Loading...
1/*
2 * linux/drivers/mmc/core/mmc_ops.h
3 *
4 * Copyright 2006-2007 Pierre Ossman
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
10 */
11
12#include <linux/slab.h>
13#include <linux/export.h>
14#include <linux/types.h>
15#include <linux/scatterlist.h>
16
17#include <linux/mmc/host.h>
18#include <linux/mmc/card.h>
19#include <linux/mmc/mmc.h>
20
21#include "core.h"
22#include "mmc_ops.h"
23
24static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
25{
26 int err;
27 struct mmc_command cmd = {0};
28
29 BUG_ON(!host);
30
31 cmd.opcode = MMC_SELECT_CARD;
32
33 if (card) {
34 cmd.arg = card->rca << 16;
35 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
36 } else {
37 cmd.arg = 0;
38 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
39 }
40
41 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
42 if (err)
43 return err;
44
45 return 0;
46}
47
48int mmc_select_card(struct mmc_card *card)
49{
50 BUG_ON(!card);
51
52 return _mmc_select_card(card->host, card);
53}
54
55int mmc_deselect_cards(struct mmc_host *host)
56{
57 return _mmc_select_card(host, NULL);
58}
59
60int mmc_card_sleepawake(struct mmc_host *host, int sleep)
61{
62 struct mmc_command cmd = {0};
63 struct mmc_card *card = host->card;
64 int err;
65
66 if (sleep)
67 mmc_deselect_cards(host);
68
69 cmd.opcode = MMC_SLEEP_AWAKE;
70 cmd.arg = card->rca << 16;
71 if (sleep)
72 cmd.arg |= 1 << 15;
73
74 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
75 err = mmc_wait_for_cmd(host, &cmd, 0);
76 if (err)
77 return err;
78
79 /*
80 * If the host does not wait while the card signals busy, then we will
81 * will have to wait the sleep/awake timeout. Note, we cannot use the
82 * SEND_STATUS command to poll the status because that command (and most
83 * others) is invalid while the card sleeps.
84 */
85 if (!(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
86 mmc_delay(DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000));
87
88 if (!sleep)
89 err = mmc_select_card(card);
90
91 return err;
92}
93
94int mmc_go_idle(struct mmc_host *host)
95{
96 int err;
97 struct mmc_command cmd = {0};
98
99 /*
100 * Non-SPI hosts need to prevent chipselect going active during
101 * GO_IDLE; that would put chips into SPI mode. Remind them of
102 * that in case of hardware that won't pull up DAT3/nCS otherwise.
103 *
104 * SPI hosts ignore ios.chip_select; it's managed according to
105 * rules that must accommodate non-MMC slaves which this layer
106 * won't even know about.
107 */
108 if (!mmc_host_is_spi(host)) {
109 mmc_set_chip_select(host, MMC_CS_HIGH);
110 mmc_delay(1);
111 }
112
113 cmd.opcode = MMC_GO_IDLE_STATE;
114 cmd.arg = 0;
115 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
116
117 err = mmc_wait_for_cmd(host, &cmd, 0);
118
119 mmc_delay(1);
120
121 if (!mmc_host_is_spi(host)) {
122 mmc_set_chip_select(host, MMC_CS_DONTCARE);
123 mmc_delay(1);
124 }
125
126 host->use_spi_crc = 0;
127
128 return err;
129}
130
131int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
132{
133 struct mmc_command cmd = {0};
134 int i, err = 0;
135
136 BUG_ON(!host);
137
138 cmd.opcode = MMC_SEND_OP_COND;
139 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
140 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
141
142 for (i = 100; i; i--) {
143 err = mmc_wait_for_cmd(host, &cmd, 0);
144 if (err)
145 break;
146
147 /* if we're just probing, do a single pass */
148 if (ocr == 0)
149 break;
150
151 /* otherwise wait until reset completes */
152 if (mmc_host_is_spi(host)) {
153 if (!(cmd.resp[0] & R1_SPI_IDLE))
154 break;
155 } else {
156 if (cmd.resp[0] & MMC_CARD_BUSY)
157 break;
158 }
159
160 err = -ETIMEDOUT;
161
162 mmc_delay(10);
163 }
164
165 if (rocr && !mmc_host_is_spi(host))
166 *rocr = cmd.resp[0];
167
168 return err;
169}
170
171int mmc_all_send_cid(struct mmc_host *host, u32 *cid)
172{
173 int err;
174 struct mmc_command cmd = {0};
175
176 BUG_ON(!host);
177 BUG_ON(!cid);
178
179 cmd.opcode = MMC_ALL_SEND_CID;
180 cmd.arg = 0;
181 cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
182
183 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
184 if (err)
185 return err;
186
187 memcpy(cid, cmd.resp, sizeof(u32) * 4);
188
189 return 0;
190}
191
192int mmc_set_relative_addr(struct mmc_card *card)
193{
194 int err;
195 struct mmc_command cmd = {0};
196
197 BUG_ON(!card);
198 BUG_ON(!card->host);
199
200 cmd.opcode = MMC_SET_RELATIVE_ADDR;
201 cmd.arg = card->rca << 16;
202 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
203
204 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
205 if (err)
206 return err;
207
208 return 0;
209}
210
211static int
212mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
213{
214 int err;
215 struct mmc_command cmd = {0};
216
217 BUG_ON(!host);
218 BUG_ON(!cxd);
219
220 cmd.opcode = opcode;
221 cmd.arg = arg;
222 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
223
224 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
225 if (err)
226 return err;
227
228 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
229
230 return 0;
231}
232
233static int
234mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
235 u32 opcode, void *buf, unsigned len)
236{
237 struct mmc_request mrq = {NULL};
238 struct mmc_command cmd = {0};
239 struct mmc_data data = {0};
240 struct scatterlist sg;
241 void *data_buf;
242
243 /* dma onto stack is unsafe/nonportable, but callers to this
244 * routine normally provide temporary on-stack buffers ...
245 */
246 data_buf = kmalloc(len, GFP_KERNEL);
247 if (data_buf == NULL)
248 return -ENOMEM;
249
250 mrq.cmd = &cmd;
251 mrq.data = &data;
252
253 cmd.opcode = opcode;
254 cmd.arg = 0;
255
256 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
257 * rely on callers to never use this with "native" calls for reading
258 * CSD or CID. Native versions of those commands use the R2 type,
259 * not R1 plus a data block.
260 */
261 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
262
263 data.blksz = len;
264 data.blocks = 1;
265 data.flags = MMC_DATA_READ;
266 data.sg = &sg;
267 data.sg_len = 1;
268
269 sg_init_one(&sg, data_buf, len);
270
271 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
272 /*
273 * The spec states that CSR and CID accesses have a timeout
274 * of 64 clock cycles.
275 */
276 data.timeout_ns = 0;
277 data.timeout_clks = 64;
278 } else
279 mmc_set_data_timeout(&data, card);
280
281 mmc_wait_for_req(host, &mrq);
282
283 memcpy(buf, data_buf, len);
284 kfree(data_buf);
285
286 if (cmd.error)
287 return cmd.error;
288 if (data.error)
289 return data.error;
290
291 return 0;
292}
293
294int mmc_send_csd(struct mmc_card *card, u32 *csd)
295{
296 int ret, i;
297
298 if (!mmc_host_is_spi(card->host))
299 return mmc_send_cxd_native(card->host, card->rca << 16,
300 csd, MMC_SEND_CSD);
301
302 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd, 16);
303 if (ret)
304 return ret;
305
306 for (i = 0;i < 4;i++)
307 csd[i] = be32_to_cpu(csd[i]);
308
309 return 0;
310}
311
312int mmc_send_cid(struct mmc_host *host, u32 *cid)
313{
314 int ret, i;
315
316 if (!mmc_host_is_spi(host)) {
317 if (!host->card)
318 return -EINVAL;
319 return mmc_send_cxd_native(host, host->card->rca << 16,
320 cid, MMC_SEND_CID);
321 }
322
323 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid, 16);
324 if (ret)
325 return ret;
326
327 for (i = 0;i < 4;i++)
328 cid[i] = be32_to_cpu(cid[i]);
329
330 return 0;
331}
332
333int mmc_send_ext_csd(struct mmc_card *card, u8 *ext_csd)
334{
335 return mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD,
336 ext_csd, 512);
337}
338
339int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
340{
341 struct mmc_command cmd = {0};
342 int err;
343
344 cmd.opcode = MMC_SPI_READ_OCR;
345 cmd.arg = highcap ? (1 << 30) : 0;
346 cmd.flags = MMC_RSP_SPI_R3;
347
348 err = mmc_wait_for_cmd(host, &cmd, 0);
349
350 *ocrp = cmd.resp[1];
351 return err;
352}
353
354int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
355{
356 struct mmc_command cmd = {0};
357 int err;
358
359 cmd.opcode = MMC_SPI_CRC_ON_OFF;
360 cmd.flags = MMC_RSP_SPI_R1;
361 cmd.arg = use_crc;
362
363 err = mmc_wait_for_cmd(host, &cmd, 0);
364 if (!err)
365 host->use_spi_crc = use_crc;
366 return err;
367}
368
369/**
370 * mmc_switch - modify EXT_CSD register
371 * @card: the MMC card associated with the data transfer
372 * @set: cmd set values
373 * @index: EXT_CSD register index
374 * @value: value to program into EXT_CSD register
375 * @timeout_ms: timeout (ms) for operation performed by register write,
376 * timeout of zero implies maximum possible timeout
377 *
378 * Modifies the EXT_CSD register for selected card.
379 */
380int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
381 unsigned int timeout_ms)
382{
383 int err;
384 struct mmc_command cmd = {0};
385 u32 status;
386
387 BUG_ON(!card);
388 BUG_ON(!card->host);
389
390 cmd.opcode = MMC_SWITCH;
391 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
392 (index << 16) |
393 (value << 8) |
394 set;
395 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
396 cmd.cmd_timeout_ms = timeout_ms;
397
398 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
399 if (err)
400 return err;
401
402 /* Must check status to be sure of no errors */
403 do {
404 err = mmc_send_status(card, &status);
405 if (err)
406 return err;
407 if (card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
408 break;
409 if (mmc_host_is_spi(card->host))
410 break;
411 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
412
413 if (mmc_host_is_spi(card->host)) {
414 if (status & R1_SPI_ILLEGAL_COMMAND)
415 return -EBADMSG;
416 } else {
417 if (status & 0xFDFFA000)
418 pr_warning("%s: unexpected status %#x after "
419 "switch", mmc_hostname(card->host), status);
420 if (status & R1_SWITCH_ERROR)
421 return -EBADMSG;
422 }
423
424 return 0;
425}
426EXPORT_SYMBOL_GPL(mmc_switch);
427
428int mmc_send_status(struct mmc_card *card, u32 *status)
429{
430 int err;
431 struct mmc_command cmd = {0};
432
433 BUG_ON(!card);
434 BUG_ON(!card->host);
435
436 cmd.opcode = MMC_SEND_STATUS;
437 if (!mmc_host_is_spi(card->host))
438 cmd.arg = card->rca << 16;
439 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
440
441 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
442 if (err)
443 return err;
444
445 /* NOTE: callers are required to understand the difference
446 * between "native" and SPI format status words!
447 */
448 if (status)
449 *status = cmd.resp[0];
450
451 return 0;
452}
453
454static int
455mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
456 u8 len)
457{
458 struct mmc_request mrq = {NULL};
459 struct mmc_command cmd = {0};
460 struct mmc_data data = {0};
461 struct scatterlist sg;
462 u8 *data_buf;
463 u8 *test_buf;
464 int i, err;
465 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
466 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
467
468 /* dma onto stack is unsafe/nonportable, but callers to this
469 * routine normally provide temporary on-stack buffers ...
470 */
471 data_buf = kmalloc(len, GFP_KERNEL);
472 if (!data_buf)
473 return -ENOMEM;
474
475 if (len == 8)
476 test_buf = testdata_8bit;
477 else if (len == 4)
478 test_buf = testdata_4bit;
479 else {
480 pr_err("%s: Invalid bus_width %d\n",
481 mmc_hostname(host), len);
482 kfree(data_buf);
483 return -EINVAL;
484 }
485
486 if (opcode == MMC_BUS_TEST_W)
487 memcpy(data_buf, test_buf, len);
488
489 mrq.cmd = &cmd;
490 mrq.data = &data;
491 cmd.opcode = opcode;
492 cmd.arg = 0;
493
494 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
495 * rely on callers to never use this with "native" calls for reading
496 * CSD or CID. Native versions of those commands use the R2 type,
497 * not R1 plus a data block.
498 */
499 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
500
501 data.blksz = len;
502 data.blocks = 1;
503 if (opcode == MMC_BUS_TEST_R)
504 data.flags = MMC_DATA_READ;
505 else
506 data.flags = MMC_DATA_WRITE;
507
508 data.sg = &sg;
509 data.sg_len = 1;
510 sg_init_one(&sg, data_buf, len);
511 mmc_wait_for_req(host, &mrq);
512 err = 0;
513 if (opcode == MMC_BUS_TEST_R) {
514 for (i = 0; i < len / 4; i++)
515 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
516 err = -EIO;
517 break;
518 }
519 }
520 kfree(data_buf);
521
522 if (cmd.error)
523 return cmd.error;
524 if (data.error)
525 return data.error;
526
527 return err;
528}
529
530int mmc_bus_test(struct mmc_card *card, u8 bus_width)
531{
532 int err, width;
533
534 if (bus_width == MMC_BUS_WIDTH_8)
535 width = 8;
536 else if (bus_width == MMC_BUS_WIDTH_4)
537 width = 4;
538 else if (bus_width == MMC_BUS_WIDTH_1)
539 return 0; /* no need for test */
540 else
541 return -EINVAL;
542
543 /*
544 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
545 * is a problem. This improves chances that the test will work.
546 */
547 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
548 err = mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
549 return err;
550}
551
552int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status)
553{
554 struct mmc_command cmd = {0};
555 unsigned int opcode;
556 int err;
557
558 if (!card->ext_csd.hpi) {
559 pr_warning("%s: Card didn't support HPI command\n",
560 mmc_hostname(card->host));
561 return -EINVAL;
562 }
563
564 opcode = card->ext_csd.hpi_cmd;
565 if (opcode == MMC_STOP_TRANSMISSION)
566 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
567 else if (opcode == MMC_SEND_STATUS)
568 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
569
570 cmd.opcode = opcode;
571 cmd.arg = card->rca << 16 | 1;
572 cmd.cmd_timeout_ms = card->ext_csd.out_of_int_time;
573
574 err = mmc_wait_for_cmd(card->host, &cmd, 0);
575 if (err) {
576 pr_warn("%s: error %d interrupting operation. "
577 "HPI command response %#x\n", mmc_hostname(card->host),
578 err, cmd.resp[0]);
579 return err;
580 }
581 if (status)
582 *status = cmd.resp[0];
583
584 return 0;
585}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/types.h>
11#include <linux/scatterlist.h>
12
13#include <linux/mmc/host.h>
14#include <linux/mmc/card.h>
15#include <linux/mmc/mmc.h>
16
17#include "core.h"
18#include "card.h"
19#include "host.h"
20#include "mmc_ops.h"
21
22#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23#define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */
24#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
25
26static const u8 tuning_blk_pattern_4bit[] = {
27 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35};
36
37static const u8 tuning_blk_pattern_8bit[] = {
38 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54};
55
56int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57{
58 int err;
59 struct mmc_command cmd = {};
60
61 cmd.opcode = MMC_SEND_STATUS;
62 if (!mmc_host_is_spi(card->host))
63 cmd.arg = card->rca << 16;
64 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65
66 err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 if (err)
68 return err;
69
70 /* NOTE: callers are required to understand the difference
71 * between "native" and SPI format status words!
72 */
73 if (status)
74 *status = cmd.resp[0];
75
76 return 0;
77}
78EXPORT_SYMBOL_GPL(__mmc_send_status);
79
80int mmc_send_status(struct mmc_card *card, u32 *status)
81{
82 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83}
84EXPORT_SYMBOL_GPL(mmc_send_status);
85
86static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87{
88 struct mmc_command cmd = {};
89
90 cmd.opcode = MMC_SELECT_CARD;
91
92 if (card) {
93 cmd.arg = card->rca << 16;
94 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 } else {
96 cmd.arg = 0;
97 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 }
99
100 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101}
102
103int mmc_select_card(struct mmc_card *card)
104{
105
106 return _mmc_select_card(card->host, card);
107}
108
109int mmc_deselect_cards(struct mmc_host *host)
110{
111 return _mmc_select_card(host, NULL);
112}
113
114/*
115 * Write the value specified in the device tree or board code into the optional
116 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117 * drive strength of the DAT and CMD outputs. The actual meaning of a given
118 * value is hardware dependant.
119 * The presence of the DSR register can be determined from the CSD register,
120 * bit 76.
121 */
122int mmc_set_dsr(struct mmc_host *host)
123{
124 struct mmc_command cmd = {};
125
126 cmd.opcode = MMC_SET_DSR;
127
128 cmd.arg = (host->dsr << 16) | 0xffff;
129 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130
131 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132}
133
134int mmc_go_idle(struct mmc_host *host)
135{
136 int err;
137 struct mmc_command cmd = {};
138
139 /*
140 * Non-SPI hosts need to prevent chipselect going active during
141 * GO_IDLE; that would put chips into SPI mode. Remind them of
142 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 *
144 * SPI hosts ignore ios.chip_select; it's managed according to
145 * rules that must accommodate non-MMC slaves which this layer
146 * won't even know about.
147 */
148 if (!mmc_host_is_spi(host)) {
149 mmc_set_chip_select(host, MMC_CS_HIGH);
150 mmc_delay(1);
151 }
152
153 cmd.opcode = MMC_GO_IDLE_STATE;
154 cmd.arg = 0;
155 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156
157 err = mmc_wait_for_cmd(host, &cmd, 0);
158
159 mmc_delay(1);
160
161 if (!mmc_host_is_spi(host)) {
162 mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 mmc_delay(1);
164 }
165
166 host->use_spi_crc = 0;
167
168 return err;
169}
170
171int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172{
173 struct mmc_command cmd = {};
174 int i, err = 0;
175
176 cmd.opcode = MMC_SEND_OP_COND;
177 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179
180 for (i = 100; i; i--) {
181 err = mmc_wait_for_cmd(host, &cmd, 0);
182 if (err)
183 break;
184
185 /* wait until reset completes */
186 if (mmc_host_is_spi(host)) {
187 if (!(cmd.resp[0] & R1_SPI_IDLE))
188 break;
189 } else {
190 if (cmd.resp[0] & MMC_CARD_BUSY)
191 break;
192 }
193
194 err = -ETIMEDOUT;
195
196 mmc_delay(10);
197
198 /*
199 * According to eMMC specification v5.1 section 6.4.3, we
200 * should issue CMD1 repeatedly in the idle state until
201 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 * the inactive mode after mmc_init_card() issued CMD0 when
203 * the eMMC device is busy.
204 */
205 if (!ocr && !mmc_host_is_spi(host))
206 cmd.arg = cmd.resp[0] | BIT(30);
207 }
208
209 if (rocr && !mmc_host_is_spi(host))
210 *rocr = cmd.resp[0];
211
212 return err;
213}
214
215int mmc_set_relative_addr(struct mmc_card *card)
216{
217 struct mmc_command cmd = {};
218
219 cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 cmd.arg = card->rca << 16;
221 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222
223 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224}
225
226static int
227mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228{
229 int err;
230 struct mmc_command cmd = {};
231
232 cmd.opcode = opcode;
233 cmd.arg = arg;
234 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235
236 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 if (err)
238 return err;
239
240 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241
242 return 0;
243}
244
245/*
246 * NOTE: void *buf, caller for the buf is required to use DMA-capable
247 * buffer or on-stack buffer (with some overhead in callee).
248 */
249static int
250mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 u32 opcode, void *buf, unsigned len)
252{
253 struct mmc_request mrq = {};
254 struct mmc_command cmd = {};
255 struct mmc_data data = {};
256 struct scatterlist sg;
257
258 mrq.cmd = &cmd;
259 mrq.data = &data;
260
261 cmd.opcode = opcode;
262 cmd.arg = 0;
263
264 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
265 * rely on callers to never use this with "native" calls for reading
266 * CSD or CID. Native versions of those commands use the R2 type,
267 * not R1 plus a data block.
268 */
269 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270
271 data.blksz = len;
272 data.blocks = 1;
273 data.flags = MMC_DATA_READ;
274 data.sg = &sg;
275 data.sg_len = 1;
276
277 sg_init_one(&sg, buf, len);
278
279 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 /*
281 * The spec states that CSR and CID accesses have a timeout
282 * of 64 clock cycles.
283 */
284 data.timeout_ns = 0;
285 data.timeout_clks = 64;
286 } else
287 mmc_set_data_timeout(&data, card);
288
289 mmc_wait_for_req(host, &mrq);
290
291 if (cmd.error)
292 return cmd.error;
293 if (data.error)
294 return data.error;
295
296 return 0;
297}
298
299static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
300{
301 int ret, i;
302 __be32 *csd_tmp;
303
304 csd_tmp = kzalloc(16, GFP_KERNEL);
305 if (!csd_tmp)
306 return -ENOMEM;
307
308 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
309 if (ret)
310 goto err;
311
312 for (i = 0; i < 4; i++)
313 csd[i] = be32_to_cpu(csd_tmp[i]);
314
315err:
316 kfree(csd_tmp);
317 return ret;
318}
319
320int mmc_send_csd(struct mmc_card *card, u32 *csd)
321{
322 if (mmc_host_is_spi(card->host))
323 return mmc_spi_send_csd(card, csd);
324
325 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
326 MMC_SEND_CSD);
327}
328
329static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
330{
331 int ret, i;
332 __be32 *cid_tmp;
333
334 cid_tmp = kzalloc(16, GFP_KERNEL);
335 if (!cid_tmp)
336 return -ENOMEM;
337
338 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
339 if (ret)
340 goto err;
341
342 for (i = 0; i < 4; i++)
343 cid[i] = be32_to_cpu(cid_tmp[i]);
344
345err:
346 kfree(cid_tmp);
347 return ret;
348}
349
350int mmc_send_cid(struct mmc_host *host, u32 *cid)
351{
352 if (mmc_host_is_spi(host))
353 return mmc_spi_send_cid(host, cid);
354
355 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
356}
357
358int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
359{
360 int err;
361 u8 *ext_csd;
362
363 if (!card || !new_ext_csd)
364 return -EINVAL;
365
366 if (!mmc_can_ext_csd(card))
367 return -EOPNOTSUPP;
368
369 /*
370 * As the ext_csd is so large and mostly unused, we don't store the
371 * raw block in mmc_card.
372 */
373 ext_csd = kzalloc(512, GFP_KERNEL);
374 if (!ext_csd)
375 return -ENOMEM;
376
377 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
378 512);
379 if (err)
380 kfree(ext_csd);
381 else
382 *new_ext_csd = ext_csd;
383
384 return err;
385}
386EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
387
388int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
389{
390 struct mmc_command cmd = {};
391 int err;
392
393 cmd.opcode = MMC_SPI_READ_OCR;
394 cmd.arg = highcap ? (1 << 30) : 0;
395 cmd.flags = MMC_RSP_SPI_R3;
396
397 err = mmc_wait_for_cmd(host, &cmd, 0);
398
399 *ocrp = cmd.resp[1];
400 return err;
401}
402
403int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
404{
405 struct mmc_command cmd = {};
406 int err;
407
408 cmd.opcode = MMC_SPI_CRC_ON_OFF;
409 cmd.flags = MMC_RSP_SPI_R1;
410 cmd.arg = use_crc;
411
412 err = mmc_wait_for_cmd(host, &cmd, 0);
413 if (!err)
414 host->use_spi_crc = use_crc;
415 return err;
416}
417
418static int mmc_switch_status_error(struct mmc_host *host, u32 status)
419{
420 if (mmc_host_is_spi(host)) {
421 if (status & R1_SPI_ILLEGAL_COMMAND)
422 return -EBADMSG;
423 } else {
424 if (R1_STATUS(status))
425 pr_warn("%s: unexpected status %#x after switch\n",
426 mmc_hostname(host), status);
427 if (status & R1_SWITCH_ERROR)
428 return -EBADMSG;
429 }
430 return 0;
431}
432
433/* Caller must hold re-tuning */
434int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
435{
436 u32 status;
437 int err;
438
439 err = mmc_send_status(card, &status);
440 if (!crc_err_fatal && err == -EILSEQ)
441 return 0;
442 if (err)
443 return err;
444
445 return mmc_switch_status_error(card->host, status);
446}
447
448static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
449 enum mmc_busy_cmd busy_cmd, bool *busy)
450{
451 struct mmc_host *host = card->host;
452 u32 status = 0;
453 int err;
454
455 if (host->ops->card_busy) {
456 *busy = host->ops->card_busy(host);
457 return 0;
458 }
459
460 err = mmc_send_status(card, &status);
461 if (retry_crc_err && err == -EILSEQ) {
462 *busy = true;
463 return 0;
464 }
465 if (err)
466 return err;
467
468 switch (busy_cmd) {
469 case MMC_BUSY_CMD6:
470 err = mmc_switch_status_error(card->host, status);
471 break;
472 case MMC_BUSY_ERASE:
473 err = R1_STATUS(status) ? -EIO : 0;
474 break;
475 case MMC_BUSY_HPI:
476 break;
477 default:
478 err = -EINVAL;
479 }
480
481 if (err)
482 return err;
483
484 *busy = !mmc_ready_for_data(status);
485 return 0;
486}
487
488static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
489 bool send_status, bool retry_crc_err,
490 enum mmc_busy_cmd busy_cmd)
491{
492 struct mmc_host *host = card->host;
493 int err;
494 unsigned long timeout;
495 unsigned int udelay = 32, udelay_max = 32768;
496 bool expired = false;
497 bool busy = false;
498
499 /*
500 * In cases when not allowed to poll by using CMD13 or because we aren't
501 * capable of polling by using ->card_busy(), then rely on waiting the
502 * stated timeout to be sufficient.
503 */
504 if (!send_status && !host->ops->card_busy) {
505 mmc_delay(timeout_ms);
506 return 0;
507 }
508
509 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
510 do {
511 /*
512 * Due to the possibility of being preempted while polling,
513 * check the expiration time first.
514 */
515 expired = time_after(jiffies, timeout);
516
517 err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
518 if (err)
519 return err;
520
521 /* Timeout if the device still remains busy. */
522 if (expired && busy) {
523 pr_err("%s: Card stuck being busy! %s\n",
524 mmc_hostname(host), __func__);
525 return -ETIMEDOUT;
526 }
527
528 /* Throttle the polling rate to avoid hogging the CPU. */
529 if (busy) {
530 usleep_range(udelay, udelay * 2);
531 if (udelay < udelay_max)
532 udelay *= 2;
533 }
534 } while (busy);
535
536 return 0;
537}
538
539int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
540 enum mmc_busy_cmd busy_cmd)
541{
542 return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
543}
544
545/**
546 * __mmc_switch - modify EXT_CSD register
547 * @card: the MMC card associated with the data transfer
548 * @set: cmd set values
549 * @index: EXT_CSD register index
550 * @value: value to program into EXT_CSD register
551 * @timeout_ms: timeout (ms) for operation performed by register write,
552 * timeout of zero implies maximum possible timeout
553 * @timing: new timing to change to
554 * @send_status: send status cmd to poll for busy
555 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
556 *
557 * Modifies the EXT_CSD register for selected card.
558 */
559int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
560 unsigned int timeout_ms, unsigned char timing,
561 bool send_status, bool retry_crc_err)
562{
563 struct mmc_host *host = card->host;
564 int err;
565 struct mmc_command cmd = {};
566 bool use_r1b_resp = true;
567 unsigned char old_timing = host->ios.timing;
568
569 mmc_retune_hold(host);
570
571 if (!timeout_ms) {
572 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
573 mmc_hostname(host));
574 timeout_ms = card->ext_csd.generic_cmd6_time;
575 }
576
577 /*
578 * If the max_busy_timeout of the host is specified, make sure it's
579 * enough to fit the used timeout_ms. In case it's not, let's instruct
580 * the host to avoid HW busy detection, by converting to a R1 response
581 * instead of a R1B. Note, some hosts requires R1B, which also means
582 * they are on their own when it comes to deal with the busy timeout.
583 */
584 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
585 (timeout_ms > host->max_busy_timeout))
586 use_r1b_resp = false;
587
588 cmd.opcode = MMC_SWITCH;
589 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
590 (index << 16) |
591 (value << 8) |
592 set;
593 cmd.flags = MMC_CMD_AC;
594 if (use_r1b_resp) {
595 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
596 cmd.busy_timeout = timeout_ms;
597 } else {
598 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
599 }
600
601 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
602 if (err)
603 goto out;
604
605 /*If SPI or used HW busy detection above, then we don't need to poll. */
606 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
607 mmc_host_is_spi(host))
608 goto out_tim;
609
610 /* Let's try to poll to find out when the command is completed. */
611 err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
612 MMC_BUSY_CMD6);
613 if (err)
614 goto out;
615
616out_tim:
617 /* Switch to new timing before check switch status. */
618 if (timing)
619 mmc_set_timing(host, timing);
620
621 if (send_status) {
622 err = mmc_switch_status(card, true);
623 if (err && timing)
624 mmc_set_timing(host, old_timing);
625 }
626out:
627 mmc_retune_release(host);
628
629 return err;
630}
631
632int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
633 unsigned int timeout_ms)
634{
635 return __mmc_switch(card, set, index, value, timeout_ms, 0,
636 true, false);
637}
638EXPORT_SYMBOL_GPL(mmc_switch);
639
640int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
641{
642 struct mmc_request mrq = {};
643 struct mmc_command cmd = {};
644 struct mmc_data data = {};
645 struct scatterlist sg;
646 struct mmc_ios *ios = &host->ios;
647 const u8 *tuning_block_pattern;
648 int size, err = 0;
649 u8 *data_buf;
650
651 if (ios->bus_width == MMC_BUS_WIDTH_8) {
652 tuning_block_pattern = tuning_blk_pattern_8bit;
653 size = sizeof(tuning_blk_pattern_8bit);
654 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
655 tuning_block_pattern = tuning_blk_pattern_4bit;
656 size = sizeof(tuning_blk_pattern_4bit);
657 } else
658 return -EINVAL;
659
660 data_buf = kzalloc(size, GFP_KERNEL);
661 if (!data_buf)
662 return -ENOMEM;
663
664 mrq.cmd = &cmd;
665 mrq.data = &data;
666
667 cmd.opcode = opcode;
668 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
669
670 data.blksz = size;
671 data.blocks = 1;
672 data.flags = MMC_DATA_READ;
673
674 /*
675 * According to the tuning specs, Tuning process
676 * is normally shorter 40 executions of CMD19,
677 * and timeout value should be shorter than 150 ms
678 */
679 data.timeout_ns = 150 * NSEC_PER_MSEC;
680
681 data.sg = &sg;
682 data.sg_len = 1;
683 sg_init_one(&sg, data_buf, size);
684
685 mmc_wait_for_req(host, &mrq);
686
687 if (cmd_error)
688 *cmd_error = cmd.error;
689
690 if (cmd.error) {
691 err = cmd.error;
692 goto out;
693 }
694
695 if (data.error) {
696 err = data.error;
697 goto out;
698 }
699
700 if (memcmp(data_buf, tuning_block_pattern, size))
701 err = -EIO;
702
703out:
704 kfree(data_buf);
705 return err;
706}
707EXPORT_SYMBOL_GPL(mmc_send_tuning);
708
709int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
710{
711 struct mmc_command cmd = {};
712
713 /*
714 * eMMC specification specifies that CMD12 can be used to stop a tuning
715 * command, but SD specification does not, so do nothing unless it is
716 * eMMC.
717 */
718 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
719 return 0;
720
721 cmd.opcode = MMC_STOP_TRANSMISSION;
722 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
723
724 /*
725 * For drivers that override R1 to R1b, set an arbitrary timeout based
726 * on the tuning timeout i.e. 150ms.
727 */
728 cmd.busy_timeout = 150;
729
730 return mmc_wait_for_cmd(host, &cmd, 0);
731}
732EXPORT_SYMBOL_GPL(mmc_abort_tuning);
733
734static int
735mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
736 u8 len)
737{
738 struct mmc_request mrq = {};
739 struct mmc_command cmd = {};
740 struct mmc_data data = {};
741 struct scatterlist sg;
742 u8 *data_buf;
743 u8 *test_buf;
744 int i, err;
745 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
746 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
747
748 /* dma onto stack is unsafe/nonportable, but callers to this
749 * routine normally provide temporary on-stack buffers ...
750 */
751 data_buf = kmalloc(len, GFP_KERNEL);
752 if (!data_buf)
753 return -ENOMEM;
754
755 if (len == 8)
756 test_buf = testdata_8bit;
757 else if (len == 4)
758 test_buf = testdata_4bit;
759 else {
760 pr_err("%s: Invalid bus_width %d\n",
761 mmc_hostname(host), len);
762 kfree(data_buf);
763 return -EINVAL;
764 }
765
766 if (opcode == MMC_BUS_TEST_W)
767 memcpy(data_buf, test_buf, len);
768
769 mrq.cmd = &cmd;
770 mrq.data = &data;
771 cmd.opcode = opcode;
772 cmd.arg = 0;
773
774 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
775 * rely on callers to never use this with "native" calls for reading
776 * CSD or CID. Native versions of those commands use the R2 type,
777 * not R1 plus a data block.
778 */
779 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
780
781 data.blksz = len;
782 data.blocks = 1;
783 if (opcode == MMC_BUS_TEST_R)
784 data.flags = MMC_DATA_READ;
785 else
786 data.flags = MMC_DATA_WRITE;
787
788 data.sg = &sg;
789 data.sg_len = 1;
790 mmc_set_data_timeout(&data, card);
791 sg_init_one(&sg, data_buf, len);
792 mmc_wait_for_req(host, &mrq);
793 err = 0;
794 if (opcode == MMC_BUS_TEST_R) {
795 for (i = 0; i < len / 4; i++)
796 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
797 err = -EIO;
798 break;
799 }
800 }
801 kfree(data_buf);
802
803 if (cmd.error)
804 return cmd.error;
805 if (data.error)
806 return data.error;
807
808 return err;
809}
810
811int mmc_bus_test(struct mmc_card *card, u8 bus_width)
812{
813 int width;
814
815 if (bus_width == MMC_BUS_WIDTH_8)
816 width = 8;
817 else if (bus_width == MMC_BUS_WIDTH_4)
818 width = 4;
819 else if (bus_width == MMC_BUS_WIDTH_1)
820 return 0; /* no need for test */
821 else
822 return -EINVAL;
823
824 /*
825 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
826 * is a problem. This improves chances that the test will work.
827 */
828 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
829 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
830}
831
832static int mmc_send_hpi_cmd(struct mmc_card *card)
833{
834 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
835 struct mmc_host *host = card->host;
836 bool use_r1b_resp = true;
837 struct mmc_command cmd = {};
838 int err;
839
840 cmd.opcode = card->ext_csd.hpi_cmd;
841 cmd.arg = card->rca << 16 | 1;
842
843 /*
844 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
845 * In case it doesn't, let's instruct the host to avoid HW busy
846 * detection, by using a R1 response instead of R1B.
847 */
848 if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
849 use_r1b_resp = false;
850
851 if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
852 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
853 cmd.busy_timeout = busy_timeout_ms;
854 } else {
855 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
856 use_r1b_resp = false;
857 }
858
859 err = mmc_wait_for_cmd(host, &cmd, 0);
860 if (err) {
861 pr_warn("%s: HPI error %d. Command response %#x\n",
862 mmc_hostname(host), err, cmd.resp[0]);
863 return err;
864 }
865
866 /* No need to poll when using HW busy detection. */
867 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
868 return 0;
869
870 /* Let's poll to find out when the HPI request completes. */
871 return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
872}
873
874/**
875 * mmc_interrupt_hpi - Issue for High priority Interrupt
876 * @card: the MMC card associated with the HPI transfer
877 *
878 * Issued High Priority Interrupt, and check for card status
879 * until out-of prg-state.
880 */
881static int mmc_interrupt_hpi(struct mmc_card *card)
882{
883 int err;
884 u32 status;
885
886 if (!card->ext_csd.hpi_en) {
887 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
888 return 1;
889 }
890
891 err = mmc_send_status(card, &status);
892 if (err) {
893 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
894 goto out;
895 }
896
897 switch (R1_CURRENT_STATE(status)) {
898 case R1_STATE_IDLE:
899 case R1_STATE_READY:
900 case R1_STATE_STBY:
901 case R1_STATE_TRAN:
902 /*
903 * In idle and transfer states, HPI is not needed and the caller
904 * can issue the next intended command immediately
905 */
906 goto out;
907 case R1_STATE_PRG:
908 break;
909 default:
910 /* In all other states, it's illegal to issue HPI */
911 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
912 mmc_hostname(card->host), R1_CURRENT_STATE(status));
913 err = -EINVAL;
914 goto out;
915 }
916
917 err = mmc_send_hpi_cmd(card);
918out:
919 return err;
920}
921
922int mmc_can_ext_csd(struct mmc_card *card)
923{
924 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
925}
926
927static int mmc_read_bkops_status(struct mmc_card *card)
928{
929 int err;
930 u8 *ext_csd;
931
932 err = mmc_get_ext_csd(card, &ext_csd);
933 if (err)
934 return err;
935
936 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
937 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
938 kfree(ext_csd);
939 return 0;
940}
941
942/**
943 * mmc_run_bkops - Run BKOPS for supported cards
944 * @card: MMC card to run BKOPS for
945 *
946 * Run background operations synchronously for cards having manual BKOPS
947 * enabled and in case it reports urgent BKOPS level.
948*/
949void mmc_run_bkops(struct mmc_card *card)
950{
951 int err;
952
953 if (!card->ext_csd.man_bkops_en)
954 return;
955
956 err = mmc_read_bkops_status(card);
957 if (err) {
958 pr_err("%s: Failed to read bkops status: %d\n",
959 mmc_hostname(card->host), err);
960 return;
961 }
962
963 if (!card->ext_csd.raw_bkops_status ||
964 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
965 return;
966
967 mmc_retune_hold(card->host);
968
969 /*
970 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
971 * synchronously. Future wise, we may consider to start BKOPS, for less
972 * urgent levels by using an asynchronous background task, when idle.
973 */
974 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
975 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
976 if (err)
977 pr_warn("%s: Error %d starting bkops\n",
978 mmc_hostname(card->host), err);
979
980 mmc_retune_release(card->host);
981}
982EXPORT_SYMBOL(mmc_run_bkops);
983
984/*
985 * Flush the cache to the non-volatile storage.
986 */
987int mmc_flush_cache(struct mmc_card *card)
988{
989 int err = 0;
990
991 if (mmc_card_mmc(card) &&
992 (card->ext_csd.cache_size > 0) &&
993 (card->ext_csd.cache_ctrl & 1)) {
994 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
995 EXT_CSD_FLUSH_CACHE, 1,
996 MMC_CACHE_FLUSH_TIMEOUT_MS);
997 if (err)
998 pr_err("%s: cache flush error %d\n",
999 mmc_hostname(card->host), err);
1000 }
1001
1002 return err;
1003}
1004EXPORT_SYMBOL(mmc_flush_cache);
1005
1006static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1007{
1008 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1009 int err;
1010
1011 if (!card->ext_csd.cmdq_support)
1012 return -EOPNOTSUPP;
1013
1014 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1015 val, card->ext_csd.generic_cmd6_time);
1016 if (!err)
1017 card->ext_csd.cmdq_en = enable;
1018
1019 return err;
1020}
1021
1022int mmc_cmdq_enable(struct mmc_card *card)
1023{
1024 return mmc_cmdq_switch(card, true);
1025}
1026EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1027
1028int mmc_cmdq_disable(struct mmc_card *card)
1029{
1030 return mmc_cmdq_switch(card, false);
1031}
1032EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1033
1034int mmc_sanitize(struct mmc_card *card)
1035{
1036 struct mmc_host *host = card->host;
1037 int err;
1038
1039 if (!mmc_can_sanitize(card)) {
1040 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1041 return -EOPNOTSUPP;
1042 }
1043
1044 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1045
1046 mmc_retune_hold(host);
1047
1048 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1049 1, MMC_SANITIZE_TIMEOUT_MS);
1050 if (err)
1051 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1052
1053 /*
1054 * If the sanitize operation timed out, the card is probably still busy
1055 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1056 * it with a HPI command to get back into R1_STATE_TRAN.
1057 */
1058 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1059 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1060
1061 mmc_retune_release(host);
1062
1063 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1064 return err;
1065}
1066EXPORT_SYMBOL_GPL(mmc_sanitize);