Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*  arch/sparc64/kernel/process.c
  2 *
  3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <stdarg.h>
 13
 14#include <linux/errno.h>
 15#include <linux/export.h>
 16#include <linux/sched.h>
 
 
 
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/ptrace.h>
 23#include <linux/slab.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/compat.h>
 27#include <linux/tick.h>
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 
 30#include <linux/elfcore.h>
 31#include <linux/sysrq.h>
 32#include <linux/nmi.h>
 
 
 33
 34#include <asm/uaccess.h>
 35#include <asm/page.h>
 36#include <asm/pgalloc.h>
 37#include <asm/pgtable.h>
 38#include <asm/processor.h>
 39#include <asm/pstate.h>
 40#include <asm/elf.h>
 41#include <asm/fpumacro.h>
 42#include <asm/head.h>
 43#include <asm/cpudata.h>
 44#include <asm/mmu_context.h>
 45#include <asm/unistd.h>
 46#include <asm/hypervisor.h>
 47#include <asm/syscalls.h>
 48#include <asm/irq_regs.h>
 49#include <asm/smp.h>
 
 50
 51#include "kstack.h"
 52
 53static void sparc64_yield(int cpu)
 
 54{
 55	if (tlb_type != hypervisor) {
 56		touch_nmi_watchdog();
 57		return;
 58	}
 59
 60	clear_thread_flag(TIF_POLLING_NRFLAG);
 61	smp_mb__after_clear_bit();
 62
 63	while (!need_resched() && !cpu_is_offline(cpu)) {
 64		unsigned long pstate;
 65
 66		/* Disable interrupts. */
 
 
 
 
 67		__asm__ __volatile__(
 68			"rdpr %%pstate, %0\n\t"
 69			"andn %0, %1, %0\n\t"
 70			"wrpr %0, %%g0, %%pstate"
 71			: "=&r" (pstate)
 72			: "i" (PSTATE_IE));
 73
 74		if (!need_resched() && !cpu_is_offline(cpu))
 75			sun4v_cpu_yield();
 
 
 
 
 
 76
 77		/* Re-enable interrupts. */
 78		__asm__ __volatile__(
 79			"rdpr %%pstate, %0\n\t"
 80			"or %0, %1, %0\n\t"
 81			"wrpr %0, %%g0, %%pstate"
 82			: "=&r" (pstate)
 83			: "i" (PSTATE_IE));
 84	}
 85
 86	set_thread_flag(TIF_POLLING_NRFLAG);
 87}
 88
 89/* The idle loop on sparc64. */
 90void cpu_idle(void)
 91{
 92	int cpu = smp_processor_id();
 93
 94	set_thread_flag(TIF_POLLING_NRFLAG);
 95
 96	while(1) {
 97		tick_nohz_idle_enter();
 98		rcu_idle_enter();
 99
100		while (!need_resched() && !cpu_is_offline(cpu))
101			sparc64_yield(cpu);
102
103		rcu_idle_exit();
104		tick_nohz_idle_exit();
105
106#ifdef CONFIG_HOTPLUG_CPU
107		if (cpu_is_offline(cpu)) {
108			sched_preempt_enable_no_resched();
109			cpu_play_dead();
110		}
111#endif
112		schedule_preempt_disabled();
113	}
114}
 
115
116#ifdef CONFIG_COMPAT
117static void show_regwindow32(struct pt_regs *regs)
118{
119	struct reg_window32 __user *rw;
120	struct reg_window32 r_w;
121	mm_segment_t old_fs;
122	
123	__asm__ __volatile__ ("flushw");
124	rw = compat_ptr((unsigned)regs->u_regs[14]);
125	old_fs = get_fs();
126	set_fs (USER_DS);
127	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
128		set_fs (old_fs);
129		return;
130	}
131
132	set_fs (old_fs);			
133	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
134	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
135	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
136	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
137	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
138	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
139	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
140	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
141}
142#else
143#define show_regwindow32(regs)	do { } while (0)
144#endif
145
146static void show_regwindow(struct pt_regs *regs)
147{
148	struct reg_window __user *rw;
149	struct reg_window *rwk;
150	struct reg_window r_w;
151	mm_segment_t old_fs;
152
153	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
154		__asm__ __volatile__ ("flushw");
155		rw = (struct reg_window __user *)
156			(regs->u_regs[14] + STACK_BIAS);
157		rwk = (struct reg_window *)
158			(regs->u_regs[14] + STACK_BIAS);
159		if (!(regs->tstate & TSTATE_PRIV)) {
160			old_fs = get_fs();
161			set_fs (USER_DS);
162			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
163				set_fs (old_fs);
164				return;
165			}
166			rwk = &r_w;
167			set_fs (old_fs);			
168		}
169	} else {
170		show_regwindow32(regs);
171		return;
172	}
173	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
174	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
175	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
176	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
177	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
178	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
179	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
180	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
181	if (regs->tstate & TSTATE_PRIV)
182		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
183}
184
185void show_regs(struct pt_regs *regs)
186{
 
 
187	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
188	       regs->tpc, regs->tnpc, regs->y, print_tainted());
189	printk("TPC: <%pS>\n", (void *) regs->tpc);
190	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
191	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
192	       regs->u_regs[3]);
193	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
194	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
195	       regs->u_regs[7]);
196	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
197	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
198	       regs->u_regs[11]);
199	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
200	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
201	       regs->u_regs[15]);
202	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
203	show_regwindow(regs);
204	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
205}
206
207struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209
210static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211			      int this_cpu)
212{
 
 
213	flushw_all();
214
215	global_reg_snapshot[this_cpu].tstate = regs->tstate;
216	global_reg_snapshot[this_cpu].tpc = regs->tpc;
217	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
 
 
219
220	if (regs->tstate & TSTATE_PRIV) {
221		struct reg_window *rw;
222
223		rw = (struct reg_window *)
224			(regs->u_regs[UREG_FP] + STACK_BIAS);
225		if (kstack_valid(tp, (unsigned long) rw)) {
226			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227			rw = (struct reg_window *)
228				(rw->ins[6] + STACK_BIAS);
229			if (kstack_valid(tp, (unsigned long) rw))
230				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231		}
232	} else {
233		global_reg_snapshot[this_cpu].i7 = 0;
234		global_reg_snapshot[this_cpu].rpc = 0;
235	}
236	global_reg_snapshot[this_cpu].thread = tp;
237}
238
239/* In order to avoid hangs we do not try to synchronize with the
240 * global register dump client cpus.  The last store they make is to
241 * the thread pointer, so do a short poll waiting for that to become
242 * non-NULL.
243 */
244static void __global_reg_poll(struct global_reg_snapshot *gp)
245{
246	int limit = 0;
247
248	while (!gp->thread && ++limit < 100) {
249		barrier();
250		udelay(1);
251	}
252}
253
254void arch_trigger_all_cpu_backtrace(void)
255{
256	struct thread_info *tp = current_thread_info();
257	struct pt_regs *regs = get_irq_regs();
258	unsigned long flags;
259	int this_cpu, cpu;
260
261	if (!regs)
262		regs = tp->kregs;
263
264	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265
266	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267
268	this_cpu = raw_smp_processor_id();
269
270	__global_reg_self(tp, regs, this_cpu);
 
 
 
271
272	smp_fetch_global_regs();
273
274	for_each_online_cpu(cpu) {
275		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
 
 
 
 
 
276
277		__global_reg_poll(gp);
278
279		tp = gp->thread;
280		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281		       (cpu == this_cpu ? '*' : ' '), cpu,
282		       gp->tstate, gp->tpc, gp->tnpc,
283		       ((tp && tp->task) ? tp->task->comm : "NULL"),
284		       ((tp && tp->task) ? tp->task->pid : -1));
285
286		if (gp->tstate & TSTATE_PRIV) {
287			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288			       (void *) gp->tpc,
289			       (void *) gp->o7,
290			       (void *) gp->i7,
291			       (void *) gp->rpc);
292		} else {
293			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294			       gp->tpc, gp->o7, gp->i7, gp->rpc);
295		}
 
 
296	}
297
298	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299
300	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301}
302
303#ifdef CONFIG_MAGIC_SYSRQ
304
305static void sysrq_handle_globreg(int key)
306{
307	arch_trigger_all_cpu_backtrace();
308}
309
310static struct sysrq_key_op sparc_globalreg_op = {
311	.handler	= sysrq_handle_globreg,
312	.help_msg	= "Globalregs",
313	.action_msg	= "Show Global CPU Regs",
314};
315
316static int __init sparc_globreg_init(void)
317{
318	return register_sysrq_key('y', &sparc_globalreg_op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319}
320
321core_initcall(sparc_globreg_init);
 
 
322
323#endif
 
 
 
 
324
325unsigned long thread_saved_pc(struct task_struct *tsk)
326{
327	struct thread_info *ti = task_thread_info(tsk);
328	unsigned long ret = 0xdeadbeefUL;
329	
330	if (ti && ti->ksp) {
331		unsigned long *sp;
332		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334		    sp[14]) {
335			unsigned long *fp;
336			fp = (unsigned long *)(sp[14] + STACK_BIAS);
337			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338				ret = fp[15];
339		}
 
 
 
 
 
 
 
 
 
 
 
340	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341	return ret;
342}
343
 
 
 
 
344/* Free current thread data structures etc.. */
345void exit_thread(void)
346{
347	struct thread_info *t = current_thread_info();
348
349	if (t->utraps) {
350		if (t->utraps[0] < 2)
351			kfree (t->utraps);
352		else
353			t->utraps[0]--;
354	}
355}
356
357void flush_thread(void)
358{
359	struct thread_info *t = current_thread_info();
360	struct mm_struct *mm;
361
362	mm = t->task->mm;
363	if (mm)
364		tsb_context_switch(mm);
365
366	set_thread_wsaved(0);
367
368	/* Clear FPU register state. */
369	t->fpsaved[0] = 0;
370}
371
372/* It's a bit more tricky when 64-bit tasks are involved... */
373static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
374{
 
375	unsigned long fp, distance, rval;
376
377	if (!(test_thread_flag(TIF_32BIT))) {
378		csp += STACK_BIAS;
379		psp += STACK_BIAS;
380		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
381		fp += STACK_BIAS;
 
 
382	} else
383		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
384
385	/* Now align the stack as this is mandatory in the Sparc ABI
386	 * due to how register windows work.  This hides the
387	 * restriction from thread libraries etc.
388	 */
389	csp &= ~15UL;
390
391	distance = fp - psp;
392	rval = (csp - distance);
393	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
394		rval = 0;
395	else if (test_thread_flag(TIF_32BIT)) {
396		if (put_user(((u32)csp),
397			     &(((struct reg_window32 __user *)rval)->ins[6])))
398			rval = 0;
399	} else {
400		if (put_user(((u64)csp - STACK_BIAS),
401			     &(((struct reg_window __user *)rval)->ins[6])))
402			rval = 0;
403		else
404			rval = rval - STACK_BIAS;
405	}
406
407	return rval;
408}
409
410/* Standard stuff. */
411static inline void shift_window_buffer(int first_win, int last_win,
412				       struct thread_info *t)
413{
414	int i;
415
416	for (i = first_win; i < last_win; i++) {
417		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
418		memcpy(&t->reg_window[i], &t->reg_window[i+1],
419		       sizeof(struct reg_window));
420	}
421}
422
423void synchronize_user_stack(void)
424{
425	struct thread_info *t = current_thread_info();
426	unsigned long window;
427
428	flush_user_windows();
429	if ((window = get_thread_wsaved()) != 0) {
430		int winsize = sizeof(struct reg_window);
431		int bias = 0;
432
433		if (test_thread_flag(TIF_32BIT))
434			winsize = sizeof(struct reg_window32);
435		else
436			bias = STACK_BIAS;
437
438		window -= 1;
439		do {
440			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
441			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
442
443			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
444				shift_window_buffer(window, get_thread_wsaved() - 1, t);
445				set_thread_wsaved(get_thread_wsaved() - 1);
446			}
447		} while (window--);
448	}
449}
450
451static void stack_unaligned(unsigned long sp)
452{
453	siginfo_t info;
454
455	info.si_signo = SIGBUS;
456	info.si_errno = 0;
457	info.si_code = BUS_ADRALN;
458	info.si_addr = (void __user *) sp;
459	info.si_trapno = 0;
460	force_sig_info(SIGBUS, &info, current);
461}
462
463void fault_in_user_windows(void)
 
 
 
 
 
464{
465	struct thread_info *t = current_thread_info();
466	unsigned long window;
467	int winsize = sizeof(struct reg_window);
468	int bias = 0;
469
470	if (test_thread_flag(TIF_32BIT))
471		winsize = sizeof(struct reg_window32);
472	else
473		bias = STACK_BIAS;
474
475	flush_user_windows();
476	window = get_thread_wsaved();
477
478	if (likely(window != 0)) {
479		window -= 1;
480		do {
481			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
482			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
483
484			if (unlikely(sp & 0x7UL))
485				stack_unaligned(sp);
486
487			if (unlikely(copy_to_user((char __user *)sp,
488						  rwin, winsize)))
 
 
 
 
 
 
 
489				goto barf;
 
490		} while (window--);
491	}
492	set_thread_wsaved(0);
493	return;
494
495barf:
496	set_thread_wsaved(window + 1);
497	do_exit(SIGILL);
498}
499
500asmlinkage long sparc_do_fork(unsigned long clone_flags,
501			      unsigned long stack_start,
502			      struct pt_regs *regs,
503			      unsigned long stack_size)
504{
505	int __user *parent_tid_ptr, *child_tid_ptr;
506	unsigned long orig_i1 = regs->u_regs[UREG_I1];
507	long ret;
508
509#ifdef CONFIG_COMPAT
510	if (test_thread_flag(TIF_32BIT)) {
511		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
512		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
513	} else
514#endif
515	{
516		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
517		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
518	}
519
520	ret = do_fork(clone_flags, stack_start,
521		      regs, stack_size,
522		      parent_tid_ptr, child_tid_ptr);
523
524	/* If we get an error and potentially restart the system
525	 * call, we're screwed because copy_thread() clobbered
526	 * the parent's %o1.  So detect that case and restore it
527	 * here.
528	 */
529	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
530		regs->u_regs[UREG_I1] = orig_i1;
531
532	return ret;
533}
534
535/* Copy a Sparc thread.  The fork() return value conventions
536 * under SunOS are nothing short of bletcherous:
537 * Parent -->  %o0 == childs  pid, %o1 == 0
538 * Child  -->  %o0 == parents pid, %o1 == 1
539 */
540int copy_thread(unsigned long clone_flags, unsigned long sp,
541		unsigned long unused,
542		struct task_struct *p, struct pt_regs *regs)
543{
544	struct thread_info *t = task_thread_info(p);
 
545	struct sparc_stackf *parent_sf;
546	unsigned long child_stack_sz;
547	char *child_trap_frame;
548	int kernel_thread;
549
550	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
551	parent_sf = ((struct sparc_stackf *) regs) - 1;
552
553	/* Calculate offset to stack_frame & pt_regs */
554	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
555			  (kernel_thread ? STACKFRAME_SZ : 0));
556	child_trap_frame = (task_stack_page(p) +
557			    (THREAD_SIZE - child_stack_sz));
558	memcpy(child_trap_frame, parent_sf, child_stack_sz);
559
560	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
561				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
562		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
563	t->new_child = 1;
564	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
565	t->kregs = (struct pt_regs *) (child_trap_frame +
566				       sizeof(struct sparc_stackf));
567	t->fpsaved[0] = 0;
568
569	if (kernel_thread) {
570		struct sparc_stackf *child_sf = (struct sparc_stackf *)
571			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
572
573		/* Zero terminate the stack backtrace.  */
574		child_sf->fp = NULL;
575		t->kregs->u_regs[UREG_FP] =
576		  ((unsigned long) child_sf) - STACK_BIAS;
577
578		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
579		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
580		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
581	} else {
582		if (t->flags & _TIF_32BIT) {
583			sp &= 0x00000000ffffffffUL;
584			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
585		}
586		t->kregs->u_regs[UREG_FP] = sp;
587		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
588		if (sp != regs->u_regs[UREG_FP]) {
589			unsigned long csp;
590
591			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
592			if (!csp)
593				return -EFAULT;
594			t->kregs->u_regs[UREG_FP] = csp;
595		}
596		if (t->utraps)
597			t->utraps[0]++;
598	}
599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600	/* Set the return value for the child. */
601	t->kregs->u_regs[UREG_I0] = current->pid;
602	t->kregs->u_regs[UREG_I1] = 1;
603
604	/* Set the second return value for the parent. */
605	regs->u_regs[UREG_I1] = 0;
606
607	if (clone_flags & CLONE_SETTLS)
608		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
609
610	return 0;
611}
612
613/*
614 * This is the mechanism for creating a new kernel thread.
615 *
616 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
617 * who haven't done an "execve()") should use this: it will work within
618 * a system call from a "real" process, but the process memory space will
619 * not be freed until both the parent and the child have exited.
620 */
621pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
622{
623	long retval;
624
625	/* If the parent runs before fn(arg) is called by the child,
626	 * the input registers of this function can be clobbered.
627	 * So we stash 'fn' and 'arg' into global registers which
628	 * will not be modified by the parent.
629	 */
630	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
631			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
632			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
633			     "mov %2, %%o0\n\t"	   /* Clone flags. */
634			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
635			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
636			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
637			     " mov %%o0, %0\n\t"
638			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
639			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
640			     "mov %3, %%g1\n\t"
641			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
642			     /* Notreached by child. */
643			     "1:" :
644			     "=r" (retval) :
645			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
646			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
647			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
648	return retval;
649}
650EXPORT_SYMBOL(kernel_thread);
651
652typedef struct {
653	union {
654		unsigned int	pr_regs[32];
655		unsigned long	pr_dregs[16];
656	} pr_fr;
657	unsigned int __unused;
658	unsigned int	pr_fsr;
659	unsigned char	pr_qcnt;
660	unsigned char	pr_q_entrysize;
661	unsigned char	pr_en;
662	unsigned int	pr_q[64];
663} elf_fpregset_t32;
664
665/*
666 * fill in the fpu structure for a core dump.
667 */
668int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
669{
670	unsigned long *kfpregs = current_thread_info()->fpregs;
671	unsigned long fprs = current_thread_info()->fpsaved[0];
672
673	if (test_thread_flag(TIF_32BIT)) {
674		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
675
676		if (fprs & FPRS_DL)
677			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
678			       sizeof(unsigned int) * 32);
679		else
680			memset(&fpregs32->pr_fr.pr_regs[0], 0,
681			       sizeof(unsigned int) * 32);
682		fpregs32->pr_qcnt = 0;
683		fpregs32->pr_q_entrysize = 8;
684		memset(&fpregs32->pr_q[0], 0,
685		       (sizeof(unsigned int) * 64));
686		if (fprs & FPRS_FEF) {
687			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
688			fpregs32->pr_en = 1;
689		} else {
690			fpregs32->pr_fsr = 0;
691			fpregs32->pr_en = 0;
692		}
693	} else {
694		if(fprs & FPRS_DL)
695			memcpy(&fpregs->pr_regs[0], kfpregs,
696			       sizeof(unsigned int) * 32);
697		else
698			memset(&fpregs->pr_regs[0], 0,
699			       sizeof(unsigned int) * 32);
700		if(fprs & FPRS_DU)
701			memcpy(&fpregs->pr_regs[16], kfpregs+16,
702			       sizeof(unsigned int) * 32);
703		else
704			memset(&fpregs->pr_regs[16], 0,
705			       sizeof(unsigned int) * 32);
706		if(fprs & FPRS_FEF) {
707			fpregs->pr_fsr = current_thread_info()->xfsr[0];
708			fpregs->pr_gsr = current_thread_info()->gsr[0];
709		} else {
710			fpregs->pr_fsr = fpregs->pr_gsr = 0;
711		}
712		fpregs->pr_fprs = fprs;
713	}
714	return 1;
715}
716EXPORT_SYMBOL(dump_fpu);
717
718/*
719 * sparc_execve() executes a new program after the asm stub has set
720 * things up for us.  This should basically do what I want it to.
721 */
722asmlinkage int sparc_execve(struct pt_regs *regs)
723{
724	int error, base = 0;
725	char *filename;
726
727	/* User register window flush is done by entry.S */
728
729	/* Check for indirect call. */
730	if (regs->u_regs[UREG_G1] == 0)
731		base = 1;
732
733	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
734	error = PTR_ERR(filename);
735	if (IS_ERR(filename))
736		goto out;
737	error = do_execve(filename,
738			  (const char __user *const __user *)
739			  regs->u_regs[base + UREG_I1],
740			  (const char __user *const __user *)
741			  regs->u_regs[base + UREG_I2], regs);
742	putname(filename);
743	if (!error) {
744		fprs_write(0);
745		current_thread_info()->xfsr[0] = 0;
746		current_thread_info()->fpsaved[0] = 0;
747		regs->tstate &= ~TSTATE_PEF;
748	}
749out:
750	return error;
751}
752
753unsigned long get_wchan(struct task_struct *task)
754{
755	unsigned long pc, fp, bias = 0;
756	struct thread_info *tp;
757	struct reg_window *rw;
758        unsigned long ret = 0;
759	int count = 0; 
760
761	if (!task || task == current ||
762            task->state == TASK_RUNNING)
763		goto out;
764
765	tp = task_thread_info(task);
766	bias = STACK_BIAS;
767	fp = task_thread_info(task)->ksp + bias;
768
769	do {
770		if (!kstack_valid(tp, fp))
771			break;
772		rw = (struct reg_window *) fp;
773		pc = rw->ins[7];
774		if (!in_sched_functions(pc)) {
775			ret = pc;
776			goto out;
777		}
778		fp = rw->ins[6] + bias;
779	} while (++count < 16);
780
781out:
782	return ret;
783}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*  arch/sparc64/kernel/process.c
  3 *
  4 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  5 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  6 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9/*
 10 * This file handles the architecture-dependent parts of process handling..
 11 */
 12
 13#include <stdarg.h>
 14
 15#include <linux/errno.h>
 16#include <linux/export.h>
 17#include <linux/sched.h>
 18#include <linux/sched/debug.h>
 19#include <linux/sched/task.h>
 20#include <linux/sched/task_stack.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/fs.h>
 24#include <linux/smp.h>
 25#include <linux/stddef.h>
 26#include <linux/ptrace.h>
 27#include <linux/slab.h>
 28#include <linux/user.h>
 29#include <linux/delay.h>
 30#include <linux/compat.h>
 31#include <linux/tick.h>
 32#include <linux/init.h>
 33#include <linux/cpu.h>
 34#include <linux/perf_event.h>
 35#include <linux/elfcore.h>
 36#include <linux/sysrq.h>
 37#include <linux/nmi.h>
 38#include <linux/context_tracking.h>
 39#include <linux/signal.h>
 40
 41#include <linux/uaccess.h>
 42#include <asm/page.h>
 43#include <asm/pgalloc.h>
 
 44#include <asm/processor.h>
 45#include <asm/pstate.h>
 46#include <asm/elf.h>
 47#include <asm/fpumacro.h>
 48#include <asm/head.h>
 49#include <asm/cpudata.h>
 50#include <asm/mmu_context.h>
 51#include <asm/unistd.h>
 52#include <asm/hypervisor.h>
 53#include <asm/syscalls.h>
 54#include <asm/irq_regs.h>
 55#include <asm/smp.h>
 56#include <asm/pcr.h>
 57
 58#include "kstack.h"
 59
 60/* Idle loop support on sparc64. */
 61void arch_cpu_idle(void)
 62{
 63	if (tlb_type != hypervisor) {
 64		touch_nmi_watchdog();
 65		local_irq_enable();
 66	} else {
 
 
 
 
 
 67		unsigned long pstate;
 68
 69		local_irq_enable();
 70
 71                /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
 72                 * the cpu sleep hypervisor call.
 73                 */
 74		__asm__ __volatile__(
 75			"rdpr %%pstate, %0\n\t"
 76			"andn %0, %1, %0\n\t"
 77			"wrpr %0, %%g0, %%pstate"
 78			: "=&r" (pstate)
 79			: "i" (PSTATE_IE));
 80
 81		if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
 82			sun4v_cpu_yield();
 83			/* If resumed by cpu_poke then we need to explicitly
 84			 * call scheduler_ipi().
 85			 */
 86			scheduler_poke();
 87		}
 88
 89		/* Re-enable interrupts. */
 90		__asm__ __volatile__(
 91			"rdpr %%pstate, %0\n\t"
 92			"or %0, %1, %0\n\t"
 93			"wrpr %0, %%g0, %%pstate"
 94			: "=&r" (pstate)
 95			: "i" (PSTATE_IE));
 96	}
 
 
 97}
 98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99#ifdef CONFIG_HOTPLUG_CPU
100void arch_cpu_idle_dead(void)
101{
102	sched_preempt_enable_no_resched();
103	cpu_play_dead();
 
 
 
104}
105#endif
106
107#ifdef CONFIG_COMPAT
108static void show_regwindow32(struct pt_regs *regs)
109{
110	struct reg_window32 __user *rw;
111	struct reg_window32 r_w;
112	mm_segment_t old_fs;
113	
114	__asm__ __volatile__ ("flushw");
115	rw = compat_ptr((unsigned int)regs->u_regs[14]);
116	old_fs = get_fs();
117	set_fs (USER_DS);
118	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
119		set_fs (old_fs);
120		return;
121	}
122
123	set_fs (old_fs);			
124	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
125	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
126	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
127	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
128	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
129	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
130	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
131	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
132}
133#else
134#define show_regwindow32(regs)	do { } while (0)
135#endif
136
137static void show_regwindow(struct pt_regs *regs)
138{
139	struct reg_window __user *rw;
140	struct reg_window *rwk;
141	struct reg_window r_w;
142	mm_segment_t old_fs;
143
144	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
145		__asm__ __volatile__ ("flushw");
146		rw = (struct reg_window __user *)
147			(regs->u_regs[14] + STACK_BIAS);
148		rwk = (struct reg_window *)
149			(regs->u_regs[14] + STACK_BIAS);
150		if (!(regs->tstate & TSTATE_PRIV)) {
151			old_fs = get_fs();
152			set_fs (USER_DS);
153			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
154				set_fs (old_fs);
155				return;
156			}
157			rwk = &r_w;
158			set_fs (old_fs);			
159		}
160	} else {
161		show_regwindow32(regs);
162		return;
163	}
164	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
165	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
166	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
167	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
168	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
169	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
170	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
171	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
172	if (regs->tstate & TSTATE_PRIV)
173		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
174}
175
176void show_regs(struct pt_regs *regs)
177{
178	show_regs_print_info(KERN_DEFAULT);
179
180	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
181	       regs->tpc, regs->tnpc, regs->y, print_tainted());
182	printk("TPC: <%pS>\n", (void *) regs->tpc);
183	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
184	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
185	       regs->u_regs[3]);
186	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
187	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
188	       regs->u_regs[7]);
189	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
190	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
191	       regs->u_regs[11]);
192	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
193	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
194	       regs->u_regs[15]);
195	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
196	show_regwindow(regs);
197	show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
198}
199
200union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
201static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
202
203static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
204			      int this_cpu)
205{
206	struct global_reg_snapshot *rp;
207
208	flushw_all();
209
210	rp = &global_cpu_snapshot[this_cpu].reg;
211
212	rp->tstate = regs->tstate;
213	rp->tpc = regs->tpc;
214	rp->tnpc = regs->tnpc;
215	rp->o7 = regs->u_regs[UREG_I7];
216
217	if (regs->tstate & TSTATE_PRIV) {
218		struct reg_window *rw;
219
220		rw = (struct reg_window *)
221			(regs->u_regs[UREG_FP] + STACK_BIAS);
222		if (kstack_valid(tp, (unsigned long) rw)) {
223			rp->i7 = rw->ins[7];
224			rw = (struct reg_window *)
225				(rw->ins[6] + STACK_BIAS);
226			if (kstack_valid(tp, (unsigned long) rw))
227				rp->rpc = rw->ins[7];
228		}
229	} else {
230		rp->i7 = 0;
231		rp->rpc = 0;
232	}
233	rp->thread = tp;
234}
235
236/* In order to avoid hangs we do not try to synchronize with the
237 * global register dump client cpus.  The last store they make is to
238 * the thread pointer, so do a short poll waiting for that to become
239 * non-NULL.
240 */
241static void __global_reg_poll(struct global_reg_snapshot *gp)
242{
243	int limit = 0;
244
245	while (!gp->thread && ++limit < 100) {
246		barrier();
247		udelay(1);
248	}
249}
250
251void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
252{
253	struct thread_info *tp = current_thread_info();
254	struct pt_regs *regs = get_irq_regs();
255	unsigned long flags;
256	int this_cpu, cpu;
257
258	if (!regs)
259		regs = tp->kregs;
260
261	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 
 
262
263	this_cpu = raw_smp_processor_id();
264
265	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
266
267	if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
268		__global_reg_self(tp, regs, this_cpu);
269
270	smp_fetch_global_regs();
271
272	for_each_cpu(cpu, mask) {
273		struct global_reg_snapshot *gp;
274
275		if (exclude_self && cpu == this_cpu)
276			continue;
277
278		gp = &global_cpu_snapshot[cpu].reg;
279
280		__global_reg_poll(gp);
281
282		tp = gp->thread;
283		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
284		       (cpu == this_cpu ? '*' : ' '), cpu,
285		       gp->tstate, gp->tpc, gp->tnpc,
286		       ((tp && tp->task) ? tp->task->comm : "NULL"),
287		       ((tp && tp->task) ? tp->task->pid : -1));
288
289		if (gp->tstate & TSTATE_PRIV) {
290			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
291			       (void *) gp->tpc,
292			       (void *) gp->o7,
293			       (void *) gp->i7,
294			       (void *) gp->rpc);
295		} else {
296			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
297			       gp->tpc, gp->o7, gp->i7, gp->rpc);
298		}
299
300		touch_nmi_watchdog();
301	}
302
303	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
304
305	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
306}
307
308#ifdef CONFIG_MAGIC_SYSRQ
309
310static void sysrq_handle_globreg(int key)
311{
312	trigger_all_cpu_backtrace();
313}
314
315static const struct sysrq_key_op sparc_globalreg_op = {
316	.handler	= sysrq_handle_globreg,
317	.help_msg	= "global-regs(y)",
318	.action_msg	= "Show Global CPU Regs",
319};
320
321static void __global_pmu_self(int this_cpu)
322{
323	struct global_pmu_snapshot *pp;
324	int i, num;
325
326	if (!pcr_ops)
327		return;
328
329	pp = &global_cpu_snapshot[this_cpu].pmu;
330
331	num = 1;
332	if (tlb_type == hypervisor &&
333	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
334		num = 4;
335
336	for (i = 0; i < num; i++) {
337		pp->pcr[i] = pcr_ops->read_pcr(i);
338		pp->pic[i] = pcr_ops->read_pic(i);
339	}
340}
341
342static void __global_pmu_poll(struct global_pmu_snapshot *pp)
343{
344	int limit = 0;
345
346	while (!pp->pcr[0] && ++limit < 100) {
347		barrier();
348		udelay(1);
349	}
350}
351
352static void pmu_snapshot_all_cpus(void)
353{
354	unsigned long flags;
355	int this_cpu, cpu;
356
357	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
358
359	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
360
361	this_cpu = raw_smp_processor_id();
362
363	__global_pmu_self(this_cpu);
364
365	smp_fetch_global_pmu();
366
367	for_each_online_cpu(cpu) {
368		struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
369
370		__global_pmu_poll(pp);
371
372		printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
373		       (cpu == this_cpu ? '*' : ' '), cpu,
374		       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
375		       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
376
377		touch_nmi_watchdog();
378	}
379
380	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
381
382	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
383}
384
385static void sysrq_handle_globpmu(int key)
386{
387	pmu_snapshot_all_cpus();
388}
389
390static const struct sysrq_key_op sparc_globalpmu_op = {
391	.handler	= sysrq_handle_globpmu,
392	.help_msg	= "global-pmu(x)",
393	.action_msg	= "Show Global PMU Regs",
394};
395
396static int __init sparc_sysrq_init(void)
397{
398	int ret = register_sysrq_key('y', &sparc_globalreg_op);
399
400	if (!ret)
401		ret = register_sysrq_key('x', &sparc_globalpmu_op);
402	return ret;
403}
404
405core_initcall(sparc_sysrq_init);
406
407#endif
408
409/* Free current thread data structures etc.. */
410void exit_thread(struct task_struct *tsk)
411{
412	struct thread_info *t = task_thread_info(tsk);
413
414	if (t->utraps) {
415		if (t->utraps[0] < 2)
416			kfree (t->utraps);
417		else
418			t->utraps[0]--;
419	}
420}
421
422void flush_thread(void)
423{
424	struct thread_info *t = current_thread_info();
425	struct mm_struct *mm;
426
427	mm = t->task->mm;
428	if (mm)
429		tsb_context_switch(mm);
430
431	set_thread_wsaved(0);
432
433	/* Clear FPU register state. */
434	t->fpsaved[0] = 0;
435}
436
437/* It's a bit more tricky when 64-bit tasks are involved... */
438static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
439{
440	bool stack_64bit = test_thread_64bit_stack(psp);
441	unsigned long fp, distance, rval;
442
443	if (stack_64bit) {
444		csp += STACK_BIAS;
445		psp += STACK_BIAS;
446		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
447		fp += STACK_BIAS;
448		if (test_thread_flag(TIF_32BIT))
449			fp &= 0xffffffff;
450	} else
451		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
452
453	/* Now align the stack as this is mandatory in the Sparc ABI
454	 * due to how register windows work.  This hides the
455	 * restriction from thread libraries etc.
456	 */
457	csp &= ~15UL;
458
459	distance = fp - psp;
460	rval = (csp - distance);
461	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
462		rval = 0;
463	else if (!stack_64bit) {
464		if (put_user(((u32)csp),
465			     &(((struct reg_window32 __user *)rval)->ins[6])))
466			rval = 0;
467	} else {
468		if (put_user(((u64)csp - STACK_BIAS),
469			     &(((struct reg_window __user *)rval)->ins[6])))
470			rval = 0;
471		else
472			rval = rval - STACK_BIAS;
473	}
474
475	return rval;
476}
477
478/* Standard stuff. */
479static inline void shift_window_buffer(int first_win, int last_win,
480				       struct thread_info *t)
481{
482	int i;
483
484	for (i = first_win; i < last_win; i++) {
485		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
486		memcpy(&t->reg_window[i], &t->reg_window[i+1],
487		       sizeof(struct reg_window));
488	}
489}
490
491void synchronize_user_stack(void)
492{
493	struct thread_info *t = current_thread_info();
494	unsigned long window;
495
496	flush_user_windows();
497	if ((window = get_thread_wsaved()) != 0) {
 
 
 
 
 
 
 
 
498		window -= 1;
499		do {
 
500			struct reg_window *rwin = &t->reg_window[window];
501			int winsize = sizeof(struct reg_window);
502			unsigned long sp;
503
504			sp = t->rwbuf_stkptrs[window];
505
506			if (test_thread_64bit_stack(sp))
507				sp += STACK_BIAS;
508			else
509				winsize = sizeof(struct reg_window32);
510
511			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
512				shift_window_buffer(window, get_thread_wsaved() - 1, t);
513				set_thread_wsaved(get_thread_wsaved() - 1);
514			}
515		} while (window--);
516	}
517}
518
519static void stack_unaligned(unsigned long sp)
520{
521	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp, 0);
 
 
 
 
 
 
 
522}
523
524static const char uwfault32[] = KERN_INFO \
525	"%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
526static const char uwfault64[] = KERN_INFO \
527	"%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
528
529void fault_in_user_windows(struct pt_regs *regs)
530{
531	struct thread_info *t = current_thread_info();
532	unsigned long window;
 
 
 
 
 
 
 
533
534	flush_user_windows();
535	window = get_thread_wsaved();
536
537	if (likely(window != 0)) {
538		window -= 1;
539		do {
 
540			struct reg_window *rwin = &t->reg_window[window];
541			int winsize = sizeof(struct reg_window);
542			unsigned long sp, orig_sp;
543
544			orig_sp = sp = t->rwbuf_stkptrs[window];
545
546			if (test_thread_64bit_stack(sp))
547				sp += STACK_BIAS;
548			else
549				winsize = sizeof(struct reg_window32);
550
551			if (unlikely(sp & 0x7UL))
552				stack_unaligned(sp);
553
554			if (unlikely(copy_to_user((char __user *)sp,
555						  rwin, winsize))) {
556				if (show_unhandled_signals)
557					printk_ratelimited(is_compat_task() ?
558							   uwfault32 : uwfault64,
559							   current->comm, current->pid,
560							   sp, orig_sp,
561							   regs->tpc,
562							   regs->u_regs[UREG_I7]);
563				goto barf;
564			}
565		} while (window--);
566	}
567	set_thread_wsaved(0);
568	return;
569
570barf:
571	set_thread_wsaved(window + 1);
572	force_sig(SIGSEGV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573}
574
575/* Copy a Sparc thread.  The fork() return value conventions
576 * under SunOS are nothing short of bletcherous:
577 * Parent -->  %o0 == childs  pid, %o1 == 0
578 * Child  -->  %o0 == parents pid, %o1 == 1
579 */
580int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
581		struct task_struct *p, unsigned long tls)
 
582{
583	struct thread_info *t = task_thread_info(p);
584	struct pt_regs *regs = current_pt_regs();
585	struct sparc_stackf *parent_sf;
586	unsigned long child_stack_sz;
587	char *child_trap_frame;
 
 
 
 
588
589	/* Calculate offset to stack_frame & pt_regs */
590	child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
 
591	child_trap_frame = (task_stack_page(p) +
592			    (THREAD_SIZE - child_stack_sz));
 
593
 
 
 
594	t->new_child = 1;
595	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
596	t->kregs = (struct pt_regs *) (child_trap_frame +
597				       sizeof(struct sparc_stackf));
598	t->fpsaved[0] = 0;
599
600	if (unlikely(p->flags & PF_KTHREAD)) {
601		memset(child_trap_frame, 0, child_stack_sz);
602		__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
603			(current_pt_regs()->tstate + 1) & TSTATE_CWP;
604		t->current_ds = ASI_P;
605		t->kregs->u_regs[UREG_G1] = sp; /* function */
606		t->kregs->u_regs[UREG_G2] = arg;
607		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608	}
609
610	parent_sf = ((struct sparc_stackf *) regs) - 1;
611	memcpy(child_trap_frame, parent_sf, child_stack_sz);
612	if (t->flags & _TIF_32BIT) {
613		sp &= 0x00000000ffffffffUL;
614		regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
615	}
616	t->kregs->u_regs[UREG_FP] = sp;
617	__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
618		(regs->tstate + 1) & TSTATE_CWP;
619	t->current_ds = ASI_AIUS;
620	if (sp != regs->u_regs[UREG_FP]) {
621		unsigned long csp;
622
623		csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
624		if (!csp)
625			return -EFAULT;
626		t->kregs->u_regs[UREG_FP] = csp;
627	}
628	if (t->utraps)
629		t->utraps[0]++;
630
631	/* Set the return value for the child. */
632	t->kregs->u_regs[UREG_I0] = current->pid;
633	t->kregs->u_regs[UREG_I1] = 1;
634
635	/* Set the second return value for the parent. */
636	regs->u_regs[UREG_I1] = 0;
637
638	if (clone_flags & CLONE_SETTLS)
639		t->kregs->u_regs[UREG_G7] = tls;
640
641	return 0;
642}
643
644/* TIF_MCDPER in thread info flags for current task is updated lazily upon
645 * a context switch. Update this flag in current task's thread flags
646 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647 */
648int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
649{
650	if (adi_capable()) {
651		register unsigned long tmp_mcdper;
 
 
 
652
653		__asm__ __volatile__(
654			".word 0x83438000\n\t"	/* rd  %mcdper, %g1 */
655			"mov %%g1, %0\n\t"
656			: "=r" (tmp_mcdper)
657			:
658			: "g1");
659		if (tmp_mcdper)
660			set_thread_flag(TIF_MCDPER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661		else
662			clear_thread_flag(TIF_MCDPER);
 
 
 
 
 
 
 
 
663	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664
665	*dst = *src;
666	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667}
668
669unsigned long get_wchan(struct task_struct *task)
670{
671	unsigned long pc, fp, bias = 0;
672	struct thread_info *tp;
673	struct reg_window *rw;
674        unsigned long ret = 0;
675	int count = 0; 
676
677	if (!task || task == current ||
678            task->state == TASK_RUNNING)
679		goto out;
680
681	tp = task_thread_info(task);
682	bias = STACK_BIAS;
683	fp = task_thread_info(task)->ksp + bias;
684
685	do {
686		if (!kstack_valid(tp, fp))
687			break;
688		rw = (struct reg_window *) fp;
689		pc = rw->ins[7];
690		if (!in_sched_functions(pc)) {
691			ret = pc;
692			goto out;
693		}
694		fp = rw->ins[6] + bias;
695	} while (++count < 16);
696
697out:
698	return ret;
699}