Linux Audio

Check our new training course

Loading...
v3.5.6
 
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
 
 
 
 
 
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 15#include <linux/stackprotector.h>
 16#include <linux/tick.h>
 17#include <linux/cpuidle.h>
 
 
 18#include <trace/events/power.h>
 19#include <linux/hw_breakpoint.h>
 20#include <asm/cpu.h>
 21#include <asm/apic.h>
 22#include <asm/syscalls.h>
 23#include <asm/idle.h>
 24#include <asm/uaccess.h>
 25#include <asm/i387.h>
 26#include <asm/fpu-internal.h>
 27#include <asm/debugreg.h>
 28#include <asm/nmi.h>
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30/*
 31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 33 * so they are allowed to end up in the .data..cacheline_aligned
 34 * section. Since TSS's are completely CPU-local, we want them
 35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 36 */
 37DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 38
 39#ifdef CONFIG_X86_64
 40static DEFINE_PER_CPU(unsigned char, is_idle);
 41static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 
 
 
 
 42
 43void idle_notifier_register(struct notifier_block *n)
 44{
 45	atomic_notifier_chain_register(&idle_notifier, n);
 46}
 47EXPORT_SYMBOL_GPL(idle_notifier_register);
 
 48
 49void idle_notifier_unregister(struct notifier_block *n)
 50{
 51	atomic_notifier_chain_unregister(&idle_notifier, n);
 52}
 53EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 54#endif
 
 
 
 
 55
 56struct kmem_cache *task_xstate_cachep;
 57EXPORT_SYMBOL_GPL(task_xstate_cachep);
 58
 59/*
 60 * this gets called so that we can store lazy state into memory and copy the
 61 * current task into the new thread.
 62 */
 63int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 64{
 65	int ret;
 66
 67	unlazy_fpu(src);
 
 68
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 
 
 
 81{
 82	fpu_free(&tsk->thread.fpu);
 83}
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 86{
 87	free_thread_xstate(tsk);
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 96}
 97
 98static inline void drop_fpu(struct task_struct *tsk)
 99{
100	/*
101	 * Forget coprocessor state..
102	 */
103	tsk->fpu_counter = 0;
104	clear_fpu(tsk);
105	clear_used_math();
106}
107
108/*
109 * Free current thread data structures etc..
110 */
111void exit_thread(void)
112{
113	struct task_struct *me = current;
114	struct thread_struct *t = &me->thread;
115	unsigned long *bp = t->io_bitmap_ptr;
 
 
 
 
 
 
 
 
 
 
 
116
117	if (bp) {
118		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 
 
 
 
119
120		t->io_bitmap_ptr = NULL;
121		clear_thread_flag(TIF_IO_BITMAP);
122		/*
123		 * Careful, clear this in the TSS too:
124		 */
125		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126		t->io_bitmap_max = 0;
127		put_cpu();
128		kfree(bp);
 
 
 
 
 
 
 
 
 
129	}
130
131	drop_fpu(me);
132}
 
 
 
133
134void show_regs_common(void)
135{
136	const char *vendor, *product, *board;
137
138	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139	if (!vendor)
140		vendor = "";
141	product = dmi_get_system_info(DMI_PRODUCT_NAME);
142	if (!product)
143		product = "";
144
145	/* Board Name is optional */
146	board = dmi_get_system_info(DMI_BOARD_NAME);
147
148	printk(KERN_CONT "\n");
149	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150		current->pid, current->comm, print_tainted(),
151		init_utsname()->release,
152		(int)strcspn(init_utsname()->version, " "),
153		init_utsname()->version);
154	printk(KERN_CONT " %s %s", vendor, product);
155	if (board)
156		printk(KERN_CONT "/%s", board);
157	printk(KERN_CONT "\n");
158}
159
160void flush_thread(void)
161{
162	struct task_struct *tsk = current;
163
164	flush_ptrace_hw_breakpoint(tsk);
165	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166	drop_fpu(tsk);
167}
168
169static void hard_disable_TSC(void)
170{
171	write_cr4(read_cr4() | X86_CR4_TSD);
172}
173
174void disable_TSC(void)
175{
176	preempt_disable();
177	if (!test_and_set_thread_flag(TIF_NOTSC))
178		/*
179		 * Must flip the CPU state synchronously with
180		 * TIF_NOTSC in the current running context.
181		 */
182		hard_disable_TSC();
183	preempt_enable();
184}
185
186static void hard_enable_TSC(void)
187{
188	write_cr4(read_cr4() & ~X86_CR4_TSD);
189}
190
191static void enable_TSC(void)
192{
193	preempt_disable();
194	if (test_and_clear_thread_flag(TIF_NOTSC))
195		/*
196		 * Must flip the CPU state synchronously with
197		 * TIF_NOTSC in the current running context.
198		 */
199		hard_enable_TSC();
200	preempt_enable();
201}
202
203int get_tsc_mode(unsigned long adr)
204{
205	unsigned int val;
206
207	if (test_thread_flag(TIF_NOTSC))
208		val = PR_TSC_SIGSEGV;
209	else
210		val = PR_TSC_ENABLE;
211
212	return put_user(val, (unsigned int __user *)adr);
213}
214
215int set_tsc_mode(unsigned int val)
216{
217	if (val == PR_TSC_SIGSEGV)
218		disable_TSC();
219	else if (val == PR_TSC_ENABLE)
220		enable_TSC();
221	else
222		return -EINVAL;
223
224	return 0;
225}
226
227void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228		      struct tss_struct *tss)
229{
230	struct thread_struct *prev, *next;
231
232	prev = &prev_p->thread;
233	next = &next_p->thread;
234
235	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237		unsigned long debugctl = get_debugctlmsr();
238
239		debugctl &= ~DEBUGCTLMSR_BTF;
240		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241			debugctl |= DEBUGCTLMSR_BTF;
242
243		update_debugctlmsr(debugctl);
244	}
245
246	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248		/* prev and next are different */
249		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250			hard_disable_TSC();
251		else
252			hard_enable_TSC();
253	}
254
255	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
256		/*
257		 * Copy the relevant range of the IO bitmap.
258		 * Normally this is 128 bytes or less:
259		 */
260		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261		       max(prev->io_bitmap_max, next->io_bitmap_max));
262	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
 
263		/*
264		 * Clear any possible leftover bits:
 
265		 */
266		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267	}
268	propagate_user_return_notify(prev_p, next_p);
269}
270
271int sys_fork(struct pt_regs *regs)
272{
273	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286int sys_vfork(struct pt_regs *regs)
287{
288	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289		       NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
291
292long
293sys_clone(unsigned long clone_flags, unsigned long newsp,
294	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295{
296	if (!newsp)
297		newsp = regs->sp;
298	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 
 
 
 
 
 
299}
300
301/*
302 * This gets run with %si containing the
303 * function to call, and %di containing
304 * the "args".
305 */
306extern void kernel_thread_helper(void);
 
 
 
 
 
 
307
308/*
309 * Create a kernel thread
 
 
 
 
 
 
 
 
310 */
311int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312{
313	struct pt_regs regs;
 
 
314
315	memset(&regs, 0, sizeof(regs));
 
 
 
316
317	regs.si = (unsigned long) fn;
318	regs.di = (unsigned long) arg;
 
 
319
320#ifdef CONFIG_X86_32
321	regs.ds = __USER_DS;
322	regs.es = __USER_DS;
323	regs.fs = __KERNEL_PERCPU;
324	regs.gs = __KERNEL_STACK_CANARY;
325#else
326	regs.ss = __KERNEL_DS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327#endif
328
329	regs.orig_ax = -1;
330	regs.ip = (unsigned long) kernel_thread_helper;
331	regs.cs = __KERNEL_CS | get_kernel_rpl();
332	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334	/* Ok, create the new process.. */
335	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
 
 
 
 
 
336}
337EXPORT_SYMBOL(kernel_thread);
338
339/*
340 * sys_execve() executes a new program.
 
 
 
 
341 */
342long sys_execve(const char __user *name,
343		const char __user *const __user *argv,
344		const char __user *const __user *envp, struct pt_regs *regs)
345{
346	long error;
347	char *filename;
348
349	filename = getname(name);
350	error = PTR_ERR(filename);
351	if (IS_ERR(filename))
352		return error;
353	error = do_execve(filename, argv, envp, regs);
354
355#ifdef CONFIG_X86_32
356	if (error == 0) {
357		/* Make sure we don't return using sysenter.. */
358                set_thread_flag(TIF_IRET);
359        }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360#endif
361
362	putname(filename);
363	return error;
 
 
 
 
 
364}
365
366/*
367 * Idle related variables and functions
 
 
 
368 */
369unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370EXPORT_SYMBOL(boot_option_idle_override);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
372/*
373 * Powermanagement idle function, if any..
374 */
375void (*pm_idle)(void);
376#ifdef CONFIG_APM_MODULE
377EXPORT_SYMBOL(pm_idle);
378#endif
379
380static inline int hlt_use_halt(void)
381{
382	return 1;
383}
384
385#ifndef CONFIG_SMP
386static inline void play_dead(void)
387{
388	BUG();
 
 
 
 
 
 
 
 
 
 
 
 
389}
390#endif
391
392#ifdef CONFIG_X86_64
393void enter_idle(void)
394{
395	this_cpu_write(is_idle, 1);
396	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 
 
 
 
397}
398
399static void __exit_idle(void)
 
400{
401	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402		return;
403	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404}
405
406/* Called from interrupts to signify idle end */
407void exit_idle(void)
408{
409	/* idle loop has pid 0 */
410	if (current->pid)
411		return;
412	__exit_idle();
 
 
 
413}
414#endif
415
416/*
417 * The idle thread. There's no useful work to be
418 * done, so just try to conserve power and have a
419 * low exit latency (ie sit in a loop waiting for
420 * somebody to say that they'd like to reschedule)
421 */
422void cpu_idle(void)
423{
424	/*
425	 * If we're the non-boot CPU, nothing set the stack canary up
426	 * for us.  CPU0 already has it initialized but no harm in
427	 * doing it again.  This is a good place for updating it, as
428	 * we wont ever return from this function (so the invalid
429	 * canaries already on the stack wont ever trigger).
430	 */
431	boot_init_stack_canary();
432	current_thread_info()->status |= TS_POLLING;
433
434	while (1) {
435		tick_nohz_idle_enter();
436
437		while (!need_resched()) {
438			rmb();
439
440			if (cpu_is_offline(smp_processor_id()))
441				play_dead();
442
443			/*
444			 * Idle routines should keep interrupts disabled
445			 * from here on, until they go to idle.
446			 * Otherwise, idle callbacks can misfire.
447			 */
448			local_touch_nmi();
449			local_irq_disable();
450
451			enter_idle();
 
 
 
 
 
452
453			/* Don't trace irqs off for idle */
454			stop_critical_timings();
455
456			/* enter_idle() needs rcu for notifiers */
457			rcu_idle_enter();
458
459			if (cpuidle_idle_call())
460				pm_idle();
 
 
 
461
462			rcu_idle_exit();
463			start_critical_timings();
 
464
465			/* In many cases the interrupt that ended idle
466			   has already called exit_idle. But some idle
467			   loops can be woken up without interrupt. */
468			__exit_idle();
469		}
470
471		tick_nohz_idle_exit();
472		preempt_enable_no_resched();
473		schedule();
474		preempt_disable();
475	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476}
477
478/*
479 * We use this if we don't have any better
480 * idle routine..
481 */
482void default_idle(void)
483{
484	if (hlt_use_halt()) {
485		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486		trace_cpu_idle_rcuidle(1, smp_processor_id());
487		current_thread_info()->status &= ~TS_POLLING;
488		/*
489		 * TS_POLLING-cleared state must be visible before we
490		 * test NEED_RESCHED:
491		 */
492		smp_mb();
493
494		if (!need_resched())
495			safe_halt();	/* enables interrupts racelessly */
496		else
497			local_irq_enable();
498		current_thread_info()->status |= TS_POLLING;
499		trace_power_end_rcuidle(smp_processor_id());
500		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501	} else {
502		local_irq_enable();
503		/* loop is done by the caller */
504		cpu_relax();
505	}
506}
507#ifdef CONFIG_APM_MODULE
508EXPORT_SYMBOL(default_idle);
509#endif
510
511bool set_pm_idle_to_default(void)
 
512{
513	bool ret = !!pm_idle;
514
515	pm_idle = default_idle;
516
517	return ret;
518}
 
 
519void stop_this_cpu(void *dummy)
520{
521	local_irq_disable();
522	/*
523	 * Remove this CPU:
524	 */
525	set_cpu_online(smp_processor_id(), false);
526	disable_local_APIC();
 
527
 
 
 
 
 
 
 
 
 
 
 
528	for (;;) {
529		if (hlt_works(smp_processor_id()))
530			halt();
 
 
 
 
531	}
532}
533
534/* Default MONITOR/MWAIT with no hints, used for default C1 state */
535static void mwait_idle(void)
536{
537	if (!need_resched()) {
538		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539		trace_cpu_idle_rcuidle(1, smp_processor_id());
540		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541			clflush((void *)&current_thread_info()->flags);
542
543		__monitor((void *)&current_thread_info()->flags, 0, 0);
544		smp_mb();
545		if (!need_resched())
546			__sti_mwait(0, 0);
547		else
548			local_irq_enable();
549		trace_power_end_rcuidle(smp_processor_id());
550		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551	} else
552		local_irq_enable();
553}
554
555/*
556 * On SMP it's slightly faster (but much more power-consuming!)
557 * to poll the ->work.need_resched flag instead of waiting for the
558 * cross-CPU IPI to arrive. Use this option with caution.
559 */
560static void poll_idle(void)
561{
562	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563	trace_cpu_idle_rcuidle(0, smp_processor_id());
564	local_irq_enable();
565	while (!need_resched())
566		cpu_relax();
567	trace_power_end_rcuidle(smp_processor_id());
568	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
569}
570
571/*
572 * mwait selection logic:
573 *
574 * It depends on the CPU. For AMD CPUs that support MWAIT this is
575 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576 * then depend on a clock divisor and current Pstate of the core. If
577 * all cores of a processor are in halt state (C1) the processor can
578 * enter the C1E (C1 enhanced) state. If mwait is used this will never
579 * happen.
580 *
581 * idle=mwait overrides this decision and forces the usage of mwait.
582 */
583
584#define MWAIT_INFO			0x05
585#define MWAIT_ECX_EXTENDED_INFO		0x01
586#define MWAIT_EDX_C1			0xf0
587
588int mwait_usable(const struct cpuinfo_x86 *c)
589{
590	u32 eax, ebx, ecx, edx;
591
592	/* Use mwait if idle=mwait boot option is given */
593	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594		return 1;
595
596	/*
597	 * Any idle= boot option other than idle=mwait means that we must not
598	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
 
599	 */
600	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601		return 0;
 
 
602
603	if (c->cpuid_level < MWAIT_INFO)
604		return 0;
605
606	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607	/* Check, whether EDX has extended info about MWAIT */
608	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609		return 1;
610
611	/*
612	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613	 * C1  supports MWAIT
614	 */
615	return (edx & MWAIT_EDX_C1);
616}
617
618bool amd_e400_c1e_detected;
619EXPORT_SYMBOL(amd_e400_c1e_detected);
620
621static cpumask_var_t amd_e400_c1e_mask;
622
623void amd_e400_remove_cpu(int cpu)
624{
625	if (amd_e400_c1e_mask != NULL)
626		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631 * pending message MSR. If we detect C1E, then we handle it the same
632 * way as C3 power states (local apic timer and TSC stop)
 
 
 
 
 
633 */
634static void amd_e400_idle(void)
635{
636	if (need_resched())
637		return;
638
639	if (!amd_e400_c1e_detected) {
640		u32 lo, hi;
641
642		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643
644		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645			amd_e400_c1e_detected = true;
646			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647				mark_tsc_unstable("TSC halt in AMD C1E");
648			printk(KERN_INFO "System has AMD C1E enabled\n");
649		}
650	}
651
652	if (amd_e400_c1e_detected) {
653		int cpu = smp_processor_id();
654
655		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657			/*
658			 * Force broadcast so ACPI can not interfere.
659			 */
660			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661					   &cpu);
662			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663			       cpu);
 
 
 
664		}
665		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666
667		default_idle();
668
669		/*
670		 * The switch back from broadcast mode needs to be
671		 * called with interrupts disabled.
672		 */
673		 local_irq_disable();
674		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675		 local_irq_enable();
676	} else
677		default_idle();
678}
679
680void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_SMP
683	if (pm_idle == poll_idle && smp_num_siblings > 1) {
684		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685			" performance may degrade.\n");
686	}
687#endif
688	if (pm_idle)
689		return;
690
691	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692		/*
693		 * One CPU supports mwait => All CPUs supports mwait
694		 */
695		printk(KERN_INFO "using mwait in idle threads.\n");
696		pm_idle = mwait_idle;
697	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
698		/* E400: APIC timer interrupt does not wake up CPU from C1e */
699		printk(KERN_INFO "using AMD E400 aware idle routine\n");
700		pm_idle = amd_e400_idle;
701	} else
702		pm_idle = default_idle;
703}
704
705void __init init_amd_e400_c1e_mask(void)
706{
707	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708	if (pm_idle == amd_e400_idle)
709		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710}
711
712static int __init idle_setup(char *str)
713{
714	if (!str)
715		return -EINVAL;
716
717	if (!strcmp(str, "poll")) {
718		printk("using polling idle threads.\n");
719		pm_idle = poll_idle;
720		boot_option_idle_override = IDLE_POLL;
721	} else if (!strcmp(str, "mwait")) {
722		boot_option_idle_override = IDLE_FORCE_MWAIT;
723		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724	} else if (!strcmp(str, "halt")) {
725		/*
726		 * When the boot option of idle=halt is added, halt is
727		 * forced to be used for CPU idle. In such case CPU C2/C3
728		 * won't be used again.
729		 * To continue to load the CPU idle driver, don't touch
730		 * the boot_option_idle_override.
731		 */
732		pm_idle = default_idle;
733		boot_option_idle_override = IDLE_HALT;
734	} else if (!strcmp(str, "nomwait")) {
735		/*
736		 * If the boot option of "idle=nomwait" is added,
737		 * it means that mwait will be disabled for CPU C2/C3
738		 * states. In such case it won't touch the variable
739		 * of boot_option_idle_override.
740		 */
741		boot_option_idle_override = IDLE_NOMWAIT;
742	} else
743		return -1;
744
745	return 0;
746}
747early_param("idle", idle_setup);
748
749unsigned long arch_align_stack(unsigned long sp)
750{
751	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752		sp -= get_random_int() % 8192;
753	return sp & ~0xf;
754}
755
756unsigned long arch_randomize_brk(struct mm_struct *mm)
757{
758	unsigned long range_end = mm->brk + 0x02000000;
759	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
760}
761
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 30#include <asm/apic.h>
 31#include <linux/uaccess.h>
 32#include <asm/mwait.h>
 33#include <asm/fpu/internal.h>
 
 
 34#include <asm/debugreg.h>
 35#include <asm/nmi.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mce.h>
 38#include <asm/vm86.h>
 39#include <asm/switch_to.h>
 40#include <asm/desc.h>
 41#include <asm/prctl.h>
 42#include <asm/spec-ctrl.h>
 43#include <asm/io_bitmap.h>
 44#include <asm/proto.h>
 45#include <asm/frame.h>
 46
 47#include "process.h"
 48
 49/*
 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 52 * so they are allowed to end up in the .data..cacheline_aligned
 53 * section. Since TSS's are completely CPU-local, we want them
 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 55 */
 56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 57	.x86_tss = {
 58		/*
 59		 * .sp0 is only used when entering ring 0 from a lower
 60		 * privilege level.  Since the init task never runs anything
 61		 * but ring 0 code, there is no need for a valid value here.
 62		 * Poison it.
 63		 */
 64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 65
 66		/*
 67		 * .sp1 is cpu_current_top_of_stack.  The init task never
 68		 * runs user code, but cpu_current_top_of_stack should still
 69		 * be well defined before the first context switch.
 70		 */
 71		.sp1 = TOP_OF_INIT_STACK,
 72
 73#ifdef CONFIG_X86_32
 74		.ss0 = __KERNEL_DS,
 75		.ss1 = __KERNEL_CS,
 
 
 76#endif
 77		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
 78	 },
 79};
 80EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 81
 82DEFINE_PER_CPU(bool, __tss_limit_invalid);
 83EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 84
 85/*
 86 * this gets called so that we can store lazy state into memory and copy the
 87 * current task into the new thread.
 88 */
 89int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 90{
 91	memcpy(dst, src, arch_task_struct_size);
 92#ifdef CONFIG_VM86
 93	dst->thread.vm86 = NULL;
 94#endif
 95
 96	return fpu__copy(dst, src);
 
 
 
 
 
 
 
 
 97}
 98
 99/*
100 * Free thread data structures etc..
101 */
102void exit_thread(struct task_struct *tsk)
103{
104	struct thread_struct *t = &tsk->thread;
105	struct fpu *fpu = &t->fpu;
106
107	if (test_thread_flag(TIF_IO_BITMAP))
108		io_bitmap_exit(tsk);
 
 
109
110	free_vm86(t);
111
112	fpu__drop(fpu);
 
 
 
113}
114
115static int set_new_tls(struct task_struct *p, unsigned long tls)
116{
117	struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119	if (in_ia32_syscall())
120		return do_set_thread_area(p, -1, utls, 0);
121	else
122		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123}
124
125int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126		struct task_struct *p, unsigned long tls)
 
 
127{
128	struct inactive_task_frame *frame;
129	struct fork_frame *fork_frame;
130	struct pt_regs *childregs;
131	int ret = 0;
132
133	childregs = task_pt_regs(p);
134	fork_frame = container_of(childregs, struct fork_frame, regs);
135	frame = &fork_frame->frame;
136
137	frame->bp = encode_frame_pointer(childregs);
138	frame->ret_addr = (unsigned long) ret_from_fork;
139	p->thread.sp = (unsigned long) fork_frame;
140	p->thread.io_bitmap = NULL;
141	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143#ifdef CONFIG_X86_64
144	current_save_fsgs();
145	p->thread.fsindex = current->thread.fsindex;
146	p->thread.fsbase = current->thread.fsbase;
147	p->thread.gsindex = current->thread.gsindex;
148	p->thread.gsbase = current->thread.gsbase;
149
150	savesegment(es, p->thread.es);
151	savesegment(ds, p->thread.ds);
152#else
153	p->thread.sp0 = (unsigned long) (childregs + 1);
154	/*
155	 * Clear all status flags including IF and set fixed bit. 64bit
156	 * does not have this initialization as the frame does not contain
157	 * flags. The flags consistency (especially vs. AC) is there
158	 * ensured via objtool, which lacks 32bit support.
159	 */
160	frame->flags = X86_EFLAGS_FIXED;
161#endif
162
163	/* Kernel thread ? */
164	if (unlikely(p->flags & PF_KTHREAD)) {
165		memset(childregs, 0, sizeof(struct pt_regs));
166		kthread_frame_init(frame, sp, arg);
167		return 0;
168	}
169
170	frame->bx = 0;
171	*childregs = *current_pt_regs();
172	childregs->ax = 0;
173	if (sp)
174		childregs->sp = sp;
175
176#ifdef CONFIG_X86_32
177	task_user_gs(p) = get_user_gs(current_pt_regs());
178#endif
179
180	/* Set a new TLS for the child thread? */
181	if (clone_flags & CLONE_SETTLS)
182		ret = set_new_tls(p, tls);
 
 
 
183
184	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185		io_bitmap_share(p);
186
187	return ret;
 
 
 
 
 
 
 
 
 
188}
189
190void flush_thread(void)
191{
192	struct task_struct *tsk = current;
193
194	flush_ptrace_hw_breakpoint(tsk);
195	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 
 
196
197	fpu__clear_all(&tsk->thread.fpu);
 
 
198}
199
200void disable_TSC(void)
201{
202	preempt_disable();
203	if (!test_and_set_thread_flag(TIF_NOTSC))
204		/*
205		 * Must flip the CPU state synchronously with
206		 * TIF_NOTSC in the current running context.
207		 */
208		cr4_set_bits(X86_CR4_TSD);
209	preempt_enable();
210}
211
 
 
 
 
 
212static void enable_TSC(void)
213{
214	preempt_disable();
215	if (test_and_clear_thread_flag(TIF_NOTSC))
216		/*
217		 * Must flip the CPU state synchronously with
218		 * TIF_NOTSC in the current running context.
219		 */
220		cr4_clear_bits(X86_CR4_TSD);
221	preempt_enable();
222}
223
224int get_tsc_mode(unsigned long adr)
225{
226	unsigned int val;
227
228	if (test_thread_flag(TIF_NOTSC))
229		val = PR_TSC_SIGSEGV;
230	else
231		val = PR_TSC_ENABLE;
232
233	return put_user(val, (unsigned int __user *)adr);
234}
235
236int set_tsc_mode(unsigned int val)
237{
238	if (val == PR_TSC_SIGSEGV)
239		disable_TSC();
240	else if (val == PR_TSC_ENABLE)
241		enable_TSC();
242	else
243		return -EINVAL;
244
245	return 0;
246}
247
248DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 
 
 
249
250static void set_cpuid_faulting(bool on)
251{
252	u64 msrval;
 
 
 
 
 
 
 
 
 
 
253
254	msrval = this_cpu_read(msr_misc_features_shadow);
255	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257	this_cpu_write(msr_misc_features_shadow, msrval);
258	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259}
 
 
260
261static void disable_cpuid(void)
262{
263	preempt_disable();
264	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265		/*
266		 * Must flip the CPU state synchronously with
267		 * TIF_NOCPUID in the current running context.
268		 */
269		set_cpuid_faulting(true);
270	}
271	preempt_enable();
272}
273
274static void enable_cpuid(void)
275{
276	preempt_disable();
277	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278		/*
279		 * Must flip the CPU state synchronously with
280		 * TIF_NOCPUID in the current running context.
281		 */
282		set_cpuid_faulting(false);
283	}
284	preempt_enable();
285}
286
287static int get_cpuid_mode(void)
288{
289	return !test_thread_flag(TIF_NOCPUID);
290}
291
292static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293{
294	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295		return -ENODEV;
296
297	if (cpuid_enabled)
298		enable_cpuid();
299	else
300		disable_cpuid();
301
302	return 0;
303}
304
305/*
306 * Called immediately after a successful exec.
 
 
 
 
 
 
 
307 */
308void arch_setup_new_exec(void)
309{
310	/* If cpuid was previously disabled for this task, re-enable it. */
311	if (test_thread_flag(TIF_NOCPUID))
312		enable_cpuid();
313
314	/*
315	 * Don't inherit TIF_SSBD across exec boundary when
316	 * PR_SPEC_DISABLE_NOEXEC is used.
317	 */
318	if (test_thread_flag(TIF_SSBD) &&
319	    task_spec_ssb_noexec(current)) {
320		clear_thread_flag(TIF_SSBD);
321		task_clear_spec_ssb_disable(current);
322		task_clear_spec_ssb_noexec(current);
323		speculation_ctrl_update(task_thread_info(current)->flags);
324	}
325}
326
327#ifdef CONFIG_X86_IOPL_IOPERM
328static inline void switch_to_bitmap(unsigned long tifp)
 
329{
330	/*
331	 * Invalidate I/O bitmap if the previous task used it. This prevents
332	 * any possible leakage of an active I/O bitmap.
333	 *
334	 * If the next task has an I/O bitmap it will handle it on exit to
335	 * user mode.
336	 */
337	if (tifp & _TIF_IO_BITMAP)
338		tss_invalidate_io_bitmap();
339}
340
341static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342{
343	/*
344	 * Copy at least the byte range of the incoming tasks bitmap which
345	 * covers the permitted I/O ports.
346	 *
347	 * If the previous task which used an I/O bitmap had more bits
348	 * permitted, then the copy needs to cover those as well so they
349	 * get turned off.
350	 */
351	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352	       max(tss->io_bitmap.prev_max, iobm->max));
353
354	/*
355	 * Store the new max and the sequence number of this bitmap
356	 * and a pointer to the bitmap itself.
357	 */
358	tss->io_bitmap.prev_max = iobm->max;
359	tss->io_bitmap.prev_sequence = iobm->sequence;
360}
361
362/**
363 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364 */
365void native_tss_update_io_bitmap(void)
366{
367	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368	struct thread_struct *t = &current->thread;
369	u16 *base = &tss->x86_tss.io_bitmap_base;
370
371	if (!test_thread_flag(TIF_IO_BITMAP)) {
372		native_tss_invalidate_io_bitmap();
373		return;
374	}
375
376	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377		*base = IO_BITMAP_OFFSET_VALID_ALL;
378	} else {
379		struct io_bitmap *iobm = t->io_bitmap;
380
381		/*
382		 * Only copy bitmap data when the sequence number differs. The
383		 * update time is accounted to the incoming task.
384		 */
385		if (tss->io_bitmap.prev_sequence != iobm->sequence)
386			tss_copy_io_bitmap(tss, iobm);
387
388		/* Enable the bitmap */
389		*base = IO_BITMAP_OFFSET_VALID_MAP;
390	}
391
392	/*
393	 * Make sure that the TSS limit is covering the IO bitmap. It might have
394	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395	 * access from user space to trigger a #GP because tbe bitmap is outside
396	 * the TSS limit.
397	 */
398	refresh_tss_limit();
399}
400#else /* CONFIG_X86_IOPL_IOPERM */
401static inline void switch_to_bitmap(unsigned long tifp) { }
402#endif
403
404#ifdef CONFIG_SMP
405
406struct ssb_state {
407	struct ssb_state	*shared_state;
408	raw_spinlock_t		lock;
409	unsigned int		disable_state;
410	unsigned long		local_state;
411};
412
413#define LSTATE_SSB	0
414
415static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416
417void speculative_store_bypass_ht_init(void)
418{
419	struct ssb_state *st = this_cpu_ptr(&ssb_state);
420	unsigned int this_cpu = smp_processor_id();
421	unsigned int cpu;
422
423	st->local_state = 0;
424
425	/*
426	 * Shared state setup happens once on the first bringup
427	 * of the CPU. It's not destroyed on CPU hotunplug.
428	 */
429	if (st->shared_state)
430		return;
431
432	raw_spin_lock_init(&st->lock);
433
434	/*
435	 * Go over HT siblings and check whether one of them has set up the
436	 * shared state pointer already.
437	 */
438	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439		if (cpu == this_cpu)
440			continue;
441
442		if (!per_cpu(ssb_state, cpu).shared_state)
443			continue;
444
445		/* Link it to the state of the sibling: */
446		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447		return;
448	}
449
450	/*
451	 * First HT sibling to come up on the core.  Link shared state of
452	 * the first HT sibling to itself. The siblings on the same core
453	 * which come up later will see the shared state pointer and link
454	 * themself to the state of this CPU.
455	 */
456	st->shared_state = st;
457}
 
458
459/*
460 * Logic is: First HT sibling enables SSBD for both siblings in the core
461 * and last sibling to disable it, disables it for the whole core. This how
462 * MSR_SPEC_CTRL works in "hardware":
463 *
464 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465 */
466static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 
 
467{
468	struct ssb_state *st = this_cpu_ptr(&ssb_state);
469	u64 msr = x86_amd_ls_cfg_base;
470
471	if (!static_cpu_has(X86_FEATURE_ZEN)) {
472		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473		wrmsrl(MSR_AMD64_LS_CFG, msr);
474		return;
475	}
476
477	if (tifn & _TIF_SSBD) {
478		/*
479		 * Since this can race with prctl(), block reentry on the
480		 * same CPU.
481		 */
482		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483			return;
484
485		msr |= x86_amd_ls_cfg_ssbd_mask;
486
487		raw_spin_lock(&st->shared_state->lock);
488		/* First sibling enables SSBD: */
489		if (!st->shared_state->disable_state)
490			wrmsrl(MSR_AMD64_LS_CFG, msr);
491		st->shared_state->disable_state++;
492		raw_spin_unlock(&st->shared_state->lock);
493	} else {
494		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495			return;
496
497		raw_spin_lock(&st->shared_state->lock);
498		st->shared_state->disable_state--;
499		if (!st->shared_state->disable_state)
500			wrmsrl(MSR_AMD64_LS_CFG, msr);
501		raw_spin_unlock(&st->shared_state->lock);
502	}
503}
504#else
505static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506{
507	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508
509	wrmsrl(MSR_AMD64_LS_CFG, msr);
510}
511#endif
512
513static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514{
515	/*
516	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517	 * so ssbd_tif_to_spec_ctrl() just works.
518	 */
519	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520}
521
522/*
523 * Update the MSRs managing speculation control, during context switch.
524 *
525 * tifp: Previous task's thread flags
526 * tifn: Next task's thread flags
527 */
528static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529						      unsigned long tifn)
530{
531	unsigned long tif_diff = tifp ^ tifn;
532	u64 msr = x86_spec_ctrl_base;
533	bool updmsr = false;
534
535	lockdep_assert_irqs_disabled();
536
537	/* Handle change of TIF_SSBD depending on the mitigation method. */
538	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539		if (tif_diff & _TIF_SSBD)
540			amd_set_ssb_virt_state(tifn);
541	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542		if (tif_diff & _TIF_SSBD)
543			amd_set_core_ssb_state(tifn);
544	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546		updmsr |= !!(tif_diff & _TIF_SSBD);
547		msr |= ssbd_tif_to_spec_ctrl(tifn);
548	}
549
550	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551	if (IS_ENABLED(CONFIG_SMP) &&
552	    static_branch_unlikely(&switch_to_cond_stibp)) {
553		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554		msr |= stibp_tif_to_spec_ctrl(tifn);
555	}
 
556
557	if (updmsr)
558		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 
559}
560
561static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 
562{
563	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564		if (task_spec_ssb_disable(tsk))
565			set_tsk_thread_flag(tsk, TIF_SSBD);
566		else
567			clear_tsk_thread_flag(tsk, TIF_SSBD);
568
569		if (task_spec_ib_disable(tsk))
570			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571		else
572			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573	}
574	/* Return the updated threadinfo flags*/
575	return task_thread_info(tsk)->flags;
576}
 
577
578void speculation_ctrl_update(unsigned long tif)
 
579{
580	unsigned long flags;
581
582	/* Forced update. Make sure all relevant TIF flags are different */
583	local_irq_save(flags);
584	__speculation_ctrl_update(~tif, tif);
585	local_irq_restore(flags);
586}
587
588/* Called from seccomp/prctl update */
589void speculation_ctrl_update_current(void)
590{
591	preempt_disable();
592	speculation_ctrl_update(speculation_ctrl_update_tif(current));
593	preempt_enable();
594}
595
596static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 
597{
598	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
599
600	newval = cr4 ^ mask;
601	if (newval != cr4) {
602		this_cpu_write(cpu_tlbstate.cr4, newval);
603		__write_cr4(newval);
604	}
605}
 
606
607void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 
 
 
 
 
 
608{
609	unsigned long tifp, tifn;
 
 
 
 
 
 
 
 
610
611	tifn = READ_ONCE(task_thread_info(next_p)->flags);
612	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613
614	switch_to_bitmap(tifp);
 
615
616	propagate_user_return_notify(prev_p, next_p);
 
617
618	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619	    arch_has_block_step()) {
620		unsigned long debugctl, msk;
 
 
 
 
621
622		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623		debugctl &= ~DEBUGCTLMSR_BTF;
624		msk = tifn & _TIF_BLOCKSTEP;
625		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627	}
628
629	if ((tifp ^ tifn) & _TIF_NOTSC)
630		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631
632	if ((tifp ^ tifn) & _TIF_NOCPUID)
633		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634
635	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636		__speculation_ctrl_update(tifp, tifn);
637	} else {
638		speculation_ctrl_update_tif(prev_p);
639		tifn = speculation_ctrl_update_tif(next_p);
640
641		/* Enforce MSR update to ensure consistent state */
642		__speculation_ctrl_update(~tifn, tifn);
643	}
644
645	if ((tifp ^ tifn) & _TIF_SLD)
646		switch_to_sld(tifn);
647}
 
 
648
649/*
650 * Idle related variables and functions
651 */
652unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653EXPORT_SYMBOL(boot_option_idle_override);
654
655static void (*x86_idle)(void);
656
657#ifndef CONFIG_SMP
658static inline void play_dead(void)
659{
660	BUG();
661}
662#endif
663
664void arch_cpu_idle_enter(void)
665{
666	tsc_verify_tsc_adjust(false);
667	local_touch_nmi();
668}
669
670void arch_cpu_idle_dead(void)
671{
672	play_dead();
673}
674
675/*
676 * Called from the generic idle code.
 
677 */
678void arch_cpu_idle(void)
679{
680	x86_idle();
681}
 
 
 
 
 
 
 
682
683/*
684 * We use this if we don't have any better idle routine..
685 */
686void __cpuidle default_idle(void)
687{
688	safe_halt();
 
 
 
 
 
 
689}
690#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691EXPORT_SYMBOL(default_idle);
692#endif
693
694#ifdef CONFIG_XEN
695bool xen_set_default_idle(void)
696{
697	bool ret = !!x86_idle;
698
699	x86_idle = default_idle;
700
701	return ret;
702}
703#endif
704
705void stop_this_cpu(void *dummy)
706{
707	local_irq_disable();
708	/*
709	 * Remove this CPU:
710	 */
711	set_cpu_online(smp_processor_id(), false);
712	disable_local_APIC();
713	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
714
715	/*
716	 * Use wbinvd on processors that support SME. This provides support
717	 * for performing a successful kexec when going from SME inactive
718	 * to SME active (or vice-versa). The cache must be cleared so that
719	 * if there are entries with the same physical address, both with and
720	 * without the encryption bit, they don't race each other when flushed
721	 * and potentially end up with the wrong entry being committed to
722	 * memory.
723	 */
724	if (boot_cpu_has(X86_FEATURE_SME))
725		native_wbinvd();
726	for (;;) {
727		/*
728		 * Use native_halt() so that memory contents don't change
729		 * (stack usage and variables) after possibly issuing the
730		 * native_wbinvd() above.
731		 */
732		native_halt();
733	}
734}
735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736/*
737 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738 * states (local apic timer and TSC stop).
 
 
 
 
 
 
 
 
739 */
740static void amd_e400_idle(void)
 
 
 
 
 
741{
 
 
 
 
 
 
742	/*
743	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
744	 * gets set after static_cpu_has() places have been converted via
745	 * alternatives.
746	 */
747	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
748		default_idle();
749		return;
750	}
751
752	tick_broadcast_enter();
 
753
754	default_idle();
 
 
 
755
756	/*
757	 * The switch back from broadcast mode needs to be called with
758	 * interrupts disabled.
759	 */
760	local_irq_disable();
761	tick_broadcast_exit();
762	local_irq_enable();
 
 
 
 
 
 
 
 
 
763}
764
765/*
766 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
767 * We can't rely on cpuidle installing MWAIT, because it will not load
768 * on systems that support only C1 -- so the boot default must be MWAIT.
769 *
770 * Some AMD machines are the opposite, they depend on using HALT.
771 *
772 * So for default C1, which is used during boot until cpuidle loads,
773 * use MWAIT-C1 on Intel HW that has it, else use HALT.
774 */
775static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
776{
777	if (c->x86_vendor != X86_VENDOR_INTEL)
778		return 0;
 
 
 
 
 
779
780	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
781		return 0;
 
 
 
 
 
782
783	return 1;
784}
785
786/*
787 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
788 * with interrupts enabled and no flags, which is backwards compatible with the
789 * original MWAIT implementation.
790 */
791static __cpuidle void mwait_idle(void)
792{
793	if (!current_set_polling_and_test()) {
794		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
795			mb(); /* quirk */
796			clflush((void *)&current_thread_info()->flags);
797			mb(); /* quirk */
798		}
 
 
 
799
800		__monitor((void *)&current_thread_info()->flags, 0, 0);
801		if (!need_resched())
802			__sti_mwait(0, 0);
803		else
804			local_irq_enable();
805	} else {
806		local_irq_enable();
807	}
808	__current_clr_polling();
809}
810
811void select_idle_routine(const struct cpuinfo_x86 *c)
812{
813#ifdef CONFIG_SMP
814	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
815		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 
 
816#endif
817	if (x86_idle || boot_option_idle_override == IDLE_POLL)
818		return;
819
820	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
821		pr_info("using AMD E400 aware idle routine\n");
822		x86_idle = amd_e400_idle;
823	} else if (prefer_mwait_c1_over_halt(c)) {
824		pr_info("using mwait in idle threads\n");
825		x86_idle = mwait_idle;
 
 
 
 
826	} else
827		x86_idle = default_idle;
828}
829
830void amd_e400_c1e_apic_setup(void)
831{
832	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
833		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
834		local_irq_disable();
835		tick_broadcast_force();
836		local_irq_enable();
837	}
838}
839
840void __init arch_post_acpi_subsys_init(void)
841{
842	u32 lo, hi;
843
844	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
845		return;
846
847	/*
848	 * AMD E400 detection needs to happen after ACPI has been enabled. If
849	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
850	 * MSR_K8_INT_PENDING_MSG.
851	 */
852	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
853	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
854		return;
855
856	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
857
858	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
859		mark_tsc_unstable("TSC halt in AMD C1E");
860	pr_info("System has AMD C1E enabled\n");
861}
862
863static int __init idle_setup(char *str)
864{
865	if (!str)
866		return -EINVAL;
867
868	if (!strcmp(str, "poll")) {
869		pr_info("using polling idle threads\n");
 
870		boot_option_idle_override = IDLE_POLL;
871		cpu_idle_poll_ctrl(true);
 
 
872	} else if (!strcmp(str, "halt")) {
873		/*
874		 * When the boot option of idle=halt is added, halt is
875		 * forced to be used for CPU idle. In such case CPU C2/C3
876		 * won't be used again.
877		 * To continue to load the CPU idle driver, don't touch
878		 * the boot_option_idle_override.
879		 */
880		x86_idle = default_idle;
881		boot_option_idle_override = IDLE_HALT;
882	} else if (!strcmp(str, "nomwait")) {
883		/*
884		 * If the boot option of "idle=nomwait" is added,
885		 * it means that mwait will be disabled for CPU C2/C3
886		 * states. In such case it won't touch the variable
887		 * of boot_option_idle_override.
888		 */
889		boot_option_idle_override = IDLE_NOMWAIT;
890	} else
891		return -1;
892
893	return 0;
894}
895early_param("idle", idle_setup);
896
897unsigned long arch_align_stack(unsigned long sp)
898{
899	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
900		sp -= get_random_int() % 8192;
901	return sp & ~0xf;
902}
903
904unsigned long arch_randomize_brk(struct mm_struct *mm)
905{
906	return randomize_page(mm->brk, 0x02000000);
 
907}
908
909/*
910 * Called from fs/proc with a reference on @p to find the function
911 * which called into schedule(). This needs to be done carefully
912 * because the task might wake up and we might look at a stack
913 * changing under us.
914 */
915unsigned long get_wchan(struct task_struct *p)
916{
917	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
918	int count = 0;
919
920	if (p == current || p->state == TASK_RUNNING)
921		return 0;
922
923	if (!try_get_task_stack(p))
924		return 0;
925
926	start = (unsigned long)task_stack_page(p);
927	if (!start)
928		goto out;
929
930	/*
931	 * Layout of the stack page:
932	 *
933	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
934	 * PADDING
935	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
936	 * stack
937	 * ----------- bottom = start
938	 *
939	 * The tasks stack pointer points at the location where the
940	 * framepointer is stored. The data on the stack is:
941	 * ... IP FP ... IP FP
942	 *
943	 * We need to read FP and IP, so we need to adjust the upper
944	 * bound by another unsigned long.
945	 */
946	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
947	top -= 2 * sizeof(unsigned long);
948	bottom = start;
949
950	sp = READ_ONCE(p->thread.sp);
951	if (sp < bottom || sp > top)
952		goto out;
953
954	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
955	do {
956		if (fp < bottom || fp > top)
957			goto out;
958		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
959		if (!in_sched_functions(ip)) {
960			ret = ip;
961			goto out;
962		}
963		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
964	} while (count++ < 16 && p->state != TASK_RUNNING);
965
966out:
967	put_task_stack(p);
968	return ret;
969}
970
971long do_arch_prctl_common(struct task_struct *task, int option,
972			  unsigned long cpuid_enabled)
973{
974	switch (option) {
975	case ARCH_GET_CPUID:
976		return get_cpuid_mode();
977	case ARCH_SET_CPUID:
978		return set_cpuid_mode(task, cpuid_enabled);
979	}
980
981	return -EINVAL;
982}