Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 *  Copyright (C) 1994  Linus Torvalds
  3 *
  4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5 *                stack - Manfred Spraul <manfred@colorfullife.com>
  6 *
  7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8 *                them correctly. Now the emulation will be in a
  9 *                consistent state after stackfaults - Kasper Dupont
 10 *                <kasperd@daimi.au.dk>
 11 *
 12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
 13 *                <kasperd@daimi.au.dk>
 14 *
 15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
 16 *                caused by Kasper Dupont's changes - Stas Sergeev
 17 *
 18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
 19 *                Kasper Dupont <kasperd@daimi.au.dk>
 20 *
 21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
 22 *                Kasper Dupont <kasperd@daimi.au.dk>
 23 *
 24 *   9 apr 2002 - Changed stack access macros to jump to a label
 25 *                instead of returning to userspace. This simplifies
 26 *                do_int, and is needed by handle_vm6_fault. Kasper
 27 *                Dupont <kasperd@daimi.au.dk>
 28 *
 29 */
 30
 
 
 31#include <linux/capability.h>
 32#include <linux/errno.h>
 33#include <linux/interrupt.h>
 
 34#include <linux/sched.h>
 
 35#include <linux/kernel.h>
 36#include <linux/signal.h>
 37#include <linux/string.h>
 38#include <linux/mm.h>
 39#include <linux/smp.h>
 40#include <linux/highmem.h>
 41#include <linux/ptrace.h>
 42#include <linux/audit.h>
 43#include <linux/stddef.h>
 
 
 44
 45#include <asm/uaccess.h>
 46#include <asm/io.h>
 47#include <asm/tlbflush.h>
 48#include <asm/irq.h>
 49#include <asm/syscalls.h>
 
 
 50
 51/*
 52 * Known problems:
 53 *
 54 * Interrupt handling is not guaranteed:
 55 * - a real x86 will disable all interrupts for one instruction
 56 *   after a "mov ss,xx" to make stack handling atomic even without
 57 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 58 *   as the next instruction might result in a page fault or similar.
 59 * - a real x86 will have interrupts disabled for one instruction
 60 *   past the 'sti' that enables them. We don't bother with all the
 61 *   details yet.
 62 *
 63 * Let's hope these problems do not actually matter for anything.
 64 */
 65
 66
 67#define KVM86	((struct kernel_vm86_struct *)regs)
 68#define VMPI	KVM86->vm86plus
 69
 70
 71/*
 72 * 8- and 16-bit register defines..
 73 */
 74#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
 75#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
 76#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
 77#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
 78
 79/*
 80 * virtual flags (16 and 32-bit versions)
 81 */
 82#define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
 83#define VEFLAGS	(current->thread.v86flags)
 84
 85#define set_flags(X, new, mask) \
 86((X) = ((X) & ~(mask)) | ((new) & (mask)))
 87
 88#define SAFE_MASK	(0xDD5)
 89#define RETURN_MASK	(0xDFF)
 90
 91/* convert kernel_vm86_regs to vm86_regs */
 92static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
 93				  const struct kernel_vm86_regs *regs)
 94{
 95	int ret = 0;
 96
 97	/*
 98	 * kernel_vm86_regs is missing gs, so copy everything up to
 99	 * (but not including) orig_eax, and then rest including orig_eax.
100	 */
101	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
102	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
103			    sizeof(struct kernel_vm86_regs) -
104			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
105
106	return ret;
107}
108
109/* convert vm86_regs to kernel_vm86_regs */
110static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
111				    const struct vm86_regs __user *user,
112				    unsigned extra)
113{
114	int ret = 0;
115
116	/* copy ax-fs inclusive */
117	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
118	/* copy orig_ax-__gsh+extra */
119	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
120			      sizeof(struct kernel_vm86_regs) -
121			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
122			      extra);
123	return ret;
124}
125
126struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
127{
128	struct tss_struct *tss;
129	struct pt_regs *ret;
130	unsigned long tmp;
131
132	/*
133	 * This gets called from entry.S with interrupts disabled, but
134	 * from process context. Enable interrupts here, before trying
135	 * to access user space.
136	 */
137	local_irq_enable();
138
139	if (!current->thread.vm86_info) {
140		printk("no vm86_info: BAD\n");
141		do_exit(SIGSEGV);
142	}
143	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
144	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
145	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
146	if (tmp) {
147		printk("vm86: could not access userspace vm86_info\n");
148		do_exit(SIGSEGV);
149	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
151	tss = &per_cpu(init_tss, get_cpu());
152	current->thread.sp0 = current->thread.saved_sp0;
153	current->thread.sysenter_cs = __KERNEL_CS;
154	load_sp0(tss, &current->thread);
155	current->thread.saved_sp0 = 0;
156	put_cpu();
157
158	ret = KVM86->regs32;
159
160	ret->fs = current->thread.saved_fs;
161	set_user_gs(ret, current->thread.saved_gs);
162
163	return ret;
 
 
 
 
164}
165
166static void mark_screen_rdonly(struct mm_struct *mm)
167{
 
 
168	pgd_t *pgd;
 
169	pud_t *pud;
170	pmd_t *pmd;
171	pte_t *pte;
172	spinlock_t *ptl;
173	int i;
174
175	down_write(&mm->mmap_sem);
176	pgd = pgd_offset(mm, 0xA0000);
177	if (pgd_none_or_clear_bad(pgd))
178		goto out;
179	pud = pud_offset(pgd, 0xA0000);
 
 
 
180	if (pud_none_or_clear_bad(pud))
181		goto out;
182	pmd = pmd_offset(pud, 0xA0000);
183	split_huge_page_pmd(mm, pmd);
 
 
 
 
184	if (pmd_none_or_clear_bad(pmd))
185		goto out;
186	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
187	for (i = 0; i < 32; i++) {
188		if (pte_present(*pte))
189			set_pte(pte, pte_wrprotect(*pte));
190		pte++;
191	}
192	pte_unmap_unlock(pte, ptl);
193out:
194	up_write(&mm->mmap_sem);
195	flush_tlb();
196}
197
198
199
200static int do_vm86_irq_handling(int subfunction, int irqnumber);
201static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
202
203int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
204{
205	struct kernel_vm86_struct info; /* declare this _on top_,
206					 * this avoids wasting of stack space.
207					 * This remains on the stack until we
208					 * return to 32 bit user space.
209					 */
210	struct task_struct *tsk;
211	int tmp, ret = -EPERM;
212
213	tsk = current;
214	if (tsk->thread.saved_sp0)
215		goto out;
216	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
217				       offsetof(struct kernel_vm86_struct, vm86plus) -
218				       sizeof(info.regs));
219	ret = -EFAULT;
220	if (tmp)
221		goto out;
222	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
223	info.regs32 = regs;
224	tsk->thread.vm86_info = v86;
225	do_sys_vm86(&info, tsk);
226	ret = 0;	/* we never return here */
227out:
228	return ret;
229}
230
231
232int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
233{
234	struct kernel_vm86_struct info; /* declare this _on top_,
235					 * this avoids wasting of stack space.
236					 * This remains on the stack until we
237					 * return to 32 bit user space.
238					 */
239	struct task_struct *tsk;
240	int tmp, ret;
241	struct vm86plus_struct __user *v86;
242
243	tsk = current;
244	switch (cmd) {
245	case VM86_REQUEST_IRQ:
246	case VM86_FREE_IRQ:
247	case VM86_GET_IRQ_BITS:
248	case VM86_GET_AND_RESET_IRQ:
249		ret = do_vm86_irq_handling(cmd, (int)arg);
250		goto out;
251	case VM86_PLUS_INSTALL_CHECK:
252		/*
253		 * NOTE: on old vm86 stuff this will return the error
254		 *  from access_ok(), because the subfunction is
255		 *  interpreted as (invalid) address to vm86_struct.
256		 *  So the installation check works.
257		 */
258		ret = 0;
259		goto out;
260	}
261
262	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
263	ret = -EPERM;
264	if (tsk->thread.saved_sp0)
265		goto out;
266	v86 = (struct vm86plus_struct __user *)arg;
267	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
268				       offsetof(struct kernel_vm86_struct, regs32) -
269				       sizeof(info.regs));
270	ret = -EFAULT;
271	if (tmp)
272		goto out;
273	info.regs32 = regs;
274	info.vm86plus.is_vm86pus = 1;
275	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
276	do_sys_vm86(&info, tsk);
277	ret = 0;	/* we never return here */
278out:
279	return ret;
280}
281
282
283static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
284{
285	struct tss_struct *tss;
286/*
287 * make sure the vm86() system call doesn't try to do anything silly
288 */
289	info->regs.pt.ds = 0;
290	info->regs.pt.es = 0;
291	info->regs.pt.fs = 0;
292#ifndef CONFIG_X86_32_LAZY_GS
293	info->regs.pt.gs = 0;
294#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
296/*
297 * The flags register is also special: we cannot trust that the user
298 * has set it up safely, so this makes sure interrupt etc flags are
299 * inherited from protected mode.
300 */
301	VEFLAGS = info->regs.pt.flags;
302	info->regs.pt.flags &= SAFE_MASK;
303	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
304	info->regs.pt.flags |= X86_VM_MASK;
 
 
305
306	switch (info->cpu_type) {
307	case CPU_286:
308		tsk->thread.v86mask = 0;
309		break;
310	case CPU_386:
311		tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
312		break;
313	case CPU_486:
314		tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
315		break;
316	default:
317		tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
318		break;
319	}
320
321/*
322 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
323 */
324	info->regs32->ax = VM86_SIGNAL;
325	tsk->thread.saved_sp0 = tsk->thread.sp0;
326	tsk->thread.saved_fs = info->regs32->fs;
327	tsk->thread.saved_gs = get_user_gs(info->regs32);
328
329	tss = &per_cpu(init_tss, get_cpu());
330	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
331	if (cpu_has_sep)
332		tsk->thread.sysenter_cs = 0;
333	load_sp0(tss, &tsk->thread);
334	put_cpu();
 
 
 
335
336	tsk->thread.screen_bitmap = info->screen_bitmap;
337	if (info->flags & VM86_SCREEN_BITMAP)
338		mark_screen_rdonly(tsk->mm);
339
340	/*call __audit_syscall_exit since we do not exit via the normal paths */
341#ifdef CONFIG_AUDITSYSCALL
342	if (unlikely(current->audit_context))
343		__audit_syscall_exit(1, 0);
344#endif
345
346	__asm__ __volatile__(
347		"movl %0,%%esp\n\t"
348		"movl %1,%%ebp\n\t"
349#ifdef CONFIG_X86_32_LAZY_GS
350		"mov  %2, %%gs\n\t"
351#endif
352		"jmp resume_userspace"
353		: /* no outputs */
354		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
355	/* we never return here */
356}
357
358static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
359{
360	struct pt_regs *regs32;
361
362	regs32 = save_v86_state(regs16);
363	regs32->ax = retval;
364	__asm__ __volatile__("movl %0,%%esp\n\t"
365		"movl %1,%%ebp\n\t"
366		"jmp resume_userspace"
367		: : "r" (regs32), "r" (current_thread_info()));
368}
369
370static inline void set_IF(struct kernel_vm86_regs *regs)
371{
372	VEFLAGS |= X86_EFLAGS_VIF;
373	if (VEFLAGS & X86_EFLAGS_VIP)
374		return_to_32bit(regs, VM86_STI);
375}
376
377static inline void clear_IF(struct kernel_vm86_regs *regs)
378{
379	VEFLAGS &= ~X86_EFLAGS_VIF;
380}
381
382static inline void clear_TF(struct kernel_vm86_regs *regs)
383{
384	regs->pt.flags &= ~X86_EFLAGS_TF;
385}
386
387static inline void clear_AC(struct kernel_vm86_regs *regs)
388{
389	regs->pt.flags &= ~X86_EFLAGS_AC;
390}
391
392/*
393 * It is correct to call set_IF(regs) from the set_vflags_*
394 * functions. However someone forgot to call clear_IF(regs)
395 * in the opposite case.
396 * After the command sequence CLI PUSHF STI POPF you should
397 * end up with interrupts disabled, but you ended up with
398 * interrupts enabled.
399 *  ( I was testing my own changes, but the only bug I
400 *    could find was in a function I had not changed. )
401 * [KD]
402 */
403
404static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
405{
406	set_flags(VEFLAGS, flags, current->thread.v86mask);
407	set_flags(regs->pt.flags, flags, SAFE_MASK);
408	if (flags & X86_EFLAGS_IF)
409		set_IF(regs);
410	else
411		clear_IF(regs);
412}
413
414static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
415{
416	set_flags(VFLAGS, flags, current->thread.v86mask);
417	set_flags(regs->pt.flags, flags, SAFE_MASK);
418	if (flags & X86_EFLAGS_IF)
419		set_IF(regs);
420	else
421		clear_IF(regs);
422}
423
424static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
425{
426	unsigned long flags = regs->pt.flags & RETURN_MASK;
427
428	if (VEFLAGS & X86_EFLAGS_VIF)
429		flags |= X86_EFLAGS_IF;
430	flags |= X86_EFLAGS_IOPL;
431	return flags | (VEFLAGS & current->thread.v86mask);
432}
433
434static inline int is_revectored(int nr, struct revectored_struct *bitmap)
435{
436	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
437		:"=r" (nr)
438		:"m" (*bitmap), "r" (nr));
439	return nr;
440}
441
442#define val_byte(val, n) (((__u8 *)&val)[n])
443
444#define pushb(base, ptr, val, err_label) \
445	do { \
446		__u8 __val = val; \
447		ptr--; \
448		if (put_user(__val, base + ptr) < 0) \
449			goto err_label; \
450	} while (0)
451
452#define pushw(base, ptr, val, err_label) \
453	do { \
454		__u16 __val = val; \
455		ptr--; \
456		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
457			goto err_label; \
458		ptr--; \
459		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
460			goto err_label; \
461	} while (0)
462
463#define pushl(base, ptr, val, err_label) \
464	do { \
465		__u32 __val = val; \
466		ptr--; \
467		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
468			goto err_label; \
469		ptr--; \
470		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
471			goto err_label; \
472		ptr--; \
473		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
474			goto err_label; \
475		ptr--; \
476		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
477			goto err_label; \
478	} while (0)
479
480#define popb(base, ptr, err_label) \
481	({ \
482		__u8 __res; \
483		if (get_user(__res, base + ptr) < 0) \
484			goto err_label; \
485		ptr++; \
486		__res; \
487	})
488
489#define popw(base, ptr, err_label) \
490	({ \
491		__u16 __res; \
492		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
493			goto err_label; \
494		ptr++; \
495		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
496			goto err_label; \
497		ptr++; \
498		__res; \
499	})
500
501#define popl(base, ptr, err_label) \
502	({ \
503		__u32 __res; \
504		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
505			goto err_label; \
506		ptr++; \
507		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
508			goto err_label; \
509		ptr++; \
510		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
511			goto err_label; \
512		ptr++; \
513		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
514			goto err_label; \
515		ptr++; \
516		__res; \
517	})
518
519/* There are so many possible reasons for this function to return
520 * VM86_INTx, so adding another doesn't bother me. We can expect
521 * userspace programs to be able to handle it. (Getting a problem
522 * in userspace is always better than an Oops anyway.) [KD]
523 */
524static void do_int(struct kernel_vm86_regs *regs, int i,
525    unsigned char __user *ssp, unsigned short sp)
526{
527	unsigned long __user *intr_ptr;
528	unsigned long segoffs;
 
529
530	if (regs->pt.cs == BIOSSEG)
531		goto cannot_handle;
532	if (is_revectored(i, &KVM86->int_revectored))
533		goto cannot_handle;
534	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
535		goto cannot_handle;
536	intr_ptr = (unsigned long __user *) (i << 2);
537	if (get_user(segoffs, intr_ptr))
538		goto cannot_handle;
539	if ((segoffs >> 16) == BIOSSEG)
540		goto cannot_handle;
541	pushw(ssp, sp, get_vflags(regs), cannot_handle);
542	pushw(ssp, sp, regs->pt.cs, cannot_handle);
543	pushw(ssp, sp, IP(regs), cannot_handle);
544	regs->pt.cs = segoffs >> 16;
545	SP(regs) -= 6;
546	IP(regs) = segoffs & 0xffff;
547	clear_TF(regs);
548	clear_IF(regs);
549	clear_AC(regs);
550	return;
551
552cannot_handle:
553	return_to_32bit(regs, VM86_INTx + (i << 8));
554}
555
556int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
557{
558	if (VMPI.is_vm86pus) {
 
 
559		if ((trapno == 3) || (trapno == 1)) {
560			KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
561			/* setting this flag forces the code in entry_32.S to
562			   call save_v86_state() and change the stack pointer
563			   to KVM86->regs32 */
564			set_thread_flag(TIF_IRET);
565			return 0;
566		}
567		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
568		return 0;
569	}
570	if (trapno != 1)
571		return 1; /* we let this handle by the calling routine */
572	current->thread.trap_nr = trapno;
573	current->thread.error_code = error_code;
574	force_sig(SIGTRAP, current);
575	return 0;
576}
577
578void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
579{
580	unsigned char opcode;
581	unsigned char __user *csp;
582	unsigned char __user *ssp;
583	unsigned short ip, sp, orig_flags;
584	int data32, pref_done;
 
585
586#define CHECK_IF_IN_TRAP \
587	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
588		newflags |= X86_EFLAGS_TF
589#define VM86_FAULT_RETURN do { \
590	if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
591		return_to_32bit(regs, VM86_PICRETURN); \
592	if (orig_flags & X86_EFLAGS_TF) \
593		handle_vm86_trap(regs, 0, 1); \
594	return; } while (0)
595
596	orig_flags = *(unsigned short *)&regs->pt.flags;
597
598	csp = (unsigned char __user *) (regs->pt.cs << 4);
599	ssp = (unsigned char __user *) (regs->pt.ss << 4);
600	sp = SP(regs);
601	ip = IP(regs);
602
603	data32 = 0;
604	pref_done = 0;
605	do {
606		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
607		case 0x66:      /* 32-bit data */     data32 = 1; break;
608		case 0x67:      /* 32-bit address */  break;
609		case 0x2e:      /* CS */              break;
610		case 0x3e:      /* DS */              break;
611		case 0x26:      /* ES */              break;
612		case 0x36:      /* SS */              break;
613		case 0x65:      /* GS */              break;
614		case 0x64:      /* FS */              break;
615		case 0xf2:      /* repnz */       break;
616		case 0xf3:      /* rep */             break;
617		default: pref_done = 1;
618		}
619	} while (!pref_done);
620
621	switch (opcode) {
622
623	/* pushf */
624	case 0x9c:
625		if (data32) {
626			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
627			SP(regs) -= 4;
628		} else {
629			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
630			SP(regs) -= 2;
631		}
632		IP(regs) = ip;
633		VM86_FAULT_RETURN;
634
635	/* popf */
636	case 0x9d:
637		{
638		unsigned long newflags;
639		if (data32) {
640			newflags = popl(ssp, sp, simulate_sigsegv);
641			SP(regs) += 4;
642		} else {
643			newflags = popw(ssp, sp, simulate_sigsegv);
644			SP(regs) += 2;
645		}
646		IP(regs) = ip;
647		CHECK_IF_IN_TRAP;
648		if (data32)
649			set_vflags_long(newflags, regs);
650		else
651			set_vflags_short(newflags, regs);
652
653		VM86_FAULT_RETURN;
654		}
655
656	/* int xx */
657	case 0xcd: {
658		int intno = popb(csp, ip, simulate_sigsegv);
659		IP(regs) = ip;
660		if (VMPI.vm86dbg_active) {
661			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
662				return_to_32bit(regs, VM86_INTx + (intno << 8));
 
 
663		}
664		do_int(regs, intno, ssp, sp);
665		return;
666	}
667
668	/* iret */
669	case 0xcf:
670		{
671		unsigned long newip;
672		unsigned long newcs;
673		unsigned long newflags;
674		if (data32) {
675			newip = popl(ssp, sp, simulate_sigsegv);
676			newcs = popl(ssp, sp, simulate_sigsegv);
677			newflags = popl(ssp, sp, simulate_sigsegv);
678			SP(regs) += 12;
679		} else {
680			newip = popw(ssp, sp, simulate_sigsegv);
681			newcs = popw(ssp, sp, simulate_sigsegv);
682			newflags = popw(ssp, sp, simulate_sigsegv);
683			SP(regs) += 6;
684		}
685		IP(regs) = newip;
686		regs->pt.cs = newcs;
687		CHECK_IF_IN_TRAP;
688		if (data32) {
689			set_vflags_long(newflags, regs);
690		} else {
691			set_vflags_short(newflags, regs);
692		}
693		VM86_FAULT_RETURN;
694		}
695
696	/* cli */
697	case 0xfa:
698		IP(regs) = ip;
699		clear_IF(regs);
700		VM86_FAULT_RETURN;
701
702	/* sti */
703	/*
704	 * Damn. This is incorrect: the 'sti' instruction should actually
705	 * enable interrupts after the /next/ instruction. Not good.
706	 *
707	 * Probably needs some horsing around with the TF flag. Aiee..
708	 */
709	case 0xfb:
710		IP(regs) = ip;
711		set_IF(regs);
712		VM86_FAULT_RETURN;
713
714	default:
715		return_to_32bit(regs, VM86_UNKNOWN);
716	}
717
718	return;
719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720simulate_sigsegv:
721	/* FIXME: After a long discussion with Stas we finally
722	 *        agreed, that this is wrong. Here we should
723	 *        really send a SIGSEGV to the user program.
724	 *        But how do we create the correct context? We
725	 *        are inside a general protection fault handler
726	 *        and has just returned from a page fault handler.
727	 *        The correct context for the signal handler
728	 *        should be a mixture of the two, but how do we
729	 *        get the information? [KD]
730	 */
731	return_to_32bit(regs, VM86_UNKNOWN);
732}
733
734/* ---------------- vm86 special IRQ passing stuff ----------------- */
735
736#define VM86_IRQNAME		"vm86irq"
737
738static struct vm86_irqs {
739	struct task_struct *tsk;
740	int sig;
741} vm86_irqs[16];
742
743static DEFINE_SPINLOCK(irqbits_lock);
744static int irqbits;
745
746#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
747	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
748	| (1 << SIGUNUSED))
749
750static irqreturn_t irq_handler(int intno, void *dev_id)
751{
752	int irq_bit;
753	unsigned long flags;
754
755	spin_lock_irqsave(&irqbits_lock, flags);
756	irq_bit = 1 << intno;
757	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
758		goto out;
759	irqbits |= irq_bit;
760	if (vm86_irqs[intno].sig)
761		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
762	/*
763	 * IRQ will be re-enabled when user asks for the irq (whether
764	 * polling or as a result of the signal)
765	 */
766	disable_irq_nosync(intno);
767	spin_unlock_irqrestore(&irqbits_lock, flags);
768	return IRQ_HANDLED;
769
770out:
771	spin_unlock_irqrestore(&irqbits_lock, flags);
772	return IRQ_NONE;
773}
774
775static inline void free_vm86_irq(int irqnumber)
776{
777	unsigned long flags;
778
779	free_irq(irqnumber, NULL);
780	vm86_irqs[irqnumber].tsk = NULL;
781
782	spin_lock_irqsave(&irqbits_lock, flags);
783	irqbits &= ~(1 << irqnumber);
784	spin_unlock_irqrestore(&irqbits_lock, flags);
785}
786
787void release_vm86_irqs(struct task_struct *task)
788{
789	int i;
790	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
791	    if (vm86_irqs[i].tsk == task)
792		free_vm86_irq(i);
793}
794
795static inline int get_and_reset_irq(int irqnumber)
796{
797	int bit;
798	unsigned long flags;
799	int ret = 0;
800
801	if (invalid_vm86_irq(irqnumber)) return 0;
802	if (vm86_irqs[irqnumber].tsk != current) return 0;
803	spin_lock_irqsave(&irqbits_lock, flags);
804	bit = irqbits & (1 << irqnumber);
805	irqbits &= ~bit;
806	if (bit) {
807		enable_irq(irqnumber);
808		ret = 1;
809	}
810
811	spin_unlock_irqrestore(&irqbits_lock, flags);
812	return ret;
813}
814
815
816static int do_vm86_irq_handling(int subfunction, int irqnumber)
817{
818	int ret;
819	switch (subfunction) {
820		case VM86_GET_AND_RESET_IRQ: {
821			return get_and_reset_irq(irqnumber);
822		}
823		case VM86_GET_IRQ_BITS: {
824			return irqbits;
825		}
826		case VM86_REQUEST_IRQ: {
827			int sig = irqnumber >> 8;
828			int irq = irqnumber & 255;
829			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
830			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
831			if (invalid_vm86_irq(irq)) return -EPERM;
832			if (vm86_irqs[irq].tsk) return -EPERM;
833			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
834			if (ret) return ret;
835			vm86_irqs[irq].sig = sig;
836			vm86_irqs[irq].tsk = current;
837			return irq;
838		}
839		case  VM86_FREE_IRQ: {
840			if (invalid_vm86_irq(irqnumber)) return -EPERM;
841			if (!vm86_irqs[irqnumber].tsk) return 0;
842			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
843			free_vm86_irq(irqnumber);
844			return 0;
845		}
846	}
847	return -EINVAL;
848}
849
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Copyright (C) 1994  Linus Torvalds
  4 *
  5 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  6 *                stack - Manfred Spraul <manfred@colorfullife.com>
  7 *
  8 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  9 *                them correctly. Now the emulation will be in a
 10 *                consistent state after stackfaults - Kasper Dupont
 11 *                <kasperd@daimi.au.dk>
 12 *
 13 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
 14 *                <kasperd@daimi.au.dk>
 15 *
 16 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
 17 *                caused by Kasper Dupont's changes - Stas Sergeev
 18 *
 19 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
 20 *                Kasper Dupont <kasperd@daimi.au.dk>
 21 *
 22 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
 23 *                Kasper Dupont <kasperd@daimi.au.dk>
 24 *
 25 *   9 apr 2002 - Changed stack access macros to jump to a label
 26 *                instead of returning to userspace. This simplifies
 27 *                do_int, and is needed by handle_vm6_fault. Kasper
 28 *                Dupont <kasperd@daimi.au.dk>
 29 *
 30 */
 31
 32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33
 34#include <linux/capability.h>
 35#include <linux/errno.h>
 36#include <linux/interrupt.h>
 37#include <linux/syscalls.h>
 38#include <linux/sched.h>
 39#include <linux/sched/task_stack.h>
 40#include <linux/kernel.h>
 41#include <linux/signal.h>
 42#include <linux/string.h>
 43#include <linux/mm.h>
 44#include <linux/smp.h>
 45#include <linux/highmem.h>
 46#include <linux/ptrace.h>
 47#include <linux/audit.h>
 48#include <linux/stddef.h>
 49#include <linux/slab.h>
 50#include <linux/security.h>
 51
 52#include <linux/uaccess.h>
 53#include <asm/io.h>
 54#include <asm/tlbflush.h>
 55#include <asm/irq.h>
 56#include <asm/traps.h>
 57#include <asm/vm86.h>
 58#include <asm/switch_to.h>
 59
 60/*
 61 * Known problems:
 62 *
 63 * Interrupt handling is not guaranteed:
 64 * - a real x86 will disable all interrupts for one instruction
 65 *   after a "mov ss,xx" to make stack handling atomic even without
 66 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 67 *   as the next instruction might result in a page fault or similar.
 68 * - a real x86 will have interrupts disabled for one instruction
 69 *   past the 'sti' that enables them. We don't bother with all the
 70 *   details yet.
 71 *
 72 * Let's hope these problems do not actually matter for anything.
 73 */
 74
 75
 
 
 
 
 76/*
 77 * 8- and 16-bit register defines..
 78 */
 79#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
 80#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
 81#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
 82#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
 83
 84/*
 85 * virtual flags (16 and 32-bit versions)
 86 */
 87#define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
 88#define VEFLAGS	(current->thread.vm86->veflags)
 89
 90#define set_flags(X, new, mask) \
 91((X) = ((X) & ~(mask)) | ((new) & (mask)))
 92
 93#define SAFE_MASK	(0xDD5)
 94#define RETURN_MASK	(0xDFF)
 95
 96void save_v86_state(struct kernel_vm86_regs *regs, int retval)
 
 
 97{
 98	struct task_struct *tsk = current;
 99	struct vm86plus_struct __user *user;
100	struct vm86 *vm86 = current->thread.vm86;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
102	/*
103	 * This gets called from entry.S with interrupts disabled, but
104	 * from process context. Enable interrupts here, before trying
105	 * to access user space.
106	 */
107	local_irq_enable();
108
109	if (!vm86 || !vm86->user_vm86) {
110		pr_alert("no user_vm86: BAD\n");
 
 
 
 
 
 
 
111		do_exit(SIGSEGV);
112	}
113	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
114	user = vm86->user_vm86;
115
116	if (!user_access_begin(user, vm86->vm86plus.is_vm86pus ?
117		       sizeof(struct vm86plus_struct) :
118		       sizeof(struct vm86_struct)))
119		goto Efault;
120
121	unsafe_put_user(regs->pt.bx, &user->regs.ebx, Efault_end);
122	unsafe_put_user(regs->pt.cx, &user->regs.ecx, Efault_end);
123	unsafe_put_user(regs->pt.dx, &user->regs.edx, Efault_end);
124	unsafe_put_user(regs->pt.si, &user->regs.esi, Efault_end);
125	unsafe_put_user(regs->pt.di, &user->regs.edi, Efault_end);
126	unsafe_put_user(regs->pt.bp, &user->regs.ebp, Efault_end);
127	unsafe_put_user(regs->pt.ax, &user->regs.eax, Efault_end);
128	unsafe_put_user(regs->pt.ip, &user->regs.eip, Efault_end);
129	unsafe_put_user(regs->pt.cs, &user->regs.cs, Efault_end);
130	unsafe_put_user(regs->pt.flags, &user->regs.eflags, Efault_end);
131	unsafe_put_user(regs->pt.sp, &user->regs.esp, Efault_end);
132	unsafe_put_user(regs->pt.ss, &user->regs.ss, Efault_end);
133	unsafe_put_user(regs->es, &user->regs.es, Efault_end);
134	unsafe_put_user(regs->ds, &user->regs.ds, Efault_end);
135	unsafe_put_user(regs->fs, &user->regs.fs, Efault_end);
136	unsafe_put_user(regs->gs, &user->regs.gs, Efault_end);
137	unsafe_put_user(vm86->screen_bitmap, &user->screen_bitmap, Efault_end);
138
139	user_access_end();
140
141	preempt_disable();
142	tsk->thread.sp0 = vm86->saved_sp0;
143	tsk->thread.sysenter_cs = __KERNEL_CS;
144	update_task_stack(tsk);
145	refresh_sysenter_cs(&tsk->thread);
146	vm86->saved_sp0 = 0;
147	preempt_enable();
148
149	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
 
 
 
 
 
150
151	lazy_load_gs(vm86->regs32.gs);
152
153	regs->pt.ax = retval;
154	return;
155
156Efault_end:
157	user_access_end();
158Efault:
159	pr_alert("could not access userspace vm86 info\n");
160	do_exit(SIGSEGV);
161}
162
163static void mark_screen_rdonly(struct mm_struct *mm)
164{
165	struct vm_area_struct *vma;
166	spinlock_t *ptl;
167	pgd_t *pgd;
168	p4d_t *p4d;
169	pud_t *pud;
170	pmd_t *pmd;
171	pte_t *pte;
 
172	int i;
173
174	mmap_write_lock(mm);
175	pgd = pgd_offset(mm, 0xA0000);
176	if (pgd_none_or_clear_bad(pgd))
177		goto out;
178	p4d = p4d_offset(pgd, 0xA0000);
179	if (p4d_none_or_clear_bad(p4d))
180		goto out;
181	pud = pud_offset(p4d, 0xA0000);
182	if (pud_none_or_clear_bad(pud))
183		goto out;
184	pmd = pmd_offset(pud, 0xA0000);
185
186	if (pmd_trans_huge(*pmd)) {
187		vma = find_vma(mm, 0xA0000);
188		split_huge_pmd(vma, pmd, 0xA0000);
189	}
190	if (pmd_none_or_clear_bad(pmd))
191		goto out;
192	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
193	for (i = 0; i < 32; i++) {
194		if (pte_present(*pte))
195			set_pte(pte, pte_wrprotect(*pte));
196		pte++;
197	}
198	pte_unmap_unlock(pte, ptl);
199out:
200	mmap_write_unlock(mm);
201	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, PAGE_SHIFT, false);
202}
203
204
205
206static int do_vm86_irq_handling(int subfunction, int irqnumber);
207static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
208
209SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
210{
211	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212}
213
214
215SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
216{
 
 
 
 
 
 
 
 
 
 
217	switch (cmd) {
218	case VM86_REQUEST_IRQ:
219	case VM86_FREE_IRQ:
220	case VM86_GET_IRQ_BITS:
221	case VM86_GET_AND_RESET_IRQ:
222		return do_vm86_irq_handling(cmd, (int)arg);
 
223	case VM86_PLUS_INSTALL_CHECK:
224		/*
225		 * NOTE: on old vm86 stuff this will return the error
226		 *  from access_ok(), because the subfunction is
227		 *  interpreted as (invalid) address to vm86_struct.
228		 *  So the installation check works.
229		 */
230		return 0;
 
231	}
232
233	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235}
236
237
238static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
239{
240	struct task_struct *tsk = current;
241	struct vm86 *vm86 = tsk->thread.vm86;
242	struct kernel_vm86_regs vm86regs;
243	struct pt_regs *regs = current_pt_regs();
244	unsigned long err = 0;
245	struct vm86_struct v;
246
247	err = security_mmap_addr(0);
248	if (err) {
249		/*
250		 * vm86 cannot virtualize the address space, so vm86 users
251		 * need to manage the low 1MB themselves using mmap.  Given
252		 * that BIOS places important data in the first page, vm86
253		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
254		 * for example, won't even bother trying to use vm86 if it
255		 * can't map a page at virtual address 0.
256		 *
257		 * To reduce the available kernel attack surface, simply
258		 * disallow vm86(old) for users who cannot mmap at va 0.
259		 *
260		 * The implementation of security_mmap_addr will allow
261		 * suitably privileged users to map va 0 even if
262		 * vm.mmap_min_addr is set above 0, and we want this
263		 * behavior for vm86 as well, as it ensures that legacy
264		 * tools like vbetool will not fail just because of
265		 * vm.mmap_min_addr.
266		 */
267		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268			     current->comm, task_pid_nr(current),
269			     from_kuid_munged(&init_user_ns, current_uid()));
270		return -EPERM;
271	}
272
273	if (!vm86) {
274		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275			return -ENOMEM;
276		tsk->thread.vm86 = vm86;
277	}
278	if (vm86->saved_sp0)
279		return -EPERM;
280
281	if (copy_from_user(&v, user_vm86,
282			offsetof(struct vm86_struct, int_revectored)))
283		return -EFAULT;
284
285	memset(&vm86regs, 0, sizeof(vm86regs));
286
287	vm86regs.pt.bx = v.regs.ebx;
288	vm86regs.pt.cx = v.regs.ecx;
289	vm86regs.pt.dx = v.regs.edx;
290	vm86regs.pt.si = v.regs.esi;
291	vm86regs.pt.di = v.regs.edi;
292	vm86regs.pt.bp = v.regs.ebp;
293	vm86regs.pt.ax = v.regs.eax;
294	vm86regs.pt.ip = v.regs.eip;
295	vm86regs.pt.cs = v.regs.cs;
296	vm86regs.pt.flags = v.regs.eflags;
297	vm86regs.pt.sp = v.regs.esp;
298	vm86regs.pt.ss = v.regs.ss;
299	vm86regs.es = v.regs.es;
300	vm86regs.ds = v.regs.ds;
301	vm86regs.fs = v.regs.fs;
302	vm86regs.gs = v.regs.gs;
303
304	vm86->flags = v.flags;
305	vm86->screen_bitmap = v.screen_bitmap;
306	vm86->cpu_type = v.cpu_type;
307
308	if (copy_from_user(&vm86->int_revectored,
309			   &user_vm86->int_revectored,
310			   sizeof(struct revectored_struct)))
311		return -EFAULT;
312	if (copy_from_user(&vm86->int21_revectored,
313			   &user_vm86->int21_revectored,
314			   sizeof(struct revectored_struct)))
315		return -EFAULT;
316	if (plus) {
317		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
318				   sizeof(struct vm86plus_info_struct)))
319			return -EFAULT;
320		vm86->vm86plus.is_vm86pus = 1;
321	} else
322		memset(&vm86->vm86plus, 0,
323		       sizeof(struct vm86plus_info_struct));
324
325	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
326	vm86->user_vm86 = user_vm86;
327
328/*
329 * The flags register is also special: we cannot trust that the user
330 * has set it up safely, so this makes sure interrupt etc flags are
331 * inherited from protected mode.
332 */
333	VEFLAGS = vm86regs.pt.flags;
334	vm86regs.pt.flags &= SAFE_MASK;
335	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
336	vm86regs.pt.flags |= X86_VM_MASK;
337
338	vm86regs.pt.orig_ax = regs->orig_ax;
339
340	switch (vm86->cpu_type) {
341	case CPU_286:
342		vm86->veflags_mask = 0;
343		break;
344	case CPU_386:
345		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
346		break;
347	case CPU_486:
348		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
349		break;
350	default:
351		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352		break;
353	}
354
355/*
356 * Save old state
357 */
358	vm86->saved_sp0 = tsk->thread.sp0;
359	lazy_save_gs(vm86->regs32.gs);
360
361	/* make room for real-mode segments */
362	preempt_disable();
363	tsk->thread.sp0 += 16;
364
365	if (boot_cpu_has(X86_FEATURE_SEP)) {
366		tsk->thread.sysenter_cs = 0;
367		refresh_sysenter_cs(&tsk->thread);
368	}
369
370	update_task_stack(tsk);
371	preempt_enable();
372
373	if (vm86->flags & VM86_SCREEN_BITMAP)
 
374		mark_screen_rdonly(tsk->mm);
375
376	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
377	return regs->ax;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378}
379
380static inline void set_IF(struct kernel_vm86_regs *regs)
381{
382	VEFLAGS |= X86_EFLAGS_VIF;
 
 
383}
384
385static inline void clear_IF(struct kernel_vm86_regs *regs)
386{
387	VEFLAGS &= ~X86_EFLAGS_VIF;
388}
389
390static inline void clear_TF(struct kernel_vm86_regs *regs)
391{
392	regs->pt.flags &= ~X86_EFLAGS_TF;
393}
394
395static inline void clear_AC(struct kernel_vm86_regs *regs)
396{
397	regs->pt.flags &= ~X86_EFLAGS_AC;
398}
399
400/*
401 * It is correct to call set_IF(regs) from the set_vflags_*
402 * functions. However someone forgot to call clear_IF(regs)
403 * in the opposite case.
404 * After the command sequence CLI PUSHF STI POPF you should
405 * end up with interrupts disabled, but you ended up with
406 * interrupts enabled.
407 *  ( I was testing my own changes, but the only bug I
408 *    could find was in a function I had not changed. )
409 * [KD]
410 */
411
412static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
413{
414	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
415	set_flags(regs->pt.flags, flags, SAFE_MASK);
416	if (flags & X86_EFLAGS_IF)
417		set_IF(regs);
418	else
419		clear_IF(regs);
420}
421
422static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
423{
424	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
425	set_flags(regs->pt.flags, flags, SAFE_MASK);
426	if (flags & X86_EFLAGS_IF)
427		set_IF(regs);
428	else
429		clear_IF(regs);
430}
431
432static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
433{
434	unsigned long flags = regs->pt.flags & RETURN_MASK;
435
436	if (VEFLAGS & X86_EFLAGS_VIF)
437		flags |= X86_EFLAGS_IF;
438	flags |= X86_EFLAGS_IOPL;
439	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
440}
441
442static inline int is_revectored(int nr, struct revectored_struct *bitmap)
443{
444	return test_bit(nr, bitmap->__map);
 
 
 
445}
446
447#define val_byte(val, n) (((__u8 *)&val)[n])
448
449#define pushb(base, ptr, val, err_label) \
450	do { \
451		__u8 __val = val; \
452		ptr--; \
453		if (put_user(__val, base + ptr) < 0) \
454			goto err_label; \
455	} while (0)
456
457#define pushw(base, ptr, val, err_label) \
458	do { \
459		__u16 __val = val; \
460		ptr--; \
461		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
462			goto err_label; \
463		ptr--; \
464		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
465			goto err_label; \
466	} while (0)
467
468#define pushl(base, ptr, val, err_label) \
469	do { \
470		__u32 __val = val; \
471		ptr--; \
472		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
473			goto err_label; \
474		ptr--; \
475		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
476			goto err_label; \
477		ptr--; \
478		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
479			goto err_label; \
480		ptr--; \
481		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
482			goto err_label; \
483	} while (0)
484
485#define popb(base, ptr, err_label) \
486	({ \
487		__u8 __res; \
488		if (get_user(__res, base + ptr) < 0) \
489			goto err_label; \
490		ptr++; \
491		__res; \
492	})
493
494#define popw(base, ptr, err_label) \
495	({ \
496		__u16 __res; \
497		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
498			goto err_label; \
499		ptr++; \
500		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
501			goto err_label; \
502		ptr++; \
503		__res; \
504	})
505
506#define popl(base, ptr, err_label) \
507	({ \
508		__u32 __res; \
509		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
510			goto err_label; \
511		ptr++; \
512		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
513			goto err_label; \
514		ptr++; \
515		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
516			goto err_label; \
517		ptr++; \
518		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
519			goto err_label; \
520		ptr++; \
521		__res; \
522	})
523
524/* There are so many possible reasons for this function to return
525 * VM86_INTx, so adding another doesn't bother me. We can expect
526 * userspace programs to be able to handle it. (Getting a problem
527 * in userspace is always better than an Oops anyway.) [KD]
528 */
529static void do_int(struct kernel_vm86_regs *regs, int i,
530    unsigned char __user *ssp, unsigned short sp)
531{
532	unsigned long __user *intr_ptr;
533	unsigned long segoffs;
534	struct vm86 *vm86 = current->thread.vm86;
535
536	if (regs->pt.cs == BIOSSEG)
537		goto cannot_handle;
538	if (is_revectored(i, &vm86->int_revectored))
539		goto cannot_handle;
540	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
541		goto cannot_handle;
542	intr_ptr = (unsigned long __user *) (i << 2);
543	if (get_user(segoffs, intr_ptr))
544		goto cannot_handle;
545	if ((segoffs >> 16) == BIOSSEG)
546		goto cannot_handle;
547	pushw(ssp, sp, get_vflags(regs), cannot_handle);
548	pushw(ssp, sp, regs->pt.cs, cannot_handle);
549	pushw(ssp, sp, IP(regs), cannot_handle);
550	regs->pt.cs = segoffs >> 16;
551	SP(regs) -= 6;
552	IP(regs) = segoffs & 0xffff;
553	clear_TF(regs);
554	clear_IF(regs);
555	clear_AC(regs);
556	return;
557
558cannot_handle:
559	save_v86_state(regs, VM86_INTx + (i << 8));
560}
561
562int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
563{
564	struct vm86 *vm86 = current->thread.vm86;
565
566	if (vm86->vm86plus.is_vm86pus) {
567		if ((trapno == 3) || (trapno == 1)) {
568			save_v86_state(regs, VM86_TRAP + (trapno << 8));
 
 
 
 
569			return 0;
570		}
571		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
572		return 0;
573	}
574	if (trapno != 1)
575		return 1; /* we let this handle by the calling routine */
576	current->thread.trap_nr = trapno;
577	current->thread.error_code = error_code;
578	force_sig(SIGTRAP);
579	return 0;
580}
581
582void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
583{
584	unsigned char opcode;
585	unsigned char __user *csp;
586	unsigned char __user *ssp;
587	unsigned short ip, sp, orig_flags;
588	int data32, pref_done;
589	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
590
591#define CHECK_IF_IN_TRAP \
592	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
593		newflags |= X86_EFLAGS_TF
 
 
 
 
 
 
594
595	orig_flags = *(unsigned short *)&regs->pt.flags;
596
597	csp = (unsigned char __user *) (regs->pt.cs << 4);
598	ssp = (unsigned char __user *) (regs->pt.ss << 4);
599	sp = SP(regs);
600	ip = IP(regs);
601
602	data32 = 0;
603	pref_done = 0;
604	do {
605		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
606		case 0x66:      /* 32-bit data */     data32 = 1; break;
607		case 0x67:      /* 32-bit address */  break;
608		case 0x2e:      /* CS */              break;
609		case 0x3e:      /* DS */              break;
610		case 0x26:      /* ES */              break;
611		case 0x36:      /* SS */              break;
612		case 0x65:      /* GS */              break;
613		case 0x64:      /* FS */              break;
614		case 0xf2:      /* repnz */       break;
615		case 0xf3:      /* rep */             break;
616		default: pref_done = 1;
617		}
618	} while (!pref_done);
619
620	switch (opcode) {
621
622	/* pushf */
623	case 0x9c:
624		if (data32) {
625			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
626			SP(regs) -= 4;
627		} else {
628			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
629			SP(regs) -= 2;
630		}
631		IP(regs) = ip;
632		goto vm86_fault_return;
633
634	/* popf */
635	case 0x9d:
636		{
637		unsigned long newflags;
638		if (data32) {
639			newflags = popl(ssp, sp, simulate_sigsegv);
640			SP(regs) += 4;
641		} else {
642			newflags = popw(ssp, sp, simulate_sigsegv);
643			SP(regs) += 2;
644		}
645		IP(regs) = ip;
646		CHECK_IF_IN_TRAP;
647		if (data32)
648			set_vflags_long(newflags, regs);
649		else
650			set_vflags_short(newflags, regs);
651
652		goto check_vip;
653		}
654
655	/* int xx */
656	case 0xcd: {
657		int intno = popb(csp, ip, simulate_sigsegv);
658		IP(regs) = ip;
659		if (vmpi->vm86dbg_active) {
660			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
661				save_v86_state(regs, VM86_INTx + (intno << 8));
662				return;
663			}
664		}
665		do_int(regs, intno, ssp, sp);
666		return;
667	}
668
669	/* iret */
670	case 0xcf:
671		{
672		unsigned long newip;
673		unsigned long newcs;
674		unsigned long newflags;
675		if (data32) {
676			newip = popl(ssp, sp, simulate_sigsegv);
677			newcs = popl(ssp, sp, simulate_sigsegv);
678			newflags = popl(ssp, sp, simulate_sigsegv);
679			SP(regs) += 12;
680		} else {
681			newip = popw(ssp, sp, simulate_sigsegv);
682			newcs = popw(ssp, sp, simulate_sigsegv);
683			newflags = popw(ssp, sp, simulate_sigsegv);
684			SP(regs) += 6;
685		}
686		IP(regs) = newip;
687		regs->pt.cs = newcs;
688		CHECK_IF_IN_TRAP;
689		if (data32) {
690			set_vflags_long(newflags, regs);
691		} else {
692			set_vflags_short(newflags, regs);
693		}
694		goto check_vip;
695		}
696
697	/* cli */
698	case 0xfa:
699		IP(regs) = ip;
700		clear_IF(regs);
701		goto vm86_fault_return;
702
703	/* sti */
704	/*
705	 * Damn. This is incorrect: the 'sti' instruction should actually
706	 * enable interrupts after the /next/ instruction. Not good.
707	 *
708	 * Probably needs some horsing around with the TF flag. Aiee..
709	 */
710	case 0xfb:
711		IP(regs) = ip;
712		set_IF(regs);
713		goto check_vip;
714
715	default:
716		save_v86_state(regs, VM86_UNKNOWN);
717	}
718
719	return;
720
721check_vip:
722	if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
723	    (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
724		save_v86_state(regs, VM86_STI);
725		return;
726	}
727
728vm86_fault_return:
729	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
730		save_v86_state(regs, VM86_PICRETURN);
731		return;
732	}
733	if (orig_flags & X86_EFLAGS_TF)
734		handle_vm86_trap(regs, 0, X86_TRAP_DB);
735	return;
736
737simulate_sigsegv:
738	/* FIXME: After a long discussion with Stas we finally
739	 *        agreed, that this is wrong. Here we should
740	 *        really send a SIGSEGV to the user program.
741	 *        But how do we create the correct context? We
742	 *        are inside a general protection fault handler
743	 *        and has just returned from a page fault handler.
744	 *        The correct context for the signal handler
745	 *        should be a mixture of the two, but how do we
746	 *        get the information? [KD]
747	 */
748	save_v86_state(regs, VM86_UNKNOWN);
749}
750
751/* ---------------- vm86 special IRQ passing stuff ----------------- */
752
753#define VM86_IRQNAME		"vm86irq"
754
755static struct vm86_irqs {
756	struct task_struct *tsk;
757	int sig;
758} vm86_irqs[16];
759
760static DEFINE_SPINLOCK(irqbits_lock);
761static int irqbits;
762
763#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
764	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
765	| (1 << SIGUNUSED))
766
767static irqreturn_t irq_handler(int intno, void *dev_id)
768{
769	int irq_bit;
770	unsigned long flags;
771
772	spin_lock_irqsave(&irqbits_lock, flags);
773	irq_bit = 1 << intno;
774	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
775		goto out;
776	irqbits |= irq_bit;
777	if (vm86_irqs[intno].sig)
778		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
779	/*
780	 * IRQ will be re-enabled when user asks for the irq (whether
781	 * polling or as a result of the signal)
782	 */
783	disable_irq_nosync(intno);
784	spin_unlock_irqrestore(&irqbits_lock, flags);
785	return IRQ_HANDLED;
786
787out:
788	spin_unlock_irqrestore(&irqbits_lock, flags);
789	return IRQ_NONE;
790}
791
792static inline void free_vm86_irq(int irqnumber)
793{
794	unsigned long flags;
795
796	free_irq(irqnumber, NULL);
797	vm86_irqs[irqnumber].tsk = NULL;
798
799	spin_lock_irqsave(&irqbits_lock, flags);
800	irqbits &= ~(1 << irqnumber);
801	spin_unlock_irqrestore(&irqbits_lock, flags);
802}
803
804void release_vm86_irqs(struct task_struct *task)
805{
806	int i;
807	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
808	    if (vm86_irqs[i].tsk == task)
809		free_vm86_irq(i);
810}
811
812static inline int get_and_reset_irq(int irqnumber)
813{
814	int bit;
815	unsigned long flags;
816	int ret = 0;
817
818	if (invalid_vm86_irq(irqnumber)) return 0;
819	if (vm86_irqs[irqnumber].tsk != current) return 0;
820	spin_lock_irqsave(&irqbits_lock, flags);
821	bit = irqbits & (1 << irqnumber);
822	irqbits &= ~bit;
823	if (bit) {
824		enable_irq(irqnumber);
825		ret = 1;
826	}
827
828	spin_unlock_irqrestore(&irqbits_lock, flags);
829	return ret;
830}
831
832
833static int do_vm86_irq_handling(int subfunction, int irqnumber)
834{
835	int ret;
836	switch (subfunction) {
837		case VM86_GET_AND_RESET_IRQ: {
838			return get_and_reset_irq(irqnumber);
839		}
840		case VM86_GET_IRQ_BITS: {
841			return irqbits;
842		}
843		case VM86_REQUEST_IRQ: {
844			int sig = irqnumber >> 8;
845			int irq = irqnumber & 255;
846			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
847			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
848			if (invalid_vm86_irq(irq)) return -EPERM;
849			if (vm86_irqs[irq].tsk) return -EPERM;
850			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
851			if (ret) return ret;
852			vm86_irqs[irq].sig = sig;
853			vm86_irqs[irq].tsk = current;
854			return irq;
855		}
856		case  VM86_FREE_IRQ: {
857			if (invalid_vm86_irq(irqnumber)) return -EPERM;
858			if (!vm86_irqs[irqnumber].tsk) return 0;
859			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
860			free_vm86_irq(irqnumber);
861			return 0;
862		}
863	}
864	return -EINVAL;
865}
866