Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_log.h"
  21#include "xfs_sb.h"
  22#include "xfs_ag.h"
  23#include "xfs_trans.h"
  24#include "xfs_mount.h"
  25#include "xfs_bmap_btree.h"
  26#include "xfs_alloc.h"
  27#include "xfs_dinode.h"
  28#include "xfs_inode.h"
 
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_error.h"
  32#include "xfs_vnodeops.h"
  33#include "xfs_da_btree.h"
  34#include "xfs_ioctl.h"
  35#include "xfs_trace.h"
 
 
 
 
 
  36
  37#include <linux/dcache.h>
  38#include <linux/falloc.h>
 
 
 
  39
  40static const struct vm_operations_struct xfs_file_vm_ops;
  41
  42/*
  43 * Locking primitives for read and write IO paths to ensure we consistently use
  44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  45 */
  46static inline void
  47xfs_rw_ilock(
  48	struct xfs_inode	*ip,
  49	int			type)
  50{
  51	if (type & XFS_IOLOCK_EXCL)
  52		mutex_lock(&VFS_I(ip)->i_mutex);
  53	xfs_ilock(ip, type);
  54}
  55
  56static inline void
  57xfs_rw_iunlock(
  58	struct xfs_inode	*ip,
  59	int			type)
  60{
  61	xfs_iunlock(ip, type);
  62	if (type & XFS_IOLOCK_EXCL)
  63		mutex_unlock(&VFS_I(ip)->i_mutex);
  64}
  65
  66static inline void
  67xfs_rw_ilock_demote(
  68	struct xfs_inode	*ip,
  69	int			type)
  70{
  71	xfs_ilock_demote(ip, type);
  72	if (type & XFS_IOLOCK_EXCL)
  73		mutex_unlock(&VFS_I(ip)->i_mutex);
  74}
  75
  76/*
  77 *	xfs_iozero
  78 *
  79 *	xfs_iozero clears the specified range of buffer supplied,
  80 *	and marks all the affected blocks as valid and modified.  If
  81 *	an affected block is not allocated, it will be allocated.  If
  82 *	an affected block is not completely overwritten, and is not
  83 *	valid before the operation, it will be read from disk before
  84 *	being partially zeroed.
  85 */
  86STATIC int
  87xfs_iozero(
  88	struct xfs_inode	*ip,	/* inode			*/
  89	loff_t			pos,	/* offset in file		*/
  90	size_t			count)	/* size of data to zero		*/
  91{
  92	struct page		*page;
  93	struct address_space	*mapping;
  94	int			status;
  95
  96	mapping = VFS_I(ip)->i_mapping;
  97	do {
  98		unsigned offset, bytes;
  99		void *fsdata;
 100
 101		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 102		bytes = PAGE_CACHE_SIZE - offset;
 103		if (bytes > count)
 104			bytes = count;
 105
 106		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 107					AOP_FLAG_UNINTERRUPTIBLE,
 108					&page, &fsdata);
 109		if (status)
 110			break;
 111
 112		zero_user(page, offset, bytes);
 
 
 
 113
 114		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 115					page, fsdata);
 116		WARN_ON(status <= 0); /* can't return less than zero! */
 117		pos += bytes;
 118		count -= bytes;
 119		status = 0;
 120	} while (count);
 121
 122	return (-status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123}
 124
 125/*
 126 * Fsync operations on directories are much simpler than on regular files,
 127 * as there is no file data to flush, and thus also no need for explicit
 128 * cache flush operations, and there are no non-transaction metadata updates
 129 * on directories either.
 130 */
 131STATIC int
 132xfs_dir_fsync(
 133	struct file		*file,
 134	loff_t			start,
 135	loff_t			end,
 136	int			datasync)
 137{
 138	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 139	struct xfs_mount	*mp = ip->i_mount;
 140	xfs_lsn_t		lsn = 0;
 141
 142	trace_xfs_dir_fsync(ip);
 143
 144	xfs_ilock(ip, XFS_ILOCK_SHARED);
 145	if (xfs_ipincount(ip))
 146		lsn = ip->i_itemp->ili_last_lsn;
 147	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 148
 149	if (!lsn)
 150		return 0;
 151	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 152}
 153
 154STATIC int
 155xfs_file_fsync(
 156	struct file		*file,
 157	loff_t			start,
 158	loff_t			end,
 159	int			datasync)
 160{
 161	struct inode		*inode = file->f_mapping->host;
 162	struct xfs_inode	*ip = XFS_I(inode);
 
 163	struct xfs_mount	*mp = ip->i_mount;
 164	int			error = 0;
 165	int			log_flushed = 0;
 166	xfs_lsn_t		lsn = 0;
 167
 168	trace_xfs_file_fsync(ip);
 169
 170	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 171	if (error)
 172		return error;
 173
 174	if (XFS_FORCED_SHUTDOWN(mp))
 175		return -XFS_ERROR(EIO);
 176
 177	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 178
 179	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 180		/*
 181		 * If we have an RT and/or log subvolume we need to make sure
 182		 * to flush the write cache the device used for file data
 183		 * first.  This is to ensure newly written file data make
 184		 * it to disk before logging the new inode size in case of
 185		 * an extending write.
 186		 */
 187		if (XFS_IS_REALTIME_INODE(ip))
 188			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 189		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 190			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 191	}
 192
 193	/*
 194	 * All metadata updates are logged, which means that we just have
 195	 * to flush the log up to the latest LSN that touched the inode.
 
 
 
 
 
 
 
 
 
 196	 */
 197	xfs_ilock(ip, XFS_ILOCK_SHARED);
 198	if (xfs_ipincount(ip)) {
 199		if (!datasync ||
 200		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
 201			lsn = ip->i_itemp->ili_last_lsn;
 202	}
 203	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 204
 205	if (lsn)
 206		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 
 
 
 
 
 207
 208	/*
 209	 * If we only have a single device, and the log force about was
 210	 * a no-op we might have to flush the data device cache here.
 211	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 212	 * an already allocated file and thus do not have any metadata to
 213	 * commit.
 214	 */
 215	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 216	    mp->m_logdev_targp == mp->m_ddev_targp &&
 217	    !XFS_IS_REALTIME_INODE(ip) &&
 218	    !log_flushed)
 219		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 220
 221	return -error;
 222}
 223
 224STATIC ssize_t
 225xfs_file_aio_read(
 226	struct kiocb		*iocb,
 227	const struct iovec	*iovp,
 228	unsigned long		nr_segs,
 229	loff_t			pos)
 230{
 231	struct file		*file = iocb->ki_filp;
 232	struct inode		*inode = file->f_mapping->host;
 233	struct xfs_inode	*ip = XFS_I(inode);
 234	struct xfs_mount	*mp = ip->i_mount;
 235	size_t			size = 0;
 236	ssize_t			ret = 0;
 237	int			ioflags = 0;
 238	xfs_fsize_t		n;
 239	unsigned long		seg;
 240
 241	XFS_STATS_INC(xs_read_calls);
 242
 243	BUG_ON(iocb->ki_pos != pos);
 244
 245	if (unlikely(file->f_flags & O_DIRECT))
 246		ioflags |= IO_ISDIRECT;
 247	if (file->f_mode & FMODE_NOCMTIME)
 248		ioflags |= IO_INVIS;
 249
 250	/* START copy & waste from filemap.c */
 251	for (seg = 0; seg < nr_segs; seg++) {
 252		const struct iovec *iv = &iovp[seg];
 253
 254		/*
 255		 * If any segment has a negative length, or the cumulative
 256		 * length ever wraps negative then return -EINVAL.
 257		 */
 258		size += iv->iov_len;
 259		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 260			return XFS_ERROR(-EINVAL);
 261	}
 262	/* END copy & waste from filemap.c */
 263
 264	if (unlikely(ioflags & IO_ISDIRECT)) {
 265		xfs_buftarg_t	*target =
 266			XFS_IS_REALTIME_INODE(ip) ?
 267				mp->m_rtdev_targp : mp->m_ddev_targp;
 268		if ((iocb->ki_pos & target->bt_smask) ||
 269		    (size & target->bt_smask)) {
 270			if (iocb->ki_pos == i_size_read(inode))
 271				return 0;
 272			return -XFS_ERROR(EINVAL);
 273		}
 274	}
 275
 276	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 277	if (n <= 0 || size == 0)
 278		return 0;
 279
 280	if (n < size)
 281		size = n;
 282
 283	if (XFS_FORCED_SHUTDOWN(mp))
 284		return -EIO;
 285
 286	/*
 287	 * Locking is a bit tricky here. If we take an exclusive lock
 288	 * for direct IO, we effectively serialise all new concurrent
 289	 * read IO to this file and block it behind IO that is currently in
 290	 * progress because IO in progress holds the IO lock shared. We only
 291	 * need to hold the lock exclusive to blow away the page cache, so
 292	 * only take lock exclusively if the page cache needs invalidation.
 293	 * This allows the normal direct IO case of no page cache pages to
 294	 * proceeed concurrently without serialisation.
 295	 */
 296	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 297	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
 298		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 299		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 300
 301		if (inode->i_mapping->nrpages) {
 302			ret = -xfs_flushinval_pages(ip,
 303					(iocb->ki_pos & PAGE_CACHE_MASK),
 304					-1, FI_REMAPF_LOCKED);
 305			if (ret) {
 306				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 307				return ret;
 308			}
 309		}
 310		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 311	}
 
 
 
 312
 313	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 314
 315	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 316	if (ret > 0)
 317		XFS_STATS_ADD(xs_read_bytes, ret);
 318
 319	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 320	return ret;
 321}
 322
 323STATIC ssize_t
 324xfs_file_splice_read(
 325	struct file		*infilp,
 326	loff_t			*ppos,
 327	struct pipe_inode_info	*pipe,
 328	size_t			count,
 329	unsigned int		flags)
 330{
 331	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 332	int			ioflags = 0;
 333	ssize_t			ret;
 334
 335	XFS_STATS_INC(xs_read_calls);
 336
 337	if (infilp->f_mode & FMODE_NOCMTIME)
 338		ioflags |= IO_INVIS;
 339
 340	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 341		return -EIO;
 342
 343	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 
 344
 345	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 
 
 
 
 
 346
 347	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 348	if (ret > 0)
 349		XFS_STATS_ADD(xs_read_bytes, ret);
 350
 351	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 352	return ret;
 353}
 354
 355/*
 356 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 357 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 358 * couuld cause lock inversions between the aio_write path and the splice path
 359 * if someone is doing concurrent splice(2) based writes and write(2) based
 360 * writes to the same inode. The only real way to fix this is to re-implement
 361 * the generic code here with correct locking orders.
 362 */
 363STATIC ssize_t
 364xfs_file_splice_write(
 365	struct pipe_inode_info	*pipe,
 366	struct file		*outfilp,
 367	loff_t			*ppos,
 368	size_t			count,
 369	unsigned int		flags)
 370{
 371	struct inode		*inode = outfilp->f_mapping->host;
 372	struct xfs_inode	*ip = XFS_I(inode);
 373	int			ioflags = 0;
 374	ssize_t			ret;
 375
 376	XFS_STATS_INC(xs_write_calls);
 377
 378	if (outfilp->f_mode & FMODE_NOCMTIME)
 379		ioflags |= IO_INVIS;
 380
 381	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 382		return -EIO;
 383
 384	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 385
 386	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 387
 388	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 389	if (ret > 0)
 390		XFS_STATS_ADD(xs_write_bytes, ret);
 391
 392	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 393	return ret;
 394}
 395
 396/*
 397 * This routine is called to handle zeroing any space in the last block of the
 398 * file that is beyond the EOF.  We do this since the size is being increased
 399 * without writing anything to that block and we don't want to read the
 400 * garbage on the disk.
 401 */
 402STATIC int				/* error (positive) */
 403xfs_zero_last_block(
 404	struct xfs_inode	*ip,
 405	xfs_fsize_t		offset,
 406	xfs_fsize_t		isize)
 407{
 408	struct xfs_mount	*mp = ip->i_mount;
 409	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 410	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 411	int			zero_len;
 412	int			nimaps = 1;
 413	int			error = 0;
 414	struct xfs_bmbt_irec	imap;
 415
 416	xfs_ilock(ip, XFS_ILOCK_EXCL);
 417	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 418	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 419	if (error)
 420		return error;
 421
 422	ASSERT(nimaps > 0);
 423
 424	/*
 425	 * If the block underlying isize is just a hole, then there
 426	 * is nothing to zero.
 427	 */
 428	if (imap.br_startblock == HOLESTARTBLOCK)
 429		return 0;
 430
 431	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 432	if (isize + zero_len > offset)
 433		zero_len = offset - isize;
 434	return xfs_iozero(ip, isize, zero_len);
 435}
 436
 437/*
 438 * Zero any on disk space between the current EOF and the new, larger EOF.
 439 *
 440 * This handles the normal case of zeroing the remainder of the last block in
 441 * the file and the unusual case of zeroing blocks out beyond the size of the
 442 * file.  This second case only happens with fixed size extents and when the
 443 * system crashes before the inode size was updated but after blocks were
 444 * allocated.
 445 *
 446 * Expects the iolock to be held exclusive, and will take the ilock internally.
 447 */
 448int					/* error (positive) */
 449xfs_zero_eof(
 450	struct xfs_inode	*ip,
 451	xfs_off_t		offset,		/* starting I/O offset */
 452	xfs_fsize_t		isize)		/* current inode size */
 453{
 454	struct xfs_mount	*mp = ip->i_mount;
 455	xfs_fileoff_t		start_zero_fsb;
 456	xfs_fileoff_t		end_zero_fsb;
 457	xfs_fileoff_t		zero_count_fsb;
 458	xfs_fileoff_t		last_fsb;
 459	xfs_fileoff_t		zero_off;
 460	xfs_fsize_t		zero_len;
 461	int			nimaps;
 462	int			error = 0;
 463	struct xfs_bmbt_irec	imap;
 464
 465	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 466	ASSERT(offset > isize);
 467
 468	/*
 469	 * First handle zeroing the block on which isize resides.
 470	 *
 471	 * We only zero a part of that block so it is handled specially.
 472	 */
 473	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 474		error = xfs_zero_last_block(ip, offset, isize);
 475		if (error)
 476			return error;
 477	}
 478
 479	/*
 480	 * Calculate the range between the new size and the old where blocks
 481	 * needing to be zeroed may exist.
 482	 *
 483	 * To get the block where the last byte in the file currently resides,
 484	 * we need to subtract one from the size and truncate back to a block
 485	 * boundary.  We subtract 1 in case the size is exactly on a block
 486	 * boundary.
 487	 */
 488	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 489	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 490	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 491	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 492	if (last_fsb == end_zero_fsb) {
 493		/*
 494		 * The size was only incremented on its last block.
 495		 * We took care of that above, so just return.
 496		 */
 497		return 0;
 498	}
 499
 500	ASSERT(start_zero_fsb <= end_zero_fsb);
 501	while (start_zero_fsb <= end_zero_fsb) {
 502		nimaps = 1;
 503		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 504
 505		xfs_ilock(ip, XFS_ILOCK_EXCL);
 506		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 507					  &imap, &nimaps, 0);
 508		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 509		if (error)
 510			return error;
 511
 512		ASSERT(nimaps > 0);
 513
 514		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 515		    imap.br_startblock == HOLESTARTBLOCK) {
 516			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 517			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 518			continue;
 519		}
 520
 521		/*
 522		 * There are blocks we need to zero.
 523		 */
 524		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 525		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 526
 527		if ((zero_off + zero_len) > offset)
 528			zero_len = offset - zero_off;
 529
 530		error = xfs_iozero(ip, zero_off, zero_len);
 531		if (error)
 532			return error;
 533
 534		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 535		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 536	}
 
 
 
 537
 538	return 0;
 
 
 539}
 540
 541/*
 542 * Common pre-write limit and setup checks.
 543 *
 544 * Called with the iolocked held either shared and exclusive according to
 545 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 546 * if called for a direct write beyond i_size.
 547 */
 548STATIC ssize_t
 549xfs_file_aio_write_checks(
 550	struct file		*file,
 551	loff_t			*pos,
 552	size_t			*count,
 553	int			*iolock)
 554{
 
 555	struct inode		*inode = file->f_mapping->host;
 556	struct xfs_inode	*ip = XFS_I(inode);
 557	int			error = 0;
 
 
 
 558
 559restart:
 560	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 
 
 
 
 561	if (error)
 562		return error;
 563
 564	/*
 
 
 
 
 
 
 
 
 
 
 565	 * If the offset is beyond the size of the file, we need to zero any
 566	 * blocks that fall between the existing EOF and the start of this
 567	 * write.  If zeroing is needed and we are currently holding the
 568	 * iolock shared, we need to update it to exclusive which implies
 569	 * having to redo all checks before.
 
 
 
 
 
 
 
 
 570	 */
 571	if (*pos > i_size_read(inode)) {
 572		if (*iolock == XFS_IOLOCK_SHARED) {
 573			xfs_rw_iunlock(ip, *iolock);
 574			*iolock = XFS_IOLOCK_EXCL;
 575			xfs_rw_ilock(ip, *iolock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576			goto restart;
 577		}
 578		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
 
 
 
 579		if (error)
 580			return error;
 581	}
 
 582
 583	/*
 584	 * Updating the timestamps will grab the ilock again from
 585	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 586	 * lock above.  Eventually we should look into a way to avoid
 587	 * the pointless lock roundtrip.
 588	 */
 589	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 590		error = file_update_time(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591		if (error)
 592			return error;
 
 
 
 
 
 
 
 
 
 
 
 593	}
 594
 595	/*
 596	 * If we're writing the file then make sure to clear the setuid and
 597	 * setgid bits if the process is not being run by root.  This keeps
 598	 * people from modifying setuid and setgid binaries.
 
 
 
 
 
 
 599	 */
 600	return file_remove_suid(file);
 
 
 
 
 
 
 
 
 
 
 
 601}
 602
 
 
 
 
 603/*
 604 * xfs_file_dio_aio_write - handle direct IO writes
 605 *
 606 * Lock the inode appropriately to prepare for and issue a direct IO write.
 607 * By separating it from the buffered write path we remove all the tricky to
 608 * follow locking changes and looping.
 609 *
 610 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 611 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 612 * pages are flushed out.
 613 *
 614 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 615 * allowing them to be done in parallel with reads and other direct IO writes.
 616 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 617 * needs to do sub-block zeroing and that requires serialisation against other
 618 * direct IOs to the same block. In this case we need to serialise the
 619 * submission of the unaligned IOs so that we don't get racing block zeroing in
 620 * the dio layer.  To avoid the problem with aio, we also need to wait for
 621 * outstanding IOs to complete so that unwritten extent conversion is completed
 622 * before we try to map the overlapping block. This is currently implemented by
 623 * hitting it with a big hammer (i.e. inode_dio_wait()).
 624 *
 625 * Returns with locks held indicated by @iolock and errors indicated by
 626 * negative return values.
 627 */
 628STATIC ssize_t
 629xfs_file_dio_aio_write(
 630	struct kiocb		*iocb,
 631	const struct iovec	*iovp,
 632	unsigned long		nr_segs,
 633	loff_t			pos,
 634	size_t			ocount)
 635{
 636	struct file		*file = iocb->ki_filp;
 637	struct address_space	*mapping = file->f_mapping;
 638	struct inode		*inode = mapping->host;
 639	struct xfs_inode	*ip = XFS_I(inode);
 640	struct xfs_mount	*mp = ip->i_mount;
 641	ssize_t			ret = 0;
 642	size_t			count = ocount;
 643	int			unaligned_io = 0;
 644	int			iolock;
 645	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 646					mp->m_rtdev_targp : mp->m_ddev_targp;
 647
 648	if ((pos & target->bt_smask) || (count & target->bt_smask))
 649		return -XFS_ERROR(EINVAL);
 650
 651	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 652		unaligned_io = 1;
 653
 654	/*
 655	 * We don't need to take an exclusive lock unless there page cache needs
 656	 * to be invalidated or unaligned IO is being executed. We don't need to
 657	 * consider the EOF extension case here because
 658	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 659	 * EOF zeroing cases and fill out the new inode size as appropriate.
 660	 */
 661	if (unaligned_io || mapping->nrpages)
 
 
 
 
 
 
 
 
 
 
 
 662		iolock = XFS_IOLOCK_EXCL;
 663	else
 664		iolock = XFS_IOLOCK_SHARED;
 665	xfs_rw_ilock(ip, iolock);
 666
 667	/*
 668	 * Recheck if there are cached pages that need invalidate after we got
 669	 * the iolock to protect against other threads adding new pages while
 670	 * we were waiting for the iolock.
 671	 */
 672	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 673		xfs_rw_iunlock(ip, iolock);
 674		iolock = XFS_IOLOCK_EXCL;
 675		xfs_rw_ilock(ip, iolock);
 676	}
 677
 678	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 679	if (ret)
 680		goto out;
 681
 682	if (mapping->nrpages) {
 683		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 684							FI_REMAPF_LOCKED);
 685		if (ret)
 686			goto out;
 687	}
 688
 689	/*
 690	 * If we are doing unaligned IO, wait for all other IO to drain,
 691	 * otherwise demote the lock if we had to flush cached pages
 
 
 
 692	 */
 693	if (unaligned_io)
 694		inode_dio_wait(inode);
 695	else if (iolock == XFS_IOLOCK_EXCL) {
 696		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 697		iolock = XFS_IOLOCK_SHARED;
 698	}
 699
 700	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 701	ret = generic_file_direct_write(iocb, iovp,
 702			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 703
 
 
 
 
 704out:
 705	xfs_rw_iunlock(ip, iolock);
 706
 707	/* No fallback to buffered IO on errors for XFS. */
 
 
 
 708	ASSERT(ret < 0 || ret == count);
 709	return ret;
 710}
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712STATIC ssize_t
 713xfs_file_buffered_aio_write(
 714	struct kiocb		*iocb,
 715	const struct iovec	*iovp,
 716	unsigned long		nr_segs,
 717	loff_t			pos,
 718	size_t			ocount)
 719{
 720	struct file		*file = iocb->ki_filp;
 721	struct address_space	*mapping = file->f_mapping;
 722	struct inode		*inode = mapping->host;
 723	struct xfs_inode	*ip = XFS_I(inode);
 724	ssize_t			ret;
 725	int			enospc = 0;
 726	int			iolock = XFS_IOLOCK_EXCL;
 727	size_t			count = ocount;
 
 
 728
 729	xfs_rw_ilock(ip, iolock);
 
 
 730
 731	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 732	if (ret)
 733		goto out;
 734
 735	/* We can write back this queue in page reclaim */
 736	current->backing_dev_info = mapping->backing_dev_info;
 
 
 
 
 
 
 737
 738write_retry:
 739	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 740	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 741			pos, &iocb->ki_pos, count, ret);
 742	/*
 743	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 744	 * page locks and retry *once*
 
 
 
 
 
 745	 */
 746	if (ret == -ENOSPC && !enospc) {
 747		enospc = 1;
 748		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 749		if (!ret)
 750			goto write_retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	}
 752
 753	current->backing_dev_info = NULL;
 754out:
 755	xfs_rw_iunlock(ip, iolock);
 
 
 
 
 
 
 
 756	return ret;
 757}
 758
 759STATIC ssize_t
 760xfs_file_aio_write(
 761	struct kiocb		*iocb,
 762	const struct iovec	*iovp,
 763	unsigned long		nr_segs,
 764	loff_t			pos)
 765{
 766	struct file		*file = iocb->ki_filp;
 767	struct address_space	*mapping = file->f_mapping;
 768	struct inode		*inode = mapping->host;
 769	struct xfs_inode	*ip = XFS_I(inode);
 770	ssize_t			ret;
 771	size_t			ocount = 0;
 772
 773	XFS_STATS_INC(xs_write_calls);
 774
 775	BUG_ON(iocb->ki_pos != pos);
 776
 777	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 778	if (ret)
 779		return ret;
 780
 781	if (ocount == 0)
 782		return 0;
 783
 784	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 785
 786	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 787		return -EIO;
 788
 789	if (unlikely(file->f_flags & O_DIRECT))
 790		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
 791	else
 792		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 793						  ocount);
 794
 795	if (ret > 0) {
 796		ssize_t err;
 
 
 
 
 
 
 
 
 
 797
 798		XFS_STATS_ADD(xs_write_bytes, ret);
 
 799
 800		/* Handle various SYNC-type writes */
 801		err = generic_write_sync(file, pos, ret);
 802		if (err < 0)
 803			ret = err;
 804	}
 805
 806	return ret;
 
 
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809STATIC long
 810xfs_file_fallocate(
 811	struct file	*file,
 812	int		mode,
 813	loff_t		offset,
 814	loff_t		len)
 815{
 816	struct inode	*inode = file->f_path.dentry->d_inode;
 817	long		error;
 818	loff_t		new_size = 0;
 819	xfs_flock64_t	bf;
 820	xfs_inode_t	*ip = XFS_I(inode);
 821	int		cmd = XFS_IOC_RESVSP;
 822	int		attr_flags = XFS_ATTR_NOLOCK;
 823
 824	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
 825		return -EOPNOTSUPP;
 826
 827	bf.l_whence = 0;
 828	bf.l_start = offset;
 829	bf.l_len = len;
 830
 831	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 832
 833	if (mode & FALLOC_FL_PUNCH_HOLE)
 834		cmd = XFS_IOC_UNRESVSP;
 835
 836	/* check the new inode size is valid before allocating */
 837	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 838	    offset + len > i_size_read(inode)) {
 839		new_size = offset + len;
 840		error = inode_newsize_ok(inode, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841		if (error)
 842			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843	}
 844
 845	if (file->f_flags & O_DSYNC)
 846		attr_flags |= XFS_ATTR_SYNC;
 847
 848	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 849	if (error)
 850		goto out_unlock;
 851
 852	/* Change file size if needed */
 853	if (new_size) {
 854		struct iattr iattr;
 855
 856		iattr.ia_valid = ATTR_SIZE;
 857		iattr.ia_size = new_size;
 858		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 
 
 859	}
 860
 
 
 
 
 
 
 
 
 
 861out_unlock:
 862	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 863	return error;
 864}
 865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 867STATIC int
 868xfs_file_open(
 869	struct inode	*inode,
 870	struct file	*file)
 871{
 872	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 873		return -EFBIG;
 874	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 875		return -EIO;
 
 876	return 0;
 877}
 878
 879STATIC int
 880xfs_dir_open(
 881	struct inode	*inode,
 882	struct file	*file)
 883{
 884	struct xfs_inode *ip = XFS_I(inode);
 885	int		mode;
 886	int		error;
 887
 888	error = xfs_file_open(inode, file);
 889	if (error)
 890		return error;
 891
 892	/*
 893	 * If there are any blocks, read-ahead block 0 as we're almost
 894	 * certain to have the next operation be a read there.
 895	 */
 896	mode = xfs_ilock_map_shared(ip);
 897	if (ip->i_d.di_nextents > 0)
 898		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 899	xfs_iunlock(ip, mode);
 900	return 0;
 901}
 902
 903STATIC int
 904xfs_file_release(
 905	struct inode	*inode,
 906	struct file	*filp)
 907{
 908	return -xfs_release(XFS_I(inode));
 909}
 910
 911STATIC int
 912xfs_file_readdir(
 913	struct file	*filp,
 914	void		*dirent,
 915	filldir_t	filldir)
 916{
 917	struct inode	*inode = filp->f_path.dentry->d_inode;
 918	xfs_inode_t	*ip = XFS_I(inode);
 919	int		error;
 920	size_t		bufsize;
 921
 922	/*
 923	 * The Linux API doesn't pass down the total size of the buffer
 924	 * we read into down to the filesystem.  With the filldir concept
 925	 * it's not needed for correct information, but the XFS dir2 leaf
 926	 * code wants an estimate of the buffer size to calculate it's
 927	 * readahead window and size the buffers used for mapping to
 928	 * physical blocks.
 929	 *
 930	 * Try to give it an estimate that's good enough, maybe at some
 931	 * point we can change the ->readdir prototype to include the
 932	 * buffer size.  For now we use the current glibc buffer size.
 933	 */
 934	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 935
 936	error = xfs_readdir(ip, dirent, bufsize,
 937				(xfs_off_t *)&filp->f_pos, filldir);
 938	if (error)
 939		return -error;
 940	return 0;
 941}
 942
 943STATIC int
 944xfs_file_mmap(
 945	struct file	*filp,
 946	struct vm_area_struct *vma)
 
 947{
 948	vma->vm_ops = &xfs_file_vm_ops;
 949	vma->vm_flags |= VM_CAN_NONLINEAR;
 950
 951	file_accessed(filp);
 952	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953}
 954
 955/*
 956 * mmap()d file has taken write protection fault and is being made
 957 * writable. We can set the page state up correctly for a writable
 958 * page, which means we can do correct delalloc accounting (ENOSPC
 959 * checking!) and unwritten extent mapping.
 
 
 
 
 960 */
 961STATIC int
 962xfs_vm_page_mkwrite(
 963	struct vm_area_struct	*vma,
 964	struct vm_fault		*vmf)
 965{
 966	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 967}
 968
 969STATIC loff_t
 970xfs_seek_data(
 971	struct file		*file,
 972	loff_t			start,
 973	u32			type)
 974{
 975	struct inode		*inode = file->f_mapping->host;
 976	struct xfs_inode	*ip = XFS_I(inode);
 977	struct xfs_mount	*mp = ip->i_mount;
 978	struct xfs_bmbt_irec	map[2];
 979	int			nmap = 2;
 980	loff_t			uninitialized_var(offset);
 981	xfs_fsize_t		isize;
 982	xfs_fileoff_t		fsbno;
 983	xfs_filblks_t		end;
 984	uint			lock;
 985	int			error;
 986
 987	lock = xfs_ilock_map_shared(ip);
 988
 989	isize = i_size_read(inode);
 990	if (start >= isize) {
 991		error = ENXIO;
 992		goto out_unlock;
 993	}
 994
 995	fsbno = XFS_B_TO_FSBT(mp, start);
 996
 997	/*
 998	 * Try to read extents from the first block indicated
 999	 * by fsbno to the end block of the file.
1000	 */
1001	end = XFS_B_TO_FSB(mp, isize);
1002
1003	error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1004			       XFS_BMAPI_ENTIRE);
1005	if (error)
1006		goto out_unlock;
1007
1008	/*
1009	 * Treat unwritten extent as data extent since it might
1010	 * contains dirty data in page cache.
1011	 */
1012	if (map[0].br_startblock != HOLESTARTBLOCK) {
1013		offset = max_t(loff_t, start,
1014			       XFS_FSB_TO_B(mp, map[0].br_startoff));
1015	} else {
1016		if (nmap == 1) {
1017			error = ENXIO;
1018			goto out_unlock;
1019		}
1020
1021		offset = max_t(loff_t, start,
1022			       XFS_FSB_TO_B(mp, map[1].br_startoff));
1023	}
 
1024
1025	if (offset != file->f_pos)
1026		file->f_pos = offset;
1027
1028out_unlock:
1029	xfs_iunlock_map_shared(ip, lock);
1030
1031	if (error)
1032		return -error;
1033	return offset;
1034}
1035
1036STATIC loff_t
1037xfs_seek_hole(
1038	struct file		*file,
1039	loff_t			start,
1040	u32			type)
1041{
1042	struct inode		*inode = file->f_mapping->host;
1043	struct xfs_inode	*ip = XFS_I(inode);
1044	struct xfs_mount	*mp = ip->i_mount;
1045	loff_t			uninitialized_var(offset);
1046	loff_t			holeoff;
1047	xfs_fsize_t		isize;
1048	xfs_fileoff_t		fsbno;
1049	uint			lock;
1050	int			error;
1051
1052	if (XFS_FORCED_SHUTDOWN(mp))
1053		return -XFS_ERROR(EIO);
 
 
 
 
 
 
 
1054
1055	lock = xfs_ilock_map_shared(ip);
 
 
 
 
 
 
1056
1057	isize = i_size_read(inode);
1058	if (start >= isize) {
1059		error = ENXIO;
1060		goto out_unlock;
1061	}
1062
1063	fsbno = XFS_B_TO_FSBT(mp, start);
1064	error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1065	if (error)
1066		goto out_unlock;
 
 
1067
1068	holeoff = XFS_FSB_TO_B(mp, fsbno);
1069	if (holeoff <= start)
1070		offset = start;
1071	else {
1072		/*
1073		 * xfs_bmap_first_unused() could return a value bigger than
1074		 * isize if there are no more holes past the supplied offset.
1075		 */
1076		offset = min_t(loff_t, holeoff, isize);
1077	}
1078
1079	if (offset != file->f_pos)
1080		file->f_pos = offset;
1081
1082out_unlock:
1083	xfs_iunlock_map_shared(ip, lock);
 
 
 
 
 
1084
1085	if (error)
1086		return -error;
1087	return offset;
1088}
1089
1090STATIC loff_t
1091xfs_file_llseek(
1092	struct file	*file,
1093	loff_t		offset,
1094	int		origin)
 
 
 
 
 
 
 
1095{
1096	switch (origin) {
1097	case SEEK_END:
1098	case SEEK_CUR:
1099	case SEEK_SET:
1100		return generic_file_llseek(file, offset, origin);
1101	case SEEK_DATA:
1102		return xfs_seek_data(file, offset, origin);
1103	case SEEK_HOLE:
1104		return xfs_seek_hole(file, offset, origin);
1105	default:
1106		return -EINVAL;
1107	}
 
 
 
1108}
1109
1110const struct file_operations xfs_file_operations = {
1111	.llseek		= xfs_file_llseek,
1112	.read		= do_sync_read,
1113	.write		= do_sync_write,
1114	.aio_read	= xfs_file_aio_read,
1115	.aio_write	= xfs_file_aio_write,
1116	.splice_read	= xfs_file_splice_read,
1117	.splice_write	= xfs_file_splice_write,
1118	.unlocked_ioctl	= xfs_file_ioctl,
1119#ifdef CONFIG_COMPAT
1120	.compat_ioctl	= xfs_file_compat_ioctl,
1121#endif
1122	.mmap		= xfs_file_mmap,
 
1123	.open		= xfs_file_open,
1124	.release	= xfs_file_release,
1125	.fsync		= xfs_file_fsync,
 
1126	.fallocate	= xfs_file_fallocate,
 
 
1127};
1128
1129const struct file_operations xfs_dir_file_operations = {
1130	.open		= xfs_dir_open,
1131	.read		= generic_read_dir,
1132	.readdir	= xfs_file_readdir,
1133	.llseek		= generic_file_llseek,
1134	.unlocked_ioctl	= xfs_file_ioctl,
1135#ifdef CONFIG_COMPAT
1136	.compat_ioctl	= xfs_file_compat_ioctl,
1137#endif
1138	.fsync		= xfs_dir_fsync,
1139};
1140
1141static const struct vm_operations_struct xfs_file_vm_ops = {
1142	.fault		= filemap_fault,
1143	.page_mkwrite	= xfs_vm_page_mkwrite,
1144};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
 
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
  35int
  36xfs_update_prealloc_flags(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37	struct xfs_inode	*ip,
  38	enum xfs_prealloc_flags	flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39{
  40	struct xfs_trans	*tp;
  41	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42
  43	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44			0, 0, 0, &tp);
  45	if (error)
  46		return error;
  47
  48	xfs_ilock(ip, XFS_ILOCK_EXCL);
  49	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 
 
 
 
 
  50
  51	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52		VFS_I(ip)->i_mode &= ~S_ISUID;
  53		if (VFS_I(ip)->i_mode & S_IXGRP)
  54			VFS_I(ip)->i_mode &= ~S_ISGID;
  55		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56	}
  57
  58	if (flags & XFS_PREALLOC_SET)
  59		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60	if (flags & XFS_PREALLOC_CLEAR)
  61		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64	if (flags & XFS_PREALLOC_SYNC)
  65		xfs_trans_set_sync(tp);
  66	return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77	struct file		*file,
  78	loff_t			start,
  79	loff_t			end,
  80	int			datasync)
  81{
  82	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
  83
  84	trace_xfs_dir_fsync(ip);
  85	return xfs_log_force_inode(ip);
 
 
 
 
 
 
 
 
  86}
  87
  88STATIC int
  89xfs_file_fsync(
  90	struct file		*file,
  91	loff_t			start,
  92	loff_t			end,
  93	int			datasync)
  94{
  95	struct inode		*inode = file->f_mapping->host;
  96	struct xfs_inode	*ip = XFS_I(inode);
  97	struct xfs_inode_log_item *iip = ip->i_itemp;
  98	struct xfs_mount	*mp = ip->i_mount;
  99	int			error = 0;
 100	int			log_flushed = 0;
 101	xfs_lsn_t		lsn = 0;
 102
 103	trace_xfs_file_fsync(ip);
 104
 105	error = file_write_and_wait_range(file, start, end);
 106	if (error)
 107		return error;
 108
 109	if (XFS_FORCED_SHUTDOWN(mp))
 110		return -EIO;
 111
 112	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 113
 114	/*
 115	 * If we have an RT and/or log subvolume we need to make sure to flush
 116	 * the write cache the device used for file data first.  This is to
 117	 * ensure newly written file data make it to disk before logging the new
 118	 * inode size in case of an extending write.
 119	 */
 120	if (XFS_IS_REALTIME_INODE(ip))
 121		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 122	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 123		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 
 
 124
 125	/*
 126	 * All metadata updates are logged, which means that we just have to
 127	 * flush the log up to the latest LSN that touched the inode. If we have
 128	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 129	 * log force before we clear the ili_fsync_fields field. This ensures
 130	 * that we don't get a racing sync operation that does not wait for the
 131	 * metadata to hit the journal before returning. If we race with
 132	 * clearing the ili_fsync_fields, then all that will happen is the log
 133	 * force will do nothing as the lsn will already be on disk. We can't
 134	 * race with setting ili_fsync_fields because that is done under
 135	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 136	 * until after the ili_fsync_fields is cleared.
 137	 */
 138	xfs_ilock(ip, XFS_ILOCK_SHARED);
 139	if (xfs_ipincount(ip)) {
 140		if (!datasync ||
 141		    (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 142			lsn = iip->ili_last_lsn;
 143	}
 
 144
 145	if (lsn) {
 146		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 147		spin_lock(&iip->ili_lock);
 148		iip->ili_fsync_fields = 0;
 149		spin_unlock(&iip->ili_lock);
 150	}
 151	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 152
 153	/*
 154	 * If we only have a single device, and the log force about was
 155	 * a no-op we might have to flush the data device cache here.
 156	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 157	 * an already allocated file and thus do not have any metadata to
 158	 * commit.
 159	 */
 160	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 161	    mp->m_logdev_targp == mp->m_ddev_targp)
 
 
 162		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 163
 164	return error;
 165}
 166
 167STATIC ssize_t
 168xfs_file_dio_aio_read(
 169	struct kiocb		*iocb,
 170	struct iov_iter		*to)
 
 
 171{
 172	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 173	size_t			count = iov_iter_count(to);
 174	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 
 
 177
 178	if (!count)
 179		return 0; /* skip atime */
 180
 181	file_accessed(iocb->ki_filp);
 
 182
 183	if (iocb->ki_flags & IOCB_NOWAIT) {
 184		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 185			return -EAGAIN;
 186	} else {
 187		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	}
 189	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
 190			is_sync_kiocb(iocb));
 191	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 192
 
 
 
 
 
 
 
 193	return ret;
 194}
 195
 196static noinline ssize_t
 197xfs_file_dax_read(
 198	struct kiocb		*iocb,
 199	struct iov_iter		*to)
 
 
 
 200{
 201	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 202	size_t			count = iov_iter_count(to);
 203	ssize_t			ret = 0;
 
 
 
 
 
 204
 205	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 
 206
 207	if (!count)
 208		return 0; /* skip atime */
 209
 210	if (iocb->ki_flags & IOCB_NOWAIT) {
 211		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 212			return -EAGAIN;
 213	} else {
 214		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 215	}
 216
 217	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 218	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 219
 220	file_accessed(iocb->ki_filp);
 221	return ret;
 222}
 223
 
 
 
 
 
 
 
 
 224STATIC ssize_t
 225xfs_file_buffered_aio_read(
 226	struct kiocb		*iocb,
 227	struct iov_iter		*to)
 
 
 
 228{
 229	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 
 230	ssize_t			ret;
 231
 232	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 233
 234	if (iocb->ki_flags & IOCB_NOWAIT) {
 235		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 236			return -EAGAIN;
 237	} else {
 238		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 239	}
 240	ret = generic_file_read_iter(iocb, to);
 241	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 242
 
 243	return ret;
 244}
 245
 246STATIC ssize_t
 247xfs_file_read_iter(
 248	struct kiocb		*iocb,
 249	struct iov_iter		*to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	struct inode		*inode = file_inode(iocb->ki_filp);
 252	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 253	ssize_t			ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255	XFS_STATS_INC(mp, xs_read_calls);
 
 256
 257	if (XFS_FORCED_SHUTDOWN(mp))
 258		return -EIO;
 
 259
 260	if (IS_DAX(inode))
 261		ret = xfs_file_dax_read(iocb, to);
 262	else if (iocb->ki_flags & IOCB_DIRECT)
 263		ret = xfs_file_dio_aio_read(iocb, to);
 264	else
 265		ret = xfs_file_buffered_aio_read(iocb, to);
 266
 267	if (ret > 0)
 268		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 269	return ret;
 270}
 271
 272/*
 273 * Common pre-write limit and setup checks.
 274 *
 275 * Called with the iolocked held either shared and exclusive according to
 276 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 277 * if called for a direct write beyond i_size.
 278 */
 279STATIC ssize_t
 280xfs_file_aio_write_checks(
 281	struct kiocb		*iocb,
 282	struct iov_iter		*from,
 
 283	int			*iolock)
 284{
 285	struct file		*file = iocb->ki_filp;
 286	struct inode		*inode = file->f_mapping->host;
 287	struct xfs_inode	*ip = XFS_I(inode);
 288	ssize_t			error = 0;
 289	size_t			count = iov_iter_count(from);
 290	bool			drained_dio = false;
 291	loff_t			isize;
 292
 293restart:
 294	error = generic_write_checks(iocb, from);
 295	if (error <= 0)
 296		return error;
 297
 298	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 299	if (error)
 300		return error;
 301
 302	/*
 303	 * For changing security info in file_remove_privs() we need i_rwsem
 304	 * exclusively.
 305	 */
 306	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 307		xfs_iunlock(ip, *iolock);
 308		*iolock = XFS_IOLOCK_EXCL;
 309		xfs_ilock(ip, *iolock);
 310		goto restart;
 311	}
 312	/*
 313	 * If the offset is beyond the size of the file, we need to zero any
 314	 * blocks that fall between the existing EOF and the start of this
 315	 * write.  If zeroing is needed and we are currently holding the
 316	 * iolock shared, we need to update it to exclusive which implies
 317	 * having to redo all checks before.
 318	 *
 319	 * We need to serialise against EOF updates that occur in IO
 320	 * completions here. We want to make sure that nobody is changing the
 321	 * size while we do this check until we have placed an IO barrier (i.e.
 322	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 323	 * The spinlock effectively forms a memory barrier once we have the
 324	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 325	 * and hence be able to correctly determine if we need to run zeroing.
 326	 */
 327	spin_lock(&ip->i_flags_lock);
 328	isize = i_size_read(inode);
 329	if (iocb->ki_pos > isize) {
 330		spin_unlock(&ip->i_flags_lock);
 331		if (!drained_dio) {
 332			if (*iolock == XFS_IOLOCK_SHARED) {
 333				xfs_iunlock(ip, *iolock);
 334				*iolock = XFS_IOLOCK_EXCL;
 335				xfs_ilock(ip, *iolock);
 336				iov_iter_reexpand(from, count);
 337			}
 338			/*
 339			 * We now have an IO submission barrier in place, but
 340			 * AIO can do EOF updates during IO completion and hence
 341			 * we now need to wait for all of them to drain. Non-AIO
 342			 * DIO will have drained before we are given the
 343			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 344			 * no-op.
 345			 */
 346			inode_dio_wait(inode);
 347			drained_dio = true;
 348			goto restart;
 349		}
 350	
 351		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 352		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 353				NULL, &xfs_buffered_write_iomap_ops);
 354		if (error)
 355			return error;
 356	} else
 357		spin_unlock(&ip->i_flags_lock);
 358
 359	/*
 360	 * Updating the timestamps will grab the ilock again from
 361	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 362	 * lock above.  Eventually we should look into a way to avoid
 363	 * the pointless lock roundtrip.
 364	 */
 365	return file_modified(file);
 366}
 367
 368static int
 369xfs_dio_write_end_io(
 370	struct kiocb		*iocb,
 371	ssize_t			size,
 372	int			error,
 373	unsigned		flags)
 374{
 375	struct inode		*inode = file_inode(iocb->ki_filp);
 376	struct xfs_inode	*ip = XFS_I(inode);
 377	loff_t			offset = iocb->ki_pos;
 378	unsigned int		nofs_flag;
 379
 380	trace_xfs_end_io_direct_write(ip, offset, size);
 381
 382	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 383		return -EIO;
 384
 385	if (error)
 386		return error;
 387	if (!size)
 388		return 0;
 389
 390	/*
 391	 * Capture amount written on completion as we can't reliably account
 392	 * for it on submission.
 393	 */
 394	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 395
 396	/*
 397	 * We can allocate memory here while doing writeback on behalf of
 398	 * memory reclaim.  To avoid memory allocation deadlocks set the
 399	 * task-wide nofs context for the following operations.
 400	 */
 401	nofs_flag = memalloc_nofs_save();
 402
 403	if (flags & IOMAP_DIO_COW) {
 404		error = xfs_reflink_end_cow(ip, offset, size);
 405		if (error)
 406			goto out;
 407	}
 408
 409	/*
 410	 * Unwritten conversion updates the in-core isize after extent
 411	 * conversion but before updating the on-disk size. Updating isize any
 412	 * earlier allows a racing dio read to find unwritten extents before
 413	 * they are converted.
 414	 */
 415	if (flags & IOMAP_DIO_UNWRITTEN) {
 416		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 417		goto out;
 418	}
 419
 420	/*
 421	 * We need to update the in-core inode size here so that we don't end up
 422	 * with the on-disk inode size being outside the in-core inode size. We
 423	 * have no other method of updating EOF for AIO, so always do it here
 424	 * if necessary.
 425	 *
 426	 * We need to lock the test/set EOF update as we can be racing with
 427	 * other IO completions here to update the EOF. Failing to serialise
 428	 * here can result in EOF moving backwards and Bad Things Happen when
 429	 * that occurs.
 430	 */
 431	spin_lock(&ip->i_flags_lock);
 432	if (offset + size > i_size_read(inode)) {
 433		i_size_write(inode, offset + size);
 434		spin_unlock(&ip->i_flags_lock);
 435		error = xfs_setfilesize(ip, offset, size);
 436	} else {
 437		spin_unlock(&ip->i_flags_lock);
 438	}
 439
 440out:
 441	memalloc_nofs_restore(nofs_flag);
 442	return error;
 443}
 444
 445static const struct iomap_dio_ops xfs_dio_write_ops = {
 446	.end_io		= xfs_dio_write_end_io,
 447};
 448
 449/*
 450 * xfs_file_dio_aio_write - handle direct IO writes
 451 *
 452 * Lock the inode appropriately to prepare for and issue a direct IO write.
 453 * By separating it from the buffered write path we remove all the tricky to
 454 * follow locking changes and looping.
 455 *
 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 458 * pages are flushed out.
 459 *
 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 461 * allowing them to be done in parallel with reads and other direct IO writes.
 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 463 * needs to do sub-block zeroing and that requires serialisation against other
 464 * direct IOs to the same block. In this case we need to serialise the
 465 * submission of the unaligned IOs so that we don't get racing block zeroing in
 466 * the dio layer.  To avoid the problem with aio, we also need to wait for
 467 * outstanding IOs to complete so that unwritten extent conversion is completed
 468 * before we try to map the overlapping block. This is currently implemented by
 469 * hitting it with a big hammer (i.e. inode_dio_wait()).
 470 *
 471 * Returns with locks held indicated by @iolock and errors indicated by
 472 * negative return values.
 473 */
 474STATIC ssize_t
 475xfs_file_dio_aio_write(
 476	struct kiocb		*iocb,
 477	struct iov_iter		*from)
 
 
 
 478{
 479	struct file		*file = iocb->ki_filp;
 480	struct address_space	*mapping = file->f_mapping;
 481	struct inode		*inode = mapping->host;
 482	struct xfs_inode	*ip = XFS_I(inode);
 483	struct xfs_mount	*mp = ip->i_mount;
 484	ssize_t			ret = 0;
 
 485	int			unaligned_io = 0;
 486	int			iolock;
 487	size_t			count = iov_iter_count(from);
 488	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 489
 490	/* DIO must be aligned to device logical sector size */
 491	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 492		return -EINVAL;
 
 
 493
 494	/*
 495	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 496	 * the file system block size.  We don't need to consider the EOF
 497	 * extension case here because xfs_file_aio_write_checks() will relock
 498	 * the inode as necessary for EOF zeroing cases and fill out the new
 499	 * inode size as appropriate.
 500	 */
 501	if ((iocb->ki_pos & mp->m_blockmask) ||
 502	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 503		unaligned_io = 1;
 504
 505		/*
 506		 * We can't properly handle unaligned direct I/O to reflink
 507		 * files yet, as we can't unshare a partial block.
 508		 */
 509		if (xfs_is_cow_inode(ip)) {
 510			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 511			return -ENOTBLK;
 512		}
 513		iolock = XFS_IOLOCK_EXCL;
 514	} else {
 515		iolock = XFS_IOLOCK_SHARED;
 516	}
 517
 518	if (iocb->ki_flags & IOCB_NOWAIT) {
 519		/* unaligned dio always waits, bail */
 520		if (unaligned_io)
 521			return -EAGAIN;
 522		if (!xfs_ilock_nowait(ip, iolock))
 523			return -EAGAIN;
 524	} else {
 525		xfs_ilock(ip, iolock);
 
 526	}
 527
 528	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 529	if (ret)
 530		goto out;
 531	count = iov_iter_count(from);
 
 
 
 
 
 
 532
 533	/*
 534	 * If we are doing unaligned IO, we can't allow any other overlapping IO
 535	 * in-flight at the same time or we risk data corruption. Wait for all
 536	 * other IO to drain before we submit. If the IO is aligned, demote the
 537	 * iolock if we had to take the exclusive lock in
 538	 * xfs_file_aio_write_checks() for other reasons.
 539	 */
 540	if (unaligned_io) {
 541		inode_dio_wait(inode);
 542	} else if (iolock == XFS_IOLOCK_EXCL) {
 543		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 544		iolock = XFS_IOLOCK_SHARED;
 545	}
 546
 547	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 548	/*
 549	 * If unaligned, this is the only IO in-flight. Wait on it before we
 550	 * release the iolock to prevent subsequent overlapping IO.
 551	 */
 552	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 553			   &xfs_dio_write_ops,
 554			   is_sync_kiocb(iocb) || unaligned_io);
 555out:
 556	xfs_iunlock(ip, iolock);
 557
 558	/*
 559	 * No fallback to buffered IO after short writes for XFS, direct I/O
 560	 * will either complete fully or return an error.
 561	 */
 562	ASSERT(ret < 0 || ret == count);
 563	return ret;
 564}
 565
 566static noinline ssize_t
 567xfs_file_dax_write(
 568	struct kiocb		*iocb,
 569	struct iov_iter		*from)
 570{
 571	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 572	struct xfs_inode	*ip = XFS_I(inode);
 573	int			iolock = XFS_IOLOCK_EXCL;
 574	ssize_t			ret, error = 0;
 575	size_t			count;
 576	loff_t			pos;
 577
 578	if (iocb->ki_flags & IOCB_NOWAIT) {
 579		if (!xfs_ilock_nowait(ip, iolock))
 580			return -EAGAIN;
 581	} else {
 582		xfs_ilock(ip, iolock);
 583	}
 584
 585	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 586	if (ret)
 587		goto out;
 588
 589	pos = iocb->ki_pos;
 590	count = iov_iter_count(from);
 591
 592	trace_xfs_file_dax_write(ip, count, pos);
 593	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 594	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 595		i_size_write(inode, iocb->ki_pos);
 596		error = xfs_setfilesize(ip, pos, ret);
 597	}
 598out:
 599	xfs_iunlock(ip, iolock);
 600	if (error)
 601		return error;
 602
 603	if (ret > 0) {
 604		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 605
 606		/* Handle various SYNC-type writes */
 607		ret = generic_write_sync(iocb, ret);
 608	}
 609	return ret;
 610}
 611
 612STATIC ssize_t
 613xfs_file_buffered_aio_write(
 614	struct kiocb		*iocb,
 615	struct iov_iter		*from)
 
 
 
 616{
 617	struct file		*file = iocb->ki_filp;
 618	struct address_space	*mapping = file->f_mapping;
 619	struct inode		*inode = mapping->host;
 620	struct xfs_inode	*ip = XFS_I(inode);
 621	ssize_t			ret;
 622	int			enospc = 0;
 623	int			iolock;
 624
 625	if (iocb->ki_flags & IOCB_NOWAIT)
 626		return -EOPNOTSUPP;
 627
 628write_retry:
 629	iolock = XFS_IOLOCK_EXCL;
 630	xfs_ilock(ip, iolock);
 631
 632	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 633	if (ret)
 634		goto out;
 635
 636	/* We can write back this queue in page reclaim */
 637	current->backing_dev_info = inode_to_bdi(inode);
 638
 639	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 640	ret = iomap_file_buffered_write(iocb, from,
 641			&xfs_buffered_write_iomap_ops);
 642	if (likely(ret >= 0))
 643		iocb->ki_pos += ret;
 644
 
 
 
 
 645	/*
 646	 * If we hit a space limit, try to free up some lingering preallocated
 647	 * space before returning an error. In the case of ENOSPC, first try to
 648	 * write back all dirty inodes to free up some of the excess reserved
 649	 * metadata space. This reduces the chances that the eofblocks scan
 650	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 651	 * also behaves as a filter to prevent too many eofblocks scans from
 652	 * running at the same time.
 653	 */
 654	if (ret == -EDQUOT && !enospc) {
 655		xfs_iunlock(ip, iolock);
 656		enospc = xfs_inode_free_quota_eofblocks(ip);
 657		if (enospc)
 658			goto write_retry;
 659		enospc = xfs_inode_free_quota_cowblocks(ip);
 660		if (enospc)
 661			goto write_retry;
 662		iolock = 0;
 663	} else if (ret == -ENOSPC && !enospc) {
 664		struct xfs_eofblocks eofb = {0};
 665
 666		enospc = 1;
 667		xfs_flush_inodes(ip->i_mount);
 668
 669		xfs_iunlock(ip, iolock);
 670		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 671		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 672		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 673		goto write_retry;
 674	}
 675
 676	current->backing_dev_info = NULL;
 677out:
 678	if (iolock)
 679		xfs_iunlock(ip, iolock);
 680
 681	if (ret > 0) {
 682		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 683		/* Handle various SYNC-type writes */
 684		ret = generic_write_sync(iocb, ret);
 685	}
 686	return ret;
 687}
 688
 689STATIC ssize_t
 690xfs_file_write_iter(
 691	struct kiocb		*iocb,
 692	struct iov_iter		*from)
 
 
 693{
 694	struct file		*file = iocb->ki_filp;
 695	struct address_space	*mapping = file->f_mapping;
 696	struct inode		*inode = mapping->host;
 697	struct xfs_inode	*ip = XFS_I(inode);
 698	ssize_t			ret;
 699	size_t			ocount = iov_iter_count(from);
 700
 701	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 
 
 
 
 702
 703	if (ocount == 0)
 704		return 0;
 705
 
 
 706	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 707		return -EIO;
 708
 709	if (IS_DAX(inode))
 710		return xfs_file_dax_write(iocb, from);
 
 
 
 711
 712	if (iocb->ki_flags & IOCB_DIRECT) {
 713		/*
 714		 * Allow a directio write to fall back to a buffered
 715		 * write *only* in the case that we're doing a reflink
 716		 * CoW.  In all other directio scenarios we do not
 717		 * allow an operation to fall back to buffered mode.
 718		 */
 719		ret = xfs_file_dio_aio_write(iocb, from);
 720		if (ret != -ENOTBLK)
 721			return ret;
 722	}
 723
 724	return xfs_file_buffered_aio_write(iocb, from);
 725}
 726
 727static void
 728xfs_wait_dax_page(
 729	struct inode		*inode)
 730{
 731	struct xfs_inode        *ip = XFS_I(inode);
 732
 733	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 734	schedule();
 735	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 736}
 737
 738static int
 739xfs_break_dax_layouts(
 740	struct inode		*inode,
 741	bool			*retry)
 742{
 743	struct page		*page;
 744
 745	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 746
 747	page = dax_layout_busy_page(inode->i_mapping);
 748	if (!page)
 749		return 0;
 750
 751	*retry = true;
 752	return ___wait_var_event(&page->_refcount,
 753			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 754			0, 0, xfs_wait_dax_page(inode));
 755}
 756
 757int
 758xfs_break_layouts(
 759	struct inode		*inode,
 760	uint			*iolock,
 761	enum layout_break_reason reason)
 762{
 763	bool			retry;
 764	int			error;
 765
 766	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 767
 768	do {
 769		retry = false;
 770		switch (reason) {
 771		case BREAK_UNMAP:
 772			error = xfs_break_dax_layouts(inode, &retry);
 773			if (error || retry)
 774				break;
 775			/* fall through */
 776		case BREAK_WRITE:
 777			error = xfs_break_leased_layouts(inode, iolock, &retry);
 778			break;
 779		default:
 780			WARN_ON_ONCE(1);
 781			error = -EINVAL;
 782		}
 783	} while (error == 0 && retry);
 784
 785	return error;
 786}
 787
 788#define	XFS_FALLOC_FL_SUPPORTED						\
 789		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 790		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 791		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 792
 793STATIC long
 794xfs_file_fallocate(
 795	struct file		*file,
 796	int			mode,
 797	loff_t			offset,
 798	loff_t			len)
 799{
 800	struct inode		*inode = file_inode(file);
 801	struct xfs_inode	*ip = XFS_I(inode);
 802	long			error;
 803	enum xfs_prealloc_flags	flags = 0;
 804	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 805	loff_t			new_size = 0;
 806	bool			do_file_insert = false;
 807
 808	if (!S_ISREG(inode->i_mode))
 809		return -EINVAL;
 810	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 811		return -EOPNOTSUPP;
 812
 813	xfs_ilock(ip, iolock);
 814	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 815	if (error)
 816		goto out_unlock;
 817
 818	/*
 819	 * Must wait for all AIO to complete before we continue as AIO can
 820	 * change the file size on completion without holding any locks we
 821	 * currently hold. We must do this first because AIO can update both
 822	 * the on disk and in memory inode sizes, and the operations that follow
 823	 * require the in-memory size to be fully up-to-date.
 824	 */
 825	inode_dio_wait(inode);
 826
 827	/*
 828	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 829	 * the cached range over the first operation we are about to run.
 830	 *
 831	 * We care about zero and collapse here because they both run a hole
 832	 * punch over the range first. Because that can zero data, and the range
 833	 * of invalidation for the shift operations is much larger, we still do
 834	 * the required flush for collapse in xfs_prepare_shift().
 835	 *
 836	 * Insert has the same range requirements as collapse, and we extend the
 837	 * file first which can zero data. Hence insert has the same
 838	 * flush/invalidate requirements as collapse and so they are both
 839	 * handled at the right time by xfs_prepare_shift().
 840	 */
 841	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 842		    FALLOC_FL_COLLAPSE_RANGE)) {
 843		error = xfs_flush_unmap_range(ip, offset, len);
 844		if (error)
 845			goto out_unlock;
 846	}
 847
 848	if (mode & FALLOC_FL_PUNCH_HOLE) {
 849		error = xfs_free_file_space(ip, offset, len);
 850		if (error)
 851			goto out_unlock;
 852	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 853		unsigned int blksize_mask = i_blocksize(inode) - 1;
 854
 855		if (offset & blksize_mask || len & blksize_mask) {
 856			error = -EINVAL;
 857			goto out_unlock;
 858		}
 859
 860		/*
 861		 * There is no need to overlap collapse range with EOF,
 862		 * in which case it is effectively a truncate operation
 863		 */
 864		if (offset + len >= i_size_read(inode)) {
 865			error = -EINVAL;
 866			goto out_unlock;
 867		}
 868
 869		new_size = i_size_read(inode) - len;
 870
 871		error = xfs_collapse_file_space(ip, offset, len);
 872		if (error)
 873			goto out_unlock;
 874	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 875		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 876		loff_t		isize = i_size_read(inode);
 877
 878		if (offset & blksize_mask || len & blksize_mask) {
 879			error = -EINVAL;
 880			goto out_unlock;
 881		}
 882
 883		/*
 884		 * New inode size must not exceed ->s_maxbytes, accounting for
 885		 * possible signed overflow.
 886		 */
 887		if (inode->i_sb->s_maxbytes - isize < len) {
 888			error = -EFBIG;
 889			goto out_unlock;
 890		}
 891		new_size = isize + len;
 892
 893		/* Offset should be less than i_size */
 894		if (offset >= isize) {
 895			error = -EINVAL;
 896			goto out_unlock;
 897		}
 898		do_file_insert = true;
 899	} else {
 900		flags |= XFS_PREALLOC_SET;
 901
 902		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 903		    offset + len > i_size_read(inode)) {
 904			new_size = offset + len;
 905			error = inode_newsize_ok(inode, new_size);
 906			if (error)
 907				goto out_unlock;
 908		}
 909
 910		if (mode & FALLOC_FL_ZERO_RANGE) {
 911			/*
 912			 * Punch a hole and prealloc the range.  We use a hole
 913			 * punch rather than unwritten extent conversion for two
 914			 * reasons:
 915			 *
 916			 *   1.) Hole punch handles partial block zeroing for us.
 917			 *   2.) If prealloc returns ENOSPC, the file range is
 918			 *       still zero-valued by virtue of the hole punch.
 919			 */
 920			unsigned int blksize = i_blocksize(inode);
 921
 922			trace_xfs_zero_file_space(ip);
 923
 924			error = xfs_free_file_space(ip, offset, len);
 925			if (error)
 926				goto out_unlock;
 927
 928			len = round_up(offset + len, blksize) -
 929			      round_down(offset, blksize);
 930			offset = round_down(offset, blksize);
 931		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 932			error = xfs_reflink_unshare(ip, offset, len);
 933			if (error)
 934				goto out_unlock;
 935		} else {
 936			/*
 937			 * If always_cow mode we can't use preallocations and
 938			 * thus should not create them.
 939			 */
 940			if (xfs_is_always_cow_inode(ip)) {
 941				error = -EOPNOTSUPP;
 942				goto out_unlock;
 943			}
 944		}
 945
 946		if (!xfs_is_always_cow_inode(ip)) {
 947			error = xfs_alloc_file_space(ip, offset, len,
 948						     XFS_BMAPI_PREALLOC);
 949			if (error)
 950				goto out_unlock;
 951		}
 952	}
 953
 954	if (file->f_flags & O_DSYNC)
 955		flags |= XFS_PREALLOC_SYNC;
 956
 957	error = xfs_update_prealloc_flags(ip, flags);
 958	if (error)
 959		goto out_unlock;
 960
 961	/* Change file size if needed */
 962	if (new_size) {
 963		struct iattr iattr;
 964
 965		iattr.ia_valid = ATTR_SIZE;
 966		iattr.ia_size = new_size;
 967		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 968		if (error)
 969			goto out_unlock;
 970	}
 971
 972	/*
 973	 * Perform hole insertion now that the file size has been
 974	 * updated so that if we crash during the operation we don't
 975	 * leave shifted extents past EOF and hence losing access to
 976	 * the data that is contained within them.
 977	 */
 978	if (do_file_insert)
 979		error = xfs_insert_file_space(ip, offset, len);
 980
 981out_unlock:
 982	xfs_iunlock(ip, iolock);
 983	return error;
 984}
 985
 986STATIC int
 987xfs_file_fadvise(
 988	struct file	*file,
 989	loff_t		start,
 990	loff_t		end,
 991	int		advice)
 992{
 993	struct xfs_inode *ip = XFS_I(file_inode(file));
 994	int ret;
 995	int lockflags = 0;
 996
 997	/*
 998	 * Operations creating pages in page cache need protection from hole
 999	 * punching and similar ops
1000	 */
1001	if (advice == POSIX_FADV_WILLNEED) {
1002		lockflags = XFS_IOLOCK_SHARED;
1003		xfs_ilock(ip, lockflags);
1004	}
1005	ret = generic_fadvise(file, start, end, advice);
1006	if (lockflags)
1007		xfs_iunlock(ip, lockflags);
1008	return ret;
1009}
1010
1011STATIC loff_t
1012xfs_file_remap_range(
1013	struct file		*file_in,
1014	loff_t			pos_in,
1015	struct file		*file_out,
1016	loff_t			pos_out,
1017	loff_t			len,
1018	unsigned int		remap_flags)
1019{
1020	struct inode		*inode_in = file_inode(file_in);
1021	struct xfs_inode	*src = XFS_I(inode_in);
1022	struct inode		*inode_out = file_inode(file_out);
1023	struct xfs_inode	*dest = XFS_I(inode_out);
1024	struct xfs_mount	*mp = src->i_mount;
1025	loff_t			remapped = 0;
1026	xfs_extlen_t		cowextsize;
1027	int			ret;
1028
1029	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1030		return -EINVAL;
1031
1032	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1033		return -EOPNOTSUPP;
1034
1035	if (XFS_FORCED_SHUTDOWN(mp))
1036		return -EIO;
1037
1038	/* Prepare and then clone file data. */
1039	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1040			&len, remap_flags);
1041	if (ret || len == 0)
1042		return ret;
1043
1044	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1045
1046	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1047			&remapped);
1048	if (ret)
1049		goto out_unlock;
1050
1051	/*
1052	 * Carry the cowextsize hint from src to dest if we're sharing the
1053	 * entire source file to the entire destination file, the source file
1054	 * has a cowextsize hint, and the destination file does not.
1055	 */
1056	cowextsize = 0;
1057	if (pos_in == 0 && len == i_size_read(inode_in) &&
1058	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1059	    pos_out == 0 && len >= i_size_read(inode_out) &&
1060	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1061		cowextsize = src->i_d.di_cowextsize;
1062
1063	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1064			remap_flags);
1065	if (ret)
1066		goto out_unlock;
1067
1068	if (mp->m_flags & XFS_MOUNT_WSYNC)
1069		xfs_log_force_inode(dest);
1070out_unlock:
1071	xfs_iunlock2_io_mmap(src, dest);
1072	if (ret)
1073		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1074	return remapped > 0 ? remapped : ret;
1075}
1076
1077STATIC int
1078xfs_file_open(
1079	struct inode	*inode,
1080	struct file	*file)
1081{
1082	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1083		return -EFBIG;
1084	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1085		return -EIO;
1086	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1087	return 0;
1088}
1089
1090STATIC int
1091xfs_dir_open(
1092	struct inode	*inode,
1093	struct file	*file)
1094{
1095	struct xfs_inode *ip = XFS_I(inode);
1096	int		mode;
1097	int		error;
1098
1099	error = xfs_file_open(inode, file);
1100	if (error)
1101		return error;
1102
1103	/*
1104	 * If there are any blocks, read-ahead block 0 as we're almost
1105	 * certain to have the next operation be a read there.
1106	 */
1107	mode = xfs_ilock_data_map_shared(ip);
1108	if (ip->i_df.if_nextents > 0)
1109		error = xfs_dir3_data_readahead(ip, 0, 0);
1110	xfs_iunlock(ip, mode);
1111	return error;
1112}
1113
1114STATIC int
1115xfs_file_release(
1116	struct inode	*inode,
1117	struct file	*filp)
1118{
1119	return xfs_release(XFS_I(inode));
1120}
1121
1122STATIC int
1123xfs_file_readdir(
1124	struct file	*file,
1125	struct dir_context *ctx)
 
1126{
1127	struct inode	*inode = file_inode(file);
1128	xfs_inode_t	*ip = XFS_I(inode);
 
1129	size_t		bufsize;
1130
1131	/*
1132	 * The Linux API doesn't pass down the total size of the buffer
1133	 * we read into down to the filesystem.  With the filldir concept
1134	 * it's not needed for correct information, but the XFS dir2 leaf
1135	 * code wants an estimate of the buffer size to calculate it's
1136	 * readahead window and size the buffers used for mapping to
1137	 * physical blocks.
1138	 *
1139	 * Try to give it an estimate that's good enough, maybe at some
1140	 * point we can change the ->readdir prototype to include the
1141	 * buffer size.  For now we use the current glibc buffer size.
1142	 */
1143	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1144
1145	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
 
1146}
1147
1148STATIC loff_t
1149xfs_file_llseek(
1150	struct file	*file,
1151	loff_t		offset,
1152	int		whence)
1153{
1154	struct inode		*inode = file->f_mapping->host;
 
1155
1156	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1157		return -EIO;
1158
1159	switch (whence) {
1160	default:
1161		return generic_file_llseek(file, offset, whence);
1162	case SEEK_HOLE:
1163		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1164		break;
1165	case SEEK_DATA:
1166		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1167		break;
1168	}
1169
1170	if (offset < 0)
1171		return offset;
1172	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1173}
1174
1175/*
1176 * Locking for serialisation of IO during page faults. This results in a lock
1177 * ordering of:
1178 *
1179 * mmap_lock (MM)
1180 *   sb_start_pagefault(vfs, freeze)
1181 *     i_mmaplock (XFS - truncate serialisation)
1182 *       page_lock (MM)
1183 *         i_lock (XFS - extent map serialisation)
1184 */
1185static vm_fault_t
1186__xfs_filemap_fault(
1187	struct vm_fault		*vmf,
1188	enum page_entry_size	pe_size,
1189	bool			write_fault)
 
 
 
 
 
 
 
 
1190{
1191	struct inode		*inode = file_inode(vmf->vma->vm_file);
1192	struct xfs_inode	*ip = XFS_I(inode);
1193	vm_fault_t		ret;
 
 
 
 
 
 
 
 
1194
1195	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1196
1197	if (write_fault) {
1198		sb_start_pagefault(inode->i_sb);
1199		file_update_time(vmf->vma->vm_file);
 
1200	}
1201
1202	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1203	if (IS_DAX(inode)) {
1204		pfn_t pfn;
 
 
 
 
 
 
 
 
 
1205
1206		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1207				(write_fault && !vmf->cow_page) ?
1208				 &xfs_direct_write_iomap_ops :
1209				 &xfs_read_iomap_ops);
1210		if (ret & VM_FAULT_NEEDDSYNC)
1211			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
 
1212	} else {
1213		if (write_fault)
1214			ret = iomap_page_mkwrite(vmf,
1215					&xfs_buffered_write_iomap_ops);
1216		else
1217			ret = filemap_fault(vmf);
 
 
1218	}
1219	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1220
1221	if (write_fault)
1222		sb_end_pagefault(inode->i_sb);
1223	return ret;
 
 
 
 
 
 
1224}
1225
1226static inline bool
1227xfs_is_write_fault(
1228	struct vm_fault		*vmf)
 
 
1229{
1230	return (vmf->flags & FAULT_FLAG_WRITE) &&
1231	       (vmf->vma->vm_flags & VM_SHARED);
1232}
 
 
 
 
 
 
1233
1234static vm_fault_t
1235xfs_filemap_fault(
1236	struct vm_fault		*vmf)
1237{
1238	/* DAX can shortcut the normal fault path on write faults! */
1239	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1240			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1241			xfs_is_write_fault(vmf));
1242}
1243
1244static vm_fault_t
1245xfs_filemap_huge_fault(
1246	struct vm_fault		*vmf,
1247	enum page_entry_size	pe_size)
1248{
1249	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1250		return VM_FAULT_FALLBACK;
1251
1252	/* DAX can shortcut the normal fault path on write faults! */
1253	return __xfs_filemap_fault(vmf, pe_size,
1254			xfs_is_write_fault(vmf));
1255}
 
1256
1257static vm_fault_t
1258xfs_filemap_page_mkwrite(
1259	struct vm_fault		*vmf)
1260{
1261	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1262}
1263
1264/*
1265 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1266 * on write faults. In reality, it needs to serialise against truncate and
1267 * prepare memory for writing so handle is as standard write fault.
1268 */
1269static vm_fault_t
1270xfs_filemap_pfn_mkwrite(
1271	struct vm_fault		*vmf)
1272{
 
1273
1274	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1275}
1276
1277static void
1278xfs_filemap_map_pages(
1279	struct vm_fault		*vmf,
1280	pgoff_t			start_pgoff,
1281	pgoff_t			end_pgoff)
1282{
1283	struct inode		*inode = file_inode(vmf->vma->vm_file);
1284
1285	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1286	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1287	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1288}
1289
1290static const struct vm_operations_struct xfs_file_vm_ops = {
1291	.fault		= xfs_filemap_fault,
1292	.huge_fault	= xfs_filemap_huge_fault,
1293	.map_pages	= xfs_filemap_map_pages,
1294	.page_mkwrite	= xfs_filemap_page_mkwrite,
1295	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1296};
1297
1298STATIC int
1299xfs_file_mmap(
1300	struct file		*file,
1301	struct vm_area_struct	*vma)
1302{
1303	struct inode		*inode = file_inode(file);
1304	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1305
1306	/*
1307	 * We don't support synchronous mappings for non-DAX files and
1308	 * for DAX files if underneath dax_device is not synchronous.
1309	 */
1310	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1311		return -EOPNOTSUPP;
1312
1313	file_accessed(file);
1314	vma->vm_ops = &xfs_file_vm_ops;
1315	if (IS_DAX(inode))
1316		vma->vm_flags |= VM_HUGEPAGE;
1317	return 0;
1318}
1319
1320const struct file_operations xfs_file_operations = {
1321	.llseek		= xfs_file_llseek,
1322	.read_iter	= xfs_file_read_iter,
1323	.write_iter	= xfs_file_write_iter,
1324	.splice_read	= generic_file_splice_read,
1325	.splice_write	= iter_file_splice_write,
1326	.iopoll		= iomap_dio_iopoll,
 
1327	.unlocked_ioctl	= xfs_file_ioctl,
1328#ifdef CONFIG_COMPAT
1329	.compat_ioctl	= xfs_file_compat_ioctl,
1330#endif
1331	.mmap		= xfs_file_mmap,
1332	.mmap_supported_flags = MAP_SYNC,
1333	.open		= xfs_file_open,
1334	.release	= xfs_file_release,
1335	.fsync		= xfs_file_fsync,
1336	.get_unmapped_area = thp_get_unmapped_area,
1337	.fallocate	= xfs_file_fallocate,
1338	.fadvise	= xfs_file_fadvise,
1339	.remap_file_range = xfs_file_remap_range,
1340};
1341
1342const struct file_operations xfs_dir_file_operations = {
1343	.open		= xfs_dir_open,
1344	.read		= generic_read_dir,
1345	.iterate_shared	= xfs_file_readdir,
1346	.llseek		= generic_file_llseek,
1347	.unlocked_ioctl	= xfs_file_ioctl,
1348#ifdef CONFIG_COMPAT
1349	.compat_ioctl	= xfs_file_compat_ioctl,
1350#endif
1351	.fsync		= xfs_dir_fsync,
 
 
 
 
 
1352};