Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
4 *
5 * Copyright (c) 2016 BayLibre, SAS.
6 * Author: Kevin Hilman <khilman@baylibre.com>
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/iopoll.h>
14#include <linux/of_device.h>
15#include <linux/platform_device.h>
16#include <linux/ioport.h>
17#include <linux/dma-mapping.h>
18#include <linux/mmc/host.h>
19#include <linux/mmc/mmc.h>
20#include <linux/mmc/sdio.h>
21#include <linux/mmc/slot-gpio.h>
22#include <linux/io.h>
23#include <linux/clk.h>
24#include <linux/clk-provider.h>
25#include <linux/regulator/consumer.h>
26#include <linux/reset.h>
27#include <linux/interrupt.h>
28#include <linux/bitfield.h>
29#include <linux/pinctrl/consumer.h>
30
31#define DRIVER_NAME "meson-gx-mmc"
32
33#define SD_EMMC_CLOCK 0x0
34#define CLK_DIV_MASK GENMASK(5, 0)
35#define CLK_SRC_MASK GENMASK(7, 6)
36#define CLK_CORE_PHASE_MASK GENMASK(9, 8)
37#define CLK_TX_PHASE_MASK GENMASK(11, 10)
38#define CLK_RX_PHASE_MASK GENMASK(13, 12)
39#define CLK_PHASE_0 0
40#define CLK_PHASE_180 2
41#define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
42#define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
43#define CLK_V2_ALWAYS_ON BIT(24)
44
45#define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
46#define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
47#define CLK_V3_ALWAYS_ON BIT(28)
48
49#define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
50#define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
51#define CLK_ALWAYS_ON(h) (h->data->always_on)
52
53#define SD_EMMC_DELAY 0x4
54#define SD_EMMC_ADJUST 0x8
55#define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
56#define ADJUST_DS_EN BIT(15)
57#define ADJUST_ADJ_EN BIT(13)
58
59#define SD_EMMC_DELAY1 0x4
60#define SD_EMMC_DELAY2 0x8
61#define SD_EMMC_V3_ADJUST 0xc
62
63#define SD_EMMC_CALOUT 0x10
64#define SD_EMMC_START 0x40
65#define START_DESC_INIT BIT(0)
66#define START_DESC_BUSY BIT(1)
67#define START_DESC_ADDR_MASK GENMASK(31, 2)
68
69#define SD_EMMC_CFG 0x44
70#define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
71#define CFG_BUS_WIDTH_1 0x0
72#define CFG_BUS_WIDTH_4 0x1
73#define CFG_BUS_WIDTH_8 0x2
74#define CFG_DDR BIT(2)
75#define CFG_BLK_LEN_MASK GENMASK(7, 4)
76#define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
77#define CFG_RC_CC_MASK GENMASK(15, 12)
78#define CFG_STOP_CLOCK BIT(22)
79#define CFG_CLK_ALWAYS_ON BIT(18)
80#define CFG_CHK_DS BIT(20)
81#define CFG_AUTO_CLK BIT(23)
82#define CFG_ERR_ABORT BIT(27)
83
84#define SD_EMMC_STATUS 0x48
85#define STATUS_BUSY BIT(31)
86#define STATUS_DESC_BUSY BIT(30)
87#define STATUS_DATI GENMASK(23, 16)
88
89#define SD_EMMC_IRQ_EN 0x4c
90#define IRQ_RXD_ERR_MASK GENMASK(7, 0)
91#define IRQ_TXD_ERR BIT(8)
92#define IRQ_DESC_ERR BIT(9)
93#define IRQ_RESP_ERR BIT(10)
94#define IRQ_CRC_ERR \
95 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
96#define IRQ_RESP_TIMEOUT BIT(11)
97#define IRQ_DESC_TIMEOUT BIT(12)
98#define IRQ_TIMEOUTS \
99 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
100#define IRQ_END_OF_CHAIN BIT(13)
101#define IRQ_RESP_STATUS BIT(14)
102#define IRQ_SDIO BIT(15)
103#define IRQ_EN_MASK \
104 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
105 IRQ_SDIO)
106
107#define SD_EMMC_CMD_CFG 0x50
108#define SD_EMMC_CMD_ARG 0x54
109#define SD_EMMC_CMD_DAT 0x58
110#define SD_EMMC_CMD_RSP 0x5c
111#define SD_EMMC_CMD_RSP1 0x60
112#define SD_EMMC_CMD_RSP2 0x64
113#define SD_EMMC_CMD_RSP3 0x68
114
115#define SD_EMMC_RXD 0x94
116#define SD_EMMC_TXD 0x94
117#define SD_EMMC_LAST_REG SD_EMMC_TXD
118
119#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
120#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
121
122#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
123#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
124#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
125#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
126#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
127#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
128
129#define SD_EMMC_PRE_REQ_DONE BIT(0)
130#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
131
132#define MUX_CLK_NUM_PARENTS 2
133
134struct meson_mmc_data {
135 unsigned int tx_delay_mask;
136 unsigned int rx_delay_mask;
137 unsigned int always_on;
138 unsigned int adjust;
139};
140
141struct sd_emmc_desc {
142 u32 cmd_cfg;
143 u32 cmd_arg;
144 u32 cmd_data;
145 u32 cmd_resp;
146};
147
148struct meson_host {
149 struct device *dev;
150 struct meson_mmc_data *data;
151 struct mmc_host *mmc;
152 struct mmc_command *cmd;
153
154 void __iomem *regs;
155 struct clk *core_clk;
156 struct clk *mux_clk;
157 struct clk *mmc_clk;
158 unsigned long req_rate;
159 bool ddr;
160
161 bool dram_access_quirk;
162
163 struct pinctrl *pinctrl;
164 struct pinctrl_state *pins_clk_gate;
165
166 unsigned int bounce_buf_size;
167 void *bounce_buf;
168 dma_addr_t bounce_dma_addr;
169 struct sd_emmc_desc *descs;
170 dma_addr_t descs_dma_addr;
171
172 int irq;
173
174 bool vqmmc_enabled;
175};
176
177#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
178#define CMD_CFG_BLOCK_MODE BIT(9)
179#define CMD_CFG_R1B BIT(10)
180#define CMD_CFG_END_OF_CHAIN BIT(11)
181#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
182#define CMD_CFG_NO_RESP BIT(16)
183#define CMD_CFG_NO_CMD BIT(17)
184#define CMD_CFG_DATA_IO BIT(18)
185#define CMD_CFG_DATA_WR BIT(19)
186#define CMD_CFG_RESP_NOCRC BIT(20)
187#define CMD_CFG_RESP_128 BIT(21)
188#define CMD_CFG_RESP_NUM BIT(22)
189#define CMD_CFG_DATA_NUM BIT(23)
190#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
191#define CMD_CFG_ERROR BIT(30)
192#define CMD_CFG_OWNER BIT(31)
193
194#define CMD_DATA_MASK GENMASK(31, 2)
195#define CMD_DATA_BIG_ENDIAN BIT(1)
196#define CMD_DATA_SRAM BIT(0)
197#define CMD_RESP_MASK GENMASK(31, 1)
198#define CMD_RESP_SRAM BIT(0)
199
200static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
201{
202 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
203
204 if (!timeout)
205 return SD_EMMC_CMD_TIMEOUT_DATA;
206
207 timeout = roundup_pow_of_two(timeout);
208
209 return min(timeout, 32768U); /* max. 2^15 ms */
210}
211
212static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
213{
214 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
215 return cmd->mrq->cmd;
216 else if (mmc_op_multi(cmd->opcode) &&
217 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
218 return cmd->mrq->stop;
219 else
220 return NULL;
221}
222
223static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
224 struct mmc_request *mrq)
225{
226 struct meson_host *host = mmc_priv(mmc);
227 struct mmc_data *data = mrq->data;
228 struct scatterlist *sg;
229 int i;
230 bool use_desc_chain_mode = true;
231
232 /*
233 * When Controller DMA cannot directly access DDR memory, disable
234 * support for Chain Mode to directly use the internal SRAM using
235 * the bounce buffer mode.
236 */
237 if (host->dram_access_quirk)
238 return;
239
240 /*
241 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
242 * reported. For some strange reason this occurs in descriptor
243 * chain mode only. So let's fall back to bounce buffer mode
244 * for command SD_IO_RW_EXTENDED.
245 */
246 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
247 return;
248
249 for_each_sg(data->sg, sg, data->sg_len, i)
250 /* check for 8 byte alignment */
251 if (sg->offset & 7) {
252 WARN_ONCE(1, "unaligned scatterlist buffer\n");
253 use_desc_chain_mode = false;
254 break;
255 }
256
257 if (use_desc_chain_mode)
258 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
259}
260
261static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
262{
263 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
264}
265
266static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
267{
268 return data && data->flags & MMC_DATA_READ &&
269 !meson_mmc_desc_chain_mode(data);
270}
271
272static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
273{
274 struct mmc_data *data = mrq->data;
275
276 if (!data)
277 return;
278
279 meson_mmc_get_transfer_mode(mmc, mrq);
280 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
281
282 if (!meson_mmc_desc_chain_mode(data))
283 return;
284
285 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
286 mmc_get_dma_dir(data));
287 if (!data->sg_count)
288 dev_err(mmc_dev(mmc), "dma_map_sg failed");
289}
290
291static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
292 int err)
293{
294 struct mmc_data *data = mrq->data;
295
296 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
297 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
298 mmc_get_dma_dir(data));
299}
300
301/*
302 * Gating the clock on this controller is tricky. It seems the mmc clock
303 * is also used by the controller. It may crash during some operation if the
304 * clock is stopped. The safest thing to do, whenever possible, is to keep
305 * clock running at stop it at the pad using the pinmux.
306 */
307static void meson_mmc_clk_gate(struct meson_host *host)
308{
309 u32 cfg;
310
311 if (host->pins_clk_gate) {
312 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
313 } else {
314 /*
315 * If the pinmux is not provided - default to the classic and
316 * unsafe method
317 */
318 cfg = readl(host->regs + SD_EMMC_CFG);
319 cfg |= CFG_STOP_CLOCK;
320 writel(cfg, host->regs + SD_EMMC_CFG);
321 }
322}
323
324static void meson_mmc_clk_ungate(struct meson_host *host)
325{
326 u32 cfg;
327
328 if (host->pins_clk_gate)
329 pinctrl_select_default_state(host->dev);
330
331 /* Make sure the clock is not stopped in the controller */
332 cfg = readl(host->regs + SD_EMMC_CFG);
333 cfg &= ~CFG_STOP_CLOCK;
334 writel(cfg, host->regs + SD_EMMC_CFG);
335}
336
337static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
338 bool ddr)
339{
340 struct mmc_host *mmc = host->mmc;
341 int ret;
342 u32 cfg;
343
344 /* Same request - bail-out */
345 if (host->ddr == ddr && host->req_rate == rate)
346 return 0;
347
348 /* stop clock */
349 meson_mmc_clk_gate(host);
350 host->req_rate = 0;
351 mmc->actual_clock = 0;
352
353 /* return with clock being stopped */
354 if (!rate)
355 return 0;
356
357 /* Stop the clock during rate change to avoid glitches */
358 cfg = readl(host->regs + SD_EMMC_CFG);
359 cfg |= CFG_STOP_CLOCK;
360 writel(cfg, host->regs + SD_EMMC_CFG);
361
362 if (ddr) {
363 /* DDR modes require higher module clock */
364 rate <<= 1;
365 cfg |= CFG_DDR;
366 } else {
367 cfg &= ~CFG_DDR;
368 }
369 writel(cfg, host->regs + SD_EMMC_CFG);
370 host->ddr = ddr;
371
372 ret = clk_set_rate(host->mmc_clk, rate);
373 if (ret) {
374 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
375 rate, ret);
376 return ret;
377 }
378
379 host->req_rate = rate;
380 mmc->actual_clock = clk_get_rate(host->mmc_clk);
381
382 /* We should report the real output frequency of the controller */
383 if (ddr) {
384 host->req_rate >>= 1;
385 mmc->actual_clock >>= 1;
386 }
387
388 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
389 if (rate != mmc->actual_clock)
390 dev_dbg(host->dev, "requested rate was %lu\n", rate);
391
392 /* (re)start clock */
393 meson_mmc_clk_ungate(host);
394
395 return 0;
396}
397
398/*
399 * The SD/eMMC IP block has an internal mux and divider used for
400 * generating the MMC clock. Use the clock framework to create and
401 * manage these clocks.
402 */
403static int meson_mmc_clk_init(struct meson_host *host)
404{
405 struct clk_init_data init;
406 struct clk_mux *mux;
407 struct clk_divider *div;
408 char clk_name[32];
409 int i, ret = 0;
410 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
411 const char *clk_parent[1];
412 u32 clk_reg;
413
414 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
415 clk_reg = CLK_ALWAYS_ON(host);
416 clk_reg |= CLK_DIV_MASK;
417 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
418 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
419 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
420 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
421
422 /* get the mux parents */
423 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
424 struct clk *clk;
425 char name[16];
426
427 snprintf(name, sizeof(name), "clkin%d", i);
428 clk = devm_clk_get(host->dev, name);
429 if (IS_ERR(clk)) {
430 if (clk != ERR_PTR(-EPROBE_DEFER))
431 dev_err(host->dev, "Missing clock %s\n", name);
432 return PTR_ERR(clk);
433 }
434
435 mux_parent_names[i] = __clk_get_name(clk);
436 }
437
438 /* create the mux */
439 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
440 if (!mux)
441 return -ENOMEM;
442
443 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
444 init.name = clk_name;
445 init.ops = &clk_mux_ops;
446 init.flags = 0;
447 init.parent_names = mux_parent_names;
448 init.num_parents = MUX_CLK_NUM_PARENTS;
449
450 mux->reg = host->regs + SD_EMMC_CLOCK;
451 mux->shift = __ffs(CLK_SRC_MASK);
452 mux->mask = CLK_SRC_MASK >> mux->shift;
453 mux->hw.init = &init;
454
455 host->mux_clk = devm_clk_register(host->dev, &mux->hw);
456 if (WARN_ON(IS_ERR(host->mux_clk)))
457 return PTR_ERR(host->mux_clk);
458
459 /* create the divider */
460 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
461 if (!div)
462 return -ENOMEM;
463
464 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
465 init.name = clk_name;
466 init.ops = &clk_divider_ops;
467 init.flags = CLK_SET_RATE_PARENT;
468 clk_parent[0] = __clk_get_name(host->mux_clk);
469 init.parent_names = clk_parent;
470 init.num_parents = 1;
471
472 div->reg = host->regs + SD_EMMC_CLOCK;
473 div->shift = __ffs(CLK_DIV_MASK);
474 div->width = __builtin_popcountl(CLK_DIV_MASK);
475 div->hw.init = &init;
476 div->flags = CLK_DIVIDER_ONE_BASED;
477
478 host->mmc_clk = devm_clk_register(host->dev, &div->hw);
479 if (WARN_ON(IS_ERR(host->mmc_clk)))
480 return PTR_ERR(host->mmc_clk);
481
482 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
483 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
484 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
485 if (ret)
486 return ret;
487
488 return clk_prepare_enable(host->mmc_clk);
489}
490
491static void meson_mmc_disable_resampling(struct meson_host *host)
492{
493 unsigned int val = readl(host->regs + host->data->adjust);
494
495 val &= ~ADJUST_ADJ_EN;
496 writel(val, host->regs + host->data->adjust);
497}
498
499static void meson_mmc_reset_resampling(struct meson_host *host)
500{
501 unsigned int val;
502
503 meson_mmc_disable_resampling(host);
504
505 val = readl(host->regs + host->data->adjust);
506 val &= ~ADJUST_ADJ_DELAY_MASK;
507 writel(val, host->regs + host->data->adjust);
508}
509
510static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
511{
512 struct meson_host *host = mmc_priv(mmc);
513 unsigned int val, dly, max_dly, i;
514 int ret;
515
516 /* Resampling is done using the source clock */
517 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
518 clk_get_rate(host->mmc_clk));
519
520 val = readl(host->regs + host->data->adjust);
521 val |= ADJUST_ADJ_EN;
522 writel(val, host->regs + host->data->adjust);
523
524 if (mmc->doing_retune)
525 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
526 else
527 dly = 0;
528
529 for (i = 0; i < max_dly; i++) {
530 val &= ~ADJUST_ADJ_DELAY_MASK;
531 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
532 writel(val, host->regs + host->data->adjust);
533
534 ret = mmc_send_tuning(mmc, opcode, NULL);
535 if (!ret) {
536 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
537 (dly + i) % max_dly);
538 return 0;
539 }
540 }
541
542 meson_mmc_reset_resampling(host);
543 return -EIO;
544}
545
546static int meson_mmc_prepare_ios_clock(struct meson_host *host,
547 struct mmc_ios *ios)
548{
549 bool ddr;
550
551 switch (ios->timing) {
552 case MMC_TIMING_MMC_DDR52:
553 case MMC_TIMING_UHS_DDR50:
554 ddr = true;
555 break;
556
557 default:
558 ddr = false;
559 break;
560 }
561
562 return meson_mmc_clk_set(host, ios->clock, ddr);
563}
564
565static void meson_mmc_check_resampling(struct meson_host *host,
566 struct mmc_ios *ios)
567{
568 switch (ios->timing) {
569 case MMC_TIMING_LEGACY:
570 case MMC_TIMING_MMC_HS:
571 case MMC_TIMING_SD_HS:
572 case MMC_TIMING_MMC_DDR52:
573 meson_mmc_disable_resampling(host);
574 break;
575 }
576}
577
578static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
579{
580 struct meson_host *host = mmc_priv(mmc);
581 u32 bus_width, val;
582 int err;
583
584 /*
585 * GPIO regulator, only controls switching between 1v8 and
586 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
587 */
588 switch (ios->power_mode) {
589 case MMC_POWER_OFF:
590 if (!IS_ERR(mmc->supply.vmmc))
591 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
592
593 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
594 regulator_disable(mmc->supply.vqmmc);
595 host->vqmmc_enabled = false;
596 }
597
598 break;
599
600 case MMC_POWER_UP:
601 if (!IS_ERR(mmc->supply.vmmc))
602 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
603
604 break;
605
606 case MMC_POWER_ON:
607 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
608 int ret = regulator_enable(mmc->supply.vqmmc);
609
610 if (ret < 0)
611 dev_err(host->dev,
612 "failed to enable vqmmc regulator\n");
613 else
614 host->vqmmc_enabled = true;
615 }
616
617 break;
618 }
619
620 /* Bus width */
621 switch (ios->bus_width) {
622 case MMC_BUS_WIDTH_1:
623 bus_width = CFG_BUS_WIDTH_1;
624 break;
625 case MMC_BUS_WIDTH_4:
626 bus_width = CFG_BUS_WIDTH_4;
627 break;
628 case MMC_BUS_WIDTH_8:
629 bus_width = CFG_BUS_WIDTH_8;
630 break;
631 default:
632 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
633 ios->bus_width);
634 bus_width = CFG_BUS_WIDTH_4;
635 }
636
637 val = readl(host->regs + SD_EMMC_CFG);
638 val &= ~CFG_BUS_WIDTH_MASK;
639 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
640 writel(val, host->regs + SD_EMMC_CFG);
641
642 meson_mmc_check_resampling(host, ios);
643 err = meson_mmc_prepare_ios_clock(host, ios);
644 if (err)
645 dev_err(host->dev, "Failed to set clock: %d\n,", err);
646
647 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
648}
649
650static void meson_mmc_request_done(struct mmc_host *mmc,
651 struct mmc_request *mrq)
652{
653 struct meson_host *host = mmc_priv(mmc);
654
655 host->cmd = NULL;
656 mmc_request_done(host->mmc, mrq);
657}
658
659static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
660{
661 struct meson_host *host = mmc_priv(mmc);
662 u32 cfg, blksz_old;
663
664 cfg = readl(host->regs + SD_EMMC_CFG);
665 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
666
667 if (!is_power_of_2(blksz))
668 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
669
670 blksz = ilog2(blksz);
671
672 /* check if block-size matches, if not update */
673 if (blksz == blksz_old)
674 return;
675
676 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
677 blksz_old, blksz);
678
679 cfg &= ~CFG_BLK_LEN_MASK;
680 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
681 writel(cfg, host->regs + SD_EMMC_CFG);
682}
683
684static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
685{
686 if (cmd->flags & MMC_RSP_PRESENT) {
687 if (cmd->flags & MMC_RSP_136)
688 *cmd_cfg |= CMD_CFG_RESP_128;
689 *cmd_cfg |= CMD_CFG_RESP_NUM;
690
691 if (!(cmd->flags & MMC_RSP_CRC))
692 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
693
694 if (cmd->flags & MMC_RSP_BUSY)
695 *cmd_cfg |= CMD_CFG_R1B;
696 } else {
697 *cmd_cfg |= CMD_CFG_NO_RESP;
698 }
699}
700
701static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
702{
703 struct meson_host *host = mmc_priv(mmc);
704 struct sd_emmc_desc *desc = host->descs;
705 struct mmc_data *data = host->cmd->data;
706 struct scatterlist *sg;
707 u32 start;
708 int i;
709
710 if (data->flags & MMC_DATA_WRITE)
711 cmd_cfg |= CMD_CFG_DATA_WR;
712
713 if (data->blocks > 1) {
714 cmd_cfg |= CMD_CFG_BLOCK_MODE;
715 meson_mmc_set_blksz(mmc, data->blksz);
716 }
717
718 for_each_sg(data->sg, sg, data->sg_count, i) {
719 unsigned int len = sg_dma_len(sg);
720
721 if (data->blocks > 1)
722 len /= data->blksz;
723
724 desc[i].cmd_cfg = cmd_cfg;
725 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
726 if (i > 0)
727 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
728 desc[i].cmd_arg = host->cmd->arg;
729 desc[i].cmd_resp = 0;
730 desc[i].cmd_data = sg_dma_address(sg);
731 }
732 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
733
734 dma_wmb(); /* ensure descriptor is written before kicked */
735 start = host->descs_dma_addr | START_DESC_BUSY;
736 writel(start, host->regs + SD_EMMC_START);
737}
738
739static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
740{
741 struct meson_host *host = mmc_priv(mmc);
742 struct mmc_data *data = cmd->data;
743 u32 cmd_cfg = 0, cmd_data = 0;
744 unsigned int xfer_bytes = 0;
745
746 /* Setup descriptors */
747 dma_rmb();
748
749 host->cmd = cmd;
750
751 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
752 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
753 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
754
755 meson_mmc_set_response_bits(cmd, &cmd_cfg);
756
757 /* data? */
758 if (data) {
759 data->bytes_xfered = 0;
760 cmd_cfg |= CMD_CFG_DATA_IO;
761 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
762 ilog2(meson_mmc_get_timeout_msecs(data)));
763
764 if (meson_mmc_desc_chain_mode(data)) {
765 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
766 return;
767 }
768
769 if (data->blocks > 1) {
770 cmd_cfg |= CMD_CFG_BLOCK_MODE;
771 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
772 data->blocks);
773 meson_mmc_set_blksz(mmc, data->blksz);
774 } else {
775 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
776 }
777
778 xfer_bytes = data->blksz * data->blocks;
779 if (data->flags & MMC_DATA_WRITE) {
780 cmd_cfg |= CMD_CFG_DATA_WR;
781 WARN_ON(xfer_bytes > host->bounce_buf_size);
782 sg_copy_to_buffer(data->sg, data->sg_len,
783 host->bounce_buf, xfer_bytes);
784 dma_wmb();
785 }
786
787 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
788 } else {
789 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
790 ilog2(SD_EMMC_CMD_TIMEOUT));
791 }
792
793 /* Last descriptor */
794 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
795 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
796 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
797 writel(0, host->regs + SD_EMMC_CMD_RSP);
798 wmb(); /* ensure descriptor is written before kicked */
799 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
800}
801
802static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
803{
804 struct meson_host *host = mmc_priv(mmc);
805 bool needs_pre_post_req = mrq->data &&
806 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
807
808 if (needs_pre_post_req) {
809 meson_mmc_get_transfer_mode(mmc, mrq);
810 if (!meson_mmc_desc_chain_mode(mrq->data))
811 needs_pre_post_req = false;
812 }
813
814 if (needs_pre_post_req)
815 meson_mmc_pre_req(mmc, mrq);
816
817 /* Stop execution */
818 writel(0, host->regs + SD_EMMC_START);
819
820 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
821
822 if (needs_pre_post_req)
823 meson_mmc_post_req(mmc, mrq, 0);
824}
825
826static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
827{
828 struct meson_host *host = mmc_priv(mmc);
829
830 if (cmd->flags & MMC_RSP_136) {
831 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
832 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
833 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
834 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
835 } else if (cmd->flags & MMC_RSP_PRESENT) {
836 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
837 }
838}
839
840static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
841{
842 struct meson_host *host = dev_id;
843 struct mmc_command *cmd;
844 struct mmc_data *data;
845 u32 irq_en, status, raw_status;
846 irqreturn_t ret = IRQ_NONE;
847
848 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
849 raw_status = readl(host->regs + SD_EMMC_STATUS);
850 status = raw_status & irq_en;
851
852 if (!status) {
853 dev_dbg(host->dev,
854 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
855 irq_en, raw_status);
856 return IRQ_NONE;
857 }
858
859 if (WARN_ON(!host) || WARN_ON(!host->cmd))
860 return IRQ_NONE;
861
862 /* ack all raised interrupts */
863 writel(status, host->regs + SD_EMMC_STATUS);
864
865 cmd = host->cmd;
866 data = cmd->data;
867 cmd->error = 0;
868 if (status & IRQ_CRC_ERR) {
869 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
870 cmd->error = -EILSEQ;
871 ret = IRQ_WAKE_THREAD;
872 goto out;
873 }
874
875 if (status & IRQ_TIMEOUTS) {
876 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
877 cmd->error = -ETIMEDOUT;
878 ret = IRQ_WAKE_THREAD;
879 goto out;
880 }
881
882 meson_mmc_read_resp(host->mmc, cmd);
883
884 if (status & IRQ_SDIO) {
885 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
886 ret = IRQ_HANDLED;
887 }
888
889 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
890 if (data && !cmd->error)
891 data->bytes_xfered = data->blksz * data->blocks;
892 if (meson_mmc_bounce_buf_read(data) ||
893 meson_mmc_get_next_command(cmd))
894 ret = IRQ_WAKE_THREAD;
895 else
896 ret = IRQ_HANDLED;
897 }
898
899out:
900 if (cmd->error) {
901 /* Stop desc in case of errors */
902 u32 start = readl(host->regs + SD_EMMC_START);
903
904 start &= ~START_DESC_BUSY;
905 writel(start, host->regs + SD_EMMC_START);
906 }
907
908 if (ret == IRQ_HANDLED)
909 meson_mmc_request_done(host->mmc, cmd->mrq);
910
911 return ret;
912}
913
914static int meson_mmc_wait_desc_stop(struct meson_host *host)
915{
916 u32 status;
917
918 /*
919 * It may sometimes take a while for it to actually halt. Here, we
920 * are giving it 5ms to comply
921 *
922 * If we don't confirm the descriptor is stopped, it might raise new
923 * IRQs after we have called mmc_request_done() which is bad.
924 */
925
926 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
927 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
928 100, 5000);
929}
930
931static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
932{
933 struct meson_host *host = dev_id;
934 struct mmc_command *next_cmd, *cmd = host->cmd;
935 struct mmc_data *data;
936 unsigned int xfer_bytes;
937
938 if (WARN_ON(!cmd))
939 return IRQ_NONE;
940
941 if (cmd->error) {
942 meson_mmc_wait_desc_stop(host);
943 meson_mmc_request_done(host->mmc, cmd->mrq);
944
945 return IRQ_HANDLED;
946 }
947
948 data = cmd->data;
949 if (meson_mmc_bounce_buf_read(data)) {
950 xfer_bytes = data->blksz * data->blocks;
951 WARN_ON(xfer_bytes > host->bounce_buf_size);
952 sg_copy_from_buffer(data->sg, data->sg_len,
953 host->bounce_buf, xfer_bytes);
954 }
955
956 next_cmd = meson_mmc_get_next_command(cmd);
957 if (next_cmd)
958 meson_mmc_start_cmd(host->mmc, next_cmd);
959 else
960 meson_mmc_request_done(host->mmc, cmd->mrq);
961
962 return IRQ_HANDLED;
963}
964
965/*
966 * NOTE: we only need this until the GPIO/pinctrl driver can handle
967 * interrupts. For now, the MMC core will use this for polling.
968 */
969static int meson_mmc_get_cd(struct mmc_host *mmc)
970{
971 int status = mmc_gpio_get_cd(mmc);
972
973 if (status == -ENOSYS)
974 return 1; /* assume present */
975
976 return status;
977}
978
979static void meson_mmc_cfg_init(struct meson_host *host)
980{
981 u32 cfg = 0;
982
983 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
984 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
985 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
986 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
987
988 /* abort chain on R/W errors */
989 cfg |= CFG_ERR_ABORT;
990
991 writel(cfg, host->regs + SD_EMMC_CFG);
992}
993
994static int meson_mmc_card_busy(struct mmc_host *mmc)
995{
996 struct meson_host *host = mmc_priv(mmc);
997 u32 regval;
998
999 regval = readl(host->regs + SD_EMMC_STATUS);
1000
1001 /* We are only interrested in lines 0 to 3, so mask the other ones */
1002 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1003}
1004
1005static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1006{
1007 int ret;
1008
1009 /* vqmmc regulator is available */
1010 if (!IS_ERR(mmc->supply.vqmmc)) {
1011 /*
1012 * The usual amlogic setup uses a GPIO to switch from one
1013 * regulator to the other. While the voltage ramp up is
1014 * pretty fast, care must be taken when switching from 3.3v
1015 * to 1.8v. Please make sure the regulator framework is aware
1016 * of your own regulator constraints
1017 */
1018 ret = mmc_regulator_set_vqmmc(mmc, ios);
1019 return ret < 0 ? ret : 0;
1020 }
1021
1022 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1023 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1024 return 0;
1025
1026 return -EINVAL;
1027}
1028
1029static const struct mmc_host_ops meson_mmc_ops = {
1030 .request = meson_mmc_request,
1031 .set_ios = meson_mmc_set_ios,
1032 .get_cd = meson_mmc_get_cd,
1033 .pre_req = meson_mmc_pre_req,
1034 .post_req = meson_mmc_post_req,
1035 .execute_tuning = meson_mmc_resampling_tuning,
1036 .card_busy = meson_mmc_card_busy,
1037 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1038};
1039
1040static int meson_mmc_probe(struct platform_device *pdev)
1041{
1042 struct resource *res;
1043 struct meson_host *host;
1044 struct mmc_host *mmc;
1045 int ret;
1046
1047 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1048 if (!mmc)
1049 return -ENOMEM;
1050 host = mmc_priv(mmc);
1051 host->mmc = mmc;
1052 host->dev = &pdev->dev;
1053 dev_set_drvdata(&pdev->dev, host);
1054
1055 /* The G12A SDIO Controller needs an SRAM bounce buffer */
1056 host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1057 "amlogic,dram-access-quirk");
1058
1059 /* Get regulators and the supported OCR mask */
1060 host->vqmmc_enabled = false;
1061 ret = mmc_regulator_get_supply(mmc);
1062 if (ret)
1063 goto free_host;
1064
1065 ret = mmc_of_parse(mmc);
1066 if (ret) {
1067 if (ret != -EPROBE_DEFER)
1068 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1069 goto free_host;
1070 }
1071
1072 host->data = (struct meson_mmc_data *)
1073 of_device_get_match_data(&pdev->dev);
1074 if (!host->data) {
1075 ret = -EINVAL;
1076 goto free_host;
1077 }
1078
1079 ret = device_reset_optional(&pdev->dev);
1080 if (ret) {
1081 if (ret != -EPROBE_DEFER)
1082 dev_err(&pdev->dev, "device reset failed: %d\n", ret);
1083
1084 return ret;
1085 }
1086
1087 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088 host->regs = devm_ioremap_resource(&pdev->dev, res);
1089 if (IS_ERR(host->regs)) {
1090 ret = PTR_ERR(host->regs);
1091 goto free_host;
1092 }
1093
1094 host->irq = platform_get_irq(pdev, 0);
1095 if (host->irq <= 0) {
1096 ret = -EINVAL;
1097 goto free_host;
1098 }
1099
1100 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1101 if (IS_ERR(host->pinctrl)) {
1102 ret = PTR_ERR(host->pinctrl);
1103 goto free_host;
1104 }
1105
1106 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1107 "clk-gate");
1108 if (IS_ERR(host->pins_clk_gate)) {
1109 dev_warn(&pdev->dev,
1110 "can't get clk-gate pinctrl, using clk_stop bit\n");
1111 host->pins_clk_gate = NULL;
1112 }
1113
1114 host->core_clk = devm_clk_get(&pdev->dev, "core");
1115 if (IS_ERR(host->core_clk)) {
1116 ret = PTR_ERR(host->core_clk);
1117 goto free_host;
1118 }
1119
1120 ret = clk_prepare_enable(host->core_clk);
1121 if (ret)
1122 goto free_host;
1123
1124 ret = meson_mmc_clk_init(host);
1125 if (ret)
1126 goto err_core_clk;
1127
1128 /* set config to sane default */
1129 meson_mmc_cfg_init(host);
1130
1131 /* Stop execution */
1132 writel(0, host->regs + SD_EMMC_START);
1133
1134 /* clear, ack and enable interrupts */
1135 writel(0, host->regs + SD_EMMC_IRQ_EN);
1136 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1137 host->regs + SD_EMMC_STATUS);
1138 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1139 host->regs + SD_EMMC_IRQ_EN);
1140
1141 ret = request_threaded_irq(host->irq, meson_mmc_irq,
1142 meson_mmc_irq_thread, IRQF_ONESHOT,
1143 dev_name(&pdev->dev), host);
1144 if (ret)
1145 goto err_init_clk;
1146
1147 mmc->caps |= MMC_CAP_CMD23;
1148 if (host->dram_access_quirk) {
1149 /* Limit segments to 1 due to low available sram memory */
1150 mmc->max_segs = 1;
1151 /* Limit to the available sram memory */
1152 mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1153 mmc->max_blk_size;
1154 } else {
1155 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1156 mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1157 sizeof(struct sd_emmc_desc);
1158 }
1159 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1160 mmc->max_seg_size = mmc->max_req_size;
1161
1162 /*
1163 * At the moment, we don't know how to reliably enable HS400.
1164 * From the different datasheets, it is not even clear if this mode
1165 * is officially supported by any of the SoCs
1166 */
1167 mmc->caps2 &= ~MMC_CAP2_HS400;
1168
1169 if (host->dram_access_quirk) {
1170 /*
1171 * The MMC Controller embeds 1,5KiB of internal SRAM
1172 * that can be used to be used as bounce buffer.
1173 * In the case of the G12A SDIO controller, use these
1174 * instead of the DDR memory
1175 */
1176 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1177 host->bounce_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1178 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1179 } else {
1180 /* data bounce buffer */
1181 host->bounce_buf_size = mmc->max_req_size;
1182 host->bounce_buf =
1183 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1184 &host->bounce_dma_addr, GFP_KERNEL);
1185 if (host->bounce_buf == NULL) {
1186 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1187 ret = -ENOMEM;
1188 goto err_free_irq;
1189 }
1190 }
1191
1192 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1193 &host->descs_dma_addr, GFP_KERNEL);
1194 if (!host->descs) {
1195 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1196 ret = -ENOMEM;
1197 goto err_bounce_buf;
1198 }
1199
1200 mmc->ops = &meson_mmc_ops;
1201 mmc_add_host(mmc);
1202
1203 return 0;
1204
1205err_bounce_buf:
1206 if (!host->dram_access_quirk)
1207 dma_free_coherent(host->dev, host->bounce_buf_size,
1208 host->bounce_buf, host->bounce_dma_addr);
1209err_free_irq:
1210 free_irq(host->irq, host);
1211err_init_clk:
1212 clk_disable_unprepare(host->mmc_clk);
1213err_core_clk:
1214 clk_disable_unprepare(host->core_clk);
1215free_host:
1216 mmc_free_host(mmc);
1217 return ret;
1218}
1219
1220static int meson_mmc_remove(struct platform_device *pdev)
1221{
1222 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1223
1224 mmc_remove_host(host->mmc);
1225
1226 /* disable interrupts */
1227 writel(0, host->regs + SD_EMMC_IRQ_EN);
1228 free_irq(host->irq, host);
1229
1230 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1231 host->descs, host->descs_dma_addr);
1232
1233 if (!host->dram_access_quirk)
1234 dma_free_coherent(host->dev, host->bounce_buf_size,
1235 host->bounce_buf, host->bounce_dma_addr);
1236
1237 clk_disable_unprepare(host->mmc_clk);
1238 clk_disable_unprepare(host->core_clk);
1239
1240 mmc_free_host(host->mmc);
1241 return 0;
1242}
1243
1244static const struct meson_mmc_data meson_gx_data = {
1245 .tx_delay_mask = CLK_V2_TX_DELAY_MASK,
1246 .rx_delay_mask = CLK_V2_RX_DELAY_MASK,
1247 .always_on = CLK_V2_ALWAYS_ON,
1248 .adjust = SD_EMMC_ADJUST,
1249};
1250
1251static const struct meson_mmc_data meson_axg_data = {
1252 .tx_delay_mask = CLK_V3_TX_DELAY_MASK,
1253 .rx_delay_mask = CLK_V3_RX_DELAY_MASK,
1254 .always_on = CLK_V3_ALWAYS_ON,
1255 .adjust = SD_EMMC_V3_ADJUST,
1256};
1257
1258static const struct of_device_id meson_mmc_of_match[] = {
1259 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
1260 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
1261 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
1262 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
1263 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
1264 {}
1265};
1266MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1267
1268static struct platform_driver meson_mmc_driver = {
1269 .probe = meson_mmc_probe,
1270 .remove = meson_mmc_remove,
1271 .driver = {
1272 .name = DRIVER_NAME,
1273 .of_match_table = of_match_ptr(meson_mmc_of_match),
1274 },
1275};
1276
1277module_platform_driver(meson_mmc_driver);
1278
1279MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1280MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1281MODULE_LICENSE("GPL v2");