 703		if (cap > 0)
 704			port->cap_usb4 = cap;
 705	} else if (port->port != 0) {
 706		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 707		if (cap > 0)
 708			port->cap_adap = cap;
 709	}
 710
 711	tb_dump_port(port->sw->tb, &port->config);
 712
 713	/* Control port does not need HopID allocation */
 714	if (port->port) {
 715		ida_init(&port->in_hopids);
 716		ida_init(&port->out_hopids);
 717	}
 718
 719	INIT_LIST_HEAD(&port->list);
 720	return 0;
 721
 722}
 723
 724static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 725			       int max_hopid)
 726{
 727	int port_max_hopid;
 728	struct ida *ida;
 729
 730	if (in) {
 731		port_max_hopid = port->config.max_in_hop_id;
 732		ida = &port->in_hopids;
 733	} else {
 734		port_max_hopid = port->config.max_out_hop_id;
 735		ida = &port->out_hopids;
 736	}
 737
 738	/*
 739	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
 740	 * reserved.
 741	 */
 742	if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
 743		min_hopid = TB_PATH_MIN_HOPID;
 744
 745	if (max_hopid < 0 || max_hopid > port_max_hopid)
 746		max_hopid = port_max_hopid;
 747
 748	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 749}
 750
 751/**
 752 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 753 * @port: Port to allocate HopID for
 754 * @min_hopid: Minimum acceptable input HopID
 755 * @max_hopid: Maximum acceptable input HopID
 756 *
 757 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 758 * case of error.
 759 */
 760int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 761{
 762	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 763}
 764
 765/**
 766 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 767 * @port: Port to allocate HopID for
 768 * @min_hopid: Minimum acceptable output HopID
 769 * @max_hopid: Maximum acceptable output HopID
 770 *
 771 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 772 * case of error.
 773 */
 774int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 775{
 776	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 777}
 778
 779/**
 780 * tb_port_release_in_hopid() - Release allocated input HopID from port
 781 * @port: Port whose HopID to release
 782 * @hopid: HopID to release
 783 */
 784void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 785{
 786	ida_simple_remove(&port->in_hopids, hopid);
 787}
 788
 789/**
 790 * tb_port_release_out_hopid() - Release allocated output HopID from port
 791 * @port: Port whose HopID to release
 792 * @hopid: HopID to release
 793 */
 794void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 795{
 796	ida_simple_remove(&port->out_hopids, hopid);
 797}
 798
 799static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
 800					  const struct tb_switch *sw)
 801{
 802	u64 mask = (1ULL << parent->config.depth * 8) - 1;
 803	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
 804}
 805
 806/**
 807 * tb_next_port_on_path() - Return next port for given port on a path
 808 * @start: Start port of the walk
 809 * @end: End port of the walk
 810 * @prev: Previous port (%NULL if this is the first)
 811 *
 812 * This function can be used to walk from one port to another if they
 813 * are connected through zero or more switches. If the @prev is dual
 814 * link port, the function follows that link and returns another end on
 815 * that same link.
 816 *
 817 * If the @end port has been reached, return %NULL.
 818 *
 819 * Domain tb->lock must be held when this function is called.
 820 */
 821struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 822				     struct tb_port *prev)
 823{
 824	struct tb_port *next;
 825
 826	if (!prev)
 827		return start;
 828
 829	if (prev->sw == end->sw) {
 830		if (prev == end)
 831			return NULL;
 832		return end;
 833	}
 834
 835	if (tb_switch_is_reachable(prev->sw, end->sw)) {
 836		next = tb_port_at(tb_route(end->sw), prev->sw);
 837		/* Walk down the topology if next == prev */
 838		if (prev->remote &&
 839		    (next == prev || next->dual_link_port == prev))
 840			next = prev->remote;
 841	} else {
 842		if (tb_is_upstream_port(prev)) {
 843			next = prev->remote;
 844		} else {
 845			next = tb_upstream_port(prev->sw);
 846			/*
 847			 * Keep the same link if prev and next are both
 848			 * dual link ports.
 849			 */
 850			if (next->dual_link_port &&
 851			    next->link_nr != prev->link_nr) {
 852				next = next->dual_link_port;
 853			}
 854		}
 855	}
 856
 857	return next != prev ? next : NULL;
 858}
 859
 860/**
 861 * tb_port_get_link_speed() - Get current link speed
 862 * @port: Port to check (USB4 or CIO)
 863 *
 864 * Returns link speed in Gb/s or negative errno in case of failure.
 865 */
 866int tb_port_get_link_speed(struct tb_port *port)
 867{
 868	u32 val, speed;
 869	int ret;
 870
 871	if (!port->cap_phy)
 872		return -EINVAL;
 873
 874	ret = tb_port_read(port, &val, TB_CFG_PORT,
 875			   port->cap_phy + LANE_ADP_CS_1, 1);
 876	if (ret)
 877		return ret;
 878
 879	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
 880		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
 881	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
 882}
 883
 884static int tb_port_get_link_width(struct tb_port *port)
 885{
 886	u32 val;
 887	int ret;
 888
 889	if (!port->cap_phy)
 890		return -EINVAL;
 891
 892	ret = tb_port_read(port, &val, TB_CFG_PORT,
 893			   port->cap_phy + LANE_ADP_CS_1, 1);
 894	if (ret)
 895		return ret;
 896
 897	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
 898		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
 899}
 900
 901static bool tb_port_is_width_supported(struct tb_port *port, int width)
 902{
 903	u32 phy, widths;
 904	int ret;
 905
 906	if (!port->cap_phy)
 907		return false;
 908
 909	ret = tb_port_read(port, &phy, TB_CFG_PORT,
 910			   port->cap_phy + LANE_ADP_CS_0, 1);
 911	if (ret)
 912		return false;
 913
 914	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
 915		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
 916
 917	return !!(widths & width);
 918}
 919
 920static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
 921{
 922	u32 val;
 923	int ret;
 924
 925	if (!port->cap_phy)
 926		return -EINVAL;
 927
 928	ret = tb_port_read(port, &val, TB_CFG_PORT,
 929			   port->cap_phy + LANE_ADP_CS_1, 1);
 930	if (ret)
 931		return ret;
 932
 933	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
 934	switch (width) {
 935	case 1:
 936		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
 937			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 938		break;
 939	case 2:
 940		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
 941			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 942		break;
 943	default:
 944		return -EINVAL;
 945	}
 946
 947	val |= LANE_ADP_CS_1_LB;
 948
 949	return tb_port_write(port, &val, TB_CFG_PORT,
 950			     port->cap_phy + LANE_ADP_CS_1, 1);
 951}
 952
 953static int tb_port_lane_bonding_enable(struct tb_port *port)
 954{
 955	int ret;
 956
 957	/*
 958	 * Enable lane bonding for both links if not already enabled by
 959	 * for example the boot firmware.
 960	 */
 961	ret = tb_port_get_link_width(port);
 962	if (ret == 1) {
 963		ret = tb_port_set_link_width(port, 2);
 964		if (ret)
 965			return ret;
 966	}
 967
 968	ret = tb_port_get_link_width(port->dual_link_port);
 969	if (ret == 1) {
 970		ret = tb_port_set_link_width(port->dual_link_port, 2);
 971		if (ret) {
 972			tb_port_set_link_width(port, 1);
 973			return ret;
 974		}
 975	}
 976
 977	port->bonded = true;
 978	port->dual_link_port->bonded = true;
 979
 980	return 0;
 981}
 982
 983static void tb_port_lane_bonding_disable(struct tb_port *port)
 984{
 985	port->dual_link_port->bonded = false;
 986	port->bonded = false;
 987
 988	tb_port_set_link_width(port->dual_link_port, 1);
 989	tb_port_set_link_width(port, 1);
 990}
 991
 992/**
 993 * tb_port_is_enabled() - Is the adapter port enabled
 994 * @port: Port to check
 995 */
 996bool tb_port_is_enabled(struct tb_port *port)
 997{
 998	switch (port->config.type) {
 999	case TB_TYPE_PCIE_UP:
1000	case TB_TYPE_PCIE_DOWN:
1001		return tb_pci_port_is_enabled(port);
1002
1003	case TB_TYPE_DP_HDMI_IN:
1004	case TB_TYPE_DP_HDMI_OUT:
1005		return tb_dp_port_is_enabled(port);
1006
1007	case TB_TYPE_USB3_UP:
1008	case TB_TYPE_USB3_DOWN:
1009		return tb_usb3_port_is_enabled(port);
1010
1011	default:
1012		return false;
1013	}
1014}
1015
1016/**
1017 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1018 * @port: USB3 adapter port to check
1019 */
1020bool tb_usb3_port_is_enabled(struct tb_port *port)
1021{
1022	u32 data;
1023
1024	if (tb_port_read(port, &data, TB_CFG_PORT,
1025			 port->cap_adap + ADP_USB3_CS_0, 1))
1026		return false;
1027
1028	return !!(data & ADP_USB3_CS_0_PE);
1029}
1030
1031/**
1032 * tb_usb3_port_enable() - Enable USB3 adapter port
1033 * @port: USB3 adapter port to enable
1034 * @enable: Enable/disable the USB3 adapter
1035 */
1036int tb_usb3_port_enable(struct tb_port *port, bool enable)
1037{
1038	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1039			  : ADP_USB3_CS_0_V;
1040
1041	if (!port->cap_adap)
1042		return -ENXIO;
1043	return tb_port_write(port, &word, TB_CFG_PORT,
1044			     port->cap_adap + ADP_USB3_CS_0, 1);
1045}
1046
1047/**
1048 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1049 * @port: PCIe port to check
1050 */
1051bool tb_pci_port_is_enabled(struct tb_port *port)
1052{
1053	u32 data;
1054
1055	if (tb_port_read(port, &data, TB_CFG_PORT,
1056			 port->cap_adap + ADP_PCIE_CS_0, 1))
1057		return false;
1058
1059	return !!(data & ADP_PCIE_CS_0_PE);
1060}
1061
1062/**
1063 * tb_pci_port_enable() - Enable PCIe adapter port
1064 * @port: PCIe port to enable
1065 * @enable: Enable/disable the PCIe adapter
1066 */
1067int tb_pci_port_enable(struct tb_port *port, bool enable)
1068{
1069	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1070	if (!port->cap_adap)
1071		return -ENXIO;
1072	return tb_port_write(port, &word, TB_CFG_PORT,
1073			     port->cap_adap + ADP_PCIE_CS_0, 1);
1074}
1075
1076/**
1077 * tb_dp_port_hpd_is_active() - Is HPD already active
1078 * @port: DP out port to check
1079 *
1080 * Checks if the DP OUT adapter port has HDP bit already set.
1081 */
1082int tb_dp_port_hpd_is_active(struct tb_port *port)
1083{
1084	u32 data;
1085	int ret;
1086
1087	ret = tb_port_read(port, &data, TB_CFG_PORT,
1088			   port->cap_adap + ADP_DP_CS_2, 1);
1089	if (ret)
1090		return ret;
1091
1092	return !!(data & ADP_DP_CS_2_HDP);
1093}
1094
1095/**
1096 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1097 * @port: Port to clear HPD
1098 *
1099 * If the DP IN port has HDP set, this function can be used to clear it.
1100 */
1101int tb_dp_port_hpd_clear(struct tb_port *port)
1102{
1103	u32 data;
1104	int ret;
1105
1106	ret = tb_port_read(port, &data, TB_CFG_PORT,
1107			   port->cap_adap + ADP_DP_CS_3, 1);
1108	if (ret)
1109		return ret;
1110
1111	data |= ADP_DP_CS_3_HDPC;
1112	return tb_port_write(port, &data, TB_CFG_PORT,
1113			     port->cap_adap + ADP_DP_CS_3, 1);
1114}
1115
1116/**
1117 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1118 * @port: DP IN/OUT port to set hops
1119 * @video: Video Hop ID
1120 * @aux_tx: AUX TX Hop ID
1121 * @aux_rx: AUX RX Hop ID
1122 *
1123 * Programs specified Hop IDs for DP IN/OUT port.
1124 */
1125int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1126			unsigned int aux_tx, unsigned int aux_rx)
1127{
1128	u32 data[2];
1129	int ret;
1130
1131	ret = tb_port_read(port, data, TB_CFG_PORT,
1132			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1133	if (ret)
1134		return ret;
1135
1136	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1137	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1138	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1139
1140	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1141		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1142	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1143	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1144		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1145
1146	return tb_port_write(port, data, TB_CFG_PORT,
1147			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1148}
1149
1150/**
1151 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1152 * @port: DP adapter port to check
1153 */
1154bool tb_dp_port_is_enabled(struct tb_port *port)
1155{
1156	u32 data[2];
1157
1158	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1159			 ARRAY_SIZE(data)))
1160		return false;
1161
1162	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1163}
1164
1165/**
1166 * tb_dp_port_enable() - Enables/disables DP paths of a port
1167 * @port: DP IN/OUT port
1168 * @enable: Enable/disable DP path
1169 *
1170 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1171 * calling this function.
1172 */
1173int tb_dp_port_enable(struct tb_port *port, bool enable)
1174{
1175	u32 data[2];
1176	int ret;
1177
1178	ret = tb_port_read(port, data, TB_CFG_PORT,
1179			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1180	if (ret)
1181		return ret;
1182
1183	if (enable)
1184		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1185	else
1186		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1187
1188	return tb_port_write(port, data, TB_CFG_PORT,
1189			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1190}
1191
1192/* switch utility functions */
1193
1194static const char *tb_switch_generation_name(const struct tb_switch *sw)
1195{
1196	switch (sw->generation) {
1197	case 1:
1198		return "Thunderbolt 1";
1199	case 2:
1200		return "Thunderbolt 2";
1201	case 3:
1202		return "Thunderbolt 3";
1203	case 4:
1204		return "USB4";
1205	default:
1206		return "Unknown";
1207	}
1208}
1209
1210static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1211{
1212	const struct tb_regs_switch_header *regs = &sw->config;
1213
1214	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1215	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1216	       regs->revision, regs->thunderbolt_version);
1217	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1218	tb_dbg(tb, "  Config:\n");
1219	tb_dbg(tb,
1220		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1221	       regs->upstream_port_number, regs->depth,
1222	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1223	       regs->enabled, regs->plug_events_delay);
1224	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1225	       regs->__unknown1, regs->__unknown4);
1226}
1227
1228/**
1229 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1230 *
1231 * Return: Returns 0 on success or an error code on failure.
1232 */
1233int tb_switch_reset(struct tb *tb, u64 route)
1234{
1235	struct tb_cfg_result res;
1236	struct tb_regs_switch_header header = {
1237		header.route_hi = route >> 32,
1238		header.route_lo = route,
1239		header.enabled = true,
1240	};
1241	tb_dbg(tb, "resetting switch at %llx\n", route);
1242	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1243			0, 2, 2, 2);
1244	if (res.err)
1245		return res.err;
1246	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1247	if (res.err > 0)
1248		return -EIO;
1249	return res.err;
1250}
1251
1252/**
1253 * tb_plug_events_active() - enable/disable plug events on a switch
1254 *
1255 * Also configures a sane plug_events_delay of 255ms.
1256 *
1257 * Return: Returns 0 on success or an error code on failure.
1258 */
1259static int tb_plug_events_active(struct tb_switch *sw, bool active)
1260{
1261	u32 data;
1262	int res;
1263
1264	if (tb_switch_is_icm(sw))
1265		return 0;
1266
1267	sw->config.plug_events_delay = 0xff;
1268	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1269	if (res)
1270		return res;
1271
1272	/* Plug events are always enabled in USB4 */
1273	if (tb_switch_is_usb4(sw))
1274		return 0;
1275
1276	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1277	if (res)
1278		return res;
1279
1280	if (active) {
1281		data = data & 0xFFFFFF83;
1282		switch (sw->config.device_id) {
1283		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1284		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1285		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1286			break;
1287		default:
1288			data |= 4;
1289		}
1290	} else {
1291		data = data | 0x7c;
1292	}
1293	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1294			   sw->cap_plug_events + 1, 1);
1295}
1296
1297static ssize_t authorized_show(struct device *dev,
1298			       struct device_attribute *attr,
1299			       char *buf)
1300{
1301	struct tb_switch *sw = tb_to_switch(dev);
1302
1303	return sprintf(buf, "%u\n", sw->authorized);
1304}
1305
1306static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1307{
1308	int ret = -EINVAL;
1309
1310	if (!mutex_trylock(&sw->tb->lock))
1311		return restart_syscall();
1312
1313	if (sw->authorized)
1314		goto unlock;
1315
1316	switch (val) {
1317	/* Approve switch */
1318	case 1:
1319		if (sw->key)
1320			ret = tb_domain_approve_switch_key(sw->tb, sw);
1321		else
1322			ret = tb_domain_approve_switch(sw->tb, sw);
1323		break;
1324
1325	/* Challenge switch */
1326	case 2:
1327		if (sw->key)
1328			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1329		break;
1330
1331	default:
1332		break;
1333	}
1334
1335	if (!ret) {
1336		sw->authorized = val;
1337		/* Notify status change to the userspace */
1338		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1339	}
1340
1341unlock:
1342	mutex_unlock(&sw->tb->lock);
1343	return ret;
1344}
1345
1346static ssize_t authorized_store(struct device *dev,
1347				struct device_attribute *attr,
1348				const char *buf, size_t count)
1349{
1350	struct tb_switch *sw = tb_to_switch(dev);
1351	unsigned int val;
1352	ssize_t ret;
1353
1354	ret = kstrtouint(buf, 0, &val);
1355	if (ret)
1356		return ret;
1357	if (val > 2)
1358		return -EINVAL;
1359
1360	pm_runtime_get_sync(&sw->dev);
1361	ret = tb_switch_set_authorized(sw, val);
1362	pm_runtime_mark_last_busy(&sw->dev);
1363	pm_runtime_put_autosuspend(&sw->dev);
1364
1365	return ret ? ret : count;
1366}
1367static DEVICE_ATTR_RW(authorized);
1368
1369static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1370			 char *buf)
1371{
1372	struct tb_switch *sw = tb_to_switch(dev);
1373
1374	return sprintf(buf, "%u\n", sw->boot);
1375}
1376static DEVICE_ATTR_RO(boot);
1377
1378static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1379			   char *buf)
1380{
1381	struct tb_switch *sw = tb_to_switch(dev);
1382
1383	return sprintf(buf, "%#x\n", sw->device);
1384}
1385static DEVICE_ATTR_RO(device);
1386
1387static ssize_t
1388device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1389{
1390	struct tb_switch *sw = tb_to_switch(dev);
1391
1392	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1393}
1394static DEVICE_ATTR_RO(device_name);
1395
1396static ssize_t
1397generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1398{
1399	struct tb_switch *sw = tb_to_switch(dev);
1400
1401	return sprintf(buf, "%u\n", sw->generation);
1402}
1403static DEVICE_ATTR_RO(generation);
1404
1405static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1406			char *buf)
1407{
1408	struct tb_switch *sw = tb_to_switch(dev);
1409	ssize_t ret;
1410
1411	if (!mutex_trylock(&sw->tb->lock))
1412		return restart_syscall();
1413
1414	if (sw->key)
1415		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1416	else
1417		ret = sprintf(buf, "\n");
1418
1419	mutex_unlock(&sw->tb->lock);
1420	return ret;
1421}
1422
1423static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1424			 const char *buf, size_t count)
1425{
1426	struct tb_switch *sw = tb_to_switch(dev);
1427	u8 key[TB_SWITCH_KEY_SIZE];
1428	ssize_t ret = count;
1429	bool clear = false;
1430
1431	if (!strcmp(buf, "\n"))
1432		clear = true;
1433	else if (hex2bin(key, buf, sizeof(key)))
1434		return -EINVAL;
1435
1436	if (!mutex_trylock(&sw->tb->lock))
1437		return restart_syscall();
1438
1439	if (sw->authorized) {
1440		ret = -EBUSY;
1441	} else {
1442		kfree(sw->key);
1443		if (clear) {
1444			sw->key = NULL;
1445		} else {
1446			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1447			if (!sw->key)
1448				ret = -ENOMEM;
1449		}
1450	}
1451
1452	mutex_unlock(&sw->tb->lock);
1453	return ret;
1454}
1455static DEVICE_ATTR(key, 0600, key_show, key_store);
1456
1457static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1458			  char *buf)
1459{
1460	struct tb_switch *sw = tb_to_switch(dev);
1461
1462	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1463}
1464
1465/*
1466 * Currently all lanes must run at the same speed but we expose here
1467 * both directions to allow possible asymmetric links in the future.
1468 */
1469static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1470static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1471
1472static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1473			  char *buf)
1474{
1475	struct tb_switch *sw = tb_to_switch(dev);
1476
1477	return sprintf(buf, "%u\n", sw->link_width);
1478}
1479
1480/*
1481 * Currently link has same amount of lanes both directions (1 or 2) but
1482 * expose them separately to allow possible asymmetric links in the future.
1483 */
1484static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1485static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1486
1487static ssize_t nvm_authenticate_show(struct device *dev,
1488	struct device_attribute *attr, char *buf)
1489{
1490	struct tb_switch *sw = tb_to_switch(dev);
1491	u32 status;
1492
1493	nvm_get_auth_status(sw, &status);
1494	return sprintf(buf, "%#x\n", status);
1495}
1496
1497static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1498				      bool disconnect)
1499{
1500	struct tb_switch *sw = tb_to_switch(dev);
1501	int val;
1502	int ret;
1503
1504	pm_runtime_get_sync(&sw->dev);
1505
1506	if (!mutex_trylock(&sw->tb->lock)) {
1507		ret = restart_syscall();
1508		goto exit_rpm;
1509	}
1510
1511	/* If NVMem devices are not yet added */
1512	if (!sw->nvm) {
1513		ret = -EAGAIN;
1514		goto exit_unlock;
1515	}
1516
1517	ret = kstrtoint(buf, 10, &val);
1518	if (ret)
1519		goto exit_unlock;
1520
1521	/* Always clear the authentication status */
1522	nvm_clear_auth_status(sw);
1523
1524	if (val > 0) {
1525		if (!sw->nvm->flushed) {
1526			if (!sw->nvm->buf) {
1527				ret = -EINVAL;
1528				goto exit_unlock;
1529			}
1530
1531			ret = nvm_validate_and_write(sw);
1532			if (ret || val == WRITE_ONLY)
1533				goto exit_unlock;
1534		}
1535		if (val == WRITE_AND_AUTHENTICATE) {
1536			if (disconnect) {
1537				ret = tb_lc_force_power(sw);
1538			} else {
1539				sw->nvm->authenticating = true;
1540				ret = nvm_authenticate(sw);
1541			}
1542		}
1543	}
1544
1545exit_unlock:
1546	mutex_unlock(&sw->tb->lock);
1547exit_rpm:
1548	pm_runtime_mark_last_busy(&sw->dev);
1549	pm_runtime_put_autosuspend(&sw->dev);
1550
1551	return ret;
1552}
1553
1554static ssize_t nvm_authenticate_store(struct device *dev,
1555	struct device_attribute *attr, const char *buf, size_t count)
1556{
1557	int ret = nvm_authenticate_sysfs(dev, buf, false);
1558	if (ret)
1559		return ret;
1560	return count;
1561}
1562static DEVICE_ATTR_RW(nvm_authenticate);
1563
1564static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1565	struct device_attribute *attr, char *buf)
1566{
1567	return nvm_authenticate_show(dev, attr, buf);
1568}
1569
1570static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1571	struct device_attribute *attr, const char *buf, size_t count)
1572{
1573	int ret;
1574
1575	ret = nvm_authenticate_sysfs(dev, buf, true);
1576	return ret ? ret : count;
1577}
1578static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1579
1580static ssize_t nvm_version_show(struct device *dev,
1581				struct device_attribute *attr, char *buf)
1582{
1583	struct tb_switch *sw = tb_to_switch(dev);
1584	int ret;
1585
1586	if (!mutex_trylock(&sw->tb->lock))
1587		return restart_syscall();
1588
1589	if (sw->safe_mode)
1590		ret = -ENODATA;
1591	else if (!sw->nvm)
1592		ret = -EAGAIN;
1593	else
1594		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1595
1596	mutex_unlock(&sw->tb->lock);
1597
1598	return ret;
1599}
1600static DEVICE_ATTR_RO(nvm_version);
1601
1602static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1603			   char *buf)
1604{
1605	struct tb_switch *sw = tb_to_switch(dev);
1606
1607	return sprintf(buf, "%#x\n", sw->vendor);
1608}
1609static DEVICE_ATTR_RO(vendor);
1610
1611static ssize_t
1612vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1613{
1614	struct tb_switch *sw = tb_to_switch(dev);
1615
1616	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1617}
1618static DEVICE_ATTR_RO(vendor_name);
1619
1620static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1621			      char *buf)
1622{
1623	struct tb_switch *sw = tb_to_switch(dev);
1624
1625	return sprintf(buf, "%pUb\n", sw->uuid);
1626}
1627static DEVICE_ATTR_RO(unique_id);
1628
1629static struct attribute *switch_attrs[] = {
1630	&dev_attr_authorized.attr,
1631	&dev_attr_boot.attr,
1632	&dev_attr_device.attr,
1633	&dev_attr_device_name.attr,
1634	&dev_attr_generation.attr,
1635	&dev_attr_key.attr,
1636	&dev_attr_nvm_authenticate.attr,
1637	&dev_attr_nvm_authenticate_on_disconnect.attr,
1638	&dev_attr_nvm_version.attr,
1639	&dev_attr_rx_speed.attr,
1640	&dev_attr_rx_lanes.attr,
1641	&dev_attr_tx_speed.attr,
1642	&dev_attr_tx_lanes.attr,
1643	&dev_attr_vendor.attr,
1644	&dev_attr_vendor_name.attr,
1645	&dev_attr_unique_id.attr,
1646	NULL,
1647};
1648
1649static umode_t switch_attr_is_visible(struct kobject *kobj,
1650				      struct attribute *attr, int n)
1651{
1652	struct device *dev = container_of(kobj, struct device, kobj);
1653	struct tb_switch *sw = tb_to_switch(dev);
1654
1655	if (attr == &dev_attr_device.attr) {
1656		if (!sw->device)
1657			return 0;
1658	} else if (attr == &dev_attr_device_name.attr) {
1659		if (!sw->device_name)
1660			return 0;
1661	} else if (attr == &dev_attr_vendor.attr)  {
1662		if (!sw->vendor)
1663			return 0;
1664	} else if (attr == &dev_attr_vendor_name.attr)  {
1665		if (!sw->vendor_name)
1666			return 0;
1667	} else if (attr == &dev_attr_key.attr) {
1668		if (tb_route(sw) &&
1669		    sw->tb->security_level == TB_SECURITY_SECURE &&
1670		    sw->security_level == TB_SECURITY_SECURE)
1671			return attr->mode;
1672		return 0;
1673	} else if (attr == &dev_attr_rx_speed.attr ||
1674		   attr == &dev_attr_rx_lanes.attr ||
1675		   attr == &dev_attr_tx_speed.attr ||
1676		   attr == &dev_attr_tx_lanes.attr) {
1677		if (tb_route(sw))
1678			return attr->mode;
1679		return 0;
1680	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1681		if (nvm_upgradeable(sw))
1682			return attr->mode;
1683		return 0;
1684	} else if (attr == &dev_attr_nvm_version.attr) {
1685		if (nvm_readable(sw))
1686			return attr->mode;
1687		return 0;
1688	} else if (attr == &dev_attr_boot.attr) {
1689		if (tb_route(sw))
1690			return attr->mode;
1691		return 0;
1692	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1693		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1694			return attr->mode;
1695		return 0;
1696	}
1697
1698	return sw->safe_mode ? 0 : attr->mode;
1699}
1700
1701static struct attribute_group switch_group = {
1702	.is_visible = switch_attr_is_visible,
1703	.attrs = switch_attrs,
1704};
1705
1706static const struct attribute_group *switch_groups[] = {
1707	&switch_group,
1708	NULL,
1709};
1710
1711static void tb_switch_release(struct device *dev)
1712{
1713	struct tb_switch *sw = tb_to_switch(dev);
1714	struct tb_port *port;
1715
1716	dma_port_free(sw->dma_port);
1717
1718	tb_switch_for_each_port(sw, port) {
1719		if (!port->disabled) {
1720			ida_destroy(&port->in_hopids);
1721			ida_destroy(&port->out_hopids);
1722		}
1723	}
1724
1725	kfree(sw->uuid);
1726	kfree(sw->device_name);
1727	kfree(sw->vendor_name);
1728	kfree(sw->ports);
1729	kfree(sw->drom);
1730	kfree(sw->key);
1731	kfree(sw);
1732}
1733
1734/*
1735 * Currently only need to provide the callbacks. Everything else is handled
1736 * in the connection manager.
1737 */
1738static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1739{
1740	struct tb_switch *sw = tb_to_switch(dev);
1741	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1742
1743	if (cm_ops->runtime_suspend_switch)
1744		return cm_ops->runtime_suspend_switch(sw);
1745
1746	return 0;
1747}
1748
1749static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1750{
1751	struct tb_switch *sw = tb_to_switch(dev);
1752	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1753
1754	if (cm_ops->runtime_resume_switch)
1755		return cm_ops->runtime_resume_switch(sw);
1756	return 0;
1757}
1758
1759static const struct dev_pm_ops tb_switch_pm_ops = {
1760	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1761			   NULL)
1762};
1763
1764struct device_type tb_switch_type = {
1765	.name = "thunderbolt_device",
1766	.release = tb_switch_release,
1767	.pm = &tb_switch_pm_ops,
1768};
1769
1770static int tb_switch_get_generation(struct tb_switch *sw)
1771{
1772	switch (sw->config.device_id) {
1773	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1774	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1775	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1776	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1777	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1778	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1779	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1780	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1781		return 1;
1782
1783	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1784	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1785	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1786		return 2;
1787
1788	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1789	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1790	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1791	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1792	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1793	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1794	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1795	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1796	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1797	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1798		return 3;
1799
1800	default:
1801		if (tb_switch_is_usb4(sw))
1802			return 4;
1803
1804		/*
1805		 * For unknown switches assume generation to be 1 to be
1806		 * on the safe side.
1807		 */
1808		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1809			   sw->config.device_id);
1810		return 1;
1811	}
1812}
1813
1814static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1815{
1816	int max_depth;
1817
1818	if (tb_switch_is_usb4(sw) ||
1819	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1820		max_depth = USB4_SWITCH_MAX_DEPTH;
1821	else
1822		max_depth = TB_SWITCH_MAX_DEPTH;
1823
1824	return depth > max_depth;
1825}
1826
1827/**
1828 * tb_switch_alloc() - allocate a switch
1829 * @tb: Pointer to the owning domain
1830 * @parent: Parent device for this switch
1831 * @route: Route string for this switch
1832 *
1833 * Allocates and initializes a switch. Will not upload configuration to
1834 * the switch. For that you need to call tb_switch_configure()
1835 * separately. The returned switch should be released by calling
1836 * tb_switch_put().
1837 *
1838 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1839 * failure.
1840 */
1841struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1842				  u64 route)
1843{
1844	struct tb_switch *sw;
1845	int upstream_port;
1846	int i, ret, depth;
1847
1848	/* Unlock the downstream port so we can access the switch below */
1849	if (route) {
1850		struct tb_switch *parent_sw = tb_to_switch(parent);
1851		struct tb_port *down;
1852
1853		down = tb_port_at(route, parent_sw);
1854		tb_port_unlock(down);
1855	}
1856
1857	depth = tb_route_length(route);
1858
1859	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1860	if (upstream_port < 0)
1861		return ERR_PTR(upstream_port);
1862
1863	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1864	if (!sw)
1865		return ERR_PTR(-ENOMEM);
1866
1867	sw->tb = tb;
1868	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1869	if (ret)
1870		goto err_free_sw_ports;
1871
1872	sw->generation = tb_switch_get_generation(sw);
1873
1874	tb_dbg(tb, "current switch config:\n");
1875	tb_dump_switch(tb, sw);
1876
1877	/* configure switch */
1878	sw->config.upstream_port_number = upstream_port;
1879	sw->config.depth = depth;
1880	sw->config.route_hi = upper_32_bits(route);
1881	sw->config.route_lo = lower_32_bits(route);
1882	sw->config.enabled = 0;
1883
1884	/* Make sure we do not exceed maximum topology limit */
1885	if (tb_switch_exceeds_max_depth(sw, depth)) {
1886		ret = -EADDRNOTAVAIL;
1887		goto err_free_sw_ports;
1888	}
1889
1890	/* initialize ports */
1891	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1892				GFP_KERNEL);
1893	if (!sw->ports) {
1894		ret = -ENOMEM;
1895		goto err_free_sw_ports;
1896	}
1897
1898	for (i = 0; i <= sw->config.max_port_number; i++) {
1899		/* minimum setup for tb_find_cap and tb_drom_read to work */
1900		sw->ports[i].sw = sw;
1901		sw->ports[i].port = i;
1902	}
1903
1904	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1905	if (ret > 0)
1906		sw->cap_plug_events = ret;
1907
1908	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1909	if (ret > 0)
1910		sw->cap_lc = ret;
1911
1912	/* Root switch is always authorized */
1913	if (!route)
1914		sw->authorized = true;
1915
1916	device_initialize(&sw->dev);
1917	sw->dev.parent = parent;
1918	sw->dev.bus = &tb_bus_type;
1919	sw->dev.type = &tb_switch_type;
1920	sw->dev.groups = switch_groups;
1921	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1922
1923	return sw;
1924
1925err_free_sw_ports:
1926	kfree(sw->ports);
1927	kfree(sw);
1928
1929	return ERR_PTR(ret);
1930}
1931
1932/**
1933 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1934 * @tb: Pointer to the owning domain
1935 * @parent: Parent device for this switch
1936 * @route: Route string for this switch
1937 *
1938 * This creates a switch in safe mode. This means the switch pretty much
1939 * lacks all capabilities except DMA configuration port before it is
1940 * flashed with a valid NVM firmware.
1941 *
1942 * The returned switch must be released by calling tb_switch_put().
1943 *
1944 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1945 */
1946struct tb_switch *
1947tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1948{
1949	struct tb_switch *sw;
1950
1951	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1952	if (!sw)
1953		return ERR_PTR(-ENOMEM);
1954
1955	sw->tb = tb;
1956	sw->config.depth = tb_route_length(route);
1957	sw->config.route_hi = upper_32_bits(route);
1958	sw->config.route_lo = lower_32_bits(route);
1959	sw->safe_mode = true;
1960
1961	device_initialize(&sw->dev);
1962	sw->dev.parent = parent;
1963	sw->dev.bus = &tb_bus_type;
1964	sw->dev.type = &tb_switch_type;
1965	sw->dev.groups = switch_groups;
1966	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1967
1968	return sw;
1969}
1970
1971/**
1972 * tb_switch_configure() - Uploads configuration to the switch
1973 * @sw: Switch to configure
1974 *
1975 * Call this function before the switch is added to the system. It will
1976 * upload configuration to the switch and makes it available for the
1977 * connection manager to use. Can be called to the switch again after
1978 * resume from low power states to re-initialize it.
1979 *
1980 * Return: %0 in case of success and negative errno in case of failure
1981 */
1982int tb_switch_configure(struct tb_switch *sw)
1983{
1984	struct tb *tb = sw->tb;
1985	u64 route;
1986	int ret;
1987
1988	route = tb_route(sw);
1989
1990	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1991	       sw->config.enabled ? "restoring " : "initializing", route,
1992	       tb_route_length(route), sw->config.upstream_port_number);
1993
1994	sw->config.enabled = 1;
1995
1996	if (tb_switch_is_usb4(sw)) {
1997		/*
1998		 * For USB4 devices, we need to program the CM version
1999		 * accordingly so that it knows to expose all the
2000		 * additional capabilities.
2001		 */
2002		sw->config.cmuv = USB4_VERSION_1_0;
2003
2004		/* Enumerate the switch */
2005		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2006				  ROUTER_CS_1, 4);
2007		if (ret)
2008			return ret;
2009
2010		ret = usb4_switch_setup(sw);
2011		if (ret)
2012			return ret;
2013
2014		ret = usb4_switch_configure_link(sw);
2015	} else {
2016		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2017			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2018				   sw->config.vendor_id);
2019
2020		if (!sw->cap_plug_events) {
2021			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2022			return -ENODEV;
2023		}
2024
2025		/* Enumerate the switch */
2026		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2027				  ROUTER_CS_1, 3);
2028		if (ret)
2029			return ret;
2030
2031		ret = tb_lc_configure_link(sw);
2032	}
2033	if (ret)
2034		return ret;
2035
2036	return tb_plug_events_active(sw, true);
2037}
2038
2039static int tb_switch_set_uuid(struct tb_switch *sw)
2040{
2041	bool uid = false;
2042	u32 uuid[4];
2043	int ret;
2044
2045	if (sw->uuid)
2046		return 0;
2047
2048	if (tb_switch_is_usb4(sw)) {
2049		ret = usb4_switch_read_uid(sw, &sw->uid);
2050		if (ret)
2051			return ret;
2052		uid = true;
2053	} else {
2054		/*
2055		 * The newer controllers include fused UUID as part of
2056		 * link controller specific registers
2057		 */
2058		ret = tb_lc_read_uuid(sw, uuid);
2059		if (ret) {
2060			if (ret != -EINVAL)
2061				return ret;
2062			uid = true;
2063		}
2064	}
2065
2066	if (uid) {
2067		/*
2068		 * ICM generates UUID based on UID and fills the upper
2069		 * two words with ones. This is not strictly following
2070		 * UUID format but we want to be compatible with it so
2071		 * we do the same here.
2072		 */
2073		uuid[0] = sw->uid & 0xffffffff;
2074		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2075		uuid[2] = 0xffffffff;
2076		uuid[3] = 0xffffffff;
2077	}
2078
2079	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2080	if (!sw->uuid)
2081		return -ENOMEM;
2082	return 0;
2083}
2084
2085static int tb_switch_add_dma_port(struct tb_switch *sw)
2086{
2087	u32 status;
2088	int ret;
2089
2090	switch (sw->generation) {
2091	case 2:
2092		/* Only root switch can be upgraded */
2093		if (tb_route(sw))
2094			return 0;
2095
2096		fallthrough;
2097	case 3:
2098		ret = tb_switch_set_uuid(sw);
2099		if (ret)
2100			return ret;
2101		break;
2102
2103	default:
2104		/*
2105		 * DMA port is the only thing available when the switch
2106		 * is in safe mode.
2107		 */
2108		if (!sw->safe_mode)
2109			return 0;
2110		break;
2111	}
2112
2113	/* Root switch DMA port requires running firmware */
2114	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2115		return 0;
2116
2117	sw->dma_port = dma_port_alloc(sw);
2118	if (!sw->dma_port)
2119		return 0;
2120
2121	if (sw->no_nvm_upgrade)
2122		return 0;
2123
2124	/*
2125	 * If there is status already set then authentication failed
2126	 * when the dma_port_flash_update_auth() returned. Power cycling
2127	 * is not needed (it was done already) so only thing we do here
2128	 * is to unblock runtime PM of the root port.
2129	 */
2130	nvm_get_auth_status(sw, &status);
2131	if (status) {
2132		if (!tb_route(sw))
2133			nvm_authenticate_complete_dma_port(sw);
2134		return 0;
2135	}
2136
2137	/*
2138	 * Check status of the previous flash authentication. If there
2139	 * is one we need to power cycle the switch in any case to make
2140	 * it functional again.
2141	 */
2142	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2143	if (ret <= 0)
2144		return ret;
2145
2146	/* Now we can allow root port to suspend again */
2147	if (!tb_route(sw))
2148		nvm_authenticate_complete_dma_port(sw);
2149
2150	if (status) {
2151		tb_sw_info(sw, "switch flash authentication failed\n");
2152		nvm_set_auth_status(sw, status);
2153	}
2154
2155	tb_sw_info(sw, "power cycling the switch now\n");
2156	dma_port_power_cycle(sw->dma_port);
2157
2158	/*
2159	 * We return error here which causes the switch adding failure.
2160	 * It should appear back after power cycle is complete.
2161	 */
2162	return -ESHUTDOWN;
2163}
2164
2165static void tb_switch_default_link_ports(struct tb_switch *sw)
2166{
2167	int i;
2168
2169	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2170		struct tb_port *port = &sw->ports[i];
2171		struct tb_port *subordinate;
2172
2173		if (!tb_port_is_null(port))
2174			continue;
2175
2176		/* Check for the subordinate port */
2177		if (i == sw->config.max_port_number ||
2178		    !tb_port_is_null(&sw->ports[i + 1]))
2179			continue;
2180
2181		/* Link them if not already done so (by DROM) */
2182		subordinate = &sw->ports[i + 1];
2183		if (!port->dual_link_port && !subordinate->dual_link_port) {
2184			port->link_nr = 0;
2185			port->dual_link_port = subordinate;
2186			subordinate->link_nr = 1;
2187			subordinate->dual_link_port = port;
2188
2189			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2190				  port->port, subordinate->port);
2191		}
2192	}
2193}
2194
2195static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2196{
2197	const struct tb_port *up = tb_upstream_port(sw);
2198
2199	if (!up->dual_link_port || !up->dual_link_port->remote)
2200		return false;
2201
2202	if (tb_switch_is_usb4(sw))
2203		return usb4_switch_lane_bonding_possible(sw);
2204	return tb_lc_lane_bonding_possible(sw);
2205}
2206
2207static int tb_switch_update_link_attributes(struct tb_switch *sw)
2208{
2209	struct tb_port *up;
2210	bool change = false;
2211	int ret;
2212
2213	if (!tb_route(sw) || tb_switch_is_icm(sw))
2214		return 0;
2215
2216	up = tb_upstream_port(sw);
2217
2218	ret = tb_port_get_link_speed(up);
2219	if (ret < 0)
2220		return ret;
2221	if (sw->link_speed != ret)
2222		change = true;
2223	sw->link_speed = ret;
2224
2225	ret = tb_port_get_link_width(up);
2226	if (ret < 0)
2227		return ret;
2228	if (sw->link_width != ret)
2229		change = true;
2230	sw->link_width = ret;
2231
2232	/* Notify userspace that there is possible link attribute change */
2233	if (device_is_registered(&sw->dev) && change)
2234		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2235
2236	return 0;
2237}
2238
2239/**
2240 * tb_switch_lane_bonding_enable() - Enable lane bonding
2241 * @sw: Switch to enable lane bonding
2242 *
2243 * Connection manager can call this function to enable lane bonding of a
2244 * switch. If conditions are correct and both switches support the feature,
2245 * lanes are bonded. It is safe to call this to any switch.
2246 */
2247int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2248{
2249	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2250	struct tb_port *up, *down;
2251	u64 route = tb_route(sw);
2252	int ret;
2253
2254	if (!route)
2255		return 0;
2256
2257	if (!tb_switch_lane_bonding_possible(sw))
2258		return 0;
2259
2260	up = tb_upstream_port(sw);
2261	down = tb_port_at(route, parent);
2262
2263	if (!tb_port_is_width_supported(up, 2) ||
2264	    !tb_port_is_width_supported(down, 2))
2265		return 0;
2266
2267	ret = tb_port_lane_bonding_enable(up);
2268	if (ret) {
2269		tb_port_warn(up, "failed to enable lane bonding\n");
2270		return ret;
2271	}
2272
2273	ret = tb_port_lane_bonding_enable(down);
2274	if (ret) {
2275		tb_port_warn(down, "failed to enable lane bonding\n");
2276		tb_port_lane_bonding_disable(up);
2277		return ret;
2278	}
2279
2280	tb_switch_update_link_attributes(sw);
2281
2282	tb_sw_dbg(sw, "lane bonding enabled\n");
2283	return ret;
2284}
2285
2286/**
2287 * tb_switch_lane_bonding_disable() - Disable lane bonding
2288 * @sw: Switch whose lane bonding to disable
2289 *
2290 * Disables lane bonding between @sw and parent. This can be called even
2291 * if lanes were not bonded originally.
2292 */
2293void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2294{
2295	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2296	struct tb_port *up, *down;
2297
2298	if (!tb_route(sw))
2299		return;
2300
2301	up = tb_upstream_port(sw);
2302	if (!up->bonded)
2303		return;
2304
2305	down = tb_port_at(tb_route(sw), parent);
2306
2307	tb_port_lane_bonding_disable(up);
2308	tb_port_lane_bonding_disable(down);
2309
2310	tb_switch_update_link_attributes(sw);
2311	tb_sw_dbg(sw, "lane bonding disabled\n");
2312}
2313
2314/**
2315 * tb_switch_add() - Add a switch to the domain
2316 * @sw: Switch to add
2317 *
2318 * This is the last step in adding switch to the domain. It will read
2319 * identification information from DROM and initializes ports so that
2320 * they can be used to connect other switches. The switch will be
2321 * exposed to the userspace when this function successfully returns. To
2322 * remove and release the switch, call tb_switch_remove().
2323 *
2324 * Return: %0 in case of success and negative errno in case of failure
2325 */
2326int tb_switch_add(struct tb_switch *sw)
2327{
2328	int i, ret;
2329
2330	/*
2331	 * Initialize DMA control port now before we read DROM. Recent
2332	 * host controllers have more complete DROM on NVM that includes
2333	 * vendor and model identification strings which we then expose
2334	 * to the userspace. NVM can be accessed through DMA
2335	 * configuration based mailbox.
2336	 */
2337	ret = tb_switch_add_dma_port(sw);
2338	if (ret) {
2339		dev_err(&sw->dev, "failed to add DMA port\n");
2340		return ret;
2341	}
2342
2343	if (!sw->safe_mode) {
2344		/* read drom */
2345		ret = tb_drom_read(sw);
2346		if (ret) {
2347			dev_err(&sw->dev, "reading DROM failed\n");
2348			return ret;
2349		}
2350		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2351
2352		ret = tb_switch_set_uuid(sw);
2353		if (ret) {
2354			dev_err(&sw->dev, "failed to set UUID\n");
2355			return ret;
2356		}
2357
2358		for (i = 0; i <= sw->config.max_port_number; i++) {
2359			if (sw->ports[i].disabled) {
2360				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2361				continue;
2362			}
2363			ret = tb_init_port(&sw->ports[i]);
2364			if (ret) {
2365				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2366				return ret;
2367			}
2368		}
2369
2370		tb_switch_default_link_ports(sw);
2371
2372		ret = tb_switch_update_link_attributes(sw);
2373		if (ret)
2374			return ret;
2375
2376		ret = tb_switch_tmu_init(sw);
2377		if (ret)
2378			return ret;
2379	}
2380
2381	ret = device_add(&sw->dev);
2382	if (ret) {
2383		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2384		return ret;
2385	}
2386
2387	if (tb_route(sw)) {
2388		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2389			 sw->vendor, sw->device);
2390		if (sw->vendor_name && sw->device_name)
2391			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2392				 sw->device_name);
2393	}
2394
2395	ret = tb_switch_nvm_add(sw);
2396	if (ret) {
2397		dev_err(&sw->dev, "failed to add NVM devices\n");
2398		device_del(&sw->dev);
2399		return ret;
2400	}
2401
2402	pm_runtime_set_active(&sw->dev);
2403	if (sw->rpm) {
2404		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2405		pm_runtime_use_autosuspend(&sw->dev);
2406		pm_runtime_mark_last_busy(&sw->dev);
2407		pm_runtime_enable(&sw->dev);
2408		pm_request_autosuspend(&sw->dev);
2409	}
2410
2411	return 0;
2412}
2413
2414/**
2415 * tb_switch_remove() - Remove and release a switch
2416 * @sw: Switch to remove
2417 *
2418 * This will remove the switch from the domain and release it after last
2419 * reference count drops to zero. If there are switches connected below
2420 * this switch, they will be removed as well.
2421 */
2422void tb_switch_remove(struct tb_switch *sw)
2423{
2424	struct tb_port *port;
2425
2426	if (sw->rpm) {
2427		pm_runtime_get_sync(&sw->dev);
2428		pm_runtime_disable(&sw->dev);
2429	}
2430
2431	/* port 0 is the switch itself and never has a remote */
2432	tb_switch_for_each_port(sw, port) {
2433		if (tb_port_has_remote(port)) {
2434			tb_switch_remove(port->remote->sw);
2435			port->remote = NULL;
2436		} else if (port->xdomain) {
2437			tb_xdomain_remove(port->xdomain);
2438			port->xdomain = NULL;
2439		}
2440
2441		/* Remove any downstream retimers */
2442		tb_retimer_remove_all(port);
2443	}
2444
2445	if (!sw->is_unplugged)
2446		tb_plug_events_active(sw, false);
2447
2448	if (tb_switch_is_usb4(sw))
2449		usb4_switch_unconfigure_link(sw);
2450	else
2451		tb_lc_unconfigure_link(sw);
2452
2453	tb_switch_nvm_remove(sw);
2454
2455	if (tb_route(sw))
2456		dev_info(&sw->dev, "device disconnected\n");
2457	device_unregister(&sw->dev);
2458}
2459
2460/**
2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2462 */
2463void tb_sw_set_unplugged(struct tb_switch *sw)
2464{
2465	struct tb_port *port;
2466
2467	if (sw == sw->tb->root_switch) {
2468		tb_sw_WARN(sw, "cannot unplug root switch\n");
2469		return;
2470	}
2471	if (sw->is_unplugged) {
2472		tb_sw_WARN(sw, "is_unplugged already set\n");
2473		return;
2474	}
2475	sw->is_unplugged = true;
2476	tb_switch_for_each_port(sw, port) {
2477		if (tb_port_has_remote(port))
2478			tb_sw_set_unplugged(port->remote->sw);
2479		else if (port->xdomain)
2480			port->xdomain->is_unplugged = true;
2481	}
2482}
2483
2484int tb_switch_resume(struct tb_switch *sw)
2485{
2486	struct tb_port *port;
2487	int err;
2488
2489	tb_sw_dbg(sw, "resuming switch\n");
2490
2491	/*
2492	 * Check for UID of the connected switches except for root
2493	 * switch which we assume cannot be removed.
2494	 */
2495	if (tb_route(sw)) {
2496		u64 uid;
2497
2498		/*
2499		 * Check first that we can still read the switch config
2500		 * space. It may be that there is now another domain
2501		 * connected.
2502		 */
2503		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504		if (err < 0) {
2505			tb_sw_info(sw, "switch not present anymore\n");
2506			return err;
2507		}
2508
2509		if (tb_switch_is_usb4(sw))
2510			err = usb4_switch_read_uid(sw, &uid);
2511		else
2512			err = tb_drom_read_uid_only(sw, &uid);
2513		if (err) {
2514			tb_sw_warn(sw, "uid read failed\n");
2515			return err;
2516		}
2517		if (sw->uid != uid) {
2518			tb_sw_info(sw,
2519				"changed while suspended (uid %#llx -> %#llx)\n",
2520				sw->uid, uid);
2521			return -ENODEV;
2522		}
2523	}
2524
2525	err = tb_switch_configure(sw);
2526	if (err)
2527		return err;
2528
2529	/* check for surviving downstream switches */
2530	tb_switch_for_each_port(sw, port) {
2531		if (!tb_port_has_remote(port) && !port->xdomain)
2532			continue;
2533
2534		if (tb_wait_for_port(port, true) <= 0) {
2535			tb_port_warn(port,
2536				     "lost during suspend, disconnecting\n");
2537			if (tb_port_has_remote(port))
2538				tb_sw_set_unplugged(port->remote->sw);
2539			else if (port->xdomain)
2540				port->xdomain->is_unplugged = true;
2541		} else if (tb_port_has_remote(port) || port->xdomain) {
2542			/*
2543			 * Always unlock the port so the downstream
2544			 * switch/domain is accessible.
2545			 */
2546			if (tb_port_unlock(port))
2547				tb_port_warn(port, "failed to unlock port\n");
2548			if (port->remote && tb_switch_resume(port->remote->sw)) {
2549				tb_port_warn(port,
2550					     "lost during suspend, disconnecting\n");
2551				tb_sw_set_unplugged(port->remote->sw);
2552			}
2553		}
2554	}
2555	return 0;
2556}
2557
2558void tb_switch_suspend(struct tb_switch *sw)
2559{
2560	struct tb_port *port;
2561	int err;
2562
2563	err = tb_plug_events_active(sw, false);
2564	if (err)
2565		return;
2566
2567	tb_switch_for_each_port(sw, port) {
2568		if (tb_port_has_remote(port))
2569			tb_switch_suspend(port->remote->sw);
2570	}
2571
2572	if (tb_switch_is_usb4(sw))
2573		usb4_switch_set_sleep(sw);
2574	else
2575		tb_lc_set_sleep(sw);
2576}
2577
2578/**
2579 * tb_switch_query_dp_resource() - Query availability of DP resource
2580 * @sw: Switch whose DP resource is queried
2581 * @in: DP IN port
2582 *
2583 * Queries availability of DP resource for DP tunneling using switch
2584 * specific means. Returns %true if resource is available.
2585 */
2586bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2587{
2588	if (tb_switch_is_usb4(sw))
2589		return usb4_switch_query_dp_resource(sw, in);
2590	return tb_lc_dp_sink_query(sw, in);
2591}
2592
2593/**
2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595 * @sw: Switch whose DP resource is allocated
2596 * @in: DP IN port
2597 *
2598 * Allocates DP resource for DP tunneling. The resource must be
2599 * available for this to succeed (see tb_switch_query_dp_resource()).
2600 * Returns %0 in success and negative errno otherwise.
2601 */
2602int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603{
2604	if (tb_switch_is_usb4(sw))
2605		return usb4_switch_alloc_dp_resource(sw, in);
2606	return tb_lc_dp_sink_alloc(sw, in);
2607}
2608
2609/**
2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611 * @sw: Switch whose DP resource is de-allocated
2612 * @in: DP IN port
2613 *
2614 * De-allocates DP resource that was previously allocated for DP
2615 * tunneling.
2616 */
2617void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2618{
2619	int ret;
2620
2621	if (tb_switch_is_usb4(sw))
2622		ret = usb4_switch_dealloc_dp_resource(sw, in);
2623	else
2624		ret = tb_lc_dp_sink_dealloc(sw, in);
2625
2626	if (ret)
2627		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628			   in->port);
2629}
2630
2631struct tb_sw_lookup {
2632	struct tb *tb;
2633	u8 link;
2634	u8 depth;
2635	const uuid_t *uuid;
2636	u64 route;
2637};
2638
2639static int tb_switch_match(struct device *dev, const void *data)
2640{
2641	struct tb_switch *sw = tb_to_switch(dev);
2642	const struct tb_sw_lookup *lookup = data;
2643
2644	if (!sw)
2645		return 0;
2646	if (sw->tb != lookup->tb)
2647		return 0;
2648
2649	if (lookup->uuid)
2650		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2651
2652	if (lookup->route) {
2653		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654		       sw->config.route_hi == upper_32_bits(lookup->route);
2655	}
2656
2657	/* Root switch is matched only by depth */
2658	if (!lookup->depth)
2659		return !sw->depth;
2660
2661	return sw->link == lookup->link && sw->depth == lookup->depth;
2662}
2663
2664/**
2665 * tb_switch_find_by_link_depth() - Find switch by link and depth
2666 * @tb: Domain the switch belongs
2667 * @link: Link number the switch is connected
2668 * @depth: Depth of the switch in link
2669 *
2670 * Returned switch has reference count increased so the caller needs to
2671 * call tb_switch_put() when done with the switch.
2672 */
2673struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2674{
2675	struct tb_sw_lookup lookup;
2676	struct device *dev;
2677
2678	memset(&lookup, 0, sizeof(lookup));
2679	lookup.tb = tb;
2680	lookup.link = link;
2681	lookup.depth = depth;
2682
2683	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684	if (dev)
2685		return tb_to_switch(dev);
2686
2687	return NULL;
2688}
2689
2690/**
2691 * tb_switch_find_by_uuid() - Find switch by UUID
2692 * @tb: Domain the switch belongs
2693 * @uuid: UUID to look for
2694 *
2695 * Returned switch has reference count increased so the caller needs to
2696 * call tb_switch_put() when done with the switch.
2697 */
2698struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2699{
2700	struct tb_sw_lookup lookup;
2701	struct device *dev;
2702
2703	memset(&lookup, 0, sizeof(lookup));
2704	lookup.tb = tb;
2705	lookup.uuid = uuid;
2706
2707	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708	if (dev)
2709		return tb_to_switch(dev);
2710
2711	return NULL;
2712}
2713
2714/**
2715 * tb_switch_find_by_route() - Find switch by route string
2716 * @tb: Domain the switch belongs
2717 * @route: Route string to look for
2718 *
2719 * Returned switch has reference count increased so the caller needs to
2720 * call tb_switch_put() when done with the switch.
2721 */
2722struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2723{
2724	struct tb_sw_lookup lookup;
2725	struct device *dev;
2726
2727	if (!route)
2728		return tb_switch_get(tb->root_switch);
2729
2730	memset(&lookup, 0, sizeof(lookup));
2731	lookup.tb = tb;
2732	lookup.route = route;
2733
2734	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735	if (dev)
2736		return tb_to_switch(dev);
2737
2738	return NULL;
2739}
2740
2741/**
2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743 * @sw: Switch to find the port from
2744 * @type: Port type to look for
2745 */
2746struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747				    enum tb_port_type type)
2748{
2749	struct tb_port *port;
2750
2751	tb_switch_for_each_port(sw, port) {
2752		if (port->config.type == type)
2753			return port;
2754	}
2755
2756	return NULL;
2757}