Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
  4 * Author: Addy Ke <addy.ke@rock-chips.com>
  5 */
  6
  7#include <linux/clk.h>
  8#include <linux/dmaengine.h>
  9#include <linux/interrupt.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/pinctrl/consumer.h>
 13#include <linux/platform_device.h>
 14#include <linux/spi/spi.h>
 15#include <linux/pm_runtime.h>
 16#include <linux/scatterlist.h>
 17
 18#define DRIVER_NAME "rockchip-spi"
 19
 20#define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
 21		writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
 22#define ROCKCHIP_SPI_SET_BITS(reg, bits) \
 23		writel_relaxed(readl_relaxed(reg) | (bits), reg)
 24
 25/* SPI register offsets */
 26#define ROCKCHIP_SPI_CTRLR0			0x0000
 27#define ROCKCHIP_SPI_CTRLR1			0x0004
 28#define ROCKCHIP_SPI_SSIENR			0x0008
 29#define ROCKCHIP_SPI_SER			0x000c
 30#define ROCKCHIP_SPI_BAUDR			0x0010
 31#define ROCKCHIP_SPI_TXFTLR			0x0014
 32#define ROCKCHIP_SPI_RXFTLR			0x0018
 33#define ROCKCHIP_SPI_TXFLR			0x001c
 34#define ROCKCHIP_SPI_RXFLR			0x0020
 35#define ROCKCHIP_SPI_SR				0x0024
 36#define ROCKCHIP_SPI_IPR			0x0028
 37#define ROCKCHIP_SPI_IMR			0x002c
 38#define ROCKCHIP_SPI_ISR			0x0030
 39#define ROCKCHIP_SPI_RISR			0x0034
 40#define ROCKCHIP_SPI_ICR			0x0038
 41#define ROCKCHIP_SPI_DMACR			0x003c
 42#define ROCKCHIP_SPI_DMATDLR			0x0040
 43#define ROCKCHIP_SPI_DMARDLR			0x0044
 44#define ROCKCHIP_SPI_VERSION			0x0048
 45#define ROCKCHIP_SPI_TXDR			0x0400
 46#define ROCKCHIP_SPI_RXDR			0x0800
 47
 48/* Bit fields in CTRLR0 */
 49#define CR0_DFS_OFFSET				0
 50#define CR0_DFS_4BIT				0x0
 51#define CR0_DFS_8BIT				0x1
 52#define CR0_DFS_16BIT				0x2
 53
 54#define CR0_CFS_OFFSET				2
 55
 56#define CR0_SCPH_OFFSET				6
 57
 58#define CR0_SCPOL_OFFSET			7
 59
 60#define CR0_CSM_OFFSET				8
 61#define CR0_CSM_KEEP				0x0
 62/* ss_n be high for half sclk_out cycles */
 63#define CR0_CSM_HALF				0X1
 64/* ss_n be high for one sclk_out cycle */
 65#define CR0_CSM_ONE					0x2
 66
 67/* ss_n to sclk_out delay */
 68#define CR0_SSD_OFFSET				10
 69/*
 70 * The period between ss_n active and
 71 * sclk_out active is half sclk_out cycles
 72 */
 73#define CR0_SSD_HALF				0x0
 74/*
 75 * The period between ss_n active and
 76 * sclk_out active is one sclk_out cycle
 77 */
 78#define CR0_SSD_ONE					0x1
 79
 80#define CR0_EM_OFFSET				11
 81#define CR0_EM_LITTLE				0x0
 82#define CR0_EM_BIG					0x1
 83
 84#define CR0_FBM_OFFSET				12
 85#define CR0_FBM_MSB					0x0
 86#define CR0_FBM_LSB					0x1
 87
 88#define CR0_BHT_OFFSET				13
 89#define CR0_BHT_16BIT				0x0
 90#define CR0_BHT_8BIT				0x1
 91
 92#define CR0_RSD_OFFSET				14
 93#define CR0_RSD_MAX				0x3
 94
 95#define CR0_FRF_OFFSET				16
 96#define CR0_FRF_SPI					0x0
 97#define CR0_FRF_SSP					0x1
 98#define CR0_FRF_MICROWIRE			0x2
 99
100#define CR0_XFM_OFFSET				18
101#define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
102#define CR0_XFM_TR					0x0
103#define CR0_XFM_TO					0x1
104#define CR0_XFM_RO					0x2
105
106#define CR0_OPM_OFFSET				20
107#define CR0_OPM_MASTER				0x0
108#define CR0_OPM_SLAVE				0x1
109
110#define CR0_MTM_OFFSET				0x21
111
112/* Bit fields in SER, 2bit */
113#define SER_MASK					0x3
114
115/* Bit fields in BAUDR */
116#define BAUDR_SCKDV_MIN				2
117#define BAUDR_SCKDV_MAX				65534
118
119/* Bit fields in SR, 5bit */
120#define SR_MASK						0x1f
121#define SR_BUSY						(1 << 0)
122#define SR_TF_FULL					(1 << 1)
123#define SR_TF_EMPTY					(1 << 2)
124#define SR_RF_EMPTY					(1 << 3)
125#define SR_RF_FULL					(1 << 4)
126
127/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
128#define INT_MASK					0x1f
129#define INT_TF_EMPTY				(1 << 0)
130#define INT_TF_OVERFLOW				(1 << 1)
131#define INT_RF_UNDERFLOW			(1 << 2)
132#define INT_RF_OVERFLOW				(1 << 3)
133#define INT_RF_FULL					(1 << 4)
134
135/* Bit fields in ICR, 4bit */
136#define ICR_MASK					0x0f
137#define ICR_ALL						(1 << 0)
138#define ICR_RF_UNDERFLOW			(1 << 1)
139#define ICR_RF_OVERFLOW				(1 << 2)
140#define ICR_TF_OVERFLOW				(1 << 3)
141
142/* Bit fields in DMACR */
143#define RF_DMA_EN					(1 << 0)
144#define TF_DMA_EN					(1 << 1)
145
146/* Driver state flags */
147#define RXDMA					(1 << 0)
148#define TXDMA					(1 << 1)
149
150/* sclk_out: spi master internal logic in rk3x can support 50Mhz */
151#define MAX_SCLK_OUT				50000000U
152
153/*
154 * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
155 * the controller seems to hang when given 0x10000, so stick with this for now.
156 */
157#define ROCKCHIP_SPI_MAX_TRANLEN		0xffff
158
159#define ROCKCHIP_SPI_MAX_CS_NUM			2
160#define ROCKCHIP_SPI_VER2_TYPE1			0x05EC0002
161#define ROCKCHIP_SPI_VER2_TYPE2			0x00110002
162
163struct rockchip_spi {
164	struct device *dev;
165
166	struct clk *spiclk;
167	struct clk *apb_pclk;
168
169	void __iomem *regs;
170	dma_addr_t dma_addr_rx;
171	dma_addr_t dma_addr_tx;
172
173	const void *tx;
174	void *rx;
175	unsigned int tx_left;
176	unsigned int rx_left;
177
178	atomic_t state;
179
180	/*depth of the FIFO buffer */
181	u32 fifo_len;
182	/* frequency of spiclk */
183	u32 freq;
184
185	u8 n_bytes;
186	u8 rsd;
187
188	bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
189
190	bool slave_abort;
191};
192
193static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
194{
195	writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
196}
197
198static inline void wait_for_idle(struct rockchip_spi *rs)
199{
200	unsigned long timeout = jiffies + msecs_to_jiffies(5);
201
202	do {
203		if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
204			return;
205	} while (!time_after(jiffies, timeout));
206
207	dev_warn(rs->dev, "spi controller is in busy state!\n");
208}
209
210static u32 get_fifo_len(struct rockchip_spi *rs)
211{
212	u32 ver;
213
214	ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
215
216	switch (ver) {
217	case ROCKCHIP_SPI_VER2_TYPE1:
218	case ROCKCHIP_SPI_VER2_TYPE2:
219		return 64;
220	default:
221		return 32;
222	}
223}
224
225static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
226{
227	struct spi_controller *ctlr = spi->controller;
228	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
229	bool cs_asserted = !enable;
230
231	/* Return immediately for no-op */
232	if (cs_asserted == rs->cs_asserted[spi->chip_select])
233		return;
234
235	if (cs_asserted) {
236		/* Keep things powered as long as CS is asserted */
237		pm_runtime_get_sync(rs->dev);
238
239		ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER,
240				      BIT(spi->chip_select));
241	} else {
242		ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER,
243				      BIT(spi->chip_select));
244
245		/* Drop reference from when we first asserted CS */
246		pm_runtime_put(rs->dev);
247	}
248
249	rs->cs_asserted[spi->chip_select] = cs_asserted;
250}
251
252static void rockchip_spi_handle_err(struct spi_controller *ctlr,
253				    struct spi_message *msg)
254{
255	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
256
257	/* stop running spi transfer
258	 * this also flushes both rx and tx fifos
259	 */
260	spi_enable_chip(rs, false);
261
262	/* make sure all interrupts are masked */
263	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
264
265	if (atomic_read(&rs->state) & TXDMA)
266		dmaengine_terminate_async(ctlr->dma_tx);
267
268	if (atomic_read(&rs->state) & RXDMA)
269		dmaengine_terminate_async(ctlr->dma_rx);
270}
271
272static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
273{
274	u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
275	u32 words = min(rs->tx_left, tx_free);
276
277	rs->tx_left -= words;
278	for (; words; words--) {
279		u32 txw;
280
281		if (rs->n_bytes == 1)
282			txw = *(u8 *)rs->tx;
283		else
284			txw = *(u16 *)rs->tx;
285
286		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
287		rs->tx += rs->n_bytes;
288	}
289}
290
291static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
292{
293	u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
294	u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
295
296	/* the hardware doesn't allow us to change fifo threshold
297	 * level while spi is enabled, so instead make sure to leave
298	 * enough words in the rx fifo to get the last interrupt
299	 * exactly when all words have been received
300	 */
301	if (rx_left) {
302		u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
303
304		if (rx_left < ftl) {
305			rx_left = ftl;
306			words = rs->rx_left - rx_left;
307		}
308	}
309
310	rs->rx_left = rx_left;
311	for (; words; words--) {
312		u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
313
314		if (!rs->rx)
315			continue;
316
317		if (rs->n_bytes == 1)
318			*(u8 *)rs->rx = (u8)rxw;
319		else
320			*(u16 *)rs->rx = (u16)rxw;
321		rs->rx += rs->n_bytes;
322	}
323}
324
325static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
326{
327	struct spi_controller *ctlr = dev_id;
328	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
329
330	if (rs->tx_left)
331		rockchip_spi_pio_writer(rs);
332
333	rockchip_spi_pio_reader(rs);
334	if (!rs->rx_left) {
335		spi_enable_chip(rs, false);
336		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
337		spi_finalize_current_transfer(ctlr);
338	}
339
340	return IRQ_HANDLED;
341}
342
343static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
344		struct spi_transfer *xfer)
345{
346	rs->tx = xfer->tx_buf;
347	rs->rx = xfer->rx_buf;
348	rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
349	rs->rx_left = xfer->len / rs->n_bytes;
350
351	writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
352	spi_enable_chip(rs, true);
353
354	if (rs->tx_left)
355		rockchip_spi_pio_writer(rs);
356
357	/* 1 means the transfer is in progress */
358	return 1;
359}
360
361static void rockchip_spi_dma_rxcb(void *data)
362{
363	struct spi_controller *ctlr = data;
364	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
365	int state = atomic_fetch_andnot(RXDMA, &rs->state);
366
367	if (state & TXDMA && !rs->slave_abort)
368		return;
369
370	spi_enable_chip(rs, false);
371	spi_finalize_current_transfer(ctlr);
372}
373
374static void rockchip_spi_dma_txcb(void *data)
375{
376	struct spi_controller *ctlr = data;
377	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
378	int state = atomic_fetch_andnot(TXDMA, &rs->state);
379
380	if (state & RXDMA && !rs->slave_abort)
381		return;
382
383	/* Wait until the FIFO data completely. */
384	wait_for_idle(rs);
385
386	spi_enable_chip(rs, false);
387	spi_finalize_current_transfer(ctlr);
388}
389
390static u32 rockchip_spi_calc_burst_size(u32 data_len)
391{
392	u32 i;
393
394	/* burst size: 1, 2, 4, 8 */
395	for (i = 1; i < 8; i <<= 1) {
396		if (data_len & i)
397			break;
398	}
399
400	return i;
401}
402
403static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
404		struct spi_controller *ctlr, struct spi_transfer *xfer)
405{
406	struct dma_async_tx_descriptor *rxdesc, *txdesc;
407
408	atomic_set(&rs->state, 0);
409
410	rxdesc = NULL;
411	if (xfer->rx_buf) {
412		struct dma_slave_config rxconf = {
413			.direction = DMA_DEV_TO_MEM,
414			.src_addr = rs->dma_addr_rx,
415			.src_addr_width = rs->n_bytes,
416			.src_maxburst = rockchip_spi_calc_burst_size(xfer->len /
417								     rs->n_bytes),
418		};
419
420		dmaengine_slave_config(ctlr->dma_rx, &rxconf);
421
422		rxdesc = dmaengine_prep_slave_sg(
423				ctlr->dma_rx,
424				xfer->rx_sg.sgl, xfer->rx_sg.nents,
425				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
426		if (!rxdesc)
427			return -EINVAL;
428
429		rxdesc->callback = rockchip_spi_dma_rxcb;
430		rxdesc->callback_param = ctlr;
431	}
432
433	txdesc = NULL;
434	if (xfer->tx_buf) {
435		struct dma_slave_config txconf = {
436			.direction = DMA_MEM_TO_DEV,
437			.dst_addr = rs->dma_addr_tx,
438			.dst_addr_width = rs->n_bytes,
439			.dst_maxburst = rs->fifo_len / 4,
440		};
441
442		dmaengine_slave_config(ctlr->dma_tx, &txconf);
443
444		txdesc = dmaengine_prep_slave_sg(
445				ctlr->dma_tx,
446				xfer->tx_sg.sgl, xfer->tx_sg.nents,
447				DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
448		if (!txdesc) {
449			if (rxdesc)
450				dmaengine_terminate_sync(ctlr->dma_rx);
451			return -EINVAL;
452		}
453
454		txdesc->callback = rockchip_spi_dma_txcb;
455		txdesc->callback_param = ctlr;
456	}
457
458	/* rx must be started before tx due to spi instinct */
459	if (rxdesc) {
460		atomic_or(RXDMA, &rs->state);
461		dmaengine_submit(rxdesc);
462		dma_async_issue_pending(ctlr->dma_rx);
463	}
464
465	spi_enable_chip(rs, true);
466
467	if (txdesc) {
468		atomic_or(TXDMA, &rs->state);
469		dmaengine_submit(txdesc);
470		dma_async_issue_pending(ctlr->dma_tx);
471	}
472
473	/* 1 means the transfer is in progress */
474	return 1;
475}
476
477static void rockchip_spi_config(struct rockchip_spi *rs,
478		struct spi_device *spi, struct spi_transfer *xfer,
479		bool use_dma, bool slave_mode)
480{
481	u32 cr0 = CR0_FRF_SPI  << CR0_FRF_OFFSET
482	        | CR0_BHT_8BIT << CR0_BHT_OFFSET
483	        | CR0_SSD_ONE  << CR0_SSD_OFFSET
484	        | CR0_EM_BIG   << CR0_EM_OFFSET;
485	u32 cr1;
486	u32 dmacr = 0;
487
488	if (slave_mode)
489		cr0 |= CR0_OPM_SLAVE << CR0_OPM_OFFSET;
490	rs->slave_abort = false;
491
492	cr0 |= rs->rsd << CR0_RSD_OFFSET;
493	cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
494	if (spi->mode & SPI_LSB_FIRST)
495		cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
496
497	if (xfer->rx_buf && xfer->tx_buf)
498		cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
499	else if (xfer->rx_buf)
500		cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
501	else if (use_dma)
502		cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
503
504	switch (xfer->bits_per_word) {
505	case 4:
506		cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
507		cr1 = xfer->len - 1;
508		break;
509	case 8:
510		cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
511		cr1 = xfer->len - 1;
512		break;
513	case 16:
514		cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
515		cr1 = xfer->len / 2 - 1;
516		break;
517	default:
518		/* we only whitelist 4, 8 and 16 bit words in
519		 * ctlr->bits_per_word_mask, so this shouldn't
520		 * happen
521		 */
522		unreachable();
523	}
524
525	if (use_dma) {
526		if (xfer->tx_buf)
527			dmacr |= TF_DMA_EN;
528		if (xfer->rx_buf)
529			dmacr |= RF_DMA_EN;
530	}
531
532	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
533	writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
534
535	/* unfortunately setting the fifo threshold level to generate an
536	 * interrupt exactly when the fifo is full doesn't seem to work,
537	 * so we need the strict inequality here
538	 */
539	if (xfer->len < rs->fifo_len)
540		writel_relaxed(xfer->len - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
541	else
542		writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
543
544	writel_relaxed(rs->fifo_len / 2, rs->regs + ROCKCHIP_SPI_DMATDLR);
545	writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
546		       rs->regs + ROCKCHIP_SPI_DMARDLR);
547	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
548
549	/* the hardware only supports an even clock divisor, so
550	 * round divisor = spiclk / speed up to nearest even number
551	 * so that the resulting speed is <= the requested speed
552	 */
553	writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
554			rs->regs + ROCKCHIP_SPI_BAUDR);
555}
556
557static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
558{
559	return ROCKCHIP_SPI_MAX_TRANLEN;
560}
561
562static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
563{
564	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
565
566	rs->slave_abort = true;
567	complete(&ctlr->xfer_completion);
568
569	return 0;
570}
571
572static int rockchip_spi_transfer_one(
573		struct spi_controller *ctlr,
574		struct spi_device *spi,
575		struct spi_transfer *xfer)
576{
577	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
578	bool use_dma;
579
580	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
581		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
582
583	if (!xfer->tx_buf && !xfer->rx_buf) {
584		dev_err(rs->dev, "No buffer for transfer\n");
585		return -EINVAL;
586	}
587
588	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
589		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
590		return -EINVAL;
591	}
592
593	rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
594
595	use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
596
597	rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->slave);
598
599	if (use_dma)
600		return rockchip_spi_prepare_dma(rs, ctlr, xfer);
601
602	return rockchip_spi_prepare_irq(rs, xfer);
603}
604
605static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
606				 struct spi_device *spi,
607				 struct spi_transfer *xfer)
608{
609	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
610	unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
611
612	/* if the numbor of spi words to transfer is less than the fifo
613	 * length we can just fill the fifo and wait for a single irq,
614	 * so don't bother setting up dma
615	 */
616	return xfer->len / bytes_per_word >= rs->fifo_len;
617}
618
619static int rockchip_spi_probe(struct platform_device *pdev)
620{
621	int ret;
622	struct rockchip_spi *rs;
623	struct spi_controller *ctlr;
624	struct resource *mem;
625	struct device_node *np = pdev->dev.of_node;
626	u32 rsd_nsecs;
627	bool slave_mode;
628
629	slave_mode = of_property_read_bool(np, "spi-slave");
630
631	if (slave_mode)
632		ctlr = spi_alloc_slave(&pdev->dev,
633				sizeof(struct rockchip_spi));
634	else
635		ctlr = spi_alloc_master(&pdev->dev,
636				sizeof(struct rockchip_spi));
637
638	if (!ctlr)
639		return -ENOMEM;
640
641	platform_set_drvdata(pdev, ctlr);
642
643	rs = spi_controller_get_devdata(ctlr);
644	ctlr->slave = slave_mode;
645
646	/* Get basic io resource and map it */
647	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
648	rs->regs = devm_ioremap_resource(&pdev->dev, mem);
649	if (IS_ERR(rs->regs)) {
650		ret =  PTR_ERR(rs->regs);
651		goto err_put_ctlr;
652	}
653
654	rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
655	if (IS_ERR(rs->apb_pclk)) {
656		dev_err(&pdev->dev, "Failed to get apb_pclk\n");
657		ret = PTR_ERR(rs->apb_pclk);
658		goto err_put_ctlr;
659	}
660
661	rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
662	if (IS_ERR(rs->spiclk)) {
663		dev_err(&pdev->dev, "Failed to get spi_pclk\n");
664		ret = PTR_ERR(rs->spiclk);
665		goto err_put_ctlr;
666	}
667
668	ret = clk_prepare_enable(rs->apb_pclk);
669	if (ret < 0) {
670		dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
671		goto err_put_ctlr;
672	}
673
674	ret = clk_prepare_enable(rs->spiclk);
675	if (ret < 0) {
676		dev_err(&pdev->dev, "Failed to enable spi_clk\n");
677		goto err_disable_apbclk;
678	}
679
680	spi_enable_chip(rs, false);
681
682	ret = platform_get_irq(pdev, 0);
683	if (ret < 0)
684		goto err_disable_spiclk;
685
686	ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
687			IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
688	if (ret)
689		goto err_disable_spiclk;
690
691	rs->dev = &pdev->dev;
692	rs->freq = clk_get_rate(rs->spiclk);
693
694	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
695				  &rsd_nsecs)) {
696		/* rx sample delay is expressed in parent clock cycles (max 3) */
697		u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
698				1000000000 >> 8);
699		if (!rsd) {
700			dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
701					rs->freq, rsd_nsecs);
702		} else if (rsd > CR0_RSD_MAX) {
703			rsd = CR0_RSD_MAX;
704			dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
705					rs->freq, rsd_nsecs,
706					CR0_RSD_MAX * 1000000000U / rs->freq);
707		}
708		rs->rsd = rsd;
709	}
710
711	rs->fifo_len = get_fifo_len(rs);
712	if (!rs->fifo_len) {
713		dev_err(&pdev->dev, "Failed to get fifo length\n");
714		ret = -EINVAL;
715		goto err_disable_spiclk;
716	}
717
718	pm_runtime_set_active(&pdev->dev);
719	pm_runtime_enable(&pdev->dev);
720
721	ctlr->auto_runtime_pm = true;
722	ctlr->bus_num = pdev->id;
723	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
724	if (slave_mode) {
725		ctlr->mode_bits |= SPI_NO_CS;
726		ctlr->slave_abort = rockchip_spi_slave_abort;
727	} else {
728		ctlr->flags = SPI_MASTER_GPIO_SS;
729		ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
730		/*
731		 * rk spi0 has two native cs, spi1..5 one cs only
732		 * if num-cs is missing in the dts, default to 1
733		 */
734		if (of_property_read_u16(np, "num-cs", &ctlr->num_chipselect))
735			ctlr->num_chipselect = 1;
736		ctlr->use_gpio_descriptors = true;
737	}
738	ctlr->dev.of_node = pdev->dev.of_node;
739	ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
740	ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
741	ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
742
743	ctlr->set_cs = rockchip_spi_set_cs;
744	ctlr->transfer_one = rockchip_spi_transfer_one;
745	ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
746	ctlr->handle_err = rockchip_spi_handle_err;
747
748	ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
749	if (IS_ERR(ctlr->dma_tx)) {
750		/* Check tx to see if we need defer probing driver */
751		if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
752			ret = -EPROBE_DEFER;
753			goto err_disable_pm_runtime;
754		}
755		dev_warn(rs->dev, "Failed to request TX DMA channel\n");
756		ctlr->dma_tx = NULL;
757	}
758
759	ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
760	if (IS_ERR(ctlr->dma_rx)) {
761		if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
762			ret = -EPROBE_DEFER;
763			goto err_free_dma_tx;
764		}
765		dev_warn(rs->dev, "Failed to request RX DMA channel\n");
766		ctlr->dma_rx = NULL;
767	}
768
769	if (ctlr->dma_tx && ctlr->dma_rx) {
770		rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
771		rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
772		ctlr->can_dma = rockchip_spi_can_dma;
773	}
774
775	ret = devm_spi_register_controller(&pdev->dev, ctlr);
776	if (ret < 0) {
777		dev_err(&pdev->dev, "Failed to register controller\n");
778		goto err_free_dma_rx;
779	}
780
781	return 0;
782
783err_free_dma_rx:
784	if (ctlr->dma_rx)
785		dma_release_channel(ctlr->dma_rx);
786err_free_dma_tx:
787	if (ctlr->dma_tx)
788		dma_release_channel(ctlr->dma_tx);
789err_disable_pm_runtime:
790	pm_runtime_disable(&pdev->dev);
791err_disable_spiclk:
792	clk_disable_unprepare(rs->spiclk);
793err_disable_apbclk:
794	clk_disable_unprepare(rs->apb_pclk);
795err_put_ctlr:
796	spi_controller_put(ctlr);
797
798	return ret;
799}
800
801static int rockchip_spi_remove(struct platform_device *pdev)
802{
803	struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
804	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
805
806	pm_runtime_get_sync(&pdev->dev);
807
808	clk_disable_unprepare(rs->spiclk);
809	clk_disable_unprepare(rs->apb_pclk);
810
811	pm_runtime_put_noidle(&pdev->dev);
812	pm_runtime_disable(&pdev->dev);
813	pm_runtime_set_suspended(&pdev->dev);
814
815	if (ctlr->dma_tx)
816		dma_release_channel(ctlr->dma_tx);
817	if (ctlr->dma_rx)
818		dma_release_channel(ctlr->dma_rx);
819
820	spi_controller_put(ctlr);
821
822	return 0;
823}
824
825#ifdef CONFIG_PM_SLEEP
826static int rockchip_spi_suspend(struct device *dev)
827{
828	int ret;
829	struct spi_controller *ctlr = dev_get_drvdata(dev);
830
831	ret = spi_controller_suspend(ctlr);
832	if (ret < 0)
833		return ret;
834
835	ret = pm_runtime_force_suspend(dev);
836	if (ret < 0)
837		return ret;
838
839	pinctrl_pm_select_sleep_state(dev);
840
841	return 0;
842}
843
844static int rockchip_spi_resume(struct device *dev)
845{
846	int ret;
847	struct spi_controller *ctlr = dev_get_drvdata(dev);
848	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
849
850	pinctrl_pm_select_default_state(dev);
851
852	ret = pm_runtime_force_resume(dev);
853	if (ret < 0)
854		return ret;
855
856	ret = spi_controller_resume(ctlr);
857	if (ret < 0) {
858		clk_disable_unprepare(rs->spiclk);
859		clk_disable_unprepare(rs->apb_pclk);
860	}
861
862	return 0;
863}
864#endif /* CONFIG_PM_SLEEP */
865
866#ifdef CONFIG_PM
867static int rockchip_spi_runtime_suspend(struct device *dev)
868{
869	struct spi_controller *ctlr = dev_get_drvdata(dev);
870	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
871
872	clk_disable_unprepare(rs->spiclk);
873	clk_disable_unprepare(rs->apb_pclk);
874
875	return 0;
876}
877
878static int rockchip_spi_runtime_resume(struct device *dev)
879{
880	int ret;
881	struct spi_controller *ctlr = dev_get_drvdata(dev);
882	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
883
884	ret = clk_prepare_enable(rs->apb_pclk);
885	if (ret < 0)
886		return ret;
887
888	ret = clk_prepare_enable(rs->spiclk);
889	if (ret < 0)
890		clk_disable_unprepare(rs->apb_pclk);
891
892	return 0;
893}
894#endif /* CONFIG_PM */
895
896static const struct dev_pm_ops rockchip_spi_pm = {
897	SET_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
898	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
899			   rockchip_spi_runtime_resume, NULL)
900};
901
902static const struct of_device_id rockchip_spi_dt_match[] = {
903	{ .compatible = "rockchip,px30-spi", },
904	{ .compatible = "rockchip,rk3036-spi", },
905	{ .compatible = "rockchip,rk3066-spi", },
906	{ .compatible = "rockchip,rk3188-spi", },
907	{ .compatible = "rockchip,rk3228-spi", },
908	{ .compatible = "rockchip,rk3288-spi", },
909	{ .compatible = "rockchip,rk3308-spi", },
910	{ .compatible = "rockchip,rk3328-spi", },
911	{ .compatible = "rockchip,rk3368-spi", },
912	{ .compatible = "rockchip,rk3399-spi", },
913	{ .compatible = "rockchip,rv1108-spi", },
914	{ },
915};
916MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
917
918static struct platform_driver rockchip_spi_driver = {
919	.driver = {
920		.name	= DRIVER_NAME,
921		.pm = &rockchip_spi_pm,
922		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
923	},
924	.probe = rockchip_spi_probe,
925	.remove = rockchip_spi_remove,
926};
927
928module_platform_driver(rockchip_spi_driver);
929
930MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
931MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
932MODULE_LICENSE("GPL v2");