Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation ( includes contributions from
   9 *		Rusty Russell).
  10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  11 *		interface to access function arguments.
  12 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  13 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  14 * 2005-Mar	Roland McGrath <roland@redhat.com>
  15 *		Fixed to handle %rip-relative addressing mode correctly.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  20 *		Added function return probes functionality
  21 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  22 *		kprobe-booster and kretprobe-booster for i386.
  23 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  24 *		and kretprobe-booster for x86-64
  25 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  26 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  27 *		unified x86 kprobes code.
  28 */
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/string.h>
  32#include <linux/slab.h>
  33#include <linux/hardirq.h>
  34#include <linux/preempt.h>
  35#include <linux/sched/debug.h>
  36#include <linux/perf_event.h>
  37#include <linux/extable.h>
  38#include <linux/kdebug.h>
  39#include <linux/kallsyms.h>
  40#include <linux/ftrace.h>
  41#include <linux/frame.h>
  42#include <linux/kasan.h>
  43#include <linux/moduleloader.h>
  44#include <linux/vmalloc.h>
  45#include <linux/pgtable.h>
  46
  47#include <asm/text-patching.h>
  48#include <asm/cacheflush.h>
  49#include <asm/desc.h>
  50#include <linux/uaccess.h>
  51#include <asm/alternative.h>
  52#include <asm/insn.h>
  53#include <asm/debugreg.h>
  54#include <asm/set_memory.h>
  55
  56#include "common.h"
  57
  58DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  59DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  60
  61#define stack_addr(regs) ((unsigned long *)regs->sp)
  62
  63#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  64	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  65	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  66	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  67	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  68	 << (row % 32))
  69	/*
  70	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  71	 * Groups, and some special opcodes can not boost.
  72	 * This is non-const and volatile to keep gcc from statically
  73	 * optimizing it out, as variable_test_bit makes gcc think only
  74	 * *(unsigned long*) is used.
  75	 */
  76static volatile u32 twobyte_is_boostable[256 / 32] = {
  77	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  78	/*      ----------------------------------------------          */
  79	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  80	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
  81	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  82	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  83	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  84	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  85	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  86	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  87	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  88	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  89	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  90	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  91	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  92	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  93	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
  94	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
  95	/*      -----------------------------------------------         */
  96	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  97};
  98#undef W
  99
 100struct kretprobe_blackpoint kretprobe_blacklist[] = {
 101	{"__switch_to", }, /* This function switches only current task, but
 102			      doesn't switch kernel stack.*/
 103	{NULL, NULL}	/* Terminator */
 104};
 105
 106const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 107
 108static nokprobe_inline void
 109__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
 110{
 111	struct __arch_relative_insn {
 112		u8 op;
 113		s32 raddr;
 114	} __packed *insn;
 115
 116	insn = (struct __arch_relative_insn *)dest;
 117	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 118	insn->op = op;
 119}
 120
 121/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 122void synthesize_reljump(void *dest, void *from, void *to)
 123{
 124	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
 125}
 126NOKPROBE_SYMBOL(synthesize_reljump);
 127
 128/* Insert a call instruction at address 'from', which calls address 'to'.*/
 129void synthesize_relcall(void *dest, void *from, void *to)
 130{
 131	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
 132}
 133NOKPROBE_SYMBOL(synthesize_relcall);
 134
 135/*
 136 * Skip the prefixes of the instruction.
 137 */
 138static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
 139{
 140	insn_attr_t attr;
 141
 142	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 143	while (inat_is_legacy_prefix(attr)) {
 144		insn++;
 145		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 146	}
 147#ifdef CONFIG_X86_64
 148	if (inat_is_rex_prefix(attr))
 149		insn++;
 150#endif
 151	return insn;
 152}
 153NOKPROBE_SYMBOL(skip_prefixes);
 154
 155/*
 156 * Returns non-zero if INSN is boostable.
 157 * RIP relative instructions are adjusted at copying time in 64 bits mode
 158 */
 159int can_boost(struct insn *insn, void *addr)
 160{
 161	kprobe_opcode_t opcode;
 162
 163	if (search_exception_tables((unsigned long)addr))
 164		return 0;	/* Page fault may occur on this address. */
 165
 166	/* 2nd-byte opcode */
 167	if (insn->opcode.nbytes == 2)
 168		return test_bit(insn->opcode.bytes[1],
 169				(unsigned long *)twobyte_is_boostable);
 170
 171	if (insn->opcode.nbytes != 1)
 172		return 0;
 173
 174	/* Can't boost Address-size override prefix */
 175	if (unlikely(inat_is_address_size_prefix(insn->attr)))
 176		return 0;
 177
 178	opcode = insn->opcode.bytes[0];
 179
 180	switch (opcode & 0xf0) {
 181	case 0x60:
 182		/* can't boost "bound" */
 183		return (opcode != 0x62);
 184	case 0x70:
 185		return 0; /* can't boost conditional jump */
 186	case 0x90:
 187		return opcode != 0x9a;	/* can't boost call far */
 188	case 0xc0:
 189		/* can't boost software-interruptions */
 190		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 191	case 0xd0:
 192		/* can boost AA* and XLAT */
 193		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 194	case 0xe0:
 195		/* can boost in/out and absolute jmps */
 196		return ((opcode & 0x04) || opcode == 0xea);
 197	case 0xf0:
 198		/* clear and set flags are boostable */
 199		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 200	default:
 201		/* CS override prefix and call are not boostable */
 202		return (opcode != 0x2e && opcode != 0x9a);
 203	}
 204}
 205
 206static unsigned long
 207__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 208{
 209	struct kprobe *kp;
 210	unsigned long faddr;
 211
 212	kp = get_kprobe((void *)addr);
 213	faddr = ftrace_location(addr);
 214	/*
 215	 * Addresses inside the ftrace location are refused by
 216	 * arch_check_ftrace_location(). Something went terribly wrong
 217	 * if such an address is checked here.
 218	 */
 219	if (WARN_ON(faddr && faddr != addr))
 220		return 0UL;
 221	/*
 222	 * Use the current code if it is not modified by Kprobe
 223	 * and it cannot be modified by ftrace.
 224	 */
 225	if (!kp && !faddr)
 226		return addr;
 227
 228	/*
 229	 * Basically, kp->ainsn.insn has an original instruction.
 230	 * However, RIP-relative instruction can not do single-stepping
 231	 * at different place, __copy_instruction() tweaks the displacement of
 232	 * that instruction. In that case, we can't recover the instruction
 233	 * from the kp->ainsn.insn.
 234	 *
 235	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
 236	 * of the first byte of the probed instruction, which is overwritten
 237	 * by int3. And the instruction at kp->addr is not modified by kprobes
 238	 * except for the first byte, we can recover the original instruction
 239	 * from it and kp->opcode.
 240	 *
 241	 * In case of Kprobes using ftrace, we do not have a copy of
 242	 * the original instruction. In fact, the ftrace location might
 243	 * be modified at anytime and even could be in an inconsistent state.
 244	 * Fortunately, we know that the original code is the ideal 5-byte
 245	 * long NOP.
 246	 */
 247	if (copy_from_kernel_nofault(buf, (void *)addr,
 248		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
 249		return 0UL;
 250
 251	if (faddr)
 252		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
 253	else
 254		buf[0] = kp->opcode;
 255	return (unsigned long)buf;
 256}
 257
 258/*
 259 * Recover the probed instruction at addr for further analysis.
 260 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 261 * for preventing to release referencing kprobes.
 262 * Returns zero if the instruction can not get recovered (or access failed).
 263 */
 264unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 265{
 266	unsigned long __addr;
 267
 268	__addr = __recover_optprobed_insn(buf, addr);
 269	if (__addr != addr)
 270		return __addr;
 271
 272	return __recover_probed_insn(buf, addr);
 273}
 274
 275/* Check if paddr is at an instruction boundary */
 276static int can_probe(unsigned long paddr)
 277{
 278	unsigned long addr, __addr, offset = 0;
 279	struct insn insn;
 280	kprobe_opcode_t buf[MAX_INSN_SIZE];
 281
 282	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 283		return 0;
 284
 285	/* Decode instructions */
 286	addr = paddr - offset;
 287	while (addr < paddr) {
 288		/*
 289		 * Check if the instruction has been modified by another
 290		 * kprobe, in which case we replace the breakpoint by the
 291		 * original instruction in our buffer.
 292		 * Also, jump optimization will change the breakpoint to
 293		 * relative-jump. Since the relative-jump itself is
 294		 * normally used, we just go through if there is no kprobe.
 295		 */
 296		__addr = recover_probed_instruction(buf, addr);
 297		if (!__addr)
 298			return 0;
 299		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
 300		insn_get_length(&insn);
 301
 302		/*
 303		 * Another debugging subsystem might insert this breakpoint.
 304		 * In that case, we can't recover it.
 305		 */
 306		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
 307			return 0;
 308		addr += insn.length;
 309	}
 310
 311	return (addr == paddr);
 312}
 313
 314/*
 315 * Returns non-zero if opcode modifies the interrupt flag.
 316 */
 317static int is_IF_modifier(kprobe_opcode_t *insn)
 318{
 319	/* Skip prefixes */
 320	insn = skip_prefixes(insn);
 321
 322	switch (*insn) {
 323	case 0xfa:		/* cli */
 324	case 0xfb:		/* sti */
 325	case 0xcf:		/* iret/iretd */
 326	case 0x9d:		/* popf/popfd */
 327		return 1;
 328	}
 329
 330	return 0;
 331}
 332
 333/*
 334 * Copy an instruction with recovering modified instruction by kprobes
 335 * and adjust the displacement if the instruction uses the %rip-relative
 336 * addressing mode. Note that since @real will be the final place of copied
 337 * instruction, displacement must be adjust by @real, not @dest.
 338 * This returns the length of copied instruction, or 0 if it has an error.
 339 */
 340int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
 341{
 342	kprobe_opcode_t buf[MAX_INSN_SIZE];
 343	unsigned long recovered_insn =
 344		recover_probed_instruction(buf, (unsigned long)src);
 345
 346	if (!recovered_insn || !insn)
 347		return 0;
 348
 349	/* This can access kernel text if given address is not recovered */
 350	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
 351			MAX_INSN_SIZE))
 352		return 0;
 353
 354	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
 355	insn_get_length(insn);
 356
 357	/* We can not probe force emulate prefixed instruction */
 358	if (insn_has_emulate_prefix(insn))
 359		return 0;
 360
 361	/* Another subsystem puts a breakpoint, failed to recover */
 362	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
 363		return 0;
 364
 365	/* We should not singlestep on the exception masking instructions */
 366	if (insn_masking_exception(insn))
 367		return 0;
 368
 369#ifdef CONFIG_X86_64
 370	/* Only x86_64 has RIP relative instructions */
 371	if (insn_rip_relative(insn)) {
 372		s64 newdisp;
 373		u8 *disp;
 374		/*
 375		 * The copied instruction uses the %rip-relative addressing
 376		 * mode.  Adjust the displacement for the difference between
 377		 * the original location of this instruction and the location
 378		 * of the copy that will actually be run.  The tricky bit here
 379		 * is making sure that the sign extension happens correctly in
 380		 * this calculation, since we need a signed 32-bit result to
 381		 * be sign-extended to 64 bits when it's added to the %rip
 382		 * value and yield the same 64-bit result that the sign-
 383		 * extension of the original signed 32-bit displacement would
 384		 * have given.
 385		 */
 386		newdisp = (u8 *) src + (s64) insn->displacement.value
 387			  - (u8 *) real;
 388		if ((s64) (s32) newdisp != newdisp) {
 389			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
 390			return 0;
 391		}
 392		disp = (u8 *) dest + insn_offset_displacement(insn);
 393		*(s32 *) disp = (s32) newdisp;
 394	}
 395#endif
 396	return insn->length;
 397}
 398
 399/* Prepare reljump right after instruction to boost */
 400static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
 401			  struct insn *insn)
 402{
 403	int len = insn->length;
 404
 405	if (can_boost(insn, p->addr) &&
 406	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
 407		/*
 408		 * These instructions can be executed directly if it
 409		 * jumps back to correct address.
 410		 */
 411		synthesize_reljump(buf + len, p->ainsn.insn + len,
 412				   p->addr + insn->length);
 413		len += JMP32_INSN_SIZE;
 414		p->ainsn.boostable = true;
 415	} else {
 416		p->ainsn.boostable = false;
 417	}
 418
 419	return len;
 420}
 421
 422/* Make page to RO mode when allocate it */
 423void *alloc_insn_page(void)
 424{
 425	void *page;
 426
 427	page = module_alloc(PAGE_SIZE);
 428	if (!page)
 429		return NULL;
 430
 431	set_vm_flush_reset_perms(page);
 432	/*
 433	 * First make the page read-only, and only then make it executable to
 434	 * prevent it from being W+X in between.
 435	 */
 436	set_memory_ro((unsigned long)page, 1);
 437
 438	/*
 439	 * TODO: Once additional kernel code protection mechanisms are set, ensure
 440	 * that the page was not maliciously altered and it is still zeroed.
 441	 */
 442	set_memory_x((unsigned long)page, 1);
 443
 444	return page;
 445}
 446
 447/* Recover page to RW mode before releasing it */
 448void free_insn_page(void *page)
 449{
 450	module_memfree(page);
 451}
 452
 453static int arch_copy_kprobe(struct kprobe *p)
 454{
 455	struct insn insn;
 456	kprobe_opcode_t buf[MAX_INSN_SIZE];
 457	int len;
 458
 459	/* Copy an instruction with recovering if other optprobe modifies it.*/
 460	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
 461	if (!len)
 462		return -EINVAL;
 463
 464	/*
 465	 * __copy_instruction can modify the displacement of the instruction,
 466	 * but it doesn't affect boostable check.
 467	 */
 468	len = prepare_boost(buf, p, &insn);
 469
 470	/* Check whether the instruction modifies Interrupt Flag or not */
 471	p->ainsn.if_modifier = is_IF_modifier(buf);
 472
 473	/* Also, displacement change doesn't affect the first byte */
 474	p->opcode = buf[0];
 475
 476	p->ainsn.tp_len = len;
 477	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
 478
 479	/* OK, write back the instruction(s) into ROX insn buffer */
 480	text_poke(p->ainsn.insn, buf, len);
 481
 482	return 0;
 483}
 484
 485int arch_prepare_kprobe(struct kprobe *p)
 486{
 487	int ret;
 488
 489	if (alternatives_text_reserved(p->addr, p->addr))
 490		return -EINVAL;
 491
 492	if (!can_probe((unsigned long)p->addr))
 493		return -EILSEQ;
 494	/* insn: must be on special executable page on x86. */
 495	p->ainsn.insn = get_insn_slot();
 496	if (!p->ainsn.insn)
 497		return -ENOMEM;
 498
 499	ret = arch_copy_kprobe(p);
 500	if (ret) {
 501		free_insn_slot(p->ainsn.insn, 0);
 502		p->ainsn.insn = NULL;
 503	}
 504
 505	return ret;
 506}
 507
 508void arch_arm_kprobe(struct kprobe *p)
 509{
 510	u8 int3 = INT3_INSN_OPCODE;
 511
 512	text_poke(p->addr, &int3, 1);
 513	text_poke_sync();
 514	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
 515}
 516
 517void arch_disarm_kprobe(struct kprobe *p)
 518{
 519	u8 int3 = INT3_INSN_OPCODE;
 520
 521	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
 522	text_poke(p->addr, &p->opcode, 1);
 523	text_poke_sync();
 524}
 525
 526void arch_remove_kprobe(struct kprobe *p)
 527{
 528	if (p->ainsn.insn) {
 529		/* Record the perf event before freeing the slot */
 530		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
 531				     p->ainsn.tp_len, NULL, 0);
 532		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
 533		p->ainsn.insn = NULL;
 534	}
 535}
 536
 537static nokprobe_inline void
 538save_previous_kprobe(struct kprobe_ctlblk *kcb)
 539{
 540	kcb->prev_kprobe.kp = kprobe_running();
 541	kcb->prev_kprobe.status = kcb->kprobe_status;
 542	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 543	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 544}
 545
 546static nokprobe_inline void
 547restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 548{
 549	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 550	kcb->kprobe_status = kcb->prev_kprobe.status;
 551	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 552	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 553}
 554
 555static nokprobe_inline void
 556set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 557		   struct kprobe_ctlblk *kcb)
 558{
 559	__this_cpu_write(current_kprobe, p);
 560	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 561		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 562	if (p->ainsn.if_modifier)
 563		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 564}
 565
 566static nokprobe_inline void clear_btf(void)
 567{
 568	if (test_thread_flag(TIF_BLOCKSTEP)) {
 569		unsigned long debugctl = get_debugctlmsr();
 570
 571		debugctl &= ~DEBUGCTLMSR_BTF;
 572		update_debugctlmsr(debugctl);
 573	}
 574}
 575
 576static nokprobe_inline void restore_btf(void)
 577{
 578	if (test_thread_flag(TIF_BLOCKSTEP)) {
 579		unsigned long debugctl = get_debugctlmsr();
 580
 581		debugctl |= DEBUGCTLMSR_BTF;
 582		update_debugctlmsr(debugctl);
 583	}
 584}
 585
 586void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 587{
 588	unsigned long *sara = stack_addr(regs);
 589
 590	ri->ret_addr = (kprobe_opcode_t *) *sara;
 591	ri->fp = sara;
 592
 593	/* Replace the return addr with trampoline addr */
 594	*sara = (unsigned long) &kretprobe_trampoline;
 595}
 596NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 597
 598static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 599			     struct kprobe_ctlblk *kcb, int reenter)
 600{
 601	if (setup_detour_execution(p, regs, reenter))
 602		return;
 603
 604#if !defined(CONFIG_PREEMPTION)
 605	if (p->ainsn.boostable && !p->post_handler) {
 606		/* Boost up -- we can execute copied instructions directly */
 607		if (!reenter)
 608			reset_current_kprobe();
 609		/*
 610		 * Reentering boosted probe doesn't reset current_kprobe,
 611		 * nor set current_kprobe, because it doesn't use single
 612		 * stepping.
 613		 */
 614		regs->ip = (unsigned long)p->ainsn.insn;
 615		return;
 616	}
 617#endif
 618	if (reenter) {
 619		save_previous_kprobe(kcb);
 620		set_current_kprobe(p, regs, kcb);
 621		kcb->kprobe_status = KPROBE_REENTER;
 622	} else
 623		kcb->kprobe_status = KPROBE_HIT_SS;
 624	/* Prepare real single stepping */
 625	clear_btf();
 626	regs->flags |= X86_EFLAGS_TF;
 627	regs->flags &= ~X86_EFLAGS_IF;
 628	/* single step inline if the instruction is an int3 */
 629	if (p->opcode == INT3_INSN_OPCODE)
 630		regs->ip = (unsigned long)p->addr;
 631	else
 632		regs->ip = (unsigned long)p->ainsn.insn;
 633}
 634NOKPROBE_SYMBOL(setup_singlestep);
 635
 636/*
 637 * We have reentered the kprobe_handler(), since another probe was hit while
 638 * within the handler. We save the original kprobes variables and just single
 639 * step on the instruction of the new probe without calling any user handlers.
 640 */
 641static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 642			  struct kprobe_ctlblk *kcb)
 643{
 644	switch (kcb->kprobe_status) {
 645	case KPROBE_HIT_SSDONE:
 646	case KPROBE_HIT_ACTIVE:
 647	case KPROBE_HIT_SS:
 648		kprobes_inc_nmissed_count(p);
 649		setup_singlestep(p, regs, kcb, 1);
 650		break;
 651	case KPROBE_REENTER:
 652		/* A probe has been hit in the codepath leading up to, or just
 653		 * after, single-stepping of a probed instruction. This entire
 654		 * codepath should strictly reside in .kprobes.text section.
 655		 * Raise a BUG or we'll continue in an endless reentering loop
 656		 * and eventually a stack overflow.
 657		 */
 658		pr_err("Unrecoverable kprobe detected.\n");
 659		dump_kprobe(p);
 660		BUG();
 661	default:
 662		/* impossible cases */
 663		WARN_ON(1);
 664		return 0;
 665	}
 666
 667	return 1;
 668}
 669NOKPROBE_SYMBOL(reenter_kprobe);
 670
 671/*
 672 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 673 * remain disabled throughout this function.
 674 */
 675int kprobe_int3_handler(struct pt_regs *regs)
 676{
 677	kprobe_opcode_t *addr;
 678	struct kprobe *p;
 679	struct kprobe_ctlblk *kcb;
 680
 681	if (user_mode(regs))
 682		return 0;
 683
 684	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 685	/*
 686	 * We don't want to be preempted for the entire duration of kprobe
 687	 * processing. Since int3 and debug trap disables irqs and we clear
 688	 * IF while singlestepping, it must be no preemptible.
 689	 */
 690
 691	kcb = get_kprobe_ctlblk();
 692	p = get_kprobe(addr);
 693
 694	if (p) {
 695		if (kprobe_running()) {
 696			if (reenter_kprobe(p, regs, kcb))
 697				return 1;
 698		} else {
 699			set_current_kprobe(p, regs, kcb);
 700			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 701
 702			/*
 703			 * If we have no pre-handler or it returned 0, we
 704			 * continue with normal processing.  If we have a
 705			 * pre-handler and it returned non-zero, that means
 706			 * user handler setup registers to exit to another
 707			 * instruction, we must skip the single stepping.
 708			 */
 709			if (!p->pre_handler || !p->pre_handler(p, regs))
 710				setup_singlestep(p, regs, kcb, 0);
 711			else
 712				reset_current_kprobe();
 713			return 1;
 714		}
 715	} else if (*addr != INT3_INSN_OPCODE) {
 716		/*
 717		 * The breakpoint instruction was removed right
 718		 * after we hit it.  Another cpu has removed
 719		 * either a probepoint or a debugger breakpoint
 720		 * at this address.  In either case, no further
 721		 * handling of this interrupt is appropriate.
 722		 * Back up over the (now missing) int3 and run
 723		 * the original instruction.
 724		 */
 725		regs->ip = (unsigned long)addr;
 726		return 1;
 727	} /* else: not a kprobe fault; let the kernel handle it */
 728
 729	return 0;
 730}
 731NOKPROBE_SYMBOL(kprobe_int3_handler);
 732
 733/*
 734 * When a retprobed function returns, this code saves registers and
 735 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 736 */
 737asm(
 738	".text\n"
 739	".global kretprobe_trampoline\n"
 740	".type kretprobe_trampoline, @function\n"
 741	"kretprobe_trampoline:\n"
 742	/* We don't bother saving the ss register */
 743#ifdef CONFIG_X86_64
 744	"	pushq %rsp\n"
 745	"	pushfq\n"
 746	SAVE_REGS_STRING
 747	"	movq %rsp, %rdi\n"
 748	"	call trampoline_handler\n"
 749	/* Replace saved sp with true return address. */
 750	"	movq %rax, 19*8(%rsp)\n"
 751	RESTORE_REGS_STRING
 752	"	popfq\n"
 753#else
 754	"	pushl %esp\n"
 755	"	pushfl\n"
 756	SAVE_REGS_STRING
 757	"	movl %esp, %eax\n"
 758	"	call trampoline_handler\n"
 759	/* Replace saved sp with true return address. */
 760	"	movl %eax, 15*4(%esp)\n"
 761	RESTORE_REGS_STRING
 762	"	popfl\n"
 763#endif
 764	"	ret\n"
 765	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
 766);
 767NOKPROBE_SYMBOL(kretprobe_trampoline);
 768STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
 769
 770/*
 771 * Called from kretprobe_trampoline
 772 */
 773__used __visible void *trampoline_handler(struct pt_regs *regs)
 774{
 775	struct kretprobe_instance *ri = NULL;
 776	struct hlist_head *head, empty_rp;
 777	struct hlist_node *tmp;
 778	unsigned long flags, orig_ret_address = 0;
 779	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 780	kprobe_opcode_t *correct_ret_addr = NULL;
 781	void *frame_pointer;
 782	bool skipped = false;
 783
 784	/*
 785	 * Set a dummy kprobe for avoiding kretprobe recursion.
 786	 * Since kretprobe never run in kprobe handler, kprobe must not
 787	 * be running at this point.
 788	 */
 789	kprobe_busy_begin();
 790
 791	INIT_HLIST_HEAD(&empty_rp);
 792	kretprobe_hash_lock(current, &head, &flags);
 793	/* fixup registers */
 794	regs->cs = __KERNEL_CS;
 795#ifdef CONFIG_X86_32
 796	regs->cs |= get_kernel_rpl();
 797	regs->gs = 0;
 798#endif
 799	/* We use pt_regs->sp for return address holder. */
 800	frame_pointer = &regs->sp;
 801	regs->ip = trampoline_address;
 802	regs->orig_ax = ~0UL;
 803
 804	/*
 805	 * It is possible to have multiple instances associated with a given
 806	 * task either because multiple functions in the call path have
 807	 * return probes installed on them, and/or more than one
 808	 * return probe was registered for a target function.
 809	 *
 810	 * We can handle this because:
 811	 *     - instances are always pushed into the head of the list
 812	 *     - when multiple return probes are registered for the same
 813	 *	 function, the (chronologically) first instance's ret_addr
 814	 *	 will be the real return address, and all the rest will
 815	 *	 point to kretprobe_trampoline.
 816	 */
 817	hlist_for_each_entry(ri, head, hlist) {
 818		if (ri->task != current)
 819			/* another task is sharing our hash bucket */
 820			continue;
 821		/*
 822		 * Return probes must be pushed on this hash list correct
 823		 * order (same as return order) so that it can be popped
 824		 * correctly. However, if we find it is pushed it incorrect
 825		 * order, this means we find a function which should not be
 826		 * probed, because the wrong order entry is pushed on the
 827		 * path of processing other kretprobe itself.
 828		 */
 829		if (ri->fp != frame_pointer) {
 830			if (!skipped)
 831				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
 832			skipped = true;
 833			continue;
 834		}
 835
 836		orig_ret_address = (unsigned long)ri->ret_addr;
 837		if (skipped)
 838			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
 839				ri->rp->kp.addr);
 840
 841		if (orig_ret_address != trampoline_address)
 842			/*
 843			 * This is the real return address. Any other
 844			 * instances associated with this task are for
 845			 * other calls deeper on the call stack
 846			 */
 847			break;
 848	}
 849
 850	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 851
 852	correct_ret_addr = ri->ret_addr;
 853	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 854		if (ri->task != current)
 855			/* another task is sharing our hash bucket */
 856			continue;
 857		if (ri->fp != frame_pointer)
 858			continue;
 859
 860		orig_ret_address = (unsigned long)ri->ret_addr;
 861		if (ri->rp && ri->rp->handler) {
 862			__this_cpu_write(current_kprobe, &ri->rp->kp);
 863			ri->ret_addr = correct_ret_addr;
 864			ri->rp->handler(ri, regs);
 865			__this_cpu_write(current_kprobe, &kprobe_busy);
 866		}
 867
 868		recycle_rp_inst(ri, &empty_rp);
 869
 870		if (orig_ret_address != trampoline_address)
 871			/*
 872			 * This is the real return address. Any other
 873			 * instances associated with this task are for
 874			 * other calls deeper on the call stack
 875			 */
 876			break;
 877	}
 878
 879	kretprobe_hash_unlock(current, &flags);
 880
 881	kprobe_busy_end();
 882
 883	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 884		hlist_del(&ri->hlist);
 885		kfree(ri);
 886	}
 887	return (void *)orig_ret_address;
 888}
 889NOKPROBE_SYMBOL(trampoline_handler);
 890
 891/*
 892 * Called after single-stepping.  p->addr is the address of the
 893 * instruction whose first byte has been replaced by the "int 3"
 894 * instruction.  To avoid the SMP problems that can occur when we
 895 * temporarily put back the original opcode to single-step, we
 896 * single-stepped a copy of the instruction.  The address of this
 897 * copy is p->ainsn.insn.
 898 *
 899 * This function prepares to return from the post-single-step
 900 * interrupt.  We have to fix up the stack as follows:
 901 *
 902 * 0) Except in the case of absolute or indirect jump or call instructions,
 903 * the new ip is relative to the copied instruction.  We need to make
 904 * it relative to the original instruction.
 905 *
 906 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 907 * flags are set in the just-pushed flags, and may need to be cleared.
 908 *
 909 * 2) If the single-stepped instruction was a call, the return address
 910 * that is atop the stack is the address following the copied instruction.
 911 * We need to make it the address following the original instruction.
 912 *
 913 * If this is the first time we've single-stepped the instruction at
 914 * this probepoint, and the instruction is boostable, boost it: add a
 915 * jump instruction after the copied instruction, that jumps to the next
 916 * instruction after the probepoint.
 917 */
 918static void resume_execution(struct kprobe *p, struct pt_regs *regs,
 919			     struct kprobe_ctlblk *kcb)
 920{
 921	unsigned long *tos = stack_addr(regs);
 922	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 923	unsigned long orig_ip = (unsigned long)p->addr;
 924	kprobe_opcode_t *insn = p->ainsn.insn;
 925
 926	/* Skip prefixes */
 927	insn = skip_prefixes(insn);
 928
 929	regs->flags &= ~X86_EFLAGS_TF;
 930	switch (*insn) {
 931	case 0x9c:	/* pushfl */
 932		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 933		*tos |= kcb->kprobe_old_flags;
 934		break;
 935	case 0xc2:	/* iret/ret/lret */
 936	case 0xc3:
 937	case 0xca:
 938	case 0xcb:
 939	case 0xcf:
 940	case 0xea:	/* jmp absolute -- ip is correct */
 941		/* ip is already adjusted, no more changes required */
 942		p->ainsn.boostable = true;
 943		goto no_change;
 944	case 0xe8:	/* call relative - Fix return addr */
 945		*tos = orig_ip + (*tos - copy_ip);
 946		break;
 947#ifdef CONFIG_X86_32
 948	case 0x9a:	/* call absolute -- same as call absolute, indirect */
 949		*tos = orig_ip + (*tos - copy_ip);
 950		goto no_change;
 951#endif
 952	case 0xff:
 953		if ((insn[1] & 0x30) == 0x10) {
 954			/*
 955			 * call absolute, indirect
 956			 * Fix return addr; ip is correct.
 957			 * But this is not boostable
 958			 */
 959			*tos = orig_ip + (*tos - copy_ip);
 960			goto no_change;
 961		} else if (((insn[1] & 0x31) == 0x20) ||
 962			   ((insn[1] & 0x31) == 0x21)) {
 963			/*
 964			 * jmp near and far, absolute indirect
 965			 * ip is correct. And this is boostable
 966			 */
 967			p->ainsn.boostable = true;
 968			goto no_change;
 969		}
 970	default:
 971		break;
 972	}
 973
 974	regs->ip += orig_ip - copy_ip;
 975
 976no_change:
 977	restore_btf();
 978}
 979NOKPROBE_SYMBOL(resume_execution);
 980
 981/*
 982 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 983 * remain disabled throughout this function.
 984 */
 985int kprobe_debug_handler(struct pt_regs *regs)
 986{
 987	struct kprobe *cur = kprobe_running();
 988	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 989
 990	if (!cur)
 991		return 0;
 992
 993	resume_execution(cur, regs, kcb);
 994	regs->flags |= kcb->kprobe_saved_flags;
 995
 996	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 997		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 998		cur->post_handler(cur, regs, 0);
 999	}
1000
1001	/* Restore back the original saved kprobes variables and continue. */
1002	if (kcb->kprobe_status == KPROBE_REENTER) {
1003		restore_previous_kprobe(kcb);
1004		goto out;
1005	}
1006	reset_current_kprobe();
1007out:
1008	/*
1009	 * if somebody else is singlestepping across a probe point, flags
1010	 * will have TF set, in which case, continue the remaining processing
1011	 * of do_debug, as if this is not a probe hit.
1012	 */
1013	if (regs->flags & X86_EFLAGS_TF)
1014		return 0;
1015
1016	return 1;
1017}
1018NOKPROBE_SYMBOL(kprobe_debug_handler);
1019
1020int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1021{
1022	struct kprobe *cur = kprobe_running();
1023	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1024
1025	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1026		/* This must happen on single-stepping */
1027		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1028			kcb->kprobe_status != KPROBE_REENTER);
1029		/*
1030		 * We are here because the instruction being single
1031		 * stepped caused a page fault. We reset the current
1032		 * kprobe and the ip points back to the probe address
1033		 * and allow the page fault handler to continue as a
1034		 * normal page fault.
1035		 */
1036		regs->ip = (unsigned long)cur->addr;
1037		/*
1038		 * Trap flag (TF) has been set here because this fault
1039		 * happened where the single stepping will be done.
1040		 * So clear it by resetting the current kprobe:
1041		 */
1042		regs->flags &= ~X86_EFLAGS_TF;
1043
1044		/*
1045		 * If the TF flag was set before the kprobe hit,
1046		 * don't touch it:
1047		 */
1048		regs->flags |= kcb->kprobe_old_flags;
1049
1050		if (kcb->kprobe_status == KPROBE_REENTER)
1051			restore_previous_kprobe(kcb);
1052		else
1053			reset_current_kprobe();
1054	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1055		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1056		/*
1057		 * We increment the nmissed count for accounting,
1058		 * we can also use npre/npostfault count for accounting
1059		 * these specific fault cases.
1060		 */
1061		kprobes_inc_nmissed_count(cur);
1062
1063		/*
1064		 * We come here because instructions in the pre/post
1065		 * handler caused the page_fault, this could happen
1066		 * if handler tries to access user space by
1067		 * copy_from_user(), get_user() etc. Let the
1068		 * user-specified handler try to fix it first.
1069		 */
1070		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1071			return 1;
1072	}
1073
1074	return 0;
1075}
1076NOKPROBE_SYMBOL(kprobe_fault_handler);
1077
1078int __init arch_populate_kprobe_blacklist(void)
1079{
1080	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1081					 (unsigned long)__entry_text_end);
1082}
1083
1084int __init arch_init_kprobes(void)
1085{
1086	return 0;
1087}
1088
1089int arch_trampoline_kprobe(struct kprobe *p)
1090{
1091	return 0;
1092}