Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
   3 *
   4 * Copyright (C) 2007-2008 Krzysztof HaƂasa <khc@pm.waw.pl>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
 
  13#include <linux/bitops.h>
  14#include <linux/cdev.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmapool.h>
  17#include <linux/fs.h>
  18#include <linux/hdlc.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/platform_device.h>
 
  22#include <linux/poll.h>
  23#include <linux/slab.h>
  24#include <mach/npe.h>
  25#include <mach/qmgr.h>
  26
  27#define DEBUG_DESC		0
  28#define DEBUG_RX		0
  29#define DEBUG_TX		0
  30#define DEBUG_PKT_BYTES		0
  31#define DEBUG_CLOSE		0
  32
  33#define DRV_NAME		"ixp4xx_hss"
  34
  35#define PKT_EXTRA_FLAGS		0 /* orig 1 */
  36#define PKT_NUM_PIPES		1 /* 1, 2 or 4 */
  37#define PKT_PIPE_FIFO_SIZEW	4 /* total 4 dwords per HSS */
  38
  39#define RX_DESCS		16 /* also length of all RX queues */
  40#define TX_DESCS		16 /* also length of all TX queues */
  41
  42#define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  43#define RX_SIZE			(HDLC_MAX_MRU + 4) /* NPE needs more space */
  44#define MAX_CLOSE_WAIT		1000 /* microseconds */
  45#define HSS_COUNT		2
  46#define FRAME_SIZE		256 /* doesn't matter at this point */
  47#define FRAME_OFFSET		0
  48#define MAX_CHANNELS		(FRAME_SIZE / 8)
  49
  50#define NAPI_WEIGHT		16
  51
  52/* Queue IDs */
  53#define HSS0_CHL_RXTRIG_QUEUE	12	/* orig size = 32 dwords */
  54#define HSS0_PKT_RX_QUEUE	13	/* orig size = 32 dwords */
  55#define HSS0_PKT_TX0_QUEUE	14	/* orig size = 16 dwords */
  56#define HSS0_PKT_TX1_QUEUE	15
  57#define HSS0_PKT_TX2_QUEUE	16
  58#define HSS0_PKT_TX3_QUEUE	17
  59#define HSS0_PKT_RXFREE0_QUEUE	18	/* orig size = 16 dwords */
  60#define HSS0_PKT_RXFREE1_QUEUE	19
  61#define HSS0_PKT_RXFREE2_QUEUE	20
  62#define HSS0_PKT_RXFREE3_QUEUE	21
  63#define HSS0_PKT_TXDONE_QUEUE	22	/* orig size = 64 dwords */
  64
  65#define HSS1_CHL_RXTRIG_QUEUE	10
  66#define HSS1_PKT_RX_QUEUE	0
  67#define HSS1_PKT_TX0_QUEUE	5
  68#define HSS1_PKT_TX1_QUEUE	6
  69#define HSS1_PKT_TX2_QUEUE	7
  70#define HSS1_PKT_TX3_QUEUE	8
  71#define HSS1_PKT_RXFREE0_QUEUE	1
  72#define HSS1_PKT_RXFREE1_QUEUE	2
  73#define HSS1_PKT_RXFREE2_QUEUE	3
  74#define HSS1_PKT_RXFREE3_QUEUE	4
  75#define HSS1_PKT_TXDONE_QUEUE	9
  76
  77#define NPE_PKT_MODE_HDLC		0
  78#define NPE_PKT_MODE_RAW		1
  79#define NPE_PKT_MODE_56KMODE		2
  80#define NPE_PKT_MODE_56KENDIAN_MSB	4
  81
  82/* PKT_PIPE_HDLC_CFG_WRITE flags */
  83#define PKT_HDLC_IDLE_ONES		0x1 /* default = flags */
  84#define PKT_HDLC_CRC_32			0x2 /* default = CRC-16 */
  85#define PKT_HDLC_MSB_ENDIAN		0x4 /* default = LE */
  86
  87
  88/* hss_config, PCRs */
  89/* Frame sync sampling, default = active low */
  90#define PCR_FRM_SYNC_ACTIVE_HIGH	0x40000000
  91#define PCR_FRM_SYNC_FALLINGEDGE	0x80000000
  92#define PCR_FRM_SYNC_RISINGEDGE		0xC0000000
  93
  94/* Frame sync pin: input (default) or output generated off a given clk edge */
  95#define PCR_FRM_SYNC_OUTPUT_FALLING	0x20000000
  96#define PCR_FRM_SYNC_OUTPUT_RISING	0x30000000
  97
  98/* Frame and data clock sampling on edge, default = falling */
  99#define PCR_FCLK_EDGE_RISING		0x08000000
 100#define PCR_DCLK_EDGE_RISING		0x04000000
 101
 102/* Clock direction, default = input */
 103#define PCR_SYNC_CLK_DIR_OUTPUT		0x02000000
 104
 105/* Generate/Receive frame pulses, default = enabled */
 106#define PCR_FRM_PULSE_DISABLED		0x01000000
 107
 108 /* Data rate is full (default) or half the configured clk speed */
 109#define PCR_HALF_CLK_RATE		0x00200000
 110
 111/* Invert data between NPE and HSS FIFOs? (default = no) */
 112#define PCR_DATA_POLARITY_INVERT	0x00100000
 113
 114/* TX/RX endianness, default = LSB */
 115#define PCR_MSB_ENDIAN			0x00080000
 116
 117/* Normal (default) / open drain mode (TX only) */
 118#define PCR_TX_PINS_OPEN_DRAIN		0x00040000
 119
 120/* No framing bit transmitted and expected on RX? (default = framing bit) */
 121#define PCR_SOF_NO_FBIT			0x00020000
 122
 123/* Drive data pins? */
 124#define PCR_TX_DATA_ENABLE		0x00010000
 125
 126/* Voice 56k type: drive the data pins low (default), high, high Z */
 127#define PCR_TX_V56K_HIGH		0x00002000
 128#define PCR_TX_V56K_HIGH_IMP		0x00004000
 129
 130/* Unassigned type: drive the data pins low (default), high, high Z */
 131#define PCR_TX_UNASS_HIGH		0x00000800
 132#define PCR_TX_UNASS_HIGH_IMP		0x00001000
 133
 134/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
 135#define PCR_TX_FB_HIGH_IMP		0x00000400
 136
 137/* 56k data endiannes - which bit unused: high (default) or low */
 138#define PCR_TX_56KE_BIT_0_UNUSED	0x00000200
 139
 140/* 56k data transmission type: 32/8 bit data (default) or 56K data */
 141#define PCR_TX_56KS_56K_DATA		0x00000100
 142
 143/* hss_config, cCR */
 144/* Number of packetized clients, default = 1 */
 145#define CCR_NPE_HFIFO_2_HDLC		0x04000000
 146#define CCR_NPE_HFIFO_3_OR_4HDLC	0x08000000
 147
 148/* default = no loopback */
 149#define CCR_LOOPBACK			0x02000000
 150
 151/* HSS number, default = 0 (first) */
 152#define CCR_SECOND_HSS			0x01000000
 153
 154
 155/* hss_config, clkCR: main:10, num:10, denom:12 */
 156#define CLK42X_SPEED_EXP	((0x3FF << 22) | (  2 << 12) |   15) /*65 KHz*/
 157
 158#define CLK42X_SPEED_512KHZ	((  130 << 22) | (  2 << 12) |   15)
 159#define CLK42X_SPEED_1536KHZ	((   43 << 22) | ( 18 << 12) |   47)
 160#define CLK42X_SPEED_1544KHZ	((   43 << 22) | ( 33 << 12) |  192)
 161#define CLK42X_SPEED_2048KHZ	((   32 << 22) | ( 34 << 12) |   63)
 162#define CLK42X_SPEED_4096KHZ	((   16 << 22) | ( 34 << 12) |  127)
 163#define CLK42X_SPEED_8192KHZ	((    8 << 22) | ( 34 << 12) |  255)
 164
 165#define CLK46X_SPEED_512KHZ	((  130 << 22) | ( 24 << 12) |  127)
 166#define CLK46X_SPEED_1536KHZ	((   43 << 22) | (152 << 12) |  383)
 167#define CLK46X_SPEED_1544KHZ	((   43 << 22) | ( 66 << 12) |  385)
 168#define CLK46X_SPEED_2048KHZ	((   32 << 22) | (280 << 12) |  511)
 169#define CLK46X_SPEED_4096KHZ	((   16 << 22) | (280 << 12) | 1023)
 170#define CLK46X_SPEED_8192KHZ	((    8 << 22) | (280 << 12) | 2047)
 171
 172/*
 173 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
 174 *     A (10 bits), B (10 bits) and C (12 bits).
 175 * IXP42x HSS clock generator operation (verified with an oscilloscope):
 176 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
 177 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
 178 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
 179 * (A + 1) bits wide.
 180 *
 181 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
 182 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
 183 * minimum freq = 66.666 MHz / (A + 1)
 184 * maximum freq = 66.666 MHz / A
 185 *
 186 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
 187 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
 188 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
 189 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
 190 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
 191 * The sequence consists of 4 complete clock periods, thus the average
 192 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
 193 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
 194 */
 195
 196/* hss_config, LUT entries */
 197#define TDMMAP_UNASSIGNED	0
 198#define TDMMAP_HDLC		1	/* HDLC - packetized */
 199#define TDMMAP_VOICE56K		2	/* Voice56K - 7-bit channelized */
 200#define TDMMAP_VOICE64K		3	/* Voice64K - 8-bit channelized */
 201
 202/* offsets into HSS config */
 203#define HSS_CONFIG_TX_PCR	0x00 /* port configuration registers */
 204#define HSS_CONFIG_RX_PCR	0x04
 205#define HSS_CONFIG_CORE_CR	0x08 /* loopback control, HSS# */
 206#define HSS_CONFIG_CLOCK_CR	0x0C /* clock generator control */
 207#define HSS_CONFIG_TX_FCR	0x10 /* frame configuration registers */
 208#define HSS_CONFIG_RX_FCR	0x14
 209#define HSS_CONFIG_TX_LUT	0x18 /* channel look-up tables */
 210#define HSS_CONFIG_RX_LUT	0x38
 211
 212
 213/* NPE command codes */
 214/* writes the ConfigWord value to the location specified by offset */
 215#define PORT_CONFIG_WRITE		0x40
 216
 217/* triggers the NPE to load the contents of the configuration table */
 218#define PORT_CONFIG_LOAD		0x41
 219
 220/* triggers the NPE to return an HssErrorReadResponse message */
 221#define PORT_ERROR_READ			0x42
 222
 223/* triggers the NPE to reset internal status and enable the HssPacketized
 224   operation for the flow specified by pPipe */
 225#define PKT_PIPE_FLOW_ENABLE		0x50
 226#define PKT_PIPE_FLOW_DISABLE		0x51
 227#define PKT_NUM_PIPES_WRITE		0x52
 228#define PKT_PIPE_FIFO_SIZEW_WRITE	0x53
 229#define PKT_PIPE_HDLC_CFG_WRITE		0x54
 230#define PKT_PIPE_IDLE_PATTERN_WRITE	0x55
 231#define PKT_PIPE_RX_SIZE_WRITE		0x56
 232#define PKT_PIPE_MODE_WRITE		0x57
 233
 234/* HDLC packet status values - desc->status */
 235#define ERR_SHUTDOWN		1 /* stop or shutdown occurrence */
 236#define ERR_HDLC_ALIGN		2 /* HDLC alignment error */
 237#define ERR_HDLC_FCS		3 /* HDLC Frame Check Sum error */
 238#define ERR_RXFREE_Q_EMPTY	4 /* RX-free queue became empty while receiving
 239				     this packet (if buf_len < pkt_len) */
 240#define ERR_HDLC_TOO_LONG	5 /* HDLC frame size too long */
 241#define ERR_HDLC_ABORT		6 /* abort sequence received */
 242#define ERR_DISCONNECTING	7 /* disconnect is in progress */
 243
 244
 245#ifdef __ARMEB__
 246typedef struct sk_buff buffer_t;
 247#define free_buffer dev_kfree_skb
 248#define free_buffer_irq dev_kfree_skb_irq
 249#else
 250typedef void buffer_t;
 251#define free_buffer kfree
 252#define free_buffer_irq kfree
 253#endif
 254
 255struct port {
 256	struct device *dev;
 257	struct npe *npe;
 258	struct net_device *netdev;
 259	struct napi_struct napi;
 260	struct hss_plat_info *plat;
 261	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
 262	struct desc *desc_tab;	/* coherent */
 263	u32 desc_tab_phys;
 264	unsigned int id;
 265	unsigned int clock_type, clock_rate, loopback;
 266	unsigned int initialized, carrier;
 267	u8 hdlc_cfg;
 268	u32 clock_reg;
 269};
 270
 271/* NPE message structure */
 272struct msg {
 273#ifdef __ARMEB__
 274	u8 cmd, unused, hss_port, index;
 275	union {
 276		struct { u8 data8a, data8b, data8c, data8d; };
 277		struct { u16 data16a, data16b; };
 278		struct { u32 data32; };
 279	};
 280#else
 281	u8 index, hss_port, unused, cmd;
 282	union {
 283		struct { u8 data8d, data8c, data8b, data8a; };
 284		struct { u16 data16b, data16a; };
 285		struct { u32 data32; };
 286	};
 287#endif
 288};
 289
 290/* HDLC packet descriptor */
 291struct desc {
 292	u32 next;		/* pointer to next buffer, unused */
 293
 294#ifdef __ARMEB__
 295	u16 buf_len;		/* buffer length */
 296	u16 pkt_len;		/* packet length */
 297	u32 data;		/* pointer to data buffer in RAM */
 298	u8 status;
 299	u8 error_count;
 300	u16 __reserved;
 301#else
 302	u16 pkt_len;		/* packet length */
 303	u16 buf_len;		/* buffer length */
 304	u32 data;		/* pointer to data buffer in RAM */
 305	u16 __reserved;
 306	u8 error_count;
 307	u8 status;
 308#endif
 309	u32 __reserved1[4];
 310};
 311
 312
 313#define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
 314				 (n) * sizeof(struct desc))
 315#define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
 316
 317#define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
 318				 ((n) + RX_DESCS) * sizeof(struct desc))
 319#define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
 320
 321/*****************************************************************************
 322 * global variables
 323 ****************************************************************************/
 324
 325static int ports_open;
 326static struct dma_pool *dma_pool;
 327static spinlock_t npe_lock;
 328
 329static const struct {
 330	int tx, txdone, rx, rxfree;
 331}queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
 332		  HSS0_PKT_RXFREE0_QUEUE},
 333		 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
 334		  HSS1_PKT_RXFREE0_QUEUE},
 335};
 336
 337/*****************************************************************************
 338 * utility functions
 339 ****************************************************************************/
 340
 341static inline struct port* dev_to_port(struct net_device *dev)
 342{
 343	return dev_to_hdlc(dev)->priv;
 344}
 345
 346#ifndef __ARMEB__
 347static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
 348{
 349	int i;
 350	for (i = 0; i < cnt; i++)
 351		dest[i] = swab32(src[i]);
 352}
 353#endif
 354
 355/*****************************************************************************
 356 * HSS access
 357 ****************************************************************************/
 358
 359static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
 360{
 361	u32 *val = (u32*)msg;
 362	if (npe_send_message(port->npe, msg, what)) {
 363		pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
 364			port->id, val[0], val[1], npe_name(port->npe));
 365		BUG();
 366	}
 367}
 368
 369static void hss_config_set_lut(struct port *port)
 370{
 371	struct msg msg;
 372	int ch;
 373
 374	memset(&msg, 0, sizeof(msg));
 375	msg.cmd = PORT_CONFIG_WRITE;
 376	msg.hss_port = port->id;
 377
 378	for (ch = 0; ch < MAX_CHANNELS; ch++) {
 379		msg.data32 >>= 2;
 380		msg.data32 |= TDMMAP_HDLC << 30;
 381
 382		if (ch % 16 == 15) {
 383			msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
 384			hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
 385
 386			msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
 387			hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
 388		}
 389	}
 390}
 391
 392static void hss_config(struct port *port)
 393{
 394	struct msg msg;
 395
 396	memset(&msg, 0, sizeof(msg));
 397	msg.cmd = PORT_CONFIG_WRITE;
 398	msg.hss_port = port->id;
 399	msg.index = HSS_CONFIG_TX_PCR;
 400	msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
 401		PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
 402	if (port->clock_type == CLOCK_INT)
 403		msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
 404	hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
 405
 406	msg.index = HSS_CONFIG_RX_PCR;
 407	msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
 408	hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
 409
 410	memset(&msg, 0, sizeof(msg));
 411	msg.cmd = PORT_CONFIG_WRITE;
 412	msg.hss_port = port->id;
 413	msg.index = HSS_CONFIG_CORE_CR;
 414	msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
 415		(port->id ? CCR_SECOND_HSS : 0);
 416	hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
 417
 418	memset(&msg, 0, sizeof(msg));
 419	msg.cmd = PORT_CONFIG_WRITE;
 420	msg.hss_port = port->id;
 421	msg.index = HSS_CONFIG_CLOCK_CR;
 422	msg.data32 = port->clock_reg;
 423	hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
 424
 425	memset(&msg, 0, sizeof(msg));
 426	msg.cmd = PORT_CONFIG_WRITE;
 427	msg.hss_port = port->id;
 428	msg.index = HSS_CONFIG_TX_FCR;
 429	msg.data16a = FRAME_OFFSET;
 430	msg.data16b = FRAME_SIZE - 1;
 431	hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
 432
 433	memset(&msg, 0, sizeof(msg));
 434	msg.cmd = PORT_CONFIG_WRITE;
 435	msg.hss_port = port->id;
 436	msg.index = HSS_CONFIG_RX_FCR;
 437	msg.data16a = FRAME_OFFSET;
 438	msg.data16b = FRAME_SIZE - 1;
 439	hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
 440
 441	hss_config_set_lut(port);
 442
 443	memset(&msg, 0, sizeof(msg));
 444	msg.cmd = PORT_CONFIG_LOAD;
 445	msg.hss_port = port->id;
 446	hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
 447
 448	if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
 449	    /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
 450	    msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
 451		pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
 452		BUG();
 453	}
 454
 455	/* HDLC may stop working without this - check FIXME */
 456	npe_recv_message(port->npe, &msg, "FLUSH_IT");
 457}
 458
 459static void hss_set_hdlc_cfg(struct port *port)
 460{
 461	struct msg msg;
 462
 463	memset(&msg, 0, sizeof(msg));
 464	msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
 465	msg.hss_port = port->id;
 466	msg.data8a = port->hdlc_cfg; /* rx_cfg */
 467	msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
 468	hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
 469}
 470
 471static u32 hss_get_status(struct port *port)
 472{
 473	struct msg msg;
 474
 475	memset(&msg, 0, sizeof(msg));
 476	msg.cmd = PORT_ERROR_READ;
 477	msg.hss_port = port->id;
 478	hss_npe_send(port, &msg, "PORT_ERROR_READ");
 479	if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
 480		pr_crit("HSS-%i: unable to read HSS status\n", port->id);
 481		BUG();
 482	}
 483
 484	return msg.data32;
 485}
 486
 487static void hss_start_hdlc(struct port *port)
 488{
 489	struct msg msg;
 490
 491	memset(&msg, 0, sizeof(msg));
 492	msg.cmd = PKT_PIPE_FLOW_ENABLE;
 493	msg.hss_port = port->id;
 494	msg.data32 = 0;
 495	hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
 496}
 497
 498static void hss_stop_hdlc(struct port *port)
 499{
 500	struct msg msg;
 501
 502	memset(&msg, 0, sizeof(msg));
 503	msg.cmd = PKT_PIPE_FLOW_DISABLE;
 504	msg.hss_port = port->id;
 505	hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
 506	hss_get_status(port); /* make sure it's halted */
 507}
 508
 509static int hss_load_firmware(struct port *port)
 510{
 511	struct msg msg;
 512	int err;
 513
 514	if (port->initialized)
 515		return 0;
 516
 517	if (!npe_running(port->npe) &&
 518	    (err = npe_load_firmware(port->npe, npe_name(port->npe),
 519				     port->dev)))
 520		return err;
 521
 522	/* HDLC mode configuration */
 523	memset(&msg, 0, sizeof(msg));
 524	msg.cmd = PKT_NUM_PIPES_WRITE;
 525	msg.hss_port = port->id;
 526	msg.data8a = PKT_NUM_PIPES;
 527	hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
 528
 529	msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
 530	msg.data8a = PKT_PIPE_FIFO_SIZEW;
 531	hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
 532
 533	msg.cmd = PKT_PIPE_MODE_WRITE;
 534	msg.data8a = NPE_PKT_MODE_HDLC;
 535	/* msg.data8b = inv_mask */
 536	/* msg.data8c = or_mask */
 537	hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
 538
 539	msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
 540	msg.data16a = HDLC_MAX_MRU; /* including CRC */
 541	hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
 542
 543	msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
 544	msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
 545	hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
 546
 547	port->initialized = 1;
 548	return 0;
 549}
 550
 551/*****************************************************************************
 552 * packetized (HDLC) operation
 553 ****************************************************************************/
 554
 555static inline void debug_pkt(struct net_device *dev, const char *func,
 556			     u8 *data, int len)
 557{
 558#if DEBUG_PKT_BYTES
 559	int i;
 560
 561	printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
 562	for (i = 0; i < len; i++) {
 563		if (i >= DEBUG_PKT_BYTES)
 564			break;
 565		printk("%s%02X", !(i % 4) ? " " : "", data[i]);
 566	}
 567	printk("\n");
 568#endif
 569}
 570
 571
 572static inline void debug_desc(u32 phys, struct desc *desc)
 573{
 574#if DEBUG_DESC
 575	printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
 576	       phys, desc->next, desc->buf_len, desc->pkt_len,
 577	       desc->data, desc->status, desc->error_count);
 578#endif
 579}
 580
 581static inline int queue_get_desc(unsigned int queue, struct port *port,
 582				 int is_tx)
 583{
 584	u32 phys, tab_phys, n_desc;
 585	struct desc *tab;
 586
 587	if (!(phys = qmgr_get_entry(queue)))
 588		return -1;
 589
 590	BUG_ON(phys & 0x1F);
 591	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
 592	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
 593	n_desc = (phys - tab_phys) / sizeof(struct desc);
 594	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
 595	debug_desc(phys, &tab[n_desc]);
 596	BUG_ON(tab[n_desc].next);
 597	return n_desc;
 598}
 599
 600static inline void queue_put_desc(unsigned int queue, u32 phys,
 601				  struct desc *desc)
 602{
 603	debug_desc(phys, desc);
 604	BUG_ON(phys & 0x1F);
 605	qmgr_put_entry(queue, phys);
 606	/* Don't check for queue overflow here, we've allocated sufficient
 607	   length and queues >= 32 don't support this check anyway. */
 608}
 609
 610
 611static inline void dma_unmap_tx(struct port *port, struct desc *desc)
 612{
 613#ifdef __ARMEB__
 614	dma_unmap_single(&port->netdev->dev, desc->data,
 615			 desc->buf_len, DMA_TO_DEVICE);
 616#else
 617	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
 618			 ALIGN((desc->data & 3) + desc->buf_len, 4),
 619			 DMA_TO_DEVICE);
 620#endif
 621}
 622
 623
 624static void hss_hdlc_set_carrier(void *pdev, int carrier)
 625{
 626	struct net_device *netdev = pdev;
 627	struct port *port = dev_to_port(netdev);
 628	unsigned long flags;
 629
 630	spin_lock_irqsave(&npe_lock, flags);
 631	port->carrier = carrier;
 632	if (!port->loopback) {
 633		if (carrier)
 634			netif_carrier_on(netdev);
 635		else
 636			netif_carrier_off(netdev);
 637	}
 638	spin_unlock_irqrestore(&npe_lock, flags);
 639}
 640
 641static void hss_hdlc_rx_irq(void *pdev)
 642{
 643	struct net_device *dev = pdev;
 644	struct port *port = dev_to_port(dev);
 645
 646#if DEBUG_RX
 647	printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
 648#endif
 649	qmgr_disable_irq(queue_ids[port->id].rx);
 650	napi_schedule(&port->napi);
 651}
 652
 653static int hss_hdlc_poll(struct napi_struct *napi, int budget)
 654{
 655	struct port *port = container_of(napi, struct port, napi);
 656	struct net_device *dev = port->netdev;
 657	unsigned int rxq = queue_ids[port->id].rx;
 658	unsigned int rxfreeq = queue_ids[port->id].rxfree;
 659	int received = 0;
 660
 661#if DEBUG_RX
 662	printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
 663#endif
 664
 665	while (received < budget) {
 666		struct sk_buff *skb;
 667		struct desc *desc;
 668		int n;
 669#ifdef __ARMEB__
 670		struct sk_buff *temp;
 671		u32 phys;
 672#endif
 673
 674		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
 675#if DEBUG_RX
 676			printk(KERN_DEBUG "%s: hss_hdlc_poll"
 677			       " napi_complete\n", dev->name);
 678#endif
 679			napi_complete(napi);
 680			qmgr_enable_irq(rxq);
 681			if (!qmgr_stat_empty(rxq) &&
 682			    napi_reschedule(napi)) {
 683#if DEBUG_RX
 684				printk(KERN_DEBUG "%s: hss_hdlc_poll"
 685				       " napi_reschedule succeeded\n",
 686				       dev->name);
 687#endif
 688				qmgr_disable_irq(rxq);
 689				continue;
 690			}
 691#if DEBUG_RX
 692			printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
 693			       dev->name);
 694#endif
 695			return received; /* all work done */
 696		}
 697
 698		desc = rx_desc_ptr(port, n);
 699#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
 700		if (desc->error_count)
 701			printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
 702			       " errors %u\n", dev->name, desc->status,
 703			       desc->error_count);
 704#endif
 705		skb = NULL;
 706		switch (desc->status) {
 707		case 0:
 708#ifdef __ARMEB__
 709			if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
 710				phys = dma_map_single(&dev->dev, skb->data,
 711						      RX_SIZE,
 712						      DMA_FROM_DEVICE);
 713				if (dma_mapping_error(&dev->dev, phys)) {
 714					dev_kfree_skb(skb);
 715					skb = NULL;
 716				}
 717			}
 718#else
 719			skb = netdev_alloc_skb(dev, desc->pkt_len);
 720#endif
 721			if (!skb)
 722				dev->stats.rx_dropped++;
 723			break;
 724		case ERR_HDLC_ALIGN:
 725		case ERR_HDLC_ABORT:
 726			dev->stats.rx_frame_errors++;
 727			dev->stats.rx_errors++;
 728			break;
 729		case ERR_HDLC_FCS:
 730			dev->stats.rx_crc_errors++;
 731			dev->stats.rx_errors++;
 732			break;
 733		case ERR_HDLC_TOO_LONG:
 734			dev->stats.rx_length_errors++;
 735			dev->stats.rx_errors++;
 736			break;
 737		default:	/* FIXME - remove printk */
 738			netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
 739				   desc->status, desc->error_count);
 740			dev->stats.rx_errors++;
 741		}
 742
 743		if (!skb) {
 744			/* put the desc back on RX-ready queue */
 745			desc->buf_len = RX_SIZE;
 746			desc->pkt_len = desc->status = 0;
 747			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 748			continue;
 749		}
 750
 751		/* process received frame */
 752#ifdef __ARMEB__
 753		temp = skb;
 754		skb = port->rx_buff_tab[n];
 755		dma_unmap_single(&dev->dev, desc->data,
 756				 RX_SIZE, DMA_FROM_DEVICE);
 757#else
 758		dma_sync_single_for_cpu(&dev->dev, desc->data,
 759					RX_SIZE, DMA_FROM_DEVICE);
 760		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
 761			      ALIGN(desc->pkt_len, 4) / 4);
 762#endif
 763		skb_put(skb, desc->pkt_len);
 764
 765		debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
 766
 767		skb->protocol = hdlc_type_trans(skb, dev);
 768		dev->stats.rx_packets++;
 769		dev->stats.rx_bytes += skb->len;
 770		netif_receive_skb(skb);
 771
 772		/* put the new buffer on RX-free queue */
 773#ifdef __ARMEB__
 774		port->rx_buff_tab[n] = temp;
 775		desc->data = phys;
 776#endif
 777		desc->buf_len = RX_SIZE;
 778		desc->pkt_len = 0;
 779		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 780		received++;
 781	}
 782#if DEBUG_RX
 783	printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
 784#endif
 785	return received;	/* not all work done */
 786}
 787
 788
 789static void hss_hdlc_txdone_irq(void *pdev)
 790{
 791	struct net_device *dev = pdev;
 792	struct port *port = dev_to_port(dev);
 793	int n_desc;
 794
 795#if DEBUG_TX
 796	printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
 797#endif
 798	while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
 799					port, 1)) >= 0) {
 800		struct desc *desc;
 801		int start;
 802
 803		desc = tx_desc_ptr(port, n_desc);
 804
 805		dev->stats.tx_packets++;
 806		dev->stats.tx_bytes += desc->pkt_len;
 807
 808		dma_unmap_tx(port, desc);
 809#if DEBUG_TX
 810		printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
 811		       dev->name, port->tx_buff_tab[n_desc]);
 812#endif
 813		free_buffer_irq(port->tx_buff_tab[n_desc]);
 814		port->tx_buff_tab[n_desc] = NULL;
 815
 816		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
 817		queue_put_desc(port->plat->txreadyq,
 818			       tx_desc_phys(port, n_desc), desc);
 819		if (start) { /* TX-ready queue was empty */
 820#if DEBUG_TX
 821			printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
 822			       " ready\n", dev->name);
 823#endif
 824			netif_wake_queue(dev);
 825		}
 826	}
 827}
 828
 829static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
 830{
 831	struct port *port = dev_to_port(dev);
 832	unsigned int txreadyq = port->plat->txreadyq;
 833	int len, offset, bytes, n;
 834	void *mem;
 835	u32 phys;
 836	struct desc *desc;
 837
 838#if DEBUG_TX
 839	printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
 840#endif
 841
 842	if (unlikely(skb->len > HDLC_MAX_MRU)) {
 843		dev_kfree_skb(skb);
 844		dev->stats.tx_errors++;
 845		return NETDEV_TX_OK;
 846	}
 847
 848	debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
 849
 850	len = skb->len;
 851#ifdef __ARMEB__
 852	offset = 0; /* no need to keep alignment */
 853	bytes = len;
 854	mem = skb->data;
 855#else
 856	offset = (int)skb->data & 3; /* keep 32-bit alignment */
 857	bytes = ALIGN(offset + len, 4);
 858	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
 859		dev_kfree_skb(skb);
 860		dev->stats.tx_dropped++;
 861		return NETDEV_TX_OK;
 862	}
 863	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
 864	dev_kfree_skb(skb);
 865#endif
 866
 867	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
 868	if (dma_mapping_error(&dev->dev, phys)) {
 869#ifdef __ARMEB__
 870		dev_kfree_skb(skb);
 871#else
 872		kfree(mem);
 873#endif
 874		dev->stats.tx_dropped++;
 875		return NETDEV_TX_OK;
 876	}
 877
 878	n = queue_get_desc(txreadyq, port, 1);
 879	BUG_ON(n < 0);
 880	desc = tx_desc_ptr(port, n);
 881
 882#ifdef __ARMEB__
 883	port->tx_buff_tab[n] = skb;
 884#else
 885	port->tx_buff_tab[n] = mem;
 886#endif
 887	desc->data = phys + offset;
 888	desc->buf_len = desc->pkt_len = len;
 889
 890	wmb();
 891	queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
 892
 893	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
 894#if DEBUG_TX
 895		printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
 896#endif
 897		netif_stop_queue(dev);
 898		/* we could miss TX ready interrupt */
 899		if (!qmgr_stat_below_low_watermark(txreadyq)) {
 900#if DEBUG_TX
 901			printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
 902			       dev->name);
 903#endif
 904			netif_wake_queue(dev);
 905		}
 906	}
 907
 908#if DEBUG_TX
 909	printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
 910#endif
 911	return NETDEV_TX_OK;
 912}
 913
 914
 915static int request_hdlc_queues(struct port *port)
 916{
 917	int err;
 918
 919	err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
 920				 "%s:RX-free", port->netdev->name);
 921	if (err)
 922		return err;
 923
 924	err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
 925				 "%s:RX", port->netdev->name);
 926	if (err)
 927		goto rel_rxfree;
 928
 929	err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
 930				 "%s:TX", port->netdev->name);
 931	if (err)
 932		goto rel_rx;
 933
 934	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
 935				 "%s:TX-ready", port->netdev->name);
 936	if (err)
 937		goto rel_tx;
 938
 939	err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
 940				 "%s:TX-done", port->netdev->name);
 941	if (err)
 942		goto rel_txready;
 943	return 0;
 944
 945rel_txready:
 946	qmgr_release_queue(port->plat->txreadyq);
 947rel_tx:
 948	qmgr_release_queue(queue_ids[port->id].tx);
 949rel_rx:
 950	qmgr_release_queue(queue_ids[port->id].rx);
 951rel_rxfree:
 952	qmgr_release_queue(queue_ids[port->id].rxfree);
 953	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
 954	       port->netdev->name);
 955	return err;
 956}
 957
 958static void release_hdlc_queues(struct port *port)
 959{
 960	qmgr_release_queue(queue_ids[port->id].rxfree);
 961	qmgr_release_queue(queue_ids[port->id].rx);
 962	qmgr_release_queue(queue_ids[port->id].txdone);
 963	qmgr_release_queue(queue_ids[port->id].tx);
 964	qmgr_release_queue(port->plat->txreadyq);
 965}
 966
 967static int init_hdlc_queues(struct port *port)
 968{
 969	int i;
 970
 971	if (!ports_open)
 972		if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
 973						 POOL_ALLOC_SIZE, 32, 0)))
 
 974			return -ENOMEM;
 
 975
 976	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
 977					      &port->desc_tab_phys)))
 978		return -ENOMEM;
 979	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
 980	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
 981	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
 982
 983	/* Setup RX buffers */
 984	for (i = 0; i < RX_DESCS; i++) {
 985		struct desc *desc = rx_desc_ptr(port, i);
 986		buffer_t *buff;
 987		void *data;
 988#ifdef __ARMEB__
 989		if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
 990			return -ENOMEM;
 991		data = buff->data;
 992#else
 993		if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
 994			return -ENOMEM;
 995		data = buff;
 996#endif
 997		desc->buf_len = RX_SIZE;
 998		desc->data = dma_map_single(&port->netdev->dev, data,
 999					    RX_SIZE, DMA_FROM_DEVICE);
1000		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1001			free_buffer(buff);
1002			return -EIO;
1003		}
1004		port->rx_buff_tab[i] = buff;
1005	}
1006
1007	return 0;
1008}
1009
1010static void destroy_hdlc_queues(struct port *port)
1011{
1012	int i;
1013
1014	if (port->desc_tab) {
1015		for (i = 0; i < RX_DESCS; i++) {
1016			struct desc *desc = rx_desc_ptr(port, i);
1017			buffer_t *buff = port->rx_buff_tab[i];
1018			if (buff) {
1019				dma_unmap_single(&port->netdev->dev,
1020						 desc->data, RX_SIZE,
1021						 DMA_FROM_DEVICE);
1022				free_buffer(buff);
1023			}
1024		}
1025		for (i = 0; i < TX_DESCS; i++) {
1026			struct desc *desc = tx_desc_ptr(port, i);
1027			buffer_t *buff = port->tx_buff_tab[i];
1028			if (buff) {
1029				dma_unmap_tx(port, desc);
1030				free_buffer(buff);
1031			}
1032		}
1033		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1034		port->desc_tab = NULL;
1035	}
1036
1037	if (!ports_open && dma_pool) {
1038		dma_pool_destroy(dma_pool);
1039		dma_pool = NULL;
1040	}
1041}
1042
1043static int hss_hdlc_open(struct net_device *dev)
1044{
1045	struct port *port = dev_to_port(dev);
1046	unsigned long flags;
1047	int i, err = 0;
1048
1049	if ((err = hdlc_open(dev)))
1050		return err;
1051
1052	if ((err = hss_load_firmware(port)))
1053		goto err_hdlc_close;
1054
1055	if ((err = request_hdlc_queues(port)))
1056		goto err_hdlc_close;
1057
1058	if ((err = init_hdlc_queues(port)))
1059		goto err_destroy_queues;
1060
1061	spin_lock_irqsave(&npe_lock, flags);
1062	if (port->plat->open)
1063		if ((err = port->plat->open(port->id, dev,
1064					    hss_hdlc_set_carrier)))
1065			goto err_unlock;
1066	spin_unlock_irqrestore(&npe_lock, flags);
1067
1068	/* Populate queues with buffers, no failure after this point */
1069	for (i = 0; i < TX_DESCS; i++)
1070		queue_put_desc(port->plat->txreadyq,
1071			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1072
1073	for (i = 0; i < RX_DESCS; i++)
1074		queue_put_desc(queue_ids[port->id].rxfree,
1075			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1076
1077	napi_enable(&port->napi);
1078	netif_start_queue(dev);
1079
1080	qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1081		     hss_hdlc_rx_irq, dev);
1082
1083	qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1084		     hss_hdlc_txdone_irq, dev);
1085	qmgr_enable_irq(queue_ids[port->id].txdone);
1086
1087	ports_open++;
1088
1089	hss_set_hdlc_cfg(port);
1090	hss_config(port);
1091
1092	hss_start_hdlc(port);
1093
1094	/* we may already have RX data, enables IRQ */
1095	napi_schedule(&port->napi);
1096	return 0;
1097
1098err_unlock:
1099	spin_unlock_irqrestore(&npe_lock, flags);
1100err_destroy_queues:
1101	destroy_hdlc_queues(port);
1102	release_hdlc_queues(port);
1103err_hdlc_close:
1104	hdlc_close(dev);
1105	return err;
1106}
1107
1108static int hss_hdlc_close(struct net_device *dev)
1109{
1110	struct port *port = dev_to_port(dev);
1111	unsigned long flags;
1112	int i, buffs = RX_DESCS; /* allocated RX buffers */
1113
1114	spin_lock_irqsave(&npe_lock, flags);
1115	ports_open--;
1116	qmgr_disable_irq(queue_ids[port->id].rx);
1117	netif_stop_queue(dev);
1118	napi_disable(&port->napi);
1119
1120	hss_stop_hdlc(port);
1121
1122	while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1123		buffs--;
1124	while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1125		buffs--;
1126
1127	if (buffs)
1128		netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1129			    buffs);
1130
1131	buffs = TX_DESCS;
1132	while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1133		buffs--; /* cancel TX */
1134
1135	i = 0;
1136	do {
1137		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1138			buffs--;
1139		if (!buffs)
1140			break;
1141	} while (++i < MAX_CLOSE_WAIT);
1142
1143	if (buffs)
1144		netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1145			    buffs);
1146#if DEBUG_CLOSE
1147	if (!buffs)
1148		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1149#endif
1150	qmgr_disable_irq(queue_ids[port->id].txdone);
1151
1152	if (port->plat->close)
1153		port->plat->close(port->id, dev);
1154	spin_unlock_irqrestore(&npe_lock, flags);
1155
1156	destroy_hdlc_queues(port);
1157	release_hdlc_queues(port);
1158	hdlc_close(dev);
1159	return 0;
1160}
1161
1162
1163static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1164			   unsigned short parity)
1165{
1166	struct port *port = dev_to_port(dev);
1167
1168	if (encoding != ENCODING_NRZ)
1169		return -EINVAL;
1170
1171	switch(parity) {
1172	case PARITY_CRC16_PR1_CCITT:
1173		port->hdlc_cfg = 0;
1174		return 0;
1175
1176	case PARITY_CRC32_PR1_CCITT:
1177		port->hdlc_cfg = PKT_HDLC_CRC_32;
1178		return 0;
1179
1180	default:
1181		return -EINVAL;
1182	}
1183}
1184
1185static u32 check_clock(u32 rate, u32 a, u32 b, u32 c,
1186		       u32 *best, u32 *best_diff, u32 *reg)
1187{
1188	/* a is 10-bit, b is 10-bit, c is 12-bit */
1189	u64 new_rate;
1190	u32 new_diff;
1191
1192	new_rate = ixp4xx_timer_freq * (u64)(c + 1);
1193	do_div(new_rate, a * (c + 1) + b + 1);
1194	new_diff = abs((u32)new_rate - rate);
1195
1196	if (new_diff < *best_diff) {
1197		*best = new_rate;
1198		*best_diff = new_diff;
1199		*reg = (a << 22) | (b << 12) | c;
1200	}
1201	return new_diff;
1202}
1203
1204static void find_best_clock(u32 rate, u32 *best, u32 *reg)
1205{
1206	u32 a, b, diff = 0xFFFFFFFF;
1207
1208	a = ixp4xx_timer_freq / rate;
1209
1210	if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1211		check_clock(rate, 0x3FF, 1, 1, best, &diff, reg);
1212		return;
1213	}
1214	if (a == 0) { /* > 66.666 MHz */
1215		a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1216		rate = ixp4xx_timer_freq;
1217	}
1218
1219	if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */
1220		check_clock(rate, a - 1, 1, 1, best, &diff, reg);
1221		return;
1222	}
1223
1224	for (b = 0; b < 0x400; b++) {
1225		u64 c = (b + 1) * (u64)rate;
1226		do_div(c, ixp4xx_timer_freq - rate * a);
1227		c--;
1228		if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1229			if (b == 0 && /* also try a bit higher rate */
1230			    !check_clock(rate, a - 1, 1, 1, best, &diff, reg))
 
1231				return;
1232			check_clock(rate, a, b, 0xFFF, best, &diff, reg);
 
1233			return;
1234		}
1235		if (!check_clock(rate, a, b, c, best, &diff, reg))
1236			return;
1237		if (!check_clock(rate, a, b, c + 1, best, &diff, reg))
 
1238			return;
1239	}
1240}
1241
1242static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1243{
1244	const size_t size = sizeof(sync_serial_settings);
1245	sync_serial_settings new_line;
1246	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1247	struct port *port = dev_to_port(dev);
1248	unsigned long flags;
1249	int clk;
1250
1251	if (cmd != SIOCWANDEV)
1252		return hdlc_ioctl(dev, ifr, cmd);
1253
1254	switch(ifr->ifr_settings.type) {
1255	case IF_GET_IFACE:
1256		ifr->ifr_settings.type = IF_IFACE_V35;
1257		if (ifr->ifr_settings.size < size) {
1258			ifr->ifr_settings.size = size; /* data size wanted */
1259			return -ENOBUFS;
1260		}
1261		memset(&new_line, 0, sizeof(new_line));
1262		new_line.clock_type = port->clock_type;
1263		new_line.clock_rate = port->clock_rate;
1264		new_line.loopback = port->loopback;
1265		if (copy_to_user(line, &new_line, size))
1266			return -EFAULT;
1267		return 0;
1268
1269	case IF_IFACE_SYNC_SERIAL:
1270	case IF_IFACE_V35:
1271		if(!capable(CAP_NET_ADMIN))
1272			return -EPERM;
1273		if (copy_from_user(&new_line, line, size))
1274			return -EFAULT;
1275
1276		clk = new_line.clock_type;
1277		if (port->plat->set_clock)
1278			clk = port->plat->set_clock(port->id, clk);
1279
1280		if (clk != CLOCK_EXT && clk != CLOCK_INT)
1281			return -EINVAL;	/* No such clock setting */
1282
1283		if (new_line.loopback != 0 && new_line.loopback != 1)
1284			return -EINVAL;
1285
1286		port->clock_type = clk; /* Update settings */
1287		if (clk == CLOCK_INT)
1288			find_best_clock(new_line.clock_rate, &port->clock_rate,
1289					&port->clock_reg);
 
1290		else {
1291			port->clock_rate = 0;
1292			port->clock_reg = CLK42X_SPEED_2048KHZ;
1293		}
1294		port->loopback = new_line.loopback;
1295
1296		spin_lock_irqsave(&npe_lock, flags);
1297
1298		if (dev->flags & IFF_UP)
1299			hss_config(port);
1300
1301		if (port->loopback || port->carrier)
1302			netif_carrier_on(port->netdev);
1303		else
1304			netif_carrier_off(port->netdev);
1305		spin_unlock_irqrestore(&npe_lock, flags);
1306
1307		return 0;
1308
1309	default:
1310		return hdlc_ioctl(dev, ifr, cmd);
1311	}
1312}
1313
1314/*****************************************************************************
1315 * initialization
1316 ****************************************************************************/
1317
1318static const struct net_device_ops hss_hdlc_ops = {
1319	.ndo_open       = hss_hdlc_open,
1320	.ndo_stop       = hss_hdlc_close,
1321	.ndo_change_mtu = hdlc_change_mtu,
1322	.ndo_start_xmit = hdlc_start_xmit,
1323	.ndo_do_ioctl   = hss_hdlc_ioctl,
1324};
1325
1326static int __devinit hss_init_one(struct platform_device *pdev)
1327{
1328	struct port *port;
1329	struct net_device *dev;
1330	hdlc_device *hdlc;
1331	int err;
1332
1333	if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1334		return -ENOMEM;
1335
1336	if ((port->npe = npe_request(0)) == NULL) {
1337		err = -ENODEV;
1338		goto err_free;
1339	}
1340
1341	if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1342		err = -ENOMEM;
1343		goto err_plat;
1344	}
1345
1346	SET_NETDEV_DEV(dev, &pdev->dev);
1347	hdlc = dev_to_hdlc(dev);
1348	hdlc->attach = hss_hdlc_attach;
1349	hdlc->xmit = hss_hdlc_xmit;
1350	dev->netdev_ops = &hss_hdlc_ops;
1351	dev->tx_queue_len = 100;
1352	port->clock_type = CLOCK_EXT;
1353	port->clock_rate = 0;
1354	port->clock_reg = CLK42X_SPEED_2048KHZ;
1355	port->id = pdev->id;
1356	port->dev = &pdev->dev;
1357	port->plat = pdev->dev.platform_data;
1358	netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1359
1360	if ((err = register_hdlc_device(dev)))
1361		goto err_free_netdev;
1362
1363	platform_set_drvdata(pdev, port);
1364
1365	netdev_info(dev, "HSS-%i\n", port->id);
1366	return 0;
1367
1368err_free_netdev:
1369	free_netdev(dev);
1370err_plat:
1371	npe_release(port->npe);
1372err_free:
1373	kfree(port);
1374	return err;
1375}
1376
1377static int __devexit hss_remove_one(struct platform_device *pdev)
1378{
1379	struct port *port = platform_get_drvdata(pdev);
1380
1381	unregister_hdlc_device(port->netdev);
1382	free_netdev(port->netdev);
1383	npe_release(port->npe);
1384	platform_set_drvdata(pdev, NULL);
1385	kfree(port);
1386	return 0;
1387}
1388
1389static struct platform_driver ixp4xx_hss_driver = {
1390	.driver.name	= DRV_NAME,
1391	.probe		= hss_init_one,
1392	.remove		= hss_remove_one,
1393};
1394
1395static int __init hss_init_module(void)
1396{
1397	if ((ixp4xx_read_feature_bits() &
1398	     (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1399	    (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1400		return -ENODEV;
1401
1402	spin_lock_init(&npe_lock);
1403
1404	return platform_driver_register(&ixp4xx_hss_driver);
1405}
1406
1407static void __exit hss_cleanup_module(void)
1408{
1409	platform_driver_unregister(&ixp4xx_hss_driver);
1410}
1411
1412MODULE_AUTHOR("Krzysztof Halasa");
1413MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1414MODULE_LICENSE("GPL v2");
1415MODULE_ALIAS("platform:ixp4xx_hss");
1416module_init(hss_init_module);
1417module_exit(hss_cleanup_module);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
   4 *
   5 * Copyright (C) 2007-2008 Krzysztof HaƂasa <khc@pm.waw.pl>
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/module.h>
  11#include <linux/bitops.h>
  12#include <linux/cdev.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmapool.h>
  15#include <linux/fs.h>
  16#include <linux/hdlc.h>
  17#include <linux/io.h>
  18#include <linux/kernel.h>
  19#include <linux/platform_device.h>
  20#include <linux/platform_data/wan_ixp4xx_hss.h>
  21#include <linux/poll.h>
  22#include <linux/slab.h>
  23#include <linux/soc/ixp4xx/npe.h>
  24#include <linux/soc/ixp4xx/qmgr.h>
  25
  26#define DEBUG_DESC		0
  27#define DEBUG_RX		0
  28#define DEBUG_TX		0
  29#define DEBUG_PKT_BYTES		0
  30#define DEBUG_CLOSE		0
  31
  32#define DRV_NAME		"ixp4xx_hss"
  33
  34#define PKT_EXTRA_FLAGS		0 /* orig 1 */
  35#define PKT_NUM_PIPES		1 /* 1, 2 or 4 */
  36#define PKT_PIPE_FIFO_SIZEW	4 /* total 4 dwords per HSS */
  37
  38#define RX_DESCS		16 /* also length of all RX queues */
  39#define TX_DESCS		16 /* also length of all TX queues */
  40
  41#define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  42#define RX_SIZE			(HDLC_MAX_MRU + 4) /* NPE needs more space */
  43#define MAX_CLOSE_WAIT		1000 /* microseconds */
  44#define HSS_COUNT		2
  45#define FRAME_SIZE		256 /* doesn't matter at this point */
  46#define FRAME_OFFSET		0
  47#define MAX_CHANNELS		(FRAME_SIZE / 8)
  48
  49#define NAPI_WEIGHT		16
  50
  51/* Queue IDs */
  52#define HSS0_CHL_RXTRIG_QUEUE	12	/* orig size = 32 dwords */
  53#define HSS0_PKT_RX_QUEUE	13	/* orig size = 32 dwords */
  54#define HSS0_PKT_TX0_QUEUE	14	/* orig size = 16 dwords */
  55#define HSS0_PKT_TX1_QUEUE	15
  56#define HSS0_PKT_TX2_QUEUE	16
  57#define HSS0_PKT_TX3_QUEUE	17
  58#define HSS0_PKT_RXFREE0_QUEUE	18	/* orig size = 16 dwords */
  59#define HSS0_PKT_RXFREE1_QUEUE	19
  60#define HSS0_PKT_RXFREE2_QUEUE	20
  61#define HSS0_PKT_RXFREE3_QUEUE	21
  62#define HSS0_PKT_TXDONE_QUEUE	22	/* orig size = 64 dwords */
  63
  64#define HSS1_CHL_RXTRIG_QUEUE	10
  65#define HSS1_PKT_RX_QUEUE	0
  66#define HSS1_PKT_TX0_QUEUE	5
  67#define HSS1_PKT_TX1_QUEUE	6
  68#define HSS1_PKT_TX2_QUEUE	7
  69#define HSS1_PKT_TX3_QUEUE	8
  70#define HSS1_PKT_RXFREE0_QUEUE	1
  71#define HSS1_PKT_RXFREE1_QUEUE	2
  72#define HSS1_PKT_RXFREE2_QUEUE	3
  73#define HSS1_PKT_RXFREE3_QUEUE	4
  74#define HSS1_PKT_TXDONE_QUEUE	9
  75
  76#define NPE_PKT_MODE_HDLC		0
  77#define NPE_PKT_MODE_RAW		1
  78#define NPE_PKT_MODE_56KMODE		2
  79#define NPE_PKT_MODE_56KENDIAN_MSB	4
  80
  81/* PKT_PIPE_HDLC_CFG_WRITE flags */
  82#define PKT_HDLC_IDLE_ONES		0x1 /* default = flags */
  83#define PKT_HDLC_CRC_32			0x2 /* default = CRC-16 */
  84#define PKT_HDLC_MSB_ENDIAN		0x4 /* default = LE */
  85
  86
  87/* hss_config, PCRs */
  88/* Frame sync sampling, default = active low */
  89#define PCR_FRM_SYNC_ACTIVE_HIGH	0x40000000
  90#define PCR_FRM_SYNC_FALLINGEDGE	0x80000000
  91#define PCR_FRM_SYNC_RISINGEDGE		0xC0000000
  92
  93/* Frame sync pin: input (default) or output generated off a given clk edge */
  94#define PCR_FRM_SYNC_OUTPUT_FALLING	0x20000000
  95#define PCR_FRM_SYNC_OUTPUT_RISING	0x30000000
  96
  97/* Frame and data clock sampling on edge, default = falling */
  98#define PCR_FCLK_EDGE_RISING		0x08000000
  99#define PCR_DCLK_EDGE_RISING		0x04000000
 100
 101/* Clock direction, default = input */
 102#define PCR_SYNC_CLK_DIR_OUTPUT		0x02000000
 103
 104/* Generate/Receive frame pulses, default = enabled */
 105#define PCR_FRM_PULSE_DISABLED		0x01000000
 106
 107 /* Data rate is full (default) or half the configured clk speed */
 108#define PCR_HALF_CLK_RATE		0x00200000
 109
 110/* Invert data between NPE and HSS FIFOs? (default = no) */
 111#define PCR_DATA_POLARITY_INVERT	0x00100000
 112
 113/* TX/RX endianness, default = LSB */
 114#define PCR_MSB_ENDIAN			0x00080000
 115
 116/* Normal (default) / open drain mode (TX only) */
 117#define PCR_TX_PINS_OPEN_DRAIN		0x00040000
 118
 119/* No framing bit transmitted and expected on RX? (default = framing bit) */
 120#define PCR_SOF_NO_FBIT			0x00020000
 121
 122/* Drive data pins? */
 123#define PCR_TX_DATA_ENABLE		0x00010000
 124
 125/* Voice 56k type: drive the data pins low (default), high, high Z */
 126#define PCR_TX_V56K_HIGH		0x00002000
 127#define PCR_TX_V56K_HIGH_IMP		0x00004000
 128
 129/* Unassigned type: drive the data pins low (default), high, high Z */
 130#define PCR_TX_UNASS_HIGH		0x00000800
 131#define PCR_TX_UNASS_HIGH_IMP		0x00001000
 132
 133/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
 134#define PCR_TX_FB_HIGH_IMP		0x00000400
 135
 136/* 56k data endiannes - which bit unused: high (default) or low */
 137#define PCR_TX_56KE_BIT_0_UNUSED	0x00000200
 138
 139/* 56k data transmission type: 32/8 bit data (default) or 56K data */
 140#define PCR_TX_56KS_56K_DATA		0x00000100
 141
 142/* hss_config, cCR */
 143/* Number of packetized clients, default = 1 */
 144#define CCR_NPE_HFIFO_2_HDLC		0x04000000
 145#define CCR_NPE_HFIFO_3_OR_4HDLC	0x08000000
 146
 147/* default = no loopback */
 148#define CCR_LOOPBACK			0x02000000
 149
 150/* HSS number, default = 0 (first) */
 151#define CCR_SECOND_HSS			0x01000000
 152
 153
 154/* hss_config, clkCR: main:10, num:10, denom:12 */
 155#define CLK42X_SPEED_EXP	((0x3FF << 22) | (  2 << 12) |   15) /*65 KHz*/
 156
 157#define CLK42X_SPEED_512KHZ	((  130 << 22) | (  2 << 12) |   15)
 158#define CLK42X_SPEED_1536KHZ	((   43 << 22) | ( 18 << 12) |   47)
 159#define CLK42X_SPEED_1544KHZ	((   43 << 22) | ( 33 << 12) |  192)
 160#define CLK42X_SPEED_2048KHZ	((   32 << 22) | ( 34 << 12) |   63)
 161#define CLK42X_SPEED_4096KHZ	((   16 << 22) | ( 34 << 12) |  127)
 162#define CLK42X_SPEED_8192KHZ	((    8 << 22) | ( 34 << 12) |  255)
 163
 164#define CLK46X_SPEED_512KHZ	((  130 << 22) | ( 24 << 12) |  127)
 165#define CLK46X_SPEED_1536KHZ	((   43 << 22) | (152 << 12) |  383)
 166#define CLK46X_SPEED_1544KHZ	((   43 << 22) | ( 66 << 12) |  385)
 167#define CLK46X_SPEED_2048KHZ	((   32 << 22) | (280 << 12) |  511)
 168#define CLK46X_SPEED_4096KHZ	((   16 << 22) | (280 << 12) | 1023)
 169#define CLK46X_SPEED_8192KHZ	((    8 << 22) | (280 << 12) | 2047)
 170
 171/*
 172 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
 173 *     A (10 bits), B (10 bits) and C (12 bits).
 174 * IXP42x HSS clock generator operation (verified with an oscilloscope):
 175 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
 176 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
 177 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
 178 * (A + 1) bits wide.
 179 *
 180 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
 181 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
 182 * minimum freq = 66.666 MHz / (A + 1)
 183 * maximum freq = 66.666 MHz / A
 184 *
 185 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
 186 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
 187 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
 188 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
 189 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
 190 * The sequence consists of 4 complete clock periods, thus the average
 191 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
 192 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
 193 */
 194
 195/* hss_config, LUT entries */
 196#define TDMMAP_UNASSIGNED	0
 197#define TDMMAP_HDLC		1	/* HDLC - packetized */
 198#define TDMMAP_VOICE56K		2	/* Voice56K - 7-bit channelized */
 199#define TDMMAP_VOICE64K		3	/* Voice64K - 8-bit channelized */
 200
 201/* offsets into HSS config */
 202#define HSS_CONFIG_TX_PCR	0x00 /* port configuration registers */
 203#define HSS_CONFIG_RX_PCR	0x04
 204#define HSS_CONFIG_CORE_CR	0x08 /* loopback control, HSS# */
 205#define HSS_CONFIG_CLOCK_CR	0x0C /* clock generator control */
 206#define HSS_CONFIG_TX_FCR	0x10 /* frame configuration registers */
 207#define HSS_CONFIG_RX_FCR	0x14
 208#define HSS_CONFIG_TX_LUT	0x18 /* channel look-up tables */
 209#define HSS_CONFIG_RX_LUT	0x38
 210
 211
 212/* NPE command codes */
 213/* writes the ConfigWord value to the location specified by offset */
 214#define PORT_CONFIG_WRITE		0x40
 215
 216/* triggers the NPE to load the contents of the configuration table */
 217#define PORT_CONFIG_LOAD		0x41
 218
 219/* triggers the NPE to return an HssErrorReadResponse message */
 220#define PORT_ERROR_READ			0x42
 221
 222/* triggers the NPE to reset internal status and enable the HssPacketized
 223   operation for the flow specified by pPipe */
 224#define PKT_PIPE_FLOW_ENABLE		0x50
 225#define PKT_PIPE_FLOW_DISABLE		0x51
 226#define PKT_NUM_PIPES_WRITE		0x52
 227#define PKT_PIPE_FIFO_SIZEW_WRITE	0x53
 228#define PKT_PIPE_HDLC_CFG_WRITE		0x54
 229#define PKT_PIPE_IDLE_PATTERN_WRITE	0x55
 230#define PKT_PIPE_RX_SIZE_WRITE		0x56
 231#define PKT_PIPE_MODE_WRITE		0x57
 232
 233/* HDLC packet status values - desc->status */
 234#define ERR_SHUTDOWN		1 /* stop or shutdown occurrence */
 235#define ERR_HDLC_ALIGN		2 /* HDLC alignment error */
 236#define ERR_HDLC_FCS		3 /* HDLC Frame Check Sum error */
 237#define ERR_RXFREE_Q_EMPTY	4 /* RX-free queue became empty while receiving
 238				     this packet (if buf_len < pkt_len) */
 239#define ERR_HDLC_TOO_LONG	5 /* HDLC frame size too long */
 240#define ERR_HDLC_ABORT		6 /* abort sequence received */
 241#define ERR_DISCONNECTING	7 /* disconnect is in progress */
 242
 243
 244#ifdef __ARMEB__
 245typedef struct sk_buff buffer_t;
 246#define free_buffer dev_kfree_skb
 247#define free_buffer_irq dev_consume_skb_irq
 248#else
 249typedef void buffer_t;
 250#define free_buffer kfree
 251#define free_buffer_irq kfree
 252#endif
 253
 254struct port {
 255	struct device *dev;
 256	struct npe *npe;
 257	struct net_device *netdev;
 258	struct napi_struct napi;
 259	struct hss_plat_info *plat;
 260	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
 261	struct desc *desc_tab;	/* coherent */
 262	dma_addr_t desc_tab_phys;
 263	unsigned int id;
 264	unsigned int clock_type, clock_rate, loopback;
 265	unsigned int initialized, carrier;
 266	u8 hdlc_cfg;
 267	u32 clock_reg;
 268};
 269
 270/* NPE message structure */
 271struct msg {
 272#ifdef __ARMEB__
 273	u8 cmd, unused, hss_port, index;
 274	union {
 275		struct { u8 data8a, data8b, data8c, data8d; };
 276		struct { u16 data16a, data16b; };
 277		struct { u32 data32; };
 278	};
 279#else
 280	u8 index, hss_port, unused, cmd;
 281	union {
 282		struct { u8 data8d, data8c, data8b, data8a; };
 283		struct { u16 data16b, data16a; };
 284		struct { u32 data32; };
 285	};
 286#endif
 287};
 288
 289/* HDLC packet descriptor */
 290struct desc {
 291	u32 next;		/* pointer to next buffer, unused */
 292
 293#ifdef __ARMEB__
 294	u16 buf_len;		/* buffer length */
 295	u16 pkt_len;		/* packet length */
 296	u32 data;		/* pointer to data buffer in RAM */
 297	u8 status;
 298	u8 error_count;
 299	u16 __reserved;
 300#else
 301	u16 pkt_len;		/* packet length */
 302	u16 buf_len;		/* buffer length */
 303	u32 data;		/* pointer to data buffer in RAM */
 304	u16 __reserved;
 305	u8 error_count;
 306	u8 status;
 307#endif
 308	u32 __reserved1[4];
 309};
 310
 311
 312#define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
 313				 (n) * sizeof(struct desc))
 314#define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
 315
 316#define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
 317				 ((n) + RX_DESCS) * sizeof(struct desc))
 318#define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
 319
 320/*****************************************************************************
 321 * global variables
 322 ****************************************************************************/
 323
 324static int ports_open;
 325static struct dma_pool *dma_pool;
 326static spinlock_t npe_lock;
 327
 328static const struct {
 329	int tx, txdone, rx, rxfree;
 330}queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
 331		  HSS0_PKT_RXFREE0_QUEUE},
 332		 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
 333		  HSS1_PKT_RXFREE0_QUEUE},
 334};
 335
 336/*****************************************************************************
 337 * utility functions
 338 ****************************************************************************/
 339
 340static inline struct port* dev_to_port(struct net_device *dev)
 341{
 342	return dev_to_hdlc(dev)->priv;
 343}
 344
 345#ifndef __ARMEB__
 346static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
 347{
 348	int i;
 349	for (i = 0; i < cnt; i++)
 350		dest[i] = swab32(src[i]);
 351}
 352#endif
 353
 354/*****************************************************************************
 355 * HSS access
 356 ****************************************************************************/
 357
 358static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
 359{
 360	u32 *val = (u32*)msg;
 361	if (npe_send_message(port->npe, msg, what)) {
 362		pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
 363			port->id, val[0], val[1], npe_name(port->npe));
 364		BUG();
 365	}
 366}
 367
 368static void hss_config_set_lut(struct port *port)
 369{
 370	struct msg msg;
 371	int ch;
 372
 373	memset(&msg, 0, sizeof(msg));
 374	msg.cmd = PORT_CONFIG_WRITE;
 375	msg.hss_port = port->id;
 376
 377	for (ch = 0; ch < MAX_CHANNELS; ch++) {
 378		msg.data32 >>= 2;
 379		msg.data32 |= TDMMAP_HDLC << 30;
 380
 381		if (ch % 16 == 15) {
 382			msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
 383			hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
 384
 385			msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
 386			hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
 387		}
 388	}
 389}
 390
 391static void hss_config(struct port *port)
 392{
 393	struct msg msg;
 394
 395	memset(&msg, 0, sizeof(msg));
 396	msg.cmd = PORT_CONFIG_WRITE;
 397	msg.hss_port = port->id;
 398	msg.index = HSS_CONFIG_TX_PCR;
 399	msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
 400		PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
 401	if (port->clock_type == CLOCK_INT)
 402		msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
 403	hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
 404
 405	msg.index = HSS_CONFIG_RX_PCR;
 406	msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
 407	hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
 408
 409	memset(&msg, 0, sizeof(msg));
 410	msg.cmd = PORT_CONFIG_WRITE;
 411	msg.hss_port = port->id;
 412	msg.index = HSS_CONFIG_CORE_CR;
 413	msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
 414		(port->id ? CCR_SECOND_HSS : 0);
 415	hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
 416
 417	memset(&msg, 0, sizeof(msg));
 418	msg.cmd = PORT_CONFIG_WRITE;
 419	msg.hss_port = port->id;
 420	msg.index = HSS_CONFIG_CLOCK_CR;
 421	msg.data32 = port->clock_reg;
 422	hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
 423
 424	memset(&msg, 0, sizeof(msg));
 425	msg.cmd = PORT_CONFIG_WRITE;
 426	msg.hss_port = port->id;
 427	msg.index = HSS_CONFIG_TX_FCR;
 428	msg.data16a = FRAME_OFFSET;
 429	msg.data16b = FRAME_SIZE - 1;
 430	hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
 431
 432	memset(&msg, 0, sizeof(msg));
 433	msg.cmd = PORT_CONFIG_WRITE;
 434	msg.hss_port = port->id;
 435	msg.index = HSS_CONFIG_RX_FCR;
 436	msg.data16a = FRAME_OFFSET;
 437	msg.data16b = FRAME_SIZE - 1;
 438	hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
 439
 440	hss_config_set_lut(port);
 441
 442	memset(&msg, 0, sizeof(msg));
 443	msg.cmd = PORT_CONFIG_LOAD;
 444	msg.hss_port = port->id;
 445	hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
 446
 447	if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
 448	    /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
 449	    msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
 450		pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
 451		BUG();
 452	}
 453
 454	/* HDLC may stop working without this - check FIXME */
 455	npe_recv_message(port->npe, &msg, "FLUSH_IT");
 456}
 457
 458static void hss_set_hdlc_cfg(struct port *port)
 459{
 460	struct msg msg;
 461
 462	memset(&msg, 0, sizeof(msg));
 463	msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
 464	msg.hss_port = port->id;
 465	msg.data8a = port->hdlc_cfg; /* rx_cfg */
 466	msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
 467	hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
 468}
 469
 470static u32 hss_get_status(struct port *port)
 471{
 472	struct msg msg;
 473
 474	memset(&msg, 0, sizeof(msg));
 475	msg.cmd = PORT_ERROR_READ;
 476	msg.hss_port = port->id;
 477	hss_npe_send(port, &msg, "PORT_ERROR_READ");
 478	if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
 479		pr_crit("HSS-%i: unable to read HSS status\n", port->id);
 480		BUG();
 481	}
 482
 483	return msg.data32;
 484}
 485
 486static void hss_start_hdlc(struct port *port)
 487{
 488	struct msg msg;
 489
 490	memset(&msg, 0, sizeof(msg));
 491	msg.cmd = PKT_PIPE_FLOW_ENABLE;
 492	msg.hss_port = port->id;
 493	msg.data32 = 0;
 494	hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
 495}
 496
 497static void hss_stop_hdlc(struct port *port)
 498{
 499	struct msg msg;
 500
 501	memset(&msg, 0, sizeof(msg));
 502	msg.cmd = PKT_PIPE_FLOW_DISABLE;
 503	msg.hss_port = port->id;
 504	hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
 505	hss_get_status(port); /* make sure it's halted */
 506}
 507
 508static int hss_load_firmware(struct port *port)
 509{
 510	struct msg msg;
 511	int err;
 512
 513	if (port->initialized)
 514		return 0;
 515
 516	if (!npe_running(port->npe) &&
 517	    (err = npe_load_firmware(port->npe, npe_name(port->npe),
 518				     port->dev)))
 519		return err;
 520
 521	/* HDLC mode configuration */
 522	memset(&msg, 0, sizeof(msg));
 523	msg.cmd = PKT_NUM_PIPES_WRITE;
 524	msg.hss_port = port->id;
 525	msg.data8a = PKT_NUM_PIPES;
 526	hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
 527
 528	msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
 529	msg.data8a = PKT_PIPE_FIFO_SIZEW;
 530	hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
 531
 532	msg.cmd = PKT_PIPE_MODE_WRITE;
 533	msg.data8a = NPE_PKT_MODE_HDLC;
 534	/* msg.data8b = inv_mask */
 535	/* msg.data8c = or_mask */
 536	hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
 537
 538	msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
 539	msg.data16a = HDLC_MAX_MRU; /* including CRC */
 540	hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
 541
 542	msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
 543	msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
 544	hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
 545
 546	port->initialized = 1;
 547	return 0;
 548}
 549
 550/*****************************************************************************
 551 * packetized (HDLC) operation
 552 ****************************************************************************/
 553
 554static inline void debug_pkt(struct net_device *dev, const char *func,
 555			     u8 *data, int len)
 556{
 557#if DEBUG_PKT_BYTES
 558	int i;
 559
 560	printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
 561	for (i = 0; i < len; i++) {
 562		if (i >= DEBUG_PKT_BYTES)
 563			break;
 564		printk("%s%02X", !(i % 4) ? " " : "", data[i]);
 565	}
 566	printk("\n");
 567#endif
 568}
 569
 570
 571static inline void debug_desc(u32 phys, struct desc *desc)
 572{
 573#if DEBUG_DESC
 574	printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
 575	       phys, desc->next, desc->buf_len, desc->pkt_len,
 576	       desc->data, desc->status, desc->error_count);
 577#endif
 578}
 579
 580static inline int queue_get_desc(unsigned int queue, struct port *port,
 581				 int is_tx)
 582{
 583	u32 phys, tab_phys, n_desc;
 584	struct desc *tab;
 585
 586	if (!(phys = qmgr_get_entry(queue)))
 587		return -1;
 588
 589	BUG_ON(phys & 0x1F);
 590	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
 591	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
 592	n_desc = (phys - tab_phys) / sizeof(struct desc);
 593	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
 594	debug_desc(phys, &tab[n_desc]);
 595	BUG_ON(tab[n_desc].next);
 596	return n_desc;
 597}
 598
 599static inline void queue_put_desc(unsigned int queue, u32 phys,
 600				  struct desc *desc)
 601{
 602	debug_desc(phys, desc);
 603	BUG_ON(phys & 0x1F);
 604	qmgr_put_entry(queue, phys);
 605	/* Don't check for queue overflow here, we've allocated sufficient
 606	   length and queues >= 32 don't support this check anyway. */
 607}
 608
 609
 610static inline void dma_unmap_tx(struct port *port, struct desc *desc)
 611{
 612#ifdef __ARMEB__
 613	dma_unmap_single(&port->netdev->dev, desc->data,
 614			 desc->buf_len, DMA_TO_DEVICE);
 615#else
 616	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
 617			 ALIGN((desc->data & 3) + desc->buf_len, 4),
 618			 DMA_TO_DEVICE);
 619#endif
 620}
 621
 622
 623static void hss_hdlc_set_carrier(void *pdev, int carrier)
 624{
 625	struct net_device *netdev = pdev;
 626	struct port *port = dev_to_port(netdev);
 627	unsigned long flags;
 628
 629	spin_lock_irqsave(&npe_lock, flags);
 630	port->carrier = carrier;
 631	if (!port->loopback) {
 632		if (carrier)
 633			netif_carrier_on(netdev);
 634		else
 635			netif_carrier_off(netdev);
 636	}
 637	spin_unlock_irqrestore(&npe_lock, flags);
 638}
 639
 640static void hss_hdlc_rx_irq(void *pdev)
 641{
 642	struct net_device *dev = pdev;
 643	struct port *port = dev_to_port(dev);
 644
 645#if DEBUG_RX
 646	printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
 647#endif
 648	qmgr_disable_irq(queue_ids[port->id].rx);
 649	napi_schedule(&port->napi);
 650}
 651
 652static int hss_hdlc_poll(struct napi_struct *napi, int budget)
 653{
 654	struct port *port = container_of(napi, struct port, napi);
 655	struct net_device *dev = port->netdev;
 656	unsigned int rxq = queue_ids[port->id].rx;
 657	unsigned int rxfreeq = queue_ids[port->id].rxfree;
 658	int received = 0;
 659
 660#if DEBUG_RX
 661	printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
 662#endif
 663
 664	while (received < budget) {
 665		struct sk_buff *skb;
 666		struct desc *desc;
 667		int n;
 668#ifdef __ARMEB__
 669		struct sk_buff *temp;
 670		u32 phys;
 671#endif
 672
 673		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
 674#if DEBUG_RX
 675			printk(KERN_DEBUG "%s: hss_hdlc_poll"
 676			       " napi_complete\n", dev->name);
 677#endif
 678			napi_complete(napi);
 679			qmgr_enable_irq(rxq);
 680			if (!qmgr_stat_empty(rxq) &&
 681			    napi_reschedule(napi)) {
 682#if DEBUG_RX
 683				printk(KERN_DEBUG "%s: hss_hdlc_poll"
 684				       " napi_reschedule succeeded\n",
 685				       dev->name);
 686#endif
 687				qmgr_disable_irq(rxq);
 688				continue;
 689			}
 690#if DEBUG_RX
 691			printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
 692			       dev->name);
 693#endif
 694			return received; /* all work done */
 695		}
 696
 697		desc = rx_desc_ptr(port, n);
 698#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
 699		if (desc->error_count)
 700			printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
 701			       " errors %u\n", dev->name, desc->status,
 702			       desc->error_count);
 703#endif
 704		skb = NULL;
 705		switch (desc->status) {
 706		case 0:
 707#ifdef __ARMEB__
 708			if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
 709				phys = dma_map_single(&dev->dev, skb->data,
 710						      RX_SIZE,
 711						      DMA_FROM_DEVICE);
 712				if (dma_mapping_error(&dev->dev, phys)) {
 713					dev_kfree_skb(skb);
 714					skb = NULL;
 715				}
 716			}
 717#else
 718			skb = netdev_alloc_skb(dev, desc->pkt_len);
 719#endif
 720			if (!skb)
 721				dev->stats.rx_dropped++;
 722			break;
 723		case ERR_HDLC_ALIGN:
 724		case ERR_HDLC_ABORT:
 725			dev->stats.rx_frame_errors++;
 726			dev->stats.rx_errors++;
 727			break;
 728		case ERR_HDLC_FCS:
 729			dev->stats.rx_crc_errors++;
 730			dev->stats.rx_errors++;
 731			break;
 732		case ERR_HDLC_TOO_LONG:
 733			dev->stats.rx_length_errors++;
 734			dev->stats.rx_errors++;
 735			break;
 736		default:	/* FIXME - remove printk */
 737			netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
 738				   desc->status, desc->error_count);
 739			dev->stats.rx_errors++;
 740		}
 741
 742		if (!skb) {
 743			/* put the desc back on RX-ready queue */
 744			desc->buf_len = RX_SIZE;
 745			desc->pkt_len = desc->status = 0;
 746			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 747			continue;
 748		}
 749
 750		/* process received frame */
 751#ifdef __ARMEB__
 752		temp = skb;
 753		skb = port->rx_buff_tab[n];
 754		dma_unmap_single(&dev->dev, desc->data,
 755				 RX_SIZE, DMA_FROM_DEVICE);
 756#else
 757		dma_sync_single_for_cpu(&dev->dev, desc->data,
 758					RX_SIZE, DMA_FROM_DEVICE);
 759		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
 760			      ALIGN(desc->pkt_len, 4) / 4);
 761#endif
 762		skb_put(skb, desc->pkt_len);
 763
 764		debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
 765
 766		skb->protocol = hdlc_type_trans(skb, dev);
 767		dev->stats.rx_packets++;
 768		dev->stats.rx_bytes += skb->len;
 769		netif_receive_skb(skb);
 770
 771		/* put the new buffer on RX-free queue */
 772#ifdef __ARMEB__
 773		port->rx_buff_tab[n] = temp;
 774		desc->data = phys;
 775#endif
 776		desc->buf_len = RX_SIZE;
 777		desc->pkt_len = 0;
 778		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 779		received++;
 780	}
 781#if DEBUG_RX
 782	printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
 783#endif
 784	return received;	/* not all work done */
 785}
 786
 787
 788static void hss_hdlc_txdone_irq(void *pdev)
 789{
 790	struct net_device *dev = pdev;
 791	struct port *port = dev_to_port(dev);
 792	int n_desc;
 793
 794#if DEBUG_TX
 795	printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
 796#endif
 797	while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
 798					port, 1)) >= 0) {
 799		struct desc *desc;
 800		int start;
 801
 802		desc = tx_desc_ptr(port, n_desc);
 803
 804		dev->stats.tx_packets++;
 805		dev->stats.tx_bytes += desc->pkt_len;
 806
 807		dma_unmap_tx(port, desc);
 808#if DEBUG_TX
 809		printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
 810		       dev->name, port->tx_buff_tab[n_desc]);
 811#endif
 812		free_buffer_irq(port->tx_buff_tab[n_desc]);
 813		port->tx_buff_tab[n_desc] = NULL;
 814
 815		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
 816		queue_put_desc(port->plat->txreadyq,
 817			       tx_desc_phys(port, n_desc), desc);
 818		if (start) { /* TX-ready queue was empty */
 819#if DEBUG_TX
 820			printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
 821			       " ready\n", dev->name);
 822#endif
 823			netif_wake_queue(dev);
 824		}
 825	}
 826}
 827
 828static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
 829{
 830	struct port *port = dev_to_port(dev);
 831	unsigned int txreadyq = port->plat->txreadyq;
 832	int len, offset, bytes, n;
 833	void *mem;
 834	u32 phys;
 835	struct desc *desc;
 836
 837#if DEBUG_TX
 838	printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
 839#endif
 840
 841	if (unlikely(skb->len > HDLC_MAX_MRU)) {
 842		dev_kfree_skb(skb);
 843		dev->stats.tx_errors++;
 844		return NETDEV_TX_OK;
 845	}
 846
 847	debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
 848
 849	len = skb->len;
 850#ifdef __ARMEB__
 851	offset = 0; /* no need to keep alignment */
 852	bytes = len;
 853	mem = skb->data;
 854#else
 855	offset = (int)skb->data & 3; /* keep 32-bit alignment */
 856	bytes = ALIGN(offset + len, 4);
 857	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
 858		dev_kfree_skb(skb);
 859		dev->stats.tx_dropped++;
 860		return NETDEV_TX_OK;
 861	}
 862	memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
 863	dev_kfree_skb(skb);
 864#endif
 865
 866	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
 867	if (dma_mapping_error(&dev->dev, phys)) {
 868#ifdef __ARMEB__
 869		dev_kfree_skb(skb);
 870#else
 871		kfree(mem);
 872#endif
 873		dev->stats.tx_dropped++;
 874		return NETDEV_TX_OK;
 875	}
 876
 877	n = queue_get_desc(txreadyq, port, 1);
 878	BUG_ON(n < 0);
 879	desc = tx_desc_ptr(port, n);
 880
 881#ifdef __ARMEB__
 882	port->tx_buff_tab[n] = skb;
 883#else
 884	port->tx_buff_tab[n] = mem;
 885#endif
 886	desc->data = phys + offset;
 887	desc->buf_len = desc->pkt_len = len;
 888
 889	wmb();
 890	queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
 891
 892	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
 893#if DEBUG_TX
 894		printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
 895#endif
 896		netif_stop_queue(dev);
 897		/* we could miss TX ready interrupt */
 898		if (!qmgr_stat_below_low_watermark(txreadyq)) {
 899#if DEBUG_TX
 900			printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
 901			       dev->name);
 902#endif
 903			netif_wake_queue(dev);
 904		}
 905	}
 906
 907#if DEBUG_TX
 908	printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
 909#endif
 910	return NETDEV_TX_OK;
 911}
 912
 913
 914static int request_hdlc_queues(struct port *port)
 915{
 916	int err;
 917
 918	err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
 919				 "%s:RX-free", port->netdev->name);
 920	if (err)
 921		return err;
 922
 923	err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
 924				 "%s:RX", port->netdev->name);
 925	if (err)
 926		goto rel_rxfree;
 927
 928	err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
 929				 "%s:TX", port->netdev->name);
 930	if (err)
 931		goto rel_rx;
 932
 933	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
 934				 "%s:TX-ready", port->netdev->name);
 935	if (err)
 936		goto rel_tx;
 937
 938	err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
 939				 "%s:TX-done", port->netdev->name);
 940	if (err)
 941		goto rel_txready;
 942	return 0;
 943
 944rel_txready:
 945	qmgr_release_queue(port->plat->txreadyq);
 946rel_tx:
 947	qmgr_release_queue(queue_ids[port->id].tx);
 948rel_rx:
 949	qmgr_release_queue(queue_ids[port->id].rx);
 950rel_rxfree:
 951	qmgr_release_queue(queue_ids[port->id].rxfree);
 952	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
 953	       port->netdev->name);
 954	return err;
 955}
 956
 957static void release_hdlc_queues(struct port *port)
 958{
 959	qmgr_release_queue(queue_ids[port->id].rxfree);
 960	qmgr_release_queue(queue_ids[port->id].rx);
 961	qmgr_release_queue(queue_ids[port->id].txdone);
 962	qmgr_release_queue(queue_ids[port->id].tx);
 963	qmgr_release_queue(port->plat->txreadyq);
 964}
 965
 966static int init_hdlc_queues(struct port *port)
 967{
 968	int i;
 969
 970	if (!ports_open) {
 971		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
 972					   POOL_ALLOC_SIZE, 32, 0);
 973		if (!dma_pool)
 974			return -ENOMEM;
 975	}
 976
 977	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
 978					      &port->desc_tab_phys)))
 979		return -ENOMEM;
 980	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
 981	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
 982	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
 983
 984	/* Setup RX buffers */
 985	for (i = 0; i < RX_DESCS; i++) {
 986		struct desc *desc = rx_desc_ptr(port, i);
 987		buffer_t *buff;
 988		void *data;
 989#ifdef __ARMEB__
 990		if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
 991			return -ENOMEM;
 992		data = buff->data;
 993#else
 994		if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
 995			return -ENOMEM;
 996		data = buff;
 997#endif
 998		desc->buf_len = RX_SIZE;
 999		desc->data = dma_map_single(&port->netdev->dev, data,
1000					    RX_SIZE, DMA_FROM_DEVICE);
1001		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1002			free_buffer(buff);
1003			return -EIO;
1004		}
1005		port->rx_buff_tab[i] = buff;
1006	}
1007
1008	return 0;
1009}
1010
1011static void destroy_hdlc_queues(struct port *port)
1012{
1013	int i;
1014
1015	if (port->desc_tab) {
1016		for (i = 0; i < RX_DESCS; i++) {
1017			struct desc *desc = rx_desc_ptr(port, i);
1018			buffer_t *buff = port->rx_buff_tab[i];
1019			if (buff) {
1020				dma_unmap_single(&port->netdev->dev,
1021						 desc->data, RX_SIZE,
1022						 DMA_FROM_DEVICE);
1023				free_buffer(buff);
1024			}
1025		}
1026		for (i = 0; i < TX_DESCS; i++) {
1027			struct desc *desc = tx_desc_ptr(port, i);
1028			buffer_t *buff = port->tx_buff_tab[i];
1029			if (buff) {
1030				dma_unmap_tx(port, desc);
1031				free_buffer(buff);
1032			}
1033		}
1034		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1035		port->desc_tab = NULL;
1036	}
1037
1038	if (!ports_open && dma_pool) {
1039		dma_pool_destroy(dma_pool);
1040		dma_pool = NULL;
1041	}
1042}
1043
1044static int hss_hdlc_open(struct net_device *dev)
1045{
1046	struct port *port = dev_to_port(dev);
1047	unsigned long flags;
1048	int i, err = 0;
1049
1050	if ((err = hdlc_open(dev)))
1051		return err;
1052
1053	if ((err = hss_load_firmware(port)))
1054		goto err_hdlc_close;
1055
1056	if ((err = request_hdlc_queues(port)))
1057		goto err_hdlc_close;
1058
1059	if ((err = init_hdlc_queues(port)))
1060		goto err_destroy_queues;
1061
1062	spin_lock_irqsave(&npe_lock, flags);
1063	if (port->plat->open)
1064		if ((err = port->plat->open(port->id, dev,
1065					    hss_hdlc_set_carrier)))
1066			goto err_unlock;
1067	spin_unlock_irqrestore(&npe_lock, flags);
1068
1069	/* Populate queues with buffers, no failure after this point */
1070	for (i = 0; i < TX_DESCS; i++)
1071		queue_put_desc(port->plat->txreadyq,
1072			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1073
1074	for (i = 0; i < RX_DESCS; i++)
1075		queue_put_desc(queue_ids[port->id].rxfree,
1076			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1077
1078	napi_enable(&port->napi);
1079	netif_start_queue(dev);
1080
1081	qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1082		     hss_hdlc_rx_irq, dev);
1083
1084	qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1085		     hss_hdlc_txdone_irq, dev);
1086	qmgr_enable_irq(queue_ids[port->id].txdone);
1087
1088	ports_open++;
1089
1090	hss_set_hdlc_cfg(port);
1091	hss_config(port);
1092
1093	hss_start_hdlc(port);
1094
1095	/* we may already have RX data, enables IRQ */
1096	napi_schedule(&port->napi);
1097	return 0;
1098
1099err_unlock:
1100	spin_unlock_irqrestore(&npe_lock, flags);
1101err_destroy_queues:
1102	destroy_hdlc_queues(port);
1103	release_hdlc_queues(port);
1104err_hdlc_close:
1105	hdlc_close(dev);
1106	return err;
1107}
1108
1109static int hss_hdlc_close(struct net_device *dev)
1110{
1111	struct port *port = dev_to_port(dev);
1112	unsigned long flags;
1113	int i, buffs = RX_DESCS; /* allocated RX buffers */
1114
1115	spin_lock_irqsave(&npe_lock, flags);
1116	ports_open--;
1117	qmgr_disable_irq(queue_ids[port->id].rx);
1118	netif_stop_queue(dev);
1119	napi_disable(&port->napi);
1120
1121	hss_stop_hdlc(port);
1122
1123	while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1124		buffs--;
1125	while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1126		buffs--;
1127
1128	if (buffs)
1129		netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1130			    buffs);
1131
1132	buffs = TX_DESCS;
1133	while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1134		buffs--; /* cancel TX */
1135
1136	i = 0;
1137	do {
1138		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1139			buffs--;
1140		if (!buffs)
1141			break;
1142	} while (++i < MAX_CLOSE_WAIT);
1143
1144	if (buffs)
1145		netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1146			    buffs);
1147#if DEBUG_CLOSE
1148	if (!buffs)
1149		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1150#endif
1151	qmgr_disable_irq(queue_ids[port->id].txdone);
1152
1153	if (port->plat->close)
1154		port->plat->close(port->id, dev);
1155	spin_unlock_irqrestore(&npe_lock, flags);
1156
1157	destroy_hdlc_queues(port);
1158	release_hdlc_queues(port);
1159	hdlc_close(dev);
1160	return 0;
1161}
1162
1163
1164static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1165			   unsigned short parity)
1166{
1167	struct port *port = dev_to_port(dev);
1168
1169	if (encoding != ENCODING_NRZ)
1170		return -EINVAL;
1171
1172	switch(parity) {
1173	case PARITY_CRC16_PR1_CCITT:
1174		port->hdlc_cfg = 0;
1175		return 0;
1176
1177	case PARITY_CRC32_PR1_CCITT:
1178		port->hdlc_cfg = PKT_HDLC_CRC_32;
1179		return 0;
1180
1181	default:
1182		return -EINVAL;
1183	}
1184}
1185
1186static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
1187		       u32 *best, u32 *best_diff, u32 *reg)
1188{
1189	/* a is 10-bit, b is 10-bit, c is 12-bit */
1190	u64 new_rate;
1191	u32 new_diff;
1192
1193	new_rate = timer_freq * (u64)(c + 1);
1194	do_div(new_rate, a * (c + 1) + b + 1);
1195	new_diff = abs((u32)new_rate - rate);
1196
1197	if (new_diff < *best_diff) {
1198		*best = new_rate;
1199		*best_diff = new_diff;
1200		*reg = (a << 22) | (b << 12) | c;
1201	}
1202	return new_diff;
1203}
1204
1205static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
1206{
1207	u32 a, b, diff = 0xFFFFFFFF;
1208
1209	a = timer_freq / rate;
1210
1211	if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1212		check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
1213		return;
1214	}
1215	if (a == 0) { /* > 66.666 MHz */
1216		a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1217		rate = timer_freq;
1218	}
1219
1220	if (rate * a == timer_freq) { /* don't divide by 0 later */
1221		check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
1222		return;
1223	}
1224
1225	for (b = 0; b < 0x400; b++) {
1226		u64 c = (b + 1) * (u64)rate;
1227		do_div(c, timer_freq - rate * a);
1228		c--;
1229		if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1230			if (b == 0 && /* also try a bit higher rate */
1231			    !check_clock(timer_freq, rate, a - 1, 1, 1, best,
1232					 &diff, reg))
1233				return;
1234			check_clock(timer_freq, rate, a, b, 0xFFF, best,
1235				    &diff, reg);
1236			return;
1237		}
1238		if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
1239			return;
1240		if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
1241				 reg))
1242			return;
1243	}
1244}
1245
1246static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1247{
1248	const size_t size = sizeof(sync_serial_settings);
1249	sync_serial_settings new_line;
1250	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1251	struct port *port = dev_to_port(dev);
1252	unsigned long flags;
1253	int clk;
1254
1255	if (cmd != SIOCWANDEV)
1256		return hdlc_ioctl(dev, ifr, cmd);
1257
1258	switch(ifr->ifr_settings.type) {
1259	case IF_GET_IFACE:
1260		ifr->ifr_settings.type = IF_IFACE_V35;
1261		if (ifr->ifr_settings.size < size) {
1262			ifr->ifr_settings.size = size; /* data size wanted */
1263			return -ENOBUFS;
1264		}
1265		memset(&new_line, 0, sizeof(new_line));
1266		new_line.clock_type = port->clock_type;
1267		new_line.clock_rate = port->clock_rate;
1268		new_line.loopback = port->loopback;
1269		if (copy_to_user(line, &new_line, size))
1270			return -EFAULT;
1271		return 0;
1272
1273	case IF_IFACE_SYNC_SERIAL:
1274	case IF_IFACE_V35:
1275		if(!capable(CAP_NET_ADMIN))
1276			return -EPERM;
1277		if (copy_from_user(&new_line, line, size))
1278			return -EFAULT;
1279
1280		clk = new_line.clock_type;
1281		if (port->plat->set_clock)
1282			clk = port->plat->set_clock(port->id, clk);
1283
1284		if (clk != CLOCK_EXT && clk != CLOCK_INT)
1285			return -EINVAL;	/* No such clock setting */
1286
1287		if (new_line.loopback != 0 && new_line.loopback != 1)
1288			return -EINVAL;
1289
1290		port->clock_type = clk; /* Update settings */
1291		if (clk == CLOCK_INT)
1292			find_best_clock(port->plat->timer_freq,
1293					new_line.clock_rate,
1294					&port->clock_rate, &port->clock_reg);
1295		else {
1296			port->clock_rate = 0;
1297			port->clock_reg = CLK42X_SPEED_2048KHZ;
1298		}
1299		port->loopback = new_line.loopback;
1300
1301		spin_lock_irqsave(&npe_lock, flags);
1302
1303		if (dev->flags & IFF_UP)
1304			hss_config(port);
1305
1306		if (port->loopback || port->carrier)
1307			netif_carrier_on(port->netdev);
1308		else
1309			netif_carrier_off(port->netdev);
1310		spin_unlock_irqrestore(&npe_lock, flags);
1311
1312		return 0;
1313
1314	default:
1315		return hdlc_ioctl(dev, ifr, cmd);
1316	}
1317}
1318
1319/*****************************************************************************
1320 * initialization
1321 ****************************************************************************/
1322
1323static const struct net_device_ops hss_hdlc_ops = {
1324	.ndo_open       = hss_hdlc_open,
1325	.ndo_stop       = hss_hdlc_close,
 
1326	.ndo_start_xmit = hdlc_start_xmit,
1327	.ndo_do_ioctl   = hss_hdlc_ioctl,
1328};
1329
1330static int hss_init_one(struct platform_device *pdev)
1331{
1332	struct port *port;
1333	struct net_device *dev;
1334	hdlc_device *hdlc;
1335	int err;
1336
1337	if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1338		return -ENOMEM;
1339
1340	if ((port->npe = npe_request(0)) == NULL) {
1341		err = -ENODEV;
1342		goto err_free;
1343	}
1344
1345	if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1346		err = -ENOMEM;
1347		goto err_plat;
1348	}
1349
1350	SET_NETDEV_DEV(dev, &pdev->dev);
1351	hdlc = dev_to_hdlc(dev);
1352	hdlc->attach = hss_hdlc_attach;
1353	hdlc->xmit = hss_hdlc_xmit;
1354	dev->netdev_ops = &hss_hdlc_ops;
1355	dev->tx_queue_len = 100;
1356	port->clock_type = CLOCK_EXT;
1357	port->clock_rate = 0;
1358	port->clock_reg = CLK42X_SPEED_2048KHZ;
1359	port->id = pdev->id;
1360	port->dev = &pdev->dev;
1361	port->plat = pdev->dev.platform_data;
1362	netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1363
1364	if ((err = register_hdlc_device(dev)))
1365		goto err_free_netdev;
1366
1367	platform_set_drvdata(pdev, port);
1368
1369	netdev_info(dev, "initialized\n");
1370	return 0;
1371
1372err_free_netdev:
1373	free_netdev(dev);
1374err_plat:
1375	npe_release(port->npe);
1376err_free:
1377	kfree(port);
1378	return err;
1379}
1380
1381static int hss_remove_one(struct platform_device *pdev)
1382{
1383	struct port *port = platform_get_drvdata(pdev);
1384
1385	unregister_hdlc_device(port->netdev);
1386	free_netdev(port->netdev);
1387	npe_release(port->npe);
 
1388	kfree(port);
1389	return 0;
1390}
1391
1392static struct platform_driver ixp4xx_hss_driver = {
1393	.driver.name	= DRV_NAME,
1394	.probe		= hss_init_one,
1395	.remove		= hss_remove_one,
1396};
1397
1398static int __init hss_init_module(void)
1399{
1400	if ((ixp4xx_read_feature_bits() &
1401	     (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1402	    (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1403		return -ENODEV;
1404
1405	spin_lock_init(&npe_lock);
1406
1407	return platform_driver_register(&ixp4xx_hss_driver);
1408}
1409
1410static void __exit hss_cleanup_module(void)
1411{
1412	platform_driver_unregister(&ixp4xx_hss_driver);
1413}
1414
1415MODULE_AUTHOR("Krzysztof Halasa");
1416MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1417MODULE_LICENSE("GPL v2");
1418MODULE_ALIAS("platform:ixp4xx_hss");
1419module_init(hss_init_module);
1420module_exit(hss_cleanup_module);