Loading...
1/*
2 * Freescale General-purpose Timers Module
3 *
4 * Copyright (c) Freescale Semicondutor, Inc. 2006.
5 * Shlomi Gridish <gridish@freescale.com>
6 * Jerry Huang <Chang-Ming.Huang@freescale.com>
7 * Copyright (c) MontaVista Software, Inc. 2008.
8 * Anton Vorontsov <avorontsov@ru.mvista.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16#include <linux/kernel.h>
17#include <linux/err.h>
18#include <linux/errno.h>
19#include <linux/list.h>
20#include <linux/io.h>
21#include <linux/of.h>
22#include <linux/spinlock.h>
23#include <linux/bitops.h>
24#include <linux/slab.h>
25#include <linux/export.h>
26#include <asm/fsl_gtm.h>
27
28#define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1)
29#define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0)
30
31#define GTMDR_ICLK_MASK (3 << 1)
32#define GTMDR_ICLK_ICAS (0 << 1)
33#define GTMDR_ICLK_ICLK (1 << 1)
34#define GTMDR_ICLK_SLGO (2 << 1)
35#define GTMDR_FRR (1 << 3)
36#define GTMDR_ORI (1 << 4)
37#define GTMDR_SPS(x) ((x) << 8)
38
39struct gtm_timers_regs {
40 u8 gtcfr1; /* Timer 1, Timer 2 global config register */
41 u8 res0[0x3];
42 u8 gtcfr2; /* Timer 3, timer 4 global config register */
43 u8 res1[0xB];
44 __be16 gtmdr1; /* Timer 1 mode register */
45 __be16 gtmdr2; /* Timer 2 mode register */
46 __be16 gtrfr1; /* Timer 1 reference register */
47 __be16 gtrfr2; /* Timer 2 reference register */
48 __be16 gtcpr1; /* Timer 1 capture register */
49 __be16 gtcpr2; /* Timer 2 capture register */
50 __be16 gtcnr1; /* Timer 1 counter */
51 __be16 gtcnr2; /* Timer 2 counter */
52 __be16 gtmdr3; /* Timer 3 mode register */
53 __be16 gtmdr4; /* Timer 4 mode register */
54 __be16 gtrfr3; /* Timer 3 reference register */
55 __be16 gtrfr4; /* Timer 4 reference register */
56 __be16 gtcpr3; /* Timer 3 capture register */
57 __be16 gtcpr4; /* Timer 4 capture register */
58 __be16 gtcnr3; /* Timer 3 counter */
59 __be16 gtcnr4; /* Timer 4 counter */
60 __be16 gtevr1; /* Timer 1 event register */
61 __be16 gtevr2; /* Timer 2 event register */
62 __be16 gtevr3; /* Timer 3 event register */
63 __be16 gtevr4; /* Timer 4 event register */
64 __be16 gtpsr1; /* Timer 1 prescale register */
65 __be16 gtpsr2; /* Timer 2 prescale register */
66 __be16 gtpsr3; /* Timer 3 prescale register */
67 __be16 gtpsr4; /* Timer 4 prescale register */
68 u8 res2[0x40];
69} __attribute__ ((packed));
70
71struct gtm {
72 unsigned int clock;
73 struct gtm_timers_regs __iomem *regs;
74 struct gtm_timer timers[4];
75 spinlock_t lock;
76 struct list_head list_node;
77};
78
79static LIST_HEAD(gtms);
80
81/**
82 * gtm_get_timer - request GTM timer to use it with the rest of GTM API
83 * Context: non-IRQ
84 *
85 * This function reserves GTM timer for later use. It returns gtm_timer
86 * structure to use with the rest of GTM API, you should use timer->irq
87 * to manage timer interrupt.
88 */
89struct gtm_timer *gtm_get_timer16(void)
90{
91 struct gtm *gtm = NULL;
92 int i;
93
94 list_for_each_entry(gtm, >ms, list_node) {
95 spin_lock_irq(>m->lock);
96
97 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
98 if (!gtm->timers[i].requested) {
99 gtm->timers[i].requested = true;
100 spin_unlock_irq(>m->lock);
101 return >m->timers[i];
102 }
103 }
104
105 spin_unlock_irq(>m->lock);
106 }
107
108 if (gtm)
109 return ERR_PTR(-EBUSY);
110 return ERR_PTR(-ENODEV);
111}
112EXPORT_SYMBOL(gtm_get_timer16);
113
114/**
115 * gtm_get_specific_timer - request specific GTM timer
116 * @gtm: specific GTM, pass here GTM's device_node->data
117 * @timer: specific timer number, Timer1 is 0.
118 * Context: non-IRQ
119 *
120 * This function reserves GTM timer for later use. It returns gtm_timer
121 * structure to use with the rest of GTM API, you should use timer->irq
122 * to manage timer interrupt.
123 */
124struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
125 unsigned int timer)
126{
127 struct gtm_timer *ret = ERR_PTR(-EBUSY);
128
129 if (timer > 3)
130 return ERR_PTR(-EINVAL);
131
132 spin_lock_irq(>m->lock);
133
134 if (gtm->timers[timer].requested)
135 goto out;
136
137 ret = >m->timers[timer];
138 ret->requested = true;
139
140out:
141 spin_unlock_irq(>m->lock);
142 return ret;
143}
144EXPORT_SYMBOL(gtm_get_specific_timer16);
145
146/**
147 * gtm_put_timer16 - release 16 bits GTM timer
148 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
149 * Context: any
150 *
151 * This function releases GTM timer so others may request it.
152 */
153void gtm_put_timer16(struct gtm_timer *tmr)
154{
155 gtm_stop_timer16(tmr);
156
157 spin_lock_irq(&tmr->gtm->lock);
158 tmr->requested = false;
159 spin_unlock_irq(&tmr->gtm->lock);
160}
161EXPORT_SYMBOL(gtm_put_timer16);
162
163/*
164 * This is back-end for the exported functions, it's used to reset single
165 * timer in reference mode.
166 */
167static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
168 int reference_value, bool free_run)
169{
170 struct gtm *gtm = tmr->gtm;
171 int num = tmr - >m->timers[0];
172 unsigned int prescaler;
173 u8 iclk = GTMDR_ICLK_ICLK;
174 u8 psr;
175 u8 sps;
176 unsigned long flags;
177 int max_prescaler = 256 * 256 * 16;
178
179 /* CPM2 doesn't have primary prescaler */
180 if (!tmr->gtpsr)
181 max_prescaler /= 256;
182
183 prescaler = gtm->clock / frequency;
184 /*
185 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
186 * plus "slow go" mode (clk / 16). So, total prescale value is
187 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
188 */
189 if (prescaler > max_prescaler)
190 return -EINVAL;
191
192 if (prescaler > max_prescaler / 16) {
193 iclk = GTMDR_ICLK_SLGO;
194 prescaler /= 16;
195 }
196
197 if (prescaler <= 256) {
198 psr = 0;
199 sps = prescaler - 1;
200 } else {
201 psr = 256 - 1;
202 sps = prescaler / 256 - 1;
203 }
204
205 spin_lock_irqsave(>m->lock, flags);
206
207 /*
208 * Properly reset timers: stop, reset, set up prescalers, reference
209 * value and clear event register.
210 */
211 clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
212 GTCFR_STP(num) | GTCFR_RST(num));
213
214 setbits8(tmr->gtcfr, GTCFR_STP(num));
215
216 if (tmr->gtpsr)
217 out_be16(tmr->gtpsr, psr);
218 clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
219 GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
220 out_be16(tmr->gtcnr, 0);
221 out_be16(tmr->gtrfr, reference_value);
222 out_be16(tmr->gtevr, 0xFFFF);
223
224 /* Let it be. */
225 clrbits8(tmr->gtcfr, GTCFR_STP(num));
226
227 spin_unlock_irqrestore(>m->lock, flags);
228
229 return 0;
230}
231
232/**
233 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
234 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
235 * @usec: timer interval in microseconds
236 * @reload: if set, the timer will reset upon expiry rather than
237 * continue running free.
238 * Context: any
239 *
240 * This function (re)sets the GTM timer so that it counts up to the requested
241 * interval value, and fires the interrupt when the value is reached. This
242 * function will reduce the precision of the timer as needed in order for the
243 * requested timeout to fit in a 16-bit register.
244 */
245int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
246{
247 /* quite obvious, frequency which is enough for µSec precision */
248 int freq = 1000000;
249 unsigned int bit;
250
251 bit = fls_long(usec);
252 if (bit > 15) {
253 freq >>= bit - 15;
254 usec >>= bit - 15;
255 }
256
257 if (!freq)
258 return -EINVAL;
259
260 return gtm_set_ref_timer16(tmr, freq, usec, reload);
261}
262EXPORT_SYMBOL(gtm_set_timer16);
263
264/**
265 * gtm_set_exact_utimer16 - (re)set 16 bits timer
266 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
267 * @usec: timer interval in microseconds
268 * @reload: if set, the timer will reset upon expiry rather than
269 * continue running free.
270 * Context: any
271 *
272 * This function (re)sets GTM timer so that it counts up to the requested
273 * interval value, and fires the interrupt when the value is reached. If reload
274 * flag was set, timer will also reset itself upon reference value, otherwise
275 * it continues to increment.
276 *
277 * The _exact_ bit in the function name states that this function will not
278 * crop precision of the "usec" argument, thus usec is limited to 16 bits
279 * (single timer width).
280 */
281int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
282{
283 /* quite obvious, frequency which is enough for µSec precision */
284 const int freq = 1000000;
285
286 /*
287 * We can lower the frequency (and probably power consumption) by
288 * dividing both frequency and usec by 2 until there is no remainder.
289 * But we won't bother with this unless savings are measured, so just
290 * run the timer as is.
291 */
292
293 return gtm_set_ref_timer16(tmr, freq, usec, reload);
294}
295EXPORT_SYMBOL(gtm_set_exact_timer16);
296
297/**
298 * gtm_stop_timer16 - stop single timer
299 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
300 * Context: any
301 *
302 * This function simply stops the GTM timer.
303 */
304void gtm_stop_timer16(struct gtm_timer *tmr)
305{
306 struct gtm *gtm = tmr->gtm;
307 int num = tmr - >m->timers[0];
308 unsigned long flags;
309
310 spin_lock_irqsave(>m->lock, flags);
311
312 setbits8(tmr->gtcfr, GTCFR_STP(num));
313 out_be16(tmr->gtevr, 0xFFFF);
314
315 spin_unlock_irqrestore(>m->lock, flags);
316}
317EXPORT_SYMBOL(gtm_stop_timer16);
318
319/**
320 * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
321 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
322 * @events: events mask to ack
323 * Context: any
324 *
325 * Thus function used to acknowledge timer interrupt event, use it inside the
326 * interrupt handler.
327 */
328void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
329{
330 out_be16(tmr->gtevr, events);
331}
332EXPORT_SYMBOL(gtm_ack_timer16);
333
334static void __init gtm_set_shortcuts(struct device_node *np,
335 struct gtm_timer *timers,
336 struct gtm_timers_regs __iomem *regs)
337{
338 /*
339 * Yeah, I don't like this either, but timers' registers a bit messed,
340 * so we have to provide shortcuts to write timer independent code.
341 * Alternative option is to create gt*() accessors, but that will be
342 * even uglier and cryptic.
343 */
344 timers[0].gtcfr = ®s->gtcfr1;
345 timers[0].gtmdr = ®s->gtmdr1;
346 timers[0].gtcnr = ®s->gtcnr1;
347 timers[0].gtrfr = ®s->gtrfr1;
348 timers[0].gtevr = ®s->gtevr1;
349
350 timers[1].gtcfr = ®s->gtcfr1;
351 timers[1].gtmdr = ®s->gtmdr2;
352 timers[1].gtcnr = ®s->gtcnr2;
353 timers[1].gtrfr = ®s->gtrfr2;
354 timers[1].gtevr = ®s->gtevr2;
355
356 timers[2].gtcfr = ®s->gtcfr2;
357 timers[2].gtmdr = ®s->gtmdr3;
358 timers[2].gtcnr = ®s->gtcnr3;
359 timers[2].gtrfr = ®s->gtrfr3;
360 timers[2].gtevr = ®s->gtevr3;
361
362 timers[3].gtcfr = ®s->gtcfr2;
363 timers[3].gtmdr = ®s->gtmdr4;
364 timers[3].gtcnr = ®s->gtcnr4;
365 timers[3].gtrfr = ®s->gtrfr4;
366 timers[3].gtevr = ®s->gtevr4;
367
368 /* CPM2 doesn't have primary prescaler */
369 if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
370 timers[0].gtpsr = ®s->gtpsr1;
371 timers[1].gtpsr = ®s->gtpsr2;
372 timers[2].gtpsr = ®s->gtpsr3;
373 timers[3].gtpsr = ®s->gtpsr4;
374 }
375}
376
377static int __init fsl_gtm_init(void)
378{
379 struct device_node *np;
380
381 for_each_compatible_node(np, NULL, "fsl,gtm") {
382 int i;
383 struct gtm *gtm;
384 const u32 *clock;
385 int size;
386
387 gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
388 if (!gtm) {
389 pr_err("%s: unable to allocate memory\n",
390 np->full_name);
391 continue;
392 }
393
394 spin_lock_init(>m->lock);
395
396 clock = of_get_property(np, "clock-frequency", &size);
397 if (!clock || size != sizeof(*clock)) {
398 pr_err("%s: no clock-frequency\n", np->full_name);
399 goto err;
400 }
401 gtm->clock = *clock;
402
403 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
404 int ret;
405 struct resource irq;
406
407 ret = of_irq_to_resource(np, i, &irq);
408 if (ret == NO_IRQ) {
409 pr_err("%s: not enough interrupts specified\n",
410 np->full_name);
411 goto err;
412 }
413 gtm->timers[i].irq = irq.start;
414 gtm->timers[i].gtm = gtm;
415 }
416
417 gtm->regs = of_iomap(np, 0);
418 if (!gtm->regs) {
419 pr_err("%s: unable to iomap registers\n",
420 np->full_name);
421 goto err;
422 }
423
424 gtm_set_shortcuts(np, gtm->timers, gtm->regs);
425 list_add(>m->list_node, >ms);
426
427 /* We don't want to lose the node and its ->data */
428 np->data = gtm;
429 of_node_get(np);
430
431 continue;
432err:
433 kfree(gtm);
434 }
435 return 0;
436}
437arch_initcall(fsl_gtm_init);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale General-purpose Timers Module
4 *
5 * Copyright (c) Freescale Semiconductor, Inc. 2006.
6 * Shlomi Gridish <gridish@freescale.com>
7 * Jerry Huang <Chang-Ming.Huang@freescale.com>
8 * Copyright (c) MontaVista Software, Inc. 2008.
9 * Anton Vorontsov <avorontsov@ru.mvista.com>
10 */
11
12#include <linux/kernel.h>
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/list.h>
16#include <linux/io.h>
17#include <linux/of.h>
18#include <linux/of_address.h>
19#include <linux/of_irq.h>
20#include <linux/spinlock.h>
21#include <linux/bitops.h>
22#include <linux/slab.h>
23#include <linux/export.h>
24#include <asm/fsl_gtm.h>
25
26#define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1)
27#define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0)
28
29#define GTMDR_ICLK_MASK (3 << 1)
30#define GTMDR_ICLK_ICAS (0 << 1)
31#define GTMDR_ICLK_ICLK (1 << 1)
32#define GTMDR_ICLK_SLGO (2 << 1)
33#define GTMDR_FRR (1 << 3)
34#define GTMDR_ORI (1 << 4)
35#define GTMDR_SPS(x) ((x) << 8)
36
37struct gtm_timers_regs {
38 u8 gtcfr1; /* Timer 1, Timer 2 global config register */
39 u8 res0[0x3];
40 u8 gtcfr2; /* Timer 3, timer 4 global config register */
41 u8 res1[0xB];
42 __be16 gtmdr1; /* Timer 1 mode register */
43 __be16 gtmdr2; /* Timer 2 mode register */
44 __be16 gtrfr1; /* Timer 1 reference register */
45 __be16 gtrfr2; /* Timer 2 reference register */
46 __be16 gtcpr1; /* Timer 1 capture register */
47 __be16 gtcpr2; /* Timer 2 capture register */
48 __be16 gtcnr1; /* Timer 1 counter */
49 __be16 gtcnr2; /* Timer 2 counter */
50 __be16 gtmdr3; /* Timer 3 mode register */
51 __be16 gtmdr4; /* Timer 4 mode register */
52 __be16 gtrfr3; /* Timer 3 reference register */
53 __be16 gtrfr4; /* Timer 4 reference register */
54 __be16 gtcpr3; /* Timer 3 capture register */
55 __be16 gtcpr4; /* Timer 4 capture register */
56 __be16 gtcnr3; /* Timer 3 counter */
57 __be16 gtcnr4; /* Timer 4 counter */
58 __be16 gtevr1; /* Timer 1 event register */
59 __be16 gtevr2; /* Timer 2 event register */
60 __be16 gtevr3; /* Timer 3 event register */
61 __be16 gtevr4; /* Timer 4 event register */
62 __be16 gtpsr1; /* Timer 1 prescale register */
63 __be16 gtpsr2; /* Timer 2 prescale register */
64 __be16 gtpsr3; /* Timer 3 prescale register */
65 __be16 gtpsr4; /* Timer 4 prescale register */
66 u8 res2[0x40];
67} __attribute__ ((packed));
68
69struct gtm {
70 unsigned int clock;
71 struct gtm_timers_regs __iomem *regs;
72 struct gtm_timer timers[4];
73 spinlock_t lock;
74 struct list_head list_node;
75};
76
77static LIST_HEAD(gtms);
78
79/**
80 * gtm_get_timer - request GTM timer to use it with the rest of GTM API
81 * Context: non-IRQ
82 *
83 * This function reserves GTM timer for later use. It returns gtm_timer
84 * structure to use with the rest of GTM API, you should use timer->irq
85 * to manage timer interrupt.
86 */
87struct gtm_timer *gtm_get_timer16(void)
88{
89 struct gtm *gtm = NULL;
90 int i;
91
92 list_for_each_entry(gtm, >ms, list_node) {
93 spin_lock_irq(>m->lock);
94
95 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
96 if (!gtm->timers[i].requested) {
97 gtm->timers[i].requested = true;
98 spin_unlock_irq(>m->lock);
99 return >m->timers[i];
100 }
101 }
102
103 spin_unlock_irq(>m->lock);
104 }
105
106 if (gtm)
107 return ERR_PTR(-EBUSY);
108 return ERR_PTR(-ENODEV);
109}
110EXPORT_SYMBOL(gtm_get_timer16);
111
112/**
113 * gtm_get_specific_timer - request specific GTM timer
114 * @gtm: specific GTM, pass here GTM's device_node->data
115 * @timer: specific timer number, Timer1 is 0.
116 * Context: non-IRQ
117 *
118 * This function reserves GTM timer for later use. It returns gtm_timer
119 * structure to use with the rest of GTM API, you should use timer->irq
120 * to manage timer interrupt.
121 */
122struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
123 unsigned int timer)
124{
125 struct gtm_timer *ret = ERR_PTR(-EBUSY);
126
127 if (timer > 3)
128 return ERR_PTR(-EINVAL);
129
130 spin_lock_irq(>m->lock);
131
132 if (gtm->timers[timer].requested)
133 goto out;
134
135 ret = >m->timers[timer];
136 ret->requested = true;
137
138out:
139 spin_unlock_irq(>m->lock);
140 return ret;
141}
142EXPORT_SYMBOL(gtm_get_specific_timer16);
143
144/**
145 * gtm_put_timer16 - release 16 bits GTM timer
146 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
147 * Context: any
148 *
149 * This function releases GTM timer so others may request it.
150 */
151void gtm_put_timer16(struct gtm_timer *tmr)
152{
153 gtm_stop_timer16(tmr);
154
155 spin_lock_irq(&tmr->gtm->lock);
156 tmr->requested = false;
157 spin_unlock_irq(&tmr->gtm->lock);
158}
159EXPORT_SYMBOL(gtm_put_timer16);
160
161/*
162 * This is back-end for the exported functions, it's used to reset single
163 * timer in reference mode.
164 */
165static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
166 int reference_value, bool free_run)
167{
168 struct gtm *gtm = tmr->gtm;
169 int num = tmr - >m->timers[0];
170 unsigned int prescaler;
171 u8 iclk = GTMDR_ICLK_ICLK;
172 u8 psr;
173 u8 sps;
174 unsigned long flags;
175 int max_prescaler = 256 * 256 * 16;
176
177 /* CPM2 doesn't have primary prescaler */
178 if (!tmr->gtpsr)
179 max_prescaler /= 256;
180
181 prescaler = gtm->clock / frequency;
182 /*
183 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
184 * plus "slow go" mode (clk / 16). So, total prescale value is
185 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
186 */
187 if (prescaler > max_prescaler)
188 return -EINVAL;
189
190 if (prescaler > max_prescaler / 16) {
191 iclk = GTMDR_ICLK_SLGO;
192 prescaler /= 16;
193 }
194
195 if (prescaler <= 256) {
196 psr = 0;
197 sps = prescaler - 1;
198 } else {
199 psr = 256 - 1;
200 sps = prescaler / 256 - 1;
201 }
202
203 spin_lock_irqsave(>m->lock, flags);
204
205 /*
206 * Properly reset timers: stop, reset, set up prescalers, reference
207 * value and clear event register.
208 */
209 clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
210 GTCFR_STP(num) | GTCFR_RST(num));
211
212 setbits8(tmr->gtcfr, GTCFR_STP(num));
213
214 if (tmr->gtpsr)
215 out_be16(tmr->gtpsr, psr);
216 clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
217 GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
218 out_be16(tmr->gtcnr, 0);
219 out_be16(tmr->gtrfr, reference_value);
220 out_be16(tmr->gtevr, 0xFFFF);
221
222 /* Let it be. */
223 clrbits8(tmr->gtcfr, GTCFR_STP(num));
224
225 spin_unlock_irqrestore(>m->lock, flags);
226
227 return 0;
228}
229
230/**
231 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
232 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
233 * @usec: timer interval in microseconds
234 * @reload: if set, the timer will reset upon expiry rather than
235 * continue running free.
236 * Context: any
237 *
238 * This function (re)sets the GTM timer so that it counts up to the requested
239 * interval value, and fires the interrupt when the value is reached. This
240 * function will reduce the precision of the timer as needed in order for the
241 * requested timeout to fit in a 16-bit register.
242 */
243int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
244{
245 /* quite obvious, frequency which is enough for µSec precision */
246 int freq = 1000000;
247 unsigned int bit;
248
249 bit = fls_long(usec);
250 if (bit > 15) {
251 freq >>= bit - 15;
252 usec >>= bit - 15;
253 }
254
255 if (!freq)
256 return -EINVAL;
257
258 return gtm_set_ref_timer16(tmr, freq, usec, reload);
259}
260EXPORT_SYMBOL(gtm_set_timer16);
261
262/**
263 * gtm_set_exact_utimer16 - (re)set 16 bits timer
264 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
265 * @usec: timer interval in microseconds
266 * @reload: if set, the timer will reset upon expiry rather than
267 * continue running free.
268 * Context: any
269 *
270 * This function (re)sets GTM timer so that it counts up to the requested
271 * interval value, and fires the interrupt when the value is reached. If reload
272 * flag was set, timer will also reset itself upon reference value, otherwise
273 * it continues to increment.
274 *
275 * The _exact_ bit in the function name states that this function will not
276 * crop precision of the "usec" argument, thus usec is limited to 16 bits
277 * (single timer width).
278 */
279int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
280{
281 /* quite obvious, frequency which is enough for µSec precision */
282 const int freq = 1000000;
283
284 /*
285 * We can lower the frequency (and probably power consumption) by
286 * dividing both frequency and usec by 2 until there is no remainder.
287 * But we won't bother with this unless savings are measured, so just
288 * run the timer as is.
289 */
290
291 return gtm_set_ref_timer16(tmr, freq, usec, reload);
292}
293EXPORT_SYMBOL(gtm_set_exact_timer16);
294
295/**
296 * gtm_stop_timer16 - stop single timer
297 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
298 * Context: any
299 *
300 * This function simply stops the GTM timer.
301 */
302void gtm_stop_timer16(struct gtm_timer *tmr)
303{
304 struct gtm *gtm = tmr->gtm;
305 int num = tmr - >m->timers[0];
306 unsigned long flags;
307
308 spin_lock_irqsave(>m->lock, flags);
309
310 setbits8(tmr->gtcfr, GTCFR_STP(num));
311 out_be16(tmr->gtevr, 0xFFFF);
312
313 spin_unlock_irqrestore(>m->lock, flags);
314}
315EXPORT_SYMBOL(gtm_stop_timer16);
316
317/**
318 * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
319 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
320 * @events: events mask to ack
321 * Context: any
322 *
323 * Thus function used to acknowledge timer interrupt event, use it inside the
324 * interrupt handler.
325 */
326void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
327{
328 out_be16(tmr->gtevr, events);
329}
330EXPORT_SYMBOL(gtm_ack_timer16);
331
332static void __init gtm_set_shortcuts(struct device_node *np,
333 struct gtm_timer *timers,
334 struct gtm_timers_regs __iomem *regs)
335{
336 /*
337 * Yeah, I don't like this either, but timers' registers a bit messed,
338 * so we have to provide shortcuts to write timer independent code.
339 * Alternative option is to create gt*() accessors, but that will be
340 * even uglier and cryptic.
341 */
342 timers[0].gtcfr = ®s->gtcfr1;
343 timers[0].gtmdr = ®s->gtmdr1;
344 timers[0].gtcnr = ®s->gtcnr1;
345 timers[0].gtrfr = ®s->gtrfr1;
346 timers[0].gtevr = ®s->gtevr1;
347
348 timers[1].gtcfr = ®s->gtcfr1;
349 timers[1].gtmdr = ®s->gtmdr2;
350 timers[1].gtcnr = ®s->gtcnr2;
351 timers[1].gtrfr = ®s->gtrfr2;
352 timers[1].gtevr = ®s->gtevr2;
353
354 timers[2].gtcfr = ®s->gtcfr2;
355 timers[2].gtmdr = ®s->gtmdr3;
356 timers[2].gtcnr = ®s->gtcnr3;
357 timers[2].gtrfr = ®s->gtrfr3;
358 timers[2].gtevr = ®s->gtevr3;
359
360 timers[3].gtcfr = ®s->gtcfr2;
361 timers[3].gtmdr = ®s->gtmdr4;
362 timers[3].gtcnr = ®s->gtcnr4;
363 timers[3].gtrfr = ®s->gtrfr4;
364 timers[3].gtevr = ®s->gtevr4;
365
366 /* CPM2 doesn't have primary prescaler */
367 if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
368 timers[0].gtpsr = ®s->gtpsr1;
369 timers[1].gtpsr = ®s->gtpsr2;
370 timers[2].gtpsr = ®s->gtpsr3;
371 timers[3].gtpsr = ®s->gtpsr4;
372 }
373}
374
375static int __init fsl_gtm_init(void)
376{
377 struct device_node *np;
378
379 for_each_compatible_node(np, NULL, "fsl,gtm") {
380 int i;
381 struct gtm *gtm;
382 const u32 *clock;
383 int size;
384
385 gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
386 if (!gtm) {
387 pr_err("%pOF: unable to allocate memory\n",
388 np);
389 continue;
390 }
391
392 spin_lock_init(>m->lock);
393
394 clock = of_get_property(np, "clock-frequency", &size);
395 if (!clock || size != sizeof(*clock)) {
396 pr_err("%pOF: no clock-frequency\n", np);
397 goto err;
398 }
399 gtm->clock = *clock;
400
401 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
402 unsigned int irq;
403
404 irq = irq_of_parse_and_map(np, i);
405 if (!irq) {
406 pr_err("%pOF: not enough interrupts specified\n",
407 np);
408 goto err;
409 }
410 gtm->timers[i].irq = irq;
411 gtm->timers[i].gtm = gtm;
412 }
413
414 gtm->regs = of_iomap(np, 0);
415 if (!gtm->regs) {
416 pr_err("%pOF: unable to iomap registers\n",
417 np);
418 goto err;
419 }
420
421 gtm_set_shortcuts(np, gtm->timers, gtm->regs);
422 list_add(>m->list_node, >ms);
423
424 /* We don't want to lose the node and its ->data */
425 np->data = gtm;
426 of_node_get(np);
427
428 continue;
429err:
430 kfree(gtm);
431 }
432 return 0;
433}
434arch_initcall(fsl_gtm_init);