Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
 
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/perfctr.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Sparc64 chips have two performance counters, 32-bits each, with
  35 * overflow interrupts generated on transition from 0xffffffff to 0.
  36 * The counters are accessed in one go using a 64-bit register.
  37 *
  38 * Both counters are controlled using a single control register.  The
  39 * only way to stop all sampling is to clear all of the context (user,
  40 * supervisor, hypervisor) sampling enable bits.  But these bits apply
  41 * to both counters, thus the two counters can't be enabled/disabled
  42 * individually.
  43 *
  44 * The control register has two event fields, one for each of the two
  45 * counters.  It's thus nearly impossible to have one counter going
  46 * while keeping the other one stopped.  Therefore it is possible to
  47 * get overflow interrupts for counters not currently "in use" and
  48 * that condition must be checked in the overflow interrupt handler.
 
 
 
 
 
 
 
  49 *
  50 * So we use a hack, in that we program inactive counters with the
  51 * "sw_count0" and "sw_count1" events.  These count how many times
  52 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  53 * unusual way to encode a NOP and therefore will not trigger in
  54 * normal code.
 
 
 
 
 
 
 
  55 */
  56
  57#define MAX_HWEVENTS			2
 
  58#define MAX_PERIOD			((1UL << 32) - 1)
  59
  60#define PIC_UPPER_INDEX			0
  61#define PIC_LOWER_INDEX			1
  62#define PIC_NO_INDEX			-1
  63
  64struct cpu_hw_events {
  65	/* Number of events currently scheduled onto this cpu.
  66	 * This tells how many entries in the arrays below
  67	 * are valid.
  68	 */
  69	int			n_events;
  70
  71	/* Number of new events added since the last hw_perf_disable().
  72	 * This works because the perf event layer always adds new
  73	 * events inside of a perf_{disable,enable}() sequence.
  74	 */
  75	int			n_added;
  76
  77	/* Array of events current scheduled on this cpu.  */
  78	struct perf_event	*event[MAX_HWEVENTS];
  79
  80	/* Array of encoded longs, specifying the %pcr register
  81	 * encoding and the mask of PIC counters this even can
  82	 * be scheduled on.  See perf_event_encode() et al.
  83	 */
  84	unsigned long		events[MAX_HWEVENTS];
  85
  86	/* The current counter index assigned to an event.  When the
  87	 * event hasn't been programmed into the cpu yet, this will
  88	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
  89	 * we ought to schedule the event.
  90	 */
  91	int			current_idx[MAX_HWEVENTS];
  92
  93	/* Software copy of %pcr register on this cpu.  */
  94	u64			pcr;
  95
  96	/* Enabled/disable state.  */
  97	int			enabled;
  98
  99	unsigned int		group_flag;
 100};
 101DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 102
 103/* An event map describes the characteristics of a performance
 104 * counter event.  In particular it gives the encoding as well as
 105 * a mask telling which counters the event can be measured on.
 
 
 106 */
 107struct perf_event_map {
 108	u16	encoding;
 109	u8	pic_mask;
 110#define PIC_NONE	0x00
 111#define PIC_UPPER	0x01
 112#define PIC_LOWER	0x02
 113};
 114
 115/* Encode a perf_event_map entry into a long.  */
 116static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 117{
 118	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 119}
 120
 121static u8 perf_event_get_msk(unsigned long val)
 122{
 123	return val & 0xff;
 124}
 125
 126static u64 perf_event_get_enc(unsigned long val)
 127{
 128	return val >> 16;
 129}
 130
 131#define C(x) PERF_COUNT_HW_CACHE_##x
 132
 133#define CACHE_OP_UNSUPPORTED	0xfffe
 134#define CACHE_OP_NONSENSE	0xffff
 135
 136typedef struct perf_event_map cache_map_t
 137				[PERF_COUNT_HW_CACHE_MAX]
 138				[PERF_COUNT_HW_CACHE_OP_MAX]
 139				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 140
 141struct sparc_pmu {
 142	const struct perf_event_map	*(*event_map)(int);
 143	const cache_map_t		*cache_map;
 144	int				max_events;
 
 
 145	int				upper_shift;
 146	int				lower_shift;
 147	int				event_mask;
 
 
 148	int				hv_bit;
 149	int				irq_bit;
 150	int				upper_nop;
 151	int				lower_nop;
 
 
 
 
 
 
 152};
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154static const struct perf_event_map ultra3_perfmon_event_map[] = {
 155	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 156	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 157	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 158	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 159};
 160
 161static const struct perf_event_map *ultra3_event_map(int event_id)
 162{
 163	return &ultra3_perfmon_event_map[event_id];
 164}
 165
 166static const cache_map_t ultra3_cache_map = {
 167[C(L1D)] = {
 168	[C(OP_READ)] = {
 169		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 170		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 171	},
 172	[C(OP_WRITE)] = {
 173		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 174		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 175	},
 176	[C(OP_PREFETCH)] = {
 177		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 178		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 179	},
 180},
 181[C(L1I)] = {
 182	[C(OP_READ)] = {
 183		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 184		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 185	},
 186	[ C(OP_WRITE) ] = {
 187		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 188		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 189	},
 190	[ C(OP_PREFETCH) ] = {
 191		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 192		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 193	},
 194},
 195[C(LL)] = {
 196	[C(OP_READ)] = {
 197		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 198		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 199	},
 200	[C(OP_WRITE)] = {
 201		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 202		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 203	},
 204	[C(OP_PREFETCH)] = {
 205		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 206		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 207	},
 208},
 209[C(DTLB)] = {
 210	[C(OP_READ)] = {
 211		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 212		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 213	},
 214	[ C(OP_WRITE) ] = {
 215		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 216		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 217	},
 218	[ C(OP_PREFETCH) ] = {
 219		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 220		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 221	},
 222},
 223[C(ITLB)] = {
 224	[C(OP_READ)] = {
 225		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 226		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 227	},
 228	[ C(OP_WRITE) ] = {
 229		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 230		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 231	},
 232	[ C(OP_PREFETCH) ] = {
 233		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 234		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 235	},
 236},
 237[C(BPU)] = {
 238	[C(OP_READ)] = {
 239		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 240		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 241	},
 242	[ C(OP_WRITE) ] = {
 243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245	},
 246	[ C(OP_PREFETCH) ] = {
 247		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 248		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 249	},
 250},
 251[C(NODE)] = {
 252	[C(OP_READ)] = {
 253		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 254		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 255	},
 256	[ C(OP_WRITE) ] = {
 257		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 258		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 259	},
 260	[ C(OP_PREFETCH) ] = {
 261		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 262		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 263	},
 264},
 265};
 266
 267static const struct sparc_pmu ultra3_pmu = {
 268	.event_map	= ultra3_event_map,
 269	.cache_map	= &ultra3_cache_map,
 270	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 
 
 271	.upper_shift	= 11,
 272	.lower_shift	= 4,
 273	.event_mask	= 0x3f,
 
 
 274	.upper_nop	= 0x1c,
 275	.lower_nop	= 0x14,
 
 
 
 
 
 276};
 277
 278/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 279 * only instructions, so it is free running which creates all kinds of
 280 * problems.  Some hardware designs make one wonder if the creator
 281 * even looked at how this stuff gets used by software.
 282 */
 283static const struct perf_event_map niagara1_perfmon_event_map[] = {
 284	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 285	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 286	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 287	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 288};
 289
 290static const struct perf_event_map *niagara1_event_map(int event_id)
 291{
 292	return &niagara1_perfmon_event_map[event_id];
 293}
 294
 295static const cache_map_t niagara1_cache_map = {
 296[C(L1D)] = {
 297	[C(OP_READ)] = {
 298		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 299		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 300	},
 301	[C(OP_WRITE)] = {
 302		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 303		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 304	},
 305	[C(OP_PREFETCH)] = {
 306		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 308	},
 309},
 310[C(L1I)] = {
 311	[C(OP_READ)] = {
 312		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 313		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 314	},
 315	[ C(OP_WRITE) ] = {
 316		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 317		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 318	},
 319	[ C(OP_PREFETCH) ] = {
 320		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 321		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 322	},
 323},
 324[C(LL)] = {
 325	[C(OP_READ)] = {
 326		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 327		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 328	},
 329	[C(OP_WRITE)] = {
 330		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 331		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 332	},
 333	[C(OP_PREFETCH)] = {
 334		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 335		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 336	},
 337},
 338[C(DTLB)] = {
 339	[C(OP_READ)] = {
 340		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 341		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 342	},
 343	[ C(OP_WRITE) ] = {
 344		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 345		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 346	},
 347	[ C(OP_PREFETCH) ] = {
 348		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 349		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 350	},
 351},
 352[C(ITLB)] = {
 353	[C(OP_READ)] = {
 354		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 355		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 356	},
 357	[ C(OP_WRITE) ] = {
 358		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 359		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 360	},
 361	[ C(OP_PREFETCH) ] = {
 362		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 363		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 364	},
 365},
 366[C(BPU)] = {
 367	[C(OP_READ)] = {
 368		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370	},
 371	[ C(OP_WRITE) ] = {
 372		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 373		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 374	},
 375	[ C(OP_PREFETCH) ] = {
 376		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 377		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 378	},
 379},
 380[C(NODE)] = {
 381	[C(OP_READ)] = {
 382		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 383		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 384	},
 385	[ C(OP_WRITE) ] = {
 386		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 387		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 388	},
 389	[ C(OP_PREFETCH) ] = {
 390		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 391		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 392	},
 393},
 394};
 395
 396static const struct sparc_pmu niagara1_pmu = {
 397	.event_map	= niagara1_event_map,
 398	.cache_map	= &niagara1_cache_map,
 399	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 
 
 400	.upper_shift	= 0,
 401	.lower_shift	= 4,
 402	.event_mask	= 0x7,
 
 
 403	.upper_nop	= 0x0,
 404	.lower_nop	= 0x0,
 
 
 
 
 
 405};
 406
 407static const struct perf_event_map niagara2_perfmon_event_map[] = {
 408	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 409	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 410	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 411	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 412	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 413	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 414};
 415
 416static const struct perf_event_map *niagara2_event_map(int event_id)
 417{
 418	return &niagara2_perfmon_event_map[event_id];
 419}
 420
 421static const cache_map_t niagara2_cache_map = {
 422[C(L1D)] = {
 423	[C(OP_READ)] = {
 424		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 425		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 426	},
 427	[C(OP_WRITE)] = {
 428		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 429		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 430	},
 431	[C(OP_PREFETCH)] = {
 432		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 433		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 434	},
 435},
 436[C(L1I)] = {
 437	[C(OP_READ)] = {
 438		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 439		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 440	},
 441	[ C(OP_WRITE) ] = {
 442		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 443		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 444	},
 445	[ C(OP_PREFETCH) ] = {
 446		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 447		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 448	},
 449},
 450[C(LL)] = {
 451	[C(OP_READ)] = {
 452		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 453		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 454	},
 455	[C(OP_WRITE)] = {
 456		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 457		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 458	},
 459	[C(OP_PREFETCH)] = {
 460		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 461		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 462	},
 463},
 464[C(DTLB)] = {
 465	[C(OP_READ)] = {
 466		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 467		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 468	},
 469	[ C(OP_WRITE) ] = {
 470		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 471		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 472	},
 473	[ C(OP_PREFETCH) ] = {
 474		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 475		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 476	},
 477},
 478[C(ITLB)] = {
 479	[C(OP_READ)] = {
 480		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 481		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 482	},
 483	[ C(OP_WRITE) ] = {
 484		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 485		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 486	},
 487	[ C(OP_PREFETCH) ] = {
 488		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 489		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 490	},
 491},
 492[C(BPU)] = {
 493	[C(OP_READ)] = {
 494		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 495		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 496	},
 497	[ C(OP_WRITE) ] = {
 498		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 499		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 500	},
 501	[ C(OP_PREFETCH) ] = {
 502		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 503		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 504	},
 505},
 506[C(NODE)] = {
 507	[C(OP_READ)] = {
 508		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 509		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 510	},
 511	[ C(OP_WRITE) ] = {
 512		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 513		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 514	},
 515	[ C(OP_PREFETCH) ] = {
 516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518	},
 519},
 520};
 521
 522static const struct sparc_pmu niagara2_pmu = {
 523	.event_map	= niagara2_event_map,
 524	.cache_map	= &niagara2_cache_map,
 525	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 
 
 526	.upper_shift	= 19,
 527	.lower_shift	= 6,
 528	.event_mask	= 0xfff,
 529	.hv_bit		= 0x8,
 
 
 530	.irq_bit	= 0x30,
 531	.upper_nop	= 0x220,
 532	.lower_nop	= 0x220,
 
 
 
 
 
 533};
 534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535static const struct sparc_pmu *sparc_pmu __read_mostly;
 536
 537static u64 event_encoding(u64 event_id, int idx)
 538{
 539	if (idx == PIC_UPPER_INDEX)
 540		event_id <<= sparc_pmu->upper_shift;
 541	else
 542		event_id <<= sparc_pmu->lower_shift;
 543	return event_id;
 544}
 545
 546static u64 mask_for_index(int idx)
 547{
 548	return event_encoding(sparc_pmu->event_mask, idx);
 549}
 550
 551static u64 nop_for_index(int idx)
 552{
 553	return event_encoding(idx == PIC_UPPER_INDEX ?
 554			      sparc_pmu->upper_nop :
 555			      sparc_pmu->lower_nop, idx);
 556}
 557
 558static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 559{
 560	u64 val, mask = mask_for_index(idx);
 
 
 
 
 561
 562	val = cpuc->pcr;
 
 
 563	val &= ~mask;
 564	val |= hwc->config;
 565	cpuc->pcr = val;
 566
 567	pcr_ops->write(cpuc->pcr);
 568}
 569
 570static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 571{
 572	u64 mask = mask_for_index(idx);
 573	u64 nop = nop_for_index(idx);
 
 574	u64 val;
 575
 576	val = cpuc->pcr;
 
 
 
 577	val &= ~mask;
 578	val |= nop;
 579	cpuc->pcr = val;
 580
 581	pcr_ops->write(cpuc->pcr);
 582}
 583
 584static u32 read_pmc(int idx)
 585{
 586	u64 val;
 587
 588	read_pic(val);
 589	if (idx == PIC_UPPER_INDEX)
 590		val >>= 32;
 591
 592	return val & 0xffffffff;
 593}
 594
 595static void write_pmc(int idx, u64 val)
 596{
 597	u64 shift, mask, pic;
 598
 599	shift = 0;
 600	if (idx == PIC_UPPER_INDEX)
 601		shift = 32;
 602
 603	mask = ((u64) 0xffffffff) << shift;
 604	val <<= shift;
 605
 606	read_pic(pic);
 607	pic &= ~mask;
 608	pic |= val;
 609	write_pic(pic);
 610}
 611
 612static u64 sparc_perf_event_update(struct perf_event *event,
 613				   struct hw_perf_event *hwc, int idx)
 614{
 615	int shift = 64 - 32;
 616	u64 prev_raw_count, new_raw_count;
 617	s64 delta;
 618
 619again:
 620	prev_raw_count = local64_read(&hwc->prev_count);
 621	new_raw_count = read_pmc(idx);
 622
 623	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 624			     new_raw_count) != prev_raw_count)
 625		goto again;
 626
 627	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 628	delta >>= shift;
 629
 630	local64_add(delta, &event->count);
 631	local64_sub(delta, &hwc->period_left);
 632
 633	return new_raw_count;
 634}
 635
 636static int sparc_perf_event_set_period(struct perf_event *event,
 637				       struct hw_perf_event *hwc, int idx)
 638{
 639	s64 left = local64_read(&hwc->period_left);
 640	s64 period = hwc->sample_period;
 641	int ret = 0;
 642
 
 
 
 
 643	if (unlikely(left <= -period)) {
 644		left = period;
 645		local64_set(&hwc->period_left, left);
 646		hwc->last_period = period;
 647		ret = 1;
 648	}
 649
 650	if (unlikely(left <= 0)) {
 651		left += period;
 652		local64_set(&hwc->period_left, left);
 653		hwc->last_period = period;
 654		ret = 1;
 655	}
 656	if (left > MAX_PERIOD)
 657		left = MAX_PERIOD;
 658
 659	local64_set(&hwc->prev_count, (u64)-left);
 660
 661	write_pmc(idx, (u64)(-left) & 0xffffffff);
 662
 663	perf_event_update_userpage(event);
 664
 665	return ret;
 666}
 667
 668/* If performance event entries have been added, move existing
 669 * events around (if necessary) and then assign new entries to
 670 * counters.
 671 */
 672static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
 673{
 674	int i;
 675
 676	if (!cpuc->n_added)
 677		goto out;
 678
 679	/* Read in the counters which are moving.  */
 680	for (i = 0; i < cpuc->n_events; i++) {
 681		struct perf_event *cp = cpuc->event[i];
 682
 683		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 684		    cpuc->current_idx[i] != cp->hw.idx) {
 685			sparc_perf_event_update(cp, &cp->hw,
 686						cpuc->current_idx[i]);
 687			cpuc->current_idx[i] = PIC_NO_INDEX;
 
 
 688		}
 689	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	/* Assign to counters all unassigned events.  */
 692	for (i = 0; i < cpuc->n_events; i++) {
 693		struct perf_event *cp = cpuc->event[i];
 694		struct hw_perf_event *hwc = &cp->hw;
 695		int idx = hwc->idx;
 696		u64 enc;
 697
 698		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 699			continue;
 700
 701		sparc_perf_event_set_period(cp, hwc, idx);
 702		cpuc->current_idx[i] = idx;
 703
 704		enc = perf_event_get_enc(cpuc->events[i]);
 705		pcr &= ~mask_for_index(idx);
 706		if (hwc->state & PERF_HES_STOPPED)
 707			pcr |= nop_for_index(idx);
 708		else
 709			pcr |= event_encoding(enc, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	}
 711out:
 712	return pcr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713}
 714
 715static void sparc_pmu_enable(struct pmu *pmu)
 716{
 717	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 718	u64 pcr;
 719
 720	if (cpuc->enabled)
 721		return;
 722
 723	cpuc->enabled = 1;
 724	barrier();
 725
 726	pcr = cpuc->pcr;
 727	if (!cpuc->n_events) {
 728		pcr = 0;
 729	} else {
 730		pcr = maybe_change_configuration(cpuc, pcr);
 731
 732		/* We require that all of the events have the same
 733		 * configuration, so just fetch the settings from the
 734		 * first entry.
 735		 */
 736		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
 737	}
 738
 739	pcr_ops->write(cpuc->pcr);
 740}
 741
 742static void sparc_pmu_disable(struct pmu *pmu)
 743{
 744	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 745	u64 val;
 746
 747	if (!cpuc->enabled)
 748		return;
 749
 750	cpuc->enabled = 0;
 751	cpuc->n_added = 0;
 752
 753	val = cpuc->pcr;
 754	val &= ~(PCR_UTRACE | PCR_STRACE |
 755		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 756	cpuc->pcr = val;
 757
 758	pcr_ops->write(cpuc->pcr);
 
 
 
 
 759}
 760
 761static int active_event_index(struct cpu_hw_events *cpuc,
 762			      struct perf_event *event)
 763{
 764	int i;
 765
 766	for (i = 0; i < cpuc->n_events; i++) {
 767		if (cpuc->event[i] == event)
 768			break;
 769	}
 770	BUG_ON(i == cpuc->n_events);
 771	return cpuc->current_idx[i];
 772}
 773
 774static void sparc_pmu_start(struct perf_event *event, int flags)
 775{
 776	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 777	int idx = active_event_index(cpuc, event);
 778
 779	if (flags & PERF_EF_RELOAD) {
 780		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 781		sparc_perf_event_set_period(event, &event->hw, idx);
 782	}
 783
 784	event->hw.state = 0;
 785
 786	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 
 
 787}
 788
 789static void sparc_pmu_stop(struct perf_event *event, int flags)
 790{
 791	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 792	int idx = active_event_index(cpuc, event);
 793
 794	if (!(event->hw.state & PERF_HES_STOPPED)) {
 795		sparc_pmu_disable_event(cpuc, &event->hw, idx);
 796		event->hw.state |= PERF_HES_STOPPED;
 797	}
 798
 799	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
 800		sparc_perf_event_update(event, &event->hw, idx);
 801		event->hw.state |= PERF_HES_UPTODATE;
 802	}
 803}
 804
 805static void sparc_pmu_del(struct perf_event *event, int _flags)
 806{
 807	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 808	unsigned long flags;
 809	int i;
 810
 811	local_irq_save(flags);
 812	perf_pmu_disable(event->pmu);
 813
 814	for (i = 0; i < cpuc->n_events; i++) {
 815		if (event == cpuc->event[i]) {
 816			/* Absorb the final count and turn off the
 817			 * event.
 818			 */
 819			sparc_pmu_stop(event, PERF_EF_UPDATE);
 820
 821			/* Shift remaining entries down into
 822			 * the existing slot.
 823			 */
 824			while (++i < cpuc->n_events) {
 825				cpuc->event[i - 1] = cpuc->event[i];
 826				cpuc->events[i - 1] = cpuc->events[i];
 827				cpuc->current_idx[i - 1] =
 828					cpuc->current_idx[i];
 829			}
 830
 831			perf_event_update_userpage(event);
 832
 833			cpuc->n_events--;
 834			break;
 835		}
 836	}
 837
 838	perf_pmu_enable(event->pmu);
 839	local_irq_restore(flags);
 840}
 841
 842static void sparc_pmu_read(struct perf_event *event)
 843{
 844	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 845	int idx = active_event_index(cpuc, event);
 846	struct hw_perf_event *hwc = &event->hw;
 847
 848	sparc_perf_event_update(event, hwc, idx);
 849}
 850
 851static atomic_t active_events = ATOMIC_INIT(0);
 852static DEFINE_MUTEX(pmc_grab_mutex);
 853
 854static void perf_stop_nmi_watchdog(void *unused)
 855{
 856	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
 857
 858	stop_nmi_watchdog(NULL);
 859	cpuc->pcr = pcr_ops->read();
 
 860}
 861
 862void perf_event_grab_pmc(void)
 863{
 864	if (atomic_inc_not_zero(&active_events))
 865		return;
 866
 867	mutex_lock(&pmc_grab_mutex);
 868	if (atomic_read(&active_events) == 0) {
 869		if (atomic_read(&nmi_active) > 0) {
 870			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 871			BUG_ON(atomic_read(&nmi_active) != 0);
 872		}
 873		atomic_inc(&active_events);
 874	}
 875	mutex_unlock(&pmc_grab_mutex);
 876}
 877
 878void perf_event_release_pmc(void)
 879{
 880	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 881		if (atomic_read(&nmi_active) == 0)
 882			on_each_cpu(start_nmi_watchdog, NULL, 1);
 883		mutex_unlock(&pmc_grab_mutex);
 884	}
 885}
 886
 887static const struct perf_event_map *sparc_map_cache_event(u64 config)
 888{
 889	unsigned int cache_type, cache_op, cache_result;
 890	const struct perf_event_map *pmap;
 891
 892	if (!sparc_pmu->cache_map)
 893		return ERR_PTR(-ENOENT);
 894
 895	cache_type = (config >>  0) & 0xff;
 896	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 897		return ERR_PTR(-EINVAL);
 898
 899	cache_op = (config >>  8) & 0xff;
 900	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 901		return ERR_PTR(-EINVAL);
 902
 903	cache_result = (config >> 16) & 0xff;
 904	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 905		return ERR_PTR(-EINVAL);
 906
 907	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 908
 909	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 910		return ERR_PTR(-ENOENT);
 911
 912	if (pmap->encoding == CACHE_OP_NONSENSE)
 913		return ERR_PTR(-EINVAL);
 914
 915	return pmap;
 916}
 917
 918static void hw_perf_event_destroy(struct perf_event *event)
 919{
 920	perf_event_release_pmc();
 921}
 922
 923/* Make sure all events can be scheduled into the hardware at
 924 * the same time.  This is simplified by the fact that we only
 925 * need to support 2 simultaneous HW events.
 926 *
 927 * As a side effect, the evts[]->hw.idx values will be assigned
 928 * on success.  These are pending indexes.  When the events are
 929 * actually programmed into the chip, these values will propagate
 930 * to the per-cpu cpuc->current_idx[] slots, see the code in
 931 * maybe_change_configuration() for details.
 932 */
 933static int sparc_check_constraints(struct perf_event **evts,
 934				   unsigned long *events, int n_ev)
 935{
 936	u8 msk0 = 0, msk1 = 0;
 937	int idx0 = 0;
 938
 939	/* This case is possible when we are invoked from
 940	 * hw_perf_group_sched_in().
 941	 */
 942	if (!n_ev)
 943		return 0;
 944
 945	if (n_ev > MAX_HWEVENTS)
 946		return -1;
 947
 
 
 
 
 
 
 
 
 948	msk0 = perf_event_get_msk(events[0]);
 949	if (n_ev == 1) {
 950		if (msk0 & PIC_LOWER)
 951			idx0 = 1;
 952		goto success;
 953	}
 954	BUG_ON(n_ev != 2);
 955	msk1 = perf_event_get_msk(events[1]);
 956
 957	/* If both events can go on any counter, OK.  */
 958	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 959	    msk1 == (PIC_UPPER | PIC_LOWER))
 960		goto success;
 961
 962	/* If one event is limited to a specific counter,
 963	 * and the other can go on both, OK.
 964	 */
 965	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 966	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 967		if (msk0 & PIC_LOWER)
 968			idx0 = 1;
 969		goto success;
 970	}
 971
 972	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 973	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 974		if (msk1 & PIC_UPPER)
 975			idx0 = 1;
 976		goto success;
 977	}
 978
 979	/* If the events are fixed to different counters, OK.  */
 980	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 981	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 982		if (msk0 & PIC_LOWER)
 983			idx0 = 1;
 984		goto success;
 985	}
 986
 987	/* Otherwise, there is a conflict.  */
 988	return -1;
 989
 990success:
 991	evts[0]->hw.idx = idx0;
 992	if (n_ev == 2)
 993		evts[1]->hw.idx = idx0 ^ 1;
 994	return 0;
 995}
 996
 997static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 998{
 999	int eu = 0, ek = 0, eh = 0;
1000	struct perf_event *event;
1001	int i, n, first;
1002
 
 
 
1003	n = n_prev + n_new;
1004	if (n <= 1)
1005		return 0;
1006
1007	first = 1;
1008	for (i = 0; i < n; i++) {
1009		event = evts[i];
1010		if (first) {
1011			eu = event->attr.exclude_user;
1012			ek = event->attr.exclude_kernel;
1013			eh = event->attr.exclude_hv;
1014			first = 0;
1015		} else if (event->attr.exclude_user != eu ||
1016			   event->attr.exclude_kernel != ek ||
1017			   event->attr.exclude_hv != eh) {
1018			return -EAGAIN;
1019		}
1020	}
1021
1022	return 0;
1023}
1024
1025static int collect_events(struct perf_event *group, int max_count,
1026			  struct perf_event *evts[], unsigned long *events,
1027			  int *current_idx)
1028{
1029	struct perf_event *event;
1030	int n = 0;
1031
1032	if (!is_software_event(group)) {
1033		if (n >= max_count)
1034			return -1;
1035		evts[n] = group;
1036		events[n] = group->hw.event_base;
1037		current_idx[n++] = PIC_NO_INDEX;
1038	}
1039	list_for_each_entry(event, &group->sibling_list, group_entry) {
1040		if (!is_software_event(event) &&
1041		    event->state != PERF_EVENT_STATE_OFF) {
1042			if (n >= max_count)
1043				return -1;
1044			evts[n] = event;
1045			events[n] = event->hw.event_base;
1046			current_idx[n++] = PIC_NO_INDEX;
1047		}
1048	}
1049	return n;
1050}
1051
1052static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053{
1054	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1055	int n0, ret = -EAGAIN;
1056	unsigned long flags;
1057
1058	local_irq_save(flags);
1059	perf_pmu_disable(event->pmu);
1060
1061	n0 = cpuc->n_events;
1062	if (n0 >= MAX_HWEVENTS)
1063		goto out;
1064
1065	cpuc->event[n0] = event;
1066	cpuc->events[n0] = event->hw.event_base;
1067	cpuc->current_idx[n0] = PIC_NO_INDEX;
1068
1069	event->hw.state = PERF_HES_UPTODATE;
1070	if (!(ef_flags & PERF_EF_START))
1071		event->hw.state |= PERF_HES_STOPPED;
1072
1073	/*
1074	 * If group events scheduling transaction was started,
1075	 * skip the schedulability test here, it will be performed
1076	 * at commit time(->commit_txn) as a whole
1077	 */
1078	if (cpuc->group_flag & PERF_EVENT_TXN)
1079		goto nocheck;
1080
1081	if (check_excludes(cpuc->event, n0, 1))
1082		goto out;
1083	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1084		goto out;
1085
1086nocheck:
1087	cpuc->n_events++;
1088	cpuc->n_added++;
1089
1090	ret = 0;
1091out:
1092	perf_pmu_enable(event->pmu);
1093	local_irq_restore(flags);
1094	return ret;
1095}
1096
1097static int sparc_pmu_event_init(struct perf_event *event)
1098{
1099	struct perf_event_attr *attr = &event->attr;
1100	struct perf_event *evts[MAX_HWEVENTS];
1101	struct hw_perf_event *hwc = &event->hw;
1102	unsigned long events[MAX_HWEVENTS];
1103	int current_idx_dmy[MAX_HWEVENTS];
1104	const struct perf_event_map *pmap;
1105	int n;
1106
1107	if (atomic_read(&nmi_active) < 0)
1108		return -ENODEV;
1109
1110	/* does not support taken branch sampling */
1111	if (has_branch_stack(event))
1112		return -EOPNOTSUPP;
1113
1114	switch (attr->type) {
1115	case PERF_TYPE_HARDWARE:
1116		if (attr->config >= sparc_pmu->max_events)
1117			return -EINVAL;
1118		pmap = sparc_pmu->event_map(attr->config);
1119		break;
1120
1121	case PERF_TYPE_HW_CACHE:
1122		pmap = sparc_map_cache_event(attr->config);
1123		if (IS_ERR(pmap))
1124			return PTR_ERR(pmap);
1125		break;
1126
1127	case PERF_TYPE_RAW:
1128		pmap = NULL;
1129		break;
1130
1131	default:
1132		return -ENOENT;
1133
1134	}
1135
1136	if (pmap) {
1137		hwc->event_base = perf_event_encode(pmap);
1138	} else {
1139		/*
1140		 * User gives us "(encoding << 16) | pic_mask" for
1141		 * PERF_TYPE_RAW events.
1142		 */
1143		hwc->event_base = attr->config;
1144	}
1145
1146	/* We save the enable bits in the config_base.  */
1147	hwc->config_base = sparc_pmu->irq_bit;
1148	if (!attr->exclude_user)
1149		hwc->config_base |= PCR_UTRACE;
1150	if (!attr->exclude_kernel)
1151		hwc->config_base |= PCR_STRACE;
1152	if (!attr->exclude_hv)
1153		hwc->config_base |= sparc_pmu->hv_bit;
1154
1155	n = 0;
1156	if (event->group_leader != event) {
1157		n = collect_events(event->group_leader,
1158				   MAX_HWEVENTS - 1,
1159				   evts, events, current_idx_dmy);
1160		if (n < 0)
1161			return -EINVAL;
1162	}
1163	events[n] = hwc->event_base;
1164	evts[n] = event;
1165
1166	if (check_excludes(evts, n, 1))
1167		return -EINVAL;
1168
1169	if (sparc_check_constraints(evts, events, n + 1))
1170		return -EINVAL;
1171
1172	hwc->idx = PIC_NO_INDEX;
1173
1174	/* Try to do all error checking before this point, as unwinding
1175	 * state after grabbing the PMC is difficult.
1176	 */
1177	perf_event_grab_pmc();
1178	event->destroy = hw_perf_event_destroy;
1179
1180	if (!hwc->sample_period) {
1181		hwc->sample_period = MAX_PERIOD;
1182		hwc->last_period = hwc->sample_period;
1183		local64_set(&hwc->period_left, hwc->sample_period);
1184	}
1185
1186	return 0;
1187}
1188
1189/*
1190 * Start group events scheduling transaction
1191 * Set the flag to make pmu::enable() not perform the
1192 * schedulability test, it will be performed at commit time
1193 */
1194static void sparc_pmu_start_txn(struct pmu *pmu)
1195{
1196	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1197
1198	perf_pmu_disable(pmu);
1199	cpuhw->group_flag |= PERF_EVENT_TXN;
1200}
1201
1202/*
1203 * Stop group events scheduling transaction
1204 * Clear the flag and pmu::enable() will perform the
1205 * schedulability test.
1206 */
1207static void sparc_pmu_cancel_txn(struct pmu *pmu)
1208{
1209	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
1210
1211	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1212	perf_pmu_enable(pmu);
1213}
1214
1215/*
1216 * Commit group events scheduling transaction
1217 * Perform the group schedulability test as a whole
1218 * Return 0 if success
1219 */
1220static int sparc_pmu_commit_txn(struct pmu *pmu)
1221{
1222	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1223	int n;
1224
1225	if (!sparc_pmu)
1226		return -EINVAL;
1227
1228	cpuc = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1229	n = cpuc->n_events;
1230	if (check_excludes(cpuc->event, 0, n))
1231		return -EINVAL;
1232	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1233		return -EAGAIN;
1234
1235	cpuc->group_flag &= ~PERF_EVENT_TXN;
1236	perf_pmu_enable(pmu);
1237	return 0;
1238}
1239
1240static struct pmu pmu = {
1241	.pmu_enable	= sparc_pmu_enable,
1242	.pmu_disable	= sparc_pmu_disable,
1243	.event_init	= sparc_pmu_event_init,
1244	.add		= sparc_pmu_add,
1245	.del		= sparc_pmu_del,
1246	.start		= sparc_pmu_start,
1247	.stop		= sparc_pmu_stop,
1248	.read		= sparc_pmu_read,
1249	.start_txn	= sparc_pmu_start_txn,
1250	.cancel_txn	= sparc_pmu_cancel_txn,
1251	.commit_txn	= sparc_pmu_commit_txn,
1252};
1253
1254void perf_event_print_debug(void)
1255{
1256	unsigned long flags;
1257	u64 pcr, pic;
1258	int cpu;
1259
1260	if (!sparc_pmu)
1261		return;
1262
1263	local_irq_save(flags);
1264
1265	cpu = smp_processor_id();
1266
1267	pcr = pcr_ops->read();
1268	read_pic(pic);
1269
1270	pr_info("\n");
1271	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1272		cpu, pcr, pic);
 
 
 
 
1273
1274	local_irq_restore(flags);
1275}
1276
1277static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1278					    unsigned long cmd, void *__args)
1279{
1280	struct die_args *args = __args;
1281	struct perf_sample_data data;
1282	struct cpu_hw_events *cpuc;
1283	struct pt_regs *regs;
 
 
1284	int i;
1285
1286	if (!atomic_read(&active_events))
1287		return NOTIFY_DONE;
1288
1289	switch (cmd) {
1290	case DIE_NMI:
1291		break;
1292
1293	default:
1294		return NOTIFY_DONE;
1295	}
1296
 
 
1297	regs = args->regs;
1298
1299	cpuc = &__get_cpu_var(cpu_hw_events);
1300
1301	/* If the PMU has the TOE IRQ enable bits, we need to do a
1302	 * dummy write to the %pcr to clear the overflow bits and thus
1303	 * the interrupt.
1304	 *
1305	 * Do this before we peek at the counters to determine
1306	 * overflow so we don't lose any events.
1307	 */
1308	if (sparc_pmu->irq_bit)
1309		pcr_ops->write(cpuc->pcr);
 
1310
1311	for (i = 0; i < cpuc->n_events; i++) {
1312		struct perf_event *event = cpuc->event[i];
1313		int idx = cpuc->current_idx[i];
1314		struct hw_perf_event *hwc;
1315		u64 val;
1316
 
 
 
 
1317		hwc = &event->hw;
1318		val = sparc_perf_event_update(event, hwc, idx);
1319		if (val & (1ULL << 31))
1320			continue;
1321
1322		perf_sample_data_init(&data, 0, hwc->last_period);
1323		if (!sparc_perf_event_set_period(event, hwc, idx))
1324			continue;
1325
1326		if (perf_event_overflow(event, &data, regs))
1327			sparc_pmu_stop(event, 0);
1328	}
1329
 
 
 
 
1330	return NOTIFY_STOP;
1331}
1332
1333static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1334	.notifier_call		= perf_event_nmi_handler,
1335};
1336
1337static bool __init supported_pmu(void)
1338{
1339	if (!strcmp(sparc_pmu_type, "ultra3") ||
1340	    !strcmp(sparc_pmu_type, "ultra3+") ||
1341	    !strcmp(sparc_pmu_type, "ultra3i") ||
1342	    !strcmp(sparc_pmu_type, "ultra4+")) {
1343		sparc_pmu = &ultra3_pmu;
1344		return true;
1345	}
1346	if (!strcmp(sparc_pmu_type, "niagara")) {
1347		sparc_pmu = &niagara1_pmu;
1348		return true;
1349	}
1350	if (!strcmp(sparc_pmu_type, "niagara2") ||
1351	    !strcmp(sparc_pmu_type, "niagara3")) {
1352		sparc_pmu = &niagara2_pmu;
1353		return true;
1354	}
 
 
 
 
 
 
 
 
 
1355	return false;
1356}
1357
1358int __init init_hw_perf_events(void)
1359{
 
 
1360	pr_info("Performance events: ");
1361
1362	if (!supported_pmu()) {
 
1363		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1364		return 0;
1365	}
1366
1367	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1368
1369	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1370	register_die_notifier(&perf_event_nmi_notifier);
1371
1372	return 0;
1373}
1374early_initcall(init_hw_perf_events);
1375
1376void perf_callchain_kernel(struct perf_callchain_entry *entry,
1377			   struct pt_regs *regs)
1378{
1379	unsigned long ksp, fp;
1380#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381	int graph = 0;
1382#endif
1383
1384	stack_trace_flush();
1385
1386	perf_callchain_store(entry, regs->tpc);
1387
1388	ksp = regs->u_regs[UREG_I6];
1389	fp = ksp + STACK_BIAS;
1390	do {
1391		struct sparc_stackf *sf;
1392		struct pt_regs *regs;
1393		unsigned long pc;
1394
1395		if (!kstack_valid(current_thread_info(), fp))
1396			break;
1397
1398		sf = (struct sparc_stackf *) fp;
1399		regs = (struct pt_regs *) (sf + 1);
1400
1401		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1402			if (user_mode(regs))
1403				break;
1404			pc = regs->tpc;
1405			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1406		} else {
1407			pc = sf->callers_pc;
1408			fp = (unsigned long)sf->fp + STACK_BIAS;
1409		}
1410		perf_callchain_store(entry, pc);
1411#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1412		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1413			int index = current->curr_ret_stack;
1414			if (current->ret_stack && index >= graph) {
1415				pc = current->ret_stack[index - graph].ret;
 
 
1416				perf_callchain_store(entry, pc);
1417				graph++;
1418			}
1419		}
1420#endif
1421	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1422}
1423
1424static void perf_callchain_user_64(struct perf_callchain_entry *entry,
 
 
 
 
 
 
 
 
 
 
1425				   struct pt_regs *regs)
1426{
1427	unsigned long ufp;
1428
1429	perf_callchain_store(entry, regs->tpc);
1430
1431	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1432	do {
1433		struct sparc_stackf *usf, sf;
 
1434		unsigned long pc;
1435
1436		usf = (struct sparc_stackf *) ufp;
 
 
 
1437		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1438			break;
1439
1440		pc = sf.callers_pc;
1441		ufp = (unsigned long)sf.fp + STACK_BIAS;
1442		perf_callchain_store(entry, pc);
1443	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1444}
1445
1446static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1447				   struct pt_regs *regs)
1448{
1449	unsigned long ufp;
1450
1451	perf_callchain_store(entry, regs->tpc);
1452
1453	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1454	do {
1455		struct sparc_stackf32 *usf, sf;
1456		unsigned long pc;
1457
1458		usf = (struct sparc_stackf32 *) ufp;
1459		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1460			break;
1461
1462		pc = sf.callers_pc;
1463		ufp = (unsigned long)sf.fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
1464		perf_callchain_store(entry, pc);
1465	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1466}
1467
1468void
1469perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1470{
 
 
 
 
 
 
 
 
1471	flushw_user();
 
 
 
1472	if (test_thread_flag(TIF_32BIT))
1473		perf_callchain_user_32(entry, regs);
1474	else
1475		perf_callchain_user_64(entry, regs);
 
 
 
 
 
1476}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
  27#include <linux/sched/clock.h>
  28#include <asm/nmi.h>
  29#include <asm/pcr.h>
 
  30#include <asm/cacheflush.h>
  31
  32#include "kernel.h"
  33#include "kstack.h"
  34
  35/* Two classes of sparc64 chips currently exist.  All of which have
  36 * 32-bit counters which can generate overflow interrupts on the
  37 * transition from 0xffffffff to 0.
  38 *
  39 * All chips upto and including SPARC-T3 have two performance
  40 * counters.  The two 32-bit counters are accessed in one go using a
  41 * single 64-bit register.
 
 
  42 *
  43 * On these older chips both counters are controlled using a single
  44 * control register.  The only way to stop all sampling is to clear
  45 * all of the context (user, supervisor, hypervisor) sampling enable
  46 * bits.  But these bits apply to both counters, thus the two counters
  47 * can't be enabled/disabled individually.
  48 *
  49 * Furthermore, the control register on these older chips have two
  50 * event fields, one for each of the two counters.  It's thus nearly
  51 * impossible to have one counter going while keeping the other one
  52 * stopped.  Therefore it is possible to get overflow interrupts for
  53 * counters not currently "in use" and that condition must be checked
  54 * in the overflow interrupt handler.
  55 *
  56 * So we use a hack, in that we program inactive counters with the
  57 * "sw_count0" and "sw_count1" events.  These count how many times
  58 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  59 * unusual way to encode a NOP and therefore will not trigger in
  60 * normal code.
  61 *
  62 * Starting with SPARC-T4 we have one control register per counter.
  63 * And the counters are stored in individual registers.  The registers
  64 * for the counters are 64-bit but only a 32-bit counter is
  65 * implemented.  The event selections on SPARC-T4 lack any
  66 * restrictions, therefore we can elide all of the complicated
  67 * conflict resolution code we have for SPARC-T3 and earlier chips.
  68 */
  69
  70#define MAX_HWEVENTS			4
  71#define MAX_PCRS			4
  72#define MAX_PERIOD			((1UL << 32) - 1)
  73
  74#define PIC_UPPER_INDEX			0
  75#define PIC_LOWER_INDEX			1
  76#define PIC_NO_INDEX			-1
  77
  78struct cpu_hw_events {
  79	/* Number of events currently scheduled onto this cpu.
  80	 * This tells how many entries in the arrays below
  81	 * are valid.
  82	 */
  83	int			n_events;
  84
  85	/* Number of new events added since the last hw_perf_disable().
  86	 * This works because the perf event layer always adds new
  87	 * events inside of a perf_{disable,enable}() sequence.
  88	 */
  89	int			n_added;
  90
  91	/* Array of events current scheduled on this cpu.  */
  92	struct perf_event	*event[MAX_HWEVENTS];
  93
  94	/* Array of encoded longs, specifying the %pcr register
  95	 * encoding and the mask of PIC counters this even can
  96	 * be scheduled on.  See perf_event_encode() et al.
  97	 */
  98	unsigned long		events[MAX_HWEVENTS];
  99
 100	/* The current counter index assigned to an event.  When the
 101	 * event hasn't been programmed into the cpu yet, this will
 102	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 103	 * we ought to schedule the event.
 104	 */
 105	int			current_idx[MAX_HWEVENTS];
 106
 107	/* Software copy of %pcr register(s) on this cpu.  */
 108	u64			pcr[MAX_HWEVENTS];
 109
 110	/* Enabled/disable state.  */
 111	int			enabled;
 112
 113	unsigned int		txn_flags;
 114};
 115static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 116
 117/* An event map describes the characteristics of a performance
 118 * counter event.  In particular it gives the encoding as well as
 119 * a mask telling which counters the event can be measured on.
 120 *
 121 * The mask is unused on SPARC-T4 and later.
 122 */
 123struct perf_event_map {
 124	u16	encoding;
 125	u8	pic_mask;
 126#define PIC_NONE	0x00
 127#define PIC_UPPER	0x01
 128#define PIC_LOWER	0x02
 129};
 130
 131/* Encode a perf_event_map entry into a long.  */
 132static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 133{
 134	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 135}
 136
 137static u8 perf_event_get_msk(unsigned long val)
 138{
 139	return val & 0xff;
 140}
 141
 142static u64 perf_event_get_enc(unsigned long val)
 143{
 144	return val >> 16;
 145}
 146
 147#define C(x) PERF_COUNT_HW_CACHE_##x
 148
 149#define CACHE_OP_UNSUPPORTED	0xfffe
 150#define CACHE_OP_NONSENSE	0xffff
 151
 152typedef struct perf_event_map cache_map_t
 153				[PERF_COUNT_HW_CACHE_MAX]
 154				[PERF_COUNT_HW_CACHE_OP_MAX]
 155				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 156
 157struct sparc_pmu {
 158	const struct perf_event_map	*(*event_map)(int);
 159	const cache_map_t		*cache_map;
 160	int				max_events;
 161	u32				(*read_pmc)(int);
 162	void				(*write_pmc)(int, u64);
 163	int				upper_shift;
 164	int				lower_shift;
 165	int				event_mask;
 166	int				user_bit;
 167	int				priv_bit;
 168	int				hv_bit;
 169	int				irq_bit;
 170	int				upper_nop;
 171	int				lower_nop;
 172	unsigned int			flags;
 173#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 174#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 175	int				max_hw_events;
 176	int				num_pcrs;
 177	int				num_pic_regs;
 178};
 179
 180static u32 sparc_default_read_pmc(int idx)
 181{
 182	u64 val;
 183
 184	val = pcr_ops->read_pic(0);
 185	if (idx == PIC_UPPER_INDEX)
 186		val >>= 32;
 187
 188	return val & 0xffffffff;
 189}
 190
 191static void sparc_default_write_pmc(int idx, u64 val)
 192{
 193	u64 shift, mask, pic;
 194
 195	shift = 0;
 196	if (idx == PIC_UPPER_INDEX)
 197		shift = 32;
 198
 199	mask = ((u64) 0xffffffff) << shift;
 200	val <<= shift;
 201
 202	pic = pcr_ops->read_pic(0);
 203	pic &= ~mask;
 204	pic |= val;
 205	pcr_ops->write_pic(0, pic);
 206}
 207
 208static const struct perf_event_map ultra3_perfmon_event_map[] = {
 209	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 210	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 211	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 212	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 213};
 214
 215static const struct perf_event_map *ultra3_event_map(int event_id)
 216{
 217	return &ultra3_perfmon_event_map[event_id];
 218}
 219
 220static const cache_map_t ultra3_cache_map = {
 221[C(L1D)] = {
 222	[C(OP_READ)] = {
 223		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 224		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 225	},
 226	[C(OP_WRITE)] = {
 227		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 228		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 229	},
 230	[C(OP_PREFETCH)] = {
 231		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 232		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 233	},
 234},
 235[C(L1I)] = {
 236	[C(OP_READ)] = {
 237		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 238		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 239	},
 240	[ C(OP_WRITE) ] = {
 241		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 242		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 243	},
 244	[ C(OP_PREFETCH) ] = {
 245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 247	},
 248},
 249[C(LL)] = {
 250	[C(OP_READ)] = {
 251		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 252		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 253	},
 254	[C(OP_WRITE)] = {
 255		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 256		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 257	},
 258	[C(OP_PREFETCH)] = {
 259		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 260		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 261	},
 262},
 263[C(DTLB)] = {
 264	[C(OP_READ)] = {
 265		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 266		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 267	},
 268	[ C(OP_WRITE) ] = {
 269		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 270		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 271	},
 272	[ C(OP_PREFETCH) ] = {
 273		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 274		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 275	},
 276},
 277[C(ITLB)] = {
 278	[C(OP_READ)] = {
 279		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 280		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 281	},
 282	[ C(OP_WRITE) ] = {
 283		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 284		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 285	},
 286	[ C(OP_PREFETCH) ] = {
 287		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 288		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 289	},
 290},
 291[C(BPU)] = {
 292	[C(OP_READ)] = {
 293		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 294		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 295	},
 296	[ C(OP_WRITE) ] = {
 297		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 298		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 299	},
 300	[ C(OP_PREFETCH) ] = {
 301		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 302		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 303	},
 304},
 305[C(NODE)] = {
 306	[C(OP_READ)] = {
 307		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 308		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 309	},
 310	[ C(OP_WRITE) ] = {
 311		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 312		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 313	},
 314	[ C(OP_PREFETCH) ] = {
 315		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 316		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 317	},
 318},
 319};
 320
 321static const struct sparc_pmu ultra3_pmu = {
 322	.event_map	= ultra3_event_map,
 323	.cache_map	= &ultra3_cache_map,
 324	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 325	.read_pmc	= sparc_default_read_pmc,
 326	.write_pmc	= sparc_default_write_pmc,
 327	.upper_shift	= 11,
 328	.lower_shift	= 4,
 329	.event_mask	= 0x3f,
 330	.user_bit	= PCR_UTRACE,
 331	.priv_bit	= PCR_STRACE,
 332	.upper_nop	= 0x1c,
 333	.lower_nop	= 0x14,
 334	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 335			   SPARC_PMU_HAS_CONFLICTS),
 336	.max_hw_events	= 2,
 337	.num_pcrs	= 1,
 338	.num_pic_regs	= 1,
 339};
 340
 341/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 342 * only instructions, so it is free running which creates all kinds of
 343 * problems.  Some hardware designs make one wonder if the creator
 344 * even looked at how this stuff gets used by software.
 345 */
 346static const struct perf_event_map niagara1_perfmon_event_map[] = {
 347	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 348	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 349	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 350	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 351};
 352
 353static const struct perf_event_map *niagara1_event_map(int event_id)
 354{
 355	return &niagara1_perfmon_event_map[event_id];
 356}
 357
 358static const cache_map_t niagara1_cache_map = {
 359[C(L1D)] = {
 360	[C(OP_READ)] = {
 361		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 362		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 363	},
 364	[C(OP_WRITE)] = {
 365		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 366		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 367	},
 368	[C(OP_PREFETCH)] = {
 369		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 370		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 371	},
 372},
 373[C(L1I)] = {
 374	[C(OP_READ)] = {
 375		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 376		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 377	},
 378	[ C(OP_WRITE) ] = {
 379		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 380		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 381	},
 382	[ C(OP_PREFETCH) ] = {
 383		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 384		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 385	},
 386},
 387[C(LL)] = {
 388	[C(OP_READ)] = {
 389		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 390		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 391	},
 392	[C(OP_WRITE)] = {
 393		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 394		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 395	},
 396	[C(OP_PREFETCH)] = {
 397		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 398		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 399	},
 400},
 401[C(DTLB)] = {
 402	[C(OP_READ)] = {
 403		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 404		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 405	},
 406	[ C(OP_WRITE) ] = {
 407		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 408		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 409	},
 410	[ C(OP_PREFETCH) ] = {
 411		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 412		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 413	},
 414},
 415[C(ITLB)] = {
 416	[C(OP_READ)] = {
 417		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 418		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 419	},
 420	[ C(OP_WRITE) ] = {
 421		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 422		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 423	},
 424	[ C(OP_PREFETCH) ] = {
 425		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 426		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 427	},
 428},
 429[C(BPU)] = {
 430	[C(OP_READ)] = {
 431		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 432		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 433	},
 434	[ C(OP_WRITE) ] = {
 435		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 436		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 437	},
 438	[ C(OP_PREFETCH) ] = {
 439		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 440		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 441	},
 442},
 443[C(NODE)] = {
 444	[C(OP_READ)] = {
 445		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 446		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 447	},
 448	[ C(OP_WRITE) ] = {
 449		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 450		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 451	},
 452	[ C(OP_PREFETCH) ] = {
 453		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 454		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 455	},
 456},
 457};
 458
 459static const struct sparc_pmu niagara1_pmu = {
 460	.event_map	= niagara1_event_map,
 461	.cache_map	= &niagara1_cache_map,
 462	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 463	.read_pmc	= sparc_default_read_pmc,
 464	.write_pmc	= sparc_default_write_pmc,
 465	.upper_shift	= 0,
 466	.lower_shift	= 4,
 467	.event_mask	= 0x7,
 468	.user_bit	= PCR_UTRACE,
 469	.priv_bit	= PCR_STRACE,
 470	.upper_nop	= 0x0,
 471	.lower_nop	= 0x0,
 472	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 473			   SPARC_PMU_HAS_CONFLICTS),
 474	.max_hw_events	= 2,
 475	.num_pcrs	= 1,
 476	.num_pic_regs	= 1,
 477};
 478
 479static const struct perf_event_map niagara2_perfmon_event_map[] = {
 480	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 484	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 485	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 486};
 487
 488static const struct perf_event_map *niagara2_event_map(int event_id)
 489{
 490	return &niagara2_perfmon_event_map[event_id];
 491}
 492
 493static const cache_map_t niagara2_cache_map = {
 494[C(L1D)] = {
 495	[C(OP_READ)] = {
 496		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 497		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 498	},
 499	[C(OP_WRITE)] = {
 500		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 501		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 502	},
 503	[C(OP_PREFETCH)] = {
 504		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 505		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 506	},
 507},
 508[C(L1I)] = {
 509	[C(OP_READ)] = {
 510		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 511		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 512	},
 513	[ C(OP_WRITE) ] = {
 514		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 515		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 516	},
 517	[ C(OP_PREFETCH) ] = {
 518		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 519		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 520	},
 521},
 522[C(LL)] = {
 523	[C(OP_READ)] = {
 524		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 525		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 526	},
 527	[C(OP_WRITE)] = {
 528		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 529		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 530	},
 531	[C(OP_PREFETCH)] = {
 532		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 533		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 534	},
 535},
 536[C(DTLB)] = {
 537	[C(OP_READ)] = {
 538		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 539		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 540	},
 541	[ C(OP_WRITE) ] = {
 542		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 543		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 544	},
 545	[ C(OP_PREFETCH) ] = {
 546		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 547		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 548	},
 549},
 550[C(ITLB)] = {
 551	[C(OP_READ)] = {
 552		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 553		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 554	},
 555	[ C(OP_WRITE) ] = {
 556		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 557		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 558	},
 559	[ C(OP_PREFETCH) ] = {
 560		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 561		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 562	},
 563},
 564[C(BPU)] = {
 565	[C(OP_READ)] = {
 566		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 567		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 568	},
 569	[ C(OP_WRITE) ] = {
 570		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 571		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 572	},
 573	[ C(OP_PREFETCH) ] = {
 574		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 575		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 576	},
 577},
 578[C(NODE)] = {
 579	[C(OP_READ)] = {
 580		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 581		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 582	},
 583	[ C(OP_WRITE) ] = {
 584		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 585		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 586	},
 587	[ C(OP_PREFETCH) ] = {
 588		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 589		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 590	},
 591},
 592};
 593
 594static const struct sparc_pmu niagara2_pmu = {
 595	.event_map	= niagara2_event_map,
 596	.cache_map	= &niagara2_cache_map,
 597	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 598	.read_pmc	= sparc_default_read_pmc,
 599	.write_pmc	= sparc_default_write_pmc,
 600	.upper_shift	= 19,
 601	.lower_shift	= 6,
 602	.event_mask	= 0xfff,
 603	.user_bit	= PCR_UTRACE,
 604	.priv_bit	= PCR_STRACE,
 605	.hv_bit		= PCR_N2_HTRACE,
 606	.irq_bit	= 0x30,
 607	.upper_nop	= 0x220,
 608	.lower_nop	= 0x220,
 609	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 610			   SPARC_PMU_HAS_CONFLICTS),
 611	.max_hw_events	= 2,
 612	.num_pcrs	= 1,
 613	.num_pic_regs	= 1,
 614};
 615
 616static const struct perf_event_map niagara4_perfmon_event_map[] = {
 617	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 618	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 619	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 620	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 621	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 622	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 623};
 624
 625static const struct perf_event_map *niagara4_event_map(int event_id)
 626{
 627	return &niagara4_perfmon_event_map[event_id];
 628}
 629
 630static const cache_map_t niagara4_cache_map = {
 631[C(L1D)] = {
 632	[C(OP_READ)] = {
 633		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 634		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 635	},
 636	[C(OP_WRITE)] = {
 637		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 638		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 639	},
 640	[C(OP_PREFETCH)] = {
 641		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 642		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 643	},
 644},
 645[C(L1I)] = {
 646	[C(OP_READ)] = {
 647		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 648		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 649	},
 650	[ C(OP_WRITE) ] = {
 651		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 652		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 653	},
 654	[ C(OP_PREFETCH) ] = {
 655		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 656		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 657	},
 658},
 659[C(LL)] = {
 660	[C(OP_READ)] = {
 661		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 662		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 663	},
 664	[C(OP_WRITE)] = {
 665		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 666		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 667	},
 668	[C(OP_PREFETCH)] = {
 669		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 670		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 671	},
 672},
 673[C(DTLB)] = {
 674	[C(OP_READ)] = {
 675		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 676		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 677	},
 678	[ C(OP_WRITE) ] = {
 679		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 680		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 681	},
 682	[ C(OP_PREFETCH) ] = {
 683		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 684		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 685	},
 686},
 687[C(ITLB)] = {
 688	[C(OP_READ)] = {
 689		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 690		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 691	},
 692	[ C(OP_WRITE) ] = {
 693		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 694		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 695	},
 696	[ C(OP_PREFETCH) ] = {
 697		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 698		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 699	},
 700},
 701[C(BPU)] = {
 702	[C(OP_READ)] = {
 703		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 704		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 705	},
 706	[ C(OP_WRITE) ] = {
 707		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 708		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 709	},
 710	[ C(OP_PREFETCH) ] = {
 711		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 712		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 713	},
 714},
 715[C(NODE)] = {
 716	[C(OP_READ)] = {
 717		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 718		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 719	},
 720	[ C(OP_WRITE) ] = {
 721		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 722		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 723	},
 724	[ C(OP_PREFETCH) ] = {
 725		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 726		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 727	},
 728},
 729};
 730
 731static u32 sparc_vt_read_pmc(int idx)
 732{
 733	u64 val = pcr_ops->read_pic(idx);
 734
 735	return val & 0xffffffff;
 736}
 737
 738static void sparc_vt_write_pmc(int idx, u64 val)
 739{
 740	u64 pcr;
 741
 742	pcr = pcr_ops->read_pcr(idx);
 743	/* ensure ov and ntc are reset */
 744	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 745
 746	pcr_ops->write_pic(idx, val & 0xffffffff);
 747
 748	pcr_ops->write_pcr(idx, pcr);
 749}
 750
 751static const struct sparc_pmu niagara4_pmu = {
 752	.event_map	= niagara4_event_map,
 753	.cache_map	= &niagara4_cache_map,
 754	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 755	.read_pmc	= sparc_vt_read_pmc,
 756	.write_pmc	= sparc_vt_write_pmc,
 757	.upper_shift	= 5,
 758	.lower_shift	= 5,
 759	.event_mask	= 0x7ff,
 760	.user_bit	= PCR_N4_UTRACE,
 761	.priv_bit	= PCR_N4_STRACE,
 762
 763	/* We explicitly don't support hypervisor tracing.  The T4
 764	 * generates the overflow event for precise events via a trap
 765	 * which will not be generated (ie. it's completely lost) if
 766	 * we happen to be in the hypervisor when the event triggers.
 767	 * Essentially, the overflow event reporting is completely
 768	 * unusable when you have hypervisor mode tracing enabled.
 769	 */
 770	.hv_bit		= 0,
 771
 772	.irq_bit	= PCR_N4_TOE,
 773	.upper_nop	= 0,
 774	.lower_nop	= 0,
 775	.flags		= 0,
 776	.max_hw_events	= 4,
 777	.num_pcrs	= 4,
 778	.num_pic_regs	= 4,
 779};
 780
 781static const struct sparc_pmu sparc_m7_pmu = {
 782	.event_map	= niagara4_event_map,
 783	.cache_map	= &niagara4_cache_map,
 784	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 785	.read_pmc	= sparc_vt_read_pmc,
 786	.write_pmc	= sparc_vt_write_pmc,
 787	.upper_shift	= 5,
 788	.lower_shift	= 5,
 789	.event_mask	= 0x7ff,
 790	.user_bit	= PCR_N4_UTRACE,
 791	.priv_bit	= PCR_N4_STRACE,
 792
 793	/* We explicitly don't support hypervisor tracing. */
 794	.hv_bit		= 0,
 795
 796	.irq_bit	= PCR_N4_TOE,
 797	.upper_nop	= 0,
 798	.lower_nop	= 0,
 799	.flags		= 0,
 800	.max_hw_events	= 4,
 801	.num_pcrs	= 4,
 802	.num_pic_regs	= 4,
 803};
 804static const struct sparc_pmu *sparc_pmu __read_mostly;
 805
 806static u64 event_encoding(u64 event_id, int idx)
 807{
 808	if (idx == PIC_UPPER_INDEX)
 809		event_id <<= sparc_pmu->upper_shift;
 810	else
 811		event_id <<= sparc_pmu->lower_shift;
 812	return event_id;
 813}
 814
 815static u64 mask_for_index(int idx)
 816{
 817	return event_encoding(sparc_pmu->event_mask, idx);
 818}
 819
 820static u64 nop_for_index(int idx)
 821{
 822	return event_encoding(idx == PIC_UPPER_INDEX ?
 823			      sparc_pmu->upper_nop :
 824			      sparc_pmu->lower_nop, idx);
 825}
 826
 827static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 828{
 829	u64 enc, val, mask = mask_for_index(idx);
 830	int pcr_index = 0;
 831
 832	if (sparc_pmu->num_pcrs > 1)
 833		pcr_index = idx;
 834
 835	enc = perf_event_get_enc(cpuc->events[idx]);
 836
 837	val = cpuc->pcr[pcr_index];
 838	val &= ~mask;
 839	val |= event_encoding(enc, idx);
 840	cpuc->pcr[pcr_index] = val;
 841
 842	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 843}
 844
 845static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 846{
 847	u64 mask = mask_for_index(idx);
 848	u64 nop = nop_for_index(idx);
 849	int pcr_index = 0;
 850	u64 val;
 851
 852	if (sparc_pmu->num_pcrs > 1)
 853		pcr_index = idx;
 854
 855	val = cpuc->pcr[pcr_index];
 856	val &= ~mask;
 857	val |= nop;
 858	cpuc->pcr[pcr_index] = val;
 859
 860	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862
 863static u64 sparc_perf_event_update(struct perf_event *event,
 864				   struct hw_perf_event *hwc, int idx)
 865{
 866	int shift = 64 - 32;
 867	u64 prev_raw_count, new_raw_count;
 868	s64 delta;
 869
 870again:
 871	prev_raw_count = local64_read(&hwc->prev_count);
 872	new_raw_count = sparc_pmu->read_pmc(idx);
 873
 874	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 875			     new_raw_count) != prev_raw_count)
 876		goto again;
 877
 878	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 879	delta >>= shift;
 880
 881	local64_add(delta, &event->count);
 882	local64_sub(delta, &hwc->period_left);
 883
 884	return new_raw_count;
 885}
 886
 887static int sparc_perf_event_set_period(struct perf_event *event,
 888				       struct hw_perf_event *hwc, int idx)
 889{
 890	s64 left = local64_read(&hwc->period_left);
 891	s64 period = hwc->sample_period;
 892	int ret = 0;
 893
 894	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
 895	if (unlikely(period != hwc->last_period))
 896		left = period - (hwc->last_period - left);
 897
 898	if (unlikely(left <= -period)) {
 899		left = period;
 900		local64_set(&hwc->period_left, left);
 901		hwc->last_period = period;
 902		ret = 1;
 903	}
 904
 905	if (unlikely(left <= 0)) {
 906		left += period;
 907		local64_set(&hwc->period_left, left);
 908		hwc->last_period = period;
 909		ret = 1;
 910	}
 911	if (left > MAX_PERIOD)
 912		left = MAX_PERIOD;
 913
 914	local64_set(&hwc->prev_count, (u64)-left);
 915
 916	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 917
 918	perf_event_update_userpage(event);
 919
 920	return ret;
 921}
 922
 923static void read_in_all_counters(struct cpu_hw_events *cpuc)
 
 
 
 
 924{
 925	int i;
 926
 
 
 
 
 927	for (i = 0; i < cpuc->n_events; i++) {
 928		struct perf_event *cp = cpuc->event[i];
 929
 930		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 931		    cpuc->current_idx[i] != cp->hw.idx) {
 932			sparc_perf_event_update(cp, &cp->hw,
 933						cpuc->current_idx[i]);
 934			cpuc->current_idx[i] = PIC_NO_INDEX;
 935			if (cp->hw.state & PERF_HES_STOPPED)
 936				cp->hw.state |= PERF_HES_ARCH;
 937		}
 938	}
 939}
 940
 941/* On this PMU all PICs are programmed using a single PCR.  Calculate
 942 * the combined control register value.
 943 *
 944 * For such chips we require that all of the events have the same
 945 * configuration, so just fetch the settings from the first entry.
 946 */
 947static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 948{
 949	int i;
 950
 951	if (!cpuc->n_added)
 952		goto out;
 953
 954	/* Assign to counters all unassigned events.  */
 955	for (i = 0; i < cpuc->n_events; i++) {
 956		struct perf_event *cp = cpuc->event[i];
 957		struct hw_perf_event *hwc = &cp->hw;
 958		int idx = hwc->idx;
 959		u64 enc;
 960
 961		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 962			continue;
 963
 964		sparc_perf_event_set_period(cp, hwc, idx);
 965		cpuc->current_idx[i] = idx;
 966
 967		enc = perf_event_get_enc(cpuc->events[i]);
 968		cpuc->pcr[0] &= ~mask_for_index(idx);
 969		if (hwc->state & PERF_HES_ARCH) {
 970			cpuc->pcr[0] |= nop_for_index(idx);
 971		} else {
 972			cpuc->pcr[0] |= event_encoding(enc, idx);
 973			hwc->state = 0;
 974		}
 975	}
 976out:
 977	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 978}
 979
 980static void sparc_pmu_start(struct perf_event *event, int flags);
 981
 982/* On this PMU each PIC has it's own PCR control register.  */
 983static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 984{
 985	int i;
 986
 987	if (!cpuc->n_added)
 988		goto out;
 989
 990	for (i = 0; i < cpuc->n_events; i++) {
 991		struct perf_event *cp = cpuc->event[i];
 992		struct hw_perf_event *hwc = &cp->hw;
 993		int idx = hwc->idx;
 994
 995		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 996			continue;
 997
 998		cpuc->current_idx[i] = idx;
 999
1000		if (cp->hw.state & PERF_HES_ARCH)
1001			continue;
1002
1003		sparc_pmu_start(cp, PERF_EF_RELOAD);
1004	}
1005out:
1006	for (i = 0; i < cpuc->n_events; i++) {
1007		struct perf_event *cp = cpuc->event[i];
1008		int idx = cp->hw.idx;
1009
1010		cpuc->pcr[idx] |= cp->hw.config_base;
1011	}
1012}
1013
1014/* If performance event entries have been added, move existing events
1015 * around (if necessary) and then assign new entries to counters.
1016 */
1017static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1018{
1019	if (cpuc->n_added)
1020		read_in_all_counters(cpuc);
1021
1022	if (sparc_pmu->num_pcrs == 1) {
1023		calculate_single_pcr(cpuc);
1024	} else {
1025		calculate_multiple_pcrs(cpuc);
1026	}
1027}
1028
1029static void sparc_pmu_enable(struct pmu *pmu)
1030{
1031	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1032	int i;
1033
1034	if (cpuc->enabled)
1035		return;
1036
1037	cpuc->enabled = 1;
1038	barrier();
1039
1040	if (cpuc->n_events)
1041		update_pcrs_for_enable(cpuc);
 
 
 
1042
1043	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1044		pcr_ops->write_pcr(i, cpuc->pcr[i]);
 
 
 
 
 
 
1045}
1046
1047static void sparc_pmu_disable(struct pmu *pmu)
1048{
1049	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050	int i;
1051
1052	if (!cpuc->enabled)
1053		return;
1054
1055	cpuc->enabled = 0;
1056	cpuc->n_added = 0;
1057
1058	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1059		u64 val = cpuc->pcr[i];
 
 
1060
1061		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1062			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1063		cpuc->pcr[i] = val;
1064		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1065	}
1066}
1067
1068static int active_event_index(struct cpu_hw_events *cpuc,
1069			      struct perf_event *event)
1070{
1071	int i;
1072
1073	for (i = 0; i < cpuc->n_events; i++) {
1074		if (cpuc->event[i] == event)
1075			break;
1076	}
1077	BUG_ON(i == cpuc->n_events);
1078	return cpuc->current_idx[i];
1079}
1080
1081static void sparc_pmu_start(struct perf_event *event, int flags)
1082{
1083	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084	int idx = active_event_index(cpuc, event);
1085
1086	if (flags & PERF_EF_RELOAD) {
1087		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088		sparc_perf_event_set_period(event, &event->hw, idx);
1089	}
1090
1091	event->hw.state = 0;
1092
1093	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1094
1095	perf_event_update_userpage(event);
1096}
1097
1098static void sparc_pmu_stop(struct perf_event *event, int flags)
1099{
1100	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101	int idx = active_event_index(cpuc, event);
1102
1103	if (!(event->hw.state & PERF_HES_STOPPED)) {
1104		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1105		event->hw.state |= PERF_HES_STOPPED;
1106	}
1107
1108	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1109		sparc_perf_event_update(event, &event->hw, idx);
1110		event->hw.state |= PERF_HES_UPTODATE;
1111	}
1112}
1113
1114static void sparc_pmu_del(struct perf_event *event, int _flags)
1115{
1116	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1117	unsigned long flags;
1118	int i;
1119
1120	local_irq_save(flags);
 
1121
1122	for (i = 0; i < cpuc->n_events; i++) {
1123		if (event == cpuc->event[i]) {
1124			/* Absorb the final count and turn off the
1125			 * event.
1126			 */
1127			sparc_pmu_stop(event, PERF_EF_UPDATE);
1128
1129			/* Shift remaining entries down into
1130			 * the existing slot.
1131			 */
1132			while (++i < cpuc->n_events) {
1133				cpuc->event[i - 1] = cpuc->event[i];
1134				cpuc->events[i - 1] = cpuc->events[i];
1135				cpuc->current_idx[i - 1] =
1136					cpuc->current_idx[i];
1137			}
1138
1139			perf_event_update_userpage(event);
1140
1141			cpuc->n_events--;
1142			break;
1143		}
1144	}
1145
 
1146	local_irq_restore(flags);
1147}
1148
1149static void sparc_pmu_read(struct perf_event *event)
1150{
1151	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152	int idx = active_event_index(cpuc, event);
1153	struct hw_perf_event *hwc = &event->hw;
1154
1155	sparc_perf_event_update(event, hwc, idx);
1156}
1157
1158static atomic_t active_events = ATOMIC_INIT(0);
1159static DEFINE_MUTEX(pmc_grab_mutex);
1160
1161static void perf_stop_nmi_watchdog(void *unused)
1162{
1163	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164	int i;
1165
1166	stop_nmi_watchdog(NULL);
1167	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1168		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1169}
1170
1171static void perf_event_grab_pmc(void)
1172{
1173	if (atomic_inc_not_zero(&active_events))
1174		return;
1175
1176	mutex_lock(&pmc_grab_mutex);
1177	if (atomic_read(&active_events) == 0) {
1178		if (atomic_read(&nmi_active) > 0) {
1179			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1180			BUG_ON(atomic_read(&nmi_active) != 0);
1181		}
1182		atomic_inc(&active_events);
1183	}
1184	mutex_unlock(&pmc_grab_mutex);
1185}
1186
1187static void perf_event_release_pmc(void)
1188{
1189	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1190		if (atomic_read(&nmi_active) == 0)
1191			on_each_cpu(start_nmi_watchdog, NULL, 1);
1192		mutex_unlock(&pmc_grab_mutex);
1193	}
1194}
1195
1196static const struct perf_event_map *sparc_map_cache_event(u64 config)
1197{
1198	unsigned int cache_type, cache_op, cache_result;
1199	const struct perf_event_map *pmap;
1200
1201	if (!sparc_pmu->cache_map)
1202		return ERR_PTR(-ENOENT);
1203
1204	cache_type = (config >>  0) & 0xff;
1205	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1206		return ERR_PTR(-EINVAL);
1207
1208	cache_op = (config >>  8) & 0xff;
1209	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1210		return ERR_PTR(-EINVAL);
1211
1212	cache_result = (config >> 16) & 0xff;
1213	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1214		return ERR_PTR(-EINVAL);
1215
1216	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1217
1218	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1219		return ERR_PTR(-ENOENT);
1220
1221	if (pmap->encoding == CACHE_OP_NONSENSE)
1222		return ERR_PTR(-EINVAL);
1223
1224	return pmap;
1225}
1226
1227static void hw_perf_event_destroy(struct perf_event *event)
1228{
1229	perf_event_release_pmc();
1230}
1231
1232/* Make sure all events can be scheduled into the hardware at
1233 * the same time.  This is simplified by the fact that we only
1234 * need to support 2 simultaneous HW events.
1235 *
1236 * As a side effect, the evts[]->hw.idx values will be assigned
1237 * on success.  These are pending indexes.  When the events are
1238 * actually programmed into the chip, these values will propagate
1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
1240 * maybe_change_configuration() for details.
1241 */
1242static int sparc_check_constraints(struct perf_event **evts,
1243				   unsigned long *events, int n_ev)
1244{
1245	u8 msk0 = 0, msk1 = 0;
1246	int idx0 = 0;
1247
1248	/* This case is possible when we are invoked from
1249	 * hw_perf_group_sched_in().
1250	 */
1251	if (!n_ev)
1252		return 0;
1253
1254	if (n_ev > sparc_pmu->max_hw_events)
1255		return -1;
1256
1257	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1258		int i;
1259
1260		for (i = 0; i < n_ev; i++)
1261			evts[i]->hw.idx = i;
1262		return 0;
1263	}
1264
1265	msk0 = perf_event_get_msk(events[0]);
1266	if (n_ev == 1) {
1267		if (msk0 & PIC_LOWER)
1268			idx0 = 1;
1269		goto success;
1270	}
1271	BUG_ON(n_ev != 2);
1272	msk1 = perf_event_get_msk(events[1]);
1273
1274	/* If both events can go on any counter, OK.  */
1275	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1276	    msk1 == (PIC_UPPER | PIC_LOWER))
1277		goto success;
1278
1279	/* If one event is limited to a specific counter,
1280	 * and the other can go on both, OK.
1281	 */
1282	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1283	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1290	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1291		if (msk1 & PIC_UPPER)
1292			idx0 = 1;
1293		goto success;
1294	}
1295
1296	/* If the events are fixed to different counters, OK.  */
1297	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1298	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1299		if (msk0 & PIC_LOWER)
1300			idx0 = 1;
1301		goto success;
1302	}
1303
1304	/* Otherwise, there is a conflict.  */
1305	return -1;
1306
1307success:
1308	evts[0]->hw.idx = idx0;
1309	if (n_ev == 2)
1310		evts[1]->hw.idx = idx0 ^ 1;
1311	return 0;
1312}
1313
1314static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1315{
1316	int eu = 0, ek = 0, eh = 0;
1317	struct perf_event *event;
1318	int i, n, first;
1319
1320	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1321		return 0;
1322
1323	n = n_prev + n_new;
1324	if (n <= 1)
1325		return 0;
1326
1327	first = 1;
1328	for (i = 0; i < n; i++) {
1329		event = evts[i];
1330		if (first) {
1331			eu = event->attr.exclude_user;
1332			ek = event->attr.exclude_kernel;
1333			eh = event->attr.exclude_hv;
1334			first = 0;
1335		} else if (event->attr.exclude_user != eu ||
1336			   event->attr.exclude_kernel != ek ||
1337			   event->attr.exclude_hv != eh) {
1338			return -EAGAIN;
1339		}
1340	}
1341
1342	return 0;
1343}
1344
1345static int collect_events(struct perf_event *group, int max_count,
1346			  struct perf_event *evts[], unsigned long *events,
1347			  int *current_idx)
1348{
1349	struct perf_event *event;
1350	int n = 0;
1351
1352	if (!is_software_event(group)) {
1353		if (n >= max_count)
1354			return -1;
1355		evts[n] = group;
1356		events[n] = group->hw.event_base;
1357		current_idx[n++] = PIC_NO_INDEX;
1358	}
1359	for_each_sibling_event(event, group) {
1360		if (!is_software_event(event) &&
1361		    event->state != PERF_EVENT_STATE_OFF) {
1362			if (n >= max_count)
1363				return -1;
1364			evts[n] = event;
1365			events[n] = event->hw.event_base;
1366			current_idx[n++] = PIC_NO_INDEX;
1367		}
1368	}
1369	return n;
1370}
1371
1372static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1373{
1374	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375	int n0, ret = -EAGAIN;
1376	unsigned long flags;
1377
1378	local_irq_save(flags);
 
1379
1380	n0 = cpuc->n_events;
1381	if (n0 >= sparc_pmu->max_hw_events)
1382		goto out;
1383
1384	cpuc->event[n0] = event;
1385	cpuc->events[n0] = event->hw.event_base;
1386	cpuc->current_idx[n0] = PIC_NO_INDEX;
1387
1388	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1389	if (!(ef_flags & PERF_EF_START))
1390		event->hw.state |= PERF_HES_ARCH;
1391
1392	/*
1393	 * If group events scheduling transaction was started,
1394	 * skip the schedulability test here, it will be performed
1395	 * at commit time(->commit_txn) as a whole
1396	 */
1397	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1398		goto nocheck;
1399
1400	if (check_excludes(cpuc->event, n0, 1))
1401		goto out;
1402	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1403		goto out;
1404
1405nocheck:
1406	cpuc->n_events++;
1407	cpuc->n_added++;
1408
1409	ret = 0;
1410out:
 
1411	local_irq_restore(flags);
1412	return ret;
1413}
1414
1415static int sparc_pmu_event_init(struct perf_event *event)
1416{
1417	struct perf_event_attr *attr = &event->attr;
1418	struct perf_event *evts[MAX_HWEVENTS];
1419	struct hw_perf_event *hwc = &event->hw;
1420	unsigned long events[MAX_HWEVENTS];
1421	int current_idx_dmy[MAX_HWEVENTS];
1422	const struct perf_event_map *pmap;
1423	int n;
1424
1425	if (atomic_read(&nmi_active) < 0)
1426		return -ENODEV;
1427
1428	/* does not support taken branch sampling */
1429	if (has_branch_stack(event))
1430		return -EOPNOTSUPP;
1431
1432	switch (attr->type) {
1433	case PERF_TYPE_HARDWARE:
1434		if (attr->config >= sparc_pmu->max_events)
1435			return -EINVAL;
1436		pmap = sparc_pmu->event_map(attr->config);
1437		break;
1438
1439	case PERF_TYPE_HW_CACHE:
1440		pmap = sparc_map_cache_event(attr->config);
1441		if (IS_ERR(pmap))
1442			return PTR_ERR(pmap);
1443		break;
1444
1445	case PERF_TYPE_RAW:
1446		pmap = NULL;
1447		break;
1448
1449	default:
1450		return -ENOENT;
1451
1452	}
1453
1454	if (pmap) {
1455		hwc->event_base = perf_event_encode(pmap);
1456	} else {
1457		/*
1458		 * User gives us "(encoding << 16) | pic_mask" for
1459		 * PERF_TYPE_RAW events.
1460		 */
1461		hwc->event_base = attr->config;
1462	}
1463
1464	/* We save the enable bits in the config_base.  */
1465	hwc->config_base = sparc_pmu->irq_bit;
1466	if (!attr->exclude_user)
1467		hwc->config_base |= sparc_pmu->user_bit;
1468	if (!attr->exclude_kernel)
1469		hwc->config_base |= sparc_pmu->priv_bit;
1470	if (!attr->exclude_hv)
1471		hwc->config_base |= sparc_pmu->hv_bit;
1472
1473	n = 0;
1474	if (event->group_leader != event) {
1475		n = collect_events(event->group_leader,
1476				   sparc_pmu->max_hw_events - 1,
1477				   evts, events, current_idx_dmy);
1478		if (n < 0)
1479			return -EINVAL;
1480	}
1481	events[n] = hwc->event_base;
1482	evts[n] = event;
1483
1484	if (check_excludes(evts, n, 1))
1485		return -EINVAL;
1486
1487	if (sparc_check_constraints(evts, events, n + 1))
1488		return -EINVAL;
1489
1490	hwc->idx = PIC_NO_INDEX;
1491
1492	/* Try to do all error checking before this point, as unwinding
1493	 * state after grabbing the PMC is difficult.
1494	 */
1495	perf_event_grab_pmc();
1496	event->destroy = hw_perf_event_destroy;
1497
1498	if (!hwc->sample_period) {
1499		hwc->sample_period = MAX_PERIOD;
1500		hwc->last_period = hwc->sample_period;
1501		local64_set(&hwc->period_left, hwc->sample_period);
1502	}
1503
1504	return 0;
1505}
1506
1507/*
1508 * Start group events scheduling transaction
1509 * Set the flag to make pmu::enable() not perform the
1510 * schedulability test, it will be performed at commit time
1511 */
1512static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1513{
1514	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515
1516	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1517
1518	cpuhw->txn_flags = txn_flags;
1519	if (txn_flags & ~PERF_PMU_TXN_ADD)
1520		return;
1521
1522	perf_pmu_disable(pmu);
 
1523}
1524
1525/*
1526 * Stop group events scheduling transaction
1527 * Clear the flag and pmu::enable() will perform the
1528 * schedulability test.
1529 */
1530static void sparc_pmu_cancel_txn(struct pmu *pmu)
1531{
1532	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1533	unsigned int txn_flags;
1534
1535	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1536
1537	txn_flags = cpuhw->txn_flags;
1538	cpuhw->txn_flags = 0;
1539	if (txn_flags & ~PERF_PMU_TXN_ADD)
1540		return;
1541
 
1542	perf_pmu_enable(pmu);
1543}
1544
1545/*
1546 * Commit group events scheduling transaction
1547 * Perform the group schedulability test as a whole
1548 * Return 0 if success
1549 */
1550static int sparc_pmu_commit_txn(struct pmu *pmu)
1551{
1552	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553	int n;
1554
1555	if (!sparc_pmu)
1556		return -EINVAL;
1557
1558	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1559
1560	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1561		cpuc->txn_flags = 0;
1562		return 0;
1563	}
1564
1565	n = cpuc->n_events;
1566	if (check_excludes(cpuc->event, 0, n))
1567		return -EINVAL;
1568	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1569		return -EAGAIN;
1570
1571	cpuc->txn_flags = 0;
1572	perf_pmu_enable(pmu);
1573	return 0;
1574}
1575
1576static struct pmu pmu = {
1577	.pmu_enable	= sparc_pmu_enable,
1578	.pmu_disable	= sparc_pmu_disable,
1579	.event_init	= sparc_pmu_event_init,
1580	.add		= sparc_pmu_add,
1581	.del		= sparc_pmu_del,
1582	.start		= sparc_pmu_start,
1583	.stop		= sparc_pmu_stop,
1584	.read		= sparc_pmu_read,
1585	.start_txn	= sparc_pmu_start_txn,
1586	.cancel_txn	= sparc_pmu_cancel_txn,
1587	.commit_txn	= sparc_pmu_commit_txn,
1588};
1589
1590void perf_event_print_debug(void)
1591{
1592	unsigned long flags;
1593	int cpu, i;
 
1594
1595	if (!sparc_pmu)
1596		return;
1597
1598	local_irq_save(flags);
1599
1600	cpu = smp_processor_id();
1601
 
 
 
1602	pr_info("\n");
1603	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1604		pr_info("CPU#%d: PCR%d[%016llx]\n",
1605			cpu, i, pcr_ops->read_pcr(i));
1606	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1607		pr_info("CPU#%d: PIC%d[%016llx]\n",
1608			cpu, i, pcr_ops->read_pic(i));
1609
1610	local_irq_restore(flags);
1611}
1612
1613static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1614					    unsigned long cmd, void *__args)
1615{
1616	struct die_args *args = __args;
1617	struct perf_sample_data data;
1618	struct cpu_hw_events *cpuc;
1619	struct pt_regs *regs;
1620	u64 finish_clock;
1621	u64 start_clock;
1622	int i;
1623
1624	if (!atomic_read(&active_events))
1625		return NOTIFY_DONE;
1626
1627	switch (cmd) {
1628	case DIE_NMI:
1629		break;
1630
1631	default:
1632		return NOTIFY_DONE;
1633	}
1634
1635	start_clock = sched_clock();
1636
1637	regs = args->regs;
1638
1639	cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641	/* If the PMU has the TOE IRQ enable bits, we need to do a
1642	 * dummy write to the %pcr to clear the overflow bits and thus
1643	 * the interrupt.
1644	 *
1645	 * Do this before we peek at the counters to determine
1646	 * overflow so we don't lose any events.
1647	 */
1648	if (sparc_pmu->irq_bit &&
1649	    sparc_pmu->num_pcrs == 1)
1650		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1651
1652	for (i = 0; i < cpuc->n_events; i++) {
1653		struct perf_event *event = cpuc->event[i];
1654		int idx = cpuc->current_idx[i];
1655		struct hw_perf_event *hwc;
1656		u64 val;
1657
1658		if (sparc_pmu->irq_bit &&
1659		    sparc_pmu->num_pcrs > 1)
1660			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1661
1662		hwc = &event->hw;
1663		val = sparc_perf_event_update(event, hwc, idx);
1664		if (val & (1ULL << 31))
1665			continue;
1666
1667		perf_sample_data_init(&data, 0, hwc->last_period);
1668		if (!sparc_perf_event_set_period(event, hwc, idx))
1669			continue;
1670
1671		if (perf_event_overflow(event, &data, regs))
1672			sparc_pmu_stop(event, 0);
1673	}
1674
1675	finish_clock = sched_clock();
1676
1677	perf_sample_event_took(finish_clock - start_clock);
1678
1679	return NOTIFY_STOP;
1680}
1681
1682static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1683	.notifier_call		= perf_event_nmi_handler,
1684};
1685
1686static bool __init supported_pmu(void)
1687{
1688	if (!strcmp(sparc_pmu_type, "ultra3") ||
1689	    !strcmp(sparc_pmu_type, "ultra3+") ||
1690	    !strcmp(sparc_pmu_type, "ultra3i") ||
1691	    !strcmp(sparc_pmu_type, "ultra4+")) {
1692		sparc_pmu = &ultra3_pmu;
1693		return true;
1694	}
1695	if (!strcmp(sparc_pmu_type, "niagara")) {
1696		sparc_pmu = &niagara1_pmu;
1697		return true;
1698	}
1699	if (!strcmp(sparc_pmu_type, "niagara2") ||
1700	    !strcmp(sparc_pmu_type, "niagara3")) {
1701		sparc_pmu = &niagara2_pmu;
1702		return true;
1703	}
1704	if (!strcmp(sparc_pmu_type, "niagara4") ||
1705	    !strcmp(sparc_pmu_type, "niagara5")) {
1706		sparc_pmu = &niagara4_pmu;
1707		return true;
1708	}
1709	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1710		sparc_pmu = &sparc_m7_pmu;
1711		return true;
1712	}
1713	return false;
1714}
1715
1716static int __init init_hw_perf_events(void)
1717{
1718	int err;
1719
1720	pr_info("Performance events: ");
1721
1722	err = pcr_arch_init();
1723	if (err || !supported_pmu()) {
1724		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1725		return 0;
1726	}
1727
1728	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1729
1730	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1731	register_die_notifier(&perf_event_nmi_notifier);
1732
1733	return 0;
1734}
1735pure_initcall(init_hw_perf_events);
1736
1737void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1738			   struct pt_regs *regs)
1739{
1740	unsigned long ksp, fp;
1741#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1742	int graph = 0;
1743#endif
1744
1745	stack_trace_flush();
1746
1747	perf_callchain_store(entry, regs->tpc);
1748
1749	ksp = regs->u_regs[UREG_I6];
1750	fp = ksp + STACK_BIAS;
1751	do {
1752		struct sparc_stackf *sf;
1753		struct pt_regs *regs;
1754		unsigned long pc;
1755
1756		if (!kstack_valid(current_thread_info(), fp))
1757			break;
1758
1759		sf = (struct sparc_stackf *) fp;
1760		regs = (struct pt_regs *) (sf + 1);
1761
1762		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1763			if (user_mode(regs))
1764				break;
1765			pc = regs->tpc;
1766			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1767		} else {
1768			pc = sf->callers_pc;
1769			fp = (unsigned long)sf->fp + STACK_BIAS;
1770		}
1771		perf_callchain_store(entry, pc);
1772#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1774			struct ftrace_ret_stack *ret_stack;
1775			ret_stack = ftrace_graph_get_ret_stack(current,
1776							       graph);
1777			if (ret_stack) {
1778				pc = ret_stack->ret;
1779				perf_callchain_store(entry, pc);
1780				graph++;
1781			}
1782		}
1783#endif
1784	} while (entry->nr < entry->max_stack);
1785}
1786
1787static inline int
1788valid_user_frame(const void __user *fp, unsigned long size)
1789{
1790	/* addresses should be at least 4-byte aligned */
1791	if (((unsigned long) fp) & 3)
1792		return 0;
1793
1794	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1795}
1796
1797static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
 
 
1803	do {
1804		struct sparc_stackf __user *usf;
1805		struct sparc_stackf sf;
1806		unsigned long pc;
1807
1808		usf = (struct sparc_stackf __user *)ufp;
1809		if (!valid_user_frame(usf, sizeof(sf)))
1810			break;
1811
1812		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813			break;
1814
1815		pc = sf.callers_pc;
1816		ufp = (unsigned long)sf.fp + STACK_BIAS;
1817		perf_callchain_store(entry, pc);
1818	} while (entry->nr < entry->max_stack);
1819}
1820
1821static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1822				   struct pt_regs *regs)
1823{
1824	unsigned long ufp;
1825
1826	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
 
 
1827	do {
 
1828		unsigned long pc;
1829
1830		if (thread32_stack_is_64bit(ufp)) {
1831			struct sparc_stackf __user *usf;
1832			struct sparc_stackf sf;
1833
1834			ufp += STACK_BIAS;
1835			usf = (struct sparc_stackf __user *)ufp;
1836			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1837				break;
1838			pc = sf.callers_pc & 0xffffffff;
1839			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1840		} else {
1841			struct sparc_stackf32 __user *usf;
1842			struct sparc_stackf32 sf;
1843			usf = (struct sparc_stackf32 __user *)ufp;
1844			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1845				break;
1846			pc = sf.callers_pc;
1847			ufp = (unsigned long)sf.fp;
1848		}
1849		perf_callchain_store(entry, pc);
1850	} while (entry->nr < entry->max_stack);
1851}
1852
1853void
1854perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1855{
1856	u64 saved_fault_address = current_thread_info()->fault_address;
1857	u8 saved_fault_code = get_thread_fault_code();
1858
1859	perf_callchain_store(entry, regs->tpc);
1860
1861	if (!current->mm)
1862		return;
1863
1864	flushw_user();
1865
1866	pagefault_disable();
1867
1868	if (test_thread_flag(TIF_32BIT))
1869		perf_callchain_user_32(entry, regs);
1870	else
1871		perf_callchain_user_64(entry, regs);
1872
1873	pagefault_enable();
1874
1875	set_thread_fault_code(saved_fault_code);
1876	current_thread_info()->fault_address = saved_fault_address;
1877}