Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
 
 
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
 
 
  41 *
  42 * The data to be stored is divided into chunks using chunksize.
  43 * Each device is divided into far_copies sections.
  44 * In each section, chunks are laid out in a style similar to raid0, but
  45 * near_copies copies of each chunk is stored (each on a different drive).
  46 * The starting device for each section is offset near_copies from the starting
  47 * device of the previous section.
  48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  49 * drive.
  50 * near_copies and far_copies must be at least one, and their product is at most
  51 * raid_disks.
  52 *
  53 * If far_offset is true, then the far_copies are handled a bit differently.
  54 * The copies are still in different stripes, but instead of be very far apart
  55 * on disk, there are adjacent stripes.
  56 */
  57
  58/*
  59 * Number of guaranteed r10bios in case of extreme VM load:
  60 */
  61#define	NR_RAID10_BIOS 256
  62
  63/* When there are this many requests queue to be written by
  64 * the raid10 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
 
 
 
 
 
 
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r10conf *conf);
  70static void lower_barrier(struct r10conf *conf);
 
  71static int enough(struct r10conf *conf, int ignore);
  72static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  73				int *skipped);
  74static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  75static void end_reshape_write(struct bio *bio, int error);
  76static void end_reshape(struct r10conf *conf);
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  79{
  80	struct r10conf *conf = data;
  81	int size = offsetof(struct r10bio, devs[conf->copies]);
  82
  83	/* allocate a r10bio with room for raid_disks entries in the
  84	 * bios array */
  85	return kzalloc(size, gfp_flags);
  86}
  87
  88static void r10bio_pool_free(void *r10_bio, void *data)
  89{
  90	kfree(r10_bio);
  91}
  92
  93/* Maximum size of each resync request */
  94#define RESYNC_BLOCK_SIZE (64*1024)
  95#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  96/* amount of memory to reserve for resync requests */
  97#define RESYNC_WINDOW (1024*1024)
  98/* maximum number of concurrent requests, memory permitting */
  99#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 
 
 100
 101/*
 102 * When performing a resync, we need to read and compare, so
 103 * we need as many pages are there are copies.
 104 * When performing a recovery, we need 2 bios, one for read,
 105 * one for write (we recover only one drive per r10buf)
 106 *
 107 */
 108static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 109{
 110	struct r10conf *conf = data;
 111	struct page *page;
 112	struct r10bio *r10_bio;
 113	struct bio *bio;
 114	int i, j;
 115	int nalloc;
 
 116
 117	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 118	if (!r10_bio)
 119		return NULL;
 120
 121	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 122	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 123		nalloc = conf->copies; /* resync */
 124	else
 125		nalloc = 2; /* recovery */
 126
 
 
 
 
 
 
 
 
 
 127	/*
 128	 * Allocate bios.
 129	 */
 130	for (j = nalloc ; j-- ; ) {
 131		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 132		if (!bio)
 133			goto out_free_bio;
 134		r10_bio->devs[j].bio = bio;
 135		if (!conf->have_replacement)
 136			continue;
 137		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 138		if (!bio)
 139			goto out_free_bio;
 140		r10_bio->devs[j].repl_bio = bio;
 141	}
 142	/*
 143	 * Allocate RESYNC_PAGES data pages and attach them
 144	 * where needed.
 145	 */
 146	for (j = 0 ; j < nalloc; j++) {
 147		struct bio *rbio = r10_bio->devs[j].repl_bio;
 
 
 
 
 
 
 148		bio = r10_bio->devs[j].bio;
 149		for (i = 0; i < RESYNC_PAGES; i++) {
 150			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 151					       &conf->mddev->recovery)) {
 152				/* we can share bv_page's during recovery
 153				 * and reshape */
 154				struct bio *rbio = r10_bio->devs[0].bio;
 155				page = rbio->bi_io_vec[i].bv_page;
 156				get_page(page);
 157			} else
 158				page = alloc_page(gfp_flags);
 159			if (unlikely(!page))
 160				goto out_free_pages;
 
 
 
 
 161
 162			bio->bi_io_vec[i].bv_page = page;
 163			if (rbio)
 164				rbio->bi_io_vec[i].bv_page = page;
 
 
 165		}
 166	}
 167
 168	return r10_bio;
 169
 170out_free_pages:
 171	for ( ; i > 0 ; i--)
 172		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 173	while (j--)
 174		for (i = 0; i < RESYNC_PAGES ; i++)
 175			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 176	j = 0;
 177out_free_bio:
 178	for ( ; j < nalloc; j++) {
 179		if (r10_bio->devs[j].bio)
 180			bio_put(r10_bio->devs[j].bio);
 181		if (r10_bio->devs[j].repl_bio)
 182			bio_put(r10_bio->devs[j].repl_bio);
 183	}
 184	r10bio_pool_free(r10_bio, conf);
 
 
 185	return NULL;
 186}
 187
 188static void r10buf_pool_free(void *__r10_bio, void *data)
 189{
 190	int i;
 191	struct r10conf *conf = data;
 192	struct r10bio *r10bio = __r10_bio;
 193	int j;
 
 194
 195	for (j=0; j < conf->copies; j++) {
 196		struct bio *bio = r10bio->devs[j].bio;
 
 197		if (bio) {
 198			for (i = 0; i < RESYNC_PAGES; i++) {
 199				safe_put_page(bio->bi_io_vec[i].bv_page);
 200				bio->bi_io_vec[i].bv_page = NULL;
 201			}
 202			bio_put(bio);
 203		}
 
 204		bio = r10bio->devs[j].repl_bio;
 205		if (bio)
 206			bio_put(bio);
 207	}
 208	r10bio_pool_free(r10bio, conf);
 
 
 
 
 209}
 210
 211static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 212{
 213	int i;
 214
 215	for (i = 0; i < conf->copies; i++) {
 216		struct bio **bio = & r10_bio->devs[i].bio;
 217		if (!BIO_SPECIAL(*bio))
 218			bio_put(*bio);
 219		*bio = NULL;
 220		bio = &r10_bio->devs[i].repl_bio;
 221		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 222			bio_put(*bio);
 223		*bio = NULL;
 224	}
 225}
 226
 227static void free_r10bio(struct r10bio *r10_bio)
 228{
 229	struct r10conf *conf = r10_bio->mddev->private;
 230
 231	put_all_bios(conf, r10_bio);
 232	mempool_free(r10_bio, conf->r10bio_pool);
 233}
 234
 235static void put_buf(struct r10bio *r10_bio)
 236{
 237	struct r10conf *conf = r10_bio->mddev->private;
 238
 239	mempool_free(r10_bio, conf->r10buf_pool);
 240
 241	lower_barrier(conf);
 242}
 243
 244static void reschedule_retry(struct r10bio *r10_bio)
 245{
 246	unsigned long flags;
 247	struct mddev *mddev = r10_bio->mddev;
 248	struct r10conf *conf = mddev->private;
 249
 250	spin_lock_irqsave(&conf->device_lock, flags);
 251	list_add(&r10_bio->retry_list, &conf->retry_list);
 252	conf->nr_queued ++;
 253	spin_unlock_irqrestore(&conf->device_lock, flags);
 254
 255	/* wake up frozen array... */
 256	wake_up(&conf->wait_barrier);
 257
 258	md_wakeup_thread(mddev->thread);
 259}
 260
 261/*
 262 * raid_end_bio_io() is called when we have finished servicing a mirrored
 263 * operation and are ready to return a success/failure code to the buffer
 264 * cache layer.
 265 */
 266static void raid_end_bio_io(struct r10bio *r10_bio)
 267{
 268	struct bio *bio = r10_bio->master_bio;
 269	int done;
 270	struct r10conf *conf = r10_bio->mddev->private;
 271
 272	if (bio->bi_phys_segments) {
 273		unsigned long flags;
 274		spin_lock_irqsave(&conf->device_lock, flags);
 275		bio->bi_phys_segments--;
 276		done = (bio->bi_phys_segments == 0);
 277		spin_unlock_irqrestore(&conf->device_lock, flags);
 278	} else
 279		done = 1;
 280	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 281		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 282	if (done) {
 283		bio_endio(bio, 0);
 284		/*
 285		 * Wake up any possible resync thread that waits for the device
 286		 * to go idle.
 287		 */
 288		allow_barrier(conf);
 289	}
 290	free_r10bio(r10_bio);
 291}
 292
 293/*
 294 * Update disk head position estimator based on IRQ completion info.
 295 */
 296static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 297{
 298	struct r10conf *conf = r10_bio->mddev->private;
 299
 300	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 301		r10_bio->devs[slot].addr + (r10_bio->sectors);
 302}
 303
 304/*
 305 * Find the disk number which triggered given bio
 306 */
 307static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 308			 struct bio *bio, int *slotp, int *replp)
 309{
 310	int slot;
 311	int repl = 0;
 312
 313	for (slot = 0; slot < conf->copies; slot++) {
 314		if (r10_bio->devs[slot].bio == bio)
 315			break;
 316		if (r10_bio->devs[slot].repl_bio == bio) {
 317			repl = 1;
 318			break;
 319		}
 320	}
 321
 322	BUG_ON(slot == conf->copies);
 323	update_head_pos(slot, r10_bio);
 324
 325	if (slotp)
 326		*slotp = slot;
 327	if (replp)
 328		*replp = repl;
 329	return r10_bio->devs[slot].devnum;
 330}
 331
 332static void raid10_end_read_request(struct bio *bio, int error)
 333{
 334	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 335	struct r10bio *r10_bio = bio->bi_private;
 336	int slot, dev;
 337	struct md_rdev *rdev;
 338	struct r10conf *conf = r10_bio->mddev->private;
 339
 340
 341	slot = r10_bio->read_slot;
 342	dev = r10_bio->devs[slot].devnum;
 343	rdev = r10_bio->devs[slot].rdev;
 344	/*
 345	 * this branch is our 'one mirror IO has finished' event handler:
 346	 */
 347	update_head_pos(slot, r10_bio);
 348
 349	if (uptodate) {
 350		/*
 351		 * Set R10BIO_Uptodate in our master bio, so that
 352		 * we will return a good error code to the higher
 353		 * levels even if IO on some other mirrored buffer fails.
 354		 *
 355		 * The 'master' represents the composite IO operation to
 356		 * user-side. So if something waits for IO, then it will
 357		 * wait for the 'master' bio.
 358		 */
 359		set_bit(R10BIO_Uptodate, &r10_bio->state);
 360	} else {
 361		/* If all other devices that store this block have
 362		 * failed, we want to return the error upwards rather
 363		 * than fail the last device.  Here we redefine
 364		 * "uptodate" to mean "Don't want to retry"
 365		 */
 366		unsigned long flags;
 367		spin_lock_irqsave(&conf->device_lock, flags);
 368		if (!enough(conf, rdev->raid_disk))
 369			uptodate = 1;
 370		spin_unlock_irqrestore(&conf->device_lock, flags);
 371	}
 372	if (uptodate) {
 373		raid_end_bio_io(r10_bio);
 374		rdev_dec_pending(rdev, conf->mddev);
 375	} else {
 376		/*
 377		 * oops, read error - keep the refcount on the rdev
 378		 */
 379		char b[BDEVNAME_SIZE];
 380		printk_ratelimited(KERN_ERR
 381				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 382				   mdname(conf->mddev),
 383				   bdevname(rdev->bdev, b),
 384				   (unsigned long long)r10_bio->sector);
 385		set_bit(R10BIO_ReadError, &r10_bio->state);
 386		reschedule_retry(r10_bio);
 387	}
 388}
 389
 390static void close_write(struct r10bio *r10_bio)
 391{
 392	/* clear the bitmap if all writes complete successfully */
 393	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 394			r10_bio->sectors,
 395			!test_bit(R10BIO_Degraded, &r10_bio->state),
 396			0);
 397	md_write_end(r10_bio->mddev);
 398}
 399
 400static void one_write_done(struct r10bio *r10_bio)
 401{
 402	if (atomic_dec_and_test(&r10_bio->remaining)) {
 403		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 404			reschedule_retry(r10_bio);
 405		else {
 406			close_write(r10_bio);
 407			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 408				reschedule_retry(r10_bio);
 409			else
 410				raid_end_bio_io(r10_bio);
 411		}
 412	}
 413}
 414
 415static void raid10_end_write_request(struct bio *bio, int error)
 416{
 417	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 418	struct r10bio *r10_bio = bio->bi_private;
 419	int dev;
 420	int dec_rdev = 1;
 421	struct r10conf *conf = r10_bio->mddev->private;
 422	int slot, repl;
 423	struct md_rdev *rdev = NULL;
 
 
 
 
 424
 425	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 426
 427	if (repl)
 428		rdev = conf->mirrors[dev].replacement;
 429	if (!rdev) {
 430		smp_rmb();
 431		repl = 0;
 432		rdev = conf->mirrors[dev].rdev;
 433	}
 434	/*
 435	 * this branch is our 'one mirror IO has finished' event handler:
 436	 */
 437	if (!uptodate) {
 438		if (repl)
 439			/* Never record new bad blocks to replacement,
 440			 * just fail it.
 441			 */
 442			md_error(rdev->mddev, rdev);
 443		else {
 444			set_bit(WriteErrorSeen,	&rdev->flags);
 445			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 446				set_bit(MD_RECOVERY_NEEDED,
 447					&rdev->mddev->recovery);
 448			set_bit(R10BIO_WriteError, &r10_bio->state);
 449			dec_rdev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450		}
 451	} else {
 452		/*
 453		 * Set R10BIO_Uptodate in our master bio, so that
 454		 * we will return a good error code for to the higher
 455		 * levels even if IO on some other mirrored buffer fails.
 456		 *
 457		 * The 'master' represents the composite IO operation to
 458		 * user-side. So if something waits for IO, then it will
 459		 * wait for the 'master' bio.
 460		 */
 461		sector_t first_bad;
 462		int bad_sectors;
 463
 464		set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 
 
 
 
 
 
 
 
 
 465
 466		/* Maybe we can clear some bad blocks. */
 467		if (is_badblock(rdev,
 468				r10_bio->devs[slot].addr,
 469				r10_bio->sectors,
 470				&first_bad, &bad_sectors)) {
 471			bio_put(bio);
 472			if (repl)
 473				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 474			else
 475				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 476			dec_rdev = 0;
 477			set_bit(R10BIO_MadeGood, &r10_bio->state);
 478		}
 479	}
 480
 481	/*
 482	 *
 483	 * Let's see if all mirrored write operations have finished
 484	 * already.
 485	 */
 486	one_write_done(r10_bio);
 487	if (dec_rdev)
 488		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 
 
 489}
 490
 491/*
 492 * RAID10 layout manager
 493 * As well as the chunksize and raid_disks count, there are two
 494 * parameters: near_copies and far_copies.
 495 * near_copies * far_copies must be <= raid_disks.
 496 * Normally one of these will be 1.
 497 * If both are 1, we get raid0.
 498 * If near_copies == raid_disks, we get raid1.
 499 *
 500 * Chunks are laid out in raid0 style with near_copies copies of the
 501 * first chunk, followed by near_copies copies of the next chunk and
 502 * so on.
 503 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 504 * as described above, we start again with a device offset of near_copies.
 505 * So we effectively have another copy of the whole array further down all
 506 * the drives, but with blocks on different drives.
 507 * With this layout, and block is never stored twice on the one device.
 508 *
 509 * raid10_find_phys finds the sector offset of a given virtual sector
 510 * on each device that it is on.
 511 *
 512 * raid10_find_virt does the reverse mapping, from a device and a
 513 * sector offset to a virtual address
 514 */
 515
 516static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 517{
 518	int n,f;
 519	sector_t sector;
 520	sector_t chunk;
 521	sector_t stripe;
 522	int dev;
 523	int slot = 0;
 
 
 
 
 
 
 
 524
 525	/* now calculate first sector/dev */
 526	chunk = r10bio->sector >> geo->chunk_shift;
 527	sector = r10bio->sector & geo->chunk_mask;
 528
 529	chunk *= geo->near_copies;
 530	stripe = chunk;
 531	dev = sector_div(stripe, geo->raid_disks);
 532	if (geo->far_offset)
 533		stripe *= geo->far_copies;
 534
 535	sector += stripe << geo->chunk_shift;
 536
 537	/* and calculate all the others */
 538	for (n = 0; n < geo->near_copies; n++) {
 539		int d = dev;
 
 540		sector_t s = sector;
 541		r10bio->devs[slot].addr = sector;
 542		r10bio->devs[slot].devnum = d;
 
 543		slot++;
 544
 545		for (f = 1; f < geo->far_copies; f++) {
 
 546			d += geo->near_copies;
 547			if (d >= geo->raid_disks)
 548				d -= geo->raid_disks;
 
 
 
 
 
 
 
 
 549			s += geo->stride;
 550			r10bio->devs[slot].devnum = d;
 551			r10bio->devs[slot].addr = s;
 552			slot++;
 553		}
 554		dev++;
 555		if (dev >= geo->raid_disks) {
 556			dev = 0;
 557			sector += (geo->chunk_mask + 1);
 558		}
 559	}
 560}
 561
 562static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 563{
 564	struct geom *geo = &conf->geo;
 565
 566	if (conf->reshape_progress != MaxSector &&
 567	    ((r10bio->sector >= conf->reshape_progress) !=
 568	     conf->mddev->reshape_backwards)) {
 569		set_bit(R10BIO_Previous, &r10bio->state);
 570		geo = &conf->prev;
 571	} else
 572		clear_bit(R10BIO_Previous, &r10bio->state);
 573
 574	__raid10_find_phys(geo, r10bio);
 575}
 576
 577static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 578{
 579	sector_t offset, chunk, vchunk;
 580	/* Never use conf->prev as this is only called during resync
 581	 * or recovery, so reshape isn't happening
 582	 */
 583	struct geom *geo = &conf->geo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584
 585	offset = sector & geo->chunk_mask;
 586	if (geo->far_offset) {
 587		int fc;
 588		chunk = sector >> geo->chunk_shift;
 589		fc = sector_div(chunk, geo->far_copies);
 590		dev -= fc * geo->near_copies;
 591		if (dev < 0)
 592			dev += geo->raid_disks;
 593	} else {
 594		while (sector >= geo->stride) {
 595			sector -= geo->stride;
 596			if (dev < geo->near_copies)
 597				dev += geo->raid_disks - geo->near_copies;
 598			else
 599				dev -= geo->near_copies;
 600		}
 601		chunk = sector >> geo->chunk_shift;
 602	}
 603	vchunk = chunk * geo->raid_disks + dev;
 604	sector_div(vchunk, geo->near_copies);
 605	return (vchunk << geo->chunk_shift) + offset;
 606}
 607
 608/**
 609 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 610 *	@q: request queue
 611 *	@bvm: properties of new bio
 612 *	@biovec: the request that could be merged to it.
 613 *
 614 *	Return amount of bytes we can accept at this offset
 615 *	This requires checking for end-of-chunk if near_copies != raid_disks,
 616 *	and for subordinate merge_bvec_fns if merge_check_needed.
 617 */
 618static int raid10_mergeable_bvec(struct request_queue *q,
 619				 struct bvec_merge_data *bvm,
 620				 struct bio_vec *biovec)
 621{
 622	struct mddev *mddev = q->queuedata;
 623	struct r10conf *conf = mddev->private;
 624	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 625	int max;
 626	unsigned int chunk_sectors;
 627	unsigned int bio_sectors = bvm->bi_size >> 9;
 628	struct geom *geo = &conf->geo;
 629
 630	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
 631	if (conf->reshape_progress != MaxSector &&
 632	    ((sector >= conf->reshape_progress) !=
 633	     conf->mddev->reshape_backwards))
 634		geo = &conf->prev;
 635
 636	if (geo->near_copies < geo->raid_disks) {
 637		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
 638					+ bio_sectors)) << 9;
 639		if (max < 0)
 640			/* bio_add cannot handle a negative return */
 641			max = 0;
 642		if (max <= biovec->bv_len && bio_sectors == 0)
 643			return biovec->bv_len;
 644	} else
 645		max = biovec->bv_len;
 646
 647	if (mddev->merge_check_needed) {
 648		struct {
 649			struct r10bio r10_bio;
 650			struct r10dev devs[conf->copies];
 651		} on_stack;
 652		struct r10bio *r10_bio = &on_stack.r10_bio;
 653		int s;
 654		if (conf->reshape_progress != MaxSector) {
 655			/* Cannot give any guidance during reshape */
 656			if (max <= biovec->bv_len && bio_sectors == 0)
 657				return biovec->bv_len;
 658			return 0;
 659		}
 660		r10_bio->sector = sector;
 661		raid10_find_phys(conf, r10_bio);
 662		rcu_read_lock();
 663		for (s = 0; s < conf->copies; s++) {
 664			int disk = r10_bio->devs[s].devnum;
 665			struct md_rdev *rdev = rcu_dereference(
 666				conf->mirrors[disk].rdev);
 667			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 668				struct request_queue *q =
 669					bdev_get_queue(rdev->bdev);
 670				if (q->merge_bvec_fn) {
 671					bvm->bi_sector = r10_bio->devs[s].addr
 672						+ rdev->data_offset;
 673					bvm->bi_bdev = rdev->bdev;
 674					max = min(max, q->merge_bvec_fn(
 675							  q, bvm, biovec));
 676				}
 677			}
 678			rdev = rcu_dereference(conf->mirrors[disk].replacement);
 679			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 680				struct request_queue *q =
 681					bdev_get_queue(rdev->bdev);
 682				if (q->merge_bvec_fn) {
 683					bvm->bi_sector = r10_bio->devs[s].addr
 684						+ rdev->data_offset;
 685					bvm->bi_bdev = rdev->bdev;
 686					max = min(max, q->merge_bvec_fn(
 687							  q, bvm, biovec));
 688				}
 689			}
 690		}
 691		rcu_read_unlock();
 692	}
 693	return max;
 694}
 695
 696/*
 697 * This routine returns the disk from which the requested read should
 698 * be done. There is a per-array 'next expected sequential IO' sector
 699 * number - if this matches on the next IO then we use the last disk.
 700 * There is also a per-disk 'last know head position' sector that is
 701 * maintained from IRQ contexts, both the normal and the resync IO
 702 * completion handlers update this position correctly. If there is no
 703 * perfect sequential match then we pick the disk whose head is closest.
 704 *
 705 * If there are 2 mirrors in the same 2 devices, performance degrades
 706 * because position is mirror, not device based.
 707 *
 708 * The rdev for the device selected will have nr_pending incremented.
 709 */
 710
 711/*
 712 * FIXME: possibly should rethink readbalancing and do it differently
 713 * depending on near_copies / far_copies geometry.
 714 */
 715static struct md_rdev *read_balance(struct r10conf *conf,
 716				    struct r10bio *r10_bio,
 717				    int *max_sectors)
 718{
 719	const sector_t this_sector = r10_bio->sector;
 720	int disk, slot;
 721	int sectors = r10_bio->sectors;
 722	int best_good_sectors;
 723	sector_t new_distance, best_dist;
 724	struct md_rdev *rdev, *best_rdev;
 725	int do_balance;
 726	int best_slot;
 
 
 727	struct geom *geo = &conf->geo;
 728
 729	raid10_find_phys(conf, r10_bio);
 730	rcu_read_lock();
 731retry:
 732	sectors = r10_bio->sectors;
 733	best_slot = -1;
 734	best_rdev = NULL;
 735	best_dist = MaxSector;
 736	best_good_sectors = 0;
 737	do_balance = 1;
 
 738	/*
 739	 * Check if we can balance. We can balance on the whole
 740	 * device if no resync is going on (recovery is ok), or below
 741	 * the resync window. We take the first readable disk when
 742	 * above the resync window.
 743	 */
 744	if (conf->mddev->recovery_cp < MaxSector
 745	    && (this_sector + sectors >= conf->next_resync))
 
 
 
 746		do_balance = 0;
 747
 748	for (slot = 0; slot < conf->copies ; slot++) {
 749		sector_t first_bad;
 750		int bad_sectors;
 751		sector_t dev_sector;
 
 
 752
 753		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 754			continue;
 755		disk = r10_bio->devs[slot].devnum;
 756		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 757		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 758		    test_bit(Unmerged, &rdev->flags) ||
 759		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 760			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 761		if (rdev == NULL ||
 762		    test_bit(Faulty, &rdev->flags) ||
 763		    test_bit(Unmerged, &rdev->flags))
 764			continue;
 765		if (!test_bit(In_sync, &rdev->flags) &&
 766		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 767			continue;
 768
 769		dev_sector = r10_bio->devs[slot].addr;
 770		if (is_badblock(rdev, dev_sector, sectors,
 771				&first_bad, &bad_sectors)) {
 772			if (best_dist < MaxSector)
 773				/* Already have a better slot */
 774				continue;
 775			if (first_bad <= dev_sector) {
 776				/* Cannot read here.  If this is the
 777				 * 'primary' device, then we must not read
 778				 * beyond 'bad_sectors' from another device.
 779				 */
 780				bad_sectors -= (dev_sector - first_bad);
 781				if (!do_balance && sectors > bad_sectors)
 782					sectors = bad_sectors;
 783				if (best_good_sectors > sectors)
 784					best_good_sectors = sectors;
 785			} else {
 786				sector_t good_sectors =
 787					first_bad - dev_sector;
 788				if (good_sectors > best_good_sectors) {
 789					best_good_sectors = good_sectors;
 790					best_slot = slot;
 791					best_rdev = rdev;
 792				}
 793				if (!do_balance)
 794					/* Must read from here */
 795					break;
 796			}
 797			continue;
 798		} else
 799			best_good_sectors = sectors;
 800
 801		if (!do_balance)
 802			break;
 803
 
 
 
 
 
 
 
 
 
 
 
 
 804		/* This optimisation is debatable, and completely destroys
 805		 * sequential read speed for 'far copies' arrays.  So only
 806		 * keep it for 'near' arrays, and review those later.
 807		 */
 808		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 809			break;
 810
 811		/* for far > 1 always use the lowest address */
 812		if (geo->far_copies > 1)
 813			new_distance = r10_bio->devs[slot].addr;
 814		else
 815			new_distance = abs(r10_bio->devs[slot].addr -
 816					   conf->mirrors[disk].head_position);
 
 817		if (new_distance < best_dist) {
 818			best_dist = new_distance;
 819			best_slot = slot;
 820			best_rdev = rdev;
 821		}
 822	}
 823	if (slot >= conf->copies) {
 824		slot = best_slot;
 825		rdev = best_rdev;
 
 
 
 
 
 826	}
 827
 828	if (slot >= 0) {
 829		atomic_inc(&rdev->nr_pending);
 830		if (test_bit(Faulty, &rdev->flags)) {
 831			/* Cannot risk returning a device that failed
 832			 * before we inc'ed nr_pending
 833			 */
 834			rdev_dec_pending(rdev, conf->mddev);
 835			goto retry;
 836		}
 837		r10_bio->read_slot = slot;
 838	} else
 839		rdev = NULL;
 840	rcu_read_unlock();
 841	*max_sectors = best_good_sectors;
 842
 843	return rdev;
 844}
 845
 846static int raid10_congested(void *data, int bits)
 847{
 848	struct mddev *mddev = data;
 849	struct r10conf *conf = mddev->private;
 850	int i, ret = 0;
 851
 852	if ((bits & (1 << BDI_async_congested)) &&
 853	    conf->pending_count >= max_queued_requests)
 854		return 1;
 855
 856	if (mddev_congested(mddev, bits))
 857		return 1;
 858	rcu_read_lock();
 859	for (i = 0;
 860	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 861		     && ret == 0;
 862	     i++) {
 863		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 864		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 865			struct request_queue *q = bdev_get_queue(rdev->bdev);
 866
 867			ret |= bdi_congested(&q->backing_dev_info, bits);
 868		}
 869	}
 870	rcu_read_unlock();
 871	return ret;
 872}
 873
 874static void flush_pending_writes(struct r10conf *conf)
 875{
 876	/* Any writes that have been queued but are awaiting
 877	 * bitmap updates get flushed here.
 878	 */
 879	spin_lock_irq(&conf->device_lock);
 880
 881	if (conf->pending_bio_list.head) {
 
 882		struct bio *bio;
 
 883		bio = bio_list_get(&conf->pending_bio_list);
 884		conf->pending_count = 0;
 885		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 886		/* flush any pending bitmap writes to disk
 887		 * before proceeding w/ I/O */
 888		bitmap_unplug(conf->mddev->bitmap);
 889		wake_up(&conf->wait_barrier);
 890
 891		while (bio) { /* submit pending writes */
 892			struct bio *next = bio->bi_next;
 
 893			bio->bi_next = NULL;
 894			generic_make_request(bio);
 
 
 
 
 
 
 
 
 895			bio = next;
 896		}
 
 897	} else
 898		spin_unlock_irq(&conf->device_lock);
 899}
 900
 901/* Barriers....
 902 * Sometimes we need to suspend IO while we do something else,
 903 * either some resync/recovery, or reconfigure the array.
 904 * To do this we raise a 'barrier'.
 905 * The 'barrier' is a counter that can be raised multiple times
 906 * to count how many activities are happening which preclude
 907 * normal IO.
 908 * We can only raise the barrier if there is no pending IO.
 909 * i.e. if nr_pending == 0.
 910 * We choose only to raise the barrier if no-one is waiting for the
 911 * barrier to go down.  This means that as soon as an IO request
 912 * is ready, no other operations which require a barrier will start
 913 * until the IO request has had a chance.
 914 *
 915 * So: regular IO calls 'wait_barrier'.  When that returns there
 916 *    is no backgroup IO happening,  It must arrange to call
 917 *    allow_barrier when it has finished its IO.
 918 * backgroup IO calls must call raise_barrier.  Once that returns
 919 *    there is no normal IO happeing.  It must arrange to call
 920 *    lower_barrier when the particular background IO completes.
 921 */
 922
 923static void raise_barrier(struct r10conf *conf, int force)
 924{
 925	BUG_ON(force && !conf->barrier);
 926	spin_lock_irq(&conf->resync_lock);
 927
 928	/* Wait until no block IO is waiting (unless 'force') */
 929	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 930			    conf->resync_lock, );
 931
 932	/* block any new IO from starting */
 933	conf->barrier++;
 934
 935	/* Now wait for all pending IO to complete */
 936	wait_event_lock_irq(conf->wait_barrier,
 937			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 938			    conf->resync_lock, );
 939
 940	spin_unlock_irq(&conf->resync_lock);
 941}
 942
 943static void lower_barrier(struct r10conf *conf)
 944{
 945	unsigned long flags;
 946	spin_lock_irqsave(&conf->resync_lock, flags);
 947	conf->barrier--;
 948	spin_unlock_irqrestore(&conf->resync_lock, flags);
 949	wake_up(&conf->wait_barrier);
 950}
 951
 952static void wait_barrier(struct r10conf *conf)
 953{
 954	spin_lock_irq(&conf->resync_lock);
 955	if (conf->barrier) {
 
 956		conf->nr_waiting++;
 957		/* Wait for the barrier to drop.
 958		 * However if there are already pending
 959		 * requests (preventing the barrier from
 960		 * rising completely), and the
 961		 * pre-process bio queue isn't empty,
 962		 * then don't wait, as we need to empty
 963		 * that queue to get the nr_pending
 964		 * count down.
 965		 */
 
 966		wait_event_lock_irq(conf->wait_barrier,
 967				    !conf->barrier ||
 968				    (conf->nr_pending &&
 969				     current->bio_list &&
 970				     !bio_list_empty(current->bio_list)),
 971				    conf->resync_lock,
 972			);
 
 
 
 
 
 
 
 973		conf->nr_waiting--;
 
 
 974	}
 975	conf->nr_pending++;
 976	spin_unlock_irq(&conf->resync_lock);
 977}
 978
 979static void allow_barrier(struct r10conf *conf)
 980{
 981	unsigned long flags;
 982	spin_lock_irqsave(&conf->resync_lock, flags);
 983	conf->nr_pending--;
 984	spin_unlock_irqrestore(&conf->resync_lock, flags);
 985	wake_up(&conf->wait_barrier);
 986}
 987
 988static void freeze_array(struct r10conf *conf)
 989{
 990	/* stop syncio and normal IO and wait for everything to
 991	 * go quiet.
 992	 * We increment barrier and nr_waiting, and then
 993	 * wait until nr_pending match nr_queued+1
 994	 * This is called in the context of one normal IO request
 995	 * that has failed. Thus any sync request that might be pending
 996	 * will be blocked by nr_pending, and we need to wait for
 997	 * pending IO requests to complete or be queued for re-try.
 998	 * Thus the number queued (nr_queued) plus this request (1)
 999	 * must match the number of pending IOs (nr_pending) before
1000	 * we continue.
1001	 */
1002	spin_lock_irq(&conf->resync_lock);
 
1003	conf->barrier++;
1004	conf->nr_waiting++;
1005	wait_event_lock_irq(conf->wait_barrier,
1006			    conf->nr_pending == conf->nr_queued+1,
1007			    conf->resync_lock,
1008			    flush_pending_writes(conf));
1009
 
1010	spin_unlock_irq(&conf->resync_lock);
1011}
1012
1013static void unfreeze_array(struct r10conf *conf)
1014{
1015	/* reverse the effect of the freeze */
1016	spin_lock_irq(&conf->resync_lock);
1017	conf->barrier--;
1018	conf->nr_waiting--;
1019	wake_up(&conf->wait_barrier);
1020	spin_unlock_irq(&conf->resync_lock);
1021}
1022
1023static sector_t choose_data_offset(struct r10bio *r10_bio,
1024				   struct md_rdev *rdev)
1025{
1026	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1027	    test_bit(R10BIO_Previous, &r10_bio->state))
1028		return rdev->data_offset;
1029	else
1030		return rdev->new_data_offset;
1031}
1032
1033static void make_request(struct mddev *mddev, struct bio * bio)
1034{
 
 
 
 
 
 
 
 
 
1035	struct r10conf *conf = mddev->private;
1036	struct r10bio *r10_bio;
1037	struct bio *read_bio;
1038	int i;
1039	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1040	int chunk_sects = chunk_mask + 1;
1041	const int rw = bio_data_dir(bio);
1042	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1043	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1044	unsigned long flags;
1045	struct md_rdev *blocked_rdev;
1046	int sectors_handled;
1047	int max_sectors;
1048	int sectors;
1049
1050	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1051		md_flush_request(mddev, bio);
 
 
 
 
 
 
1052		return;
1053	}
1054
1055	/* If this request crosses a chunk boundary, we need to
1056	 * split it.  This will only happen for 1 PAGE (or less) requests.
1057	 */
1058	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1059		     > chunk_sects
1060		     && (conf->geo.near_copies < conf->geo.raid_disks
1061			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1062		struct bio_pair *bp;
1063		/* Sanity check -- queue functions should prevent this happening */
1064		if (bio->bi_vcnt != 1 ||
1065		    bio->bi_idx != 0)
1066			goto bad_map;
1067		/* This is a one page bio that upper layers
1068		 * refuse to split for us, so we need to split it.
1069		 */
1070		bp = bio_split(bio,
1071			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1072
1073		/* Each of these 'make_request' calls will call 'wait_barrier'.
1074		 * If the first succeeds but the second blocks due to the resync
1075		 * thread raising the barrier, we will deadlock because the
1076		 * IO to the underlying device will be queued in generic_make_request
1077		 * and will never complete, so will never reduce nr_pending.
1078		 * So increment nr_waiting here so no new raise_barriers will
1079		 * succeed, and so the second wait_barrier cannot block.
1080		 */
1081		spin_lock_irq(&conf->resync_lock);
1082		conf->nr_waiting++;
1083		spin_unlock_irq(&conf->resync_lock);
1084
1085		make_request(mddev, &bp->bio1);
1086		make_request(mddev, &bp->bio2);
1087
1088		spin_lock_irq(&conf->resync_lock);
1089		conf->nr_waiting--;
1090		wake_up(&conf->wait_barrier);
1091		spin_unlock_irq(&conf->resync_lock);
1092
1093		bio_pair_release(bp);
1094		return;
1095	bad_map:
1096		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1097		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1098		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1099
1100		bio_io_error(bio);
1101		return;
 
 
 
 
 
 
 
 
 
 
 
 
1102	}
 
 
1103
1104	md_write_start(mddev, bio);
1105
1106	/*
1107	 * Register the new request and wait if the reconstruction
1108	 * thread has put up a bar for new requests.
1109	 * Continue immediately if no resync is active currently.
1110	 */
 
 
1111	wait_barrier(conf);
1112
1113	sectors = bio->bi_size >> 9;
1114	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1115	    bio->bi_sector < conf->reshape_progress &&
1116	    bio->bi_sector + sectors > conf->reshape_progress) {
1117		/* IO spans the reshape position.  Need to wait for
1118		 * reshape to pass
1119		 */
1120		allow_barrier(conf);
1121		wait_event(conf->wait_barrier,
1122			   conf->reshape_progress <= bio->bi_sector ||
1123			   conf->reshape_progress >= bio->bi_sector + sectors);
 
1124		wait_barrier(conf);
1125	}
1126	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1127	    bio_data_dir(bio) == WRITE &&
1128	    (mddev->reshape_backwards
1129	     ? (bio->bi_sector < conf->reshape_safe &&
1130		bio->bi_sector + sectors > conf->reshape_progress)
1131	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1132		bio->bi_sector < conf->reshape_progress))) {
1133		/* Need to update reshape_position in metadata */
1134		mddev->reshape_position = conf->reshape_progress;
1135		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1136		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1137		md_wakeup_thread(mddev->thread);
1138		wait_event(mddev->sb_wait,
1139			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1140
1141		conf->reshape_safe = mddev->reshape_position;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142	}
1143
1144	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146	r10_bio->master_bio = bio;
1147	r10_bio->sectors = sectors;
1148
1149	r10_bio->mddev = mddev;
1150	r10_bio->sector = bio->bi_sector;
1151	r10_bio->state = 0;
1152
1153	/* We might need to issue multiple reads to different
1154	 * devices if there are bad blocks around, so we keep
1155	 * track of the number of reads in bio->bi_phys_segments.
1156	 * If this is 0, there is only one r10_bio and no locking
1157	 * will be needed when the request completes.  If it is
1158	 * non-zero, then it is the number of not-completed requests.
1159	 */
1160	bio->bi_phys_segments = 0;
1161	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163	if (rw == READ) {
1164		/*
1165		 * read balancing logic:
1166		 */
1167		struct md_rdev *rdev;
1168		int slot;
 
1169
1170read_again:
1171		rdev = read_balance(conf, r10_bio, &max_sectors);
1172		if (!rdev) {
1173			raid_end_bio_io(r10_bio);
1174			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175		}
1176		slot = r10_bio->read_slot;
 
1177
1178		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1179		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1180			    max_sectors);
1181
1182		r10_bio->devs[slot].bio = read_bio;
1183		r10_bio->devs[slot].rdev = rdev;
1184
1185		read_bio->bi_sector = r10_bio->devs[slot].addr +
1186			choose_data_offset(r10_bio, rdev);
1187		read_bio->bi_bdev = rdev->bdev;
1188		read_bio->bi_end_io = raid10_end_read_request;
1189		read_bio->bi_rw = READ | do_sync;
1190		read_bio->bi_private = r10_bio;
1191
1192		if (max_sectors < r10_bio->sectors) {
1193			/* Could not read all from this device, so we will
1194			 * need another r10_bio.
1195			 */
1196			sectors_handled = (r10_bio->sectors + max_sectors
1197					   - bio->bi_sector);
1198			r10_bio->sectors = max_sectors;
1199			spin_lock_irq(&conf->device_lock);
1200			if (bio->bi_phys_segments == 0)
1201				bio->bi_phys_segments = 2;
1202			else
1203				bio->bi_phys_segments++;
1204			spin_unlock(&conf->device_lock);
1205			/* Cannot call generic_make_request directly
1206			 * as that will be queued in __generic_make_request
1207			 * and subsequent mempool_alloc might block
1208			 * waiting for it.  so hand bio over to raid10d.
1209			 */
1210			reschedule_retry(r10_bio);
1211
1212			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213
1214			r10_bio->master_bio = bio;
1215			r10_bio->sectors = ((bio->bi_size >> 9)
1216					    - sectors_handled);
1217			r10_bio->state = 0;
1218			r10_bio->mddev = mddev;
1219			r10_bio->sector = bio->bi_sector + sectors_handled;
1220			goto read_again;
1221		} else
1222			generic_make_request(read_bio);
1223		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224	}
1225
1226	/*
1227	 * WRITE:
1228	 */
1229	if (conf->pending_count >= max_queued_requests) {
1230		md_wakeup_thread(mddev->thread);
 
1231		wait_event(conf->wait_barrier,
1232			   conf->pending_count < max_queued_requests);
1233	}
1234	/* first select target devices under rcu_lock and
1235	 * inc refcount on their rdev.  Record them by setting
1236	 * bios[x] to bio
1237	 * If there are known/acknowledged bad blocks on any device
1238	 * on which we have seen a write error, we want to avoid
1239	 * writing to those blocks.  This potentially requires several
1240	 * writes to write around the bad blocks.  Each set of writes
1241	 * gets its own r10_bio with a set of bios attached.  The number
1242	 * of r10_bios is recored in bio->bi_phys_segments just as with
1243	 * the read case.
1244	 */
1245
1246	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1247	raid10_find_phys(conf, r10_bio);
1248retry_write:
1249	blocked_rdev = NULL;
1250	rcu_read_lock();
1251	max_sectors = r10_bio->sectors;
1252
1253	for (i = 0;  i < conf->copies; i++) {
1254		int d = r10_bio->devs[i].devnum;
1255		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1256		struct md_rdev *rrdev = rcu_dereference(
1257			conf->mirrors[d].replacement);
1258		if (rdev == rrdev)
1259			rrdev = NULL;
1260		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1261			atomic_inc(&rdev->nr_pending);
1262			blocked_rdev = rdev;
1263			break;
1264		}
1265		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1266			atomic_inc(&rrdev->nr_pending);
1267			blocked_rdev = rrdev;
1268			break;
1269		}
1270		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1271			      || test_bit(Unmerged, &rrdev->flags)))
 
1272			rrdev = NULL;
1273
1274		r10_bio->devs[i].bio = NULL;
1275		r10_bio->devs[i].repl_bio = NULL;
1276		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1277		    test_bit(Unmerged, &rdev->flags)) {
1278			set_bit(R10BIO_Degraded, &r10_bio->state);
1279			continue;
1280		}
1281		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1282			sector_t first_bad;
1283			sector_t dev_sector = r10_bio->devs[i].addr;
1284			int bad_sectors;
1285			int is_bad;
1286
1287			is_bad = is_badblock(rdev, dev_sector,
1288					     max_sectors,
1289					     &first_bad, &bad_sectors);
1290			if (is_bad < 0) {
1291				/* Mustn't write here until the bad block
1292				 * is acknowledged
1293				 */
1294				atomic_inc(&rdev->nr_pending);
1295				set_bit(BlockedBadBlocks, &rdev->flags);
1296				blocked_rdev = rdev;
1297				break;
1298			}
1299			if (is_bad && first_bad <= dev_sector) {
1300				/* Cannot write here at all */
1301				bad_sectors -= (dev_sector - first_bad);
1302				if (bad_sectors < max_sectors)
1303					/* Mustn't write more than bad_sectors
1304					 * to other devices yet
1305					 */
1306					max_sectors = bad_sectors;
1307				/* We don't set R10BIO_Degraded as that
1308				 * only applies if the disk is missing,
1309				 * so it might be re-added, and we want to
1310				 * know to recover this chunk.
1311				 * In this case the device is here, and the
1312				 * fact that this chunk is not in-sync is
1313				 * recorded in the bad block log.
1314				 */
1315				continue;
1316			}
1317			if (is_bad) {
1318				int good_sectors = first_bad - dev_sector;
1319				if (good_sectors < max_sectors)
1320					max_sectors = good_sectors;
1321			}
1322		}
1323		r10_bio->devs[i].bio = bio;
1324		atomic_inc(&rdev->nr_pending);
 
 
1325		if (rrdev) {
1326			r10_bio->devs[i].repl_bio = bio;
1327			atomic_inc(&rrdev->nr_pending);
1328		}
1329	}
1330	rcu_read_unlock();
1331
1332	if (unlikely(blocked_rdev)) {
1333		/* Have to wait for this device to get unblocked, then retry */
1334		int j;
1335		int d;
1336
1337		for (j = 0; j < i; j++) {
1338			if (r10_bio->devs[j].bio) {
1339				d = r10_bio->devs[j].devnum;
1340				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1341			}
1342			if (r10_bio->devs[j].repl_bio) {
1343				struct md_rdev *rdev;
1344				d = r10_bio->devs[j].devnum;
1345				rdev = conf->mirrors[d].replacement;
1346				if (!rdev) {
1347					/* Race with remove_disk */
1348					smp_mb();
1349					rdev = conf->mirrors[d].rdev;
1350				}
1351				rdev_dec_pending(rdev, mddev);
1352			}
1353		}
1354		allow_barrier(conf);
 
1355		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1356		wait_barrier(conf);
1357		goto retry_write;
1358	}
1359
1360	if (max_sectors < r10_bio->sectors) {
1361		/* We are splitting this into multiple parts, so
1362		 * we need to prepare for allocating another r10_bio.
1363		 */
1364		r10_bio->sectors = max_sectors;
1365		spin_lock_irq(&conf->device_lock);
1366		if (bio->bi_phys_segments == 0)
1367			bio->bi_phys_segments = 2;
1368		else
1369			bio->bi_phys_segments++;
1370		spin_unlock_irq(&conf->device_lock);
 
 
 
 
1371	}
1372	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1373
1374	atomic_set(&r10_bio->remaining, 1);
1375	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1376
1377	for (i = 0; i < conf->copies; i++) {
1378		struct bio *mbio;
1379		int d = r10_bio->devs[i].devnum;
1380		if (!r10_bio->devs[i].bio)
1381			continue;
 
 
 
1382
1383		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1384		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1385			    max_sectors);
1386		r10_bio->devs[i].bio = mbio;
1387
1388		mbio->bi_sector	= (r10_bio->devs[i].addr+
1389				   choose_data_offset(r10_bio,
1390						      conf->mirrors[d].rdev));
1391		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1392		mbio->bi_end_io	= raid10_end_write_request;
1393		mbio->bi_rw = WRITE | do_sync | do_fua;
1394		mbio->bi_private = r10_bio;
1395
1396		atomic_inc(&r10_bio->remaining);
1397		spin_lock_irqsave(&conf->device_lock, flags);
1398		bio_list_add(&conf->pending_bio_list, mbio);
1399		conf->pending_count++;
1400		spin_unlock_irqrestore(&conf->device_lock, flags);
1401		if (!mddev_check_plugged(mddev))
1402			md_wakeup_thread(mddev->thread);
1403
1404		if (!r10_bio->devs[i].repl_bio)
1405			continue;
1406
1407		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1408		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1409			    max_sectors);
1410		r10_bio->devs[i].repl_bio = mbio;
1411
1412		/* We are actively writing to the original device
1413		 * so it cannot disappear, so the replacement cannot
1414		 * become NULL here
1415		 */
1416		mbio->bi_sector	= (r10_bio->devs[i].addr +
1417				   choose_data_offset(
1418					   r10_bio,
1419					   conf->mirrors[d].replacement));
1420		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1421		mbio->bi_end_io	= raid10_end_write_request;
1422		mbio->bi_rw = WRITE | do_sync | do_fua;
1423		mbio->bi_private = r10_bio;
1424
1425		atomic_inc(&r10_bio->remaining);
1426		spin_lock_irqsave(&conf->device_lock, flags);
1427		bio_list_add(&conf->pending_bio_list, mbio);
1428		conf->pending_count++;
1429		spin_unlock_irqrestore(&conf->device_lock, flags);
1430		if (!mddev_check_plugged(mddev))
1431			md_wakeup_thread(mddev->thread);
1432	}
1433
1434	/* Don't remove the bias on 'remaining' (one_write_done) until
1435	 * after checking if we need to go around again.
1436	 */
 
 
 
1437
1438	if (sectors_handled < (bio->bi_size >> 9)) {
1439		one_write_done(r10_bio);
1440		/* We need another r10_bio.  It has already been counted
1441		 * in bio->bi_phys_segments.
1442		 */
1443		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1444
1445		r10_bio->master_bio = bio;
1446		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1447
1448		r10_bio->mddev = mddev;
1449		r10_bio->sector = bio->bi_sector + sectors_handled;
1450		r10_bio->state = 0;
1451		goto retry_write;
1452	}
1453	one_write_done(r10_bio);
 
 
 
 
 
 
 
1454
1455	/* In case raid10d snuck in to freeze_array */
1456	wake_up(&conf->wait_barrier);
 
1457}
1458
1459static void status(struct seq_file *seq, struct mddev *mddev)
1460{
1461	struct r10conf *conf = mddev->private;
1462	int i;
1463
1464	if (conf->geo.near_copies < conf->geo.raid_disks)
1465		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1466	if (conf->geo.near_copies > 1)
1467		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1468	if (conf->geo.far_copies > 1) {
1469		if (conf->geo.far_offset)
1470			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1471		else
1472			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
 
 
1473	}
1474	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1475					conf->geo.raid_disks - mddev->degraded);
1476	for (i = 0; i < conf->geo.raid_disks; i++)
1477		seq_printf(seq, "%s",
1478			      conf->mirrors[i].rdev &&
1479			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
 
 
1480	seq_printf(seq, "]");
1481}
1482
1483/* check if there are enough drives for
1484 * every block to appear on atleast one.
1485 * Don't consider the device numbered 'ignore'
1486 * as we might be about to remove it.
1487 */
1488static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1489{
1490	int first = 0;
 
 
 
 
 
 
 
 
 
1491
 
1492	do {
1493		int n = conf->copies;
1494		int cnt = 0;
1495		int this = first;
1496		while (n--) {
1497			if (conf->mirrors[this].rdev &&
1498			    this != ignore)
 
 
1499				cnt++;
1500			this = (this+1) % geo->raid_disks;
1501		}
1502		if (cnt == 0)
1503			return 0;
1504		first = (first + geo->near_copies) % geo->raid_disks;
1505	} while (first != 0);
1506	return 1;
 
 
 
1507}
1508
1509static int enough(struct r10conf *conf, int ignore)
1510{
1511	return _enough(conf, &conf->geo, ignore) &&
1512		_enough(conf, &conf->prev, ignore);
 
 
 
 
 
1513}
1514
1515static void error(struct mddev *mddev, struct md_rdev *rdev)
1516{
1517	char b[BDEVNAME_SIZE];
1518	struct r10conf *conf = mddev->private;
 
1519
1520	/*
1521	 * If it is not operational, then we have already marked it as dead
1522	 * else if it is the last working disks, ignore the error, let the
1523	 * next level up know.
1524	 * else mark the drive as failed
1525	 */
1526	if (test_bit(In_sync, &rdev->flags)
1527	    && !enough(conf, rdev->raid_disk))
 
1528		/*
1529		 * Don't fail the drive, just return an IO error.
1530		 */
1531		return;
1532	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1533		unsigned long flags;
1534		spin_lock_irqsave(&conf->device_lock, flags);
1535		mddev->degraded++;
1536		spin_unlock_irqrestore(&conf->device_lock, flags);
1537		/*
1538		 * if recovery is running, make sure it aborts.
1539		 */
1540		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1541	}
 
 
 
 
 
 
1542	set_bit(Blocked, &rdev->flags);
1543	set_bit(Faulty, &rdev->flags);
1544	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1545	printk(KERN_ALERT
1546	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1547	       "md/raid10:%s: Operation continuing on %d devices.\n",
1548	       mdname(mddev), bdevname(rdev->bdev, b),
1549	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
 
1550}
1551
1552static void print_conf(struct r10conf *conf)
1553{
1554	int i;
1555	struct mirror_info *tmp;
1556
1557	printk(KERN_DEBUG "RAID10 conf printout:\n");
1558	if (!conf) {
1559		printk(KERN_DEBUG "(!conf)\n");
1560		return;
1561	}
1562	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1563		conf->geo.raid_disks);
1564
 
 
1565	for (i = 0; i < conf->geo.raid_disks; i++) {
1566		char b[BDEVNAME_SIZE];
1567		tmp = conf->mirrors + i;
1568		if (tmp->rdev)
1569			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1570				i, !test_bit(In_sync, &tmp->rdev->flags),
1571			        !test_bit(Faulty, &tmp->rdev->flags),
1572				bdevname(tmp->rdev->bdev,b));
1573	}
1574}
1575
1576static void close_sync(struct r10conf *conf)
1577{
1578	wait_barrier(conf);
1579	allow_barrier(conf);
1580
1581	mempool_destroy(conf->r10buf_pool);
1582	conf->r10buf_pool = NULL;
1583}
1584
1585static int raid10_spare_active(struct mddev *mddev)
1586{
1587	int i;
1588	struct r10conf *conf = mddev->private;
1589	struct mirror_info *tmp;
1590	int count = 0;
1591	unsigned long flags;
1592
1593	/*
1594	 * Find all non-in_sync disks within the RAID10 configuration
1595	 * and mark them in_sync
1596	 */
1597	for (i = 0; i < conf->geo.raid_disks; i++) {
1598		tmp = conf->mirrors + i;
1599		if (tmp->replacement
1600		    && tmp->replacement->recovery_offset == MaxSector
1601		    && !test_bit(Faulty, &tmp->replacement->flags)
1602		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1603			/* Replacement has just become active */
1604			if (!tmp->rdev
1605			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1606				count++;
1607			if (tmp->rdev) {
1608				/* Replaced device not technically faulty,
1609				 * but we need to be sure it gets removed
1610				 * and never re-added.
1611				 */
1612				set_bit(Faulty, &tmp->rdev->flags);
1613				sysfs_notify_dirent_safe(
1614					tmp->rdev->sysfs_state);
1615			}
1616			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1617		} else if (tmp->rdev
 
1618			   && !test_bit(Faulty, &tmp->rdev->flags)
1619			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1620			count++;
1621			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1622		}
1623	}
1624	spin_lock_irqsave(&conf->device_lock, flags);
1625	mddev->degraded -= count;
1626	spin_unlock_irqrestore(&conf->device_lock, flags);
1627
1628	print_conf(conf);
1629	return count;
1630}
1631
1632
1633static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1634{
1635	struct r10conf *conf = mddev->private;
1636	int err = -EEXIST;
1637	int mirror;
1638	int first = 0;
1639	int last = conf->geo.raid_disks - 1;
1640	struct request_queue *q = bdev_get_queue(rdev->bdev);
1641
1642	if (mddev->recovery_cp < MaxSector)
1643		/* only hot-add to in-sync arrays, as recovery is
1644		 * very different from resync
1645		 */
1646		return -EBUSY;
1647	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1648		return -EINVAL;
1649
 
 
 
1650	if (rdev->raid_disk >= 0)
1651		first = last = rdev->raid_disk;
1652
1653	if (q->merge_bvec_fn) {
1654		set_bit(Unmerged, &rdev->flags);
1655		mddev->merge_check_needed = 1;
1656	}
1657
1658	if (rdev->saved_raid_disk >= first &&
 
1659	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1660		mirror = rdev->saved_raid_disk;
1661	else
1662		mirror = first;
1663	for ( ; mirror <= last ; mirror++) {
1664		struct mirror_info *p = &conf->mirrors[mirror];
1665		if (p->recovery_disabled == mddev->recovery_disabled)
1666			continue;
1667		if (p->rdev) {
1668			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1669			    p->replacement != NULL)
1670				continue;
1671			clear_bit(In_sync, &rdev->flags);
1672			set_bit(Replacement, &rdev->flags);
1673			rdev->raid_disk = mirror;
1674			err = 0;
1675			disk_stack_limits(mddev->gendisk, rdev->bdev,
1676					  rdev->data_offset << 9);
 
1677			conf->fullsync = 1;
1678			rcu_assign_pointer(p->replacement, rdev);
1679			break;
1680		}
1681
1682		disk_stack_limits(mddev->gendisk, rdev->bdev,
1683				  rdev->data_offset << 9);
 
1684
1685		p->head_position = 0;
1686		p->recovery_disabled = mddev->recovery_disabled - 1;
1687		rdev->raid_disk = mirror;
1688		err = 0;
1689		if (rdev->saved_raid_disk != mirror)
1690			conf->fullsync = 1;
1691		rcu_assign_pointer(p->rdev, rdev);
1692		break;
1693	}
1694	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1695		/* Some requests might not have seen this new
1696		 * merge_bvec_fn.  We must wait for them to complete
1697		 * before merging the device fully.
1698		 * First we make sure any code which has tested
1699		 * our function has submitted the request, then
1700		 * we wait for all outstanding requests to complete.
1701		 */
1702		synchronize_sched();
1703		raise_barrier(conf, 0);
1704		lower_barrier(conf);
1705		clear_bit(Unmerged, &rdev->flags);
1706	}
1707	md_integrity_add_rdev(rdev, mddev);
1708	print_conf(conf);
1709	return err;
1710}
1711
1712static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1713{
1714	struct r10conf *conf = mddev->private;
1715	int err = 0;
1716	int number = rdev->raid_disk;
1717	struct md_rdev **rdevp;
1718	struct mirror_info *p = conf->mirrors + number;
1719
1720	print_conf(conf);
1721	if (rdev == p->rdev)
1722		rdevp = &p->rdev;
1723	else if (rdev == p->replacement)
1724		rdevp = &p->replacement;
1725	else
1726		return 0;
1727
1728	if (test_bit(In_sync, &rdev->flags) ||
1729	    atomic_read(&rdev->nr_pending)) {
1730		err = -EBUSY;
1731		goto abort;
1732	}
1733	/* Only remove faulty devices if recovery
1734	 * is not possible.
1735	 */
1736	if (!test_bit(Faulty, &rdev->flags) &&
1737	    mddev->recovery_disabled != p->recovery_disabled &&
1738	    (!p->replacement || p->replacement == rdev) &&
1739	    number < conf->geo.raid_disks &&
1740	    enough(conf, -1)) {
1741		err = -EBUSY;
1742		goto abort;
1743	}
1744	*rdevp = NULL;
1745	synchronize_rcu();
1746	if (atomic_read(&rdev->nr_pending)) {
1747		/* lost the race, try later */
1748		err = -EBUSY;
1749		*rdevp = rdev;
1750		goto abort;
1751	} else if (p->replacement) {
 
 
 
1752		/* We must have just cleared 'rdev' */
1753		p->rdev = p->replacement;
1754		clear_bit(Replacement, &p->replacement->flags);
1755		smp_mb(); /* Make sure other CPUs may see both as identical
1756			   * but will never see neither -- if they are careful.
1757			   */
1758		p->replacement = NULL;
1759		clear_bit(WantReplacement, &rdev->flags);
1760	} else
1761		/* We might have just remove the Replacement as faulty
1762		 * Clear the flag just in case
1763		 */
1764		clear_bit(WantReplacement, &rdev->flags);
1765
 
1766	err = md_integrity_register(mddev);
1767
1768abort:
1769
1770	print_conf(conf);
1771	return err;
1772}
1773
1774
1775static void end_sync_read(struct bio *bio, int error)
1776{
1777	struct r10bio *r10_bio = bio->bi_private;
1778	struct r10conf *conf = r10_bio->mddev->private;
1779	int d;
1780
1781	if (bio == r10_bio->master_bio) {
1782		/* this is a reshape read */
1783		d = r10_bio->read_slot; /* really the read dev */
1784	} else
1785		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1786
1787	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1788		set_bit(R10BIO_Uptodate, &r10_bio->state);
1789	else
1790		/* The write handler will notice the lack of
1791		 * R10BIO_Uptodate and record any errors etc
1792		 */
1793		atomic_add(r10_bio->sectors,
1794			   &conf->mirrors[d].rdev->corrected_errors);
1795
1796	/* for reconstruct, we always reschedule after a read.
1797	 * for resync, only after all reads
1798	 */
1799	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1800	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1801	    atomic_dec_and_test(&r10_bio->remaining)) {
1802		/* we have read all the blocks,
1803		 * do the comparison in process context in raid10d
1804		 */
1805		reschedule_retry(r10_bio);
1806	}
1807}
1808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809static void end_sync_request(struct r10bio *r10_bio)
1810{
1811	struct mddev *mddev = r10_bio->mddev;
1812
1813	while (atomic_dec_and_test(&r10_bio->remaining)) {
1814		if (r10_bio->master_bio == NULL) {
1815			/* the primary of several recovery bios */
1816			sector_t s = r10_bio->sectors;
1817			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1818			    test_bit(R10BIO_WriteError, &r10_bio->state))
1819				reschedule_retry(r10_bio);
1820			else
1821				put_buf(r10_bio);
1822			md_done_sync(mddev, s, 1);
1823			break;
1824		} else {
1825			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1826			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1827			    test_bit(R10BIO_WriteError, &r10_bio->state))
1828				reschedule_retry(r10_bio);
1829			else
1830				put_buf(r10_bio);
1831			r10_bio = r10_bio2;
1832		}
1833	}
1834}
1835
1836static void end_sync_write(struct bio *bio, int error)
1837{
1838	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1839	struct r10bio *r10_bio = bio->bi_private;
1840	struct mddev *mddev = r10_bio->mddev;
1841	struct r10conf *conf = mddev->private;
1842	int d;
1843	sector_t first_bad;
1844	int bad_sectors;
1845	int slot;
1846	int repl;
1847	struct md_rdev *rdev = NULL;
1848
1849	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1850	if (repl)
1851		rdev = conf->mirrors[d].replacement;
1852	else
1853		rdev = conf->mirrors[d].rdev;
1854
1855	if (!uptodate) {
1856		if (repl)
1857			md_error(mddev, rdev);
1858		else {
1859			set_bit(WriteErrorSeen, &rdev->flags);
1860			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1861				set_bit(MD_RECOVERY_NEEDED,
1862					&rdev->mddev->recovery);
1863			set_bit(R10BIO_WriteError, &r10_bio->state);
1864		}
1865	} else if (is_badblock(rdev,
1866			     r10_bio->devs[slot].addr,
1867			     r10_bio->sectors,
1868			     &first_bad, &bad_sectors))
1869		set_bit(R10BIO_MadeGood, &r10_bio->state);
1870
1871	rdev_dec_pending(rdev, mddev);
1872
1873	end_sync_request(r10_bio);
1874}
1875
1876/*
1877 * Note: sync and recover and handled very differently for raid10
1878 * This code is for resync.
1879 * For resync, we read through virtual addresses and read all blocks.
1880 * If there is any error, we schedule a write.  The lowest numbered
1881 * drive is authoritative.
1882 * However requests come for physical address, so we need to map.
1883 * For every physical address there are raid_disks/copies virtual addresses,
1884 * which is always are least one, but is not necessarly an integer.
1885 * This means that a physical address can span multiple chunks, so we may
1886 * have to submit multiple io requests for a single sync request.
1887 */
1888/*
1889 * We check if all blocks are in-sync and only write to blocks that
1890 * aren't in sync
1891 */
1892static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1893{
1894	struct r10conf *conf = mddev->private;
1895	int i, first;
1896	struct bio *tbio, *fbio;
1897	int vcnt;
 
1898
1899	atomic_set(&r10_bio->remaining, 1);
1900
1901	/* find the first device with a block */
1902	for (i=0; i<conf->copies; i++)
1903		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1904			break;
1905
1906	if (i == conf->copies)
1907		goto done;
1908
1909	first = i;
1910	fbio = r10_bio->devs[i].bio;
 
 
 
1911
1912	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1913	/* now find blocks with errors */
1914	for (i=0 ; i < conf->copies ; i++) {
1915		int  j, d;
 
 
1916
1917		tbio = r10_bio->devs[i].bio;
1918
1919		if (tbio->bi_end_io != end_sync_read)
1920			continue;
1921		if (i == first)
1922			continue;
1923		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
 
 
 
 
1924			/* We know that the bi_io_vec layout is the same for
1925			 * both 'first' and 'i', so we just compare them.
1926			 * All vec entries are PAGE_SIZE;
1927			 */
1928			for (j = 0; j < vcnt; j++)
1929				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1930					   page_address(tbio->bi_io_vec[j].bv_page),
1931					   fbio->bi_io_vec[j].bv_len))
 
 
 
 
1932					break;
 
 
1933			if (j == vcnt)
1934				continue;
1935			mddev->resync_mismatches += r10_bio->sectors;
1936			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1937				/* Don't fix anything. */
1938				continue;
 
 
 
 
1939		}
1940		/* Ok, we need to write this bio, either to correct an
1941		 * inconsistency or to correct an unreadable block.
1942		 * First we need to fixup bv_offset, bv_len and
1943		 * bi_vecs, as the read request might have corrupted these
1944		 */
1945		tbio->bi_vcnt = vcnt;
1946		tbio->bi_size = r10_bio->sectors << 9;
1947		tbio->bi_idx = 0;
1948		tbio->bi_phys_segments = 0;
1949		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1950		tbio->bi_flags |= 1 << BIO_UPTODATE;
1951		tbio->bi_next = NULL;
1952		tbio->bi_rw = WRITE;
1953		tbio->bi_private = r10_bio;
1954		tbio->bi_sector = r10_bio->devs[i].addr;
1955
1956		for (j=0; j < vcnt ; j++) {
1957			tbio->bi_io_vec[j].bv_offset = 0;
1958			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1959
1960			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1961			       page_address(fbio->bi_io_vec[j].bv_page),
1962			       PAGE_SIZE);
1963		}
1964		tbio->bi_end_io = end_sync_write;
 
 
 
1965
1966		d = r10_bio->devs[i].devnum;
1967		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1968		atomic_inc(&r10_bio->remaining);
1969		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1970
1971		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1972		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1973		generic_make_request(tbio);
 
 
1974	}
1975
1976	/* Now write out to any replacement devices
1977	 * that are active
1978	 */
1979	for (i = 0; i < conf->copies; i++) {
1980		int j, d;
1981
1982		tbio = r10_bio->devs[i].repl_bio;
1983		if (!tbio || !tbio->bi_end_io)
1984			continue;
1985		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1986		    && r10_bio->devs[i].bio != fbio)
1987			for (j = 0; j < vcnt; j++)
1988				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1989				       page_address(fbio->bi_io_vec[j].bv_page),
1990				       PAGE_SIZE);
1991		d = r10_bio->devs[i].devnum;
1992		atomic_inc(&r10_bio->remaining);
1993		md_sync_acct(conf->mirrors[d].replacement->bdev,
1994			     tbio->bi_size >> 9);
1995		generic_make_request(tbio);
1996	}
1997
1998done:
1999	if (atomic_dec_and_test(&r10_bio->remaining)) {
2000		md_done_sync(mddev, r10_bio->sectors, 1);
2001		put_buf(r10_bio);
2002	}
2003}
2004
2005/*
2006 * Now for the recovery code.
2007 * Recovery happens across physical sectors.
2008 * We recover all non-is_sync drives by finding the virtual address of
2009 * each, and then choose a working drive that also has that virt address.
2010 * There is a separate r10_bio for each non-in_sync drive.
2011 * Only the first two slots are in use. The first for reading,
2012 * The second for writing.
2013 *
2014 */
2015static void fix_recovery_read_error(struct r10bio *r10_bio)
2016{
2017	/* We got a read error during recovery.
2018	 * We repeat the read in smaller page-sized sections.
2019	 * If a read succeeds, write it to the new device or record
2020	 * a bad block if we cannot.
2021	 * If a read fails, record a bad block on both old and
2022	 * new devices.
2023	 */
2024	struct mddev *mddev = r10_bio->mddev;
2025	struct r10conf *conf = mddev->private;
2026	struct bio *bio = r10_bio->devs[0].bio;
2027	sector_t sect = 0;
2028	int sectors = r10_bio->sectors;
2029	int idx = 0;
2030	int dr = r10_bio->devs[0].devnum;
2031	int dw = r10_bio->devs[1].devnum;
 
2032
2033	while (sectors) {
2034		int s = sectors;
2035		struct md_rdev *rdev;
2036		sector_t addr;
2037		int ok;
2038
2039		if (s > (PAGE_SIZE>>9))
2040			s = PAGE_SIZE >> 9;
2041
2042		rdev = conf->mirrors[dr].rdev;
2043		addr = r10_bio->devs[0].addr + sect,
2044		ok = sync_page_io(rdev,
2045				  addr,
2046				  s << 9,
2047				  bio->bi_io_vec[idx].bv_page,
2048				  READ, false);
2049		if (ok) {
2050			rdev = conf->mirrors[dw].rdev;
2051			addr = r10_bio->devs[1].addr + sect;
2052			ok = sync_page_io(rdev,
2053					  addr,
2054					  s << 9,
2055					  bio->bi_io_vec[idx].bv_page,
2056					  WRITE, false);
2057			if (!ok) {
2058				set_bit(WriteErrorSeen, &rdev->flags);
2059				if (!test_and_set_bit(WantReplacement,
2060						      &rdev->flags))
2061					set_bit(MD_RECOVERY_NEEDED,
2062						&rdev->mddev->recovery);
2063			}
2064		}
2065		if (!ok) {
2066			/* We don't worry if we cannot set a bad block -
2067			 * it really is bad so there is no loss in not
2068			 * recording it yet
2069			 */
2070			rdev_set_badblocks(rdev, addr, s, 0);
2071
2072			if (rdev != conf->mirrors[dw].rdev) {
2073				/* need bad block on destination too */
2074				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2075				addr = r10_bio->devs[1].addr + sect;
2076				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2077				if (!ok) {
2078					/* just abort the recovery */
2079					printk(KERN_NOTICE
2080					       "md/raid10:%s: recovery aborted"
2081					       " due to read error\n",
2082					       mdname(mddev));
2083
2084					conf->mirrors[dw].recovery_disabled
2085						= mddev->recovery_disabled;
2086					set_bit(MD_RECOVERY_INTR,
2087						&mddev->recovery);
2088					break;
2089				}
2090			}
2091		}
2092
2093		sectors -= s;
2094		sect += s;
2095		idx++;
2096	}
2097}
2098
2099static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2100{
2101	struct r10conf *conf = mddev->private;
2102	int d;
2103	struct bio *wbio, *wbio2;
2104
2105	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2106		fix_recovery_read_error(r10_bio);
2107		end_sync_request(r10_bio);
2108		return;
2109	}
2110
2111	/*
2112	 * share the pages with the first bio
2113	 * and submit the write request
2114	 */
2115	d = r10_bio->devs[1].devnum;
2116	wbio = r10_bio->devs[1].bio;
2117	wbio2 = r10_bio->devs[1].repl_bio;
 
 
 
 
 
 
2118	if (wbio->bi_end_io) {
2119		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2120		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2121		generic_make_request(wbio);
2122	}
2123	if (wbio2 && wbio2->bi_end_io) {
2124		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2125		md_sync_acct(conf->mirrors[d].replacement->bdev,
2126			     wbio2->bi_size >> 9);
2127		generic_make_request(wbio2);
2128	}
2129}
2130
2131
2132/*
2133 * Used by fix_read_error() to decay the per rdev read_errors.
2134 * We halve the read error count for every hour that has elapsed
2135 * since the last recorded read error.
2136 *
2137 */
2138static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2139{
2140	struct timespec cur_time_mon;
2141	unsigned long hours_since_last;
2142	unsigned int read_errors = atomic_read(&rdev->read_errors);
2143
2144	ktime_get_ts(&cur_time_mon);
2145
2146	if (rdev->last_read_error.tv_sec == 0 &&
2147	    rdev->last_read_error.tv_nsec == 0) {
2148		/* first time we've seen a read error */
2149		rdev->last_read_error = cur_time_mon;
2150		return;
2151	}
2152
2153	hours_since_last = (cur_time_mon.tv_sec -
2154			    rdev->last_read_error.tv_sec) / 3600;
2155
2156	rdev->last_read_error = cur_time_mon;
2157
2158	/*
2159	 * if hours_since_last is > the number of bits in read_errors
2160	 * just set read errors to 0. We do this to avoid
2161	 * overflowing the shift of read_errors by hours_since_last.
2162	 */
2163	if (hours_since_last >= 8 * sizeof(read_errors))
2164		atomic_set(&rdev->read_errors, 0);
2165	else
2166		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2167}
2168
2169static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2170			    int sectors, struct page *page, int rw)
2171{
2172	sector_t first_bad;
2173	int bad_sectors;
2174
2175	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2176	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2177		return -1;
2178	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2179		/* success */
2180		return 1;
2181	if (rw == WRITE) {
2182		set_bit(WriteErrorSeen, &rdev->flags);
2183		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2184			set_bit(MD_RECOVERY_NEEDED,
2185				&rdev->mddev->recovery);
2186	}
2187	/* need to record an error - either for the block or the device */
2188	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2189		md_error(rdev->mddev, rdev);
2190	return 0;
2191}
2192
2193/*
2194 * This is a kernel thread which:
2195 *
2196 *	1.	Retries failed read operations on working mirrors.
2197 *	2.	Updates the raid superblock when problems encounter.
2198 *	3.	Performs writes following reads for array synchronising.
2199 */
2200
2201static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2202{
2203	int sect = 0; /* Offset from r10_bio->sector */
2204	int sectors = r10_bio->sectors;
2205	struct md_rdev*rdev;
2206	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2207	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2208
2209	/* still own a reference to this rdev, so it cannot
2210	 * have been cleared recently.
2211	 */
2212	rdev = conf->mirrors[d].rdev;
2213
2214	if (test_bit(Faulty, &rdev->flags))
2215		/* drive has already been failed, just ignore any
2216		   more fix_read_error() attempts */
2217		return;
2218
2219	check_decay_read_errors(mddev, rdev);
2220	atomic_inc(&rdev->read_errors);
2221	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2222		char b[BDEVNAME_SIZE];
2223		bdevname(rdev->bdev, b);
2224
2225		printk(KERN_NOTICE
2226		       "md/raid10:%s: %s: Raid device exceeded "
2227		       "read_error threshold [cur %d:max %d]\n",
2228		       mdname(mddev), b,
2229		       atomic_read(&rdev->read_errors), max_read_errors);
2230		printk(KERN_NOTICE
2231		       "md/raid10:%s: %s: Failing raid device\n",
2232		       mdname(mddev), b);
2233		md_error(mddev, conf->mirrors[d].rdev);
2234		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2235		return;
2236	}
2237
2238	while(sectors) {
2239		int s = sectors;
2240		int sl = r10_bio->read_slot;
2241		int success = 0;
2242		int start;
2243
2244		if (s > (PAGE_SIZE>>9))
2245			s = PAGE_SIZE >> 9;
2246
2247		rcu_read_lock();
2248		do {
2249			sector_t first_bad;
2250			int bad_sectors;
2251
2252			d = r10_bio->devs[sl].devnum;
2253			rdev = rcu_dereference(conf->mirrors[d].rdev);
2254			if (rdev &&
2255			    !test_bit(Unmerged, &rdev->flags) &&
2256			    test_bit(In_sync, &rdev->flags) &&
 
2257			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2258					&first_bad, &bad_sectors) == 0) {
2259				atomic_inc(&rdev->nr_pending);
2260				rcu_read_unlock();
2261				success = sync_page_io(rdev,
2262						       r10_bio->devs[sl].addr +
2263						       sect,
2264						       s<<9,
2265						       conf->tmppage, READ, false);
 
2266				rdev_dec_pending(rdev, mddev);
2267				rcu_read_lock();
2268				if (success)
2269					break;
2270			}
2271			sl++;
2272			if (sl == conf->copies)
2273				sl = 0;
2274		} while (!success && sl != r10_bio->read_slot);
2275		rcu_read_unlock();
2276
2277		if (!success) {
2278			/* Cannot read from anywhere, just mark the block
2279			 * as bad on the first device to discourage future
2280			 * reads.
2281			 */
2282			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2283			rdev = conf->mirrors[dn].rdev;
2284
2285			if (!rdev_set_badblocks(
2286				    rdev,
2287				    r10_bio->devs[r10_bio->read_slot].addr
2288				    + sect,
2289				    s, 0)) {
2290				md_error(mddev, rdev);
2291				r10_bio->devs[r10_bio->read_slot].bio
2292					= IO_BLOCKED;
2293			}
2294			break;
2295		}
2296
2297		start = sl;
2298		/* write it back and re-read */
2299		rcu_read_lock();
2300		while (sl != r10_bio->read_slot) {
2301			char b[BDEVNAME_SIZE];
2302
2303			if (sl==0)
2304				sl = conf->copies;
2305			sl--;
2306			d = r10_bio->devs[sl].devnum;
2307			rdev = rcu_dereference(conf->mirrors[d].rdev);
2308			if (!rdev ||
2309			    test_bit(Unmerged, &rdev->flags) ||
2310			    !test_bit(In_sync, &rdev->flags))
2311				continue;
2312
2313			atomic_inc(&rdev->nr_pending);
2314			rcu_read_unlock();
2315			if (r10_sync_page_io(rdev,
2316					     r10_bio->devs[sl].addr +
2317					     sect,
2318					     s, conf->tmppage, WRITE)
2319			    == 0) {
2320				/* Well, this device is dead */
2321				printk(KERN_NOTICE
2322				       "md/raid10:%s: read correction "
2323				       "write failed"
2324				       " (%d sectors at %llu on %s)\n",
2325				       mdname(mddev), s,
2326				       (unsigned long long)(
2327					       sect +
2328					       choose_data_offset(r10_bio,
2329								  rdev)),
2330				       bdevname(rdev->bdev, b));
2331				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2332				       "drive\n",
2333				       mdname(mddev),
2334				       bdevname(rdev->bdev, b));
2335			}
2336			rdev_dec_pending(rdev, mddev);
2337			rcu_read_lock();
2338		}
2339		sl = start;
2340		while (sl != r10_bio->read_slot) {
2341			char b[BDEVNAME_SIZE];
2342
2343			if (sl==0)
2344				sl = conf->copies;
2345			sl--;
2346			d = r10_bio->devs[sl].devnum;
2347			rdev = rcu_dereference(conf->mirrors[d].rdev);
2348			if (!rdev ||
 
2349			    !test_bit(In_sync, &rdev->flags))
2350				continue;
2351
2352			atomic_inc(&rdev->nr_pending);
2353			rcu_read_unlock();
2354			switch (r10_sync_page_io(rdev,
2355					     r10_bio->devs[sl].addr +
2356					     sect,
2357					     s, conf->tmppage,
2358						 READ)) {
2359			case 0:
2360				/* Well, this device is dead */
2361				printk(KERN_NOTICE
2362				       "md/raid10:%s: unable to read back "
2363				       "corrected sectors"
2364				       " (%d sectors at %llu on %s)\n",
2365				       mdname(mddev), s,
2366				       (unsigned long long)(
2367					       sect +
2368					       choose_data_offset(r10_bio, rdev)),
2369				       bdevname(rdev->bdev, b));
2370				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2371				       "drive\n",
2372				       mdname(mddev),
2373				       bdevname(rdev->bdev, b));
2374				break;
2375			case 1:
2376				printk(KERN_INFO
2377				       "md/raid10:%s: read error corrected"
2378				       " (%d sectors at %llu on %s)\n",
2379				       mdname(mddev), s,
2380				       (unsigned long long)(
2381					       sect +
2382					       choose_data_offset(r10_bio, rdev)),
2383				       bdevname(rdev->bdev, b));
2384				atomic_add(s, &rdev->corrected_errors);
2385			}
2386
2387			rdev_dec_pending(rdev, mddev);
2388			rcu_read_lock();
2389		}
2390		rcu_read_unlock();
2391
2392		sectors -= s;
2393		sect += s;
2394	}
2395}
2396
2397static void bi_complete(struct bio *bio, int error)
2398{
2399	complete((struct completion *)bio->bi_private);
2400}
2401
2402static int submit_bio_wait(int rw, struct bio *bio)
2403{
2404	struct completion event;
2405	rw |= REQ_SYNC;
2406
2407	init_completion(&event);
2408	bio->bi_private = &event;
2409	bio->bi_end_io = bi_complete;
2410	submit_bio(rw, bio);
2411	wait_for_completion(&event);
2412
2413	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2414}
2415
2416static int narrow_write_error(struct r10bio *r10_bio, int i)
2417{
2418	struct bio *bio = r10_bio->master_bio;
2419	struct mddev *mddev = r10_bio->mddev;
2420	struct r10conf *conf = mddev->private;
2421	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2422	/* bio has the data to be written to slot 'i' where
2423	 * we just recently had a write error.
2424	 * We repeatedly clone the bio and trim down to one block,
2425	 * then try the write.  Where the write fails we record
2426	 * a bad block.
2427	 * It is conceivable that the bio doesn't exactly align with
2428	 * blocks.  We must handle this.
2429	 *
2430	 * We currently own a reference to the rdev.
2431	 */
2432
2433	int block_sectors;
2434	sector_t sector;
2435	int sectors;
2436	int sect_to_write = r10_bio->sectors;
2437	int ok = 1;
2438
2439	if (rdev->badblocks.shift < 0)
2440		return 0;
2441
2442	block_sectors = 1 << rdev->badblocks.shift;
 
2443	sector = r10_bio->sector;
2444	sectors = ((r10_bio->sector + block_sectors)
2445		   & ~(sector_t)(block_sectors - 1))
2446		- sector;
2447
2448	while (sect_to_write) {
2449		struct bio *wbio;
 
2450		if (sectors > sect_to_write)
2451			sectors = sect_to_write;
2452		/* Write at 'sector' for 'sectors' */
2453		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2454		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2455		wbio->bi_sector = (r10_bio->devs[i].addr+
2456				   choose_data_offset(r10_bio, rdev) +
2457				   (sector - r10_bio->sector));
2458		wbio->bi_bdev = rdev->bdev;
2459		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
2460			/* Failure! */
2461			ok = rdev_set_badblocks(rdev, sector,
2462						sectors, 0)
2463				&& ok;
2464
2465		bio_put(wbio);
2466		sect_to_write -= sectors;
2467		sector += sectors;
2468		sectors = block_sectors;
2469	}
2470	return ok;
2471}
2472
2473static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2474{
2475	int slot = r10_bio->read_slot;
2476	struct bio *bio;
2477	struct r10conf *conf = mddev->private;
2478	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2479	char b[BDEVNAME_SIZE];
2480	unsigned long do_sync;
2481	int max_sectors;
2482
2483	/* we got a read error. Maybe the drive is bad.  Maybe just
2484	 * the block and we can fix it.
2485	 * We freeze all other IO, and try reading the block from
2486	 * other devices.  When we find one, we re-write
2487	 * and check it that fixes the read error.
2488	 * This is all done synchronously while the array is
2489	 * frozen.
2490	 */
2491	bio = r10_bio->devs[slot].bio;
2492	bdevname(bio->bi_bdev, b);
2493	bio_put(bio);
2494	r10_bio->devs[slot].bio = NULL;
2495
2496	if (mddev->ro == 0) {
2497		freeze_array(conf);
 
 
2498		fix_read_error(conf, mddev, r10_bio);
2499		unfreeze_array(conf);
2500	} else
2501		r10_bio->devs[slot].bio = IO_BLOCKED;
2502
2503	rdev_dec_pending(rdev, mddev);
2504
2505read_more:
2506	rdev = read_balance(conf, r10_bio, &max_sectors);
2507	if (rdev == NULL) {
2508		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2509		       " read error for block %llu\n",
2510		       mdname(mddev), b,
2511		       (unsigned long long)r10_bio->sector);
2512		raid_end_bio_io(r10_bio);
2513		return;
2514	}
2515
2516	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2517	slot = r10_bio->read_slot;
2518	printk_ratelimited(
2519		KERN_ERR
2520		"md/raid10:%s: %s: redirecting "
2521		"sector %llu to another mirror\n",
2522		mdname(mddev),
2523		bdevname(rdev->bdev, b),
2524		(unsigned long long)r10_bio->sector);
2525	bio = bio_clone_mddev(r10_bio->master_bio,
2526			      GFP_NOIO, mddev);
2527	md_trim_bio(bio,
2528		    r10_bio->sector - bio->bi_sector,
2529		    max_sectors);
2530	r10_bio->devs[slot].bio = bio;
2531	r10_bio->devs[slot].rdev = rdev;
2532	bio->bi_sector = r10_bio->devs[slot].addr
2533		+ choose_data_offset(r10_bio, rdev);
2534	bio->bi_bdev = rdev->bdev;
2535	bio->bi_rw = READ | do_sync;
2536	bio->bi_private = r10_bio;
2537	bio->bi_end_io = raid10_end_read_request;
2538	if (max_sectors < r10_bio->sectors) {
2539		/* Drat - have to split this up more */
2540		struct bio *mbio = r10_bio->master_bio;
2541		int sectors_handled =
2542			r10_bio->sector + max_sectors
2543			- mbio->bi_sector;
2544		r10_bio->sectors = max_sectors;
2545		spin_lock_irq(&conf->device_lock);
2546		if (mbio->bi_phys_segments == 0)
2547			mbio->bi_phys_segments = 2;
2548		else
2549			mbio->bi_phys_segments++;
2550		spin_unlock_irq(&conf->device_lock);
2551		generic_make_request(bio);
2552
2553		r10_bio = mempool_alloc(conf->r10bio_pool,
2554					GFP_NOIO);
2555		r10_bio->master_bio = mbio;
2556		r10_bio->sectors = (mbio->bi_size >> 9)
2557			- sectors_handled;
2558		r10_bio->state = 0;
2559		set_bit(R10BIO_ReadError,
2560			&r10_bio->state);
2561		r10_bio->mddev = mddev;
2562		r10_bio->sector = mbio->bi_sector
2563			+ sectors_handled;
2564
2565		goto read_more;
2566	} else
2567		generic_make_request(bio);
2568}
2569
2570static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2571{
2572	/* Some sort of write request has finished and it
2573	 * succeeded in writing where we thought there was a
2574	 * bad block.  So forget the bad block.
2575	 * Or possibly if failed and we need to record
2576	 * a bad block.
2577	 */
2578	int m;
2579	struct md_rdev *rdev;
2580
2581	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2582	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2583		for (m = 0; m < conf->copies; m++) {
2584			int dev = r10_bio->devs[m].devnum;
2585			rdev = conf->mirrors[dev].rdev;
2586			if (r10_bio->devs[m].bio == NULL)
 
2587				continue;
2588			if (test_bit(BIO_UPTODATE,
2589				     &r10_bio->devs[m].bio->bi_flags)) {
2590				rdev_clear_badblocks(
2591					rdev,
2592					r10_bio->devs[m].addr,
2593					r10_bio->sectors, 0);
2594			} else {
2595				if (!rdev_set_badblocks(
2596					    rdev,
2597					    r10_bio->devs[m].addr,
2598					    r10_bio->sectors, 0))
2599					md_error(conf->mddev, rdev);
2600			}
2601			rdev = conf->mirrors[dev].replacement;
2602			if (r10_bio->devs[m].repl_bio == NULL)
 
2603				continue;
2604			if (test_bit(BIO_UPTODATE,
2605				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2606				rdev_clear_badblocks(
2607					rdev,
2608					r10_bio->devs[m].addr,
2609					r10_bio->sectors, 0);
2610			} else {
2611				if (!rdev_set_badblocks(
2612					    rdev,
2613					    r10_bio->devs[m].addr,
2614					    r10_bio->sectors, 0))
2615					md_error(conf->mddev, rdev);
2616			}
2617		}
2618		put_buf(r10_bio);
2619	} else {
 
2620		for (m = 0; m < conf->copies; m++) {
2621			int dev = r10_bio->devs[m].devnum;
2622			struct bio *bio = r10_bio->devs[m].bio;
2623			rdev = conf->mirrors[dev].rdev;
2624			if (bio == IO_MADE_GOOD) {
2625				rdev_clear_badblocks(
2626					rdev,
2627					r10_bio->devs[m].addr,
2628					r10_bio->sectors, 0);
2629				rdev_dec_pending(rdev, conf->mddev);
2630			} else if (bio != NULL &&
2631				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2632				if (!narrow_write_error(r10_bio, m)) {
2633					md_error(conf->mddev, rdev);
2634					set_bit(R10BIO_Degraded,
2635						&r10_bio->state);
2636				}
2637				rdev_dec_pending(rdev, conf->mddev);
2638			}
2639			bio = r10_bio->devs[m].repl_bio;
2640			rdev = conf->mirrors[dev].replacement;
2641			if (rdev && bio == IO_MADE_GOOD) {
2642				rdev_clear_badblocks(
2643					rdev,
2644					r10_bio->devs[m].addr,
2645					r10_bio->sectors, 0);
2646				rdev_dec_pending(rdev, conf->mddev);
2647			}
2648		}
2649		if (test_bit(R10BIO_WriteError,
2650			     &r10_bio->state))
2651			close_write(r10_bio);
2652		raid_end_bio_io(r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2653	}
2654}
2655
2656static void raid10d(struct mddev *mddev)
2657{
 
2658	struct r10bio *r10_bio;
2659	unsigned long flags;
2660	struct r10conf *conf = mddev->private;
2661	struct list_head *head = &conf->retry_list;
2662	struct blk_plug plug;
2663
2664	md_check_recovery(mddev);
2665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666	blk_start_plug(&plug);
2667	for (;;) {
2668
2669		if (atomic_read(&mddev->plug_cnt) == 0)
2670			flush_pending_writes(conf);
2671
2672		spin_lock_irqsave(&conf->device_lock, flags);
2673		if (list_empty(head)) {
2674			spin_unlock_irqrestore(&conf->device_lock, flags);
2675			break;
2676		}
2677		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2678		list_del(head->prev);
2679		conf->nr_queued--;
2680		spin_unlock_irqrestore(&conf->device_lock, flags);
2681
2682		mddev = r10_bio->mddev;
2683		conf = mddev->private;
2684		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2685		    test_bit(R10BIO_WriteError, &r10_bio->state))
2686			handle_write_completed(conf, r10_bio);
2687		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2688			reshape_request_write(mddev, r10_bio);
2689		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2690			sync_request_write(mddev, r10_bio);
2691		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2692			recovery_request_write(mddev, r10_bio);
2693		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2694			handle_read_error(mddev, r10_bio);
2695		else {
2696			/* just a partial read to be scheduled from a
2697			 * separate context
2698			 */
2699			int slot = r10_bio->read_slot;
2700			generic_make_request(r10_bio->devs[slot].bio);
2701		}
2702
2703		cond_resched();
2704		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2705			md_check_recovery(mddev);
2706	}
2707	blk_finish_plug(&plug);
2708}
2709
2710
2711static int init_resync(struct r10conf *conf)
2712{
2713	int buffs;
2714	int i;
2715
2716	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2717	BUG_ON(conf->r10buf_pool);
2718	conf->have_replacement = 0;
2719	for (i = 0; i < conf->geo.raid_disks; i++)
2720		if (conf->mirrors[i].replacement)
2721			conf->have_replacement = 1;
2722	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2723	if (!conf->r10buf_pool)
2724		return -ENOMEM;
 
2725	conf->next_resync = 0;
2726	return 0;
2727}
2728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2729/*
2730 * perform a "sync" on one "block"
2731 *
2732 * We need to make sure that no normal I/O request - particularly write
2733 * requests - conflict with active sync requests.
2734 *
2735 * This is achieved by tracking pending requests and a 'barrier' concept
2736 * that can be installed to exclude normal IO requests.
2737 *
2738 * Resync and recovery are handled very differently.
2739 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2740 *
2741 * For resync, we iterate over virtual addresses, read all copies,
2742 * and update if there are differences.  If only one copy is live,
2743 * skip it.
2744 * For recovery, we iterate over physical addresses, read a good
2745 * value for each non-in_sync drive, and over-write.
2746 *
2747 * So, for recovery we may have several outstanding complex requests for a
2748 * given address, one for each out-of-sync device.  We model this by allocating
2749 * a number of r10_bio structures, one for each out-of-sync device.
2750 * As we setup these structures, we collect all bio's together into a list
2751 * which we then process collectively to add pages, and then process again
2752 * to pass to generic_make_request.
2753 *
2754 * The r10_bio structures are linked using a borrowed master_bio pointer.
2755 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2756 * has its remaining count decremented to 0, the whole complex operation
2757 * is complete.
2758 *
2759 */
2760
2761static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2762			     int *skipped, int go_faster)
2763{
2764	struct r10conf *conf = mddev->private;
2765	struct r10bio *r10_bio;
2766	struct bio *biolist = NULL, *bio;
2767	sector_t max_sector, nr_sectors;
2768	int i;
2769	int max_sync;
2770	sector_t sync_blocks;
2771	sector_t sectors_skipped = 0;
2772	int chunks_skipped = 0;
2773	sector_t chunk_mask = conf->geo.chunk_mask;
 
2774
2775	if (!conf->r10buf_pool)
2776		if (init_resync(conf))
2777			return 0;
2778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779 skipped:
2780	max_sector = mddev->dev_sectors;
2781	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2782	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2783		max_sector = mddev->resync_max_sectors;
2784	if (sector_nr >= max_sector) {
 
 
 
2785		/* If we aborted, we need to abort the
2786		 * sync on the 'current' bitmap chucks (there can
2787		 * be several when recovering multiple devices).
2788		 * as we may have started syncing it but not finished.
2789		 * We can find the current address in
2790		 * mddev->curr_resync, but for recovery,
2791		 * we need to convert that to several
2792		 * virtual addresses.
2793		 */
2794		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2795			end_reshape(conf);
 
2796			return 0;
2797		}
2798
2799		if (mddev->curr_resync < max_sector) { /* aborted */
2800			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2801				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2802						&sync_blocks, 1);
2803			else for (i = 0; i < conf->geo.raid_disks; i++) {
2804				sector_t sect =
2805					raid10_find_virt(conf, mddev->curr_resync, i);
2806				bitmap_end_sync(mddev->bitmap, sect,
2807						&sync_blocks, 1);
2808			}
2809		} else {
2810			/* completed sync */
2811			if ((!mddev->bitmap || conf->fullsync)
2812			    && conf->have_replacement
2813			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2814				/* Completed a full sync so the replacements
2815				 * are now fully recovered.
2816				 */
2817				for (i = 0; i < conf->geo.raid_disks; i++)
2818					if (conf->mirrors[i].replacement)
2819						conf->mirrors[i].replacement
2820							->recovery_offset
2821							= MaxSector;
 
 
 
2822			}
2823			conf->fullsync = 0;
2824		}
2825		bitmap_close_sync(mddev->bitmap);
2826		close_sync(conf);
2827		*skipped = 1;
2828		return sectors_skipped;
2829	}
2830
2831	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2832		return reshape_request(mddev, sector_nr, skipped);
2833
2834	if (chunks_skipped >= conf->geo.raid_disks) {
2835		/* if there has been nothing to do on any drive,
2836		 * then there is nothing to do at all..
2837		 */
2838		*skipped = 1;
2839		return (max_sector - sector_nr) + sectors_skipped;
2840	}
2841
2842	if (max_sector > mddev->resync_max)
2843		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2844
2845	/* make sure whole request will fit in a chunk - if chunks
2846	 * are meaningful
2847	 */
2848	if (conf->geo.near_copies < conf->geo.raid_disks &&
2849	    max_sector > (sector_nr | chunk_mask))
2850		max_sector = (sector_nr | chunk_mask) + 1;
 
2851	/*
2852	 * If there is non-resync activity waiting for us then
2853	 * put in a delay to throttle resync.
2854	 */
2855	if (!go_faster && conf->nr_waiting)
2856		msleep_interruptible(1000);
2857
2858	/* Again, very different code for resync and recovery.
2859	 * Both must result in an r10bio with a list of bios that
2860	 * have bi_end_io, bi_sector, bi_bdev set,
2861	 * and bi_private set to the r10bio.
2862	 * For recovery, we may actually create several r10bios
2863	 * with 2 bios in each, that correspond to the bios in the main one.
2864	 * In this case, the subordinate r10bios link back through a
2865	 * borrowed master_bio pointer, and the counter in the master
2866	 * includes a ref from each subordinate.
2867	 */
2868	/* First, we decide what to do and set ->bi_end_io
2869	 * To end_sync_read if we want to read, and
2870	 * end_sync_write if we will want to write.
2871	 */
2872
2873	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2874	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2875		/* recovery... the complicated one */
2876		int j;
2877		r10_bio = NULL;
2878
2879		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2880			int still_degraded;
2881			struct r10bio *rb2;
2882			sector_t sect;
2883			int must_sync;
2884			int any_working;
2885			struct mirror_info *mirror = &conf->mirrors[i];
 
 
 
2886
2887			if ((mirror->rdev == NULL ||
2888			     test_bit(In_sync, &mirror->rdev->flags))
2889			    &&
2890			    (mirror->replacement == NULL ||
2891			     test_bit(Faulty,
2892				      &mirror->replacement->flags)))
 
 
 
 
 
 
 
 
2893				continue;
 
2894
2895			still_degraded = 0;
2896			/* want to reconstruct this device */
2897			rb2 = r10_bio;
2898			sect = raid10_find_virt(conf, sector_nr, i);
2899			if (sect >= mddev->resync_max_sectors) {
2900				/* last stripe is not complete - don't
2901				 * try to recover this sector.
2902				 */
 
2903				continue;
2904			}
 
 
2905			/* Unless we are doing a full sync, or a replacement
2906			 * we only need to recover the block if it is set in
2907			 * the bitmap
2908			 */
2909			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2910						      &sync_blocks, 1);
2911			if (sync_blocks < max_sync)
2912				max_sync = sync_blocks;
2913			if (!must_sync &&
2914			    mirror->replacement == NULL &&
2915			    !conf->fullsync) {
2916				/* yep, skip the sync_blocks here, but don't assume
2917				 * that there will never be anything to do here
2918				 */
2919				chunks_skipped = -1;
 
2920				continue;
2921			}
 
 
 
 
2922
2923			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
2924			raise_barrier(conf, rb2 != NULL);
2925			atomic_set(&r10_bio->remaining, 0);
2926
2927			r10_bio->master_bio = (struct bio*)rb2;
2928			if (rb2)
2929				atomic_inc(&rb2->remaining);
2930			r10_bio->mddev = mddev;
2931			set_bit(R10BIO_IsRecover, &r10_bio->state);
2932			r10_bio->sector = sect;
2933
2934			raid10_find_phys(conf, r10_bio);
2935
2936			/* Need to check if the array will still be
2937			 * degraded
2938			 */
2939			for (j = 0; j < conf->geo.raid_disks; j++)
2940				if (conf->mirrors[j].rdev == NULL ||
2941				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
 
 
2942					still_degraded = 1;
2943					break;
2944				}
 
2945
2946			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2947						      &sync_blocks, still_degraded);
2948
2949			any_working = 0;
2950			for (j=0; j<conf->copies;j++) {
2951				int k;
2952				int d = r10_bio->devs[j].devnum;
2953				sector_t from_addr, to_addr;
2954				struct md_rdev *rdev;
 
2955				sector_t sector, first_bad;
2956				int bad_sectors;
2957				if (!conf->mirrors[d].rdev ||
2958				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2959					continue;
2960				/* This is where we read from */
2961				any_working = 1;
2962				rdev = conf->mirrors[d].rdev;
2963				sector = r10_bio->devs[j].addr;
2964
2965				if (is_badblock(rdev, sector, max_sync,
2966						&first_bad, &bad_sectors)) {
2967					if (first_bad > sector)
2968						max_sync = first_bad - sector;
2969					else {
2970						bad_sectors -= (sector
2971								- first_bad);
2972						if (max_sync > bad_sectors)
2973							max_sync = bad_sectors;
2974						continue;
2975					}
2976				}
2977				bio = r10_bio->devs[0].bio;
2978				bio->bi_next = biolist;
2979				biolist = bio;
2980				bio->bi_private = r10_bio;
2981				bio->bi_end_io = end_sync_read;
2982				bio->bi_rw = READ;
 
 
2983				from_addr = r10_bio->devs[j].addr;
2984				bio->bi_sector = from_addr + rdev->data_offset;
2985				bio->bi_bdev = rdev->bdev;
 
2986				atomic_inc(&rdev->nr_pending);
2987				/* and we write to 'i' (if not in_sync) */
2988
2989				for (k=0; k<conf->copies; k++)
2990					if (r10_bio->devs[k].devnum == i)
2991						break;
2992				BUG_ON(k == conf->copies);
2993				to_addr = r10_bio->devs[k].addr;
2994				r10_bio->devs[0].devnum = d;
2995				r10_bio->devs[0].addr = from_addr;
2996				r10_bio->devs[1].devnum = i;
2997				r10_bio->devs[1].addr = to_addr;
2998
2999				rdev = mirror->rdev;
3000				if (!test_bit(In_sync, &rdev->flags)) {
3001					bio = r10_bio->devs[1].bio;
3002					bio->bi_next = biolist;
3003					biolist = bio;
3004					bio->bi_private = r10_bio;
3005					bio->bi_end_io = end_sync_write;
3006					bio->bi_rw = WRITE;
3007					bio->bi_sector = to_addr
3008						+ rdev->data_offset;
3009					bio->bi_bdev = rdev->bdev;
3010					atomic_inc(&r10_bio->remaining);
3011				} else
3012					r10_bio->devs[1].bio->bi_end_io = NULL;
3013
3014				/* and maybe write to replacement */
3015				bio = r10_bio->devs[1].repl_bio;
3016				if (bio)
3017					bio->bi_end_io = NULL;
3018				rdev = mirror->replacement;
3019				/* Note: if rdev != NULL, then bio
3020				 * cannot be NULL as r10buf_pool_alloc will
3021				 * have allocated it.
3022				 * So the second test here is pointless.
3023				 * But it keeps semantic-checkers happy, and
3024				 * this comment keeps human reviewers
3025				 * happy.
3026				 */
3027				if (rdev == NULL || bio == NULL ||
3028				    test_bit(Faulty, &rdev->flags))
3029					break;
3030				bio->bi_next = biolist;
3031				biolist = bio;
3032				bio->bi_private = r10_bio;
3033				bio->bi_end_io = end_sync_write;
3034				bio->bi_rw = WRITE;
3035				bio->bi_sector = to_addr + rdev->data_offset;
3036				bio->bi_bdev = rdev->bdev;
 
3037				atomic_inc(&r10_bio->remaining);
3038				break;
3039			}
 
3040			if (j == conf->copies) {
3041				/* Cannot recover, so abort the recovery or
3042				 * record a bad block */
3043				put_buf(r10_bio);
3044				if (rb2)
3045					atomic_dec(&rb2->remaining);
3046				r10_bio = rb2;
3047				if (any_working) {
3048					/* problem is that there are bad blocks
3049					 * on other device(s)
3050					 */
3051					int k;
3052					for (k = 0; k < conf->copies; k++)
3053						if (r10_bio->devs[k].devnum == i)
3054							break;
3055					if (!test_bit(In_sync,
3056						      &mirror->rdev->flags)
3057					    && !rdev_set_badblocks(
3058						    mirror->rdev,
3059						    r10_bio->devs[k].addr,
3060						    max_sync, 0))
3061						any_working = 0;
3062					if (mirror->replacement &&
3063					    !rdev_set_badblocks(
3064						    mirror->replacement,
3065						    r10_bio->devs[k].addr,
3066						    max_sync, 0))
3067						any_working = 0;
3068				}
3069				if (!any_working)  {
3070					if (!test_and_set_bit(MD_RECOVERY_INTR,
3071							      &mddev->recovery))
3072						printk(KERN_INFO "md/raid10:%s: insufficient "
3073						       "working devices for recovery.\n",
3074						       mdname(mddev));
3075					mirror->recovery_disabled
3076						= mddev->recovery_disabled;
3077				}
 
 
 
 
 
 
 
3078				break;
3079			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080		}
3081		if (biolist == NULL) {
3082			while (r10_bio) {
3083				struct r10bio *rb2 = r10_bio;
3084				r10_bio = (struct r10bio*) rb2->master_bio;
3085				rb2->master_bio = NULL;
3086				put_buf(rb2);
3087			}
3088			goto giveup;
3089		}
3090	} else {
3091		/* resync. Schedule a read for every block at this virt offset */
3092		int count = 0;
3093
3094		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
 
 
 
 
 
 
 
 
3095
3096		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3097				       &sync_blocks, mddev->degraded) &&
3098		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3099						 &mddev->recovery)) {
3100			/* We can skip this block */
3101			*skipped = 1;
3102			return sync_blocks + sectors_skipped;
3103		}
3104		if (sync_blocks < max_sync)
3105			max_sync = sync_blocks;
3106		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
3107
3108		r10_bio->mddev = mddev;
3109		atomic_set(&r10_bio->remaining, 0);
3110		raise_barrier(conf, 0);
3111		conf->next_resync = sector_nr;
3112
3113		r10_bio->master_bio = NULL;
3114		r10_bio->sector = sector_nr;
3115		set_bit(R10BIO_IsSync, &r10_bio->state);
3116		raid10_find_phys(conf, r10_bio);
3117		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3118
3119		for (i = 0; i < conf->copies; i++) {
3120			int d = r10_bio->devs[i].devnum;
3121			sector_t first_bad, sector;
3122			int bad_sectors;
 
3123
3124			if (r10_bio->devs[i].repl_bio)
3125				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3126
3127			bio = r10_bio->devs[i].bio;
3128			bio->bi_end_io = NULL;
3129			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3130			if (conf->mirrors[d].rdev == NULL ||
3131			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
 
3132				continue;
 
3133			sector = r10_bio->devs[i].addr;
3134			if (is_badblock(conf->mirrors[d].rdev,
3135					sector, max_sync,
3136					&first_bad, &bad_sectors)) {
3137				if (first_bad > sector)
3138					max_sync = first_bad - sector;
3139				else {
3140					bad_sectors -= (sector - first_bad);
3141					if (max_sync > bad_sectors)
3142						max_sync = max_sync;
 
3143					continue;
3144				}
3145			}
3146			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3147			atomic_inc(&r10_bio->remaining);
3148			bio->bi_next = biolist;
3149			biolist = bio;
3150			bio->bi_private = r10_bio;
3151			bio->bi_end_io = end_sync_read;
3152			bio->bi_rw = READ;
3153			bio->bi_sector = sector +
3154				conf->mirrors[d].rdev->data_offset;
3155			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
3156			count++;
3157
3158			if (conf->mirrors[d].replacement == NULL ||
3159			    test_bit(Faulty,
3160				     &conf->mirrors[d].replacement->flags))
3161				continue;
 
 
3162
3163			/* Need to set up for writing to the replacement */
3164			bio = r10_bio->devs[i].repl_bio;
3165			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3166
3167			sector = r10_bio->devs[i].addr;
3168			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3169			bio->bi_next = biolist;
3170			biolist = bio;
3171			bio->bi_private = r10_bio;
3172			bio->bi_end_io = end_sync_write;
3173			bio->bi_rw = WRITE;
3174			bio->bi_sector = sector +
3175				conf->mirrors[d].replacement->data_offset;
3176			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
 
3177			count++;
 
3178		}
3179
3180		if (count < 2) {
3181			for (i=0; i<conf->copies; i++) {
3182				int d = r10_bio->devs[i].devnum;
3183				if (r10_bio->devs[i].bio->bi_end_io)
3184					rdev_dec_pending(conf->mirrors[d].rdev,
3185							 mddev);
3186				if (r10_bio->devs[i].repl_bio &&
3187				    r10_bio->devs[i].repl_bio->bi_end_io)
3188					rdev_dec_pending(
3189						conf->mirrors[d].replacement,
3190						mddev);
3191			}
3192			put_buf(r10_bio);
3193			biolist = NULL;
3194			goto giveup;
3195		}
3196	}
3197
3198	for (bio = biolist; bio ; bio=bio->bi_next) {
3199
3200		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3201		if (bio->bi_end_io)
3202			bio->bi_flags |= 1 << BIO_UPTODATE;
3203		bio->bi_vcnt = 0;
3204		bio->bi_idx = 0;
3205		bio->bi_phys_segments = 0;
3206		bio->bi_size = 0;
3207	}
3208
3209	nr_sectors = 0;
3210	if (sector_nr + max_sync < max_sector)
3211		max_sector = sector_nr + max_sync;
3212	do {
3213		struct page *page;
3214		int len = PAGE_SIZE;
3215		if (sector_nr + (len>>9) > max_sector)
3216			len = (max_sector - sector_nr) << 9;
3217		if (len == 0)
3218			break;
3219		for (bio= biolist ; bio ; bio=bio->bi_next) {
3220			struct bio *bio2;
3221			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3222			if (bio_add_page(bio, page, len, 0))
3223				continue;
3224
3225			/* stop here */
3226			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3227			for (bio2 = biolist;
3228			     bio2 && bio2 != bio;
3229			     bio2 = bio2->bi_next) {
3230				/* remove last page from this bio */
3231				bio2->bi_vcnt--;
3232				bio2->bi_size -= len;
3233				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3234			}
3235			goto bio_full;
3236		}
3237		nr_sectors += len>>9;
3238		sector_nr += len>>9;
3239	} while (biolist->bi_vcnt < RESYNC_PAGES);
3240 bio_full:
3241	r10_bio->sectors = nr_sectors;
3242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3243	while (biolist) {
3244		bio = biolist;
3245		biolist = biolist->bi_next;
3246
3247		bio->bi_next = NULL;
3248		r10_bio = bio->bi_private;
3249		r10_bio->sectors = nr_sectors;
3250
3251		if (bio->bi_end_io == end_sync_read) {
3252			md_sync_acct(bio->bi_bdev, nr_sectors);
3253			generic_make_request(bio);
 
3254		}
3255	}
3256
3257	if (sectors_skipped)
3258		/* pretend they weren't skipped, it makes
3259		 * no important difference in this case
3260		 */
3261		md_done_sync(mddev, sectors_skipped, 1);
3262
3263	return sectors_skipped + nr_sectors;
3264 giveup:
3265	/* There is nowhere to write, so all non-sync
3266	 * drives must be failed or in resync, all drives
3267	 * have a bad block, so try the next chunk...
3268	 */
3269	if (sector_nr + max_sync < max_sector)
3270		max_sector = sector_nr + max_sync;
3271
3272	sectors_skipped += (max_sector - sector_nr);
3273	chunks_skipped ++;
3274	sector_nr = max_sector;
3275	goto skipped;
3276}
3277
3278static sector_t
3279raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3280{
3281	sector_t size;
3282	struct r10conf *conf = mddev->private;
3283
3284	if (!raid_disks)
3285		raid_disks = min(conf->geo.raid_disks,
3286				 conf->prev.raid_disks);
3287	if (!sectors)
3288		sectors = conf->dev_sectors;
3289
3290	size = sectors >> conf->geo.chunk_shift;
3291	sector_div(size, conf->geo.far_copies);
3292	size = size * raid_disks;
3293	sector_div(size, conf->geo.near_copies);
3294
3295	return size << conf->geo.chunk_shift;
3296}
3297
3298static void calc_sectors(struct r10conf *conf, sector_t size)
3299{
3300	/* Calculate the number of sectors-per-device that will
3301	 * actually be used, and set conf->dev_sectors and
3302	 * conf->stride
3303	 */
3304
3305	size = size >> conf->geo.chunk_shift;
3306	sector_div(size, conf->geo.far_copies);
3307	size = size * conf->geo.raid_disks;
3308	sector_div(size, conf->geo.near_copies);
3309	/* 'size' is now the number of chunks in the array */
3310	/* calculate "used chunks per device" */
3311	size = size * conf->copies;
3312
3313	/* We need to round up when dividing by raid_disks to
3314	 * get the stride size.
3315	 */
3316	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3317
3318	conf->dev_sectors = size << conf->geo.chunk_shift;
3319
3320	if (conf->geo.far_offset)
3321		conf->geo.stride = 1 << conf->geo.chunk_shift;
3322	else {
3323		sector_div(size, conf->geo.far_copies);
3324		conf->geo.stride = size << conf->geo.chunk_shift;
3325	}
3326}
3327
3328enum geo_type {geo_new, geo_old, geo_start};
3329static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3330{
3331	int nc, fc, fo;
3332	int layout, chunk, disks;
3333	switch (new) {
3334	case geo_old:
3335		layout = mddev->layout;
3336		chunk = mddev->chunk_sectors;
3337		disks = mddev->raid_disks - mddev->delta_disks;
3338		break;
3339	case geo_new:
3340		layout = mddev->new_layout;
3341		chunk = mddev->new_chunk_sectors;
3342		disks = mddev->raid_disks;
3343		break;
3344	default: /* avoid 'may be unused' warnings */
3345	case geo_start: /* new when starting reshape - raid_disks not
3346			 * updated yet. */
3347		layout = mddev->new_layout;
3348		chunk = mddev->new_chunk_sectors;
3349		disks = mddev->raid_disks + mddev->delta_disks;
3350		break;
3351	}
3352	if (layout >> 17)
3353		return -1;
3354	if (chunk < (PAGE_SIZE >> 9) ||
3355	    !is_power_of_2(chunk))
3356		return -2;
3357	nc = layout & 255;
3358	fc = (layout >> 8) & 255;
3359	fo = layout & (1<<16);
3360	geo->raid_disks = disks;
3361	geo->near_copies = nc;
3362	geo->far_copies = fc;
3363	geo->far_offset = fo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3364	geo->chunk_mask = chunk - 1;
3365	geo->chunk_shift = ffz(~chunk);
3366	return nc*fc;
3367}
3368
3369static struct r10conf *setup_conf(struct mddev *mddev)
3370{
3371	struct r10conf *conf = NULL;
3372	int err = -EINVAL;
3373	struct geom geo;
3374	int copies;
3375
3376	copies = setup_geo(&geo, mddev, geo_new);
3377
3378	if (copies == -2) {
3379		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3380		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3381		       mdname(mddev), PAGE_SIZE);
3382		goto out;
3383	}
3384
3385	if (copies < 2 || copies > mddev->raid_disks) {
3386		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3387		       mdname(mddev), mddev->new_layout);
3388		goto out;
3389	}
3390
3391	err = -ENOMEM;
3392	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3393	if (!conf)
3394		goto out;
3395
3396	/* FIXME calc properly */
3397	conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3398							    max(0,mddev->delta_disks)),
3399				GFP_KERNEL);
3400	if (!conf->mirrors)
3401		goto out;
3402
3403	conf->tmppage = alloc_page(GFP_KERNEL);
3404	if (!conf->tmppage)
3405		goto out;
3406
3407	conf->geo = geo;
3408	conf->copies = copies;
3409	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3410					   r10bio_pool_free, conf);
3411	if (!conf->r10bio_pool)
 
 
 
 
3412		goto out;
3413
3414	calc_sectors(conf, mddev->dev_sectors);
3415	if (mddev->reshape_position == MaxSector) {
3416		conf->prev = conf->geo;
3417		conf->reshape_progress = MaxSector;
3418	} else {
3419		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3420			err = -EINVAL;
3421			goto out;
3422		}
3423		conf->reshape_progress = mddev->reshape_position;
3424		if (conf->prev.far_offset)
3425			conf->prev.stride = 1 << conf->prev.chunk_shift;
3426		else
3427			/* far_copies must be 1 */
3428			conf->prev.stride = conf->dev_sectors;
3429	}
 
3430	spin_lock_init(&conf->device_lock);
3431	INIT_LIST_HEAD(&conf->retry_list);
 
3432
3433	spin_lock_init(&conf->resync_lock);
3434	init_waitqueue_head(&conf->wait_barrier);
 
3435
 
3436	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3437	if (!conf->thread)
3438		goto out;
3439
3440	conf->mddev = mddev;
3441	return conf;
3442
3443 out:
3444	if (err == -ENOMEM)
3445		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3446		       mdname(mddev));
3447	if (conf) {
3448		if (conf->r10bio_pool)
3449			mempool_destroy(conf->r10bio_pool);
3450		kfree(conf->mirrors);
3451		safe_put_page(conf->tmppage);
 
3452		kfree(conf);
3453	}
3454	return ERR_PTR(err);
3455}
3456
3457static int run(struct mddev *mddev)
3458{
3459	struct r10conf *conf;
3460	int i, disk_idx, chunk_size;
3461	struct mirror_info *disk;
3462	struct md_rdev *rdev;
3463	sector_t size;
3464	sector_t min_offset_diff = 0;
3465	int first = 1;
 
 
 
 
3466
3467	if (mddev->private == NULL) {
3468		conf = setup_conf(mddev);
3469		if (IS_ERR(conf))
3470			return PTR_ERR(conf);
3471		mddev->private = conf;
3472	}
3473	conf = mddev->private;
3474	if (!conf)
3475		goto out;
3476
 
 
 
 
 
 
 
 
 
 
 
 
3477	mddev->thread = conf->thread;
3478	conf->thread = NULL;
3479
3480	chunk_size = mddev->chunk_sectors << 9;
3481	blk_queue_io_min(mddev->queue, chunk_size);
3482	if (conf->geo.raid_disks % conf->geo.near_copies)
3483		blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3484	else
3485		blk_queue_io_opt(mddev->queue, chunk_size *
3486				 (conf->geo.raid_disks / conf->geo.near_copies));
 
 
 
 
 
 
3487
3488	rdev_for_each(rdev, mddev) {
3489		long long diff;
3490		struct request_queue *q;
3491
3492		disk_idx = rdev->raid_disk;
3493		if (disk_idx < 0)
3494			continue;
3495		if (disk_idx >= conf->geo.raid_disks &&
3496		    disk_idx >= conf->prev.raid_disks)
3497			continue;
3498		disk = conf->mirrors + disk_idx;
3499
3500		if (test_bit(Replacement, &rdev->flags)) {
3501			if (disk->replacement)
3502				goto out_free_conf;
3503			disk->replacement = rdev;
3504		} else {
3505			if (disk->rdev)
3506				goto out_free_conf;
3507			disk->rdev = rdev;
3508		}
3509		q = bdev_get_queue(rdev->bdev);
3510		if (q->merge_bvec_fn)
3511			mddev->merge_check_needed = 1;
3512		diff = (rdev->new_data_offset - rdev->data_offset);
3513		if (!mddev->reshape_backwards)
3514			diff = -diff;
3515		if (diff < 0)
3516			diff = 0;
3517		if (first || diff < min_offset_diff)
3518			min_offset_diff = diff;
3519
3520		disk_stack_limits(mddev->gendisk, rdev->bdev,
3521				  rdev->data_offset << 9);
 
3522
3523		disk->head_position = 0;
 
 
 
 
3524	}
3525
 
 
 
 
 
 
 
 
3526	/* need to check that every block has at least one working mirror */
3527	if (!enough(conf, -1)) {
3528		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3529		       mdname(mddev));
3530		goto out_free_conf;
3531	}
3532
3533	if (conf->reshape_progress != MaxSector) {
3534		/* must ensure that shape change is supported */
3535		if (conf->geo.far_copies != 1 &&
3536		    conf->geo.far_offset == 0)
3537			goto out_free_conf;
3538		if (conf->prev.far_copies != 1 &&
3539		    conf->geo.far_offset == 0)
3540			goto out_free_conf;
3541	}
3542
3543	mddev->degraded = 0;
3544	for (i = 0;
3545	     i < conf->geo.raid_disks
3546		     || i < conf->prev.raid_disks;
3547	     i++) {
3548
3549		disk = conf->mirrors + i;
3550
3551		if (!disk->rdev && disk->replacement) {
3552			/* The replacement is all we have - use it */
3553			disk->rdev = disk->replacement;
3554			disk->replacement = NULL;
3555			clear_bit(Replacement, &disk->rdev->flags);
3556		}
3557
3558		if (!disk->rdev ||
3559		    !test_bit(In_sync, &disk->rdev->flags)) {
3560			disk->head_position = 0;
3561			mddev->degraded++;
3562			if (disk->rdev)
 
3563				conf->fullsync = 1;
3564		}
 
 
 
 
 
 
 
3565		disk->recovery_disabled = mddev->recovery_disabled - 1;
3566	}
3567
3568	if (mddev->recovery_cp != MaxSector)
3569		printk(KERN_NOTICE "md/raid10:%s: not clean"
3570		       " -- starting background reconstruction\n",
3571		       mdname(mddev));
3572	printk(KERN_INFO
3573		"md/raid10:%s: active with %d out of %d devices\n",
3574		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3575		conf->geo.raid_disks);
3576	/*
3577	 * Ok, everything is just fine now
3578	 */
3579	mddev->dev_sectors = conf->dev_sectors;
3580	size = raid10_size(mddev, 0, 0);
3581	md_set_array_sectors(mddev, size);
3582	mddev->resync_max_sectors = size;
 
3583
3584	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3585	mddev->queue->backing_dev_info.congested_data = mddev;
3586
3587	/* Calculate max read-ahead size.
3588	 * We need to readahead at least twice a whole stripe....
3589	 * maybe...
3590	 */
3591	{
3592		int stripe = conf->geo.raid_disks *
3593			((mddev->chunk_sectors << 9) / PAGE_SIZE);
 
 
 
 
 
3594		stripe /= conf->geo.near_copies;
3595		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3596			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3597	}
3598
3599	blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3600
3601	if (md_integrity_register(mddev))
3602		goto out_free_conf;
3603
3604	if (conf->reshape_progress != MaxSector) {
3605		unsigned long before_length, after_length;
3606
3607		before_length = ((1 << conf->prev.chunk_shift) *
3608				 conf->prev.far_copies);
3609		after_length = ((1 << conf->geo.chunk_shift) *
3610				conf->geo.far_copies);
3611
3612		if (max(before_length, after_length) > min_offset_diff) {
3613			/* This cannot work */
3614			printk("md/raid10: offset difference not enough to continue reshape\n");
3615			goto out_free_conf;
3616		}
3617		conf->offset_diff = min_offset_diff;
3618
3619		conf->reshape_safe = conf->reshape_progress;
3620		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3621		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3622		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3623		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3624		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3625							"reshape");
 
 
3626	}
3627
3628	return 0;
3629
3630out_free_conf:
3631	md_unregister_thread(&mddev->thread);
3632	if (conf->r10bio_pool)
3633		mempool_destroy(conf->r10bio_pool);
3634	safe_put_page(conf->tmppage);
3635	kfree(conf->mirrors);
3636	kfree(conf);
3637	mddev->private = NULL;
3638out:
3639	return -EIO;
3640}
3641
3642static int stop(struct mddev *mddev)
3643{
3644	struct r10conf *conf = mddev->private;
3645
3646	raise_barrier(conf, 0);
3647	lower_barrier(conf);
3648
3649	md_unregister_thread(&mddev->thread);
3650	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3651	if (conf->r10bio_pool)
3652		mempool_destroy(conf->r10bio_pool);
3653	kfree(conf->mirrors);
 
 
 
3654	kfree(conf);
3655	mddev->private = NULL;
3656	return 0;
3657}
3658
3659static void raid10_quiesce(struct mddev *mddev, int state)
3660{
3661	struct r10conf *conf = mddev->private;
3662
3663	switch(state) {
3664	case 1:
3665		raise_barrier(conf, 0);
3666		break;
3667	case 0:
3668		lower_barrier(conf);
3669		break;
3670	}
3671}
3672
3673static int raid10_resize(struct mddev *mddev, sector_t sectors)
3674{
3675	/* Resize of 'far' arrays is not supported.
3676	 * For 'near' and 'offset' arrays we can set the
3677	 * number of sectors used to be an appropriate multiple
3678	 * of the chunk size.
3679	 * For 'offset', this is far_copies*chunksize.
3680	 * For 'near' the multiplier is the LCM of
3681	 * near_copies and raid_disks.
3682	 * So if far_copies > 1 && !far_offset, fail.
3683	 * Else find LCM(raid_disks, near_copy)*far_copies and
3684	 * multiply by chunk_size.  Then round to this number.
3685	 * This is mostly done by raid10_size()
3686	 */
3687	struct r10conf *conf = mddev->private;
3688	sector_t oldsize, size;
3689
3690	if (mddev->reshape_position != MaxSector)
3691		return -EBUSY;
3692
3693	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3694		return -EINVAL;
3695
3696	oldsize = raid10_size(mddev, 0, 0);
3697	size = raid10_size(mddev, sectors, 0);
3698	if (mddev->external_size &&
3699	    mddev->array_sectors > size)
3700		return -EINVAL;
3701	if (mddev->bitmap) {
3702		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3703		if (ret)
3704			return ret;
3705	}
3706	md_set_array_sectors(mddev, size);
3707	set_capacity(mddev->gendisk, mddev->array_sectors);
3708	revalidate_disk(mddev->gendisk);
3709	if (sectors > mddev->dev_sectors &&
3710	    mddev->recovery_cp > oldsize) {
3711		mddev->recovery_cp = oldsize;
3712		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3713	}
3714	calc_sectors(conf, sectors);
3715	mddev->dev_sectors = conf->dev_sectors;
3716	mddev->resync_max_sectors = size;
3717	return 0;
3718}
3719
3720static void *raid10_takeover_raid0(struct mddev *mddev)
3721{
3722	struct md_rdev *rdev;
3723	struct r10conf *conf;
3724
3725	if (mddev->degraded > 0) {
3726		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3727		       mdname(mddev));
3728		return ERR_PTR(-EINVAL);
3729	}
 
3730
3731	/* Set new parameters */
3732	mddev->new_level = 10;
3733	/* new layout: far_copies = 1, near_copies = 2 */
3734	mddev->new_layout = (1<<8) + 2;
3735	mddev->new_chunk_sectors = mddev->chunk_sectors;
3736	mddev->delta_disks = mddev->raid_disks;
3737	mddev->raid_disks *= 2;
3738	/* make sure it will be not marked as dirty */
3739	mddev->recovery_cp = MaxSector;
 
3740
3741	conf = setup_conf(mddev);
3742	if (!IS_ERR(conf)) {
3743		rdev_for_each(rdev, mddev)
3744			if (rdev->raid_disk >= 0)
3745				rdev->new_raid_disk = rdev->raid_disk * 2;
 
 
3746		conf->barrier = 1;
3747	}
3748
3749	return conf;
3750}
3751
3752static void *raid10_takeover(struct mddev *mddev)
3753{
3754	struct r0conf *raid0_conf;
3755
3756	/* raid10 can take over:
3757	 *  raid0 - providing it has only two drives
3758	 */
3759	if (mddev->level == 0) {
3760		/* for raid0 takeover only one zone is supported */
3761		raid0_conf = mddev->private;
3762		if (raid0_conf->nr_strip_zones > 1) {
3763			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3764			       " with more than one zone.\n",
3765			       mdname(mddev));
3766			return ERR_PTR(-EINVAL);
3767		}
3768		return raid10_takeover_raid0(mddev);
 
 
3769	}
3770	return ERR_PTR(-EINVAL);
3771}
3772
3773static int raid10_check_reshape(struct mddev *mddev)
3774{
3775	/* Called when there is a request to change
3776	 * - layout (to ->new_layout)
3777	 * - chunk size (to ->new_chunk_sectors)
3778	 * - raid_disks (by delta_disks)
3779	 * or when trying to restart a reshape that was ongoing.
3780	 *
3781	 * We need to validate the request and possibly allocate
3782	 * space if that might be an issue later.
3783	 *
3784	 * Currently we reject any reshape of a 'far' mode array,
3785	 * allow chunk size to change if new is generally acceptable,
3786	 * allow raid_disks to increase, and allow
3787	 * a switch between 'near' mode and 'offset' mode.
3788	 */
3789	struct r10conf *conf = mddev->private;
3790	struct geom geo;
3791
3792	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3793		return -EINVAL;
3794
3795	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3796		/* mustn't change number of copies */
3797		return -EINVAL;
3798	if (geo.far_copies > 1 && !geo.far_offset)
3799		/* Cannot switch to 'far' mode */
3800		return -EINVAL;
3801
3802	if (mddev->array_sectors & geo.chunk_mask)
3803			/* not factor of array size */
3804			return -EINVAL;
3805
3806	if (!enough(conf, -1))
3807		return -EINVAL;
3808
3809	kfree(conf->mirrors_new);
3810	conf->mirrors_new = NULL;
3811	if (mddev->delta_disks > 0) {
3812		/* allocate new 'mirrors' list */
3813		conf->mirrors_new = kzalloc(
3814			sizeof(struct mirror_info)
3815			*(mddev->raid_disks +
3816			  mddev->delta_disks),
3817			GFP_KERNEL);
3818		if (!conf->mirrors_new)
3819			return -ENOMEM;
3820	}
3821	return 0;
3822}
3823
3824/*
3825 * Need to check if array has failed when deciding whether to:
3826 *  - start an array
3827 *  - remove non-faulty devices
3828 *  - add a spare
3829 *  - allow a reshape
3830 * This determination is simple when no reshape is happening.
3831 * However if there is a reshape, we need to carefully check
3832 * both the before and after sections.
3833 * This is because some failed devices may only affect one
3834 * of the two sections, and some non-in_sync devices may
3835 * be insync in the section most affected by failed devices.
3836 */
3837static int calc_degraded(struct r10conf *conf)
3838{
3839	int degraded, degraded2;
3840	int i;
3841
3842	rcu_read_lock();
3843	degraded = 0;
3844	/* 'prev' section first */
3845	for (i = 0; i < conf->prev.raid_disks; i++) {
3846		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3847		if (!rdev || test_bit(Faulty, &rdev->flags))
3848			degraded++;
3849		else if (!test_bit(In_sync, &rdev->flags))
3850			/* When we can reduce the number of devices in
3851			 * an array, this might not contribute to
3852			 * 'degraded'.  It does now.
3853			 */
3854			degraded++;
3855	}
3856	rcu_read_unlock();
3857	if (conf->geo.raid_disks == conf->prev.raid_disks)
3858		return degraded;
3859	rcu_read_lock();
3860	degraded2 = 0;
3861	for (i = 0; i < conf->geo.raid_disks; i++) {
3862		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3863		if (!rdev || test_bit(Faulty, &rdev->flags))
3864			degraded2++;
3865		else if (!test_bit(In_sync, &rdev->flags)) {
3866			/* If reshape is increasing the number of devices,
3867			 * this section has already been recovered, so
3868			 * it doesn't contribute to degraded.
3869			 * else it does.
3870			 */
3871			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3872				degraded2++;
3873		}
3874	}
3875	rcu_read_unlock();
3876	if (degraded2 > degraded)
3877		return degraded2;
3878	return degraded;
3879}
3880
3881static int raid10_start_reshape(struct mddev *mddev)
3882{
3883	/* A 'reshape' has been requested. This commits
3884	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3885	 * This also checks if there are enough spares and adds them
3886	 * to the array.
3887	 * We currently require enough spares to make the final
3888	 * array non-degraded.  We also require that the difference
3889	 * between old and new data_offset - on each device - is
3890	 * enough that we never risk over-writing.
3891	 */
3892
3893	unsigned long before_length, after_length;
3894	sector_t min_offset_diff = 0;
3895	int first = 1;
3896	struct geom new;
3897	struct r10conf *conf = mddev->private;
3898	struct md_rdev *rdev;
3899	int spares = 0;
3900	int ret;
3901
3902	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3903		return -EBUSY;
3904
3905	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3906		return -EINVAL;
3907
3908	before_length = ((1 << conf->prev.chunk_shift) *
3909			 conf->prev.far_copies);
3910	after_length = ((1 << conf->geo.chunk_shift) *
3911			conf->geo.far_copies);
3912
3913	rdev_for_each(rdev, mddev) {
3914		if (!test_bit(In_sync, &rdev->flags)
3915		    && !test_bit(Faulty, &rdev->flags))
3916			spares++;
3917		if (rdev->raid_disk >= 0) {
3918			long long diff = (rdev->new_data_offset
3919					  - rdev->data_offset);
3920			if (!mddev->reshape_backwards)
3921				diff = -diff;
3922			if (diff < 0)
3923				diff = 0;
3924			if (first || diff < min_offset_diff)
3925				min_offset_diff = diff;
 
3926		}
3927	}
3928
3929	if (max(before_length, after_length) > min_offset_diff)
3930		return -EINVAL;
3931
3932	if (spares < mddev->delta_disks)
3933		return -EINVAL;
3934
3935	conf->offset_diff = min_offset_diff;
3936	spin_lock_irq(&conf->device_lock);
3937	if (conf->mirrors_new) {
3938		memcpy(conf->mirrors_new, conf->mirrors,
3939		       sizeof(struct mirror_info)*conf->prev.raid_disks);
3940		smp_mb();
3941		kfree(conf->mirrors_old); /* FIXME and elsewhere */
3942		conf->mirrors_old = conf->mirrors;
3943		conf->mirrors = conf->mirrors_new;
3944		conf->mirrors_new = NULL;
3945	}
3946	setup_geo(&conf->geo, mddev, geo_start);
3947	smp_mb();
3948	if (mddev->reshape_backwards) {
3949		sector_t size = raid10_size(mddev, 0, 0);
3950		if (size < mddev->array_sectors) {
3951			spin_unlock_irq(&conf->device_lock);
3952			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3953			       mdname(mddev));
3954			return -EINVAL;
3955		}
3956		mddev->resync_max_sectors = size;
3957		conf->reshape_progress = size;
3958	} else
3959		conf->reshape_progress = 0;
 
3960	spin_unlock_irq(&conf->device_lock);
3961
3962	if (mddev->delta_disks && mddev->bitmap) {
3963		ret = bitmap_resize(mddev->bitmap,
3964				    raid10_size(mddev, 0,
3965						conf->geo.raid_disks),
3966				    0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3967		if (ret)
3968			goto abort;
 
 
 
 
 
 
3969	}
 
3970	if (mddev->delta_disks > 0) {
3971		rdev_for_each(rdev, mddev)
3972			if (rdev->raid_disk < 0 &&
3973			    !test_bit(Faulty, &rdev->flags)) {
3974				if (raid10_add_disk(mddev, rdev) == 0) {
3975					if (rdev->raid_disk >=
3976					    conf->prev.raid_disks)
3977						set_bit(In_sync, &rdev->flags);
3978					else
3979						rdev->recovery_offset = 0;
3980
3981					if (sysfs_link_rdev(mddev, rdev))
3982						/* Failure here  is OK */;
3983				}
3984			} else if (rdev->raid_disk >= conf->prev.raid_disks
3985				   && !test_bit(Faulty, &rdev->flags)) {
3986				/* This is a spare that was manually added */
3987				set_bit(In_sync, &rdev->flags);
3988			}
3989	}
3990	/* When a reshape changes the number of devices,
3991	 * ->degraded is measured against the larger of the
3992	 * pre and  post numbers.
3993	 */
3994	spin_lock_irq(&conf->device_lock);
3995	mddev->degraded = calc_degraded(conf);
3996	spin_unlock_irq(&conf->device_lock);
3997	mddev->raid_disks = conf->geo.raid_disks;
3998	mddev->reshape_position = conf->reshape_progress;
3999	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4000
4001	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4002	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 
4003	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4004	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4005
4006	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4007						"reshape");
4008	if (!mddev->sync_thread) {
4009		ret = -EAGAIN;
4010		goto abort;
4011	}
4012	conf->reshape_checkpoint = jiffies;
4013	md_wakeup_thread(mddev->sync_thread);
4014	md_new_event(mddev);
4015	return 0;
4016
4017abort:
4018	mddev->recovery = 0;
4019	spin_lock_irq(&conf->device_lock);
4020	conf->geo = conf->prev;
4021	mddev->raid_disks = conf->geo.raid_disks;
4022	rdev_for_each(rdev, mddev)
4023		rdev->new_data_offset = rdev->data_offset;
4024	smp_wmb();
4025	conf->reshape_progress = MaxSector;
 
4026	mddev->reshape_position = MaxSector;
4027	spin_unlock_irq(&conf->device_lock);
4028	return ret;
4029}
4030
4031/* Calculate the last device-address that could contain
4032 * any block from the chunk that includes the array-address 's'
4033 * and report the next address.
4034 * i.e. the address returned will be chunk-aligned and after
4035 * any data that is in the chunk containing 's'.
4036 */
4037static sector_t last_dev_address(sector_t s, struct geom *geo)
4038{
4039	s = (s | geo->chunk_mask) + 1;
4040	s >>= geo->chunk_shift;
4041	s *= geo->near_copies;
4042	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4043	s *= geo->far_copies;
4044	s <<= geo->chunk_shift;
4045	return s;
4046}
4047
4048/* Calculate the first device-address that could contain
4049 * any block from the chunk that includes the array-address 's'.
4050 * This too will be the start of a chunk
4051 */
4052static sector_t first_dev_address(sector_t s, struct geom *geo)
4053{
4054	s >>= geo->chunk_shift;
4055	s *= geo->near_copies;
4056	sector_div(s, geo->raid_disks);
4057	s *= geo->far_copies;
4058	s <<= geo->chunk_shift;
4059	return s;
4060}
4061
4062static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4063				int *skipped)
4064{
4065	/* We simply copy at most one chunk (smallest of old and new)
4066	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4067	 * or we hit a bad block or something.
4068	 * This might mean we pause for normal IO in the middle of
4069	 * a chunk, but that is not a problem was mddev->reshape_position
4070	 * can record any location.
4071	 *
4072	 * If we will want to write to a location that isn't
4073	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4074	 * we need to flush all reshape requests and update the metadata.
4075	 *
4076	 * When reshaping forwards (e.g. to more devices), we interpret
4077	 * 'safe' as the earliest block which might not have been copied
4078	 * down yet.  We divide this by previous stripe size and multiply
4079	 * by previous stripe length to get lowest device offset that we
4080	 * cannot write to yet.
4081	 * We interpret 'sector_nr' as an address that we want to write to.
4082	 * From this we use last_device_address() to find where we might
4083	 * write to, and first_device_address on the  'safe' position.
4084	 * If this 'next' write position is after the 'safe' position,
4085	 * we must update the metadata to increase the 'safe' position.
4086	 *
4087	 * When reshaping backwards, we round in the opposite direction
4088	 * and perform the reverse test:  next write position must not be
4089	 * less than current safe position.
4090	 *
4091	 * In all this the minimum difference in data offsets
4092	 * (conf->offset_diff - always positive) allows a bit of slack,
4093	 * so next can be after 'safe', but not by more than offset_disk
4094	 *
4095	 * We need to prepare all the bios here before we start any IO
4096	 * to ensure the size we choose is acceptable to all devices.
4097	 * The means one for each copy for write-out and an extra one for
4098	 * read-in.
4099	 * We store the read-in bio in ->master_bio and the others in
4100	 * ->devs[x].bio and ->devs[x].repl_bio.
4101	 */
4102	struct r10conf *conf = mddev->private;
4103	struct r10bio *r10_bio;
4104	sector_t next, safe, last;
4105	int max_sectors;
4106	int nr_sectors;
4107	int s;
4108	struct md_rdev *rdev;
4109	int need_flush = 0;
4110	struct bio *blist;
4111	struct bio *bio, *read_bio;
4112	int sectors_done = 0;
 
4113
4114	if (sector_nr == 0) {
4115		/* If restarting in the middle, skip the initial sectors */
4116		if (mddev->reshape_backwards &&
4117		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4118			sector_nr = (raid10_size(mddev, 0, 0)
4119				     - conf->reshape_progress);
4120		} else if (!mddev->reshape_backwards &&
4121			   conf->reshape_progress > 0)
4122			sector_nr = conf->reshape_progress;
4123		if (sector_nr) {
4124			mddev->curr_resync_completed = sector_nr;
4125			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4126			*skipped = 1;
4127			return sector_nr;
4128		}
4129	}
4130
4131	/* We don't use sector_nr to track where we are up to
4132	 * as that doesn't work well for ->reshape_backwards.
4133	 * So just use ->reshape_progress.
4134	 */
4135	if (mddev->reshape_backwards) {
4136		/* 'next' is the earliest device address that we might
4137		 * write to for this chunk in the new layout
4138		 */
4139		next = first_dev_address(conf->reshape_progress - 1,
4140					 &conf->geo);
4141
4142		/* 'safe' is the last device address that we might read from
4143		 * in the old layout after a restart
4144		 */
4145		safe = last_dev_address(conf->reshape_safe - 1,
4146					&conf->prev);
4147
4148		if (next + conf->offset_diff < safe)
4149			need_flush = 1;
4150
4151		last = conf->reshape_progress - 1;
4152		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4153					       & conf->prev.chunk_mask);
4154		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4155			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4156	} else {
4157		/* 'next' is after the last device address that we
4158		 * might write to for this chunk in the new layout
4159		 */
4160		next = last_dev_address(conf->reshape_progress, &conf->geo);
4161
4162		/* 'safe' is the earliest device address that we might
4163		 * read from in the old layout after a restart
4164		 */
4165		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4166
4167		/* Need to update metadata if 'next' might be beyond 'safe'
4168		 * as that would possibly corrupt data
4169		 */
4170		if (next > safe + conf->offset_diff)
4171			need_flush = 1;
4172
4173		sector_nr = conf->reshape_progress;
4174		last  = sector_nr | (conf->geo.chunk_mask
4175				     & conf->prev.chunk_mask);
4176
4177		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4178			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4179	}
4180
4181	if (need_flush ||
4182	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4183		/* Need to update reshape_position in metadata */
4184		wait_barrier(conf);
4185		mddev->reshape_position = conf->reshape_progress;
4186		if (mddev->reshape_backwards)
4187			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4188				- conf->reshape_progress;
4189		else
4190			mddev->curr_resync_completed = conf->reshape_progress;
4191		conf->reshape_checkpoint = jiffies;
4192		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4193		md_wakeup_thread(mddev->thread);
4194		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4195			   kthread_should_stop());
 
 
 
 
4196		conf->reshape_safe = mddev->reshape_position;
4197		allow_barrier(conf);
4198	}
4199
 
4200read_more:
4201	/* Now schedule reads for blocks from sector_nr to last */
4202	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4203	raise_barrier(conf, sectors_done != 0);
 
4204	atomic_set(&r10_bio->remaining, 0);
4205	r10_bio->mddev = mddev;
4206	r10_bio->sector = sector_nr;
4207	set_bit(R10BIO_IsReshape, &r10_bio->state);
4208	r10_bio->sectors = last - sector_nr + 1;
4209	rdev = read_balance(conf, r10_bio, &max_sectors);
4210	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4211
4212	if (!rdev) {
4213		/* Cannot read from here, so need to record bad blocks
4214		 * on all the target devices.
4215		 */
4216		// FIXME
 
4217		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4218		return sectors_done;
4219	}
4220
4221	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4222
4223	read_bio->bi_bdev = rdev->bdev;
4224	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4225			       + rdev->data_offset);
4226	read_bio->bi_private = r10_bio;
4227	read_bio->bi_end_io = end_sync_read;
4228	read_bio->bi_rw = READ;
4229	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4230	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4231	read_bio->bi_vcnt = 0;
4232	read_bio->bi_idx = 0;
4233	read_bio->bi_size = 0;
4234	r10_bio->master_bio = read_bio;
4235	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4237	/* Now find the locations in the new layout */
4238	__raid10_find_phys(&conf->geo, r10_bio);
4239
4240	blist = read_bio;
4241	read_bio->bi_next = NULL;
4242
 
4243	for (s = 0; s < conf->copies*2; s++) {
4244		struct bio *b;
4245		int d = r10_bio->devs[s/2].devnum;
4246		struct md_rdev *rdev2;
4247		if (s&1) {
4248			rdev2 = conf->mirrors[d].replacement;
4249			b = r10_bio->devs[s/2].repl_bio;
4250		} else {
4251			rdev2 = conf->mirrors[d].rdev;
4252			b = r10_bio->devs[s/2].bio;
4253		}
4254		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4255			continue;
4256		b->bi_bdev = rdev2->bdev;
4257		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4258		b->bi_private = r10_bio;
 
4259		b->bi_end_io = end_reshape_write;
4260		b->bi_rw = WRITE;
4261		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4262		b->bi_flags |= 1 << BIO_UPTODATE;
4263		b->bi_next = blist;
4264		b->bi_vcnt = 0;
4265		b->bi_idx = 0;
4266		b->bi_size = 0;
4267		blist = b;
4268	}
4269
4270	/* Now add as many pages as possible to all of these bios. */
4271
4272	nr_sectors = 0;
 
4273	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4274		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4275		int len = (max_sectors - s) << 9;
4276		if (len > PAGE_SIZE)
4277			len = PAGE_SIZE;
4278		for (bio = blist; bio ; bio = bio->bi_next) {
4279			struct bio *bio2;
4280			if (bio_add_page(bio, page, len, 0))
4281				continue;
4282
4283			/* Didn't fit, must stop */
4284			for (bio2 = blist;
4285			     bio2 && bio2 != bio;
4286			     bio2 = bio2->bi_next) {
4287				/* Remove last page from this bio */
4288				bio2->bi_vcnt--;
4289				bio2->bi_size -= len;
4290				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4291			}
4292			goto bio_full;
4293		}
4294		sector_nr += len >> 9;
4295		nr_sectors += len >> 9;
4296	}
4297bio_full:
4298	r10_bio->sectors = nr_sectors;
4299
4300	/* Now submit the read */
4301	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4302	atomic_inc(&r10_bio->remaining);
4303	read_bio->bi_next = NULL;
4304	generic_make_request(read_bio);
4305	sector_nr += nr_sectors;
4306	sectors_done += nr_sectors;
4307	if (sector_nr <= last)
4308		goto read_more;
4309
 
 
4310	/* Now that we have done the whole section we can
4311	 * update reshape_progress
4312	 */
4313	if (mddev->reshape_backwards)
4314		conf->reshape_progress -= sectors_done;
4315	else
4316		conf->reshape_progress += sectors_done;
4317
4318	return sectors_done;
4319}
4320
4321static void end_reshape_request(struct r10bio *r10_bio);
4322static int handle_reshape_read_error(struct mddev *mddev,
4323				     struct r10bio *r10_bio);
4324static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4325{
4326	/* Reshape read completed.  Hopefully we have a block
4327	 * to write out.
4328	 * If we got a read error then we do sync 1-page reads from
4329	 * elsewhere until we find the data - or give up.
4330	 */
4331	struct r10conf *conf = mddev->private;
4332	int s;
4333
4334	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4335		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4336			/* Reshape has been aborted */
4337			md_done_sync(mddev, r10_bio->sectors, 0);
4338			return;
4339		}
4340
4341	/* We definitely have the data in the pages, schedule the
4342	 * writes.
4343	 */
4344	atomic_set(&r10_bio->remaining, 1);
4345	for (s = 0; s < conf->copies*2; s++) {
4346		struct bio *b;
4347		int d = r10_bio->devs[s/2].devnum;
4348		struct md_rdev *rdev;
 
4349		if (s&1) {
4350			rdev = conf->mirrors[d].replacement;
4351			b = r10_bio->devs[s/2].repl_bio;
4352		} else {
4353			rdev = conf->mirrors[d].rdev;
4354			b = r10_bio->devs[s/2].bio;
4355		}
4356		if (!rdev || test_bit(Faulty, &rdev->flags))
 
4357			continue;
 
4358		atomic_inc(&rdev->nr_pending);
4359		md_sync_acct(b->bi_bdev, r10_bio->sectors);
 
4360		atomic_inc(&r10_bio->remaining);
4361		b->bi_next = NULL;
4362		generic_make_request(b);
4363	}
4364	end_reshape_request(r10_bio);
4365}
4366
4367static void end_reshape(struct r10conf *conf)
4368{
4369	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4370		return;
4371
4372	spin_lock_irq(&conf->device_lock);
4373	conf->prev = conf->geo;
4374	md_finish_reshape(conf->mddev);
4375	smp_wmb();
4376	conf->reshape_progress = MaxSector;
 
4377	spin_unlock_irq(&conf->device_lock);
4378
4379	/* read-ahead size must cover two whole stripes, which is
4380	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4381	 */
4382	if (conf->mddev->queue) {
4383		int stripe = conf->geo.raid_disks *
4384			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4385		stripe /= conf->geo.near_copies;
4386		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4387			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4388	}
4389	conf->fullsync = 0;
4390}
4391
 
 
 
 
 
 
 
 
 
 
 
 
4392
4393static int handle_reshape_read_error(struct mddev *mddev,
4394				     struct r10bio *r10_bio)
4395{
4396	/* Use sync reads to get the blocks from somewhere else */
4397	int sectors = r10_bio->sectors;
4398	struct r10conf *conf = mddev->private;
4399	struct {
4400		struct r10bio r10_bio;
4401		struct r10dev devs[conf->copies];
4402	} on_stack;
4403	struct r10bio *r10b = &on_stack.r10_bio;
4404	int slot = 0;
4405	int idx = 0;
4406	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
 
 
 
 
 
 
 
 
 
4407
4408	r10b->sector = r10_bio->sector;
4409	__raid10_find_phys(&conf->prev, r10b);
4410
4411	while (sectors) {
4412		int s = sectors;
4413		int success = 0;
4414		int first_slot = slot;
4415
4416		if (s > (PAGE_SIZE >> 9))
4417			s = PAGE_SIZE >> 9;
4418
 
4419		while (!success) {
4420			int d = r10b->devs[slot].devnum;
4421			struct md_rdev *rdev = conf->mirrors[d].rdev;
4422			sector_t addr;
4423			if (rdev == NULL ||
4424			    test_bit(Faulty, &rdev->flags) ||
4425			    !test_bit(In_sync, &rdev->flags))
4426				goto failed;
4427
4428			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
 
 
4429			success = sync_page_io(rdev,
4430					       addr,
4431					       s << 9,
4432					       bvec[idx].bv_page,
4433					       READ, false);
 
 
4434			if (success)
4435				break;
4436		failed:
4437			slot++;
4438			if (slot >= conf->copies)
4439				slot = 0;
4440			if (slot == first_slot)
4441				break;
4442		}
 
4443		if (!success) {
4444			/* couldn't read this block, must give up */
4445			set_bit(MD_RECOVERY_INTR,
4446				&mddev->recovery);
 
4447			return -EIO;
4448		}
4449		sectors -= s;
4450		idx++;
4451	}
 
4452	return 0;
4453}
4454
4455static void end_reshape_write(struct bio *bio, int error)
4456{
4457	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4458	struct r10bio *r10_bio = bio->bi_private;
4459	struct mddev *mddev = r10_bio->mddev;
4460	struct r10conf *conf = mddev->private;
4461	int d;
4462	int slot;
4463	int repl;
4464	struct md_rdev *rdev = NULL;
4465
4466	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4467	if (repl)
4468		rdev = conf->mirrors[d].replacement;
4469	if (!rdev) {
4470		smp_mb();
4471		rdev = conf->mirrors[d].rdev;
4472	}
4473
4474	if (!uptodate) {
4475		/* FIXME should record badblock */
4476		md_error(mddev, rdev);
4477	}
4478
4479	rdev_dec_pending(rdev, mddev);
4480	end_reshape_request(r10_bio);
4481}
4482
4483static void end_reshape_request(struct r10bio *r10_bio)
4484{
4485	if (!atomic_dec_and_test(&r10_bio->remaining))
4486		return;
4487	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4488	bio_put(r10_bio->master_bio);
4489	put_buf(r10_bio);
4490}
4491
4492static void raid10_finish_reshape(struct mddev *mddev)
4493{
4494	struct r10conf *conf = mddev->private;
4495
4496	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4497		return;
4498
4499	if (mddev->delta_disks > 0) {
4500		sector_t size = raid10_size(mddev, 0, 0);
4501		md_set_array_sectors(mddev, size);
4502		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4503			mddev->recovery_cp = mddev->resync_max_sectors;
4504			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4505		}
4506		mddev->resync_max_sectors = size;
4507		set_capacity(mddev->gendisk, mddev->array_sectors);
4508		revalidate_disk(mddev->gendisk);
4509	} else {
4510		int d;
 
4511		for (d = conf->geo.raid_disks ;
4512		     d < conf->geo.raid_disks - mddev->delta_disks;
4513		     d++) {
4514			struct md_rdev *rdev = conf->mirrors[d].rdev;
4515			if (rdev)
4516				clear_bit(In_sync, &rdev->flags);
4517			rdev = conf->mirrors[d].replacement;
4518			if (rdev)
4519				clear_bit(In_sync, &rdev->flags);
4520		}
 
4521	}
4522	mddev->layout = mddev->new_layout;
4523	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4524	mddev->reshape_position = MaxSector;
4525	mddev->delta_disks = 0;
4526	mddev->reshape_backwards = 0;
4527}
4528
4529static struct md_personality raid10_personality =
4530{
4531	.name		= "raid10",
4532	.level		= 10,
4533	.owner		= THIS_MODULE,
4534	.make_request	= make_request,
4535	.run		= run,
4536	.stop		= stop,
4537	.status		= status,
4538	.error_handler	= error,
4539	.hot_add_disk	= raid10_add_disk,
4540	.hot_remove_disk= raid10_remove_disk,
4541	.spare_active	= raid10_spare_active,
4542	.sync_request	= sync_request,
4543	.quiesce	= raid10_quiesce,
4544	.size		= raid10_size,
4545	.resize		= raid10_resize,
4546	.takeover	= raid10_takeover,
4547	.check_reshape	= raid10_check_reshape,
4548	.start_reshape	= raid10_start_reshape,
4549	.finish_reshape	= raid10_finish_reshape,
 
4550};
4551
4552static int __init raid_init(void)
4553{
4554	return register_md_personality(&raid10_personality);
4555}
4556
4557static void raid_exit(void)
4558{
4559	unregister_md_personality(&raid10_personality);
4560}
4561
4562module_init(raid_init);
4563module_exit(raid_exit);
4564MODULE_LICENSE("GPL");
4565MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4566MODULE_ALIAS("md-personality-9"); /* RAID10 */
4567MODULE_ALIAS("md-raid10");
4568MODULE_ALIAS("md-level-10");
4569
4570module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
 
 
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
 
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88	return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93	struct r10conf *conf = data;
  94	int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96	/* allocate a r10bio with room for raid_disks entries in the
  97	 * bios array */
  98	return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 
 
 
 
 
 
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct r10conf *conf = data;
 
 119	struct r10bio *r10_bio;
 120	struct bio *bio;
 121	int j;
 122	int nalloc, nalloc_rp;
 123	struct resync_pages *rps;
 124
 125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126	if (!r10_bio)
 127		return NULL;
 128
 129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131		nalloc = conf->copies; /* resync */
 132	else
 133		nalloc = 2; /* recovery */
 134
 135	/* allocate once for all bios */
 136	if (!conf->have_replacement)
 137		nalloc_rp = nalloc;
 138	else
 139		nalloc_rp = nalloc * 2;
 140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141	if (!rps)
 142		goto out_free_r10bio;
 143
 144	/*
 145	 * Allocate bios.
 146	 */
 147	for (j = nalloc ; j-- ; ) {
 148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149		if (!bio)
 150			goto out_free_bio;
 151		r10_bio->devs[j].bio = bio;
 152		if (!conf->have_replacement)
 153			continue;
 154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155		if (!bio)
 156			goto out_free_bio;
 157		r10_bio->devs[j].repl_bio = bio;
 158	}
 159	/*
 160	 * Allocate RESYNC_PAGES data pages and attach them
 161	 * where needed.
 162	 */
 163	for (j = 0; j < nalloc; j++) {
 164		struct bio *rbio = r10_bio->devs[j].repl_bio;
 165		struct resync_pages *rp, *rp_repl;
 166
 167		rp = &rps[j];
 168		if (rbio)
 169			rp_repl = &rps[nalloc + j];
 170
 171		bio = r10_bio->devs[j].bio;
 172
 173		if (!j || test_bit(MD_RECOVERY_SYNC,
 174				   &conf->mddev->recovery)) {
 175			if (resync_alloc_pages(rp, gfp_flags))
 
 
 
 
 
 
 
 176				goto out_free_pages;
 177		} else {
 178			memcpy(rp, &rps[0], sizeof(*rp));
 179			resync_get_all_pages(rp);
 180		}
 181
 182		rp->raid_bio = r10_bio;
 183		bio->bi_private = rp;
 184		if (rbio) {
 185			memcpy(rp_repl, rp, sizeof(*rp));
 186			rbio->bi_private = rp_repl;
 187		}
 188	}
 189
 190	return r10_bio;
 191
 192out_free_pages:
 193	while (--j >= 0)
 194		resync_free_pages(&rps[j]);
 195
 
 
 196	j = 0;
 197out_free_bio:
 198	for ( ; j < nalloc; j++) {
 199		if (r10_bio->devs[j].bio)
 200			bio_put(r10_bio->devs[j].bio);
 201		if (r10_bio->devs[j].repl_bio)
 202			bio_put(r10_bio->devs[j].repl_bio);
 203	}
 204	kfree(rps);
 205out_free_r10bio:
 206	rbio_pool_free(r10_bio, conf);
 207	return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 
 212	struct r10conf *conf = data;
 213	struct r10bio *r10bio = __r10_bio;
 214	int j;
 215	struct resync_pages *rp = NULL;
 216
 217	for (j = conf->copies; j--; ) {
 218		struct bio *bio = r10bio->devs[j].bio;
 219
 220		if (bio) {
 221			rp = get_resync_pages(bio);
 222			resync_free_pages(rp);
 
 
 223			bio_put(bio);
 224		}
 225
 226		bio = r10bio->devs[j].repl_bio;
 227		if (bio)
 228			bio_put(bio);
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->copies; i++) {
 242		struct bio **bio = & r10_bio->devs[i].bio;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246		bio = &r10_bio->devs[i].repl_bio;
 247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255	struct r10conf *conf = r10_bio->mddev->private;
 256
 257	put_all_bios(conf, r10_bio);
 258	mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263	struct r10conf *conf = r10_bio->mddev->private;
 264
 265	mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267	lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272	unsigned long flags;
 273	struct mddev *mddev = r10_bio->mddev;
 274	struct r10conf *conf = mddev->private;
 275
 276	spin_lock_irqsave(&conf->device_lock, flags);
 277	list_add(&r10_bio->retry_list, &conf->retry_list);
 278	conf->nr_queued ++;
 279	spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281	/* wake up frozen array... */
 282	wake_up(&conf->wait_barrier);
 283
 284	md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294	struct bio *bio = r10_bio->master_bio;
 
 295	struct r10conf *conf = r10_bio->mddev->private;
 296
 
 
 
 
 
 
 
 
 297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298		bio->bi_status = BLK_STS_IOERR;
 299
 300	bio_endio(bio);
 301	/*
 302	 * Wake up any possible resync thread that waits for the device
 303	 * to go idle.
 304	 */
 305	allow_barrier(conf);
 306
 307	free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315	struct r10conf *conf = r10_bio->mddev->private;
 316
 317	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318		r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325			 struct bio *bio, int *slotp, int *replp)
 326{
 327	int slot;
 328	int repl = 0;
 329
 330	for (slot = 0; slot < conf->copies; slot++) {
 331		if (r10_bio->devs[slot].bio == bio)
 332			break;
 333		if (r10_bio->devs[slot].repl_bio == bio) {
 334			repl = 1;
 335			break;
 336		}
 337	}
 338
 339	BUG_ON(slot == conf->copies);
 340	update_head_pos(slot, r10_bio);
 341
 342	if (slotp)
 343		*slotp = slot;
 344	if (replp)
 345		*replp = repl;
 346	return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351	int uptodate = !bio->bi_status;
 352	struct r10bio *r10_bio = bio->bi_private;
 353	int slot;
 354	struct md_rdev *rdev;
 355	struct r10conf *conf = r10_bio->mddev->private;
 356
 
 357	slot = r10_bio->read_slot;
 
 358	rdev = r10_bio->devs[slot].rdev;
 359	/*
 360	 * this branch is our 'one mirror IO has finished' event handler:
 361	 */
 362	update_head_pos(slot, r10_bio);
 363
 364	if (uptodate) {
 365		/*
 366		 * Set R10BIO_Uptodate in our master bio, so that
 367		 * we will return a good error code to the higher
 368		 * levels even if IO on some other mirrored buffer fails.
 369		 *
 370		 * The 'master' represents the composite IO operation to
 371		 * user-side. So if something waits for IO, then it will
 372		 * wait for the 'master' bio.
 373		 */
 374		set_bit(R10BIO_Uptodate, &r10_bio->state);
 375	} else {
 376		/* If all other devices that store this block have
 377		 * failed, we want to return the error upwards rather
 378		 * than fail the last device.  Here we redefine
 379		 * "uptodate" to mean "Don't want to retry"
 380		 */
 381		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382			     rdev->raid_disk))
 
 383			uptodate = 1;
 
 384	}
 385	if (uptodate) {
 386		raid_end_bio_io(r10_bio);
 387		rdev_dec_pending(rdev, conf->mddev);
 388	} else {
 389		/*
 390		 * oops, read error - keep the refcount on the rdev
 391		 */
 392		char b[BDEVNAME_SIZE];
 393		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 
 394				   mdname(conf->mddev),
 395				   bdevname(rdev->bdev, b),
 396				   (unsigned long long)r10_bio->sector);
 397		set_bit(R10BIO_ReadError, &r10_bio->state);
 398		reschedule_retry(r10_bio);
 399	}
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404	/* clear the bitmap if all writes complete successfully */
 405	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406			   r10_bio->sectors,
 407			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 408			   0);
 409	md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414	if (atomic_dec_and_test(&r10_bio->remaining)) {
 415		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416			reschedule_retry(r10_bio);
 417		else {
 418			close_write(r10_bio);
 419			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420				reschedule_retry(r10_bio);
 421			else
 422				raid_end_bio_io(r10_bio);
 423		}
 424	}
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 
 429	struct r10bio *r10_bio = bio->bi_private;
 430	int dev;
 431	int dec_rdev = 1;
 432	struct r10conf *conf = r10_bio->mddev->private;
 433	int slot, repl;
 434	struct md_rdev *rdev = NULL;
 435	struct bio *to_put = NULL;
 436	bool discard_error;
 437
 438	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442	if (repl)
 443		rdev = conf->mirrors[dev].replacement;
 444	if (!rdev) {
 445		smp_rmb();
 446		repl = 0;
 447		rdev = conf->mirrors[dev].rdev;
 448	}
 449	/*
 450	 * this branch is our 'one mirror IO has finished' event handler:
 451	 */
 452	if (bio->bi_status && !discard_error) {
 453		if (repl)
 454			/* Never record new bad blocks to replacement,
 455			 * just fail it.
 456			 */
 457			md_error(rdev->mddev, rdev);
 458		else {
 459			set_bit(WriteErrorSeen,	&rdev->flags);
 460			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461				set_bit(MD_RECOVERY_NEEDED,
 462					&rdev->mddev->recovery);
 463
 464			dec_rdev = 0;
 465			if (test_bit(FailFast, &rdev->flags) &&
 466			    (bio->bi_opf & MD_FAILFAST)) {
 467				md_error(rdev->mddev, rdev);
 468			}
 469
 470			/*
 471			 * When the device is faulty, it is not necessary to
 472			 * handle write error.
 473			 * For failfast, this is the only remaining device,
 474			 * We need to retry the write without FailFast.
 475			 */
 476			if (!test_bit(Faulty, &rdev->flags))
 477				set_bit(R10BIO_WriteError, &r10_bio->state);
 478			else {
 479				r10_bio->devs[slot].bio = NULL;
 480				to_put = bio;
 481				dec_rdev = 1;
 482			}
 483		}
 484	} else {
 485		/*
 486		 * Set R10BIO_Uptodate in our master bio, so that
 487		 * we will return a good error code for to the higher
 488		 * levels even if IO on some other mirrored buffer fails.
 489		 *
 490		 * The 'master' represents the composite IO operation to
 491		 * user-side. So if something waits for IO, then it will
 492		 * wait for the 'master' bio.
 493		 */
 494		sector_t first_bad;
 495		int bad_sectors;
 496
 497		/*
 498		 * Do not set R10BIO_Uptodate if the current device is
 499		 * rebuilding or Faulty. This is because we cannot use
 500		 * such device for properly reading the data back (we could
 501		 * potentially use it, if the current write would have felt
 502		 * before rdev->recovery_offset, but for simplicity we don't
 503		 * check this here.
 504		 */
 505		if (test_bit(In_sync, &rdev->flags) &&
 506		    !test_bit(Faulty, &rdev->flags))
 507			set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509		/* Maybe we can clear some bad blocks. */
 510		if (is_badblock(rdev,
 511				r10_bio->devs[slot].addr,
 512				r10_bio->sectors,
 513				&first_bad, &bad_sectors) && !discard_error) {
 514			bio_put(bio);
 515			if (repl)
 516				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517			else
 518				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519			dec_rdev = 0;
 520			set_bit(R10BIO_MadeGood, &r10_bio->state);
 521		}
 522	}
 523
 524	/*
 525	 *
 526	 * Let's see if all mirrored write operations have finished
 527	 * already.
 528	 */
 529	one_write_done(r10_bio);
 530	if (dec_rdev)
 531		rdev_dec_pending(rdev, conf->mddev);
 532	if (to_put)
 533		bio_put(to_put);
 534}
 535
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563	int n,f;
 564	sector_t sector;
 565	sector_t chunk;
 566	sector_t stripe;
 567	int dev;
 568	int slot = 0;
 569	int last_far_set_start, last_far_set_size;
 570
 571	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572	last_far_set_start *= geo->far_set_size;
 573
 574	last_far_set_size = geo->far_set_size;
 575	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577	/* now calculate first sector/dev */
 578	chunk = r10bio->sector >> geo->chunk_shift;
 579	sector = r10bio->sector & geo->chunk_mask;
 580
 581	chunk *= geo->near_copies;
 582	stripe = chunk;
 583	dev = sector_div(stripe, geo->raid_disks);
 584	if (geo->far_offset)
 585		stripe *= geo->far_copies;
 586
 587	sector += stripe << geo->chunk_shift;
 588
 589	/* and calculate all the others */
 590	for (n = 0; n < geo->near_copies; n++) {
 591		int d = dev;
 592		int set;
 593		sector_t s = sector;
 
 594		r10bio->devs[slot].devnum = d;
 595		r10bio->devs[slot].addr = s;
 596		slot++;
 597
 598		for (f = 1; f < geo->far_copies; f++) {
 599			set = d / geo->far_set_size;
 600			d += geo->near_copies;
 601
 602			if ((geo->raid_disks % geo->far_set_size) &&
 603			    (d > last_far_set_start)) {
 604				d -= last_far_set_start;
 605				d %= last_far_set_size;
 606				d += last_far_set_start;
 607			} else {
 608				d %= geo->far_set_size;
 609				d += geo->far_set_size * set;
 610			}
 611			s += geo->stride;
 612			r10bio->devs[slot].devnum = d;
 613			r10bio->devs[slot].addr = s;
 614			slot++;
 615		}
 616		dev++;
 617		if (dev >= geo->raid_disks) {
 618			dev = 0;
 619			sector += (geo->chunk_mask + 1);
 620		}
 621	}
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626	struct geom *geo = &conf->geo;
 627
 628	if (conf->reshape_progress != MaxSector &&
 629	    ((r10bio->sector >= conf->reshape_progress) !=
 630	     conf->mddev->reshape_backwards)) {
 631		set_bit(R10BIO_Previous, &r10bio->state);
 632		geo = &conf->prev;
 633	} else
 634		clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636	__raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641	sector_t offset, chunk, vchunk;
 642	/* Never use conf->prev as this is only called during resync
 643	 * or recovery, so reshape isn't happening
 644	 */
 645	struct geom *geo = &conf->geo;
 646	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647	int far_set_size = geo->far_set_size;
 648	int last_far_set_start;
 649
 650	if (geo->raid_disks % geo->far_set_size) {
 651		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652		last_far_set_start *= geo->far_set_size;
 653
 654		if (dev >= last_far_set_start) {
 655			far_set_size = geo->far_set_size;
 656			far_set_size += (geo->raid_disks % geo->far_set_size);
 657			far_set_start = last_far_set_start;
 658		}
 659	}
 660
 661	offset = sector & geo->chunk_mask;
 662	if (geo->far_offset) {
 663		int fc;
 664		chunk = sector >> geo->chunk_shift;
 665		fc = sector_div(chunk, geo->far_copies);
 666		dev -= fc * geo->near_copies;
 667		if (dev < far_set_start)
 668			dev += far_set_size;
 669	} else {
 670		while (sector >= geo->stride) {
 671			sector -= geo->stride;
 672			if (dev < (geo->near_copies + far_set_start))
 673				dev += far_set_size - geo->near_copies;
 674			else
 675				dev -= geo->near_copies;
 676		}
 677		chunk = sector >> geo->chunk_shift;
 678	}
 679	vchunk = chunk * geo->raid_disks + dev;
 680	sector_div(vchunk, geo->near_copies);
 681	return (vchunk << geo->chunk_shift) + offset;
 682}
 683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704				    struct r10bio *r10_bio,
 705				    int *max_sectors)
 706{
 707	const sector_t this_sector = r10_bio->sector;
 708	int disk, slot;
 709	int sectors = r10_bio->sectors;
 710	int best_good_sectors;
 711	sector_t new_distance, best_dist;
 712	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713	int do_balance;
 714	int best_dist_slot, best_pending_slot;
 715	bool has_nonrot_disk = false;
 716	unsigned int min_pending;
 717	struct geom *geo = &conf->geo;
 718
 719	raid10_find_phys(conf, r10_bio);
 720	rcu_read_lock();
 721	best_dist_slot = -1;
 722	min_pending = UINT_MAX;
 723	best_dist_rdev = NULL;
 724	best_pending_rdev = NULL;
 725	best_dist = MaxSector;
 726	best_good_sectors = 0;
 727	do_balance = 1;
 728	clear_bit(R10BIO_FailFast, &r10_bio->state);
 729	/*
 730	 * Check if we can balance. We can balance on the whole
 731	 * device if no resync is going on (recovery is ok), or below
 732	 * the resync window. We take the first readable disk when
 733	 * above the resync window.
 734	 */
 735	if ((conf->mddev->recovery_cp < MaxSector
 736	     && (this_sector + sectors >= conf->next_resync)) ||
 737	    (mddev_is_clustered(conf->mddev) &&
 738	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739					    this_sector + sectors)))
 740		do_balance = 0;
 741
 742	for (slot = 0; slot < conf->copies ; slot++) {
 743		sector_t first_bad;
 744		int bad_sectors;
 745		sector_t dev_sector;
 746		unsigned int pending;
 747		bool nonrot;
 748
 749		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750			continue;
 751		disk = r10_bio->devs[slot].devnum;
 752		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 
 754		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756		if (rdev == NULL ||
 757		    test_bit(Faulty, &rdev->flags))
 
 758			continue;
 759		if (!test_bit(In_sync, &rdev->flags) &&
 760		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761			continue;
 762
 763		dev_sector = r10_bio->devs[slot].addr;
 764		if (is_badblock(rdev, dev_sector, sectors,
 765				&first_bad, &bad_sectors)) {
 766			if (best_dist < MaxSector)
 767				/* Already have a better slot */
 768				continue;
 769			if (first_bad <= dev_sector) {
 770				/* Cannot read here.  If this is the
 771				 * 'primary' device, then we must not read
 772				 * beyond 'bad_sectors' from another device.
 773				 */
 774				bad_sectors -= (dev_sector - first_bad);
 775				if (!do_balance && sectors > bad_sectors)
 776					sectors = bad_sectors;
 777				if (best_good_sectors > sectors)
 778					best_good_sectors = sectors;
 779			} else {
 780				sector_t good_sectors =
 781					first_bad - dev_sector;
 782				if (good_sectors > best_good_sectors) {
 783					best_good_sectors = good_sectors;
 784					best_dist_slot = slot;
 785					best_dist_rdev = rdev;
 786				}
 787				if (!do_balance)
 788					/* Must read from here */
 789					break;
 790			}
 791			continue;
 792		} else
 793			best_good_sectors = sectors;
 794
 795		if (!do_balance)
 796			break;
 797
 798		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799		has_nonrot_disk |= nonrot;
 800		pending = atomic_read(&rdev->nr_pending);
 801		if (min_pending > pending && nonrot) {
 802			min_pending = pending;
 803			best_pending_slot = slot;
 804			best_pending_rdev = rdev;
 805		}
 806
 807		if (best_dist_slot >= 0)
 808			/* At least 2 disks to choose from so failfast is OK */
 809			set_bit(R10BIO_FailFast, &r10_bio->state);
 810		/* This optimisation is debatable, and completely destroys
 811		 * sequential read speed for 'far copies' arrays.  So only
 812		 * keep it for 'near' arrays, and review those later.
 813		 */
 814		if (geo->near_copies > 1 && !pending)
 815			new_distance = 0;
 816
 817		/* for far > 1 always use the lowest address */
 818		else if (geo->far_copies > 1)
 819			new_distance = r10_bio->devs[slot].addr;
 820		else
 821			new_distance = abs(r10_bio->devs[slot].addr -
 822					   conf->mirrors[disk].head_position);
 823
 824		if (new_distance < best_dist) {
 825			best_dist = new_distance;
 826			best_dist_slot = slot;
 827			best_dist_rdev = rdev;
 828		}
 829	}
 830	if (slot >= conf->copies) {
 831		if (has_nonrot_disk) {
 832			slot = best_pending_slot;
 833			rdev = best_pending_rdev;
 834		} else {
 835			slot = best_dist_slot;
 836			rdev = best_dist_rdev;
 837		}
 838	}
 839
 840	if (slot >= 0) {
 841		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 842		r10_bio->read_slot = slot;
 843	} else
 844		rdev = NULL;
 845	rcu_read_unlock();
 846	*max_sectors = best_good_sectors;
 847
 848	return rdev;
 849}
 850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851static void flush_pending_writes(struct r10conf *conf)
 852{
 853	/* Any writes that have been queued but are awaiting
 854	 * bitmap updates get flushed here.
 855	 */
 856	spin_lock_irq(&conf->device_lock);
 857
 858	if (conf->pending_bio_list.head) {
 859		struct blk_plug plug;
 860		struct bio *bio;
 861
 862		bio = bio_list_get(&conf->pending_bio_list);
 863		conf->pending_count = 0;
 864		spin_unlock_irq(&conf->device_lock);
 865
 866		/*
 867		 * As this is called in a wait_event() loop (see freeze_array),
 868		 * current->state might be TASK_UNINTERRUPTIBLE which will
 869		 * cause a warning when we prepare to wait again.  As it is
 870		 * rare that this path is taken, it is perfectly safe to force
 871		 * us to go around the wait_event() loop again, so the warning
 872		 * is a false-positive. Silence the warning by resetting
 873		 * thread state
 874		 */
 875		__set_current_state(TASK_RUNNING);
 876
 877		blk_start_plug(&plug);
 878		/* flush any pending bitmap writes to disk
 879		 * before proceeding w/ I/O */
 880		md_bitmap_unplug(conf->mddev->bitmap);
 881		wake_up(&conf->wait_barrier);
 882
 883		while (bio) { /* submit pending writes */
 884			struct bio *next = bio->bi_next;
 885			struct md_rdev *rdev = (void*)bio->bi_disk;
 886			bio->bi_next = NULL;
 887			bio_set_dev(bio, rdev->bdev);
 888			if (test_bit(Faulty, &rdev->flags)) {
 889				bio_io_error(bio);
 890			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 891					    !blk_queue_discard(bio->bi_disk->queue)))
 892				/* Just ignore it */
 893				bio_endio(bio);
 894			else
 895				submit_bio_noacct(bio);
 896			bio = next;
 897		}
 898		blk_finish_plug(&plug);
 899	} else
 900		spin_unlock_irq(&conf->device_lock);
 901}
 902
 903/* Barriers....
 904 * Sometimes we need to suspend IO while we do something else,
 905 * either some resync/recovery, or reconfigure the array.
 906 * To do this we raise a 'barrier'.
 907 * The 'barrier' is a counter that can be raised multiple times
 908 * to count how many activities are happening which preclude
 909 * normal IO.
 910 * We can only raise the barrier if there is no pending IO.
 911 * i.e. if nr_pending == 0.
 912 * We choose only to raise the barrier if no-one is waiting for the
 913 * barrier to go down.  This means that as soon as an IO request
 914 * is ready, no other operations which require a barrier will start
 915 * until the IO request has had a chance.
 916 *
 917 * So: regular IO calls 'wait_barrier'.  When that returns there
 918 *    is no backgroup IO happening,  It must arrange to call
 919 *    allow_barrier when it has finished its IO.
 920 * backgroup IO calls must call raise_barrier.  Once that returns
 921 *    there is no normal IO happeing.  It must arrange to call
 922 *    lower_barrier when the particular background IO completes.
 923 */
 924
 925static void raise_barrier(struct r10conf *conf, int force)
 926{
 927	BUG_ON(force && !conf->barrier);
 928	spin_lock_irq(&conf->resync_lock);
 929
 930	/* Wait until no block IO is waiting (unless 'force') */
 931	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 932			    conf->resync_lock);
 933
 934	/* block any new IO from starting */
 935	conf->barrier++;
 936
 937	/* Now wait for all pending IO to complete */
 938	wait_event_lock_irq(conf->wait_barrier,
 939			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 940			    conf->resync_lock);
 941
 942	spin_unlock_irq(&conf->resync_lock);
 943}
 944
 945static void lower_barrier(struct r10conf *conf)
 946{
 947	unsigned long flags;
 948	spin_lock_irqsave(&conf->resync_lock, flags);
 949	conf->barrier--;
 950	spin_unlock_irqrestore(&conf->resync_lock, flags);
 951	wake_up(&conf->wait_barrier);
 952}
 953
 954static void wait_barrier(struct r10conf *conf)
 955{
 956	spin_lock_irq(&conf->resync_lock);
 957	if (conf->barrier) {
 958		struct bio_list *bio_list = current->bio_list;
 959		conf->nr_waiting++;
 960		/* Wait for the barrier to drop.
 961		 * However if there are already pending
 962		 * requests (preventing the barrier from
 963		 * rising completely), and the
 964		 * pre-process bio queue isn't empty,
 965		 * then don't wait, as we need to empty
 966		 * that queue to get the nr_pending
 967		 * count down.
 968		 */
 969		raid10_log(conf->mddev, "wait barrier");
 970		wait_event_lock_irq(conf->wait_barrier,
 971				    !conf->barrier ||
 972				    (atomic_read(&conf->nr_pending) &&
 973				     bio_list &&
 974				     (!bio_list_empty(&bio_list[0]) ||
 975				      !bio_list_empty(&bio_list[1]))) ||
 976				     /* move on if recovery thread is
 977				      * blocked by us
 978				      */
 979				     (conf->mddev->thread->tsk == current &&
 980				      test_bit(MD_RECOVERY_RUNNING,
 981					       &conf->mddev->recovery) &&
 982				      conf->nr_queued > 0),
 983				    conf->resync_lock);
 984		conf->nr_waiting--;
 985		if (!conf->nr_waiting)
 986			wake_up(&conf->wait_barrier);
 987	}
 988	atomic_inc(&conf->nr_pending);
 989	spin_unlock_irq(&conf->resync_lock);
 990}
 991
 992static void allow_barrier(struct r10conf *conf)
 993{
 994	if ((atomic_dec_and_test(&conf->nr_pending)) ||
 995			(conf->array_freeze_pending))
 996		wake_up(&conf->wait_barrier);
 
 
 997}
 998
 999static void freeze_array(struct r10conf *conf, int extra)
1000{
1001	/* stop syncio and normal IO and wait for everything to
1002	 * go quiet.
1003	 * We increment barrier and nr_waiting, and then
1004	 * wait until nr_pending match nr_queued+extra
1005	 * This is called in the context of one normal IO request
1006	 * that has failed. Thus any sync request that might be pending
1007	 * will be blocked by nr_pending, and we need to wait for
1008	 * pending IO requests to complete or be queued for re-try.
1009	 * Thus the number queued (nr_queued) plus this request (extra)
1010	 * must match the number of pending IOs (nr_pending) before
1011	 * we continue.
1012	 */
1013	spin_lock_irq(&conf->resync_lock);
1014	conf->array_freeze_pending++;
1015	conf->barrier++;
1016	conf->nr_waiting++;
1017	wait_event_lock_irq_cmd(conf->wait_barrier,
1018				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019				conf->resync_lock,
1020				flush_pending_writes(conf));
1021
1022	conf->array_freeze_pending--;
1023	spin_unlock_irq(&conf->resync_lock);
1024}
1025
1026static void unfreeze_array(struct r10conf *conf)
1027{
1028	/* reverse the effect of the freeze */
1029	spin_lock_irq(&conf->resync_lock);
1030	conf->barrier--;
1031	conf->nr_waiting--;
1032	wake_up(&conf->wait_barrier);
1033	spin_unlock_irq(&conf->resync_lock);
1034}
1035
1036static sector_t choose_data_offset(struct r10bio *r10_bio,
1037				   struct md_rdev *rdev)
1038{
1039	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040	    test_bit(R10BIO_Previous, &r10_bio->state))
1041		return rdev->data_offset;
1042	else
1043		return rdev->new_data_offset;
1044}
1045
1046struct raid10_plug_cb {
1047	struct blk_plug_cb	cb;
1048	struct bio_list		pending;
1049	int			pending_cnt;
1050};
1051
1052static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053{
1054	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055						   cb);
1056	struct mddev *mddev = plug->cb.data;
1057	struct r10conf *conf = mddev->private;
1058	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	if (from_schedule || current->bio_list) {
1061		spin_lock_irq(&conf->device_lock);
1062		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063		conf->pending_count += plug->pending_cnt;
1064		spin_unlock_irq(&conf->device_lock);
1065		wake_up(&conf->wait_barrier);
1066		md_wakeup_thread(mddev->thread);
1067		kfree(plug);
1068		return;
1069	}
1070
1071	/* we aren't scheduling, so we can do the write-out directly. */
1072	bio = bio_list_get(&plug->pending);
1073	md_bitmap_unplug(mddev->bitmap);
1074	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075
1076	while (bio) { /* submit pending writes */
1077		struct bio *next = bio->bi_next;
1078		struct md_rdev *rdev = (void*)bio->bi_disk;
1079		bio->bi_next = NULL;
1080		bio_set_dev(bio, rdev->bdev);
1081		if (test_bit(Faulty, &rdev->flags)) {
1082			bio_io_error(bio);
1083		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084				    !blk_queue_discard(bio->bi_disk->queue)))
1085			/* Just ignore it */
1086			bio_endio(bio);
1087		else
1088			submit_bio_noacct(bio);
1089		bio = next;
1090	}
1091	kfree(plug);
1092}
1093
1094/*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099 */
1100static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101				 struct bio *bio, sector_t sectors)
1102{
1103	wait_barrier(conf);
 
 
1104	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1106	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107		raid10_log(conf->mddev, "wait reshape");
 
 
1108		allow_barrier(conf);
1109		wait_event(conf->wait_barrier,
1110			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1112			   sectors);
1113		wait_barrier(conf);
1114	}
1115}
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118				struct r10bio *r10_bio)
1119{
1120	struct r10conf *conf = mddev->private;
1121	struct bio *read_bio;
1122	const int op = bio_op(bio);
1123	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124	int max_sectors;
1125	struct md_rdev *rdev;
1126	char b[BDEVNAME_SIZE];
1127	int slot = r10_bio->read_slot;
1128	struct md_rdev *err_rdev = NULL;
1129	gfp_t gfp = GFP_NOIO;
1130
1131	if (r10_bio->devs[slot].rdev) {
1132		/*
1133		 * This is an error retry, but we cannot
1134		 * safely dereference the rdev in the r10_bio,
1135		 * we must use the one in conf.
1136		 * If it has already been disconnected (unlikely)
1137		 * we lose the device name in error messages.
1138		 */
1139		int disk;
1140		/*
1141		 * As we are blocking raid10, it is a little safer to
1142		 * use __GFP_HIGH.
1143		 */
1144		gfp = GFP_NOIO | __GFP_HIGH;
1145
1146		rcu_read_lock();
1147		disk = r10_bio->devs[slot].devnum;
1148		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149		if (err_rdev)
1150			bdevname(err_rdev->bdev, b);
1151		else {
1152			strcpy(b, "???");
1153			/* This never gets dereferenced */
1154			err_rdev = r10_bio->devs[slot].rdev;
1155		}
1156		rcu_read_unlock();
1157	}
1158
1159	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160	rdev = read_balance(conf, r10_bio, &max_sectors);
1161	if (!rdev) {
1162		if (err_rdev) {
1163			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164					    mdname(mddev), b,
1165					    (unsigned long long)r10_bio->sector);
1166		}
1167		raid_end_bio_io(r10_bio);
1168		return;
1169	}
1170	if (err_rdev)
1171		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172				   mdname(mddev),
1173				   bdevname(rdev->bdev, b),
1174				   (unsigned long long)r10_bio->sector);
1175	if (max_sectors < bio_sectors(bio)) {
1176		struct bio *split = bio_split(bio, max_sectors,
1177					      gfp, &conf->bio_split);
1178		bio_chain(split, bio);
1179		allow_barrier(conf);
1180		submit_bio_noacct(bio);
1181		wait_barrier(conf);
1182		bio = split;
1183		r10_bio->master_bio = bio;
1184		r10_bio->sectors = max_sectors;
1185	}
1186	slot = r10_bio->read_slot;
1187
1188	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
 
1189
1190	r10_bio->devs[slot].bio = read_bio;
1191	r10_bio->devs[slot].rdev = rdev;
 
1192
1193	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194		choose_data_offset(r10_bio, rdev);
1195	bio_set_dev(read_bio, rdev->bdev);
1196	read_bio->bi_end_io = raid10_end_read_request;
1197	bio_set_op_attrs(read_bio, op, do_sync);
1198	if (test_bit(FailFast, &rdev->flags) &&
1199	    test_bit(R10BIO_FailFast, &r10_bio->state))
1200	        read_bio->bi_opf |= MD_FAILFAST;
1201	read_bio->bi_private = r10_bio;
1202
1203	if (mddev->gendisk)
1204	        trace_block_bio_remap(read_bio->bi_disk->queue,
1205	                              read_bio, disk_devt(mddev->gendisk),
1206	                              r10_bio->sector);
1207	submit_bio_noacct(read_bio);
1208	return;
1209}
1210
1211static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212				  struct bio *bio, bool replacement,
1213				  int n_copy)
1214{
1215	const int op = bio_op(bio);
1216	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218	unsigned long flags;
1219	struct blk_plug_cb *cb;
1220	struct raid10_plug_cb *plug = NULL;
1221	struct r10conf *conf = mddev->private;
1222	struct md_rdev *rdev;
1223	int devnum = r10_bio->devs[n_copy].devnum;
1224	struct bio *mbio;
1225
1226	if (replacement) {
1227		rdev = conf->mirrors[devnum].replacement;
1228		if (rdev == NULL) {
1229			/* Replacement just got moved to main 'rdev' */
1230			smp_mb();
1231			rdev = conf->mirrors[devnum].rdev;
1232		}
1233	} else
1234		rdev = conf->mirrors[devnum].rdev;
1235
1236	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237	if (replacement)
1238		r10_bio->devs[n_copy].repl_bio = mbio;
1239	else
1240		r10_bio->devs[n_copy].bio = mbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241
1242	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1243				   choose_data_offset(r10_bio, rdev));
1244	bio_set_dev(mbio, rdev->bdev);
1245	mbio->bi_end_io	= raid10_end_write_request;
1246	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247	if (!replacement && test_bit(FailFast,
1248				     &conf->mirrors[devnum].rdev->flags)
1249			 && enough(conf, devnum))
1250		mbio->bi_opf |= MD_FAILFAST;
1251	mbio->bi_private = r10_bio;
1252
1253	if (conf->mddev->gendisk)
1254		trace_block_bio_remap(mbio->bi_disk->queue,
1255				      mbio, disk_devt(conf->mddev->gendisk),
1256				      r10_bio->sector);
1257	/* flush_pending_writes() needs access to the rdev so...*/
1258	mbio->bi_disk = (void *)rdev;
1259
1260	atomic_inc(&r10_bio->remaining);
1261
1262	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263	if (cb)
1264		plug = container_of(cb, struct raid10_plug_cb, cb);
1265	else
1266		plug = NULL;
1267	if (plug) {
1268		bio_list_add(&plug->pending, mbio);
1269		plug->pending_cnt++;
1270	} else {
1271		spin_lock_irqsave(&conf->device_lock, flags);
1272		bio_list_add(&conf->pending_bio_list, mbio);
1273		conf->pending_count++;
1274		spin_unlock_irqrestore(&conf->device_lock, flags);
1275		md_wakeup_thread(mddev->thread);
1276	}
1277}
1278
1279static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280				 struct r10bio *r10_bio)
1281{
1282	struct r10conf *conf = mddev->private;
1283	int i;
1284	struct md_rdev *blocked_rdev;
1285	sector_t sectors;
1286	int max_sectors;
1287
1288	if ((mddev_is_clustered(mddev) &&
1289	     md_cluster_ops->area_resyncing(mddev, WRITE,
1290					    bio->bi_iter.bi_sector,
1291					    bio_end_sector(bio)))) {
1292		DEFINE_WAIT(w);
1293		for (;;) {
1294			prepare_to_wait(&conf->wait_barrier,
1295					&w, TASK_IDLE);
1296			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298				break;
1299			schedule();
1300		}
1301		finish_wait(&conf->wait_barrier, &w);
1302	}
1303
1304	sectors = r10_bio->sectors;
1305	regular_request_wait(mddev, conf, bio, sectors);
1306	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307	    (mddev->reshape_backwards
1308	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312		/* Need to update reshape_position in metadata */
1313		mddev->reshape_position = conf->reshape_progress;
1314		set_mask_bits(&mddev->sb_flags, 0,
1315			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316		md_wakeup_thread(mddev->thread);
1317		raid10_log(conf->mddev, "wait reshape metadata");
1318		wait_event(mddev->sb_wait,
1319			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321		conf->reshape_safe = mddev->reshape_position;
1322	}
1323
 
 
 
1324	if (conf->pending_count >= max_queued_requests) {
1325		md_wakeup_thread(mddev->thread);
1326		raid10_log(mddev, "wait queued");
1327		wait_event(conf->wait_barrier,
1328			   conf->pending_count < max_queued_requests);
1329	}
1330	/* first select target devices under rcu_lock and
1331	 * inc refcount on their rdev.  Record them by setting
1332	 * bios[x] to bio
1333	 * If there are known/acknowledged bad blocks on any device
1334	 * on which we have seen a write error, we want to avoid
1335	 * writing to those blocks.  This potentially requires several
1336	 * writes to write around the bad blocks.  Each set of writes
1337	 * gets its own r10_bio with a set of bios attached.
 
 
1338	 */
1339
1340	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341	raid10_find_phys(conf, r10_bio);
1342retry_write:
1343	blocked_rdev = NULL;
1344	rcu_read_lock();
1345	max_sectors = r10_bio->sectors;
1346
1347	for (i = 0;  i < conf->copies; i++) {
1348		int d = r10_bio->devs[i].devnum;
1349		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350		struct md_rdev *rrdev = rcu_dereference(
1351			conf->mirrors[d].replacement);
1352		if (rdev == rrdev)
1353			rrdev = NULL;
1354		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355			atomic_inc(&rdev->nr_pending);
1356			blocked_rdev = rdev;
1357			break;
1358		}
1359		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360			atomic_inc(&rrdev->nr_pending);
1361			blocked_rdev = rrdev;
1362			break;
1363		}
1364		if (rdev && (test_bit(Faulty, &rdev->flags)))
1365			rdev = NULL;
1366		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367			rrdev = NULL;
1368
1369		r10_bio->devs[i].bio = NULL;
1370		r10_bio->devs[i].repl_bio = NULL;
1371
1372		if (!rdev && !rrdev) {
1373			set_bit(R10BIO_Degraded, &r10_bio->state);
1374			continue;
1375		}
1376		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377			sector_t first_bad;
1378			sector_t dev_sector = r10_bio->devs[i].addr;
1379			int bad_sectors;
1380			int is_bad;
1381
1382			is_bad = is_badblock(rdev, dev_sector, max_sectors,
 
1383					     &first_bad, &bad_sectors);
1384			if (is_bad < 0) {
1385				/* Mustn't write here until the bad block
1386				 * is acknowledged
1387				 */
1388				atomic_inc(&rdev->nr_pending);
1389				set_bit(BlockedBadBlocks, &rdev->flags);
1390				blocked_rdev = rdev;
1391				break;
1392			}
1393			if (is_bad && first_bad <= dev_sector) {
1394				/* Cannot write here at all */
1395				bad_sectors -= (dev_sector - first_bad);
1396				if (bad_sectors < max_sectors)
1397					/* Mustn't write more than bad_sectors
1398					 * to other devices yet
1399					 */
1400					max_sectors = bad_sectors;
1401				/* We don't set R10BIO_Degraded as that
1402				 * only applies if the disk is missing,
1403				 * so it might be re-added, and we want to
1404				 * know to recover this chunk.
1405				 * In this case the device is here, and the
1406				 * fact that this chunk is not in-sync is
1407				 * recorded in the bad block log.
1408				 */
1409				continue;
1410			}
1411			if (is_bad) {
1412				int good_sectors = first_bad - dev_sector;
1413				if (good_sectors < max_sectors)
1414					max_sectors = good_sectors;
1415			}
1416		}
1417		if (rdev) {
1418			r10_bio->devs[i].bio = bio;
1419			atomic_inc(&rdev->nr_pending);
1420		}
1421		if (rrdev) {
1422			r10_bio->devs[i].repl_bio = bio;
1423			atomic_inc(&rrdev->nr_pending);
1424		}
1425	}
1426	rcu_read_unlock();
1427
1428	if (unlikely(blocked_rdev)) {
1429		/* Have to wait for this device to get unblocked, then retry */
1430		int j;
1431		int d;
1432
1433		for (j = 0; j < i; j++) {
1434			if (r10_bio->devs[j].bio) {
1435				d = r10_bio->devs[j].devnum;
1436				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437			}
1438			if (r10_bio->devs[j].repl_bio) {
1439				struct md_rdev *rdev;
1440				d = r10_bio->devs[j].devnum;
1441				rdev = conf->mirrors[d].replacement;
1442				if (!rdev) {
1443					/* Race with remove_disk */
1444					smp_mb();
1445					rdev = conf->mirrors[d].rdev;
1446				}
1447				rdev_dec_pending(rdev, mddev);
1448			}
1449		}
1450		allow_barrier(conf);
1451		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453		wait_barrier(conf);
1454		goto retry_write;
1455	}
1456
1457	if (max_sectors < r10_bio->sectors)
 
 
 
1458		r10_bio->sectors = max_sectors;
1459
1460	if (r10_bio->sectors < bio_sectors(bio)) {
1461		struct bio *split = bio_split(bio, r10_bio->sectors,
1462					      GFP_NOIO, &conf->bio_split);
1463		bio_chain(split, bio);
1464		allow_barrier(conf);
1465		submit_bio_noacct(bio);
1466		wait_barrier(conf);
1467		bio = split;
1468		r10_bio->master_bio = bio;
1469	}
 
1470
1471	atomic_set(&r10_bio->remaining, 1);
1472	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474	for (i = 0; i < conf->copies; i++) {
1475		if (r10_bio->devs[i].bio)
1476			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477		if (r10_bio->devs[i].repl_bio)
1478			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479	}
1480	one_write_done(r10_bio);
1481}
1482
1483static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484{
1485	struct r10conf *conf = mddev->private;
1486	struct r10bio *r10_bio;
 
 
 
 
 
 
 
 
1487
1488	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
 
 
 
 
 
 
1489
1490	r10_bio->master_bio = bio;
1491	r10_bio->sectors = sectors;
1492
1493	r10_bio->mddev = mddev;
1494	r10_bio->sector = bio->bi_iter.bi_sector;
1495	r10_bio->state = 0;
1496	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
 
 
 
 
 
 
 
 
 
 
 
 
 
1497
1498	if (bio_data_dir(bio) == READ)
1499		raid10_read_request(mddev, bio, r10_bio);
1500	else
1501		raid10_write_request(mddev, bio, r10_bio);
1502}
 
 
 
1503
1504static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1505{
1506	struct r10conf *conf = mddev->private;
1507	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1508	int chunk_sects = chunk_mask + 1;
1509	int sectors = bio_sectors(bio);
1510
1511	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1512	    && md_flush_request(mddev, bio))
1513		return true;
 
 
 
1514
1515	if (!md_write_start(mddev, bio))
1516		return false;
1517
1518	/*
1519	 * If this request crosses a chunk boundary, we need to split
1520	 * it.
1521	 */
1522	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1523		     sectors > chunk_sects
1524		     && (conf->geo.near_copies < conf->geo.raid_disks
1525			 || conf->prev.near_copies <
1526			 conf->prev.raid_disks)))
1527		sectors = chunk_sects -
1528			(bio->bi_iter.bi_sector &
1529			 (chunk_sects - 1));
1530	__make_request(mddev, bio, sectors);
1531
1532	/* In case raid10d snuck in to freeze_array */
1533	wake_up(&conf->wait_barrier);
1534	return true;
1535}
1536
1537static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1538{
1539	struct r10conf *conf = mddev->private;
1540	int i;
1541
1542	if (conf->geo.near_copies < conf->geo.raid_disks)
1543		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544	if (conf->geo.near_copies > 1)
1545		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546	if (conf->geo.far_copies > 1) {
1547		if (conf->geo.far_offset)
1548			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549		else
1550			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551		if (conf->geo.far_set_size != conf->geo.raid_disks)
1552			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1553	}
1554	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1555					conf->geo.raid_disks - mddev->degraded);
1556	rcu_read_lock();
1557	for (i = 0; i < conf->geo.raid_disks; i++) {
1558		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1560	}
1561	rcu_read_unlock();
1562	seq_printf(seq, "]");
1563}
1564
1565/* check if there are enough drives for
1566 * every block to appear on atleast one.
1567 * Don't consider the device numbered 'ignore'
1568 * as we might be about to remove it.
1569 */
1570static int _enough(struct r10conf *conf, int previous, int ignore)
1571{
1572	int first = 0;
1573	int has_enough = 0;
1574	int disks, ncopies;
1575	if (previous) {
1576		disks = conf->prev.raid_disks;
1577		ncopies = conf->prev.near_copies;
1578	} else {
1579		disks = conf->geo.raid_disks;
1580		ncopies = conf->geo.near_copies;
1581	}
1582
1583	rcu_read_lock();
1584	do {
1585		int n = conf->copies;
1586		int cnt = 0;
1587		int this = first;
1588		while (n--) {
1589			struct md_rdev *rdev;
1590			if (this != ignore &&
1591			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1592			    test_bit(In_sync, &rdev->flags))
1593				cnt++;
1594			this = (this+1) % disks;
1595		}
1596		if (cnt == 0)
1597			goto out;
1598		first = (first + ncopies) % disks;
1599	} while (first != 0);
1600	has_enough = 1;
1601out:
1602	rcu_read_unlock();
1603	return has_enough;
1604}
1605
1606static int enough(struct r10conf *conf, int ignore)
1607{
1608	/* when calling 'enough', both 'prev' and 'geo' must
1609	 * be stable.
1610	 * This is ensured if ->reconfig_mutex or ->device_lock
1611	 * is held.
1612	 */
1613	return _enough(conf, 0, ignore) &&
1614		_enough(conf, 1, ignore);
1615}
1616
1617static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1618{
1619	char b[BDEVNAME_SIZE];
1620	struct r10conf *conf = mddev->private;
1621	unsigned long flags;
1622
1623	/*
1624	 * If it is not operational, then we have already marked it as dead
1625	 * else if it is the last working disks with "fail_last_dev == false",
1626	 * ignore the error, let the next level up know.
1627	 * else mark the drive as failed
1628	 */
1629	spin_lock_irqsave(&conf->device_lock, flags);
1630	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1631	    && !enough(conf, rdev->raid_disk)) {
1632		/*
1633		 * Don't fail the drive, just return an IO error.
1634		 */
 
 
 
 
 
1635		spin_unlock_irqrestore(&conf->device_lock, flags);
1636		return;
 
 
 
1637	}
1638	if (test_and_clear_bit(In_sync, &rdev->flags))
1639		mddev->degraded++;
1640	/*
1641	 * If recovery is running, make sure it aborts.
1642	 */
1643	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1644	set_bit(Blocked, &rdev->flags);
1645	set_bit(Faulty, &rdev->flags);
1646	set_mask_bits(&mddev->sb_flags, 0,
1647		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648	spin_unlock_irqrestore(&conf->device_lock, flags);
1649	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1650		"md/raid10:%s: Operation continuing on %d devices.\n",
1651		mdname(mddev), bdevname(rdev->bdev, b),
1652		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1653}
1654
1655static void print_conf(struct r10conf *conf)
1656{
1657	int i;
1658	struct md_rdev *rdev;
1659
1660	pr_debug("RAID10 conf printout:\n");
1661	if (!conf) {
1662		pr_debug("(!conf)\n");
1663		return;
1664	}
1665	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1666		 conf->geo.raid_disks);
1667
1668	/* This is only called with ->reconfix_mutex held, so
1669	 * rcu protection of rdev is not needed */
1670	for (i = 0; i < conf->geo.raid_disks; i++) {
1671		char b[BDEVNAME_SIZE];
1672		rdev = conf->mirrors[i].rdev;
1673		if (rdev)
1674			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1675				 i, !test_bit(In_sync, &rdev->flags),
1676				 !test_bit(Faulty, &rdev->flags),
1677				 bdevname(rdev->bdev,b));
1678	}
1679}
1680
1681static void close_sync(struct r10conf *conf)
1682{
1683	wait_barrier(conf);
1684	allow_barrier(conf);
1685
1686	mempool_exit(&conf->r10buf_pool);
 
1687}
1688
1689static int raid10_spare_active(struct mddev *mddev)
1690{
1691	int i;
1692	struct r10conf *conf = mddev->private;
1693	struct raid10_info *tmp;
1694	int count = 0;
1695	unsigned long flags;
1696
1697	/*
1698	 * Find all non-in_sync disks within the RAID10 configuration
1699	 * and mark them in_sync
1700	 */
1701	for (i = 0; i < conf->geo.raid_disks; i++) {
1702		tmp = conf->mirrors + i;
1703		if (tmp->replacement
1704		    && tmp->replacement->recovery_offset == MaxSector
1705		    && !test_bit(Faulty, &tmp->replacement->flags)
1706		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1707			/* Replacement has just become active */
1708			if (!tmp->rdev
1709			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1710				count++;
1711			if (tmp->rdev) {
1712				/* Replaced device not technically faulty,
1713				 * but we need to be sure it gets removed
1714				 * and never re-added.
1715				 */
1716				set_bit(Faulty, &tmp->rdev->flags);
1717				sysfs_notify_dirent_safe(
1718					tmp->rdev->sysfs_state);
1719			}
1720			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1721		} else if (tmp->rdev
1722			   && tmp->rdev->recovery_offset == MaxSector
1723			   && !test_bit(Faulty, &tmp->rdev->flags)
1724			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1725			count++;
1726			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1727		}
1728	}
1729	spin_lock_irqsave(&conf->device_lock, flags);
1730	mddev->degraded -= count;
1731	spin_unlock_irqrestore(&conf->device_lock, flags);
1732
1733	print_conf(conf);
1734	return count;
1735}
1736
 
1737static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1738{
1739	struct r10conf *conf = mddev->private;
1740	int err = -EEXIST;
1741	int mirror;
1742	int first = 0;
1743	int last = conf->geo.raid_disks - 1;
 
1744
1745	if (mddev->recovery_cp < MaxSector)
1746		/* only hot-add to in-sync arrays, as recovery is
1747		 * very different from resync
1748		 */
1749		return -EBUSY;
1750	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1751		return -EINVAL;
1752
1753	if (md_integrity_add_rdev(rdev, mddev))
1754		return -ENXIO;
1755
1756	if (rdev->raid_disk >= 0)
1757		first = last = rdev->raid_disk;
1758
 
 
 
 
 
1759	if (rdev->saved_raid_disk >= first &&
1760	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1761	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762		mirror = rdev->saved_raid_disk;
1763	else
1764		mirror = first;
1765	for ( ; mirror <= last ; mirror++) {
1766		struct raid10_info *p = &conf->mirrors[mirror];
1767		if (p->recovery_disabled == mddev->recovery_disabled)
1768			continue;
1769		if (p->rdev) {
1770			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1771			    p->replacement != NULL)
1772				continue;
1773			clear_bit(In_sync, &rdev->flags);
1774			set_bit(Replacement, &rdev->flags);
1775			rdev->raid_disk = mirror;
1776			err = 0;
1777			if (mddev->gendisk)
1778				disk_stack_limits(mddev->gendisk, rdev->bdev,
1779						  rdev->data_offset << 9);
1780			conf->fullsync = 1;
1781			rcu_assign_pointer(p->replacement, rdev);
1782			break;
1783		}
1784
1785		if (mddev->gendisk)
1786			disk_stack_limits(mddev->gendisk, rdev->bdev,
1787					  rdev->data_offset << 9);
1788
1789		p->head_position = 0;
1790		p->recovery_disabled = mddev->recovery_disabled - 1;
1791		rdev->raid_disk = mirror;
1792		err = 0;
1793		if (rdev->saved_raid_disk != mirror)
1794			conf->fullsync = 1;
1795		rcu_assign_pointer(p->rdev, rdev);
1796		break;
1797	}
1798	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1799		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1800
 
 
 
 
 
 
 
 
 
 
 
1801	print_conf(conf);
1802	return err;
1803}
1804
1805static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806{
1807	struct r10conf *conf = mddev->private;
1808	int err = 0;
1809	int number = rdev->raid_disk;
1810	struct md_rdev **rdevp;
1811	struct raid10_info *p = conf->mirrors + number;
1812
1813	print_conf(conf);
1814	if (rdev == p->rdev)
1815		rdevp = &p->rdev;
1816	else if (rdev == p->replacement)
1817		rdevp = &p->replacement;
1818	else
1819		return 0;
1820
1821	if (test_bit(In_sync, &rdev->flags) ||
1822	    atomic_read(&rdev->nr_pending)) {
1823		err = -EBUSY;
1824		goto abort;
1825	}
1826	/* Only remove non-faulty devices if recovery
1827	 * is not possible.
1828	 */
1829	if (!test_bit(Faulty, &rdev->flags) &&
1830	    mddev->recovery_disabled != p->recovery_disabled &&
1831	    (!p->replacement || p->replacement == rdev) &&
1832	    number < conf->geo.raid_disks &&
1833	    enough(conf, -1)) {
1834		err = -EBUSY;
1835		goto abort;
1836	}
1837	*rdevp = NULL;
1838	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1839		synchronize_rcu();
1840		if (atomic_read(&rdev->nr_pending)) {
1841			/* lost the race, try later */
1842			err = -EBUSY;
1843			*rdevp = rdev;
1844			goto abort;
1845		}
1846	}
1847	if (p->replacement) {
1848		/* We must have just cleared 'rdev' */
1849		p->rdev = p->replacement;
1850		clear_bit(Replacement, &p->replacement->flags);
1851		smp_mb(); /* Make sure other CPUs may see both as identical
1852			   * but will never see neither -- if they are careful.
1853			   */
1854		p->replacement = NULL;
1855	}
 
 
 
 
 
1856
1857	clear_bit(WantReplacement, &rdev->flags);
1858	err = md_integrity_register(mddev);
1859
1860abort:
1861
1862	print_conf(conf);
1863	return err;
1864}
1865
1866static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
 
1867{
 
1868	struct r10conf *conf = r10_bio->mddev->private;
 
1869
1870	if (!bio->bi_status)
 
 
 
 
 
 
1871		set_bit(R10BIO_Uptodate, &r10_bio->state);
1872	else
1873		/* The write handler will notice the lack of
1874		 * R10BIO_Uptodate and record any errors etc
1875		 */
1876		atomic_add(r10_bio->sectors,
1877			   &conf->mirrors[d].rdev->corrected_errors);
1878
1879	/* for reconstruct, we always reschedule after a read.
1880	 * for resync, only after all reads
1881	 */
1882	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1883	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1884	    atomic_dec_and_test(&r10_bio->remaining)) {
1885		/* we have read all the blocks,
1886		 * do the comparison in process context in raid10d
1887		 */
1888		reschedule_retry(r10_bio);
1889	}
1890}
1891
1892static void end_sync_read(struct bio *bio)
1893{
1894	struct r10bio *r10_bio = get_resync_r10bio(bio);
1895	struct r10conf *conf = r10_bio->mddev->private;
1896	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1897
1898	__end_sync_read(r10_bio, bio, d);
1899}
1900
1901static void end_reshape_read(struct bio *bio)
1902{
1903	/* reshape read bio isn't allocated from r10buf_pool */
1904	struct r10bio *r10_bio = bio->bi_private;
1905
1906	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1907}
1908
1909static void end_sync_request(struct r10bio *r10_bio)
1910{
1911	struct mddev *mddev = r10_bio->mddev;
1912
1913	while (atomic_dec_and_test(&r10_bio->remaining)) {
1914		if (r10_bio->master_bio == NULL) {
1915			/* the primary of several recovery bios */
1916			sector_t s = r10_bio->sectors;
1917			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1918			    test_bit(R10BIO_WriteError, &r10_bio->state))
1919				reschedule_retry(r10_bio);
1920			else
1921				put_buf(r10_bio);
1922			md_done_sync(mddev, s, 1);
1923			break;
1924		} else {
1925			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1926			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1927			    test_bit(R10BIO_WriteError, &r10_bio->state))
1928				reschedule_retry(r10_bio);
1929			else
1930				put_buf(r10_bio);
1931			r10_bio = r10_bio2;
1932		}
1933	}
1934}
1935
1936static void end_sync_write(struct bio *bio)
1937{
1938	struct r10bio *r10_bio = get_resync_r10bio(bio);
 
1939	struct mddev *mddev = r10_bio->mddev;
1940	struct r10conf *conf = mddev->private;
1941	int d;
1942	sector_t first_bad;
1943	int bad_sectors;
1944	int slot;
1945	int repl;
1946	struct md_rdev *rdev = NULL;
1947
1948	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1949	if (repl)
1950		rdev = conf->mirrors[d].replacement;
1951	else
1952		rdev = conf->mirrors[d].rdev;
1953
1954	if (bio->bi_status) {
1955		if (repl)
1956			md_error(mddev, rdev);
1957		else {
1958			set_bit(WriteErrorSeen, &rdev->flags);
1959			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1960				set_bit(MD_RECOVERY_NEEDED,
1961					&rdev->mddev->recovery);
1962			set_bit(R10BIO_WriteError, &r10_bio->state);
1963		}
1964	} else if (is_badblock(rdev,
1965			     r10_bio->devs[slot].addr,
1966			     r10_bio->sectors,
1967			     &first_bad, &bad_sectors))
1968		set_bit(R10BIO_MadeGood, &r10_bio->state);
1969
1970	rdev_dec_pending(rdev, mddev);
1971
1972	end_sync_request(r10_bio);
1973}
1974
1975/*
1976 * Note: sync and recover and handled very differently for raid10
1977 * This code is for resync.
1978 * For resync, we read through virtual addresses and read all blocks.
1979 * If there is any error, we schedule a write.  The lowest numbered
1980 * drive is authoritative.
1981 * However requests come for physical address, so we need to map.
1982 * For every physical address there are raid_disks/copies virtual addresses,
1983 * which is always are least one, but is not necessarly an integer.
1984 * This means that a physical address can span multiple chunks, so we may
1985 * have to submit multiple io requests for a single sync request.
1986 */
1987/*
1988 * We check if all blocks are in-sync and only write to blocks that
1989 * aren't in sync
1990 */
1991static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1992{
1993	struct r10conf *conf = mddev->private;
1994	int i, first;
1995	struct bio *tbio, *fbio;
1996	int vcnt;
1997	struct page **tpages, **fpages;
1998
1999	atomic_set(&r10_bio->remaining, 1);
2000
2001	/* find the first device with a block */
2002	for (i=0; i<conf->copies; i++)
2003		if (!r10_bio->devs[i].bio->bi_status)
2004			break;
2005
2006	if (i == conf->copies)
2007		goto done;
2008
2009	first = i;
2010	fbio = r10_bio->devs[i].bio;
2011	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2012	fbio->bi_iter.bi_idx = 0;
2013	fpages = get_resync_pages(fbio)->pages;
2014
2015	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2016	/* now find blocks with errors */
2017	for (i=0 ; i < conf->copies ; i++) {
2018		int  j, d;
2019		struct md_rdev *rdev;
2020		struct resync_pages *rp;
2021
2022		tbio = r10_bio->devs[i].bio;
2023
2024		if (tbio->bi_end_io != end_sync_read)
2025			continue;
2026		if (i == first)
2027			continue;
2028
2029		tpages = get_resync_pages(tbio)->pages;
2030		d = r10_bio->devs[i].devnum;
2031		rdev = conf->mirrors[d].rdev;
2032		if (!r10_bio->devs[i].bio->bi_status) {
2033			/* We know that the bi_io_vec layout is the same for
2034			 * both 'first' and 'i', so we just compare them.
2035			 * All vec entries are PAGE_SIZE;
2036			 */
2037			int sectors = r10_bio->sectors;
2038			for (j = 0; j < vcnt; j++) {
2039				int len = PAGE_SIZE;
2040				if (sectors < (len / 512))
2041					len = sectors * 512;
2042				if (memcmp(page_address(fpages[j]),
2043					   page_address(tpages[j]),
2044					   len))
2045					break;
2046				sectors -= len/512;
2047			}
2048			if (j == vcnt)
2049				continue;
2050			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2051			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2052				/* Don't fix anything. */
2053				continue;
2054		} else if (test_bit(FailFast, &rdev->flags)) {
2055			/* Just give up on this device */
2056			md_error(rdev->mddev, rdev);
2057			continue;
2058		}
2059		/* Ok, we need to write this bio, either to correct an
2060		 * inconsistency or to correct an unreadable block.
2061		 * First we need to fixup bv_offset, bv_len and
2062		 * bi_vecs, as the read request might have corrupted these
2063		 */
2064		rp = get_resync_pages(tbio);
2065		bio_reset(tbio);
2066
2067		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2068
2069		rp->raid_bio = r10_bio;
2070		tbio->bi_private = rp;
2071		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
 
 
 
 
 
 
 
 
 
 
 
2072		tbio->bi_end_io = end_sync_write;
2073		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2074
2075		bio_copy_data(tbio, fbio);
2076
 
2077		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2078		atomic_inc(&r10_bio->remaining);
2079		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2080
2081		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2082			tbio->bi_opf |= MD_FAILFAST;
2083		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2084		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2085		submit_bio_noacct(tbio);
2086	}
2087
2088	/* Now write out to any replacement devices
2089	 * that are active
2090	 */
2091	for (i = 0; i < conf->copies; i++) {
2092		int d;
2093
2094		tbio = r10_bio->devs[i].repl_bio;
2095		if (!tbio || !tbio->bi_end_io)
2096			continue;
2097		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2098		    && r10_bio->devs[i].bio != fbio)
2099			bio_copy_data(tbio, fbio);
 
 
 
2100		d = r10_bio->devs[i].devnum;
2101		atomic_inc(&r10_bio->remaining);
2102		md_sync_acct(conf->mirrors[d].replacement->bdev,
2103			     bio_sectors(tbio));
2104		submit_bio_noacct(tbio);
2105	}
2106
2107done:
2108	if (atomic_dec_and_test(&r10_bio->remaining)) {
2109		md_done_sync(mddev, r10_bio->sectors, 1);
2110		put_buf(r10_bio);
2111	}
2112}
2113
2114/*
2115 * Now for the recovery code.
2116 * Recovery happens across physical sectors.
2117 * We recover all non-is_sync drives by finding the virtual address of
2118 * each, and then choose a working drive that also has that virt address.
2119 * There is a separate r10_bio for each non-in_sync drive.
2120 * Only the first two slots are in use. The first for reading,
2121 * The second for writing.
2122 *
2123 */
2124static void fix_recovery_read_error(struct r10bio *r10_bio)
2125{
2126	/* We got a read error during recovery.
2127	 * We repeat the read in smaller page-sized sections.
2128	 * If a read succeeds, write it to the new device or record
2129	 * a bad block if we cannot.
2130	 * If a read fails, record a bad block on both old and
2131	 * new devices.
2132	 */
2133	struct mddev *mddev = r10_bio->mddev;
2134	struct r10conf *conf = mddev->private;
2135	struct bio *bio = r10_bio->devs[0].bio;
2136	sector_t sect = 0;
2137	int sectors = r10_bio->sectors;
2138	int idx = 0;
2139	int dr = r10_bio->devs[0].devnum;
2140	int dw = r10_bio->devs[1].devnum;
2141	struct page **pages = get_resync_pages(bio)->pages;
2142
2143	while (sectors) {
2144		int s = sectors;
2145		struct md_rdev *rdev;
2146		sector_t addr;
2147		int ok;
2148
2149		if (s > (PAGE_SIZE>>9))
2150			s = PAGE_SIZE >> 9;
2151
2152		rdev = conf->mirrors[dr].rdev;
2153		addr = r10_bio->devs[0].addr + sect,
2154		ok = sync_page_io(rdev,
2155				  addr,
2156				  s << 9,
2157				  pages[idx],
2158				  REQ_OP_READ, 0, false);
2159		if (ok) {
2160			rdev = conf->mirrors[dw].rdev;
2161			addr = r10_bio->devs[1].addr + sect;
2162			ok = sync_page_io(rdev,
2163					  addr,
2164					  s << 9,
2165					  pages[idx],
2166					  REQ_OP_WRITE, 0, false);
2167			if (!ok) {
2168				set_bit(WriteErrorSeen, &rdev->flags);
2169				if (!test_and_set_bit(WantReplacement,
2170						      &rdev->flags))
2171					set_bit(MD_RECOVERY_NEEDED,
2172						&rdev->mddev->recovery);
2173			}
2174		}
2175		if (!ok) {
2176			/* We don't worry if we cannot set a bad block -
2177			 * it really is bad so there is no loss in not
2178			 * recording it yet
2179			 */
2180			rdev_set_badblocks(rdev, addr, s, 0);
2181
2182			if (rdev != conf->mirrors[dw].rdev) {
2183				/* need bad block on destination too */
2184				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2185				addr = r10_bio->devs[1].addr + sect;
2186				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2187				if (!ok) {
2188					/* just abort the recovery */
2189					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2190						  mdname(mddev));
 
 
2191
2192					conf->mirrors[dw].recovery_disabled
2193						= mddev->recovery_disabled;
2194					set_bit(MD_RECOVERY_INTR,
2195						&mddev->recovery);
2196					break;
2197				}
2198			}
2199		}
2200
2201		sectors -= s;
2202		sect += s;
2203		idx++;
2204	}
2205}
2206
2207static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2208{
2209	struct r10conf *conf = mddev->private;
2210	int d;
2211	struct bio *wbio, *wbio2;
2212
2213	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2214		fix_recovery_read_error(r10_bio);
2215		end_sync_request(r10_bio);
2216		return;
2217	}
2218
2219	/*
2220	 * share the pages with the first bio
2221	 * and submit the write request
2222	 */
2223	d = r10_bio->devs[1].devnum;
2224	wbio = r10_bio->devs[1].bio;
2225	wbio2 = r10_bio->devs[1].repl_bio;
2226	/* Need to test wbio2->bi_end_io before we call
2227	 * submit_bio_noacct as if the former is NULL,
2228	 * the latter is free to free wbio2.
2229	 */
2230	if (wbio2 && !wbio2->bi_end_io)
2231		wbio2 = NULL;
2232	if (wbio->bi_end_io) {
2233		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2234		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2235		submit_bio_noacct(wbio);
2236	}
2237	if (wbio2) {
2238		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2239		md_sync_acct(conf->mirrors[d].replacement->bdev,
2240			     bio_sectors(wbio2));
2241		submit_bio_noacct(wbio2);
2242	}
2243}
2244
 
2245/*
2246 * Used by fix_read_error() to decay the per rdev read_errors.
2247 * We halve the read error count for every hour that has elapsed
2248 * since the last recorded read error.
2249 *
2250 */
2251static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2252{
2253	long cur_time_mon;
2254	unsigned long hours_since_last;
2255	unsigned int read_errors = atomic_read(&rdev->read_errors);
2256
2257	cur_time_mon = ktime_get_seconds();
2258
2259	if (rdev->last_read_error == 0) {
 
2260		/* first time we've seen a read error */
2261		rdev->last_read_error = cur_time_mon;
2262		return;
2263	}
2264
2265	hours_since_last = (long)(cur_time_mon -
2266			    rdev->last_read_error) / 3600;
2267
2268	rdev->last_read_error = cur_time_mon;
2269
2270	/*
2271	 * if hours_since_last is > the number of bits in read_errors
2272	 * just set read errors to 0. We do this to avoid
2273	 * overflowing the shift of read_errors by hours_since_last.
2274	 */
2275	if (hours_since_last >= 8 * sizeof(read_errors))
2276		atomic_set(&rdev->read_errors, 0);
2277	else
2278		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2279}
2280
2281static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2282			    int sectors, struct page *page, int rw)
2283{
2284	sector_t first_bad;
2285	int bad_sectors;
2286
2287	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2288	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2289		return -1;
2290	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2291		/* success */
2292		return 1;
2293	if (rw == WRITE) {
2294		set_bit(WriteErrorSeen, &rdev->flags);
2295		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2296			set_bit(MD_RECOVERY_NEEDED,
2297				&rdev->mddev->recovery);
2298	}
2299	/* need to record an error - either for the block or the device */
2300	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2301		md_error(rdev->mddev, rdev);
2302	return 0;
2303}
2304
2305/*
2306 * This is a kernel thread which:
2307 *
2308 *	1.	Retries failed read operations on working mirrors.
2309 *	2.	Updates the raid superblock when problems encounter.
2310 *	3.	Performs writes following reads for array synchronising.
2311 */
2312
2313static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2314{
2315	int sect = 0; /* Offset from r10_bio->sector */
2316	int sectors = r10_bio->sectors;
2317	struct md_rdev *rdev;
2318	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2319	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2320
2321	/* still own a reference to this rdev, so it cannot
2322	 * have been cleared recently.
2323	 */
2324	rdev = conf->mirrors[d].rdev;
2325
2326	if (test_bit(Faulty, &rdev->flags))
2327		/* drive has already been failed, just ignore any
2328		   more fix_read_error() attempts */
2329		return;
2330
2331	check_decay_read_errors(mddev, rdev);
2332	atomic_inc(&rdev->read_errors);
2333	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2334		char b[BDEVNAME_SIZE];
2335		bdevname(rdev->bdev, b);
2336
2337		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338			  mdname(mddev), b,
2339			  atomic_read(&rdev->read_errors), max_read_errors);
2340		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341			  mdname(mddev), b);
2342		md_error(mddev, rdev);
 
 
 
2343		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2344		return;
2345	}
2346
2347	while(sectors) {
2348		int s = sectors;
2349		int sl = r10_bio->read_slot;
2350		int success = 0;
2351		int start;
2352
2353		if (s > (PAGE_SIZE>>9))
2354			s = PAGE_SIZE >> 9;
2355
2356		rcu_read_lock();
2357		do {
2358			sector_t first_bad;
2359			int bad_sectors;
2360
2361			d = r10_bio->devs[sl].devnum;
2362			rdev = rcu_dereference(conf->mirrors[d].rdev);
2363			if (rdev &&
 
2364			    test_bit(In_sync, &rdev->flags) &&
2365			    !test_bit(Faulty, &rdev->flags) &&
2366			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2367					&first_bad, &bad_sectors) == 0) {
2368				atomic_inc(&rdev->nr_pending);
2369				rcu_read_unlock();
2370				success = sync_page_io(rdev,
2371						       r10_bio->devs[sl].addr +
2372						       sect,
2373						       s<<9,
2374						       conf->tmppage,
2375						       REQ_OP_READ, 0, false);
2376				rdev_dec_pending(rdev, mddev);
2377				rcu_read_lock();
2378				if (success)
2379					break;
2380			}
2381			sl++;
2382			if (sl == conf->copies)
2383				sl = 0;
2384		} while (!success && sl != r10_bio->read_slot);
2385		rcu_read_unlock();
2386
2387		if (!success) {
2388			/* Cannot read from anywhere, just mark the block
2389			 * as bad on the first device to discourage future
2390			 * reads.
2391			 */
2392			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2393			rdev = conf->mirrors[dn].rdev;
2394
2395			if (!rdev_set_badblocks(
2396				    rdev,
2397				    r10_bio->devs[r10_bio->read_slot].addr
2398				    + sect,
2399				    s, 0)) {
2400				md_error(mddev, rdev);
2401				r10_bio->devs[r10_bio->read_slot].bio
2402					= IO_BLOCKED;
2403			}
2404			break;
2405		}
2406
2407		start = sl;
2408		/* write it back and re-read */
2409		rcu_read_lock();
2410		while (sl != r10_bio->read_slot) {
2411			char b[BDEVNAME_SIZE];
2412
2413			if (sl==0)
2414				sl = conf->copies;
2415			sl--;
2416			d = r10_bio->devs[sl].devnum;
2417			rdev = rcu_dereference(conf->mirrors[d].rdev);
2418			if (!rdev ||
2419			    test_bit(Faulty, &rdev->flags) ||
2420			    !test_bit(In_sync, &rdev->flags))
2421				continue;
2422
2423			atomic_inc(&rdev->nr_pending);
2424			rcu_read_unlock();
2425			if (r10_sync_page_io(rdev,
2426					     r10_bio->devs[sl].addr +
2427					     sect,
2428					     s, conf->tmppage, WRITE)
2429			    == 0) {
2430				/* Well, this device is dead */
2431				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432					  mdname(mddev), s,
2433					  (unsigned long long)(
2434						  sect +
2435						  choose_data_offset(r10_bio,
2436								     rdev)),
2437					  bdevname(rdev->bdev, b));
2438				pr_notice("md/raid10:%s: %s: failing drive\n",
2439					  mdname(mddev),
2440					  bdevname(rdev->bdev, b));
 
 
 
 
2441			}
2442			rdev_dec_pending(rdev, mddev);
2443			rcu_read_lock();
2444		}
2445		sl = start;
2446		while (sl != r10_bio->read_slot) {
2447			char b[BDEVNAME_SIZE];
2448
2449			if (sl==0)
2450				sl = conf->copies;
2451			sl--;
2452			d = r10_bio->devs[sl].devnum;
2453			rdev = rcu_dereference(conf->mirrors[d].rdev);
2454			if (!rdev ||
2455			    test_bit(Faulty, &rdev->flags) ||
2456			    !test_bit(In_sync, &rdev->flags))
2457				continue;
2458
2459			atomic_inc(&rdev->nr_pending);
2460			rcu_read_unlock();
2461			switch (r10_sync_page_io(rdev,
2462					     r10_bio->devs[sl].addr +
2463					     sect,
2464					     s, conf->tmppage,
2465						 READ)) {
2466			case 0:
2467				/* Well, this device is dead */
2468				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
 
 
 
2469				       mdname(mddev), s,
2470				       (unsigned long long)(
2471					       sect +
2472					       choose_data_offset(r10_bio, rdev)),
2473				       bdevname(rdev->bdev, b));
2474				pr_notice("md/raid10:%s: %s: failing drive\n",
 
2475				       mdname(mddev),
2476				       bdevname(rdev->bdev, b));
2477				break;
2478			case 1:
2479				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
 
 
2480				       mdname(mddev), s,
2481				       (unsigned long long)(
2482					       sect +
2483					       choose_data_offset(r10_bio, rdev)),
2484				       bdevname(rdev->bdev, b));
2485				atomic_add(s, &rdev->corrected_errors);
2486			}
2487
2488			rdev_dec_pending(rdev, mddev);
2489			rcu_read_lock();
2490		}
2491		rcu_read_unlock();
2492
2493		sectors -= s;
2494		sect += s;
2495	}
2496}
2497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498static int narrow_write_error(struct r10bio *r10_bio, int i)
2499{
2500	struct bio *bio = r10_bio->master_bio;
2501	struct mddev *mddev = r10_bio->mddev;
2502	struct r10conf *conf = mddev->private;
2503	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2504	/* bio has the data to be written to slot 'i' where
2505	 * we just recently had a write error.
2506	 * We repeatedly clone the bio and trim down to one block,
2507	 * then try the write.  Where the write fails we record
2508	 * a bad block.
2509	 * It is conceivable that the bio doesn't exactly align with
2510	 * blocks.  We must handle this.
2511	 *
2512	 * We currently own a reference to the rdev.
2513	 */
2514
2515	int block_sectors;
2516	sector_t sector;
2517	int sectors;
2518	int sect_to_write = r10_bio->sectors;
2519	int ok = 1;
2520
2521	if (rdev->badblocks.shift < 0)
2522		return 0;
2523
2524	block_sectors = roundup(1 << rdev->badblocks.shift,
2525				bdev_logical_block_size(rdev->bdev) >> 9);
2526	sector = r10_bio->sector;
2527	sectors = ((r10_bio->sector + block_sectors)
2528		   & ~(sector_t)(block_sectors - 1))
2529		- sector;
2530
2531	while (sect_to_write) {
2532		struct bio *wbio;
2533		sector_t wsector;
2534		if (sectors > sect_to_write)
2535			sectors = sect_to_write;
2536		/* Write at 'sector' for 'sectors' */
2537		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2538		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2539		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2540		wbio->bi_iter.bi_sector = wsector +
2541				   choose_data_offset(r10_bio, rdev);
2542		bio_set_dev(wbio, rdev->bdev);
2543		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2544
2545		if (submit_bio_wait(wbio) < 0)
2546			/* Failure! */
2547			ok = rdev_set_badblocks(rdev, wsector,
2548						sectors, 0)
2549				&& ok;
2550
2551		bio_put(wbio);
2552		sect_to_write -= sectors;
2553		sector += sectors;
2554		sectors = block_sectors;
2555	}
2556	return ok;
2557}
2558
2559static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2560{
2561	int slot = r10_bio->read_slot;
2562	struct bio *bio;
2563	struct r10conf *conf = mddev->private;
2564	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
 
 
 
2565
2566	/* we got a read error. Maybe the drive is bad.  Maybe just
2567	 * the block and we can fix it.
2568	 * We freeze all other IO, and try reading the block from
2569	 * other devices.  When we find one, we re-write
2570	 * and check it that fixes the read error.
2571	 * This is all done synchronously while the array is
2572	 * frozen.
2573	 */
2574	bio = r10_bio->devs[slot].bio;
 
2575	bio_put(bio);
2576	r10_bio->devs[slot].bio = NULL;
2577
2578	if (mddev->ro)
2579		r10_bio->devs[slot].bio = IO_BLOCKED;
2580	else if (!test_bit(FailFast, &rdev->flags)) {
2581		freeze_array(conf, 1);
2582		fix_read_error(conf, mddev, r10_bio);
2583		unfreeze_array(conf);
2584	} else
2585		md_error(mddev, rdev);
2586
2587	rdev_dec_pending(rdev, mddev);
2588	allow_barrier(conf);
2589	r10_bio->state = 0;
2590	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591}
2592
2593static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2594{
2595	/* Some sort of write request has finished and it
2596	 * succeeded in writing where we thought there was a
2597	 * bad block.  So forget the bad block.
2598	 * Or possibly if failed and we need to record
2599	 * a bad block.
2600	 */
2601	int m;
2602	struct md_rdev *rdev;
2603
2604	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2605	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2606		for (m = 0; m < conf->copies; m++) {
2607			int dev = r10_bio->devs[m].devnum;
2608			rdev = conf->mirrors[dev].rdev;
2609			if (r10_bio->devs[m].bio == NULL ||
2610				r10_bio->devs[m].bio->bi_end_io == NULL)
2611				continue;
2612			if (!r10_bio->devs[m].bio->bi_status) {
 
2613				rdev_clear_badblocks(
2614					rdev,
2615					r10_bio->devs[m].addr,
2616					r10_bio->sectors, 0);
2617			} else {
2618				if (!rdev_set_badblocks(
2619					    rdev,
2620					    r10_bio->devs[m].addr,
2621					    r10_bio->sectors, 0))
2622					md_error(conf->mddev, rdev);
2623			}
2624			rdev = conf->mirrors[dev].replacement;
2625			if (r10_bio->devs[m].repl_bio == NULL ||
2626				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2627				continue;
2628
2629			if (!r10_bio->devs[m].repl_bio->bi_status) {
2630				rdev_clear_badblocks(
2631					rdev,
2632					r10_bio->devs[m].addr,
2633					r10_bio->sectors, 0);
2634			} else {
2635				if (!rdev_set_badblocks(
2636					    rdev,
2637					    r10_bio->devs[m].addr,
2638					    r10_bio->sectors, 0))
2639					md_error(conf->mddev, rdev);
2640			}
2641		}
2642		put_buf(r10_bio);
2643	} else {
2644		bool fail = false;
2645		for (m = 0; m < conf->copies; m++) {
2646			int dev = r10_bio->devs[m].devnum;
2647			struct bio *bio = r10_bio->devs[m].bio;
2648			rdev = conf->mirrors[dev].rdev;
2649			if (bio == IO_MADE_GOOD) {
2650				rdev_clear_badblocks(
2651					rdev,
2652					r10_bio->devs[m].addr,
2653					r10_bio->sectors, 0);
2654				rdev_dec_pending(rdev, conf->mddev);
2655			} else if (bio != NULL && bio->bi_status) {
2656				fail = true;
2657				if (!narrow_write_error(r10_bio, m)) {
2658					md_error(conf->mddev, rdev);
2659					set_bit(R10BIO_Degraded,
2660						&r10_bio->state);
2661				}
2662				rdev_dec_pending(rdev, conf->mddev);
2663			}
2664			bio = r10_bio->devs[m].repl_bio;
2665			rdev = conf->mirrors[dev].replacement;
2666			if (rdev && bio == IO_MADE_GOOD) {
2667				rdev_clear_badblocks(
2668					rdev,
2669					r10_bio->devs[m].addr,
2670					r10_bio->sectors, 0);
2671				rdev_dec_pending(rdev, conf->mddev);
2672			}
2673		}
2674		if (fail) {
2675			spin_lock_irq(&conf->device_lock);
2676			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2677			conf->nr_queued++;
2678			spin_unlock_irq(&conf->device_lock);
2679			/*
2680			 * In case freeze_array() is waiting for condition
2681			 * nr_pending == nr_queued + extra to be true.
2682			 */
2683			wake_up(&conf->wait_barrier);
2684			md_wakeup_thread(conf->mddev->thread);
2685		} else {
2686			if (test_bit(R10BIO_WriteError,
2687				     &r10_bio->state))
2688				close_write(r10_bio);
2689			raid_end_bio_io(r10_bio);
2690		}
2691	}
2692}
2693
2694static void raid10d(struct md_thread *thread)
2695{
2696	struct mddev *mddev = thread->mddev;
2697	struct r10bio *r10_bio;
2698	unsigned long flags;
2699	struct r10conf *conf = mddev->private;
2700	struct list_head *head = &conf->retry_list;
2701	struct blk_plug plug;
2702
2703	md_check_recovery(mddev);
2704
2705	if (!list_empty_careful(&conf->bio_end_io_list) &&
2706	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2707		LIST_HEAD(tmp);
2708		spin_lock_irqsave(&conf->device_lock, flags);
2709		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2710			while (!list_empty(&conf->bio_end_io_list)) {
2711				list_move(conf->bio_end_io_list.prev, &tmp);
2712				conf->nr_queued--;
2713			}
2714		}
2715		spin_unlock_irqrestore(&conf->device_lock, flags);
2716		while (!list_empty(&tmp)) {
2717			r10_bio = list_first_entry(&tmp, struct r10bio,
2718						   retry_list);
2719			list_del(&r10_bio->retry_list);
2720			if (mddev->degraded)
2721				set_bit(R10BIO_Degraded, &r10_bio->state);
2722
2723			if (test_bit(R10BIO_WriteError,
2724				     &r10_bio->state))
2725				close_write(r10_bio);
2726			raid_end_bio_io(r10_bio);
2727		}
2728	}
2729
2730	blk_start_plug(&plug);
2731	for (;;) {
2732
2733		flush_pending_writes(conf);
 
2734
2735		spin_lock_irqsave(&conf->device_lock, flags);
2736		if (list_empty(head)) {
2737			spin_unlock_irqrestore(&conf->device_lock, flags);
2738			break;
2739		}
2740		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2741		list_del(head->prev);
2742		conf->nr_queued--;
2743		spin_unlock_irqrestore(&conf->device_lock, flags);
2744
2745		mddev = r10_bio->mddev;
2746		conf = mddev->private;
2747		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2748		    test_bit(R10BIO_WriteError, &r10_bio->state))
2749			handle_write_completed(conf, r10_bio);
2750		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2751			reshape_request_write(mddev, r10_bio);
2752		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2753			sync_request_write(mddev, r10_bio);
2754		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2755			recovery_request_write(mddev, r10_bio);
2756		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2757			handle_read_error(mddev, r10_bio);
2758		else
2759			WARN_ON_ONCE(1);
 
 
 
 
 
2760
2761		cond_resched();
2762		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2763			md_check_recovery(mddev);
2764	}
2765	blk_finish_plug(&plug);
2766}
2767
 
2768static int init_resync(struct r10conf *conf)
2769{
2770	int ret, buffs, i;
 
2771
2772	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2773	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2774	conf->have_replacement = 0;
2775	for (i = 0; i < conf->geo.raid_disks; i++)
2776		if (conf->mirrors[i].replacement)
2777			conf->have_replacement = 1;
2778	ret = mempool_init(&conf->r10buf_pool, buffs,
2779			   r10buf_pool_alloc, r10buf_pool_free, conf);
2780	if (ret)
2781		return ret;
2782	conf->next_resync = 0;
2783	return 0;
2784}
2785
2786static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2787{
2788	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2789	struct rsync_pages *rp;
2790	struct bio *bio;
2791	int nalloc;
2792	int i;
2793
2794	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2795	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2796		nalloc = conf->copies; /* resync */
2797	else
2798		nalloc = 2; /* recovery */
2799
2800	for (i = 0; i < nalloc; i++) {
2801		bio = r10bio->devs[i].bio;
2802		rp = bio->bi_private;
2803		bio_reset(bio);
2804		bio->bi_private = rp;
2805		bio = r10bio->devs[i].repl_bio;
2806		if (bio) {
2807			rp = bio->bi_private;
2808			bio_reset(bio);
2809			bio->bi_private = rp;
2810		}
2811	}
2812	return r10bio;
2813}
2814
2815/*
2816 * Set cluster_sync_high since we need other nodes to add the
2817 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818 */
2819static void raid10_set_cluster_sync_high(struct r10conf *conf)
2820{
2821	sector_t window_size;
2822	int extra_chunk, chunks;
2823
2824	/*
2825	 * First, here we define "stripe" as a unit which across
2826	 * all member devices one time, so we get chunks by use
2827	 * raid_disks / near_copies. Otherwise, if near_copies is
2828	 * close to raid_disks, then resync window could increases
2829	 * linearly with the increase of raid_disks, which means
2830	 * we will suspend a really large IO window while it is not
2831	 * necessary. If raid_disks is not divisible by near_copies,
2832	 * an extra chunk is needed to ensure the whole "stripe" is
2833	 * covered.
2834	 */
2835
2836	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2837	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2838		extra_chunk = 0;
2839	else
2840		extra_chunk = 1;
2841	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2842
2843	/*
2844	 * At least use a 32M window to align with raid1's resync window
2845	 */
2846	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2847			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2848
2849	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2850}
2851
2852/*
2853 * perform a "sync" on one "block"
2854 *
2855 * We need to make sure that no normal I/O request - particularly write
2856 * requests - conflict with active sync requests.
2857 *
2858 * This is achieved by tracking pending requests and a 'barrier' concept
2859 * that can be installed to exclude normal IO requests.
2860 *
2861 * Resync and recovery are handled very differently.
2862 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863 *
2864 * For resync, we iterate over virtual addresses, read all copies,
2865 * and update if there are differences.  If only one copy is live,
2866 * skip it.
2867 * For recovery, we iterate over physical addresses, read a good
2868 * value for each non-in_sync drive, and over-write.
2869 *
2870 * So, for recovery we may have several outstanding complex requests for a
2871 * given address, one for each out-of-sync device.  We model this by allocating
2872 * a number of r10_bio structures, one for each out-of-sync device.
2873 * As we setup these structures, we collect all bio's together into a list
2874 * which we then process collectively to add pages, and then process again
2875 * to pass to submit_bio_noacct.
2876 *
2877 * The r10_bio structures are linked using a borrowed master_bio pointer.
2878 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2879 * has its remaining count decremented to 0, the whole complex operation
2880 * is complete.
2881 *
2882 */
2883
2884static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2885			     int *skipped)
2886{
2887	struct r10conf *conf = mddev->private;
2888	struct r10bio *r10_bio;
2889	struct bio *biolist = NULL, *bio;
2890	sector_t max_sector, nr_sectors;
2891	int i;
2892	int max_sync;
2893	sector_t sync_blocks;
2894	sector_t sectors_skipped = 0;
2895	int chunks_skipped = 0;
2896	sector_t chunk_mask = conf->geo.chunk_mask;
2897	int page_idx = 0;
2898
2899	if (!mempool_initialized(&conf->r10buf_pool))
2900		if (init_resync(conf))
2901			return 0;
2902
2903	/*
2904	 * Allow skipping a full rebuild for incremental assembly
2905	 * of a clean array, like RAID1 does.
2906	 */
2907	if (mddev->bitmap == NULL &&
2908	    mddev->recovery_cp == MaxSector &&
2909	    mddev->reshape_position == MaxSector &&
2910	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2912	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2913	    conf->fullsync == 0) {
2914		*skipped = 1;
2915		return mddev->dev_sectors - sector_nr;
2916	}
2917
2918 skipped:
2919	max_sector = mddev->dev_sectors;
2920	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2921	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2922		max_sector = mddev->resync_max_sectors;
2923	if (sector_nr >= max_sector) {
2924		conf->cluster_sync_low = 0;
2925		conf->cluster_sync_high = 0;
2926
2927		/* If we aborted, we need to abort the
2928		 * sync on the 'current' bitmap chucks (there can
2929		 * be several when recovering multiple devices).
2930		 * as we may have started syncing it but not finished.
2931		 * We can find the current address in
2932		 * mddev->curr_resync, but for recovery,
2933		 * we need to convert that to several
2934		 * virtual addresses.
2935		 */
2936		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937			end_reshape(conf);
2938			close_sync(conf);
2939			return 0;
2940		}
2941
2942		if (mddev->curr_resync < max_sector) { /* aborted */
2943			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945						   &sync_blocks, 1);
2946			else for (i = 0; i < conf->geo.raid_disks; i++) {
2947				sector_t sect =
2948					raid10_find_virt(conf, mddev->curr_resync, i);
2949				md_bitmap_end_sync(mddev->bitmap, sect,
2950						   &sync_blocks, 1);
2951			}
2952		} else {
2953			/* completed sync */
2954			if ((!mddev->bitmap || conf->fullsync)
2955			    && conf->have_replacement
2956			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957				/* Completed a full sync so the replacements
2958				 * are now fully recovered.
2959				 */
2960				rcu_read_lock();
2961				for (i = 0; i < conf->geo.raid_disks; i++) {
2962					struct md_rdev *rdev =
2963						rcu_dereference(conf->mirrors[i].replacement);
2964					if (rdev)
2965						rdev->recovery_offset = MaxSector;
2966				}
2967				rcu_read_unlock();
2968			}
2969			conf->fullsync = 0;
2970		}
2971		md_bitmap_close_sync(mddev->bitmap);
2972		close_sync(conf);
2973		*skipped = 1;
2974		return sectors_skipped;
2975	}
2976
2977	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978		return reshape_request(mddev, sector_nr, skipped);
2979
2980	if (chunks_skipped >= conf->geo.raid_disks) {
2981		/* if there has been nothing to do on any drive,
2982		 * then there is nothing to do at all..
2983		 */
2984		*skipped = 1;
2985		return (max_sector - sector_nr) + sectors_skipped;
2986	}
2987
2988	if (max_sector > mddev->resync_max)
2989		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990
2991	/* make sure whole request will fit in a chunk - if chunks
2992	 * are meaningful
2993	 */
2994	if (conf->geo.near_copies < conf->geo.raid_disks &&
2995	    max_sector > (sector_nr | chunk_mask))
2996		max_sector = (sector_nr | chunk_mask) + 1;
2997
2998	/*
2999	 * If there is non-resync activity waiting for a turn, then let it
3000	 * though before starting on this new sync request.
3001	 */
3002	if (conf->nr_waiting)
3003		schedule_timeout_uninterruptible(1);
3004
3005	/* Again, very different code for resync and recovery.
3006	 * Both must result in an r10bio with a list of bios that
3007	 * have bi_end_io, bi_sector, bi_disk set,
3008	 * and bi_private set to the r10bio.
3009	 * For recovery, we may actually create several r10bios
3010	 * with 2 bios in each, that correspond to the bios in the main one.
3011	 * In this case, the subordinate r10bios link back through a
3012	 * borrowed master_bio pointer, and the counter in the master
3013	 * includes a ref from each subordinate.
3014	 */
3015	/* First, we decide what to do and set ->bi_end_io
3016	 * To end_sync_read if we want to read, and
3017	 * end_sync_write if we will want to write.
3018	 */
3019
3020	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3021	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3022		/* recovery... the complicated one */
3023		int j;
3024		r10_bio = NULL;
3025
3026		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3027			int still_degraded;
3028			struct r10bio *rb2;
3029			sector_t sect;
3030			int must_sync;
3031			int any_working;
3032			int need_recover = 0;
3033			int need_replace = 0;
3034			struct raid10_info *mirror = &conf->mirrors[i];
3035			struct md_rdev *mrdev, *mreplace;
3036
3037			rcu_read_lock();
3038			mrdev = rcu_dereference(mirror->rdev);
3039			mreplace = rcu_dereference(mirror->replacement);
3040
3041			if (mrdev != NULL &&
3042			    !test_bit(Faulty, &mrdev->flags) &&
3043			    !test_bit(In_sync, &mrdev->flags))
3044				need_recover = 1;
3045			if (mreplace != NULL &&
3046			    !test_bit(Faulty, &mreplace->flags))
3047				need_replace = 1;
3048
3049			if (!need_recover && !need_replace) {
3050				rcu_read_unlock();
3051				continue;
3052			}
3053
3054			still_degraded = 0;
3055			/* want to reconstruct this device */
3056			rb2 = r10_bio;
3057			sect = raid10_find_virt(conf, sector_nr, i);
3058			if (sect >= mddev->resync_max_sectors) {
3059				/* last stripe is not complete - don't
3060				 * try to recover this sector.
3061				 */
3062				rcu_read_unlock();
3063				continue;
3064			}
3065			if (mreplace && test_bit(Faulty, &mreplace->flags))
3066				mreplace = NULL;
3067			/* Unless we are doing a full sync, or a replacement
3068			 * we only need to recover the block if it is set in
3069			 * the bitmap
3070			 */
3071			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3072							 &sync_blocks, 1);
3073			if (sync_blocks < max_sync)
3074				max_sync = sync_blocks;
3075			if (!must_sync &&
3076			    mreplace == NULL &&
3077			    !conf->fullsync) {
3078				/* yep, skip the sync_blocks here, but don't assume
3079				 * that there will never be anything to do here
3080				 */
3081				chunks_skipped = -1;
3082				rcu_read_unlock();
3083				continue;
3084			}
3085			atomic_inc(&mrdev->nr_pending);
3086			if (mreplace)
3087				atomic_inc(&mreplace->nr_pending);
3088			rcu_read_unlock();
3089
3090			r10_bio = raid10_alloc_init_r10buf(conf);
3091			r10_bio->state = 0;
3092			raise_barrier(conf, rb2 != NULL);
3093			atomic_set(&r10_bio->remaining, 0);
3094
3095			r10_bio->master_bio = (struct bio*)rb2;
3096			if (rb2)
3097				atomic_inc(&rb2->remaining);
3098			r10_bio->mddev = mddev;
3099			set_bit(R10BIO_IsRecover, &r10_bio->state);
3100			r10_bio->sector = sect;
3101
3102			raid10_find_phys(conf, r10_bio);
3103
3104			/* Need to check if the array will still be
3105			 * degraded
3106			 */
3107			rcu_read_lock();
3108			for (j = 0; j < conf->geo.raid_disks; j++) {
3109				struct md_rdev *rdev = rcu_dereference(
3110					conf->mirrors[j].rdev);
3111				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3112					still_degraded = 1;
3113					break;
3114				}
3115			}
3116
3117			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3118							 &sync_blocks, still_degraded);
3119
3120			any_working = 0;
3121			for (j=0; j<conf->copies;j++) {
3122				int k;
3123				int d = r10_bio->devs[j].devnum;
3124				sector_t from_addr, to_addr;
3125				struct md_rdev *rdev =
3126					rcu_dereference(conf->mirrors[d].rdev);
3127				sector_t sector, first_bad;
3128				int bad_sectors;
3129				if (!rdev ||
3130				    !test_bit(In_sync, &rdev->flags))
3131					continue;
3132				/* This is where we read from */
3133				any_working = 1;
 
3134				sector = r10_bio->devs[j].addr;
3135
3136				if (is_badblock(rdev, sector, max_sync,
3137						&first_bad, &bad_sectors)) {
3138					if (first_bad > sector)
3139						max_sync = first_bad - sector;
3140					else {
3141						bad_sectors -= (sector
3142								- first_bad);
3143						if (max_sync > bad_sectors)
3144							max_sync = bad_sectors;
3145						continue;
3146					}
3147				}
3148				bio = r10_bio->devs[0].bio;
3149				bio->bi_next = biolist;
3150				biolist = bio;
 
3151				bio->bi_end_io = end_sync_read;
3152				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3153				if (test_bit(FailFast, &rdev->flags))
3154					bio->bi_opf |= MD_FAILFAST;
3155				from_addr = r10_bio->devs[j].addr;
3156				bio->bi_iter.bi_sector = from_addr +
3157					rdev->data_offset;
3158				bio_set_dev(bio, rdev->bdev);
3159				atomic_inc(&rdev->nr_pending);
3160				/* and we write to 'i' (if not in_sync) */
3161
3162				for (k=0; k<conf->copies; k++)
3163					if (r10_bio->devs[k].devnum == i)
3164						break;
3165				BUG_ON(k == conf->copies);
3166				to_addr = r10_bio->devs[k].addr;
3167				r10_bio->devs[0].devnum = d;
3168				r10_bio->devs[0].addr = from_addr;
3169				r10_bio->devs[1].devnum = i;
3170				r10_bio->devs[1].addr = to_addr;
3171
3172				if (need_recover) {
 
3173					bio = r10_bio->devs[1].bio;
3174					bio->bi_next = biolist;
3175					biolist = bio;
 
3176					bio->bi_end_io = end_sync_write;
3177					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3178					bio->bi_iter.bi_sector = to_addr
3179						+ mrdev->data_offset;
3180					bio_set_dev(bio, mrdev->bdev);
3181					atomic_inc(&r10_bio->remaining);
3182				} else
3183					r10_bio->devs[1].bio->bi_end_io = NULL;
3184
3185				/* and maybe write to replacement */
3186				bio = r10_bio->devs[1].repl_bio;
3187				if (bio)
3188					bio->bi_end_io = NULL;
3189				/* Note: if need_replace, then bio
 
3190				 * cannot be NULL as r10buf_pool_alloc will
3191				 * have allocated it.
 
 
 
 
3192				 */
3193				if (!need_replace)
 
3194					break;
3195				bio->bi_next = biolist;
3196				biolist = bio;
 
3197				bio->bi_end_io = end_sync_write;
3198				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3199				bio->bi_iter.bi_sector = to_addr +
3200					mreplace->data_offset;
3201				bio_set_dev(bio, mreplace->bdev);
3202				atomic_inc(&r10_bio->remaining);
3203				break;
3204			}
3205			rcu_read_unlock();
3206			if (j == conf->copies) {
3207				/* Cannot recover, so abort the recovery or
3208				 * record a bad block */
 
 
 
 
3209				if (any_working) {
3210					/* problem is that there are bad blocks
3211					 * on other device(s)
3212					 */
3213					int k;
3214					for (k = 0; k < conf->copies; k++)
3215						if (r10_bio->devs[k].devnum == i)
3216							break;
3217					if (!test_bit(In_sync,
3218						      &mrdev->flags)
3219					    && !rdev_set_badblocks(
3220						    mrdev,
3221						    r10_bio->devs[k].addr,
3222						    max_sync, 0))
3223						any_working = 0;
3224					if (mreplace &&
3225					    !rdev_set_badblocks(
3226						    mreplace,
3227						    r10_bio->devs[k].addr,
3228						    max_sync, 0))
3229						any_working = 0;
3230				}
3231				if (!any_working)  {
3232					if (!test_and_set_bit(MD_RECOVERY_INTR,
3233							      &mddev->recovery))
3234						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
 
3235						       mdname(mddev));
3236					mirror->recovery_disabled
3237						= mddev->recovery_disabled;
3238				}
3239				put_buf(r10_bio);
3240				if (rb2)
3241					atomic_dec(&rb2->remaining);
3242				r10_bio = rb2;
3243				rdev_dec_pending(mrdev, mddev);
3244				if (mreplace)
3245					rdev_dec_pending(mreplace, mddev);
3246				break;
3247			}
3248			rdev_dec_pending(mrdev, mddev);
3249			if (mreplace)
3250				rdev_dec_pending(mreplace, mddev);
3251			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3252				/* Only want this if there is elsewhere to
3253				 * read from. 'j' is currently the first
3254				 * readable copy.
3255				 */
3256				int targets = 1;
3257				for (; j < conf->copies; j++) {
3258					int d = r10_bio->devs[j].devnum;
3259					if (conf->mirrors[d].rdev &&
3260					    test_bit(In_sync,
3261						      &conf->mirrors[d].rdev->flags))
3262						targets++;
3263				}
3264				if (targets == 1)
3265					r10_bio->devs[0].bio->bi_opf
3266						&= ~MD_FAILFAST;
3267			}
3268		}
3269		if (biolist == NULL) {
3270			while (r10_bio) {
3271				struct r10bio *rb2 = r10_bio;
3272				r10_bio = (struct r10bio*) rb2->master_bio;
3273				rb2->master_bio = NULL;
3274				put_buf(rb2);
3275			}
3276			goto giveup;
3277		}
3278	} else {
3279		/* resync. Schedule a read for every block at this virt offset */
3280		int count = 0;
3281
3282		/*
3283		 * Since curr_resync_completed could probably not update in
3284		 * time, and we will set cluster_sync_low based on it.
3285		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3286		 * safety reason, which ensures curr_resync_completed is
3287		 * updated in bitmap_cond_end_sync.
3288		 */
3289		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3290					mddev_is_clustered(mddev) &&
3291					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3292
3293		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3294					  &sync_blocks, mddev->degraded) &&
3295		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3296						 &mddev->recovery)) {
3297			/* We can skip this block */
3298			*skipped = 1;
3299			return sync_blocks + sectors_skipped;
3300		}
3301		if (sync_blocks < max_sync)
3302			max_sync = sync_blocks;
3303		r10_bio = raid10_alloc_init_r10buf(conf);
3304		r10_bio->state = 0;
3305
3306		r10_bio->mddev = mddev;
3307		atomic_set(&r10_bio->remaining, 0);
3308		raise_barrier(conf, 0);
3309		conf->next_resync = sector_nr;
3310
3311		r10_bio->master_bio = NULL;
3312		r10_bio->sector = sector_nr;
3313		set_bit(R10BIO_IsSync, &r10_bio->state);
3314		raid10_find_phys(conf, r10_bio);
3315		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3316
3317		for (i = 0; i < conf->copies; i++) {
3318			int d = r10_bio->devs[i].devnum;
3319			sector_t first_bad, sector;
3320			int bad_sectors;
3321			struct md_rdev *rdev;
3322
3323			if (r10_bio->devs[i].repl_bio)
3324				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3325
3326			bio = r10_bio->devs[i].bio;
3327			bio->bi_status = BLK_STS_IOERR;
3328			rcu_read_lock();
3329			rdev = rcu_dereference(conf->mirrors[d].rdev);
3330			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3331				rcu_read_unlock();
3332				continue;
3333			}
3334			sector = r10_bio->devs[i].addr;
3335			if (is_badblock(rdev, sector, max_sync,
 
3336					&first_bad, &bad_sectors)) {
3337				if (first_bad > sector)
3338					max_sync = first_bad - sector;
3339				else {
3340					bad_sectors -= (sector - first_bad);
3341					if (max_sync > bad_sectors)
3342						max_sync = bad_sectors;
3343					rcu_read_unlock();
3344					continue;
3345				}
3346			}
3347			atomic_inc(&rdev->nr_pending);
3348			atomic_inc(&r10_bio->remaining);
3349			bio->bi_next = biolist;
3350			biolist = bio;
 
3351			bio->bi_end_io = end_sync_read;
3352			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3353			if (test_bit(FailFast, &rdev->flags))
3354				bio->bi_opf |= MD_FAILFAST;
3355			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3356			bio_set_dev(bio, rdev->bdev);
3357			count++;
3358
3359			rdev = rcu_dereference(conf->mirrors[d].replacement);
3360			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3361				rcu_read_unlock();
3362				continue;
3363			}
3364			atomic_inc(&rdev->nr_pending);
3365
3366			/* Need to set up for writing to the replacement */
3367			bio = r10_bio->devs[i].repl_bio;
3368			bio->bi_status = BLK_STS_IOERR;
3369
3370			sector = r10_bio->devs[i].addr;
 
3371			bio->bi_next = biolist;
3372			biolist = bio;
 
3373			bio->bi_end_io = end_sync_write;
3374			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3375			if (test_bit(FailFast, &rdev->flags))
3376				bio->bi_opf |= MD_FAILFAST;
3377			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3378			bio_set_dev(bio, rdev->bdev);
3379			count++;
3380			rcu_read_unlock();
3381		}
3382
3383		if (count < 2) {
3384			for (i=0; i<conf->copies; i++) {
3385				int d = r10_bio->devs[i].devnum;
3386				if (r10_bio->devs[i].bio->bi_end_io)
3387					rdev_dec_pending(conf->mirrors[d].rdev,
3388							 mddev);
3389				if (r10_bio->devs[i].repl_bio &&
3390				    r10_bio->devs[i].repl_bio->bi_end_io)
3391					rdev_dec_pending(
3392						conf->mirrors[d].replacement,
3393						mddev);
3394			}
3395			put_buf(r10_bio);
3396			biolist = NULL;
3397			goto giveup;
3398		}
3399	}
3400
 
 
 
 
 
 
 
 
 
 
 
3401	nr_sectors = 0;
3402	if (sector_nr + max_sync < max_sector)
3403		max_sector = sector_nr + max_sync;
3404	do {
3405		struct page *page;
3406		int len = PAGE_SIZE;
3407		if (sector_nr + (len>>9) > max_sector)
3408			len = (max_sector - sector_nr) << 9;
3409		if (len == 0)
3410			break;
3411		for (bio= biolist ; bio ; bio=bio->bi_next) {
3412			struct resync_pages *rp = get_resync_pages(bio);
3413			page = resync_fetch_page(rp, page_idx);
3414			/*
3415			 * won't fail because the vec table is big enough
3416			 * to hold all these pages
3417			 */
3418			bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
3419		}
3420		nr_sectors += len>>9;
3421		sector_nr += len>>9;
3422	} while (++page_idx < RESYNC_PAGES);
 
3423	r10_bio->sectors = nr_sectors;
3424
3425	if (mddev_is_clustered(mddev) &&
3426	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3427		/* It is resync not recovery */
3428		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3429			conf->cluster_sync_low = mddev->curr_resync_completed;
3430			raid10_set_cluster_sync_high(conf);
3431			/* Send resync message */
3432			md_cluster_ops->resync_info_update(mddev,
3433						conf->cluster_sync_low,
3434						conf->cluster_sync_high);
3435		}
3436	} else if (mddev_is_clustered(mddev)) {
3437		/* This is recovery not resync */
3438		sector_t sect_va1, sect_va2;
3439		bool broadcast_msg = false;
3440
3441		for (i = 0; i < conf->geo.raid_disks; i++) {
3442			/*
3443			 * sector_nr is a device address for recovery, so we
3444			 * need translate it to array address before compare
3445			 * with cluster_sync_high.
3446			 */
3447			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3448
3449			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3450				broadcast_msg = true;
3451				/*
3452				 * curr_resync_completed is similar as
3453				 * sector_nr, so make the translation too.
3454				 */
3455				sect_va2 = raid10_find_virt(conf,
3456					mddev->curr_resync_completed, i);
3457
3458				if (conf->cluster_sync_low == 0 ||
3459				    conf->cluster_sync_low > sect_va2)
3460					conf->cluster_sync_low = sect_va2;
3461			}
3462		}
3463		if (broadcast_msg) {
3464			raid10_set_cluster_sync_high(conf);
3465			md_cluster_ops->resync_info_update(mddev,
3466						conf->cluster_sync_low,
3467						conf->cluster_sync_high);
3468		}
3469	}
3470
3471	while (biolist) {
3472		bio = biolist;
3473		biolist = biolist->bi_next;
3474
3475		bio->bi_next = NULL;
3476		r10_bio = get_resync_r10bio(bio);
3477		r10_bio->sectors = nr_sectors;
3478
3479		if (bio->bi_end_io == end_sync_read) {
3480			md_sync_acct_bio(bio, nr_sectors);
3481			bio->bi_status = 0;
3482			submit_bio_noacct(bio);
3483		}
3484	}
3485
3486	if (sectors_skipped)
3487		/* pretend they weren't skipped, it makes
3488		 * no important difference in this case
3489		 */
3490		md_done_sync(mddev, sectors_skipped, 1);
3491
3492	return sectors_skipped + nr_sectors;
3493 giveup:
3494	/* There is nowhere to write, so all non-sync
3495	 * drives must be failed or in resync, all drives
3496	 * have a bad block, so try the next chunk...
3497	 */
3498	if (sector_nr + max_sync < max_sector)
3499		max_sector = sector_nr + max_sync;
3500
3501	sectors_skipped += (max_sector - sector_nr);
3502	chunks_skipped ++;
3503	sector_nr = max_sector;
3504	goto skipped;
3505}
3506
3507static sector_t
3508raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3509{
3510	sector_t size;
3511	struct r10conf *conf = mddev->private;
3512
3513	if (!raid_disks)
3514		raid_disks = min(conf->geo.raid_disks,
3515				 conf->prev.raid_disks);
3516	if (!sectors)
3517		sectors = conf->dev_sectors;
3518
3519	size = sectors >> conf->geo.chunk_shift;
3520	sector_div(size, conf->geo.far_copies);
3521	size = size * raid_disks;
3522	sector_div(size, conf->geo.near_copies);
3523
3524	return size << conf->geo.chunk_shift;
3525}
3526
3527static void calc_sectors(struct r10conf *conf, sector_t size)
3528{
3529	/* Calculate the number of sectors-per-device that will
3530	 * actually be used, and set conf->dev_sectors and
3531	 * conf->stride
3532	 */
3533
3534	size = size >> conf->geo.chunk_shift;
3535	sector_div(size, conf->geo.far_copies);
3536	size = size * conf->geo.raid_disks;
3537	sector_div(size, conf->geo.near_copies);
3538	/* 'size' is now the number of chunks in the array */
3539	/* calculate "used chunks per device" */
3540	size = size * conf->copies;
3541
3542	/* We need to round up when dividing by raid_disks to
3543	 * get the stride size.
3544	 */
3545	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3546
3547	conf->dev_sectors = size << conf->geo.chunk_shift;
3548
3549	if (conf->geo.far_offset)
3550		conf->geo.stride = 1 << conf->geo.chunk_shift;
3551	else {
3552		sector_div(size, conf->geo.far_copies);
3553		conf->geo.stride = size << conf->geo.chunk_shift;
3554	}
3555}
3556
3557enum geo_type {geo_new, geo_old, geo_start};
3558static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3559{
3560	int nc, fc, fo;
3561	int layout, chunk, disks;
3562	switch (new) {
3563	case geo_old:
3564		layout = mddev->layout;
3565		chunk = mddev->chunk_sectors;
3566		disks = mddev->raid_disks - mddev->delta_disks;
3567		break;
3568	case geo_new:
3569		layout = mddev->new_layout;
3570		chunk = mddev->new_chunk_sectors;
3571		disks = mddev->raid_disks;
3572		break;
3573	default: /* avoid 'may be unused' warnings */
3574	case geo_start: /* new when starting reshape - raid_disks not
3575			 * updated yet. */
3576		layout = mddev->new_layout;
3577		chunk = mddev->new_chunk_sectors;
3578		disks = mddev->raid_disks + mddev->delta_disks;
3579		break;
3580	}
3581	if (layout >> 19)
3582		return -1;
3583	if (chunk < (PAGE_SIZE >> 9) ||
3584	    !is_power_of_2(chunk))
3585		return -2;
3586	nc = layout & 255;
3587	fc = (layout >> 8) & 255;
3588	fo = layout & (1<<16);
3589	geo->raid_disks = disks;
3590	geo->near_copies = nc;
3591	geo->far_copies = fc;
3592	geo->far_offset = fo;
3593	switch (layout >> 17) {
3594	case 0:	/* original layout.  simple but not always optimal */
3595		geo->far_set_size = disks;
3596		break;
3597	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3598		 * actually using this, but leave code here just in case.*/
3599		geo->far_set_size = disks/fc;
3600		WARN(geo->far_set_size < fc,
3601		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602		break;
3603	case 2: /* "improved" layout fixed to match documentation */
3604		geo->far_set_size = fc * nc;
3605		break;
3606	default: /* Not a valid layout */
3607		return -1;
3608	}
3609	geo->chunk_mask = chunk - 1;
3610	geo->chunk_shift = ffz(~chunk);
3611	return nc*fc;
3612}
3613
3614static struct r10conf *setup_conf(struct mddev *mddev)
3615{
3616	struct r10conf *conf = NULL;
3617	int err = -EINVAL;
3618	struct geom geo;
3619	int copies;
3620
3621	copies = setup_geo(&geo, mddev, geo_new);
3622
3623	if (copies == -2) {
3624		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3625			mdname(mddev), PAGE_SIZE);
 
3626		goto out;
3627	}
3628
3629	if (copies < 2 || copies > mddev->raid_disks) {
3630		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3631			mdname(mddev), mddev->new_layout);
3632		goto out;
3633	}
3634
3635	err = -ENOMEM;
3636	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3637	if (!conf)
3638		goto out;
3639
3640	/* FIXME calc properly */
3641	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3642				sizeof(struct raid10_info),
3643				GFP_KERNEL);
3644	if (!conf->mirrors)
3645		goto out;
3646
3647	conf->tmppage = alloc_page(GFP_KERNEL);
3648	if (!conf->tmppage)
3649		goto out;
3650
3651	conf->geo = geo;
3652	conf->copies = copies;
3653	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3654			   rbio_pool_free, conf);
3655	if (err)
3656		goto out;
3657
3658	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3659	if (err)
3660		goto out;
3661
3662	calc_sectors(conf, mddev->dev_sectors);
3663	if (mddev->reshape_position == MaxSector) {
3664		conf->prev = conf->geo;
3665		conf->reshape_progress = MaxSector;
3666	} else {
3667		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3668			err = -EINVAL;
3669			goto out;
3670		}
3671		conf->reshape_progress = mddev->reshape_position;
3672		if (conf->prev.far_offset)
3673			conf->prev.stride = 1 << conf->prev.chunk_shift;
3674		else
3675			/* far_copies must be 1 */
3676			conf->prev.stride = conf->dev_sectors;
3677	}
3678	conf->reshape_safe = conf->reshape_progress;
3679	spin_lock_init(&conf->device_lock);
3680	INIT_LIST_HEAD(&conf->retry_list);
3681	INIT_LIST_HEAD(&conf->bio_end_io_list);
3682
3683	spin_lock_init(&conf->resync_lock);
3684	init_waitqueue_head(&conf->wait_barrier);
3685	atomic_set(&conf->nr_pending, 0);
3686
3687	err = -ENOMEM;
3688	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3689	if (!conf->thread)
3690		goto out;
3691
3692	conf->mddev = mddev;
3693	return conf;
3694
3695 out:
 
 
 
3696	if (conf) {
3697		mempool_exit(&conf->r10bio_pool);
 
3698		kfree(conf->mirrors);
3699		safe_put_page(conf->tmppage);
3700		bioset_exit(&conf->bio_split);
3701		kfree(conf);
3702	}
3703	return ERR_PTR(err);
3704}
3705
3706static int raid10_run(struct mddev *mddev)
3707{
3708	struct r10conf *conf;
3709	int i, disk_idx, chunk_size;
3710	struct raid10_info *disk;
3711	struct md_rdev *rdev;
3712	sector_t size;
3713	sector_t min_offset_diff = 0;
3714	int first = 1;
3715	bool discard_supported = false;
3716
3717	if (mddev_init_writes_pending(mddev) < 0)
3718		return -ENOMEM;
3719
3720	if (mddev->private == NULL) {
3721		conf = setup_conf(mddev);
3722		if (IS_ERR(conf))
3723			return PTR_ERR(conf);
3724		mddev->private = conf;
3725	}
3726	conf = mddev->private;
3727	if (!conf)
3728		goto out;
3729
3730	if (mddev_is_clustered(conf->mddev)) {
3731		int fc, fo;
3732
3733		fc = (mddev->layout >> 8) & 255;
3734		fo = mddev->layout & (1<<16);
3735		if (fc > 1 || fo > 0) {
3736			pr_err("only near layout is supported by clustered"
3737				" raid10\n");
3738			goto out_free_conf;
3739		}
3740	}
3741
3742	mddev->thread = conf->thread;
3743	conf->thread = NULL;
3744
3745	chunk_size = mddev->chunk_sectors << 9;
3746	if (mddev->queue) {
3747		blk_queue_max_discard_sectors(mddev->queue,
3748					      mddev->chunk_sectors);
3749		blk_queue_max_write_same_sectors(mddev->queue, 0);
3750		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3751		blk_queue_io_min(mddev->queue, chunk_size);
3752		if (conf->geo.raid_disks % conf->geo.near_copies)
3753			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3754		else
3755			blk_queue_io_opt(mddev->queue, chunk_size *
3756					 (conf->geo.raid_disks / conf->geo.near_copies));
3757	}
3758
3759	rdev_for_each(rdev, mddev) {
3760		long long diff;
 
3761
3762		disk_idx = rdev->raid_disk;
3763		if (disk_idx < 0)
3764			continue;
3765		if (disk_idx >= conf->geo.raid_disks &&
3766		    disk_idx >= conf->prev.raid_disks)
3767			continue;
3768		disk = conf->mirrors + disk_idx;
3769
3770		if (test_bit(Replacement, &rdev->flags)) {
3771			if (disk->replacement)
3772				goto out_free_conf;
3773			disk->replacement = rdev;
3774		} else {
3775			if (disk->rdev)
3776				goto out_free_conf;
3777			disk->rdev = rdev;
3778		}
 
 
 
3779		diff = (rdev->new_data_offset - rdev->data_offset);
3780		if (!mddev->reshape_backwards)
3781			diff = -diff;
3782		if (diff < 0)
3783			diff = 0;
3784		if (first || diff < min_offset_diff)
3785			min_offset_diff = diff;
3786
3787		if (mddev->gendisk)
3788			disk_stack_limits(mddev->gendisk, rdev->bdev,
3789					  rdev->data_offset << 9);
3790
3791		disk->head_position = 0;
3792
3793		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3794			discard_supported = true;
3795		first = 0;
3796	}
3797
3798	if (mddev->queue) {
3799		if (discard_supported)
3800			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3801						mddev->queue);
3802		else
3803			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3804						  mddev->queue);
3805	}
3806	/* need to check that every block has at least one working mirror */
3807	if (!enough(conf, -1)) {
3808		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3809		       mdname(mddev));
3810		goto out_free_conf;
3811	}
3812
3813	if (conf->reshape_progress != MaxSector) {
3814		/* must ensure that shape change is supported */
3815		if (conf->geo.far_copies != 1 &&
3816		    conf->geo.far_offset == 0)
3817			goto out_free_conf;
3818		if (conf->prev.far_copies != 1 &&
3819		    conf->prev.far_offset == 0)
3820			goto out_free_conf;
3821	}
3822
3823	mddev->degraded = 0;
3824	for (i = 0;
3825	     i < conf->geo.raid_disks
3826		     || i < conf->prev.raid_disks;
3827	     i++) {
3828
3829		disk = conf->mirrors + i;
3830
3831		if (!disk->rdev && disk->replacement) {
3832			/* The replacement is all we have - use it */
3833			disk->rdev = disk->replacement;
3834			disk->replacement = NULL;
3835			clear_bit(Replacement, &disk->rdev->flags);
3836		}
3837
3838		if (!disk->rdev ||
3839		    !test_bit(In_sync, &disk->rdev->flags)) {
3840			disk->head_position = 0;
3841			mddev->degraded++;
3842			if (disk->rdev &&
3843			    disk->rdev->saved_raid_disk < 0)
3844				conf->fullsync = 1;
3845		}
3846
3847		if (disk->replacement &&
3848		    !test_bit(In_sync, &disk->replacement->flags) &&
3849		    disk->replacement->saved_raid_disk < 0) {
3850			conf->fullsync = 1;
3851		}
3852
3853		disk->recovery_disabled = mddev->recovery_disabled - 1;
3854	}
3855
3856	if (mddev->recovery_cp != MaxSector)
3857		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3858			  mdname(mddev));
3859	pr_info("md/raid10:%s: active with %d out of %d devices\n",
 
 
3860		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3861		conf->geo.raid_disks);
3862	/*
3863	 * Ok, everything is just fine now
3864	 */
3865	mddev->dev_sectors = conf->dev_sectors;
3866	size = raid10_size(mddev, 0, 0);
3867	md_set_array_sectors(mddev, size);
3868	mddev->resync_max_sectors = size;
3869	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3870
3871	if (mddev->queue) {
 
 
 
 
 
 
 
3872		int stripe = conf->geo.raid_disks *
3873			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3874
3875		/* Calculate max read-ahead size.
3876		 * We need to readahead at least twice a whole stripe....
3877		 * maybe...
3878		 */
3879		stripe /= conf->geo.near_copies;
3880		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3881			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3882	}
3883
 
 
3884	if (md_integrity_register(mddev))
3885		goto out_free_conf;
3886
3887	if (conf->reshape_progress != MaxSector) {
3888		unsigned long before_length, after_length;
3889
3890		before_length = ((1 << conf->prev.chunk_shift) *
3891				 conf->prev.far_copies);
3892		after_length = ((1 << conf->geo.chunk_shift) *
3893				conf->geo.far_copies);
3894
3895		if (max(before_length, after_length) > min_offset_diff) {
3896			/* This cannot work */
3897			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3898			goto out_free_conf;
3899		}
3900		conf->offset_diff = min_offset_diff;
3901
 
3902		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3903		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3904		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3905		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3906		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3907							"reshape");
3908		if (!mddev->sync_thread)
3909			goto out_free_conf;
3910	}
3911
3912	return 0;
3913
3914out_free_conf:
3915	md_unregister_thread(&mddev->thread);
3916	mempool_exit(&conf->r10bio_pool);
 
3917	safe_put_page(conf->tmppage);
3918	kfree(conf->mirrors);
3919	kfree(conf);
3920	mddev->private = NULL;
3921out:
3922	return -EIO;
3923}
3924
3925static void raid10_free(struct mddev *mddev, void *priv)
3926{
3927	struct r10conf *conf = priv;
 
 
 
3928
3929	mempool_exit(&conf->r10bio_pool);
3930	safe_put_page(conf->tmppage);
 
 
3931	kfree(conf->mirrors);
3932	kfree(conf->mirrors_old);
3933	kfree(conf->mirrors_new);
3934	bioset_exit(&conf->bio_split);
3935	kfree(conf);
 
 
3936}
3937
3938static void raid10_quiesce(struct mddev *mddev, int quiesce)
3939{
3940	struct r10conf *conf = mddev->private;
3941
3942	if (quiesce)
 
3943		raise_barrier(conf, 0);
3944	else
 
3945		lower_barrier(conf);
 
 
3946}
3947
3948static int raid10_resize(struct mddev *mddev, sector_t sectors)
3949{
3950	/* Resize of 'far' arrays is not supported.
3951	 * For 'near' and 'offset' arrays we can set the
3952	 * number of sectors used to be an appropriate multiple
3953	 * of the chunk size.
3954	 * For 'offset', this is far_copies*chunksize.
3955	 * For 'near' the multiplier is the LCM of
3956	 * near_copies and raid_disks.
3957	 * So if far_copies > 1 && !far_offset, fail.
3958	 * Else find LCM(raid_disks, near_copy)*far_copies and
3959	 * multiply by chunk_size.  Then round to this number.
3960	 * This is mostly done by raid10_size()
3961	 */
3962	struct r10conf *conf = mddev->private;
3963	sector_t oldsize, size;
3964
3965	if (mddev->reshape_position != MaxSector)
3966		return -EBUSY;
3967
3968	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3969		return -EINVAL;
3970
3971	oldsize = raid10_size(mddev, 0, 0);
3972	size = raid10_size(mddev, sectors, 0);
3973	if (mddev->external_size &&
3974	    mddev->array_sectors > size)
3975		return -EINVAL;
3976	if (mddev->bitmap) {
3977		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3978		if (ret)
3979			return ret;
3980	}
3981	md_set_array_sectors(mddev, size);
 
 
3982	if (sectors > mddev->dev_sectors &&
3983	    mddev->recovery_cp > oldsize) {
3984		mddev->recovery_cp = oldsize;
3985		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3986	}
3987	calc_sectors(conf, sectors);
3988	mddev->dev_sectors = conf->dev_sectors;
3989	mddev->resync_max_sectors = size;
3990	return 0;
3991}
3992
3993static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3994{
3995	struct md_rdev *rdev;
3996	struct r10conf *conf;
3997
3998	if (mddev->degraded > 0) {
3999		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4000			mdname(mddev));
4001		return ERR_PTR(-EINVAL);
4002	}
4003	sector_div(size, devs);
4004
4005	/* Set new parameters */
4006	mddev->new_level = 10;
4007	/* new layout: far_copies = 1, near_copies = 2 */
4008	mddev->new_layout = (1<<8) + 2;
4009	mddev->new_chunk_sectors = mddev->chunk_sectors;
4010	mddev->delta_disks = mddev->raid_disks;
4011	mddev->raid_disks *= 2;
4012	/* make sure it will be not marked as dirty */
4013	mddev->recovery_cp = MaxSector;
4014	mddev->dev_sectors = size;
4015
4016	conf = setup_conf(mddev);
4017	if (!IS_ERR(conf)) {
4018		rdev_for_each(rdev, mddev)
4019			if (rdev->raid_disk >= 0) {
4020				rdev->new_raid_disk = rdev->raid_disk * 2;
4021				rdev->sectors = size;
4022			}
4023		conf->barrier = 1;
4024	}
4025
4026	return conf;
4027}
4028
4029static void *raid10_takeover(struct mddev *mddev)
4030{
4031	struct r0conf *raid0_conf;
4032
4033	/* raid10 can take over:
4034	 *  raid0 - providing it has only two drives
4035	 */
4036	if (mddev->level == 0) {
4037		/* for raid0 takeover only one zone is supported */
4038		raid0_conf = mddev->private;
4039		if (raid0_conf->nr_strip_zones > 1) {
4040			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4041				mdname(mddev));
 
4042			return ERR_PTR(-EINVAL);
4043		}
4044		return raid10_takeover_raid0(mddev,
4045			raid0_conf->strip_zone->zone_end,
4046			raid0_conf->strip_zone->nb_dev);
4047	}
4048	return ERR_PTR(-EINVAL);
4049}
4050
4051static int raid10_check_reshape(struct mddev *mddev)
4052{
4053	/* Called when there is a request to change
4054	 * - layout (to ->new_layout)
4055	 * - chunk size (to ->new_chunk_sectors)
4056	 * - raid_disks (by delta_disks)
4057	 * or when trying to restart a reshape that was ongoing.
4058	 *
4059	 * We need to validate the request and possibly allocate
4060	 * space if that might be an issue later.
4061	 *
4062	 * Currently we reject any reshape of a 'far' mode array,
4063	 * allow chunk size to change if new is generally acceptable,
4064	 * allow raid_disks to increase, and allow
4065	 * a switch between 'near' mode and 'offset' mode.
4066	 */
4067	struct r10conf *conf = mddev->private;
4068	struct geom geo;
4069
4070	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4071		return -EINVAL;
4072
4073	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4074		/* mustn't change number of copies */
4075		return -EINVAL;
4076	if (geo.far_copies > 1 && !geo.far_offset)
4077		/* Cannot switch to 'far' mode */
4078		return -EINVAL;
4079
4080	if (mddev->array_sectors & geo.chunk_mask)
4081			/* not factor of array size */
4082			return -EINVAL;
4083
4084	if (!enough(conf, -1))
4085		return -EINVAL;
4086
4087	kfree(conf->mirrors_new);
4088	conf->mirrors_new = NULL;
4089	if (mddev->delta_disks > 0) {
4090		/* allocate new 'mirrors' list */
4091		conf->mirrors_new =
4092			kcalloc(mddev->raid_disks + mddev->delta_disks,
4093				sizeof(struct raid10_info),
4094				GFP_KERNEL);
 
4095		if (!conf->mirrors_new)
4096			return -ENOMEM;
4097	}
4098	return 0;
4099}
4100
4101/*
4102 * Need to check if array has failed when deciding whether to:
4103 *  - start an array
4104 *  - remove non-faulty devices
4105 *  - add a spare
4106 *  - allow a reshape
4107 * This determination is simple when no reshape is happening.
4108 * However if there is a reshape, we need to carefully check
4109 * both the before and after sections.
4110 * This is because some failed devices may only affect one
4111 * of the two sections, and some non-in_sync devices may
4112 * be insync in the section most affected by failed devices.
4113 */
4114static int calc_degraded(struct r10conf *conf)
4115{
4116	int degraded, degraded2;
4117	int i;
4118
4119	rcu_read_lock();
4120	degraded = 0;
4121	/* 'prev' section first */
4122	for (i = 0; i < conf->prev.raid_disks; i++) {
4123		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4124		if (!rdev || test_bit(Faulty, &rdev->flags))
4125			degraded++;
4126		else if (!test_bit(In_sync, &rdev->flags))
4127			/* When we can reduce the number of devices in
4128			 * an array, this might not contribute to
4129			 * 'degraded'.  It does now.
4130			 */
4131			degraded++;
4132	}
4133	rcu_read_unlock();
4134	if (conf->geo.raid_disks == conf->prev.raid_disks)
4135		return degraded;
4136	rcu_read_lock();
4137	degraded2 = 0;
4138	for (i = 0; i < conf->geo.raid_disks; i++) {
4139		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140		if (!rdev || test_bit(Faulty, &rdev->flags))
4141			degraded2++;
4142		else if (!test_bit(In_sync, &rdev->flags)) {
4143			/* If reshape is increasing the number of devices,
4144			 * this section has already been recovered, so
4145			 * it doesn't contribute to degraded.
4146			 * else it does.
4147			 */
4148			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4149				degraded2++;
4150		}
4151	}
4152	rcu_read_unlock();
4153	if (degraded2 > degraded)
4154		return degraded2;
4155	return degraded;
4156}
4157
4158static int raid10_start_reshape(struct mddev *mddev)
4159{
4160	/* A 'reshape' has been requested. This commits
4161	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4162	 * This also checks if there are enough spares and adds them
4163	 * to the array.
4164	 * We currently require enough spares to make the final
4165	 * array non-degraded.  We also require that the difference
4166	 * between old and new data_offset - on each device - is
4167	 * enough that we never risk over-writing.
4168	 */
4169
4170	unsigned long before_length, after_length;
4171	sector_t min_offset_diff = 0;
4172	int first = 1;
4173	struct geom new;
4174	struct r10conf *conf = mddev->private;
4175	struct md_rdev *rdev;
4176	int spares = 0;
4177	int ret;
4178
4179	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4180		return -EBUSY;
4181
4182	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4183		return -EINVAL;
4184
4185	before_length = ((1 << conf->prev.chunk_shift) *
4186			 conf->prev.far_copies);
4187	after_length = ((1 << conf->geo.chunk_shift) *
4188			conf->geo.far_copies);
4189
4190	rdev_for_each(rdev, mddev) {
4191		if (!test_bit(In_sync, &rdev->flags)
4192		    && !test_bit(Faulty, &rdev->flags))
4193			spares++;
4194		if (rdev->raid_disk >= 0) {
4195			long long diff = (rdev->new_data_offset
4196					  - rdev->data_offset);
4197			if (!mddev->reshape_backwards)
4198				diff = -diff;
4199			if (diff < 0)
4200				diff = 0;
4201			if (first || diff < min_offset_diff)
4202				min_offset_diff = diff;
4203			first = 0;
4204		}
4205	}
4206
4207	if (max(before_length, after_length) > min_offset_diff)
4208		return -EINVAL;
4209
4210	if (spares < mddev->delta_disks)
4211		return -EINVAL;
4212
4213	conf->offset_diff = min_offset_diff;
4214	spin_lock_irq(&conf->device_lock);
4215	if (conf->mirrors_new) {
4216		memcpy(conf->mirrors_new, conf->mirrors,
4217		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4218		smp_mb();
4219		kfree(conf->mirrors_old);
4220		conf->mirrors_old = conf->mirrors;
4221		conf->mirrors = conf->mirrors_new;
4222		conf->mirrors_new = NULL;
4223	}
4224	setup_geo(&conf->geo, mddev, geo_start);
4225	smp_mb();
4226	if (mddev->reshape_backwards) {
4227		sector_t size = raid10_size(mddev, 0, 0);
4228		if (size < mddev->array_sectors) {
4229			spin_unlock_irq(&conf->device_lock);
4230			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4231				mdname(mddev));
4232			return -EINVAL;
4233		}
4234		mddev->resync_max_sectors = size;
4235		conf->reshape_progress = size;
4236	} else
4237		conf->reshape_progress = 0;
4238	conf->reshape_safe = conf->reshape_progress;
4239	spin_unlock_irq(&conf->device_lock);
4240
4241	if (mddev->delta_disks && mddev->bitmap) {
4242		struct mdp_superblock_1 *sb = NULL;
4243		sector_t oldsize, newsize;
4244
4245		oldsize = raid10_size(mddev, 0, 0);
4246		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4247
4248		if (!mddev_is_clustered(mddev)) {
4249			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4250			if (ret)
4251				goto abort;
4252			else
4253				goto out;
4254		}
4255
4256		rdev_for_each(rdev, mddev) {
4257			if (rdev->raid_disk > -1 &&
4258			    !test_bit(Faulty, &rdev->flags))
4259				sb = page_address(rdev->sb_page);
4260		}
4261
4262		/*
4263		 * some node is already performing reshape, and no need to
4264		 * call md_bitmap_resize again since it should be called when
4265		 * receiving BITMAP_RESIZE msg
4266		 */
4267		if ((sb && (le32_to_cpu(sb->feature_map) &
4268			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4269			goto out;
4270
4271		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4272		if (ret)
4273			goto abort;
4274
4275		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4276		if (ret) {
4277			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4278			goto abort;
4279		}
4280	}
4281out:
4282	if (mddev->delta_disks > 0) {
4283		rdev_for_each(rdev, mddev)
4284			if (rdev->raid_disk < 0 &&
4285			    !test_bit(Faulty, &rdev->flags)) {
4286				if (raid10_add_disk(mddev, rdev) == 0) {
4287					if (rdev->raid_disk >=
4288					    conf->prev.raid_disks)
4289						set_bit(In_sync, &rdev->flags);
4290					else
4291						rdev->recovery_offset = 0;
4292
4293					/* Failure here is OK */
4294					sysfs_link_rdev(mddev, rdev);
4295				}
4296			} else if (rdev->raid_disk >= conf->prev.raid_disks
4297				   && !test_bit(Faulty, &rdev->flags)) {
4298				/* This is a spare that was manually added */
4299				set_bit(In_sync, &rdev->flags);
4300			}
4301	}
4302	/* When a reshape changes the number of devices,
4303	 * ->degraded is measured against the larger of the
4304	 * pre and  post numbers.
4305	 */
4306	spin_lock_irq(&conf->device_lock);
4307	mddev->degraded = calc_degraded(conf);
4308	spin_unlock_irq(&conf->device_lock);
4309	mddev->raid_disks = conf->geo.raid_disks;
4310	mddev->reshape_position = conf->reshape_progress;
4311	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4312
4313	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4314	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4315	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4316	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4317	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4318
4319	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4320						"reshape");
4321	if (!mddev->sync_thread) {
4322		ret = -EAGAIN;
4323		goto abort;
4324	}
4325	conf->reshape_checkpoint = jiffies;
4326	md_wakeup_thread(mddev->sync_thread);
4327	md_new_event(mddev);
4328	return 0;
4329
4330abort:
4331	mddev->recovery = 0;
4332	spin_lock_irq(&conf->device_lock);
4333	conf->geo = conf->prev;
4334	mddev->raid_disks = conf->geo.raid_disks;
4335	rdev_for_each(rdev, mddev)
4336		rdev->new_data_offset = rdev->data_offset;
4337	smp_wmb();
4338	conf->reshape_progress = MaxSector;
4339	conf->reshape_safe = MaxSector;
4340	mddev->reshape_position = MaxSector;
4341	spin_unlock_irq(&conf->device_lock);
4342	return ret;
4343}
4344
4345/* Calculate the last device-address that could contain
4346 * any block from the chunk that includes the array-address 's'
4347 * and report the next address.
4348 * i.e. the address returned will be chunk-aligned and after
4349 * any data that is in the chunk containing 's'.
4350 */
4351static sector_t last_dev_address(sector_t s, struct geom *geo)
4352{
4353	s = (s | geo->chunk_mask) + 1;
4354	s >>= geo->chunk_shift;
4355	s *= geo->near_copies;
4356	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4357	s *= geo->far_copies;
4358	s <<= geo->chunk_shift;
4359	return s;
4360}
4361
4362/* Calculate the first device-address that could contain
4363 * any block from the chunk that includes the array-address 's'.
4364 * This too will be the start of a chunk
4365 */
4366static sector_t first_dev_address(sector_t s, struct geom *geo)
4367{
4368	s >>= geo->chunk_shift;
4369	s *= geo->near_copies;
4370	sector_div(s, geo->raid_disks);
4371	s *= geo->far_copies;
4372	s <<= geo->chunk_shift;
4373	return s;
4374}
4375
4376static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4377				int *skipped)
4378{
4379	/* We simply copy at most one chunk (smallest of old and new)
4380	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4381	 * or we hit a bad block or something.
4382	 * This might mean we pause for normal IO in the middle of
4383	 * a chunk, but that is not a problem as mddev->reshape_position
4384	 * can record any location.
4385	 *
4386	 * If we will want to write to a location that isn't
4387	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4388	 * we need to flush all reshape requests and update the metadata.
4389	 *
4390	 * When reshaping forwards (e.g. to more devices), we interpret
4391	 * 'safe' as the earliest block which might not have been copied
4392	 * down yet.  We divide this by previous stripe size and multiply
4393	 * by previous stripe length to get lowest device offset that we
4394	 * cannot write to yet.
4395	 * We interpret 'sector_nr' as an address that we want to write to.
4396	 * From this we use last_device_address() to find where we might
4397	 * write to, and first_device_address on the  'safe' position.
4398	 * If this 'next' write position is after the 'safe' position,
4399	 * we must update the metadata to increase the 'safe' position.
4400	 *
4401	 * When reshaping backwards, we round in the opposite direction
4402	 * and perform the reverse test:  next write position must not be
4403	 * less than current safe position.
4404	 *
4405	 * In all this the minimum difference in data offsets
4406	 * (conf->offset_diff - always positive) allows a bit of slack,
4407	 * so next can be after 'safe', but not by more than offset_diff
4408	 *
4409	 * We need to prepare all the bios here before we start any IO
4410	 * to ensure the size we choose is acceptable to all devices.
4411	 * The means one for each copy for write-out and an extra one for
4412	 * read-in.
4413	 * We store the read-in bio in ->master_bio and the others in
4414	 * ->devs[x].bio and ->devs[x].repl_bio.
4415	 */
4416	struct r10conf *conf = mddev->private;
4417	struct r10bio *r10_bio;
4418	sector_t next, safe, last;
4419	int max_sectors;
4420	int nr_sectors;
4421	int s;
4422	struct md_rdev *rdev;
4423	int need_flush = 0;
4424	struct bio *blist;
4425	struct bio *bio, *read_bio;
4426	int sectors_done = 0;
4427	struct page **pages;
4428
4429	if (sector_nr == 0) {
4430		/* If restarting in the middle, skip the initial sectors */
4431		if (mddev->reshape_backwards &&
4432		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4433			sector_nr = (raid10_size(mddev, 0, 0)
4434				     - conf->reshape_progress);
4435		} else if (!mddev->reshape_backwards &&
4436			   conf->reshape_progress > 0)
4437			sector_nr = conf->reshape_progress;
4438		if (sector_nr) {
4439			mddev->curr_resync_completed = sector_nr;
4440			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4441			*skipped = 1;
4442			return sector_nr;
4443		}
4444	}
4445
4446	/* We don't use sector_nr to track where we are up to
4447	 * as that doesn't work well for ->reshape_backwards.
4448	 * So just use ->reshape_progress.
4449	 */
4450	if (mddev->reshape_backwards) {
4451		/* 'next' is the earliest device address that we might
4452		 * write to for this chunk in the new layout
4453		 */
4454		next = first_dev_address(conf->reshape_progress - 1,
4455					 &conf->geo);
4456
4457		/* 'safe' is the last device address that we might read from
4458		 * in the old layout after a restart
4459		 */
4460		safe = last_dev_address(conf->reshape_safe - 1,
4461					&conf->prev);
4462
4463		if (next + conf->offset_diff < safe)
4464			need_flush = 1;
4465
4466		last = conf->reshape_progress - 1;
4467		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4468					       & conf->prev.chunk_mask);
4469		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4470			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4471	} else {
4472		/* 'next' is after the last device address that we
4473		 * might write to for this chunk in the new layout
4474		 */
4475		next = last_dev_address(conf->reshape_progress, &conf->geo);
4476
4477		/* 'safe' is the earliest device address that we might
4478		 * read from in the old layout after a restart
4479		 */
4480		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4481
4482		/* Need to update metadata if 'next' might be beyond 'safe'
4483		 * as that would possibly corrupt data
4484		 */
4485		if (next > safe + conf->offset_diff)
4486			need_flush = 1;
4487
4488		sector_nr = conf->reshape_progress;
4489		last  = sector_nr | (conf->geo.chunk_mask
4490				     & conf->prev.chunk_mask);
4491
4492		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4493			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4494	}
4495
4496	if (need_flush ||
4497	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4498		/* Need to update reshape_position in metadata */
4499		wait_barrier(conf);
4500		mddev->reshape_position = conf->reshape_progress;
4501		if (mddev->reshape_backwards)
4502			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4503				- conf->reshape_progress;
4504		else
4505			mddev->curr_resync_completed = conf->reshape_progress;
4506		conf->reshape_checkpoint = jiffies;
4507		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4508		md_wakeup_thread(mddev->thread);
4509		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4510			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4511		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4512			allow_barrier(conf);
4513			return sectors_done;
4514		}
4515		conf->reshape_safe = mddev->reshape_position;
4516		allow_barrier(conf);
4517	}
4518
4519	raise_barrier(conf, 0);
4520read_more:
4521	/* Now schedule reads for blocks from sector_nr to last */
4522	r10_bio = raid10_alloc_init_r10buf(conf);
4523	r10_bio->state = 0;
4524	raise_barrier(conf, 1);
4525	atomic_set(&r10_bio->remaining, 0);
4526	r10_bio->mddev = mddev;
4527	r10_bio->sector = sector_nr;
4528	set_bit(R10BIO_IsReshape, &r10_bio->state);
4529	r10_bio->sectors = last - sector_nr + 1;
4530	rdev = read_balance(conf, r10_bio, &max_sectors);
4531	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4532
4533	if (!rdev) {
4534		/* Cannot read from here, so need to record bad blocks
4535		 * on all the target devices.
4536		 */
4537		// FIXME
4538		mempool_free(r10_bio, &conf->r10buf_pool);
4539		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4540		return sectors_done;
4541	}
4542
4543	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4544
4545	bio_set_dev(read_bio, rdev->bdev);
4546	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4547			       + rdev->data_offset);
4548	read_bio->bi_private = r10_bio;
4549	read_bio->bi_end_io = end_reshape_read;
4550	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4551	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4552	read_bio->bi_status = 0;
4553	read_bio->bi_vcnt = 0;
4554	read_bio->bi_iter.bi_size = 0;
 
4555	r10_bio->master_bio = read_bio;
4556	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4557
4558	/*
4559	 * Broadcast RESYNC message to other nodes, so all nodes would not
4560	 * write to the region to avoid conflict.
4561	*/
4562	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4563		struct mdp_superblock_1 *sb = NULL;
4564		int sb_reshape_pos = 0;
4565
4566		conf->cluster_sync_low = sector_nr;
4567		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4568		sb = page_address(rdev->sb_page);
4569		if (sb) {
4570			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4571			/*
4572			 * Set cluster_sync_low again if next address for array
4573			 * reshape is less than cluster_sync_low. Since we can't
4574			 * update cluster_sync_low until it has finished reshape.
4575			 */
4576			if (sb_reshape_pos < conf->cluster_sync_low)
4577				conf->cluster_sync_low = sb_reshape_pos;
4578		}
4579
4580		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4581							  conf->cluster_sync_high);
4582	}
4583
4584	/* Now find the locations in the new layout */
4585	__raid10_find_phys(&conf->geo, r10_bio);
4586
4587	blist = read_bio;
4588	read_bio->bi_next = NULL;
4589
4590	rcu_read_lock();
4591	for (s = 0; s < conf->copies*2; s++) {
4592		struct bio *b;
4593		int d = r10_bio->devs[s/2].devnum;
4594		struct md_rdev *rdev2;
4595		if (s&1) {
4596			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4597			b = r10_bio->devs[s/2].repl_bio;
4598		} else {
4599			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4600			b = r10_bio->devs[s/2].bio;
4601		}
4602		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4603			continue;
4604
4605		bio_set_dev(b, rdev2->bdev);
4606		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4607			rdev2->new_data_offset;
4608		b->bi_end_io = end_reshape_write;
4609		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
 
 
4610		b->bi_next = blist;
 
 
 
4611		blist = b;
4612	}
4613
4614	/* Now add as many pages as possible to all of these bios. */
4615
4616	nr_sectors = 0;
4617	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4618	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4619		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4620		int len = (max_sectors - s) << 9;
4621		if (len > PAGE_SIZE)
4622			len = PAGE_SIZE;
4623		for (bio = blist; bio ; bio = bio->bi_next) {
4624			/*
4625			 * won't fail because the vec table is big enough
4626			 * to hold all these pages
4627			 */
4628			bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
4629		}
4630		sector_nr += len >> 9;
4631		nr_sectors += len >> 9;
4632	}
4633	rcu_read_unlock();
4634	r10_bio->sectors = nr_sectors;
4635
4636	/* Now submit the read */
4637	md_sync_acct_bio(read_bio, r10_bio->sectors);
4638	atomic_inc(&r10_bio->remaining);
4639	read_bio->bi_next = NULL;
4640	submit_bio_noacct(read_bio);
 
4641	sectors_done += nr_sectors;
4642	if (sector_nr <= last)
4643		goto read_more;
4644
4645	lower_barrier(conf);
4646
4647	/* Now that we have done the whole section we can
4648	 * update reshape_progress
4649	 */
4650	if (mddev->reshape_backwards)
4651		conf->reshape_progress -= sectors_done;
4652	else
4653		conf->reshape_progress += sectors_done;
4654
4655	return sectors_done;
4656}
4657
4658static void end_reshape_request(struct r10bio *r10_bio);
4659static int handle_reshape_read_error(struct mddev *mddev,
4660				     struct r10bio *r10_bio);
4661static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4662{
4663	/* Reshape read completed.  Hopefully we have a block
4664	 * to write out.
4665	 * If we got a read error then we do sync 1-page reads from
4666	 * elsewhere until we find the data - or give up.
4667	 */
4668	struct r10conf *conf = mddev->private;
4669	int s;
4670
4671	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4672		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4673			/* Reshape has been aborted */
4674			md_done_sync(mddev, r10_bio->sectors, 0);
4675			return;
4676		}
4677
4678	/* We definitely have the data in the pages, schedule the
4679	 * writes.
4680	 */
4681	atomic_set(&r10_bio->remaining, 1);
4682	for (s = 0; s < conf->copies*2; s++) {
4683		struct bio *b;
4684		int d = r10_bio->devs[s/2].devnum;
4685		struct md_rdev *rdev;
4686		rcu_read_lock();
4687		if (s&1) {
4688			rdev = rcu_dereference(conf->mirrors[d].replacement);
4689			b = r10_bio->devs[s/2].repl_bio;
4690		} else {
4691			rdev = rcu_dereference(conf->mirrors[d].rdev);
4692			b = r10_bio->devs[s/2].bio;
4693		}
4694		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4695			rcu_read_unlock();
4696			continue;
4697		}
4698		atomic_inc(&rdev->nr_pending);
4699		rcu_read_unlock();
4700		md_sync_acct_bio(b, r10_bio->sectors);
4701		atomic_inc(&r10_bio->remaining);
4702		b->bi_next = NULL;
4703		submit_bio_noacct(b);
4704	}
4705	end_reshape_request(r10_bio);
4706}
4707
4708static void end_reshape(struct r10conf *conf)
4709{
4710	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4711		return;
4712
4713	spin_lock_irq(&conf->device_lock);
4714	conf->prev = conf->geo;
4715	md_finish_reshape(conf->mddev);
4716	smp_wmb();
4717	conf->reshape_progress = MaxSector;
4718	conf->reshape_safe = MaxSector;
4719	spin_unlock_irq(&conf->device_lock);
4720
4721	/* read-ahead size must cover two whole stripes, which is
4722	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4723	 */
4724	if (conf->mddev->queue) {
4725		int stripe = conf->geo.raid_disks *
4726			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4727		stripe /= conf->geo.near_copies;
4728		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4729			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4730	}
4731	conf->fullsync = 0;
4732}
4733
4734static void raid10_update_reshape_pos(struct mddev *mddev)
4735{
4736	struct r10conf *conf = mddev->private;
4737	sector_t lo, hi;
4738
4739	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4740	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4741	    || mddev->reshape_position == MaxSector)
4742		conf->reshape_progress = mddev->reshape_position;
4743	else
4744		WARN_ON_ONCE(1);
4745}
4746
4747static int handle_reshape_read_error(struct mddev *mddev,
4748				     struct r10bio *r10_bio)
4749{
4750	/* Use sync reads to get the blocks from somewhere else */
4751	int sectors = r10_bio->sectors;
4752	struct r10conf *conf = mddev->private;
4753	struct r10bio *r10b;
 
 
 
 
4754	int slot = 0;
4755	int idx = 0;
4756	struct page **pages;
4757
4758	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4759	if (!r10b) {
4760		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761		return -ENOMEM;
4762	}
4763
4764	/* reshape IOs share pages from .devs[0].bio */
4765	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4766
4767	r10b->sector = r10_bio->sector;
4768	__raid10_find_phys(&conf->prev, r10b);
4769
4770	while (sectors) {
4771		int s = sectors;
4772		int success = 0;
4773		int first_slot = slot;
4774
4775		if (s > (PAGE_SIZE >> 9))
4776			s = PAGE_SIZE >> 9;
4777
4778		rcu_read_lock();
4779		while (!success) {
4780			int d = r10b->devs[slot].devnum;
4781			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782			sector_t addr;
4783			if (rdev == NULL ||
4784			    test_bit(Faulty, &rdev->flags) ||
4785			    !test_bit(In_sync, &rdev->flags))
4786				goto failed;
4787
4788			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4789			atomic_inc(&rdev->nr_pending);
4790			rcu_read_unlock();
4791			success = sync_page_io(rdev,
4792					       addr,
4793					       s << 9,
4794					       pages[idx],
4795					       REQ_OP_READ, 0, false);
4796			rdev_dec_pending(rdev, mddev);
4797			rcu_read_lock();
4798			if (success)
4799				break;
4800		failed:
4801			slot++;
4802			if (slot >= conf->copies)
4803				slot = 0;
4804			if (slot == first_slot)
4805				break;
4806		}
4807		rcu_read_unlock();
4808		if (!success) {
4809			/* couldn't read this block, must give up */
4810			set_bit(MD_RECOVERY_INTR,
4811				&mddev->recovery);
4812			kfree(r10b);
4813			return -EIO;
4814		}
4815		sectors -= s;
4816		idx++;
4817	}
4818	kfree(r10b);
4819	return 0;
4820}
4821
4822static void end_reshape_write(struct bio *bio)
4823{
4824	struct r10bio *r10_bio = get_resync_r10bio(bio);
 
4825	struct mddev *mddev = r10_bio->mddev;
4826	struct r10conf *conf = mddev->private;
4827	int d;
4828	int slot;
4829	int repl;
4830	struct md_rdev *rdev = NULL;
4831
4832	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4833	if (repl)
4834		rdev = conf->mirrors[d].replacement;
4835	if (!rdev) {
4836		smp_mb();
4837		rdev = conf->mirrors[d].rdev;
4838	}
4839
4840	if (bio->bi_status) {
4841		/* FIXME should record badblock */
4842		md_error(mddev, rdev);
4843	}
4844
4845	rdev_dec_pending(rdev, mddev);
4846	end_reshape_request(r10_bio);
4847}
4848
4849static void end_reshape_request(struct r10bio *r10_bio)
4850{
4851	if (!atomic_dec_and_test(&r10_bio->remaining))
4852		return;
4853	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4854	bio_put(r10_bio->master_bio);
4855	put_buf(r10_bio);
4856}
4857
4858static void raid10_finish_reshape(struct mddev *mddev)
4859{
4860	struct r10conf *conf = mddev->private;
4861
4862	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4863		return;
4864
4865	if (mddev->delta_disks > 0) {
 
 
4866		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4867			mddev->recovery_cp = mddev->resync_max_sectors;
4868			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869		}
4870		mddev->resync_max_sectors = mddev->array_sectors;
 
 
4871	} else {
4872		int d;
4873		rcu_read_lock();
4874		for (d = conf->geo.raid_disks ;
4875		     d < conf->geo.raid_disks - mddev->delta_disks;
4876		     d++) {
4877			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4878			if (rdev)
4879				clear_bit(In_sync, &rdev->flags);
4880			rdev = rcu_dereference(conf->mirrors[d].replacement);
4881			if (rdev)
4882				clear_bit(In_sync, &rdev->flags);
4883		}
4884		rcu_read_unlock();
4885	}
4886	mddev->layout = mddev->new_layout;
4887	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4888	mddev->reshape_position = MaxSector;
4889	mddev->delta_disks = 0;
4890	mddev->reshape_backwards = 0;
4891}
4892
4893static struct md_personality raid10_personality =
4894{
4895	.name		= "raid10",
4896	.level		= 10,
4897	.owner		= THIS_MODULE,
4898	.make_request	= raid10_make_request,
4899	.run		= raid10_run,
4900	.free		= raid10_free,
4901	.status		= raid10_status,
4902	.error_handler	= raid10_error,
4903	.hot_add_disk	= raid10_add_disk,
4904	.hot_remove_disk= raid10_remove_disk,
4905	.spare_active	= raid10_spare_active,
4906	.sync_request	= raid10_sync_request,
4907	.quiesce	= raid10_quiesce,
4908	.size		= raid10_size,
4909	.resize		= raid10_resize,
4910	.takeover	= raid10_takeover,
4911	.check_reshape	= raid10_check_reshape,
4912	.start_reshape	= raid10_start_reshape,
4913	.finish_reshape	= raid10_finish_reshape,
4914	.update_reshape_pos = raid10_update_reshape_pos,
4915};
4916
4917static int __init raid_init(void)
4918{
4919	return register_md_personality(&raid10_personality);
4920}
4921
4922static void raid_exit(void)
4923{
4924	unregister_md_personality(&raid10_personality);
4925}
4926
4927module_init(raid_init);
4928module_exit(raid_exit);
4929MODULE_LICENSE("GPL");
4930MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4931MODULE_ALIAS("md-personality-9"); /* RAID10 */
4932MODULE_ALIAS("md-raid10");
4933MODULE_ALIAS("md-level-10");
4934
4935module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);