Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/kexec.h>
  20#include <linux/workqueue.h>
  21#include <linux/capability.h>
  22#include <linux/device.h>
  23#include <linux/key.h>
  24#include <linux/times.h>
  25#include <linux/posix-timers.h>
  26#include <linux/security.h>
  27#include <linux/dcookies.h>
  28#include <linux/suspend.h>
  29#include <linux/tty.h>
  30#include <linux/signal.h>
  31#include <linux/cn_proc.h>
  32#include <linux/getcpu.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/seccomp.h>
  35#include <linux/cpu.h>
  36#include <linux/personality.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39#include <linux/file.h>
  40#include <linux/mount.h>
  41#include <linux/gfp.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/version.h>
  44#include <linux/ctype.h>
  45
  46#include <linux/compat.h>
  47#include <linux/syscalls.h>
  48#include <linux/kprobes.h>
  49#include <linux/user_namespace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51#include <linux/kmsg_dump.h>
  52/* Move somewhere else to avoid recompiling? */
  53#include <generated/utsrelease.h>
  54
  55#include <asm/uaccess.h>
  56#include <asm/io.h>
  57#include <asm/unistd.h>
  58
 
 
  59#ifndef SET_UNALIGN_CTL
  60# define SET_UNALIGN_CTL(a,b)	(-EINVAL)
  61#endif
  62#ifndef GET_UNALIGN_CTL
  63# define GET_UNALIGN_CTL(a,b)	(-EINVAL)
  64#endif
  65#ifndef SET_FPEMU_CTL
  66# define SET_FPEMU_CTL(a,b)	(-EINVAL)
  67#endif
  68#ifndef GET_FPEMU_CTL
  69# define GET_FPEMU_CTL(a,b)	(-EINVAL)
  70#endif
  71#ifndef SET_FPEXC_CTL
  72# define SET_FPEXC_CTL(a,b)	(-EINVAL)
  73#endif
  74#ifndef GET_FPEXC_CTL
  75# define GET_FPEXC_CTL(a,b)	(-EINVAL)
  76#endif
  77#ifndef GET_ENDIAN
  78# define GET_ENDIAN(a,b)	(-EINVAL)
  79#endif
  80#ifndef SET_ENDIAN
  81# define SET_ENDIAN(a,b)	(-EINVAL)
  82#endif
  83#ifndef GET_TSC_CTL
  84# define GET_TSC_CTL(a)		(-EINVAL)
  85#endif
  86#ifndef SET_TSC_CTL
  87# define SET_TSC_CTL(a)		(-EINVAL)
  88#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89
  90/*
  91 * this is where the system-wide overflow UID and GID are defined, for
  92 * architectures that now have 32-bit UID/GID but didn't in the past
  93 */
  94
  95int overflowuid = DEFAULT_OVERFLOWUID;
  96int overflowgid = DEFAULT_OVERFLOWGID;
  97
  98EXPORT_SYMBOL(overflowuid);
  99EXPORT_SYMBOL(overflowgid);
 100
 101/*
 102 * the same as above, but for filesystems which can only store a 16-bit
 103 * UID and GID. as such, this is needed on all architectures
 104 */
 105
 106int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 107int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 108
 109EXPORT_SYMBOL(fs_overflowuid);
 110EXPORT_SYMBOL(fs_overflowgid);
 111
 112/*
 113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 114 */
 115
 116int C_A_D = 1;
 117struct pid *cad_pid;
 118EXPORT_SYMBOL(cad_pid);
 119
 120/*
 121 * If set, this is used for preparing the system to power off.
 122 */
 123
 124void (*pm_power_off_prepare)(void);
 125
 126/*
 127 * Returns true if current's euid is same as p's uid or euid,
 128 * or has CAP_SYS_NICE to p's user_ns.
 129 *
 130 * Called with rcu_read_lock, creds are safe
 131 */
 132static bool set_one_prio_perm(struct task_struct *p)
 133{
 134	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 135
 136	if (uid_eq(pcred->uid,  cred->euid) ||
 137	    uid_eq(pcred->euid, cred->euid))
 138		return true;
 139	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 140		return true;
 141	return false;
 142}
 143
 144/*
 145 * set the priority of a task
 146 * - the caller must hold the RCU read lock
 147 */
 148static int set_one_prio(struct task_struct *p, int niceval, int error)
 149{
 150	int no_nice;
 151
 152	if (!set_one_prio_perm(p)) {
 153		error = -EPERM;
 154		goto out;
 155	}
 156	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 157		error = -EACCES;
 158		goto out;
 159	}
 160	no_nice = security_task_setnice(p, niceval);
 161	if (no_nice) {
 162		error = no_nice;
 163		goto out;
 164	}
 165	if (error == -ESRCH)
 166		error = 0;
 167	set_user_nice(p, niceval);
 168out:
 169	return error;
 170}
 171
 172SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 173{
 174	struct task_struct *g, *p;
 175	struct user_struct *user;
 176	const struct cred *cred = current_cred();
 177	int error = -EINVAL;
 178	struct pid *pgrp;
 179	kuid_t uid;
 180
 181	if (which > PRIO_USER || which < PRIO_PROCESS)
 182		goto out;
 183
 184	/* normalize: avoid signed division (rounding problems) */
 185	error = -ESRCH;
 186	if (niceval < -20)
 187		niceval = -20;
 188	if (niceval > 19)
 189		niceval = 19;
 190
 191	rcu_read_lock();
 192	read_lock(&tasklist_lock);
 193	switch (which) {
 194		case PRIO_PROCESS:
 195			if (who)
 196				p = find_task_by_vpid(who);
 197			else
 198				p = current;
 199			if (p)
 200				error = set_one_prio(p, niceval, error);
 201			break;
 202		case PRIO_PGRP:
 203			if (who)
 204				pgrp = find_vpid(who);
 205			else
 206				pgrp = task_pgrp(current);
 207			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 208				error = set_one_prio(p, niceval, error);
 209			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 210			break;
 211		case PRIO_USER:
 212			uid = make_kuid(cred->user_ns, who);
 213			user = cred->user;
 214			if (!who)
 215				uid = cred->uid;
 216			else if (!uid_eq(uid, cred->uid) &&
 217				 !(user = find_user(uid)))
 
 218				goto out_unlock;	/* No processes for this user */
 219
 220			do_each_thread(g, p) {
 221				if (uid_eq(task_uid(p), uid))
 222					error = set_one_prio(p, niceval, error);
 223			} while_each_thread(g, p);
 224			if (!uid_eq(uid, cred->uid))
 225				free_uid(user);		/* For find_user() */
 226			break;
 227	}
 228out_unlock:
 229	read_unlock(&tasklist_lock);
 230	rcu_read_unlock();
 231out:
 232	return error;
 233}
 234
 235/*
 236 * Ugh. To avoid negative return values, "getpriority()" will
 237 * not return the normal nice-value, but a negated value that
 238 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 239 * to stay compatible.
 240 */
 241SYSCALL_DEFINE2(getpriority, int, which, int, who)
 242{
 243	struct task_struct *g, *p;
 244	struct user_struct *user;
 245	const struct cred *cred = current_cred();
 246	long niceval, retval = -ESRCH;
 247	struct pid *pgrp;
 248	kuid_t uid;
 249
 250	if (which > PRIO_USER || which < PRIO_PROCESS)
 251		return -EINVAL;
 252
 253	rcu_read_lock();
 254	read_lock(&tasklist_lock);
 255	switch (which) {
 256		case PRIO_PROCESS:
 257			if (who)
 258				p = find_task_by_vpid(who);
 259			else
 260				p = current;
 261			if (p) {
 262				niceval = 20 - task_nice(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263				if (niceval > retval)
 264					retval = niceval;
 265			}
 266			break;
 267		case PRIO_PGRP:
 268			if (who)
 269				pgrp = find_vpid(who);
 270			else
 271				pgrp = task_pgrp(current);
 272			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 273				niceval = 20 - task_nice(p);
 274				if (niceval > retval)
 275					retval = niceval;
 276			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 277			break;
 278		case PRIO_USER:
 279			uid = make_kuid(cred->user_ns, who);
 280			user = cred->user;
 281			if (!who)
 282				uid = cred->uid;
 283			else if (!uid_eq(uid, cred->uid) &&
 284				 !(user = find_user(uid)))
 285				goto out_unlock;	/* No processes for this user */
 286
 287			do_each_thread(g, p) {
 288				if (uid_eq(task_uid(p), uid)) {
 289					niceval = 20 - task_nice(p);
 290					if (niceval > retval)
 291						retval = niceval;
 292				}
 293			} while_each_thread(g, p);
 294			if (!uid_eq(uid, cred->uid))
 295				free_uid(user);		/* for find_user() */
 296			break;
 297	}
 298out_unlock:
 299	read_unlock(&tasklist_lock);
 300	rcu_read_unlock();
 301
 302	return retval;
 303}
 304
 305/**
 306 *	emergency_restart - reboot the system
 307 *
 308 *	Without shutting down any hardware or taking any locks
 309 *	reboot the system.  This is called when we know we are in
 310 *	trouble so this is our best effort to reboot.  This is
 311 *	safe to call in interrupt context.
 312 */
 313void emergency_restart(void)
 314{
 315	kmsg_dump(KMSG_DUMP_EMERG);
 316	machine_emergency_restart();
 317}
 318EXPORT_SYMBOL_GPL(emergency_restart);
 319
 320void kernel_restart_prepare(char *cmd)
 321{
 322	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 323	system_state = SYSTEM_RESTART;
 324	usermodehelper_disable();
 325	device_shutdown();
 326	syscore_shutdown();
 327}
 328
 329/**
 330 *	register_reboot_notifier - Register function to be called at reboot time
 331 *	@nb: Info about notifier function to be called
 332 *
 333 *	Registers a function with the list of functions
 334 *	to be called at reboot time.
 335 *
 336 *	Currently always returns zero, as blocking_notifier_chain_register()
 337 *	always returns zero.
 338 */
 339int register_reboot_notifier(struct notifier_block *nb)
 340{
 341	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
 342}
 343EXPORT_SYMBOL(register_reboot_notifier);
 344
 345/**
 346 *	unregister_reboot_notifier - Unregister previously registered reboot notifier
 347 *	@nb: Hook to be unregistered
 348 *
 349 *	Unregisters a previously registered reboot
 350 *	notifier function.
 351 *
 352 *	Returns zero on success, or %-ENOENT on failure.
 353 */
 354int unregister_reboot_notifier(struct notifier_block *nb)
 355{
 356	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
 357}
 358EXPORT_SYMBOL(unregister_reboot_notifier);
 359
 360/**
 361 *	kernel_restart - reboot the system
 362 *	@cmd: pointer to buffer containing command to execute for restart
 363 *		or %NULL
 364 *
 365 *	Shutdown everything and perform a clean reboot.
 366 *	This is not safe to call in interrupt context.
 367 */
 368void kernel_restart(char *cmd)
 369{
 370	kernel_restart_prepare(cmd);
 371	if (!cmd)
 372		printk(KERN_EMERG "Restarting system.\n");
 373	else
 374		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 375	kmsg_dump(KMSG_DUMP_RESTART);
 376	machine_restart(cmd);
 377}
 378EXPORT_SYMBOL_GPL(kernel_restart);
 379
 380static void kernel_shutdown_prepare(enum system_states state)
 381{
 382	blocking_notifier_call_chain(&reboot_notifier_list,
 383		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 384	system_state = state;
 385	usermodehelper_disable();
 386	device_shutdown();
 387}
 388/**
 389 *	kernel_halt - halt the system
 390 *
 391 *	Shutdown everything and perform a clean system halt.
 392 */
 393void kernel_halt(void)
 394{
 395	kernel_shutdown_prepare(SYSTEM_HALT);
 396	syscore_shutdown();
 397	printk(KERN_EMERG "System halted.\n");
 398	kmsg_dump(KMSG_DUMP_HALT);
 399	machine_halt();
 400}
 401
 402EXPORT_SYMBOL_GPL(kernel_halt);
 403
 404/**
 405 *	kernel_power_off - power_off the system
 406 *
 407 *	Shutdown everything and perform a clean system power_off.
 408 */
 409void kernel_power_off(void)
 410{
 411	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 412	if (pm_power_off_prepare)
 413		pm_power_off_prepare();
 414	disable_nonboot_cpus();
 415	syscore_shutdown();
 416	printk(KERN_EMERG "Power down.\n");
 417	kmsg_dump(KMSG_DUMP_POWEROFF);
 418	machine_power_off();
 419}
 420EXPORT_SYMBOL_GPL(kernel_power_off);
 421
 422static DEFINE_MUTEX(reboot_mutex);
 423
 424/*
 425 * Reboot system call: for obvious reasons only root may call it,
 426 * and even root needs to set up some magic numbers in the registers
 427 * so that some mistake won't make this reboot the whole machine.
 428 * You can also set the meaning of the ctrl-alt-del-key here.
 429 *
 430 * reboot doesn't sync: do that yourself before calling this.
 431 */
 432SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
 433		void __user *, arg)
 434{
 435	char buffer[256];
 436	int ret = 0;
 437
 438	/* We only trust the superuser with rebooting the system. */
 439	if (!capable(CAP_SYS_BOOT))
 440		return -EPERM;
 441
 442	/* For safety, we require "magic" arguments. */
 443	if (magic1 != LINUX_REBOOT_MAGIC1 ||
 444	    (magic2 != LINUX_REBOOT_MAGIC2 &&
 445	                magic2 != LINUX_REBOOT_MAGIC2A &&
 446			magic2 != LINUX_REBOOT_MAGIC2B &&
 447	                magic2 != LINUX_REBOOT_MAGIC2C))
 448		return -EINVAL;
 449
 450	/*
 451	 * If pid namespaces are enabled and the current task is in a child
 452	 * pid_namespace, the command is handled by reboot_pid_ns() which will
 453	 * call do_exit().
 454	 */
 455	ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
 456	if (ret)
 457		return ret;
 458
 459	/* Instead of trying to make the power_off code look like
 460	 * halt when pm_power_off is not set do it the easy way.
 461	 */
 462	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 463		cmd = LINUX_REBOOT_CMD_HALT;
 464
 465	mutex_lock(&reboot_mutex);
 466	switch (cmd) {
 467	case LINUX_REBOOT_CMD_RESTART:
 468		kernel_restart(NULL);
 469		break;
 470
 471	case LINUX_REBOOT_CMD_CAD_ON:
 472		C_A_D = 1;
 473		break;
 474
 475	case LINUX_REBOOT_CMD_CAD_OFF:
 476		C_A_D = 0;
 477		break;
 478
 479	case LINUX_REBOOT_CMD_HALT:
 480		kernel_halt();
 481		do_exit(0);
 482		panic("cannot halt");
 483
 484	case LINUX_REBOOT_CMD_POWER_OFF:
 485		kernel_power_off();
 486		do_exit(0);
 487		break;
 488
 489	case LINUX_REBOOT_CMD_RESTART2:
 490		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 491			ret = -EFAULT;
 492			break;
 493		}
 494		buffer[sizeof(buffer) - 1] = '\0';
 495
 496		kernel_restart(buffer);
 497		break;
 498
 499#ifdef CONFIG_KEXEC
 500	case LINUX_REBOOT_CMD_KEXEC:
 501		ret = kernel_kexec();
 502		break;
 503#endif
 504
 505#ifdef CONFIG_HIBERNATION
 506	case LINUX_REBOOT_CMD_SW_SUSPEND:
 507		ret = hibernate();
 508		break;
 509#endif
 510
 511	default:
 512		ret = -EINVAL;
 513		break;
 514	}
 515	mutex_unlock(&reboot_mutex);
 516	return ret;
 517}
 518
 519static void deferred_cad(struct work_struct *dummy)
 520{
 521	kernel_restart(NULL);
 522}
 523
 524/*
 525 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 526 * As it's called within an interrupt, it may NOT sync: the only choice
 527 * is whether to reboot at once, or just ignore the ctrl-alt-del.
 528 */
 529void ctrl_alt_del(void)
 530{
 531	static DECLARE_WORK(cad_work, deferred_cad);
 532
 533	if (C_A_D)
 534		schedule_work(&cad_work);
 535	else
 536		kill_cad_pid(SIGINT, 1);
 537}
 538	
 539/*
 540 * Unprivileged users may change the real gid to the effective gid
 541 * or vice versa.  (BSD-style)
 542 *
 543 * If you set the real gid at all, or set the effective gid to a value not
 544 * equal to the real gid, then the saved gid is set to the new effective gid.
 545 *
 546 * This makes it possible for a setgid program to completely drop its
 547 * privileges, which is often a useful assertion to make when you are doing
 548 * a security audit over a program.
 549 *
 550 * The general idea is that a program which uses just setregid() will be
 551 * 100% compatible with BSD.  A program which uses just setgid() will be
 552 * 100% compatible with POSIX with saved IDs. 
 553 *
 554 * SMP: There are not races, the GIDs are checked only by filesystem
 555 *      operations (as far as semantic preservation is concerned).
 556 */
 557SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 
 558{
 559	struct user_namespace *ns = current_user_ns();
 560	const struct cred *old;
 561	struct cred *new;
 562	int retval;
 563	kgid_t krgid, kegid;
 564
 565	krgid = make_kgid(ns, rgid);
 566	kegid = make_kgid(ns, egid);
 567
 568	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 569		return -EINVAL;
 570	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 571		return -EINVAL;
 572
 573	new = prepare_creds();
 574	if (!new)
 575		return -ENOMEM;
 576	old = current_cred();
 577
 578	retval = -EPERM;
 579	if (rgid != (gid_t) -1) {
 580		if (gid_eq(old->gid, krgid) ||
 581		    gid_eq(old->egid, krgid) ||
 582		    nsown_capable(CAP_SETGID))
 583			new->gid = krgid;
 584		else
 585			goto error;
 586	}
 587	if (egid != (gid_t) -1) {
 588		if (gid_eq(old->gid, kegid) ||
 589		    gid_eq(old->egid, kegid) ||
 590		    gid_eq(old->sgid, kegid) ||
 591		    nsown_capable(CAP_SETGID))
 592			new->egid = kegid;
 593		else
 594			goto error;
 595	}
 596
 597	if (rgid != (gid_t) -1 ||
 598	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 599		new->sgid = new->egid;
 600	new->fsgid = new->egid;
 601
 
 
 
 
 602	return commit_creds(new);
 603
 604error:
 605	abort_creds(new);
 606	return retval;
 607}
 608
 
 
 
 
 
 609/*
 610 * setgid() is implemented like SysV w/ SAVED_IDS 
 611 *
 612 * SMP: Same implicit races as above.
 613 */
 614SYSCALL_DEFINE1(setgid, gid_t, gid)
 615{
 616	struct user_namespace *ns = current_user_ns();
 617	const struct cred *old;
 618	struct cred *new;
 619	int retval;
 620	kgid_t kgid;
 621
 622	kgid = make_kgid(ns, gid);
 623	if (!gid_valid(kgid))
 624		return -EINVAL;
 625
 626	new = prepare_creds();
 627	if (!new)
 628		return -ENOMEM;
 629	old = current_cred();
 630
 631	retval = -EPERM;
 632	if (nsown_capable(CAP_SETGID))
 633		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 634	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 635		new->egid = new->fsgid = kgid;
 636	else
 637		goto error;
 638
 
 
 
 
 639	return commit_creds(new);
 640
 641error:
 642	abort_creds(new);
 643	return retval;
 644}
 645
 
 
 
 
 
 646/*
 647 * change the user struct in a credentials set to match the new UID
 648 */
 649static int set_user(struct cred *new)
 650{
 651	struct user_struct *new_user;
 652
 653	new_user = alloc_uid(new->uid);
 654	if (!new_user)
 655		return -EAGAIN;
 656
 657	/*
 658	 * We don't fail in case of NPROC limit excess here because too many
 659	 * poorly written programs don't check set*uid() return code, assuming
 660	 * it never fails if called by root.  We may still enforce NPROC limit
 661	 * for programs doing set*uid()+execve() by harmlessly deferring the
 662	 * failure to the execve() stage.
 663	 */
 664	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 665			new_user != INIT_USER)
 666		current->flags |= PF_NPROC_EXCEEDED;
 667	else
 668		current->flags &= ~PF_NPROC_EXCEEDED;
 669
 670	free_uid(new->user);
 671	new->user = new_user;
 672	return 0;
 673}
 674
 675/*
 676 * Unprivileged users may change the real uid to the effective uid
 677 * or vice versa.  (BSD-style)
 678 *
 679 * If you set the real uid at all, or set the effective uid to a value not
 680 * equal to the real uid, then the saved uid is set to the new effective uid.
 681 *
 682 * This makes it possible for a setuid program to completely drop its
 683 * privileges, which is often a useful assertion to make when you are doing
 684 * a security audit over a program.
 685 *
 686 * The general idea is that a program which uses just setreuid() will be
 687 * 100% compatible with BSD.  A program which uses just setuid() will be
 688 * 100% compatible with POSIX with saved IDs. 
 689 */
 690SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 691{
 692	struct user_namespace *ns = current_user_ns();
 693	const struct cred *old;
 694	struct cred *new;
 695	int retval;
 696	kuid_t kruid, keuid;
 697
 698	kruid = make_kuid(ns, ruid);
 699	keuid = make_kuid(ns, euid);
 700
 701	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 702		return -EINVAL;
 703	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 704		return -EINVAL;
 705
 706	new = prepare_creds();
 707	if (!new)
 708		return -ENOMEM;
 709	old = current_cred();
 710
 711	retval = -EPERM;
 712	if (ruid != (uid_t) -1) {
 713		new->uid = kruid;
 714		if (!uid_eq(old->uid, kruid) &&
 715		    !uid_eq(old->euid, kruid) &&
 716		    !nsown_capable(CAP_SETUID))
 717			goto error;
 718	}
 719
 720	if (euid != (uid_t) -1) {
 721		new->euid = keuid;
 722		if (!uid_eq(old->uid, keuid) &&
 723		    !uid_eq(old->euid, keuid) &&
 724		    !uid_eq(old->suid, keuid) &&
 725		    !nsown_capable(CAP_SETUID))
 726			goto error;
 727	}
 728
 729	if (!uid_eq(new->uid, old->uid)) {
 730		retval = set_user(new);
 731		if (retval < 0)
 732			goto error;
 733	}
 734	if (ruid != (uid_t) -1 ||
 735	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 736		new->suid = new->euid;
 737	new->fsuid = new->euid;
 738
 739	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 740	if (retval < 0)
 741		goto error;
 742
 743	return commit_creds(new);
 744
 745error:
 746	abort_creds(new);
 747	return retval;
 748}
 749		
 
 
 
 
 
 750/*
 751 * setuid() is implemented like SysV with SAVED_IDS 
 752 * 
 753 * Note that SAVED_ID's is deficient in that a setuid root program
 754 * like sendmail, for example, cannot set its uid to be a normal 
 755 * user and then switch back, because if you're root, setuid() sets
 756 * the saved uid too.  If you don't like this, blame the bright people
 757 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 758 * will allow a root program to temporarily drop privileges and be able to
 759 * regain them by swapping the real and effective uid.  
 760 */
 761SYSCALL_DEFINE1(setuid, uid_t, uid)
 762{
 763	struct user_namespace *ns = current_user_ns();
 764	const struct cred *old;
 765	struct cred *new;
 766	int retval;
 767	kuid_t kuid;
 768
 769	kuid = make_kuid(ns, uid);
 770	if (!uid_valid(kuid))
 771		return -EINVAL;
 772
 773	new = prepare_creds();
 774	if (!new)
 775		return -ENOMEM;
 776	old = current_cred();
 777
 778	retval = -EPERM;
 779	if (nsown_capable(CAP_SETUID)) {
 780		new->suid = new->uid = kuid;
 781		if (!uid_eq(kuid, old->uid)) {
 782			retval = set_user(new);
 783			if (retval < 0)
 784				goto error;
 785		}
 786	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 787		goto error;
 788	}
 789
 790	new->fsuid = new->euid = kuid;
 791
 792	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 793	if (retval < 0)
 794		goto error;
 795
 796	return commit_creds(new);
 797
 798error:
 799	abort_creds(new);
 800	return retval;
 801}
 802
 
 
 
 
 
 803
 804/*
 805 * This function implements a generic ability to update ruid, euid,
 806 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 807 */
 808SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 809{
 810	struct user_namespace *ns = current_user_ns();
 811	const struct cred *old;
 812	struct cred *new;
 813	int retval;
 814	kuid_t kruid, keuid, ksuid;
 815
 816	kruid = make_kuid(ns, ruid);
 817	keuid = make_kuid(ns, euid);
 818	ksuid = make_kuid(ns, suid);
 819
 820	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 821		return -EINVAL;
 822
 823	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 824		return -EINVAL;
 825
 826	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 827		return -EINVAL;
 828
 829	new = prepare_creds();
 830	if (!new)
 831		return -ENOMEM;
 832
 833	old = current_cred();
 834
 835	retval = -EPERM;
 836	if (!nsown_capable(CAP_SETUID)) {
 837		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 838		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 839			goto error;
 840		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 841		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 842			goto error;
 843		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 844		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 845			goto error;
 846	}
 847
 848	if (ruid != (uid_t) -1) {
 849		new->uid = kruid;
 850		if (!uid_eq(kruid, old->uid)) {
 851			retval = set_user(new);
 852			if (retval < 0)
 853				goto error;
 854		}
 855	}
 856	if (euid != (uid_t) -1)
 857		new->euid = keuid;
 858	if (suid != (uid_t) -1)
 859		new->suid = ksuid;
 860	new->fsuid = new->euid;
 861
 862	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 863	if (retval < 0)
 864		goto error;
 865
 866	return commit_creds(new);
 867
 868error:
 869	abort_creds(new);
 870	return retval;
 871}
 872
 
 
 
 
 
 873SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 874{
 875	const struct cred *cred = current_cred();
 876	int retval;
 877	uid_t ruid, euid, suid;
 878
 879	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 880	euid = from_kuid_munged(cred->user_ns, cred->euid);
 881	suid = from_kuid_munged(cred->user_ns, cred->suid);
 882
 883	if (!(retval   = put_user(ruid, ruidp)) &&
 884	    !(retval   = put_user(euid, euidp)))
 885		retval = put_user(suid, suidp);
 886
 
 
 887	return retval;
 888}
 889
 890/*
 891 * Same as above, but for rgid, egid, sgid.
 892 */
 893SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 894{
 895	struct user_namespace *ns = current_user_ns();
 896	const struct cred *old;
 897	struct cred *new;
 898	int retval;
 899	kgid_t krgid, kegid, ksgid;
 900
 901	krgid = make_kgid(ns, rgid);
 902	kegid = make_kgid(ns, egid);
 903	ksgid = make_kgid(ns, sgid);
 904
 905	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 906		return -EINVAL;
 907	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 908		return -EINVAL;
 909	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 910		return -EINVAL;
 911
 912	new = prepare_creds();
 913	if (!new)
 914		return -ENOMEM;
 915	old = current_cred();
 916
 917	retval = -EPERM;
 918	if (!nsown_capable(CAP_SETGID)) {
 919		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 920		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 921			goto error;
 922		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 923		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 924			goto error;
 925		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 926		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 927			goto error;
 928	}
 929
 930	if (rgid != (gid_t) -1)
 931		new->gid = krgid;
 932	if (egid != (gid_t) -1)
 933		new->egid = kegid;
 934	if (sgid != (gid_t) -1)
 935		new->sgid = ksgid;
 936	new->fsgid = new->egid;
 937
 
 
 
 
 938	return commit_creds(new);
 939
 940error:
 941	abort_creds(new);
 942	return retval;
 943}
 944
 
 
 
 
 
 945SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 946{
 947	const struct cred *cred = current_cred();
 948	int retval;
 949	gid_t rgid, egid, sgid;
 950
 951	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 952	egid = from_kgid_munged(cred->user_ns, cred->egid);
 953	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 954
 955	if (!(retval   = put_user(rgid, rgidp)) &&
 956	    !(retval   = put_user(egid, egidp)))
 957		retval = put_user(sgid, sgidp);
 
 
 
 958
 959	return retval;
 960}
 961
 962
 963/*
 964 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 965 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 966 * whatever uid it wants to). It normally shadows "euid", except when
 967 * explicitly set by setfsuid() or for access..
 968 */
 969SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 970{
 971	const struct cred *old;
 972	struct cred *new;
 973	uid_t old_fsuid;
 974	kuid_t kuid;
 975
 976	old = current_cred();
 977	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 978
 979	kuid = make_kuid(old->user_ns, uid);
 980	if (!uid_valid(kuid))
 981		return old_fsuid;
 982
 983	new = prepare_creds();
 984	if (!new)
 985		return old_fsuid;
 986
 987	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 988	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 989	    nsown_capable(CAP_SETUID)) {
 990		if (!uid_eq(kuid, old->fsuid)) {
 991			new->fsuid = kuid;
 992			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 993				goto change_okay;
 994		}
 995	}
 996
 997	abort_creds(new);
 998	return old_fsuid;
 999
1000change_okay:
1001	commit_creds(new);
1002	return old_fsuid;
1003}
1004
 
 
 
 
 
1005/*
1006 * Samma på svenska..
1007 */
1008SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1009{
1010	const struct cred *old;
1011	struct cred *new;
1012	gid_t old_fsgid;
1013	kgid_t kgid;
1014
1015	old = current_cred();
1016	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1017
1018	kgid = make_kgid(old->user_ns, gid);
1019	if (!gid_valid(kgid))
1020		return old_fsgid;
1021
1022	new = prepare_creds();
1023	if (!new)
1024		return old_fsgid;
1025
1026	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1027	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1028	    nsown_capable(CAP_SETGID)) {
1029		if (!gid_eq(kgid, old->fsgid)) {
1030			new->fsgid = kgid;
1031			goto change_okay;
 
1032		}
1033	}
1034
1035	abort_creds(new);
1036	return old_fsgid;
1037
1038change_okay:
1039	commit_creds(new);
1040	return old_fsgid;
1041}
1042
1043void do_sys_times(struct tms *tms)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044{
1045	cputime_t tgutime, tgstime, cutime, cstime;
 
1046
1047	spin_lock_irq(&current->sighand->siglock);
1048	thread_group_times(current, &tgutime, &tgstime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049	cutime = current->signal->cutime;
1050	cstime = current->signal->cstime;
1051	spin_unlock_irq(&current->sighand->siglock);
1052	tms->tms_utime = cputime_to_clock_t(tgutime);
1053	tms->tms_stime = cputime_to_clock_t(tgstime);
1054	tms->tms_cutime = cputime_to_clock_t(cutime);
1055	tms->tms_cstime = cputime_to_clock_t(cstime);
1056}
1057
1058SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1059{
1060	if (tbuf) {
1061		struct tms tmp;
1062
1063		do_sys_times(&tmp);
1064		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1065			return -EFAULT;
1066	}
1067	force_successful_syscall_return();
1068	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1069}
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071/*
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1075 *
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1079 *
1080 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1081 * LBT 04.03.94
1082 */
1083SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1084{
1085	struct task_struct *p;
1086	struct task_struct *group_leader = current->group_leader;
1087	struct pid *pgrp;
1088	int err;
1089
1090	if (!pid)
1091		pid = task_pid_vnr(group_leader);
1092	if (!pgid)
1093		pgid = pid;
1094	if (pgid < 0)
1095		return -EINVAL;
1096	rcu_read_lock();
1097
1098	/* From this point forward we keep holding onto the tasklist lock
1099	 * so that our parent does not change from under us. -DaveM
1100	 */
1101	write_lock_irq(&tasklist_lock);
1102
1103	err = -ESRCH;
1104	p = find_task_by_vpid(pid);
1105	if (!p)
1106		goto out;
1107
1108	err = -EINVAL;
1109	if (!thread_group_leader(p))
1110		goto out;
1111
1112	if (same_thread_group(p->real_parent, group_leader)) {
1113		err = -EPERM;
1114		if (task_session(p) != task_session(group_leader))
1115			goto out;
1116		err = -EACCES;
1117		if (p->did_exec)
1118			goto out;
1119	} else {
1120		err = -ESRCH;
1121		if (p != group_leader)
1122			goto out;
1123	}
1124
1125	err = -EPERM;
1126	if (p->signal->leader)
1127		goto out;
1128
1129	pgrp = task_pid(p);
1130	if (pgid != pid) {
1131		struct task_struct *g;
1132
1133		pgrp = find_vpid(pgid);
1134		g = pid_task(pgrp, PIDTYPE_PGID);
1135		if (!g || task_session(g) != task_session(group_leader))
1136			goto out;
1137	}
1138
1139	err = security_task_setpgid(p, pgid);
1140	if (err)
1141		goto out;
1142
1143	if (task_pgrp(p) != pgrp)
1144		change_pid(p, PIDTYPE_PGID, pgrp);
1145
1146	err = 0;
1147out:
1148	/* All paths lead to here, thus we are safe. -DaveM */
1149	write_unlock_irq(&tasklist_lock);
1150	rcu_read_unlock();
1151	return err;
1152}
1153
1154SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155{
1156	struct task_struct *p;
1157	struct pid *grp;
1158	int retval;
1159
1160	rcu_read_lock();
1161	if (!pid)
1162		grp = task_pgrp(current);
1163	else {
1164		retval = -ESRCH;
1165		p = find_task_by_vpid(pid);
1166		if (!p)
1167			goto out;
1168		grp = task_pgrp(p);
1169		if (!grp)
1170			goto out;
1171
1172		retval = security_task_getpgid(p);
1173		if (retval)
1174			goto out;
1175	}
1176	retval = pid_vnr(grp);
1177out:
1178	rcu_read_unlock();
1179	return retval;
1180}
1181
 
 
 
 
 
1182#ifdef __ARCH_WANT_SYS_GETPGRP
1183
1184SYSCALL_DEFINE0(getpgrp)
1185{
1186	return sys_getpgid(0);
1187}
1188
1189#endif
1190
1191SYSCALL_DEFINE1(getsid, pid_t, pid)
1192{
1193	struct task_struct *p;
1194	struct pid *sid;
1195	int retval;
1196
1197	rcu_read_lock();
1198	if (!pid)
1199		sid = task_session(current);
1200	else {
1201		retval = -ESRCH;
1202		p = find_task_by_vpid(pid);
1203		if (!p)
1204			goto out;
1205		sid = task_session(p);
1206		if (!sid)
1207			goto out;
1208
1209		retval = security_task_getsid(p);
1210		if (retval)
1211			goto out;
1212	}
1213	retval = pid_vnr(sid);
1214out:
1215	rcu_read_unlock();
1216	return retval;
1217}
1218
1219SYSCALL_DEFINE0(setsid)
 
 
 
 
 
 
 
 
 
 
 
1220{
1221	struct task_struct *group_leader = current->group_leader;
1222	struct pid *sid = task_pid(group_leader);
1223	pid_t session = pid_vnr(sid);
1224	int err = -EPERM;
1225
1226	write_lock_irq(&tasklist_lock);
1227	/* Fail if I am already a session leader */
1228	if (group_leader->signal->leader)
1229		goto out;
1230
1231	/* Fail if a process group id already exists that equals the
1232	 * proposed session id.
1233	 */
1234	if (pid_task(sid, PIDTYPE_PGID))
1235		goto out;
1236
1237	group_leader->signal->leader = 1;
1238	__set_special_pids(sid);
1239
1240	proc_clear_tty(group_leader);
1241
1242	err = session;
1243out:
1244	write_unlock_irq(&tasklist_lock);
1245	if (err > 0) {
1246		proc_sid_connector(group_leader);
1247		sched_autogroup_create_attach(group_leader);
1248	}
1249	return err;
1250}
1251
 
 
 
 
 
1252DECLARE_RWSEM(uts_sem);
1253
1254#ifdef COMPAT_UTS_MACHINE
1255#define override_architecture(name) \
1256	(personality(current->personality) == PER_LINUX32 && \
1257	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1258		      sizeof(COMPAT_UTS_MACHINE)))
1259#else
1260#define override_architecture(name)	0
1261#endif
1262
1263/*
1264 * Work around broken programs that cannot handle "Linux 3.0".
1265 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 
 
1266 */
1267static int override_release(char __user *release, int len)
1268{
1269	int ret = 0;
1270	char buf[65];
1271
1272	if (current->personality & UNAME26) {
1273		char *rest = UTS_RELEASE;
 
1274		int ndots = 0;
1275		unsigned v;
 
1276
1277		while (*rest) {
1278			if (*rest == '.' && ++ndots >= 3)
1279				break;
1280			if (!isdigit(*rest) && *rest != '.')
1281				break;
1282			rest++;
1283		}
1284		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1285		snprintf(buf, len, "2.6.%u%s", v, rest);
1286		ret = copy_to_user(release, buf, len);
 
1287	}
1288	return ret;
1289}
1290
1291SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1292{
1293	int errno = 0;
1294
1295	down_read(&uts_sem);
1296	if (copy_to_user(name, utsname(), sizeof *name))
1297		errno = -EFAULT;
1298	up_read(&uts_sem);
 
 
1299
1300	if (!errno && override_release(name->release, sizeof(name->release)))
1301		errno = -EFAULT;
1302	if (!errno && override_architecture(name))
1303		errno = -EFAULT;
1304	return errno;
1305}
1306
1307#ifdef __ARCH_WANT_SYS_OLD_UNAME
1308/*
1309 * Old cruft
1310 */
1311SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1312{
1313	int error = 0;
1314
1315	if (!name)
1316		return -EFAULT;
1317
1318	down_read(&uts_sem);
1319	if (copy_to_user(name, utsname(), sizeof(*name)))
1320		error = -EFAULT;
1321	up_read(&uts_sem);
 
 
1322
1323	if (!error && override_release(name->release, sizeof(name->release)))
1324		error = -EFAULT;
1325	if (!error && override_architecture(name))
1326		error = -EFAULT;
1327	return error;
1328}
1329
1330SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1331{
1332	int error;
1333
1334	if (!name)
1335		return -EFAULT;
1336	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1337		return -EFAULT;
1338
1339	down_read(&uts_sem);
1340	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1341			       __OLD_UTS_LEN);
1342	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1343	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1344				__OLD_UTS_LEN);
1345	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1346	error |= __copy_to_user(&name->release, &utsname()->release,
1347				__OLD_UTS_LEN);
1348	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1349	error |= __copy_to_user(&name->version, &utsname()->version,
1350				__OLD_UTS_LEN);
1351	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1352	error |= __copy_to_user(&name->machine, &utsname()->machine,
1353				__OLD_UTS_LEN);
1354	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1355	up_read(&uts_sem);
 
 
1356
1357	if (!error && override_architecture(name))
1358		error = -EFAULT;
1359	if (!error && override_release(name->release, sizeof(name->release)))
1360		error = -EFAULT;
1361	return error ? -EFAULT : 0;
1362}
1363#endif
1364
1365SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1366{
1367	int errno;
1368	char tmp[__NEW_UTS_LEN];
1369
1370	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1371		return -EPERM;
1372
1373	if (len < 0 || len > __NEW_UTS_LEN)
1374		return -EINVAL;
1375	down_write(&uts_sem);
1376	errno = -EFAULT;
1377	if (!copy_from_user(tmp, name, len)) {
1378		struct new_utsname *u = utsname();
1379
 
 
1380		memcpy(u->nodename, tmp, len);
1381		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1382		errno = 0;
1383		uts_proc_notify(UTS_PROC_HOSTNAME);
 
1384	}
1385	up_write(&uts_sem);
1386	return errno;
1387}
1388
1389#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1390
1391SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1392{
1393	int i, errno;
1394	struct new_utsname *u;
 
1395
1396	if (len < 0)
1397		return -EINVAL;
1398	down_read(&uts_sem);
1399	u = utsname();
1400	i = 1 + strlen(u->nodename);
1401	if (i > len)
1402		i = len;
1403	errno = 0;
1404	if (copy_to_user(name, u->nodename, i))
1405		errno = -EFAULT;
1406	up_read(&uts_sem);
1407	return errno;
 
 
1408}
1409
1410#endif
1411
1412/*
1413 * Only setdomainname; getdomainname can be implemented by calling
1414 * uname()
1415 */
1416SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1417{
1418	int errno;
1419	char tmp[__NEW_UTS_LEN];
1420
1421	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1422		return -EPERM;
1423	if (len < 0 || len > __NEW_UTS_LEN)
1424		return -EINVAL;
1425
1426	down_write(&uts_sem);
1427	errno = -EFAULT;
1428	if (!copy_from_user(tmp, name, len)) {
1429		struct new_utsname *u = utsname();
1430
 
 
1431		memcpy(u->domainname, tmp, len);
1432		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1433		errno = 0;
1434		uts_proc_notify(UTS_PROC_DOMAINNAME);
 
1435	}
1436	up_write(&uts_sem);
1437	return errno;
1438}
1439
1440SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1441{
1442	struct rlimit value;
1443	int ret;
1444
1445	ret = do_prlimit(current, resource, NULL, &value);
1446	if (!ret)
1447		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1448
1449	return ret;
1450}
1451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1453
1454/*
1455 *	Back compatibility for getrlimit. Needed for some apps.
1456 */
1457 
1458SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1459		struct rlimit __user *, rlim)
1460{
1461	struct rlimit x;
1462	if (resource >= RLIM_NLIMITS)
1463		return -EINVAL;
1464
 
1465	task_lock(current->group_leader);
1466	x = current->signal->rlim[resource];
1467	task_unlock(current->group_leader);
1468	if (x.rlim_cur > 0x7FFFFFFF)
1469		x.rlim_cur = 0x7FFFFFFF;
1470	if (x.rlim_max > 0x7FFFFFFF)
1471		x.rlim_max = 0x7FFFFFFF;
1472	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1473}
1474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475#endif
1476
1477static inline bool rlim64_is_infinity(__u64 rlim64)
1478{
1479#if BITS_PER_LONG < 64
1480	return rlim64 >= ULONG_MAX;
1481#else
1482	return rlim64 == RLIM64_INFINITY;
1483#endif
1484}
1485
1486static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1487{
1488	if (rlim->rlim_cur == RLIM_INFINITY)
1489		rlim64->rlim_cur = RLIM64_INFINITY;
1490	else
1491		rlim64->rlim_cur = rlim->rlim_cur;
1492	if (rlim->rlim_max == RLIM_INFINITY)
1493		rlim64->rlim_max = RLIM64_INFINITY;
1494	else
1495		rlim64->rlim_max = rlim->rlim_max;
1496}
1497
1498static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1499{
1500	if (rlim64_is_infinity(rlim64->rlim_cur))
1501		rlim->rlim_cur = RLIM_INFINITY;
1502	else
1503		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1504	if (rlim64_is_infinity(rlim64->rlim_max))
1505		rlim->rlim_max = RLIM_INFINITY;
1506	else
1507		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1508}
1509
1510/* make sure you are allowed to change @tsk limits before calling this */
1511int do_prlimit(struct task_struct *tsk, unsigned int resource,
1512		struct rlimit *new_rlim, struct rlimit *old_rlim)
1513{
1514	struct rlimit *rlim;
1515	int retval = 0;
1516
1517	if (resource >= RLIM_NLIMITS)
1518		return -EINVAL;
1519	if (new_rlim) {
1520		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1521			return -EINVAL;
1522		if (resource == RLIMIT_NOFILE &&
1523				new_rlim->rlim_max > sysctl_nr_open)
1524			return -EPERM;
1525	}
1526
1527	/* protect tsk->signal and tsk->sighand from disappearing */
1528	read_lock(&tasklist_lock);
1529	if (!tsk->sighand) {
1530		retval = -ESRCH;
1531		goto out;
1532	}
1533
1534	rlim = tsk->signal->rlim + resource;
1535	task_lock(tsk->group_leader);
1536	if (new_rlim) {
1537		/* Keep the capable check against init_user_ns until
1538		   cgroups can contain all limits */
1539		if (new_rlim->rlim_max > rlim->rlim_max &&
1540				!capable(CAP_SYS_RESOURCE))
1541			retval = -EPERM;
1542		if (!retval)
1543			retval = security_task_setrlimit(tsk->group_leader,
1544					resource, new_rlim);
1545		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1546			/*
1547			 * The caller is asking for an immediate RLIMIT_CPU
1548			 * expiry.  But we use the zero value to mean "it was
1549			 * never set".  So let's cheat and make it one second
1550			 * instead
1551			 */
1552			new_rlim->rlim_cur = 1;
1553		}
1554	}
1555	if (!retval) {
1556		if (old_rlim)
1557			*old_rlim = *rlim;
1558		if (new_rlim)
1559			*rlim = *new_rlim;
1560	}
1561	task_unlock(tsk->group_leader);
1562
1563	/*
1564	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1565	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1566	 * very long-standing error, and fixing it now risks breakage of
1567	 * applications, so we live with it
1568	 */
1569	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1570			 new_rlim->rlim_cur != RLIM_INFINITY)
 
1571		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1572out:
1573	read_unlock(&tasklist_lock);
1574	return retval;
1575}
1576
1577/* rcu lock must be held */
1578static int check_prlimit_permission(struct task_struct *task)
 
1579{
1580	const struct cred *cred = current_cred(), *tcred;
 
1581
1582	if (current == task)
1583		return 0;
1584
1585	tcred = __task_cred(task);
1586	if (uid_eq(cred->uid, tcred->euid) &&
1587	    uid_eq(cred->uid, tcred->suid) &&
1588	    uid_eq(cred->uid, tcred->uid)  &&
1589	    gid_eq(cred->gid, tcred->egid) &&
1590	    gid_eq(cred->gid, tcred->sgid) &&
1591	    gid_eq(cred->gid, tcred->gid))
1592		return 0;
1593	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1594		return 0;
1595
1596	return -EPERM;
1597}
1598
1599SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1600		const struct rlimit64 __user *, new_rlim,
1601		struct rlimit64 __user *, old_rlim)
1602{
1603	struct rlimit64 old64, new64;
1604	struct rlimit old, new;
1605	struct task_struct *tsk;
 
1606	int ret;
1607
 
 
 
1608	if (new_rlim) {
1609		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1610			return -EFAULT;
1611		rlim64_to_rlim(&new64, &new);
 
1612	}
1613
1614	rcu_read_lock();
1615	tsk = pid ? find_task_by_vpid(pid) : current;
1616	if (!tsk) {
1617		rcu_read_unlock();
1618		return -ESRCH;
1619	}
1620	ret = check_prlimit_permission(tsk);
1621	if (ret) {
1622		rcu_read_unlock();
1623		return ret;
1624	}
1625	get_task_struct(tsk);
1626	rcu_read_unlock();
1627
1628	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1629			old_rlim ? &old : NULL);
1630
1631	if (!ret && old_rlim) {
1632		rlim_to_rlim64(&old, &old64);
1633		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1634			ret = -EFAULT;
1635	}
1636
1637	put_task_struct(tsk);
1638	return ret;
1639}
1640
1641SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1642{
1643	struct rlimit new_rlim;
1644
1645	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1646		return -EFAULT;
1647	return do_prlimit(current, resource, &new_rlim, NULL);
1648}
1649
1650/*
1651 * It would make sense to put struct rusage in the task_struct,
1652 * except that would make the task_struct be *really big*.  After
1653 * task_struct gets moved into malloc'ed memory, it would
1654 * make sense to do this.  It will make moving the rest of the information
1655 * a lot simpler!  (Which we're not doing right now because we're not
1656 * measuring them yet).
1657 *
1658 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1659 * races with threads incrementing their own counters.  But since word
1660 * reads are atomic, we either get new values or old values and we don't
1661 * care which for the sums.  We always take the siglock to protect reading
1662 * the c* fields from p->signal from races with exit.c updating those
1663 * fields when reaping, so a sample either gets all the additions of a
1664 * given child after it's reaped, or none so this sample is before reaping.
1665 *
1666 * Locking:
1667 * We need to take the siglock for CHILDEREN, SELF and BOTH
1668 * for  the cases current multithreaded, non-current single threaded
1669 * non-current multithreaded.  Thread traversal is now safe with
1670 * the siglock held.
1671 * Strictly speaking, we donot need to take the siglock if we are current and
1672 * single threaded,  as no one else can take our signal_struct away, no one
1673 * else can  reap the  children to update signal->c* counters, and no one else
1674 * can race with the signal-> fields. If we do not take any lock, the
1675 * signal-> fields could be read out of order while another thread was just
1676 * exiting. So we should  place a read memory barrier when we avoid the lock.
1677 * On the writer side,  write memory barrier is implied in  __exit_signal
1678 * as __exit_signal releases  the siglock spinlock after updating the signal->
1679 * fields. But we don't do this yet to keep things simple.
1680 *
1681 */
1682
1683static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1684{
1685	r->ru_nvcsw += t->nvcsw;
1686	r->ru_nivcsw += t->nivcsw;
1687	r->ru_minflt += t->min_flt;
1688	r->ru_majflt += t->maj_flt;
1689	r->ru_inblock += task_io_get_inblock(t);
1690	r->ru_oublock += task_io_get_oublock(t);
1691}
1692
1693static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1694{
1695	struct task_struct *t;
1696	unsigned long flags;
1697	cputime_t tgutime, tgstime, utime, stime;
1698	unsigned long maxrss = 0;
1699
1700	memset((char *) r, 0, sizeof *r);
1701	utime = stime = 0;
1702
1703	if (who == RUSAGE_THREAD) {
1704		task_times(current, &utime, &stime);
1705		accumulate_thread_rusage(p, r);
1706		maxrss = p->signal->maxrss;
1707		goto out;
1708	}
1709
1710	if (!lock_task_sighand(p, &flags))
1711		return;
1712
1713	switch (who) {
1714		case RUSAGE_BOTH:
1715		case RUSAGE_CHILDREN:
1716			utime = p->signal->cutime;
1717			stime = p->signal->cstime;
1718			r->ru_nvcsw = p->signal->cnvcsw;
1719			r->ru_nivcsw = p->signal->cnivcsw;
1720			r->ru_minflt = p->signal->cmin_flt;
1721			r->ru_majflt = p->signal->cmaj_flt;
1722			r->ru_inblock = p->signal->cinblock;
1723			r->ru_oublock = p->signal->coublock;
1724			maxrss = p->signal->cmaxrss;
1725
1726			if (who == RUSAGE_CHILDREN)
1727				break;
1728
1729		case RUSAGE_SELF:
1730			thread_group_times(p, &tgutime, &tgstime);
1731			utime += tgutime;
1732			stime += tgstime;
1733			r->ru_nvcsw += p->signal->nvcsw;
1734			r->ru_nivcsw += p->signal->nivcsw;
1735			r->ru_minflt += p->signal->min_flt;
1736			r->ru_majflt += p->signal->maj_flt;
1737			r->ru_inblock += p->signal->inblock;
1738			r->ru_oublock += p->signal->oublock;
1739			if (maxrss < p->signal->maxrss)
1740				maxrss = p->signal->maxrss;
1741			t = p;
1742			do {
1743				accumulate_thread_rusage(t, r);
1744				t = next_thread(t);
1745			} while (t != p);
1746			break;
1747
1748		default:
1749			BUG();
1750	}
1751	unlock_task_sighand(p, &flags);
1752
1753out:
1754	cputime_to_timeval(utime, &r->ru_utime);
1755	cputime_to_timeval(stime, &r->ru_stime);
1756
1757	if (who != RUSAGE_CHILDREN) {
1758		struct mm_struct *mm = get_task_mm(p);
 
1759		if (mm) {
1760			setmax_mm_hiwater_rss(&maxrss, mm);
1761			mmput(mm);
1762		}
1763	}
1764	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1765}
1766
1767int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1768{
1769	struct rusage r;
1770	k_getrusage(p, who, &r);
 
 
 
 
 
1771	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1772}
1773
1774SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
 
1775{
 
 
1776	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1777	    who != RUSAGE_THREAD)
1778		return -EINVAL;
1779	return getrusage(current, who, ru);
 
 
1780}
 
1781
1782SYSCALL_DEFINE1(umask, int, mask)
1783{
1784	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1785	return mask;
1786}
1787
1788#ifdef CONFIG_CHECKPOINT_RESTORE
1789static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1790{
1791	struct file *exe_file;
1792	struct dentry *dentry;
 
1793	int err;
1794
1795	exe_file = fget(fd);
1796	if (!exe_file)
1797		return -EBADF;
1798
1799	dentry = exe_file->f_path.dentry;
1800
1801	/*
1802	 * Because the original mm->exe_file points to executable file, make
1803	 * sure that this one is executable as well, to avoid breaking an
1804	 * overall picture.
1805	 */
1806	err = -EACCES;
1807	if (!S_ISREG(dentry->d_inode->i_mode)	||
1808	    exe_file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1809		goto exit;
1810
1811	err = inode_permission(dentry->d_inode, MAY_EXEC);
1812	if (err)
1813		goto exit;
1814
1815	down_write(&mm->mmap_sem);
1816
1817	/*
1818	 * Forbid mm->exe_file change if old file still mapped.
1819	 */
 
1820	err = -EBUSY;
1821	if (mm->exe_file) {
1822		struct vm_area_struct *vma;
1823
1824		for (vma = mm->mmap; vma; vma = vma->vm_next)
1825			if (vma->vm_file &&
1826			    path_equal(&vma->vm_file->f_path,
1827				       &mm->exe_file->f_path))
1828				goto exit_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1829	}
1830
1831	/*
1832	 * The symlink can be changed only once, just to disallow arbitrary
1833	 * transitions malicious software might bring in. This means one
1834	 * could make a snapshot over all processes running and monitor
1835	 * /proc/pid/exe changes to notice unusual activity if needed.
1836	 */
1837	err = -EPERM;
1838	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1839		goto exit_unlock;
 
 
 
 
 
 
 
 
1840
1841	err = 0;
1842	set_mm_exe_file(mm, exe_file);
1843exit_unlock:
1844	up_write(&mm->mmap_sem);
1845
1846exit:
1847	fput(exe_file);
1848	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849}
1850
1851static int prctl_set_mm(int opt, unsigned long addr,
1852			unsigned long arg4, unsigned long arg5)
1853{
1854	unsigned long rlim = rlimit(RLIMIT_DATA);
1855	struct mm_struct *mm = current->mm;
 
 
 
 
 
1856	struct vm_area_struct *vma;
1857	int error;
1858
1859	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
 
 
1860		return -EINVAL;
1861
 
 
 
 
 
1862	if (!capable(CAP_SYS_RESOURCE))
1863		return -EPERM;
1864
1865	if (opt == PR_SET_MM_EXE_FILE)
1866		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1867
 
 
 
1868	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1869		return -EINVAL;
1870
1871	error = -EINVAL;
1872
1873	down_read(&mm->mmap_sem);
 
 
 
 
 
1874	vma = find_vma(mm, addr);
1875
 
 
 
 
 
 
 
 
 
 
 
 
 
1876	switch (opt) {
1877	case PR_SET_MM_START_CODE:
1878		mm->start_code = addr;
1879		break;
1880	case PR_SET_MM_END_CODE:
1881		mm->end_code = addr;
1882		break;
1883	case PR_SET_MM_START_DATA:
1884		mm->start_data = addr;
1885		break;
1886	case PR_SET_MM_END_DATA:
1887		mm->end_data = addr;
 
 
 
1888		break;
1889
1890	case PR_SET_MM_START_BRK:
1891		if (addr <= mm->end_data)
1892			goto out;
1893
1894		if (rlim < RLIM_INFINITY &&
1895		    (mm->brk - addr) +
1896		    (mm->end_data - mm->start_data) > rlim)
1897			goto out;
1898
1899		mm->start_brk = addr;
1900		break;
1901
1902	case PR_SET_MM_BRK:
1903		if (addr <= mm->end_data)
1904			goto out;
1905
1906		if (rlim < RLIM_INFINITY &&
1907		    (addr - mm->start_brk) +
1908		    (mm->end_data - mm->start_data) > rlim)
1909			goto out;
1910
1911		mm->brk = addr;
 
 
 
 
1912		break;
 
 
 
1913
 
 
 
 
 
1914	/*
1915	 * If command line arguments and environment
1916	 * are placed somewhere else on stack, we can
1917	 * set them up here, ARG_START/END to setup
1918	 * command line argumets and ENV_START/END
1919	 * for environment.
1920	 */
1921	case PR_SET_MM_START_STACK:
1922	case PR_SET_MM_ARG_START:
1923	case PR_SET_MM_ARG_END:
1924	case PR_SET_MM_ENV_START:
1925	case PR_SET_MM_ENV_END:
1926		if (!vma) {
1927			error = -EFAULT;
1928			goto out;
1929		}
1930		if (opt == PR_SET_MM_START_STACK)
1931			mm->start_stack = addr;
1932		else if (opt == PR_SET_MM_ARG_START)
1933			mm->arg_start = addr;
1934		else if (opt == PR_SET_MM_ARG_END)
1935			mm->arg_end = addr;
1936		else if (opt == PR_SET_MM_ENV_START)
1937			mm->env_start = addr;
1938		else if (opt == PR_SET_MM_ENV_END)
1939			mm->env_end = addr;
1940		break;
1941
1942	/*
1943	 * This doesn't move auxiliary vector itself
1944	 * since it's pinned to mm_struct, but allow
1945	 * to fill vector with new values. It's up
1946	 * to a caller to provide sane values here
1947	 * otherwise user space tools which use this
1948	 * vector might be unhappy.
1949	 */
1950	case PR_SET_MM_AUXV: {
1951		unsigned long user_auxv[AT_VECTOR_SIZE];
1952
1953		if (arg4 > sizeof(user_auxv))
1954			goto out;
1955		up_read(&mm->mmap_sem);
1956
1957		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1958			return -EFAULT;
1959
1960		/* Make sure the last entry is always AT_NULL */
1961		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1962		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1963
1964		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1965
1966		task_lock(current);
1967		memcpy(mm->saved_auxv, user_auxv, arg4);
1968		task_unlock(current);
1969
1970		return 0;
1971	}
1972	default:
1973		goto out;
1974	}
1975
 
 
 
 
 
 
 
 
 
 
 
 
1976	error = 0;
1977out:
1978	up_read(&mm->mmap_sem);
 
1979	return error;
1980}
1981
 
1982static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1983{
1984	return put_user(me->clear_child_tid, tid_addr);
1985}
 
 
 
 
 
 
1986
1987#else /* CONFIG_CHECKPOINT_RESTORE */
1988static int prctl_set_mm(int opt, unsigned long addr,
1989			unsigned long arg4, unsigned long arg5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1990{
1991	return -EINVAL;
1992}
1993static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
 
 
1994{
1995	return -EINVAL;
1996}
1997#endif
 
1998
1999SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2000		unsigned long, arg4, unsigned long, arg5)
2001{
2002	struct task_struct *me = current;
2003	unsigned char comm[sizeof(me->comm)];
2004	long error;
2005
2006	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2007	if (error != -ENOSYS)
2008		return error;
2009
2010	error = 0;
2011	switch (option) {
2012		case PR_SET_PDEATHSIG:
2013			if (!valid_signal(arg2)) {
2014				error = -EINVAL;
2015				break;
2016			}
2017			me->pdeath_signal = arg2;
2018			error = 0;
2019			break;
2020		case PR_GET_PDEATHSIG:
2021			error = put_user(me->pdeath_signal, (int __user *)arg2);
2022			break;
2023		case PR_GET_DUMPABLE:
2024			error = get_dumpable(me->mm);
2025			break;
2026		case PR_SET_DUMPABLE:
2027			if (arg2 < 0 || arg2 > 1) {
2028				error = -EINVAL;
2029				break;
2030			}
2031			set_dumpable(me->mm, arg2);
2032			error = 0;
2033			break;
2034
2035		case PR_SET_UNALIGN:
2036			error = SET_UNALIGN_CTL(me, arg2);
2037			break;
2038		case PR_GET_UNALIGN:
2039			error = GET_UNALIGN_CTL(me, arg2);
2040			break;
2041		case PR_SET_FPEMU:
2042			error = SET_FPEMU_CTL(me, arg2);
2043			break;
2044		case PR_GET_FPEMU:
2045			error = GET_FPEMU_CTL(me, arg2);
2046			break;
2047		case PR_SET_FPEXC:
2048			error = SET_FPEXC_CTL(me, arg2);
2049			break;
2050		case PR_GET_FPEXC:
2051			error = GET_FPEXC_CTL(me, arg2);
2052			break;
2053		case PR_GET_TIMING:
2054			error = PR_TIMING_STATISTICAL;
2055			break;
2056		case PR_SET_TIMING:
2057			if (arg2 != PR_TIMING_STATISTICAL)
2058				error = -EINVAL;
2059			else
2060				error = 0;
2061			break;
2062
2063		case PR_SET_NAME:
2064			comm[sizeof(me->comm)-1] = 0;
2065			if (strncpy_from_user(comm, (char __user *)arg2,
2066					      sizeof(me->comm) - 1) < 0)
2067				return -EFAULT;
2068			set_task_comm(me, comm);
2069			proc_comm_connector(me);
2070			return 0;
2071		case PR_GET_NAME:
2072			get_task_comm(comm, me);
2073			if (copy_to_user((char __user *)arg2, comm,
2074					 sizeof(comm)))
2075				return -EFAULT;
2076			return 0;
2077		case PR_GET_ENDIAN:
2078			error = GET_ENDIAN(me, arg2);
2079			break;
2080		case PR_SET_ENDIAN:
2081			error = SET_ENDIAN(me, arg2);
 
 
 
 
 
 
 
 
 
 
2082			break;
 
 
 
2083
2084		case PR_GET_SECCOMP:
2085			error = prctl_get_seccomp();
2086			break;
2087		case PR_SET_SECCOMP:
2088			error = prctl_set_seccomp(arg2, (char __user *)arg3);
2089			break;
2090		case PR_GET_TSC:
2091			error = GET_TSC_CTL(arg2);
2092			break;
2093		case PR_SET_TSC:
2094			error = SET_TSC_CTL(arg2);
2095			break;
2096		case PR_TASK_PERF_EVENTS_DISABLE:
2097			error = perf_event_task_disable();
2098			break;
2099		case PR_TASK_PERF_EVENTS_ENABLE:
2100			error = perf_event_task_enable();
2101			break;
2102		case PR_GET_TIMERSLACK:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103			error = current->timer_slack_ns;
2104			break;
2105		case PR_SET_TIMERSLACK:
2106			if (arg2 <= 0)
2107				current->timer_slack_ns =
2108					current->default_timer_slack_ns;
2109			else
2110				current->timer_slack_ns = arg2;
2111			error = 0;
2112			break;
2113		case PR_MCE_KILL:
2114			if (arg4 | arg5)
2115				return -EINVAL;
2116			switch (arg2) {
2117			case PR_MCE_KILL_CLEAR:
2118				if (arg3 != 0)
2119					return -EINVAL;
2120				current->flags &= ~PF_MCE_PROCESS;
2121				break;
2122			case PR_MCE_KILL_SET:
2123				current->flags |= PF_MCE_PROCESS;
2124				if (arg3 == PR_MCE_KILL_EARLY)
2125					current->flags |= PF_MCE_EARLY;
2126				else if (arg3 == PR_MCE_KILL_LATE)
2127					current->flags &= ~PF_MCE_EARLY;
2128				else if (arg3 == PR_MCE_KILL_DEFAULT)
2129					current->flags &=
2130						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2131				else
2132					return -EINVAL;
2133				break;
2134			default:
2135				return -EINVAL;
2136			}
2137			error = 0;
2138			break;
2139		case PR_MCE_KILL_GET:
2140			if (arg2 | arg3 | arg4 | arg5)
2141				return -EINVAL;
2142			if (current->flags & PF_MCE_PROCESS)
2143				error = (current->flags & PF_MCE_EARLY) ?
2144					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
 
 
 
2145			else
2146				error = PR_MCE_KILL_DEFAULT;
2147			break;
2148		case PR_SET_MM:
2149			error = prctl_set_mm(arg2, arg3, arg4, arg5);
2150			break;
2151		case PR_GET_TID_ADDRESS:
2152			error = prctl_get_tid_address(me, (int __user **)arg2);
2153			break;
2154		case PR_SET_CHILD_SUBREAPER:
2155			me->signal->is_child_subreaper = !!arg2;
2156			error = 0;
2157			break;
2158		case PR_GET_CHILD_SUBREAPER:
2159			error = put_user(me->signal->is_child_subreaper,
2160					 (int __user *) arg2);
2161			break;
2162		case PR_SET_NO_NEW_PRIVS:
2163			if (arg2 != 1 || arg3 || arg4 || arg5)
2164				return -EINVAL;
2165
2166			current->no_new_privs = 1;
2167			break;
2168		case PR_GET_NO_NEW_PRIVS:
2169			if (arg2 || arg3 || arg4 || arg5)
2170				return -EINVAL;
2171			return current->no_new_privs ? 1 : 0;
2172		default:
2173			error = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175	}
2176	return error;
2177}
2178
2179SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2180		struct getcpu_cache __user *, unused)
2181{
2182	int err = 0;
2183	int cpu = raw_smp_processor_id();
 
2184	if (cpup)
2185		err |= put_user(cpu, cpup);
2186	if (nodep)
2187		err |= put_user(cpu_to_node(cpu), nodep);
2188	return err ? -EFAULT : 0;
2189}
2190
2191char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2192
2193static void argv_cleanup(struct subprocess_info *info)
2194{
2195	argv_free(info->argv);
2196}
2197
2198/**
2199 * orderly_poweroff - Trigger an orderly system poweroff
2200 * @force: force poweroff if command execution fails
2201 *
2202 * This may be called from any context to trigger a system shutdown.
2203 * If the orderly shutdown fails, it will force an immediate shutdown.
2204 */
2205int orderly_poweroff(bool force)
2206{
2207	int argc;
2208	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2209	static char *envp[] = {
2210		"HOME=/",
2211		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2212		NULL
2213	};
2214	int ret = -ENOMEM;
 
 
 
2215
2216	if (argv == NULL) {
2217		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2218		       __func__, poweroff_cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
2219		goto out;
 
 
 
 
 
 
 
 
 
2220	}
2221
2222	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_NO_WAIT,
2223				      NULL, argv_cleanup, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224out:
2225	if (likely(!ret))
2226		return 0;
2227
2228	if (ret == -ENOMEM)
2229		argv_free(argv);
 
2230
2231	if (force) {
2232		printk(KERN_WARNING "Failed to start orderly shutdown: "
2233		       "forcing the issue\n");
2234
2235		/* I guess this should try to kick off some daemon to
2236		   sync and poweroff asap.  Or not even bother syncing
2237		   if we're doing an emergency shutdown? */
2238		emergency_sync();
2239		kernel_power_off();
2240	}
2241
2242	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243}
2244EXPORT_SYMBOL_GPL(orderly_poweroff);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/kernel/sys.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/utsname.h>
  11#include <linux/mman.h>
  12#include <linux/reboot.h>
  13#include <linux/prctl.h>
  14#include <linux/highuid.h>
  15#include <linux/fs.h>
  16#include <linux/kmod.h>
  17#include <linux/perf_event.h>
  18#include <linux/resource.h>
  19#include <linux/kernel.h>
 
  20#include <linux/workqueue.h>
  21#include <linux/capability.h>
  22#include <linux/device.h>
  23#include <linux/key.h>
  24#include <linux/times.h>
  25#include <linux/posix-timers.h>
  26#include <linux/security.h>
  27#include <linux/dcookies.h>
  28#include <linux/suspend.h>
  29#include <linux/tty.h>
  30#include <linux/signal.h>
  31#include <linux/cn_proc.h>
  32#include <linux/getcpu.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/seccomp.h>
  35#include <linux/cpu.h>
  36#include <linux/personality.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39#include <linux/file.h>
  40#include <linux/mount.h>
  41#include <linux/gfp.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/version.h>
  44#include <linux/ctype.h>
  45
  46#include <linux/compat.h>
  47#include <linux/syscalls.h>
  48#include <linux/kprobes.h>
  49#include <linux/user_namespace.h>
  50#include <linux/time_namespace.h>
  51#include <linux/binfmts.h>
  52
  53#include <linux/sched.h>
  54#include <linux/sched/autogroup.h>
  55#include <linux/sched/loadavg.h>
  56#include <linux/sched/stat.h>
  57#include <linux/sched/mm.h>
  58#include <linux/sched/coredump.h>
  59#include <linux/sched/task.h>
  60#include <linux/sched/cputime.h>
  61#include <linux/rcupdate.h>
  62#include <linux/uidgid.h>
  63#include <linux/cred.h>
  64
  65#include <linux/nospec.h>
  66
  67#include <linux/kmsg_dump.h>
  68/* Move somewhere else to avoid recompiling? */
  69#include <generated/utsrelease.h>
  70
  71#include <linux/uaccess.h>
  72#include <asm/io.h>
  73#include <asm/unistd.h>
  74
  75#include "uid16.h"
  76
  77#ifndef SET_UNALIGN_CTL
  78# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  79#endif
  80#ifndef GET_UNALIGN_CTL
  81# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  82#endif
  83#ifndef SET_FPEMU_CTL
  84# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  85#endif
  86#ifndef GET_FPEMU_CTL
  87# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  88#endif
  89#ifndef SET_FPEXC_CTL
  90# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  91#endif
  92#ifndef GET_FPEXC_CTL
  93# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  94#endif
  95#ifndef GET_ENDIAN
  96# define GET_ENDIAN(a, b)	(-EINVAL)
  97#endif
  98#ifndef SET_ENDIAN
  99# define SET_ENDIAN(a, b)	(-EINVAL)
 100#endif
 101#ifndef GET_TSC_CTL
 102# define GET_TSC_CTL(a)		(-EINVAL)
 103#endif
 104#ifndef SET_TSC_CTL
 105# define SET_TSC_CTL(a)		(-EINVAL)
 106#endif
 107#ifndef GET_FP_MODE
 108# define GET_FP_MODE(a)		(-EINVAL)
 109#endif
 110#ifndef SET_FP_MODE
 111# define SET_FP_MODE(a,b)	(-EINVAL)
 112#endif
 113#ifndef SVE_SET_VL
 114# define SVE_SET_VL(a)		(-EINVAL)
 115#endif
 116#ifndef SVE_GET_VL
 117# define SVE_GET_VL()		(-EINVAL)
 118#endif
 119#ifndef PAC_RESET_KEYS
 120# define PAC_RESET_KEYS(a, b)	(-EINVAL)
 121#endif
 122#ifndef SET_TAGGED_ADDR_CTRL
 123# define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
 124#endif
 125#ifndef GET_TAGGED_ADDR_CTRL
 126# define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
 127#endif
 128
 129/*
 130 * this is where the system-wide overflow UID and GID are defined, for
 131 * architectures that now have 32-bit UID/GID but didn't in the past
 132 */
 133
 134int overflowuid = DEFAULT_OVERFLOWUID;
 135int overflowgid = DEFAULT_OVERFLOWGID;
 136
 137EXPORT_SYMBOL(overflowuid);
 138EXPORT_SYMBOL(overflowgid);
 139
 140/*
 141 * the same as above, but for filesystems which can only store a 16-bit
 142 * UID and GID. as such, this is needed on all architectures
 143 */
 144
 145int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 146int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
 147
 148EXPORT_SYMBOL(fs_overflowuid);
 149EXPORT_SYMBOL(fs_overflowgid);
 150
 151/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152 * Returns true if current's euid is same as p's uid or euid,
 153 * or has CAP_SYS_NICE to p's user_ns.
 154 *
 155 * Called with rcu_read_lock, creds are safe
 156 */
 157static bool set_one_prio_perm(struct task_struct *p)
 158{
 159	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 160
 161	if (uid_eq(pcred->uid,  cred->euid) ||
 162	    uid_eq(pcred->euid, cred->euid))
 163		return true;
 164	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 165		return true;
 166	return false;
 167}
 168
 169/*
 170 * set the priority of a task
 171 * - the caller must hold the RCU read lock
 172 */
 173static int set_one_prio(struct task_struct *p, int niceval, int error)
 174{
 175	int no_nice;
 176
 177	if (!set_one_prio_perm(p)) {
 178		error = -EPERM;
 179		goto out;
 180	}
 181	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 182		error = -EACCES;
 183		goto out;
 184	}
 185	no_nice = security_task_setnice(p, niceval);
 186	if (no_nice) {
 187		error = no_nice;
 188		goto out;
 189	}
 190	if (error == -ESRCH)
 191		error = 0;
 192	set_user_nice(p, niceval);
 193out:
 194	return error;
 195}
 196
 197SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 198{
 199	struct task_struct *g, *p;
 200	struct user_struct *user;
 201	const struct cred *cred = current_cred();
 202	int error = -EINVAL;
 203	struct pid *pgrp;
 204	kuid_t uid;
 205
 206	if (which > PRIO_USER || which < PRIO_PROCESS)
 207		goto out;
 208
 209	/* normalize: avoid signed division (rounding problems) */
 210	error = -ESRCH;
 211	if (niceval < MIN_NICE)
 212		niceval = MIN_NICE;
 213	if (niceval > MAX_NICE)
 214		niceval = MAX_NICE;
 215
 216	rcu_read_lock();
 217	read_lock(&tasklist_lock);
 218	switch (which) {
 219	case PRIO_PROCESS:
 220		if (who)
 221			p = find_task_by_vpid(who);
 222		else
 223			p = current;
 224		if (p)
 225			error = set_one_prio(p, niceval, error);
 226		break;
 227	case PRIO_PGRP:
 228		if (who)
 229			pgrp = find_vpid(who);
 230		else
 231			pgrp = task_pgrp(current);
 232		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 233			error = set_one_prio(p, niceval, error);
 234		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 235		break;
 236	case PRIO_USER:
 237		uid = make_kuid(cred->user_ns, who);
 238		user = cred->user;
 239		if (!who)
 240			uid = cred->uid;
 241		else if (!uid_eq(uid, cred->uid)) {
 242			user = find_user(uid);
 243			if (!user)
 244				goto out_unlock;	/* No processes for this user */
 245		}
 246		do_each_thread(g, p) {
 247			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 248				error = set_one_prio(p, niceval, error);
 249		} while_each_thread(g, p);
 250		if (!uid_eq(uid, cred->uid))
 251			free_uid(user);		/* For find_user() */
 252		break;
 253	}
 254out_unlock:
 255	read_unlock(&tasklist_lock);
 256	rcu_read_unlock();
 257out:
 258	return error;
 259}
 260
 261/*
 262 * Ugh. To avoid negative return values, "getpriority()" will
 263 * not return the normal nice-value, but a negated value that
 264 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 265 * to stay compatible.
 266 */
 267SYSCALL_DEFINE2(getpriority, int, which, int, who)
 268{
 269	struct task_struct *g, *p;
 270	struct user_struct *user;
 271	const struct cred *cred = current_cred();
 272	long niceval, retval = -ESRCH;
 273	struct pid *pgrp;
 274	kuid_t uid;
 275
 276	if (which > PRIO_USER || which < PRIO_PROCESS)
 277		return -EINVAL;
 278
 279	rcu_read_lock();
 280	read_lock(&tasklist_lock);
 281	switch (which) {
 282	case PRIO_PROCESS:
 283		if (who)
 284			p = find_task_by_vpid(who);
 285		else
 286			p = current;
 287		if (p) {
 288			niceval = nice_to_rlimit(task_nice(p));
 289			if (niceval > retval)
 290				retval = niceval;
 291		}
 292		break;
 293	case PRIO_PGRP:
 294		if (who)
 295			pgrp = find_vpid(who);
 296		else
 297			pgrp = task_pgrp(current);
 298		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 299			niceval = nice_to_rlimit(task_nice(p));
 300			if (niceval > retval)
 301				retval = niceval;
 302		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 303		break;
 304	case PRIO_USER:
 305		uid = make_kuid(cred->user_ns, who);
 306		user = cred->user;
 307		if (!who)
 308			uid = cred->uid;
 309		else if (!uid_eq(uid, cred->uid)) {
 310			user = find_user(uid);
 311			if (!user)
 312				goto out_unlock;	/* No processes for this user */
 313		}
 314		do_each_thread(g, p) {
 315			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 316				niceval = nice_to_rlimit(task_nice(p));
 317				if (niceval > retval)
 318					retval = niceval;
 319			}
 320		} while_each_thread(g, p);
 321		if (!uid_eq(uid, cred->uid))
 322			free_uid(user);		/* for find_user() */
 323		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324	}
 325out_unlock:
 326	read_unlock(&tasklist_lock);
 327	rcu_read_unlock();
 328
 329	return retval;
 330}
 331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332/*
 333 * Unprivileged users may change the real gid to the effective gid
 334 * or vice versa.  (BSD-style)
 335 *
 336 * If you set the real gid at all, or set the effective gid to a value not
 337 * equal to the real gid, then the saved gid is set to the new effective gid.
 338 *
 339 * This makes it possible for a setgid program to completely drop its
 340 * privileges, which is often a useful assertion to make when you are doing
 341 * a security audit over a program.
 342 *
 343 * The general idea is that a program which uses just setregid() will be
 344 * 100% compatible with BSD.  A program which uses just setgid() will be
 345 * 100% compatible with POSIX with saved IDs.
 346 *
 347 * SMP: There are not races, the GIDs are checked only by filesystem
 348 *      operations (as far as semantic preservation is concerned).
 349 */
 350#ifdef CONFIG_MULTIUSER
 351long __sys_setregid(gid_t rgid, gid_t egid)
 352{
 353	struct user_namespace *ns = current_user_ns();
 354	const struct cred *old;
 355	struct cred *new;
 356	int retval;
 357	kgid_t krgid, kegid;
 358
 359	krgid = make_kgid(ns, rgid);
 360	kegid = make_kgid(ns, egid);
 361
 362	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 363		return -EINVAL;
 364	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 365		return -EINVAL;
 366
 367	new = prepare_creds();
 368	if (!new)
 369		return -ENOMEM;
 370	old = current_cred();
 371
 372	retval = -EPERM;
 373	if (rgid != (gid_t) -1) {
 374		if (gid_eq(old->gid, krgid) ||
 375		    gid_eq(old->egid, krgid) ||
 376		    ns_capable(old->user_ns, CAP_SETGID))
 377			new->gid = krgid;
 378		else
 379			goto error;
 380	}
 381	if (egid != (gid_t) -1) {
 382		if (gid_eq(old->gid, kegid) ||
 383		    gid_eq(old->egid, kegid) ||
 384		    gid_eq(old->sgid, kegid) ||
 385		    ns_capable(old->user_ns, CAP_SETGID))
 386			new->egid = kegid;
 387		else
 388			goto error;
 389	}
 390
 391	if (rgid != (gid_t) -1 ||
 392	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 393		new->sgid = new->egid;
 394	new->fsgid = new->egid;
 395
 396	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
 397	if (retval < 0)
 398		goto error;
 399
 400	return commit_creds(new);
 401
 402error:
 403	abort_creds(new);
 404	return retval;
 405}
 406
 407SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 408{
 409	return __sys_setregid(rgid, egid);
 410}
 411
 412/*
 413 * setgid() is implemented like SysV w/ SAVED_IDS
 414 *
 415 * SMP: Same implicit races as above.
 416 */
 417long __sys_setgid(gid_t gid)
 418{
 419	struct user_namespace *ns = current_user_ns();
 420	const struct cred *old;
 421	struct cred *new;
 422	int retval;
 423	kgid_t kgid;
 424
 425	kgid = make_kgid(ns, gid);
 426	if (!gid_valid(kgid))
 427		return -EINVAL;
 428
 429	new = prepare_creds();
 430	if (!new)
 431		return -ENOMEM;
 432	old = current_cred();
 433
 434	retval = -EPERM;
 435	if (ns_capable(old->user_ns, CAP_SETGID))
 436		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 437	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 438		new->egid = new->fsgid = kgid;
 439	else
 440		goto error;
 441
 442	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
 443	if (retval < 0)
 444		goto error;
 445
 446	return commit_creds(new);
 447
 448error:
 449	abort_creds(new);
 450	return retval;
 451}
 452
 453SYSCALL_DEFINE1(setgid, gid_t, gid)
 454{
 455	return __sys_setgid(gid);
 456}
 457
 458/*
 459 * change the user struct in a credentials set to match the new UID
 460 */
 461static int set_user(struct cred *new)
 462{
 463	struct user_struct *new_user;
 464
 465	new_user = alloc_uid(new->uid);
 466	if (!new_user)
 467		return -EAGAIN;
 468
 469	/*
 470	 * We don't fail in case of NPROC limit excess here because too many
 471	 * poorly written programs don't check set*uid() return code, assuming
 472	 * it never fails if called by root.  We may still enforce NPROC limit
 473	 * for programs doing set*uid()+execve() by harmlessly deferring the
 474	 * failure to the execve() stage.
 475	 */
 476	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 477			new_user != INIT_USER)
 478		current->flags |= PF_NPROC_EXCEEDED;
 479	else
 480		current->flags &= ~PF_NPROC_EXCEEDED;
 481
 482	free_uid(new->user);
 483	new->user = new_user;
 484	return 0;
 485}
 486
 487/*
 488 * Unprivileged users may change the real uid to the effective uid
 489 * or vice versa.  (BSD-style)
 490 *
 491 * If you set the real uid at all, or set the effective uid to a value not
 492 * equal to the real uid, then the saved uid is set to the new effective uid.
 493 *
 494 * This makes it possible for a setuid program to completely drop its
 495 * privileges, which is often a useful assertion to make when you are doing
 496 * a security audit over a program.
 497 *
 498 * The general idea is that a program which uses just setreuid() will be
 499 * 100% compatible with BSD.  A program which uses just setuid() will be
 500 * 100% compatible with POSIX with saved IDs.
 501 */
 502long __sys_setreuid(uid_t ruid, uid_t euid)
 503{
 504	struct user_namespace *ns = current_user_ns();
 505	const struct cred *old;
 506	struct cred *new;
 507	int retval;
 508	kuid_t kruid, keuid;
 509
 510	kruid = make_kuid(ns, ruid);
 511	keuid = make_kuid(ns, euid);
 512
 513	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 514		return -EINVAL;
 515	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 516		return -EINVAL;
 517
 518	new = prepare_creds();
 519	if (!new)
 520		return -ENOMEM;
 521	old = current_cred();
 522
 523	retval = -EPERM;
 524	if (ruid != (uid_t) -1) {
 525		new->uid = kruid;
 526		if (!uid_eq(old->uid, kruid) &&
 527		    !uid_eq(old->euid, kruid) &&
 528		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 529			goto error;
 530	}
 531
 532	if (euid != (uid_t) -1) {
 533		new->euid = keuid;
 534		if (!uid_eq(old->uid, keuid) &&
 535		    !uid_eq(old->euid, keuid) &&
 536		    !uid_eq(old->suid, keuid) &&
 537		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 538			goto error;
 539	}
 540
 541	if (!uid_eq(new->uid, old->uid)) {
 542		retval = set_user(new);
 543		if (retval < 0)
 544			goto error;
 545	}
 546	if (ruid != (uid_t) -1 ||
 547	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 548		new->suid = new->euid;
 549	new->fsuid = new->euid;
 550
 551	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 552	if (retval < 0)
 553		goto error;
 554
 555	return commit_creds(new);
 556
 557error:
 558	abort_creds(new);
 559	return retval;
 560}
 561
 562SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 563{
 564	return __sys_setreuid(ruid, euid);
 565}
 566
 567/*
 568 * setuid() is implemented like SysV with SAVED_IDS
 569 *
 570 * Note that SAVED_ID's is deficient in that a setuid root program
 571 * like sendmail, for example, cannot set its uid to be a normal
 572 * user and then switch back, because if you're root, setuid() sets
 573 * the saved uid too.  If you don't like this, blame the bright people
 574 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 575 * will allow a root program to temporarily drop privileges and be able to
 576 * regain them by swapping the real and effective uid.
 577 */
 578long __sys_setuid(uid_t uid)
 579{
 580	struct user_namespace *ns = current_user_ns();
 581	const struct cred *old;
 582	struct cred *new;
 583	int retval;
 584	kuid_t kuid;
 585
 586	kuid = make_kuid(ns, uid);
 587	if (!uid_valid(kuid))
 588		return -EINVAL;
 589
 590	new = prepare_creds();
 591	if (!new)
 592		return -ENOMEM;
 593	old = current_cred();
 594
 595	retval = -EPERM;
 596	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
 597		new->suid = new->uid = kuid;
 598		if (!uid_eq(kuid, old->uid)) {
 599			retval = set_user(new);
 600			if (retval < 0)
 601				goto error;
 602		}
 603	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 604		goto error;
 605	}
 606
 607	new->fsuid = new->euid = kuid;
 608
 609	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 610	if (retval < 0)
 611		goto error;
 612
 613	return commit_creds(new);
 614
 615error:
 616	abort_creds(new);
 617	return retval;
 618}
 619
 620SYSCALL_DEFINE1(setuid, uid_t, uid)
 621{
 622	return __sys_setuid(uid);
 623}
 624
 625
 626/*
 627 * This function implements a generic ability to update ruid, euid,
 628 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 629 */
 630long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 631{
 632	struct user_namespace *ns = current_user_ns();
 633	const struct cred *old;
 634	struct cred *new;
 635	int retval;
 636	kuid_t kruid, keuid, ksuid;
 637
 638	kruid = make_kuid(ns, ruid);
 639	keuid = make_kuid(ns, euid);
 640	ksuid = make_kuid(ns, suid);
 641
 642	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 643		return -EINVAL;
 644
 645	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 646		return -EINVAL;
 647
 648	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 649		return -EINVAL;
 650
 651	new = prepare_creds();
 652	if (!new)
 653		return -ENOMEM;
 654
 655	old = current_cred();
 656
 657	retval = -EPERM;
 658	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
 659		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 660		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 661			goto error;
 662		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 663		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 664			goto error;
 665		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 666		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 667			goto error;
 668	}
 669
 670	if (ruid != (uid_t) -1) {
 671		new->uid = kruid;
 672		if (!uid_eq(kruid, old->uid)) {
 673			retval = set_user(new);
 674			if (retval < 0)
 675				goto error;
 676		}
 677	}
 678	if (euid != (uid_t) -1)
 679		new->euid = keuid;
 680	if (suid != (uid_t) -1)
 681		new->suid = ksuid;
 682	new->fsuid = new->euid;
 683
 684	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 685	if (retval < 0)
 686		goto error;
 687
 688	return commit_creds(new);
 689
 690error:
 691	abort_creds(new);
 692	return retval;
 693}
 694
 695SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 696{
 697	return __sys_setresuid(ruid, euid, suid);
 698}
 699
 700SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 701{
 702	const struct cred *cred = current_cred();
 703	int retval;
 704	uid_t ruid, euid, suid;
 705
 706	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 707	euid = from_kuid_munged(cred->user_ns, cred->euid);
 708	suid = from_kuid_munged(cred->user_ns, cred->suid);
 709
 710	retval = put_user(ruid, ruidp);
 711	if (!retval) {
 712		retval = put_user(euid, euidp);
 713		if (!retval)
 714			return put_user(suid, suidp);
 715	}
 716	return retval;
 717}
 718
 719/*
 720 * Same as above, but for rgid, egid, sgid.
 721 */
 722long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 723{
 724	struct user_namespace *ns = current_user_ns();
 725	const struct cred *old;
 726	struct cred *new;
 727	int retval;
 728	kgid_t krgid, kegid, ksgid;
 729
 730	krgid = make_kgid(ns, rgid);
 731	kegid = make_kgid(ns, egid);
 732	ksgid = make_kgid(ns, sgid);
 733
 734	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 735		return -EINVAL;
 736	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 737		return -EINVAL;
 738	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 739		return -EINVAL;
 740
 741	new = prepare_creds();
 742	if (!new)
 743		return -ENOMEM;
 744	old = current_cred();
 745
 746	retval = -EPERM;
 747	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 748		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 749		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 750			goto error;
 751		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 752		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 753			goto error;
 754		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 755		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 756			goto error;
 757	}
 758
 759	if (rgid != (gid_t) -1)
 760		new->gid = krgid;
 761	if (egid != (gid_t) -1)
 762		new->egid = kegid;
 763	if (sgid != (gid_t) -1)
 764		new->sgid = ksgid;
 765	new->fsgid = new->egid;
 766
 767	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
 768	if (retval < 0)
 769		goto error;
 770
 771	return commit_creds(new);
 772
 773error:
 774	abort_creds(new);
 775	return retval;
 776}
 777
 778SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 779{
 780	return __sys_setresgid(rgid, egid, sgid);
 781}
 782
 783SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 784{
 785	const struct cred *cred = current_cred();
 786	int retval;
 787	gid_t rgid, egid, sgid;
 788
 789	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 790	egid = from_kgid_munged(cred->user_ns, cred->egid);
 791	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 792
 793	retval = put_user(rgid, rgidp);
 794	if (!retval) {
 795		retval = put_user(egid, egidp);
 796		if (!retval)
 797			retval = put_user(sgid, sgidp);
 798	}
 799
 800	return retval;
 801}
 802
 803
 804/*
 805 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 806 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 807 * whatever uid it wants to). It normally shadows "euid", except when
 808 * explicitly set by setfsuid() or for access..
 809 */
 810long __sys_setfsuid(uid_t uid)
 811{
 812	const struct cred *old;
 813	struct cred *new;
 814	uid_t old_fsuid;
 815	kuid_t kuid;
 816
 817	old = current_cred();
 818	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 819
 820	kuid = make_kuid(old->user_ns, uid);
 821	if (!uid_valid(kuid))
 822		return old_fsuid;
 823
 824	new = prepare_creds();
 825	if (!new)
 826		return old_fsuid;
 827
 828	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 829	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 830	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
 831		if (!uid_eq(kuid, old->fsuid)) {
 832			new->fsuid = kuid;
 833			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 834				goto change_okay;
 835		}
 836	}
 837
 838	abort_creds(new);
 839	return old_fsuid;
 840
 841change_okay:
 842	commit_creds(new);
 843	return old_fsuid;
 844}
 845
 846SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 847{
 848	return __sys_setfsuid(uid);
 849}
 850
 851/*
 852 * Samma på svenska..
 853 */
 854long __sys_setfsgid(gid_t gid)
 855{
 856	const struct cred *old;
 857	struct cred *new;
 858	gid_t old_fsgid;
 859	kgid_t kgid;
 860
 861	old = current_cred();
 862	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 863
 864	kgid = make_kgid(old->user_ns, gid);
 865	if (!gid_valid(kgid))
 866		return old_fsgid;
 867
 868	new = prepare_creds();
 869	if (!new)
 870		return old_fsgid;
 871
 872	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 873	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 874	    ns_capable(old->user_ns, CAP_SETGID)) {
 875		if (!gid_eq(kgid, old->fsgid)) {
 876			new->fsgid = kgid;
 877			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
 878				goto change_okay;
 879		}
 880	}
 881
 882	abort_creds(new);
 883	return old_fsgid;
 884
 885change_okay:
 886	commit_creds(new);
 887	return old_fsgid;
 888}
 889
 890SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 891{
 892	return __sys_setfsgid(gid);
 893}
 894#endif /* CONFIG_MULTIUSER */
 895
 896/**
 897 * sys_getpid - return the thread group id of the current process
 898 *
 899 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 900 * the pid are identical unless CLONE_THREAD was specified on clone() in
 901 * which case the tgid is the same in all threads of the same group.
 902 *
 903 * This is SMP safe as current->tgid does not change.
 904 */
 905SYSCALL_DEFINE0(getpid)
 906{
 907	return task_tgid_vnr(current);
 908}
 909
 910/* Thread ID - the internal kernel "pid" */
 911SYSCALL_DEFINE0(gettid)
 912{
 913	return task_pid_vnr(current);
 914}
 915
 916/*
 917 * Accessing ->real_parent is not SMP-safe, it could
 918 * change from under us. However, we can use a stale
 919 * value of ->real_parent under rcu_read_lock(), see
 920 * release_task()->call_rcu(delayed_put_task_struct).
 921 */
 922SYSCALL_DEFINE0(getppid)
 923{
 924	int pid;
 925
 926	rcu_read_lock();
 927	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 928	rcu_read_unlock();
 929
 930	return pid;
 931}
 932
 933SYSCALL_DEFINE0(getuid)
 934{
 935	/* Only we change this so SMP safe */
 936	return from_kuid_munged(current_user_ns(), current_uid());
 937}
 938
 939SYSCALL_DEFINE0(geteuid)
 940{
 941	/* Only we change this so SMP safe */
 942	return from_kuid_munged(current_user_ns(), current_euid());
 943}
 944
 945SYSCALL_DEFINE0(getgid)
 946{
 947	/* Only we change this so SMP safe */
 948	return from_kgid_munged(current_user_ns(), current_gid());
 949}
 950
 951SYSCALL_DEFINE0(getegid)
 952{
 953	/* Only we change this so SMP safe */
 954	return from_kgid_munged(current_user_ns(), current_egid());
 955}
 956
 957static void do_sys_times(struct tms *tms)
 958{
 959	u64 tgutime, tgstime, cutime, cstime;
 960
 961	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 962	cutime = current->signal->cutime;
 963	cstime = current->signal->cstime;
 964	tms->tms_utime = nsec_to_clock_t(tgutime);
 965	tms->tms_stime = nsec_to_clock_t(tgstime);
 966	tms->tms_cutime = nsec_to_clock_t(cutime);
 967	tms->tms_cstime = nsec_to_clock_t(cstime);
 
 968}
 969
 970SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 971{
 972	if (tbuf) {
 973		struct tms tmp;
 974
 975		do_sys_times(&tmp);
 976		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 977			return -EFAULT;
 978	}
 979	force_successful_syscall_return();
 980	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 981}
 982
 983#ifdef CONFIG_COMPAT
 984static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
 985{
 986	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
 987}
 988
 989COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
 990{
 991	if (tbuf) {
 992		struct tms tms;
 993		struct compat_tms tmp;
 994
 995		do_sys_times(&tms);
 996		/* Convert our struct tms to the compat version. */
 997		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
 998		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
 999		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1000		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1001		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1002			return -EFAULT;
1003	}
1004	force_successful_syscall_return();
1005	return compat_jiffies_to_clock_t(jiffies);
1006}
1007#endif
1008
1009/*
1010 * This needs some heavy checking ...
1011 * I just haven't the stomach for it. I also don't fully
1012 * understand sessions/pgrp etc. Let somebody who does explain it.
1013 *
1014 * OK, I think I have the protection semantics right.... this is really
1015 * only important on a multi-user system anyway, to make sure one user
1016 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1017 *
1018 * !PF_FORKNOEXEC check to conform completely to POSIX.
 
1019 */
1020SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1021{
1022	struct task_struct *p;
1023	struct task_struct *group_leader = current->group_leader;
1024	struct pid *pgrp;
1025	int err;
1026
1027	if (!pid)
1028		pid = task_pid_vnr(group_leader);
1029	if (!pgid)
1030		pgid = pid;
1031	if (pgid < 0)
1032		return -EINVAL;
1033	rcu_read_lock();
1034
1035	/* From this point forward we keep holding onto the tasklist lock
1036	 * so that our parent does not change from under us. -DaveM
1037	 */
1038	write_lock_irq(&tasklist_lock);
1039
1040	err = -ESRCH;
1041	p = find_task_by_vpid(pid);
1042	if (!p)
1043		goto out;
1044
1045	err = -EINVAL;
1046	if (!thread_group_leader(p))
1047		goto out;
1048
1049	if (same_thread_group(p->real_parent, group_leader)) {
1050		err = -EPERM;
1051		if (task_session(p) != task_session(group_leader))
1052			goto out;
1053		err = -EACCES;
1054		if (!(p->flags & PF_FORKNOEXEC))
1055			goto out;
1056	} else {
1057		err = -ESRCH;
1058		if (p != group_leader)
1059			goto out;
1060	}
1061
1062	err = -EPERM;
1063	if (p->signal->leader)
1064		goto out;
1065
1066	pgrp = task_pid(p);
1067	if (pgid != pid) {
1068		struct task_struct *g;
1069
1070		pgrp = find_vpid(pgid);
1071		g = pid_task(pgrp, PIDTYPE_PGID);
1072		if (!g || task_session(g) != task_session(group_leader))
1073			goto out;
1074	}
1075
1076	err = security_task_setpgid(p, pgid);
1077	if (err)
1078		goto out;
1079
1080	if (task_pgrp(p) != pgrp)
1081		change_pid(p, PIDTYPE_PGID, pgrp);
1082
1083	err = 0;
1084out:
1085	/* All paths lead to here, thus we are safe. -DaveM */
1086	write_unlock_irq(&tasklist_lock);
1087	rcu_read_unlock();
1088	return err;
1089}
1090
1091static int do_getpgid(pid_t pid)
1092{
1093	struct task_struct *p;
1094	struct pid *grp;
1095	int retval;
1096
1097	rcu_read_lock();
1098	if (!pid)
1099		grp = task_pgrp(current);
1100	else {
1101		retval = -ESRCH;
1102		p = find_task_by_vpid(pid);
1103		if (!p)
1104			goto out;
1105		grp = task_pgrp(p);
1106		if (!grp)
1107			goto out;
1108
1109		retval = security_task_getpgid(p);
1110		if (retval)
1111			goto out;
1112	}
1113	retval = pid_vnr(grp);
1114out:
1115	rcu_read_unlock();
1116	return retval;
1117}
1118
1119SYSCALL_DEFINE1(getpgid, pid_t, pid)
1120{
1121	return do_getpgid(pid);
1122}
1123
1124#ifdef __ARCH_WANT_SYS_GETPGRP
1125
1126SYSCALL_DEFINE0(getpgrp)
1127{
1128	return do_getpgid(0);
1129}
1130
1131#endif
1132
1133SYSCALL_DEFINE1(getsid, pid_t, pid)
1134{
1135	struct task_struct *p;
1136	struct pid *sid;
1137	int retval;
1138
1139	rcu_read_lock();
1140	if (!pid)
1141		sid = task_session(current);
1142	else {
1143		retval = -ESRCH;
1144		p = find_task_by_vpid(pid);
1145		if (!p)
1146			goto out;
1147		sid = task_session(p);
1148		if (!sid)
1149			goto out;
1150
1151		retval = security_task_getsid(p);
1152		if (retval)
1153			goto out;
1154	}
1155	retval = pid_vnr(sid);
1156out:
1157	rcu_read_unlock();
1158	return retval;
1159}
1160
1161static void set_special_pids(struct pid *pid)
1162{
1163	struct task_struct *curr = current->group_leader;
1164
1165	if (task_session(curr) != pid)
1166		change_pid(curr, PIDTYPE_SID, pid);
1167
1168	if (task_pgrp(curr) != pid)
1169		change_pid(curr, PIDTYPE_PGID, pid);
1170}
1171
1172int ksys_setsid(void)
1173{
1174	struct task_struct *group_leader = current->group_leader;
1175	struct pid *sid = task_pid(group_leader);
1176	pid_t session = pid_vnr(sid);
1177	int err = -EPERM;
1178
1179	write_lock_irq(&tasklist_lock);
1180	/* Fail if I am already a session leader */
1181	if (group_leader->signal->leader)
1182		goto out;
1183
1184	/* Fail if a process group id already exists that equals the
1185	 * proposed session id.
1186	 */
1187	if (pid_task(sid, PIDTYPE_PGID))
1188		goto out;
1189
1190	group_leader->signal->leader = 1;
1191	set_special_pids(sid);
1192
1193	proc_clear_tty(group_leader);
1194
1195	err = session;
1196out:
1197	write_unlock_irq(&tasklist_lock);
1198	if (err > 0) {
1199		proc_sid_connector(group_leader);
1200		sched_autogroup_create_attach(group_leader);
1201	}
1202	return err;
1203}
1204
1205SYSCALL_DEFINE0(setsid)
1206{
1207	return ksys_setsid();
1208}
1209
1210DECLARE_RWSEM(uts_sem);
1211
1212#ifdef COMPAT_UTS_MACHINE
1213#define override_architecture(name) \
1214	(personality(current->personality) == PER_LINUX32 && \
1215	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1216		      sizeof(COMPAT_UTS_MACHINE)))
1217#else
1218#define override_architecture(name)	0
1219#endif
1220
1221/*
1222 * Work around broken programs that cannot handle "Linux 3.0".
1223 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1224 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1225 * 2.6.60.
1226 */
1227static int override_release(char __user *release, size_t len)
1228{
1229	int ret = 0;
 
1230
1231	if (current->personality & UNAME26) {
1232		const char *rest = UTS_RELEASE;
1233		char buf[65] = { 0 };
1234		int ndots = 0;
1235		unsigned v;
1236		size_t copy;
1237
1238		while (*rest) {
1239			if (*rest == '.' && ++ndots >= 3)
1240				break;
1241			if (!isdigit(*rest) && *rest != '.')
1242				break;
1243			rest++;
1244		}
1245		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1246		copy = clamp_t(size_t, len, 1, sizeof(buf));
1247		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1248		ret = copy_to_user(release, buf, copy + 1);
1249	}
1250	return ret;
1251}
1252
1253SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1254{
1255	struct new_utsname tmp;
1256
1257	down_read(&uts_sem);
1258	memcpy(&tmp, utsname(), sizeof(tmp));
 
1259	up_read(&uts_sem);
1260	if (copy_to_user(name, &tmp, sizeof(tmp)))
1261		return -EFAULT;
1262
1263	if (override_release(name->release, sizeof(name->release)))
1264		return -EFAULT;
1265	if (override_architecture(name))
1266		return -EFAULT;
1267	return 0;
1268}
1269
1270#ifdef __ARCH_WANT_SYS_OLD_UNAME
1271/*
1272 * Old cruft
1273 */
1274SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1275{
1276	struct old_utsname tmp;
1277
1278	if (!name)
1279		return -EFAULT;
1280
1281	down_read(&uts_sem);
1282	memcpy(&tmp, utsname(), sizeof(tmp));
 
1283	up_read(&uts_sem);
1284	if (copy_to_user(name, &tmp, sizeof(tmp)))
1285		return -EFAULT;
1286
1287	if (override_release(name->release, sizeof(name->release)))
1288		return -EFAULT;
1289	if (override_architecture(name))
1290		return -EFAULT;
1291	return 0;
1292}
1293
1294SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1295{
1296	struct oldold_utsname tmp;
1297
1298	if (!name)
1299		return -EFAULT;
1300
1301	memset(&tmp, 0, sizeof(tmp));
1302
1303	down_read(&uts_sem);
1304	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1305	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1306	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1307	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1308	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
 
 
 
 
 
 
 
 
 
 
1309	up_read(&uts_sem);
1310	if (copy_to_user(name, &tmp, sizeof(tmp)))
1311		return -EFAULT;
1312
1313	if (override_architecture(name))
1314		return -EFAULT;
1315	if (override_release(name->release, sizeof(name->release)))
1316		return -EFAULT;
1317	return 0;
1318}
1319#endif
1320
1321SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1322{
1323	int errno;
1324	char tmp[__NEW_UTS_LEN];
1325
1326	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1327		return -EPERM;
1328
1329	if (len < 0 || len > __NEW_UTS_LEN)
1330		return -EINVAL;
 
1331	errno = -EFAULT;
1332	if (!copy_from_user(tmp, name, len)) {
1333		struct new_utsname *u;
1334
1335		down_write(&uts_sem);
1336		u = utsname();
1337		memcpy(u->nodename, tmp, len);
1338		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1339		errno = 0;
1340		uts_proc_notify(UTS_PROC_HOSTNAME);
1341		up_write(&uts_sem);
1342	}
 
1343	return errno;
1344}
1345
1346#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1347
1348SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1349{
1350	int i;
1351	struct new_utsname *u;
1352	char tmp[__NEW_UTS_LEN + 1];
1353
1354	if (len < 0)
1355		return -EINVAL;
1356	down_read(&uts_sem);
1357	u = utsname();
1358	i = 1 + strlen(u->nodename);
1359	if (i > len)
1360		i = len;
1361	memcpy(tmp, u->nodename, i);
 
 
1362	up_read(&uts_sem);
1363	if (copy_to_user(name, tmp, i))
1364		return -EFAULT;
1365	return 0;
1366}
1367
1368#endif
1369
1370/*
1371 * Only setdomainname; getdomainname can be implemented by calling
1372 * uname()
1373 */
1374SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1375{
1376	int errno;
1377	char tmp[__NEW_UTS_LEN];
1378
1379	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380		return -EPERM;
1381	if (len < 0 || len > __NEW_UTS_LEN)
1382		return -EINVAL;
1383
 
1384	errno = -EFAULT;
1385	if (!copy_from_user(tmp, name, len)) {
1386		struct new_utsname *u;
1387
1388		down_write(&uts_sem);
1389		u = utsname();
1390		memcpy(u->domainname, tmp, len);
1391		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1392		errno = 0;
1393		uts_proc_notify(UTS_PROC_DOMAINNAME);
1394		up_write(&uts_sem);
1395	}
 
1396	return errno;
1397}
1398
1399SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1400{
1401	struct rlimit value;
1402	int ret;
1403
1404	ret = do_prlimit(current, resource, NULL, &value);
1405	if (!ret)
1406		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1407
1408	return ret;
1409}
1410
1411#ifdef CONFIG_COMPAT
1412
1413COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1414		       struct compat_rlimit __user *, rlim)
1415{
1416	struct rlimit r;
1417	struct compat_rlimit r32;
1418
1419	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1420		return -EFAULT;
1421
1422	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1423		r.rlim_cur = RLIM_INFINITY;
1424	else
1425		r.rlim_cur = r32.rlim_cur;
1426	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1427		r.rlim_max = RLIM_INFINITY;
1428	else
1429		r.rlim_max = r32.rlim_max;
1430	return do_prlimit(current, resource, &r, NULL);
1431}
1432
1433COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1434		       struct compat_rlimit __user *, rlim)
1435{
1436	struct rlimit r;
1437	int ret;
1438
1439	ret = do_prlimit(current, resource, NULL, &r);
1440	if (!ret) {
1441		struct compat_rlimit r32;
1442		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1443			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1444		else
1445			r32.rlim_cur = r.rlim_cur;
1446		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1447			r32.rlim_max = COMPAT_RLIM_INFINITY;
1448		else
1449			r32.rlim_max = r.rlim_max;
1450
1451		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1452			return -EFAULT;
1453	}
1454	return ret;
1455}
1456
1457#endif
1458
1459#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1460
1461/*
1462 *	Back compatibility for getrlimit. Needed for some apps.
1463 */
 
1464SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1465		struct rlimit __user *, rlim)
1466{
1467	struct rlimit x;
1468	if (resource >= RLIM_NLIMITS)
1469		return -EINVAL;
1470
1471	resource = array_index_nospec(resource, RLIM_NLIMITS);
1472	task_lock(current->group_leader);
1473	x = current->signal->rlim[resource];
1474	task_unlock(current->group_leader);
1475	if (x.rlim_cur > 0x7FFFFFFF)
1476		x.rlim_cur = 0x7FFFFFFF;
1477	if (x.rlim_max > 0x7FFFFFFF)
1478		x.rlim_max = 0x7FFFFFFF;
1479	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1480}
1481
1482#ifdef CONFIG_COMPAT
1483COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1484		       struct compat_rlimit __user *, rlim)
1485{
1486	struct rlimit r;
1487
1488	if (resource >= RLIM_NLIMITS)
1489		return -EINVAL;
1490
1491	resource = array_index_nospec(resource, RLIM_NLIMITS);
1492	task_lock(current->group_leader);
1493	r = current->signal->rlim[resource];
1494	task_unlock(current->group_leader);
1495	if (r.rlim_cur > 0x7FFFFFFF)
1496		r.rlim_cur = 0x7FFFFFFF;
1497	if (r.rlim_max > 0x7FFFFFFF)
1498		r.rlim_max = 0x7FFFFFFF;
1499
1500	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1501	    put_user(r.rlim_max, &rlim->rlim_max))
1502		return -EFAULT;
1503	return 0;
1504}
1505#endif
1506
1507#endif
1508
1509static inline bool rlim64_is_infinity(__u64 rlim64)
1510{
1511#if BITS_PER_LONG < 64
1512	return rlim64 >= ULONG_MAX;
1513#else
1514	return rlim64 == RLIM64_INFINITY;
1515#endif
1516}
1517
1518static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1519{
1520	if (rlim->rlim_cur == RLIM_INFINITY)
1521		rlim64->rlim_cur = RLIM64_INFINITY;
1522	else
1523		rlim64->rlim_cur = rlim->rlim_cur;
1524	if (rlim->rlim_max == RLIM_INFINITY)
1525		rlim64->rlim_max = RLIM64_INFINITY;
1526	else
1527		rlim64->rlim_max = rlim->rlim_max;
1528}
1529
1530static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1531{
1532	if (rlim64_is_infinity(rlim64->rlim_cur))
1533		rlim->rlim_cur = RLIM_INFINITY;
1534	else
1535		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1536	if (rlim64_is_infinity(rlim64->rlim_max))
1537		rlim->rlim_max = RLIM_INFINITY;
1538	else
1539		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1540}
1541
1542/* make sure you are allowed to change @tsk limits before calling this */
1543int do_prlimit(struct task_struct *tsk, unsigned int resource,
1544		struct rlimit *new_rlim, struct rlimit *old_rlim)
1545{
1546	struct rlimit *rlim;
1547	int retval = 0;
1548
1549	if (resource >= RLIM_NLIMITS)
1550		return -EINVAL;
1551	if (new_rlim) {
1552		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1553			return -EINVAL;
1554		if (resource == RLIMIT_NOFILE &&
1555				new_rlim->rlim_max > sysctl_nr_open)
1556			return -EPERM;
1557	}
1558
1559	/* protect tsk->signal and tsk->sighand from disappearing */
1560	read_lock(&tasklist_lock);
1561	if (!tsk->sighand) {
1562		retval = -ESRCH;
1563		goto out;
1564	}
1565
1566	rlim = tsk->signal->rlim + resource;
1567	task_lock(tsk->group_leader);
1568	if (new_rlim) {
1569		/* Keep the capable check against init_user_ns until
1570		   cgroups can contain all limits */
1571		if (new_rlim->rlim_max > rlim->rlim_max &&
1572				!capable(CAP_SYS_RESOURCE))
1573			retval = -EPERM;
1574		if (!retval)
1575			retval = security_task_setrlimit(tsk, resource, new_rlim);
 
 
 
 
 
 
 
 
 
 
1576	}
1577	if (!retval) {
1578		if (old_rlim)
1579			*old_rlim = *rlim;
1580		if (new_rlim)
1581			*rlim = *new_rlim;
1582	}
1583	task_unlock(tsk->group_leader);
1584
1585	/*
1586	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1587	 * infite. In case of RLIM_INFINITY the posix CPU timer code
1588	 * ignores the rlimit.
 
1589	 */
1590	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1591	     new_rlim->rlim_cur != RLIM_INFINITY &&
1592	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1593		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1594out:
1595	read_unlock(&tasklist_lock);
1596	return retval;
1597}
1598
1599/* rcu lock must be held */
1600static int check_prlimit_permission(struct task_struct *task,
1601				    unsigned int flags)
1602{
1603	const struct cred *cred = current_cred(), *tcred;
1604	bool id_match;
1605
1606	if (current == task)
1607		return 0;
1608
1609	tcred = __task_cred(task);
1610	id_match = (uid_eq(cred->uid, tcred->euid) &&
1611		    uid_eq(cred->uid, tcred->suid) &&
1612		    uid_eq(cred->uid, tcred->uid)  &&
1613		    gid_eq(cred->gid, tcred->egid) &&
1614		    gid_eq(cred->gid, tcred->sgid) &&
1615		    gid_eq(cred->gid, tcred->gid));
1616	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1617		return -EPERM;
 
1618
1619	return security_task_prlimit(cred, tcred, flags);
1620}
1621
1622SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1623		const struct rlimit64 __user *, new_rlim,
1624		struct rlimit64 __user *, old_rlim)
1625{
1626	struct rlimit64 old64, new64;
1627	struct rlimit old, new;
1628	struct task_struct *tsk;
1629	unsigned int checkflags = 0;
1630	int ret;
1631
1632	if (old_rlim)
1633		checkflags |= LSM_PRLIMIT_READ;
1634
1635	if (new_rlim) {
1636		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1637			return -EFAULT;
1638		rlim64_to_rlim(&new64, &new);
1639		checkflags |= LSM_PRLIMIT_WRITE;
1640	}
1641
1642	rcu_read_lock();
1643	tsk = pid ? find_task_by_vpid(pid) : current;
1644	if (!tsk) {
1645		rcu_read_unlock();
1646		return -ESRCH;
1647	}
1648	ret = check_prlimit_permission(tsk, checkflags);
1649	if (ret) {
1650		rcu_read_unlock();
1651		return ret;
1652	}
1653	get_task_struct(tsk);
1654	rcu_read_unlock();
1655
1656	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1657			old_rlim ? &old : NULL);
1658
1659	if (!ret && old_rlim) {
1660		rlim_to_rlim64(&old, &old64);
1661		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1662			ret = -EFAULT;
1663	}
1664
1665	put_task_struct(tsk);
1666	return ret;
1667}
1668
1669SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1670{
1671	struct rlimit new_rlim;
1672
1673	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1674		return -EFAULT;
1675	return do_prlimit(current, resource, &new_rlim, NULL);
1676}
1677
1678/*
1679 * It would make sense to put struct rusage in the task_struct,
1680 * except that would make the task_struct be *really big*.  After
1681 * task_struct gets moved into malloc'ed memory, it would
1682 * make sense to do this.  It will make moving the rest of the information
1683 * a lot simpler!  (Which we're not doing right now because we're not
1684 * measuring them yet).
1685 *
1686 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1687 * races with threads incrementing their own counters.  But since word
1688 * reads are atomic, we either get new values or old values and we don't
1689 * care which for the sums.  We always take the siglock to protect reading
1690 * the c* fields from p->signal from races with exit.c updating those
1691 * fields when reaping, so a sample either gets all the additions of a
1692 * given child after it's reaped, or none so this sample is before reaping.
1693 *
1694 * Locking:
1695 * We need to take the siglock for CHILDEREN, SELF and BOTH
1696 * for  the cases current multithreaded, non-current single threaded
1697 * non-current multithreaded.  Thread traversal is now safe with
1698 * the siglock held.
1699 * Strictly speaking, we donot need to take the siglock if we are current and
1700 * single threaded,  as no one else can take our signal_struct away, no one
1701 * else can  reap the  children to update signal->c* counters, and no one else
1702 * can race with the signal-> fields. If we do not take any lock, the
1703 * signal-> fields could be read out of order while another thread was just
1704 * exiting. So we should  place a read memory barrier when we avoid the lock.
1705 * On the writer side,  write memory barrier is implied in  __exit_signal
1706 * as __exit_signal releases  the siglock spinlock after updating the signal->
1707 * fields. But we don't do this yet to keep things simple.
1708 *
1709 */
1710
1711static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1712{
1713	r->ru_nvcsw += t->nvcsw;
1714	r->ru_nivcsw += t->nivcsw;
1715	r->ru_minflt += t->min_flt;
1716	r->ru_majflt += t->maj_flt;
1717	r->ru_inblock += task_io_get_inblock(t);
1718	r->ru_oublock += task_io_get_oublock(t);
1719}
1720
1721void getrusage(struct task_struct *p, int who, struct rusage *r)
1722{
1723	struct task_struct *t;
1724	unsigned long flags;
1725	u64 tgutime, tgstime, utime, stime;
1726	unsigned long maxrss = 0;
1727
1728	memset((char *)r, 0, sizeof (*r));
1729	utime = stime = 0;
1730
1731	if (who == RUSAGE_THREAD) {
1732		task_cputime_adjusted(current, &utime, &stime);
1733		accumulate_thread_rusage(p, r);
1734		maxrss = p->signal->maxrss;
1735		goto out;
1736	}
1737
1738	if (!lock_task_sighand(p, &flags))
1739		return;
1740
1741	switch (who) {
1742	case RUSAGE_BOTH:
1743	case RUSAGE_CHILDREN:
1744		utime = p->signal->cutime;
1745		stime = p->signal->cstime;
1746		r->ru_nvcsw = p->signal->cnvcsw;
1747		r->ru_nivcsw = p->signal->cnivcsw;
1748		r->ru_minflt = p->signal->cmin_flt;
1749		r->ru_majflt = p->signal->cmaj_flt;
1750		r->ru_inblock = p->signal->cinblock;
1751		r->ru_oublock = p->signal->coublock;
1752		maxrss = p->signal->cmaxrss;
1753
1754		if (who == RUSAGE_CHILDREN)
1755			break;
1756		fallthrough;
1757
1758	case RUSAGE_SELF:
1759		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1760		utime += tgutime;
1761		stime += tgstime;
1762		r->ru_nvcsw += p->signal->nvcsw;
1763		r->ru_nivcsw += p->signal->nivcsw;
1764		r->ru_minflt += p->signal->min_flt;
1765		r->ru_majflt += p->signal->maj_flt;
1766		r->ru_inblock += p->signal->inblock;
1767		r->ru_oublock += p->signal->oublock;
1768		if (maxrss < p->signal->maxrss)
1769			maxrss = p->signal->maxrss;
1770		t = p;
1771		do {
1772			accumulate_thread_rusage(t, r);
1773		} while_each_thread(p, t);
1774		break;
1775
1776	default:
1777		BUG();
1778	}
1779	unlock_task_sighand(p, &flags);
1780
1781out:
1782	r->ru_utime = ns_to_kernel_old_timeval(utime);
1783	r->ru_stime = ns_to_kernel_old_timeval(stime);
1784
1785	if (who != RUSAGE_CHILDREN) {
1786		struct mm_struct *mm = get_task_mm(p);
1787
1788		if (mm) {
1789			setmax_mm_hiwater_rss(&maxrss, mm);
1790			mmput(mm);
1791		}
1792	}
1793	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1794}
1795
1796SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1797{
1798	struct rusage r;
1799
1800	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1801	    who != RUSAGE_THREAD)
1802		return -EINVAL;
1803
1804	getrusage(current, who, &r);
1805	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1806}
1807
1808#ifdef CONFIG_COMPAT
1809COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1810{
1811	struct rusage r;
1812
1813	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1814	    who != RUSAGE_THREAD)
1815		return -EINVAL;
1816
1817	getrusage(current, who, &r);
1818	return put_compat_rusage(&r, ru);
1819}
1820#endif
1821
1822SYSCALL_DEFINE1(umask, int, mask)
1823{
1824	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1825	return mask;
1826}
1827
 
1828static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1829{
1830	struct fd exe;
1831	struct file *old_exe, *exe_file;
1832	struct inode *inode;
1833	int err;
1834
1835	exe = fdget(fd);
1836	if (!exe.file)
1837		return -EBADF;
1838
1839	inode = file_inode(exe.file);
1840
1841	/*
1842	 * Because the original mm->exe_file points to executable file, make
1843	 * sure that this one is executable as well, to avoid breaking an
1844	 * overall picture.
1845	 */
1846	err = -EACCES;
1847	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
 
1848		goto exit;
1849
1850	err = inode_permission(inode, MAY_EXEC);
1851	if (err)
1852		goto exit;
1853
 
 
1854	/*
1855	 * Forbid mm->exe_file change if old file still mapped.
1856	 */
1857	exe_file = get_mm_exe_file(mm);
1858	err = -EBUSY;
1859	if (exe_file) {
1860		struct vm_area_struct *vma;
1861
1862		mmap_read_lock(mm);
1863		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1864			if (!vma->vm_file)
1865				continue;
1866			if (path_equal(&vma->vm_file->f_path,
1867				       &exe_file->f_path))
1868				goto exit_err;
1869		}
1870
1871		mmap_read_unlock(mm);
1872		fput(exe_file);
1873	}
1874
1875	err = 0;
1876	/* set the new file, lockless */
1877	get_file(exe.file);
1878	old_exe = xchg(&mm->exe_file, exe.file);
1879	if (old_exe)
1880		fput(old_exe);
1881exit:
1882	fdput(exe);
1883	return err;
1884exit_err:
1885	mmap_read_unlock(mm);
1886	fput(exe_file);
1887	goto exit;
1888}
1889
1890/*
1891 * Check arithmetic relations of passed addresses.
1892 *
1893 * WARNING: we don't require any capability here so be very careful
1894 * in what is allowed for modification from userspace.
1895 */
1896static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1897{
1898	unsigned long mmap_max_addr = TASK_SIZE;
1899	int error = -EINVAL, i;
1900
1901	static const unsigned char offsets[] = {
1902		offsetof(struct prctl_mm_map, start_code),
1903		offsetof(struct prctl_mm_map, end_code),
1904		offsetof(struct prctl_mm_map, start_data),
1905		offsetof(struct prctl_mm_map, end_data),
1906		offsetof(struct prctl_mm_map, start_brk),
1907		offsetof(struct prctl_mm_map, brk),
1908		offsetof(struct prctl_mm_map, start_stack),
1909		offsetof(struct prctl_mm_map, arg_start),
1910		offsetof(struct prctl_mm_map, arg_end),
1911		offsetof(struct prctl_mm_map, env_start),
1912		offsetof(struct prctl_mm_map, env_end),
1913	};
1914
1915	/*
1916	 * Make sure the members are not somewhere outside
1917	 * of allowed address space.
1918	 */
1919	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1920		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1921
1922		if ((unsigned long)val >= mmap_max_addr ||
1923		    (unsigned long)val < mmap_min_addr)
1924			goto out;
1925	}
1926
1927	/*
1928	 * Make sure the pairs are ordered.
 
 
 
1929	 */
1930#define __prctl_check_order(__m1, __op, __m2)				\
1931	((unsigned long)prctl_map->__m1 __op				\
1932	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1933	error  = __prctl_check_order(start_code, <, end_code);
1934	error |= __prctl_check_order(start_data,<=, end_data);
1935	error |= __prctl_check_order(start_brk, <=, brk);
1936	error |= __prctl_check_order(arg_start, <=, arg_end);
1937	error |= __prctl_check_order(env_start, <=, env_end);
1938	if (error)
1939		goto out;
1940#undef __prctl_check_order
1941
1942	error = -EINVAL;
 
 
 
1943
1944	/*
1945	 * @brk should be after @end_data in traditional maps.
1946	 */
1947	if (prctl_map->start_brk <= prctl_map->end_data ||
1948	    prctl_map->brk <= prctl_map->end_data)
1949		goto out;
1950
1951	/*
1952	 * Neither we should allow to override limits if they set.
1953	 */
1954	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1955			      prctl_map->start_brk, prctl_map->end_data,
1956			      prctl_map->start_data))
1957			goto out;
1958
1959	error = 0;
1960out:
1961	return error;
1962}
1963
1964#ifdef CONFIG_CHECKPOINT_RESTORE
1965static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1966{
1967	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1968	unsigned long user_auxv[AT_VECTOR_SIZE];
1969	struct mm_struct *mm = current->mm;
1970	int error;
1971
1972	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1973	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1974
1975	if (opt == PR_SET_MM_MAP_SIZE)
1976		return put_user((unsigned int)sizeof(prctl_map),
1977				(unsigned int __user *)addr);
1978
1979	if (data_size != sizeof(prctl_map))
1980		return -EINVAL;
1981
1982	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1983		return -EFAULT;
1984
1985	error = validate_prctl_map_addr(&prctl_map);
1986	if (error)
1987		return error;
1988
1989	if (prctl_map.auxv_size) {
1990		/*
1991		 * Someone is trying to cheat the auxv vector.
1992		 */
1993		if (!prctl_map.auxv ||
1994				prctl_map.auxv_size > sizeof(mm->saved_auxv))
1995			return -EINVAL;
1996
1997		memset(user_auxv, 0, sizeof(user_auxv));
1998		if (copy_from_user(user_auxv,
1999				   (const void __user *)prctl_map.auxv,
2000				   prctl_map.auxv_size))
2001			return -EFAULT;
2002
2003		/* Last entry must be AT_NULL as specification requires */
2004		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2005		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2006	}
2007
2008	if (prctl_map.exe_fd != (u32)-1) {
2009		/*
2010		 * Check if the current user is checkpoint/restore capable.
2011		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2012		 * or CAP_CHECKPOINT_RESTORE.
2013		 * Note that a user with access to ptrace can masquerade an
2014		 * arbitrary program as any executable, even setuid ones.
2015		 * This may have implications in the tomoyo subsystem.
2016		 */
2017		if (!checkpoint_restore_ns_capable(current_user_ns()))
2018			return -EPERM;
2019
2020		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2021		if (error)
2022			return error;
2023	}
2024
2025	/*
2026	 * arg_lock protects concurent updates but we still need mmap_lock for
2027	 * read to exclude races with sys_brk.
2028	 */
2029	mmap_read_lock(mm);
2030
2031	/*
2032	 * We don't validate if these members are pointing to
2033	 * real present VMAs because application may have correspond
2034	 * VMAs already unmapped and kernel uses these members for statistics
2035	 * output in procfs mostly, except
2036	 *
2037	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
2038	 *    for VMAs when updating these memvers so anything wrong written
2039	 *    here cause kernel to swear at userspace program but won't lead
2040	 *    to any problem in kernel itself
2041	 */
2042
2043	spin_lock(&mm->arg_lock);
2044	mm->start_code	= prctl_map.start_code;
2045	mm->end_code	= prctl_map.end_code;
2046	mm->start_data	= prctl_map.start_data;
2047	mm->end_data	= prctl_map.end_data;
2048	mm->start_brk	= prctl_map.start_brk;
2049	mm->brk		= prctl_map.brk;
2050	mm->start_stack	= prctl_map.start_stack;
2051	mm->arg_start	= prctl_map.arg_start;
2052	mm->arg_end	= prctl_map.arg_end;
2053	mm->env_start	= prctl_map.env_start;
2054	mm->env_end	= prctl_map.env_end;
2055	spin_unlock(&mm->arg_lock);
2056
2057	/*
2058	 * Note this update of @saved_auxv is lockless thus
2059	 * if someone reads this member in procfs while we're
2060	 * updating -- it may get partly updated results. It's
2061	 * known and acceptable trade off: we leave it as is to
2062	 * not introduce additional locks here making the kernel
2063	 * more complex.
2064	 */
2065	if (prctl_map.auxv_size)
2066		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2067
2068	mmap_read_unlock(mm);
2069	return 0;
2070}
2071#endif /* CONFIG_CHECKPOINT_RESTORE */
2072
2073static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2074			  unsigned long len)
2075{
2076	/*
2077	 * This doesn't move the auxiliary vector itself since it's pinned to
2078	 * mm_struct, but it permits filling the vector with new values.  It's
2079	 * up to the caller to provide sane values here, otherwise userspace
2080	 * tools which use this vector might be unhappy.
2081	 */
2082	unsigned long user_auxv[AT_VECTOR_SIZE];
2083
2084	if (len > sizeof(user_auxv))
2085		return -EINVAL;
2086
2087	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2088		return -EFAULT;
2089
2090	/* Make sure the last entry is always AT_NULL */
2091	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2092	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2093
2094	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2095
2096	task_lock(current);
2097	memcpy(mm->saved_auxv, user_auxv, len);
2098	task_unlock(current);
2099
2100	return 0;
2101}
2102
2103static int prctl_set_mm(int opt, unsigned long addr,
2104			unsigned long arg4, unsigned long arg5)
2105{
 
2106	struct mm_struct *mm = current->mm;
2107	struct prctl_mm_map prctl_map = {
2108		.auxv = NULL,
2109		.auxv_size = 0,
2110		.exe_fd = -1,
2111	};
2112	struct vm_area_struct *vma;
2113	int error;
2114
2115	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2116			      opt != PR_SET_MM_MAP &&
2117			      opt != PR_SET_MM_MAP_SIZE)))
2118		return -EINVAL;
2119
2120#ifdef CONFIG_CHECKPOINT_RESTORE
2121	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2122		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2123#endif
2124
2125	if (!capable(CAP_SYS_RESOURCE))
2126		return -EPERM;
2127
2128	if (opt == PR_SET_MM_EXE_FILE)
2129		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2130
2131	if (opt == PR_SET_MM_AUXV)
2132		return prctl_set_auxv(mm, addr, arg4);
2133
2134	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2135		return -EINVAL;
2136
2137	error = -EINVAL;
2138
2139	/*
2140	 * arg_lock protects concurent updates of arg boundaries, we need
2141	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2142	 * validation.
2143	 */
2144	mmap_read_lock(mm);
2145	vma = find_vma(mm, addr);
2146
2147	spin_lock(&mm->arg_lock);
2148	prctl_map.start_code	= mm->start_code;
2149	prctl_map.end_code	= mm->end_code;
2150	prctl_map.start_data	= mm->start_data;
2151	prctl_map.end_data	= mm->end_data;
2152	prctl_map.start_brk	= mm->start_brk;
2153	prctl_map.brk		= mm->brk;
2154	prctl_map.start_stack	= mm->start_stack;
2155	prctl_map.arg_start	= mm->arg_start;
2156	prctl_map.arg_end	= mm->arg_end;
2157	prctl_map.env_start	= mm->env_start;
2158	prctl_map.env_end	= mm->env_end;
2159
2160	switch (opt) {
2161	case PR_SET_MM_START_CODE:
2162		prctl_map.start_code = addr;
2163		break;
2164	case PR_SET_MM_END_CODE:
2165		prctl_map.end_code = addr;
2166		break;
2167	case PR_SET_MM_START_DATA:
2168		prctl_map.start_data = addr;
2169		break;
2170	case PR_SET_MM_END_DATA:
2171		prctl_map.end_data = addr;
2172		break;
2173	case PR_SET_MM_START_STACK:
2174		prctl_map.start_stack = addr;
2175		break;
 
2176	case PR_SET_MM_START_BRK:
2177		prctl_map.start_brk = addr;
 
 
 
 
 
 
 
 
2178		break;
 
2179	case PR_SET_MM_BRK:
2180		prctl_map.brk = addr;
2181		break;
2182	case PR_SET_MM_ARG_START:
2183		prctl_map.arg_start = addr;
2184		break;
2185	case PR_SET_MM_ARG_END:
2186		prctl_map.arg_end = addr;
2187		break;
2188	case PR_SET_MM_ENV_START:
2189		prctl_map.env_start = addr;
2190		break;
2191	case PR_SET_MM_ENV_END:
2192		prctl_map.env_end = addr;
2193		break;
2194	default:
2195		goto out;
2196	}
2197
2198	error = validate_prctl_map_addr(&prctl_map);
2199	if (error)
2200		goto out;
2201
2202	switch (opt) {
2203	/*
2204	 * If command line arguments and environment
2205	 * are placed somewhere else on stack, we can
2206	 * set them up here, ARG_START/END to setup
2207	 * command line argumets and ENV_START/END
2208	 * for environment.
2209	 */
2210	case PR_SET_MM_START_STACK:
2211	case PR_SET_MM_ARG_START:
2212	case PR_SET_MM_ARG_END:
2213	case PR_SET_MM_ENV_START:
2214	case PR_SET_MM_ENV_END:
2215		if (!vma) {
2216			error = -EFAULT;
2217			goto out;
2218		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219	}
2220
2221	mm->start_code	= prctl_map.start_code;
2222	mm->end_code	= prctl_map.end_code;
2223	mm->start_data	= prctl_map.start_data;
2224	mm->end_data	= prctl_map.end_data;
2225	mm->start_brk	= prctl_map.start_brk;
2226	mm->brk		= prctl_map.brk;
2227	mm->start_stack	= prctl_map.start_stack;
2228	mm->arg_start	= prctl_map.arg_start;
2229	mm->arg_end	= prctl_map.arg_end;
2230	mm->env_start	= prctl_map.env_start;
2231	mm->env_end	= prctl_map.env_end;
2232
2233	error = 0;
2234out:
2235	spin_unlock(&mm->arg_lock);
2236	mmap_read_unlock(mm);
2237	return error;
2238}
2239
2240#ifdef CONFIG_CHECKPOINT_RESTORE
2241static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2242{
2243	return put_user(me->clear_child_tid, tid_addr);
2244}
2245#else
2246static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2247{
2248	return -EINVAL;
2249}
2250#endif
2251
2252static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2253{
2254	/*
2255	 * If task has has_child_subreaper - all its decendants
2256	 * already have these flag too and new decendants will
2257	 * inherit it on fork, skip them.
2258	 *
2259	 * If we've found child_reaper - skip descendants in
2260	 * it's subtree as they will never get out pidns.
2261	 */
2262	if (p->signal->has_child_subreaper ||
2263	    is_child_reaper(task_pid(p)))
2264		return 0;
2265
2266	p->signal->has_child_subreaper = 1;
2267	return 1;
2268}
2269
2270int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2271{
2272	return -EINVAL;
2273}
2274
2275int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2276				    unsigned long ctrl)
2277{
2278	return -EINVAL;
2279}
2280
2281#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2282
2283SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2284		unsigned long, arg4, unsigned long, arg5)
2285{
2286	struct task_struct *me = current;
2287	unsigned char comm[sizeof(me->comm)];
2288	long error;
2289
2290	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2291	if (error != -ENOSYS)
2292		return error;
2293
2294	error = 0;
2295	switch (option) {
2296	case PR_SET_PDEATHSIG:
2297		if (!valid_signal(arg2)) {
2298			error = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299			break;
2300		}
2301		me->pdeath_signal = arg2;
2302		break;
2303	case PR_GET_PDEATHSIG:
2304		error = put_user(me->pdeath_signal, (int __user *)arg2);
2305		break;
2306	case PR_GET_DUMPABLE:
2307		error = get_dumpable(me->mm);
2308		break;
2309	case PR_SET_DUMPABLE:
2310		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2311			error = -EINVAL;
2312			break;
2313		}
2314		set_dumpable(me->mm, arg2);
2315		break;
2316
2317	case PR_SET_UNALIGN:
2318		error = SET_UNALIGN_CTL(me, arg2);
2319		break;
2320	case PR_GET_UNALIGN:
2321		error = GET_UNALIGN_CTL(me, arg2);
2322		break;
2323	case PR_SET_FPEMU:
2324		error = SET_FPEMU_CTL(me, arg2);
2325		break;
2326	case PR_GET_FPEMU:
2327		error = GET_FPEMU_CTL(me, arg2);
2328		break;
2329	case PR_SET_FPEXC:
2330		error = SET_FPEXC_CTL(me, arg2);
2331		break;
2332	case PR_GET_FPEXC:
2333		error = GET_FPEXC_CTL(me, arg2);
2334		break;
2335	case PR_GET_TIMING:
2336		error = PR_TIMING_STATISTICAL;
2337		break;
2338	case PR_SET_TIMING:
2339		if (arg2 != PR_TIMING_STATISTICAL)
2340			error = -EINVAL;
2341		break;
2342	case PR_SET_NAME:
2343		comm[sizeof(me->comm) - 1] = 0;
2344		if (strncpy_from_user(comm, (char __user *)arg2,
2345				      sizeof(me->comm) - 1) < 0)
2346			return -EFAULT;
2347		set_task_comm(me, comm);
2348		proc_comm_connector(me);
2349		break;
2350	case PR_GET_NAME:
2351		get_task_comm(comm, me);
2352		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2353			return -EFAULT;
2354		break;
2355	case PR_GET_ENDIAN:
2356		error = GET_ENDIAN(me, arg2);
2357		break;
2358	case PR_SET_ENDIAN:
2359		error = SET_ENDIAN(me, arg2);
2360		break;
2361	case PR_GET_SECCOMP:
2362		error = prctl_get_seccomp();
2363		break;
2364	case PR_SET_SECCOMP:
2365		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2366		break;
2367	case PR_GET_TSC:
2368		error = GET_TSC_CTL(arg2);
2369		break;
2370	case PR_SET_TSC:
2371		error = SET_TSC_CTL(arg2);
2372		break;
2373	case PR_TASK_PERF_EVENTS_DISABLE:
2374		error = perf_event_task_disable();
2375		break;
2376	case PR_TASK_PERF_EVENTS_ENABLE:
2377		error = perf_event_task_enable();
2378		break;
2379	case PR_GET_TIMERSLACK:
2380		if (current->timer_slack_ns > ULONG_MAX)
2381			error = ULONG_MAX;
2382		else
2383			error = current->timer_slack_ns;
2384		break;
2385	case PR_SET_TIMERSLACK:
2386		if (arg2 <= 0)
2387			current->timer_slack_ns =
2388					current->default_timer_slack_ns;
2389		else
2390			current->timer_slack_ns = arg2;
2391		break;
2392	case PR_MCE_KILL:
2393		if (arg4 | arg5)
2394			return -EINVAL;
2395		switch (arg2) {
2396		case PR_MCE_KILL_CLEAR:
2397			if (arg3 != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2398				return -EINVAL;
2399			current->flags &= ~PF_MCE_PROCESS;
 
2400			break;
2401		case PR_MCE_KILL_SET:
2402			current->flags |= PF_MCE_PROCESS;
2403			if (arg3 == PR_MCE_KILL_EARLY)
2404				current->flags |= PF_MCE_EARLY;
2405			else if (arg3 == PR_MCE_KILL_LATE)
2406				current->flags &= ~PF_MCE_EARLY;
2407			else if (arg3 == PR_MCE_KILL_DEFAULT)
2408				current->flags &=
2409						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2410			else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411				return -EINVAL;
 
 
2412			break;
 
 
 
 
2413		default:
2414			return -EINVAL;
2415		}
2416		break;
2417	case PR_MCE_KILL_GET:
2418		if (arg2 | arg3 | arg4 | arg5)
2419			return -EINVAL;
2420		if (current->flags & PF_MCE_PROCESS)
2421			error = (current->flags & PF_MCE_EARLY) ?
2422				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2423		else
2424			error = PR_MCE_KILL_DEFAULT;
2425		break;
2426	case PR_SET_MM:
2427		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2428		break;
2429	case PR_GET_TID_ADDRESS:
2430		error = prctl_get_tid_address(me, (int __user **)arg2);
2431		break;
2432	case PR_SET_CHILD_SUBREAPER:
2433		me->signal->is_child_subreaper = !!arg2;
2434		if (!arg2)
2435			break;
2436
2437		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2438		break;
2439	case PR_GET_CHILD_SUBREAPER:
2440		error = put_user(me->signal->is_child_subreaper,
2441				 (int __user *)arg2);
2442		break;
2443	case PR_SET_NO_NEW_PRIVS:
2444		if (arg2 != 1 || arg3 || arg4 || arg5)
2445			return -EINVAL;
2446
2447		task_set_no_new_privs(current);
2448		break;
2449	case PR_GET_NO_NEW_PRIVS:
2450		if (arg2 || arg3 || arg4 || arg5)
2451			return -EINVAL;
2452		return task_no_new_privs(current) ? 1 : 0;
2453	case PR_GET_THP_DISABLE:
2454		if (arg2 || arg3 || arg4 || arg5)
2455			return -EINVAL;
2456		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2457		break;
2458	case PR_SET_THP_DISABLE:
2459		if (arg3 || arg4 || arg5)
2460			return -EINVAL;
2461		if (mmap_write_lock_killable(me->mm))
2462			return -EINTR;
2463		if (arg2)
2464			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2465		else
2466			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2467		mmap_write_unlock(me->mm);
2468		break;
2469	case PR_MPX_ENABLE_MANAGEMENT:
2470	case PR_MPX_DISABLE_MANAGEMENT:
2471		/* No longer implemented: */
2472		return -EINVAL;
2473	case PR_SET_FP_MODE:
2474		error = SET_FP_MODE(me, arg2);
2475		break;
2476	case PR_GET_FP_MODE:
2477		error = GET_FP_MODE(me);
2478		break;
2479	case PR_SVE_SET_VL:
2480		error = SVE_SET_VL(arg2);
2481		break;
2482	case PR_SVE_GET_VL:
2483		error = SVE_GET_VL();
2484		break;
2485	case PR_GET_SPECULATION_CTRL:
2486		if (arg3 || arg4 || arg5)
2487			return -EINVAL;
2488		error = arch_prctl_spec_ctrl_get(me, arg2);
2489		break;
2490	case PR_SET_SPECULATION_CTRL:
2491		if (arg4 || arg5)
2492			return -EINVAL;
2493		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2494		break;
2495	case PR_PAC_RESET_KEYS:
2496		if (arg3 || arg4 || arg5)
2497			return -EINVAL;
2498		error = PAC_RESET_KEYS(me, arg2);
2499		break;
2500	case PR_SET_TAGGED_ADDR_CTRL:
2501		if (arg3 || arg4 || arg5)
2502			return -EINVAL;
2503		error = SET_TAGGED_ADDR_CTRL(arg2);
2504		break;
2505	case PR_GET_TAGGED_ADDR_CTRL:
2506		if (arg2 || arg3 || arg4 || arg5)
2507			return -EINVAL;
2508		error = GET_TAGGED_ADDR_CTRL();
2509		break;
2510	case PR_SET_IO_FLUSHER:
2511		if (!capable(CAP_SYS_RESOURCE))
2512			return -EPERM;
2513
2514		if (arg3 || arg4 || arg5)
2515			return -EINVAL;
2516
2517		if (arg2 == 1)
2518			current->flags |= PR_IO_FLUSHER;
2519		else if (!arg2)
2520			current->flags &= ~PR_IO_FLUSHER;
2521		else
2522			return -EINVAL;
2523		break;
2524	case PR_GET_IO_FLUSHER:
2525		if (!capable(CAP_SYS_RESOURCE))
2526			return -EPERM;
2527
2528		if (arg2 || arg3 || arg4 || arg5)
2529			return -EINVAL;
2530
2531		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2532		break;
2533	default:
2534		error = -EINVAL;
2535		break;
2536	}
2537	return error;
2538}
2539
2540SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2541		struct getcpu_cache __user *, unused)
2542{
2543	int err = 0;
2544	int cpu = raw_smp_processor_id();
2545
2546	if (cpup)
2547		err |= put_user(cpu, cpup);
2548	if (nodep)
2549		err |= put_user(cpu_to_node(cpu), nodep);
2550	return err ? -EFAULT : 0;
2551}
2552
 
 
 
 
 
 
 
2553/**
2554 * do_sysinfo - fill in sysinfo struct
2555 * @info: pointer to buffer to fill
 
 
 
2556 */
2557static int do_sysinfo(struct sysinfo *info)
2558{
2559	unsigned long mem_total, sav_total;
2560	unsigned int mem_unit, bitcount;
2561	struct timespec64 tp;
2562
2563	memset(info, 0, sizeof(struct sysinfo));
2564
2565	ktime_get_boottime_ts64(&tp);
2566	timens_add_boottime(&tp);
2567	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2568
2569	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2570
2571	info->procs = nr_threads;
2572
2573	si_meminfo(info);
2574	si_swapinfo(info);
2575
2576	/*
2577	 * If the sum of all the available memory (i.e. ram + swap)
2578	 * is less than can be stored in a 32 bit unsigned long then
2579	 * we can be binary compatible with 2.2.x kernels.  If not,
2580	 * well, in that case 2.2.x was broken anyways...
2581	 *
2582	 *  -Erik Andersen <andersee@debian.org>
2583	 */
2584
2585	mem_total = info->totalram + info->totalswap;
2586	if (mem_total < info->totalram || mem_total < info->totalswap)
2587		goto out;
2588	bitcount = 0;
2589	mem_unit = info->mem_unit;
2590	while (mem_unit > 1) {
2591		bitcount++;
2592		mem_unit >>= 1;
2593		sav_total = mem_total;
2594		mem_total <<= 1;
2595		if (mem_total < sav_total)
2596			goto out;
2597	}
2598
2599	/*
2600	 * If mem_total did not overflow, multiply all memory values by
2601	 * info->mem_unit and set it to 1.  This leaves things compatible
2602	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2603	 * kernels...
2604	 */
2605
2606	info->mem_unit = 1;
2607	info->totalram <<= bitcount;
2608	info->freeram <<= bitcount;
2609	info->sharedram <<= bitcount;
2610	info->bufferram <<= bitcount;
2611	info->totalswap <<= bitcount;
2612	info->freeswap <<= bitcount;
2613	info->totalhigh <<= bitcount;
2614	info->freehigh <<= bitcount;
2615
2616out:
2617	return 0;
2618}
2619
2620SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2621{
2622	struct sysinfo val;
2623
2624	do_sysinfo(&val);
 
 
 
 
 
 
 
 
 
2625
2626	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2627		return -EFAULT;
2628
2629	return 0;
2630}
2631
2632#ifdef CONFIG_COMPAT
2633struct compat_sysinfo {
2634	s32 uptime;
2635	u32 loads[3];
2636	u32 totalram;
2637	u32 freeram;
2638	u32 sharedram;
2639	u32 bufferram;
2640	u32 totalswap;
2641	u32 freeswap;
2642	u16 procs;
2643	u16 pad;
2644	u32 totalhigh;
2645	u32 freehigh;
2646	u32 mem_unit;
2647	char _f[20-2*sizeof(u32)-sizeof(int)];
2648};
2649
2650COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2651{
2652	struct sysinfo s;
2653	struct compat_sysinfo s_32;
2654
2655	do_sysinfo(&s);
2656
2657	/* Check to see if any memory value is too large for 32-bit and scale
2658	 *  down if needed
2659	 */
2660	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2661		int bitcount = 0;
2662
2663		while (s.mem_unit < PAGE_SIZE) {
2664			s.mem_unit <<= 1;
2665			bitcount++;
2666		}
2667
2668		s.totalram >>= bitcount;
2669		s.freeram >>= bitcount;
2670		s.sharedram >>= bitcount;
2671		s.bufferram >>= bitcount;
2672		s.totalswap >>= bitcount;
2673		s.freeswap >>= bitcount;
2674		s.totalhigh >>= bitcount;
2675		s.freehigh >>= bitcount;
2676	}
2677
2678	memset(&s_32, 0, sizeof(s_32));
2679	s_32.uptime = s.uptime;
2680	s_32.loads[0] = s.loads[0];
2681	s_32.loads[1] = s.loads[1];
2682	s_32.loads[2] = s.loads[2];
2683	s_32.totalram = s.totalram;
2684	s_32.freeram = s.freeram;
2685	s_32.sharedram = s.sharedram;
2686	s_32.bufferram = s.bufferram;
2687	s_32.totalswap = s.totalswap;
2688	s_32.freeswap = s.freeswap;
2689	s_32.procs = s.procs;
2690	s_32.totalhigh = s.totalhigh;
2691	s_32.freehigh = s.freehigh;
2692	s_32.mem_unit = s.mem_unit;
2693	if (copy_to_user(info, &s_32, sizeof(s_32)))
2694		return -EFAULT;
2695	return 0;
2696}
2697#endif /* CONFIG_COMPAT */