Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/* SCTP kernel implementation
   2 * Copyright (c) 1999-2000 Cisco, Inc.
   3 * Copyright (c) 1999-2001 Motorola, Inc.
   4 * Copyright (c) 2001-2003 International Business Machines, Corp.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions handle all input from the IP layer into SCTP.
  12 *
  13 * This SCTP implementation is free software;
  14 * you can redistribute it and/or modify it under the terms of
  15 * the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2, or (at your option)
  17 * any later version.
  18 *
  19 * This SCTP implementation is distributed in the hope that it
  20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  21 *                 ************************
  22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  23 * See the GNU General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License
  26 * along with GNU CC; see the file COPYING.  If not, write to
  27 * the Free Software Foundation, 59 Temple Place - Suite 330,
  28 * Boston, MA 02111-1307, USA.
  29 *
  30 * Please send any bug reports or fixes you make to the
  31 * email address(es):
  32 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  33 *
  34 * Or submit a bug report through the following website:
  35 *    http://www.sf.net/projects/lksctp
  36 *
  37 * Written or modified by:
  38 *    La Monte H.P. Yarroll <piggy@acm.org>
  39 *    Karl Knutson <karl@athena.chicago.il.us>
  40 *    Xingang Guo <xingang.guo@intel.com>
  41 *    Jon Grimm <jgrimm@us.ibm.com>
  42 *    Hui Huang <hui.huang@nokia.com>
  43 *    Daisy Chang <daisyc@us.ibm.com>
  44 *    Sridhar Samudrala <sri@us.ibm.com>
  45 *    Ardelle Fan <ardelle.fan@intel.com>
  46 *
  47 * Any bugs reported given to us we will try to fix... any fixes shared will
  48 * be incorporated into the next SCTP release.
  49 */
  50
  51#include <linux/types.h>
  52#include <linux/list.h> /* For struct list_head */
  53#include <linux/socket.h>
  54#include <linux/ip.h>
  55#include <linux/time.h> /* For struct timeval */
  56#include <linux/slab.h>
  57#include <net/ip.h>
  58#include <net/icmp.h>
  59#include <net/snmp.h>
  60#include <net/sock.h>
  61#include <net/xfrm.h>
  62#include <net/sctp/sctp.h>
  63#include <net/sctp/sm.h>
  64#include <net/sctp/checksum.h>
  65#include <net/net_namespace.h>
 
 
  66
  67/* Forward declarations for internal helpers. */
  68static int sctp_rcv_ootb(struct sk_buff *);
  69static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
  70				      const union sctp_addr *laddr,
  71				      const union sctp_addr *paddr,
 
  72				      struct sctp_transport **transportp);
  73static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
 
 
 
  74static struct sctp_association *__sctp_lookup_association(
 
  75					const union sctp_addr *local,
  76					const union sctp_addr *peer,
  77					struct sctp_transport **pt);
  78
  79static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  80
  81
  82/* Calculate the SCTP checksum of an SCTP packet.  */
  83static inline int sctp_rcv_checksum(struct sk_buff *skb)
  84{
  85	struct sctphdr *sh = sctp_hdr(skb);
  86	__le32 cmp = sh->checksum;
  87	struct sk_buff *list;
  88	__le32 val;
  89	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
  90
  91	skb_walk_frags(skb, list)
  92		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
  93					tmp);
  94
  95	val = sctp_end_cksum(tmp);
  96
  97	if (val != cmp) {
  98		/* CRC failure, dump it. */
  99		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
 100		return -1;
 101	}
 102	return 0;
 103}
 104
 105struct sctp_input_cb {
 106	union {
 107		struct inet_skb_parm	h4;
 108#if IS_ENABLED(CONFIG_IPV6)
 109		struct inet6_skb_parm	h6;
 110#endif
 111	} header;
 112	struct sctp_chunk *chunk;
 113};
 114#define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
 115
 116/*
 117 * This is the routine which IP calls when receiving an SCTP packet.
 118 */
 119int sctp_rcv(struct sk_buff *skb)
 120{
 121	struct sock *sk;
 122	struct sctp_association *asoc;
 123	struct sctp_endpoint *ep = NULL;
 124	struct sctp_ep_common *rcvr;
 125	struct sctp_transport *transport = NULL;
 126	struct sctp_chunk *chunk;
 127	struct sctphdr *sh;
 128	union sctp_addr src;
 129	union sctp_addr dest;
 130	int family;
 131	struct sctp_af *af;
 
 
 132
 133	if (skb->pkt_type!=PACKET_HOST)
 134		goto discard_it;
 135
 136	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
 137
 138	if (skb_linearize(skb))
 
 
 
 
 139		goto discard_it;
 140
 141	sh = sctp_hdr(skb);
 142
 143	/* Pull up the IP and SCTP headers. */
 144	__skb_pull(skb, skb_transport_offset(skb));
 145	if (skb->len < sizeof(struct sctphdr))
 146		goto discard_it;
 147	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
 148		  sctp_rcv_checksum(skb) < 0)
 149		goto discard_it;
 150
 151	skb_pull(skb, sizeof(struct sctphdr));
 
 152
 153	/* Make sure we at least have chunk headers worth of data left. */
 154	if (skb->len < sizeof(struct sctp_chunkhdr))
 
 
 
 
 155		goto discard_it;
 
 
 
 156
 157	family = ipver2af(ip_hdr(skb)->version);
 158	af = sctp_get_af_specific(family);
 159	if (unlikely(!af))
 160		goto discard_it;
 
 161
 162	/* Initialize local addresses for lookups. */
 163	af->from_skb(&src, skb, 1);
 164	af->from_skb(&dest, skb, 0);
 165
 166	/* If the packet is to or from a non-unicast address,
 167	 * silently discard the packet.
 168	 *
 169	 * This is not clearly defined in the RFC except in section
 170	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 171	 * Transmission Protocol" 2.1, "It is important to note that the
 172	 * IP address of an SCTP transport address must be a routable
 173	 * unicast address.  In other words, IP multicast addresses and
 174	 * IP broadcast addresses cannot be used in an SCTP transport
 175	 * address."
 176	 */
 177	if (!af->addr_valid(&src, NULL, skb) ||
 178	    !af->addr_valid(&dest, NULL, skb))
 179		goto discard_it;
 180
 181	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
 182
 183	if (!asoc)
 184		ep = __sctp_rcv_lookup_endpoint(&dest);
 185
 186	/* Retrieve the common input handling substructure. */
 187	rcvr = asoc ? &asoc->base : &ep->base;
 188	sk = rcvr->sk;
 189
 190	/*
 191	 * If a frame arrives on an interface and the receiving socket is
 192	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 193	 */
 194	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
 195	{
 196		if (asoc) {
 197			sctp_association_put(asoc);
 198			asoc = NULL;
 
 199		} else {
 200			sctp_endpoint_put(ep);
 201			ep = NULL;
 202		}
 203		sk = sctp_get_ctl_sock();
 204		ep = sctp_sk(sk)->ep;
 205		sctp_endpoint_hold(ep);
 206		rcvr = &ep->base;
 207	}
 208
 209	/*
 210	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 211	 * An SCTP packet is called an "out of the blue" (OOTB)
 212	 * packet if it is correctly formed, i.e., passed the
 213	 * receiver's checksum check, but the receiver is not
 214	 * able to identify the association to which this
 215	 * packet belongs.
 216	 */
 217	if (!asoc) {
 218		if (sctp_rcv_ootb(skb)) {
 219			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
 220			goto discard_release;
 221		}
 222	}
 223
 224	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 225		goto discard_release;
 226	nf_reset(skb);
 227
 228	if (sk_filter(sk, skb))
 229		goto discard_release;
 230
 231	/* Create an SCTP packet structure. */
 232	chunk = sctp_chunkify(skb, asoc, sk);
 233	if (!chunk)
 234		goto discard_release;
 235	SCTP_INPUT_CB(skb)->chunk = chunk;
 236
 237	/* Remember what endpoint is to handle this packet. */
 238	chunk->rcvr = rcvr;
 239
 240	/* Remember the SCTP header. */
 241	chunk->sctp_hdr = sh;
 242
 243	/* Set the source and destination addresses of the incoming chunk.  */
 244	sctp_init_addrs(chunk, &src, &dest);
 245
 246	/* Remember where we came from.  */
 247	chunk->transport = transport;
 248
 249	/* Acquire access to the sock lock. Note: We are safe from other
 250	 * bottom halves on this lock, but a user may be in the lock too,
 251	 * so check if it is busy.
 252	 */
 253	sctp_bh_lock_sock(sk);
 254
 255	if (sk != rcvr->sk) {
 256		/* Our cached sk is different from the rcvr->sk.  This is
 257		 * because migrate()/accept() may have moved the association
 258		 * to a new socket and released all the sockets.  So now we
 259		 * are holding a lock on the old socket while the user may
 260		 * be doing something with the new socket.  Switch our veiw
 261		 * of the current sk.
 262		 */
 263		sctp_bh_unlock_sock(sk);
 264		sk = rcvr->sk;
 265		sctp_bh_lock_sock(sk);
 266	}
 267
 268	if (sock_owned_by_user(sk)) {
 269		if (sctp_add_backlog(sk, skb)) {
 270			sctp_bh_unlock_sock(sk);
 271			sctp_chunk_free(chunk);
 272			skb = NULL; /* sctp_chunk_free already freed the skb */
 273			goto discard_release;
 274		}
 275		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
 276	} else {
 277		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
 278		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 279	}
 280
 281	sctp_bh_unlock_sock(sk);
 282
 283	/* Release the asoc/ep ref we took in the lookup calls. */
 284	if (asoc)
 285		sctp_association_put(asoc);
 286	else
 287		sctp_endpoint_put(ep);
 288
 289	return 0;
 290
 291discard_it:
 292	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
 293	kfree_skb(skb);
 294	return 0;
 295
 296discard_release:
 297	/* Release the asoc/ep ref we took in the lookup calls. */
 298	if (asoc)
 299		sctp_association_put(asoc);
 300	else
 301		sctp_endpoint_put(ep);
 302
 303	goto discard_it;
 304}
 305
 306/* Process the backlog queue of the socket.  Every skb on
 307 * the backlog holds a ref on an association or endpoint.
 308 * We hold this ref throughout the state machine to make
 309 * sure that the structure we need is still around.
 310 */
 311int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 312{
 313	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 314	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 
 315	struct sctp_ep_common *rcvr = NULL;
 316	int backloged = 0;
 317
 318	rcvr = chunk->rcvr;
 319
 320	/* If the rcvr is dead then the association or endpoint
 321	 * has been deleted and we can safely drop the chunk
 322	 * and refs that we are holding.
 323	 */
 324	if (rcvr->dead) {
 325		sctp_chunk_free(chunk);
 326		goto done;
 327	}
 328
 329	if (unlikely(rcvr->sk != sk)) {
 330		/* In this case, the association moved from one socket to
 331		 * another.  We are currently sitting on the backlog of the
 332		 * old socket, so we need to move.
 333		 * However, since we are here in the process context we
 334		 * need to take make sure that the user doesn't own
 335		 * the new socket when we process the packet.
 336		 * If the new socket is user-owned, queue the chunk to the
 337		 * backlog of the new socket without dropping any refs.
 338		 * Otherwise, we can safely push the chunk on the inqueue.
 339		 */
 340
 341		sk = rcvr->sk;
 342		sctp_bh_lock_sock(sk);
 
 343
 344		if (sock_owned_by_user(sk)) {
 345			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
 346				sctp_chunk_free(chunk);
 347			else
 348				backloged = 1;
 349		} else
 350			sctp_inq_push(inqueue, chunk);
 351
 352		sctp_bh_unlock_sock(sk);
 
 353
 354		/* If the chunk was backloged again, don't drop refs */
 355		if (backloged)
 356			return 0;
 357	} else {
 358		sctp_inq_push(inqueue, chunk);
 
 
 
 
 
 
 359	}
 360
 361done:
 362	/* Release the refs we took in sctp_add_backlog */
 363	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 364		sctp_association_put(sctp_assoc(rcvr));
 365	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 366		sctp_endpoint_put(sctp_ep(rcvr));
 367	else
 368		BUG();
 369
 370	return 0;
 371}
 372
 373static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 374{
 375	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 
 376	struct sctp_ep_common *rcvr = chunk->rcvr;
 377	int ret;
 378
 379	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
 380	if (!ret) {
 381		/* Hold the assoc/ep while hanging on the backlog queue.
 382		 * This way, we know structures we need will not disappear
 383		 * from us
 384		 */
 385		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 386			sctp_association_hold(sctp_assoc(rcvr));
 387		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 388			sctp_endpoint_hold(sctp_ep(rcvr));
 389		else
 390			BUG();
 391	}
 392	return ret;
 393
 394}
 395
 396/* Handle icmp frag needed error. */
 397void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 398			   struct sctp_transport *t, __u32 pmtu)
 399{
 400	if (!t || (t->pathmtu <= pmtu))
 401		return;
 402
 403	if (sock_owned_by_user(sk)) {
 
 404		asoc->pmtu_pending = 1;
 405		t->pmtu_pending = 1;
 406		return;
 407	}
 408
 409	if (t->param_flags & SPP_PMTUD_ENABLE) {
 410		/* Update transports view of the MTU */
 411		sctp_transport_update_pmtu(t, pmtu);
 412
 413		/* Update association pmtu. */
 414		sctp_assoc_sync_pmtu(asoc);
 415	}
 416
 417	/* Retransmit with the new pmtu setting.
 418	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
 419	 * Needed will never be sent, but if a message was sent before
 420	 * PMTU discovery was disabled that was larger than the PMTU, it
 421	 * would not be fragmented, so it must be re-transmitted fragmented.
 422	 */
 
 
 
 
 
 
 
 423	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 424}
 425
 
 
 
 
 
 
 
 
 
 
 
 
 426/*
 427 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 428 *
 429 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 430 *        or a "Protocol Unreachable" treat this message as an abort
 431 *        with the T bit set.
 432 *
 433 * This function sends an event to the state machine, which will abort the
 434 * association.
 435 *
 436 */
 437void sctp_icmp_proto_unreachable(struct sock *sk,
 438			   struct sctp_association *asoc,
 439			   struct sctp_transport *t)
 440{
 441	SCTP_DEBUG_PRINTK("%s\n",  __func__);
 442
 443	if (sock_owned_by_user(sk)) {
 444		if (timer_pending(&t->proto_unreach_timer))
 445			return;
 446		else {
 447			if (!mod_timer(&t->proto_unreach_timer,
 448						jiffies + (HZ/20)))
 449				sctp_association_hold(asoc);
 450		}
 451			
 452	} else {
 453		if (timer_pending(&t->proto_unreach_timer) &&
 454		    del_timer(&t->proto_unreach_timer))
 
 
 
 
 455			sctp_association_put(asoc);
 456
 457		sctp_do_sm(SCTP_EVENT_T_OTHER,
 458			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 459			   asoc->state, asoc->ep, asoc, t,
 460			   GFP_ATOMIC);
 461	}
 462}
 463
 464/* Common lookup code for icmp/icmpv6 error handler. */
 465struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
 466			     struct sctphdr *sctphdr,
 467			     struct sctp_association **app,
 468			     struct sctp_transport **tpp)
 469{
 
 470	union sctp_addr saddr;
 471	union sctp_addr daddr;
 472	struct sctp_af *af;
 473	struct sock *sk = NULL;
 474	struct sctp_association *asoc;
 475	struct sctp_transport *transport = NULL;
 476	struct sctp_init_chunk *chunkhdr;
 477	__u32 vtag = ntohl(sctphdr->vtag);
 478	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
 479
 480	*app = NULL; *tpp = NULL;
 481
 482	af = sctp_get_af_specific(family);
 483	if (unlikely(!af)) {
 484		return NULL;
 485	}
 486
 487	/* Initialize local addresses for lookups. */
 488	af->from_skb(&saddr, skb, 1);
 489	af->from_skb(&daddr, skb, 0);
 490
 491	/* Look for an association that matches the incoming ICMP error
 492	 * packet.
 493	 */
 494	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
 495	if (!asoc)
 496		return NULL;
 497
 498	sk = asoc->base.sk;
 499
 500	/* RFC 4960, Appendix C. ICMP Handling
 501	 *
 502	 * ICMP6) An implementation MUST validate that the Verification Tag
 503	 * contained in the ICMP message matches the Verification Tag of
 504	 * the peer.  If the Verification Tag is not 0 and does NOT
 505	 * match, discard the ICMP message.  If it is 0 and the ICMP
 506	 * message contains enough bytes to verify that the chunk type is
 507	 * an INIT chunk and that the Initiate Tag matches the tag of the
 508	 * peer, continue with ICMP7.  If the ICMP message is too short
 509	 * or the chunk type or the Initiate Tag does not match, silently
 510	 * discard the packet.
 511	 */
 512	if (vtag == 0) {
 513		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
 514		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
 515			  + sizeof(__be32) ||
 
 
 
 516		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 517		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
 518			goto out;
 519		}
 520	} else if (vtag != asoc->c.peer_vtag) {
 521		goto out;
 522	}
 523
 524	sctp_bh_lock_sock(sk);
 525
 526	/* If too many ICMPs get dropped on busy
 527	 * servers this needs to be solved differently.
 528	 */
 529	if (sock_owned_by_user(sk))
 530		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
 531
 532	*app = asoc;
 533	*tpp = transport;
 534	return sk;
 535
 536out:
 537	if (asoc)
 538		sctp_association_put(asoc);
 539	return NULL;
 540}
 541
 542/* Common cleanup code for icmp/icmpv6 error handler. */
 543void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
 544{
 545	sctp_bh_unlock_sock(sk);
 546	if (asoc)
 547		sctp_association_put(asoc);
 548}
 549
 550/*
 551 * This routine is called by the ICMP module when it gets some
 552 * sort of error condition.  If err < 0 then the socket should
 553 * be closed and the error returned to the user.  If err > 0
 554 * it's just the icmp type << 8 | icmp code.  After adjustment
 555 * header points to the first 8 bytes of the sctp header.  We need
 556 * to find the appropriate port.
 557 *
 558 * The locking strategy used here is very "optimistic". When
 559 * someone else accesses the socket the ICMP is just dropped
 560 * and for some paths there is no check at all.
 561 * A more general error queue to queue errors for later handling
 562 * is probably better.
 563 *
 564 */
 565void sctp_v4_err(struct sk_buff *skb, __u32 info)
 566{
 567	const struct iphdr *iph = (const struct iphdr *)skb->data;
 568	const int ihlen = iph->ihl * 4;
 569	const int type = icmp_hdr(skb)->type;
 570	const int code = icmp_hdr(skb)->code;
 571	struct sock *sk;
 572	struct sctp_association *asoc = NULL;
 573	struct sctp_transport *transport;
 574	struct inet_sock *inet;
 575	sk_buff_data_t saveip, savesctp;
 576	int err;
 577
 578	if (skb->len < ihlen + 8) {
 579		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
 580		return;
 581	}
 582
 583	/* Fix up skb to look at the embedded net header. */
 584	saveip = skb->network_header;
 585	savesctp = skb->transport_header;
 586	skb_reset_network_header(skb);
 587	skb_set_transport_header(skb, ihlen);
 588	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 589	/* Put back, the original values. */
 590	skb->network_header = saveip;
 591	skb->transport_header = savesctp;
 592	if (!sk) {
 593		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
 594		return;
 595	}
 596	/* Warning:  The sock lock is held.  Remember to call
 597	 * sctp_err_finish!
 598	 */
 599
 600	switch (type) {
 601	case ICMP_PARAMETERPROB:
 602		err = EPROTO;
 603		break;
 604	case ICMP_DEST_UNREACH:
 605		if (code > NR_ICMP_UNREACH)
 606			goto out_unlock;
 607
 608		/* PMTU discovery (RFC1191) */
 609		if (ICMP_FRAG_NEEDED == code) {
 610			sctp_icmp_frag_needed(sk, asoc, transport, info);
 
 611			goto out_unlock;
 612		}
 613		else {
 614			if (ICMP_PROT_UNREACH == code) {
 615				sctp_icmp_proto_unreachable(sk, asoc,
 616							    transport);
 617				goto out_unlock;
 618			}
 619		}
 620		err = icmp_err_convert[code].errno;
 621		break;
 622	case ICMP_TIME_EXCEEDED:
 623		/* Ignore any time exceeded errors due to fragment reassembly
 624		 * timeouts.
 625		 */
 626		if (ICMP_EXC_FRAGTIME == code)
 627			goto out_unlock;
 628
 629		err = EHOSTUNREACH;
 630		break;
 
 
 
 631	default:
 632		goto out_unlock;
 633	}
 634
 635	inet = inet_sk(sk);
 636	if (!sock_owned_by_user(sk) && inet->recverr) {
 637		sk->sk_err = err;
 638		sk->sk_error_report(sk);
 639	} else {  /* Only an error on timeout */
 640		sk->sk_err_soft = err;
 641	}
 642
 643out_unlock:
 644	sctp_err_finish(sk, asoc);
 
 645}
 646
 647/*
 648 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 649 *
 650 * This function scans all the chunks in the OOTB packet to determine if
 651 * the packet should be discarded right away.  If a response might be needed
 652 * for this packet, or, if further processing is possible, the packet will
 653 * be queued to a proper inqueue for the next phase of handling.
 654 *
 655 * Output:
 656 * Return 0 - If further processing is needed.
 657 * Return 1 - If the packet can be discarded right away.
 658 */
 659static int sctp_rcv_ootb(struct sk_buff *skb)
 660{
 661	sctp_chunkhdr_t *ch;
 662	__u8 *ch_end;
 663
 664	ch = (sctp_chunkhdr_t *) skb->data;
 665
 666	/* Scan through all the chunks in the packet.  */
 667	do {
 
 
 
 
 
 
 668		/* Break out if chunk length is less then minimal. */
 669		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
 670			break;
 671
 672		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
 673		if (ch_end > skb_tail_pointer(skb))
 674			break;
 675
 676		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 677		 * receiver MUST silently discard the OOTB packet and take no
 678		 * further action.
 679		 */
 680		if (SCTP_CID_ABORT == ch->type)
 681			goto discard;
 682
 683		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 684		 * chunk, the receiver should silently discard the packet
 685		 * and take no further action.
 686		 */
 687		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 688			goto discard;
 689
 690		/* RFC 4460, 2.11.2
 691		 * This will discard packets with INIT chunk bundled as
 692		 * subsequent chunks in the packet.  When INIT is first,
 693		 * the normal INIT processing will discard the chunk.
 694		 */
 695		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 696			goto discard;
 697
 698		ch = (sctp_chunkhdr_t *) ch_end;
 699	} while (ch_end < skb_tail_pointer(skb));
 700
 701	return 0;
 702
 703discard:
 704	return 1;
 705}
 706
 707/* Insert endpoint into the hash table.  */
 708static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
 709{
 710	struct sctp_ep_common *epb;
 
 711	struct sctp_hashbucket *head;
 
 712
 713	epb = &ep->base;
 714
 715	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
 716	head = &sctp_ep_hashtable[epb->hashent];
 717
 718	sctp_write_lock(&head->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	hlist_add_head(&epb->node, &head->chain);
 720	sctp_write_unlock(&head->lock);
 
 721}
 722
 723/* Add an endpoint to the hash. Local BH-safe. */
 724void sctp_hash_endpoint(struct sctp_endpoint *ep)
 725{
 726	sctp_local_bh_disable();
 727	__sctp_hash_endpoint(ep);
 728	sctp_local_bh_enable();
 
 
 
 
 729}
 730
 731/* Remove endpoint from the hash table.  */
 732static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 733{
 
 734	struct sctp_hashbucket *head;
 735	struct sctp_ep_common *epb;
 736
 737	epb = &ep->base;
 738
 739	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
 740
 741	head = &sctp_ep_hashtable[epb->hashent];
 742
 743	sctp_write_lock(&head->lock);
 
 
 
 744	hlist_del_init(&epb->node);
 745	sctp_write_unlock(&head->lock);
 746}
 747
 748/* Remove endpoint from the hash.  Local BH-safe. */
 749void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 750{
 751	sctp_local_bh_disable();
 752	__sctp_unhash_endpoint(ep);
 753	sctp_local_bh_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754}
 755
 756/* Look up an endpoint. */
 757static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
 
 
 
 758{
 759	struct sctp_hashbucket *head;
 760	struct sctp_ep_common *epb;
 761	struct sctp_endpoint *ep;
 762	struct hlist_node *node;
 
 763	int hash;
 764
 765	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
 
 766	head = &sctp_ep_hashtable[hash];
 767	read_lock(&head->lock);
 768	sctp_for_each_hentry(epb, node, &head->chain) {
 769		ep = sctp_ep(epb);
 770		if (sctp_endpoint_is_match(ep, laddr))
 771			goto hit;
 772	}
 773
 774	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
 775
 776hit:
 
 
 
 
 
 
 
 
 
 777	sctp_endpoint_hold(ep);
 778	read_unlock(&head->lock);
 779	return ep;
 780}
 781
 782/* Insert association into the hash table.  */
 783static void __sctp_hash_established(struct sctp_association *asoc)
 
 
 
 
 
 
 
 784{
 785	struct sctp_ep_common *epb;
 786	struct sctp_hashbucket *head;
 
 
 
 
 
 
 787
 788	epb = &asoc->base;
 
 
 
 789
 790	/* Calculate which chain this entry will belong to. */
 791	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
 
 
 
 792
 793	head = &sctp_assoc_hashtable[epb->hashent];
 
 
 794
 795	sctp_write_lock(&head->lock);
 796	hlist_add_head(&epb->node, &head->chain);
 797	sctp_write_unlock(&head->lock);
 798}
 799
 800/* Add an association to the hash. Local BH-safe. */
 801void sctp_hash_established(struct sctp_association *asoc)
 802{
 803	if (asoc->temp)
 804		return;
 805
 806	sctp_local_bh_disable();
 807	__sctp_hash_established(asoc);
 808	sctp_local_bh_enable();
 809}
 810
 811/* Remove association from the hash table.  */
 812static void __sctp_unhash_established(struct sctp_association *asoc)
 
 
 
 
 
 
 
 813{
 814	struct sctp_hashbucket *head;
 815	struct sctp_ep_common *epb;
 816
 817	epb = &asoc->base;
 
 
 
 818
 819	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
 820					 asoc->peer.port);
 
 
 
 
 821
 822	head = &sctp_assoc_hashtable[epb->hashent];
 
 823
 824	sctp_write_lock(&head->lock);
 825	hlist_del_init(&epb->node);
 826	sctp_write_unlock(&head->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827}
 828
 829/* Remove association from the hash table.  Local BH-safe. */
 830void sctp_unhash_established(struct sctp_association *asoc)
 831{
 832	if (asoc->temp)
 833		return;
 834
 835	sctp_local_bh_disable();
 836	__sctp_unhash_established(asoc);
 837	sctp_local_bh_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838}
 839
 840/* Look up an association. */
 841static struct sctp_association *__sctp_lookup_association(
 
 842					const union sctp_addr *local,
 843					const union sctp_addr *peer,
 844					struct sctp_transport **pt)
 845{
 846	struct sctp_hashbucket *head;
 847	struct sctp_ep_common *epb;
 848	struct sctp_association *asoc;
 849	struct sctp_transport *transport;
 850	struct hlist_node *node;
 851	int hash;
 852
 853	/* Optimize here for direct hit, only listening connections can
 854	 * have wildcards anyways.
 855	 */
 856	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
 857	head = &sctp_assoc_hashtable[hash];
 858	read_lock(&head->lock);
 859	sctp_for_each_hentry(epb, node, &head->chain) {
 860		asoc = sctp_assoc(epb);
 861		transport = sctp_assoc_is_match(asoc, local, peer);
 862		if (transport)
 863			goto hit;
 864	}
 865
 866	read_unlock(&head->lock);
 
 867
 868	return NULL;
 869
 870hit:
 871	*pt = transport;
 872	sctp_association_hold(asoc);
 873	read_unlock(&head->lock);
 874	return asoc;
 875}
 876
 877/* Look up an association. BH-safe. */
 878SCTP_STATIC
 879struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
 
 880						 const union sctp_addr *paddr,
 881					    struct sctp_transport **transportp)
 882{
 883	struct sctp_association *asoc;
 884
 885	sctp_local_bh_disable();
 886	asoc = __sctp_lookup_association(laddr, paddr, transportp);
 887	sctp_local_bh_enable();
 888
 889	return asoc;
 890}
 891
 892/* Is there an association matching the given local and peer addresses? */
 893int sctp_has_association(const union sctp_addr *laddr,
 894			 const union sctp_addr *paddr)
 
 895{
 896	struct sctp_association *asoc;
 897	struct sctp_transport *transport;
 898
 899	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
 900		sctp_association_put(asoc);
 901		return 1;
 902	}
 903
 904	return 0;
 905}
 906
 907/*
 908 * SCTP Implementors Guide, 2.18 Handling of address
 909 * parameters within the INIT or INIT-ACK.
 910 *
 911 * D) When searching for a matching TCB upon reception of an INIT
 912 *    or INIT-ACK chunk the receiver SHOULD use not only the
 913 *    source address of the packet (containing the INIT or
 914 *    INIT-ACK) but the receiver SHOULD also use all valid
 915 *    address parameters contained within the chunk.
 916 *
 917 * 2.18.3 Solution description
 918 *
 919 * This new text clearly specifies to an implementor the need
 920 * to look within the INIT or INIT-ACK. Any implementation that
 921 * does not do this, may not be able to establish associations
 922 * in certain circumstances.
 923 *
 924 */
 925static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
 
 926	const union sctp_addr *laddr, struct sctp_transport **transportp)
 927{
 928	struct sctp_association *asoc;
 929	union sctp_addr addr;
 930	union sctp_addr *paddr = &addr;
 931	struct sctphdr *sh = sctp_hdr(skb);
 932	union sctp_params params;
 933	sctp_init_chunk_t *init;
 934	struct sctp_transport *transport;
 935	struct sctp_af *af;
 936
 937	/*
 938	 * This code will NOT touch anything inside the chunk--it is
 939	 * strictly READ-ONLY.
 940	 *
 941	 * RFC 2960 3  SCTP packet Format
 942	 *
 943	 * Multiple chunks can be bundled into one SCTP packet up to
 944	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
 945	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
 946	 * other chunk in a packet.  See Section 6.10 for more details
 947	 * on chunk bundling.
 948	 */
 949
 950	/* Find the start of the TLVs and the end of the chunk.  This is
 951	 * the region we search for address parameters.
 952	 */
 953	init = (sctp_init_chunk_t *)skb->data;
 954
 955	/* Walk the parameters looking for embedded addresses. */
 956	sctp_walk_params(params, init, init_hdr.params) {
 957
 958		/* Note: Ignoring hostname addresses. */
 959		af = sctp_get_af_specific(param_type2af(params.p->type));
 960		if (!af)
 961			continue;
 962
 963		af->from_addr_param(paddr, params.addr, sh->source, 0);
 964
 965		asoc = __sctp_lookup_association(laddr, paddr, &transport);
 966		if (asoc)
 967			return asoc;
 968	}
 969
 970	return NULL;
 971}
 972
 973/* ADD-IP, Section 5.2
 974 * When an endpoint receives an ASCONF Chunk from the remote peer
 975 * special procedures may be needed to identify the association the
 976 * ASCONF Chunk is associated with. To properly find the association
 977 * the following procedures SHOULD be followed:
 978 *
 979 * D2) If the association is not found, use the address found in the
 980 * Address Parameter TLV combined with the port number found in the
 981 * SCTP common header. If found proceed to rule D4.
 982 *
 983 * D2-ext) If more than one ASCONF Chunks are packed together, use the
 984 * address found in the ASCONF Address Parameter TLV of each of the
 985 * subsequent ASCONF Chunks. If found, proceed to rule D4.
 986 */
 987static struct sctp_association *__sctp_rcv_asconf_lookup(
 988					sctp_chunkhdr_t *ch,
 
 989					const union sctp_addr *laddr,
 990					__be16 peer_port,
 991					struct sctp_transport **transportp)
 992{
 993	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
 994	struct sctp_af *af;
 995	union sctp_addr_param *param;
 996	union sctp_addr paddr;
 997
 998	/* Skip over the ADDIP header and find the Address parameter */
 999	param = (union sctp_addr_param *)(asconf + 1);
1000
1001	af = sctp_get_af_specific(param_type2af(param->p.type));
1002	if (unlikely(!af))
1003		return NULL;
1004
1005	af->from_addr_param(&paddr, param, peer_port, 0);
1006
1007	return __sctp_lookup_association(laddr, &paddr, transportp);
1008}
1009
1010
1011/* SCTP-AUTH, Section 6.3:
1012*    If the receiver does not find a STCB for a packet containing an AUTH
1013*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1014*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1015*    association.
1016*
1017* This means that any chunks that can help us identify the association need
1018* to be looked at to find this association.
1019*/
1020static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
 
1021				      const union sctp_addr *laddr,
1022				      struct sctp_transport **transportp)
1023{
1024	struct sctp_association *asoc = NULL;
1025	sctp_chunkhdr_t *ch;
1026	int have_auth = 0;
1027	unsigned int chunk_num = 1;
1028	__u8 *ch_end;
1029
1030	/* Walk through the chunks looking for AUTH or ASCONF chunks
1031	 * to help us find the association.
1032	 */
1033	ch = (sctp_chunkhdr_t *) skb->data;
1034	do {
1035		/* Break out if chunk length is less then minimal. */
1036		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1037			break;
1038
1039		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1040		if (ch_end > skb_tail_pointer(skb))
1041			break;
1042
1043		switch(ch->type) {
1044		    case SCTP_CID_AUTH:
1045			    have_auth = chunk_num;
1046			    break;
1047
1048		    case SCTP_CID_COOKIE_ECHO:
1049			    /* If a packet arrives containing an AUTH chunk as
1050			     * a first chunk, a COOKIE-ECHO chunk as the second
1051			     * chunk, and possibly more chunks after them, and
1052			     * the receiver does not have an STCB for that
1053			     * packet, then authentication is based on
1054			     * the contents of the COOKIE- ECHO chunk.
1055			     */
1056			    if (have_auth == 1 && chunk_num == 2)
1057				    return NULL;
1058			    break;
1059
1060		    case SCTP_CID_ASCONF:
1061			    if (have_auth || sctp_addip_noauth)
1062				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1063							sctp_hdr(skb)->source,
1064							transportp);
1065		    default:
1066			    break;
 
1067		}
1068
1069		if (asoc)
1070			break;
1071
1072		ch = (sctp_chunkhdr_t *) ch_end;
1073		chunk_num++;
1074	} while (ch_end < skb_tail_pointer(skb));
1075
1076	return asoc;
1077}
1078
1079/*
1080 * There are circumstances when we need to look inside the SCTP packet
1081 * for information to help us find the association.   Examples
1082 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1083 * chunks.
1084 */
1085static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
 
1086				      const union sctp_addr *laddr,
1087				      struct sctp_transport **transportp)
1088{
1089	sctp_chunkhdr_t *ch;
 
 
 
 
 
 
 
 
1090
1091	ch = (sctp_chunkhdr_t *) skb->data;
1092
1093	/* The code below will attempt to walk the chunk and extract
1094	 * parameter information.  Before we do that, we need to verify
1095	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1096	 * walk off the end.
1097	 */
1098	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1099		return NULL;
1100
1101	/* If this is INIT/INIT-ACK look inside the chunk too. */
1102	switch (ch->type) {
1103	case SCTP_CID_INIT:
1104	case SCTP_CID_INIT_ACK:
1105		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1106		break;
1107
1108	default:
1109		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1110		break;
1111	}
1112
1113
1114	return NULL;
1115}
1116
1117/* Lookup an association for an inbound skb. */
1118static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
 
1119				      const union sctp_addr *paddr,
1120				      const union sctp_addr *laddr,
1121				      struct sctp_transport **transportp)
1122{
1123	struct sctp_association *asoc;
1124
1125	asoc = __sctp_lookup_association(laddr, paddr, transportp);
 
 
1126
1127	/* Further lookup for INIT/INIT-ACK packets.
1128	 * SCTP Implementors Guide, 2.18 Handling of address
1129	 * parameters within the INIT or INIT-ACK.
1130	 */
1131	if (!asoc)
1132		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
 
1133
 
 
 
 
 
 
 
 
 
 
1134	return asoc;
1135}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 International Business Machines, Corp.
   6 * Copyright (c) 2001 Intel Corp.
   7 * Copyright (c) 2001 Nokia, Inc.
   8 * Copyright (c) 2001 La Monte H.P. Yarroll
   9 *
  10 * This file is part of the SCTP kernel implementation
  11 *
  12 * These functions handle all input from the IP layer into SCTP.
  13 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14 * Please send any bug reports or fixes you make to the
  15 * email address(es):
  16 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
  17 *
  18 * Written or modified by:
  19 *    La Monte H.P. Yarroll <piggy@acm.org>
  20 *    Karl Knutson <karl@athena.chicago.il.us>
  21 *    Xingang Guo <xingang.guo@intel.com>
  22 *    Jon Grimm <jgrimm@us.ibm.com>
  23 *    Hui Huang <hui.huang@nokia.com>
  24 *    Daisy Chang <daisyc@us.ibm.com>
  25 *    Sridhar Samudrala <sri@us.ibm.com>
  26 *    Ardelle Fan <ardelle.fan@intel.com>
 
 
 
  27 */
  28
  29#include <linux/types.h>
  30#include <linux/list.h> /* For struct list_head */
  31#include <linux/socket.h>
  32#include <linux/ip.h>
  33#include <linux/time.h> /* For struct timeval */
  34#include <linux/slab.h>
  35#include <net/ip.h>
  36#include <net/icmp.h>
  37#include <net/snmp.h>
  38#include <net/sock.h>
  39#include <net/xfrm.h>
  40#include <net/sctp/sctp.h>
  41#include <net/sctp/sm.h>
  42#include <net/sctp/checksum.h>
  43#include <net/net_namespace.h>
  44#include <linux/rhashtable.h>
  45#include <net/sock_reuseport.h>
  46
  47/* Forward declarations for internal helpers. */
  48static int sctp_rcv_ootb(struct sk_buff *);
  49static struct sctp_association *__sctp_rcv_lookup(struct net *net,
  50				      struct sk_buff *skb,
  51				      const union sctp_addr *paddr,
  52				      const union sctp_addr *laddr,
  53				      struct sctp_transport **transportp);
  54static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
  55					struct net *net, struct sk_buff *skb,
  56					const union sctp_addr *laddr,
  57					const union sctp_addr *daddr);
  58static struct sctp_association *__sctp_lookup_association(
  59					struct net *net,
  60					const union sctp_addr *local,
  61					const union sctp_addr *peer,
  62					struct sctp_transport **pt);
  63
  64static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  65
  66
  67/* Calculate the SCTP checksum of an SCTP packet.  */
  68static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
  69{
  70	struct sctphdr *sh = sctp_hdr(skb);
  71	__le32 cmp = sh->checksum;
  72	__le32 val = sctp_compute_cksum(skb, 0);
 
 
 
 
 
 
 
 
  73
  74	if (val != cmp) {
  75		/* CRC failure, dump it. */
  76		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
  77		return -1;
  78	}
  79	return 0;
  80}
  81
 
 
 
 
 
 
 
 
 
 
 
  82/*
  83 * This is the routine which IP calls when receiving an SCTP packet.
  84 */
  85int sctp_rcv(struct sk_buff *skb)
  86{
  87	struct sock *sk;
  88	struct sctp_association *asoc;
  89	struct sctp_endpoint *ep = NULL;
  90	struct sctp_ep_common *rcvr;
  91	struct sctp_transport *transport = NULL;
  92	struct sctp_chunk *chunk;
 
  93	union sctp_addr src;
  94	union sctp_addr dest;
  95	int family;
  96	struct sctp_af *af;
  97	struct net *net = dev_net(skb->dev);
  98	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
  99
 100	if (skb->pkt_type != PACKET_HOST)
 101		goto discard_it;
 102
 103	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
 104
 105	/* If packet is too small to contain a single chunk, let's not
 106	 * waste time on it anymore.
 107	 */
 108	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
 109		       skb_transport_offset(skb))
 110		goto discard_it;
 111
 112	/* If the packet is fragmented and we need to do crc checking,
 113	 * it's better to just linearize it otherwise crc computing
 114	 * takes longer.
 115	 */
 116	if ((!is_gso && skb_linearize(skb)) ||
 117	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
 
 
 118		goto discard_it;
 119
 120	/* Pull up the IP header. */
 121	__skb_pull(skb, skb_transport_offset(skb));
 122
 123	skb->csum_valid = 0; /* Previous value not applicable */
 124	if (skb_csum_unnecessary(skb))
 125		__skb_decr_checksum_unnecessary(skb);
 126	else if (!sctp_checksum_disable &&
 127		 !is_gso &&
 128		 sctp_rcv_checksum(net, skb) < 0)
 129		goto discard_it;
 130	skb->csum_valid = 1;
 131
 132	__skb_pull(skb, sizeof(struct sctphdr));
 133
 134	family = ipver2af(ip_hdr(skb)->version);
 135	af = sctp_get_af_specific(family);
 136	if (unlikely(!af))
 137		goto discard_it;
 138	SCTP_INPUT_CB(skb)->af = af;
 139
 140	/* Initialize local addresses for lookups. */
 141	af->from_skb(&src, skb, 1);
 142	af->from_skb(&dest, skb, 0);
 143
 144	/* If the packet is to or from a non-unicast address,
 145	 * silently discard the packet.
 146	 *
 147	 * This is not clearly defined in the RFC except in section
 148	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 149	 * Transmission Protocol" 2.1, "It is important to note that the
 150	 * IP address of an SCTP transport address must be a routable
 151	 * unicast address.  In other words, IP multicast addresses and
 152	 * IP broadcast addresses cannot be used in an SCTP transport
 153	 * address."
 154	 */
 155	if (!af->addr_valid(&src, NULL, skb) ||
 156	    !af->addr_valid(&dest, NULL, skb))
 157		goto discard_it;
 158
 159	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
 160
 161	if (!asoc)
 162		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
 163
 164	/* Retrieve the common input handling substructure. */
 165	rcvr = asoc ? &asoc->base : &ep->base;
 166	sk = rcvr->sk;
 167
 168	/*
 169	 * If a frame arrives on an interface and the receiving socket is
 170	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 171	 */
 172	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
 173		if (transport) {
 174			sctp_transport_put(transport);
 
 175			asoc = NULL;
 176			transport = NULL;
 177		} else {
 178			sctp_endpoint_put(ep);
 179			ep = NULL;
 180		}
 181		sk = net->sctp.ctl_sock;
 182		ep = sctp_sk(sk)->ep;
 183		sctp_endpoint_hold(ep);
 184		rcvr = &ep->base;
 185	}
 186
 187	/*
 188	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 189	 * An SCTP packet is called an "out of the blue" (OOTB)
 190	 * packet if it is correctly formed, i.e., passed the
 191	 * receiver's checksum check, but the receiver is not
 192	 * able to identify the association to which this
 193	 * packet belongs.
 194	 */
 195	if (!asoc) {
 196		if (sctp_rcv_ootb(skb)) {
 197			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
 198			goto discard_release;
 199		}
 200	}
 201
 202	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 203		goto discard_release;
 204	nf_reset_ct(skb);
 205
 206	if (sk_filter(sk, skb))
 207		goto discard_release;
 208
 209	/* Create an SCTP packet structure. */
 210	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
 211	if (!chunk)
 212		goto discard_release;
 213	SCTP_INPUT_CB(skb)->chunk = chunk;
 214
 215	/* Remember what endpoint is to handle this packet. */
 216	chunk->rcvr = rcvr;
 217
 218	/* Remember the SCTP header. */
 219	chunk->sctp_hdr = sctp_hdr(skb);
 220
 221	/* Set the source and destination addresses of the incoming chunk.  */
 222	sctp_init_addrs(chunk, &src, &dest);
 223
 224	/* Remember where we came from.  */
 225	chunk->transport = transport;
 226
 227	/* Acquire access to the sock lock. Note: We are safe from other
 228	 * bottom halves on this lock, but a user may be in the lock too,
 229	 * so check if it is busy.
 230	 */
 231	bh_lock_sock(sk);
 232
 233	if (sk != rcvr->sk) {
 234		/* Our cached sk is different from the rcvr->sk.  This is
 235		 * because migrate()/accept() may have moved the association
 236		 * to a new socket and released all the sockets.  So now we
 237		 * are holding a lock on the old socket while the user may
 238		 * be doing something with the new socket.  Switch our veiw
 239		 * of the current sk.
 240		 */
 241		bh_unlock_sock(sk);
 242		sk = rcvr->sk;
 243		bh_lock_sock(sk);
 244	}
 245
 246	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 247		if (sctp_add_backlog(sk, skb)) {
 248			bh_unlock_sock(sk);
 249			sctp_chunk_free(chunk);
 250			skb = NULL; /* sctp_chunk_free already freed the skb */
 251			goto discard_release;
 252		}
 253		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
 254	} else {
 255		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
 256		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 257	}
 258
 259	bh_unlock_sock(sk);
 260
 261	/* Release the asoc/ep ref we took in the lookup calls. */
 262	if (transport)
 263		sctp_transport_put(transport);
 264	else
 265		sctp_endpoint_put(ep);
 266
 267	return 0;
 268
 269discard_it:
 270	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
 271	kfree_skb(skb);
 272	return 0;
 273
 274discard_release:
 275	/* Release the asoc/ep ref we took in the lookup calls. */
 276	if (transport)
 277		sctp_transport_put(transport);
 278	else
 279		sctp_endpoint_put(ep);
 280
 281	goto discard_it;
 282}
 283
 284/* Process the backlog queue of the socket.  Every skb on
 285 * the backlog holds a ref on an association or endpoint.
 286 * We hold this ref throughout the state machine to make
 287 * sure that the structure we need is still around.
 288 */
 289int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 290{
 291	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 292	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 293	struct sctp_transport *t = chunk->transport;
 294	struct sctp_ep_common *rcvr = NULL;
 295	int backloged = 0;
 296
 297	rcvr = chunk->rcvr;
 298
 299	/* If the rcvr is dead then the association or endpoint
 300	 * has been deleted and we can safely drop the chunk
 301	 * and refs that we are holding.
 302	 */
 303	if (rcvr->dead) {
 304		sctp_chunk_free(chunk);
 305		goto done;
 306	}
 307
 308	if (unlikely(rcvr->sk != sk)) {
 309		/* In this case, the association moved from one socket to
 310		 * another.  We are currently sitting on the backlog of the
 311		 * old socket, so we need to move.
 312		 * However, since we are here in the process context we
 313		 * need to take make sure that the user doesn't own
 314		 * the new socket when we process the packet.
 315		 * If the new socket is user-owned, queue the chunk to the
 316		 * backlog of the new socket without dropping any refs.
 317		 * Otherwise, we can safely push the chunk on the inqueue.
 318		 */
 319
 320		sk = rcvr->sk;
 321		local_bh_disable();
 322		bh_lock_sock(sk);
 323
 324		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 325			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
 326				sctp_chunk_free(chunk);
 327			else
 328				backloged = 1;
 329		} else
 330			sctp_inq_push(inqueue, chunk);
 331
 332		bh_unlock_sock(sk);
 333		local_bh_enable();
 334
 335		/* If the chunk was backloged again, don't drop refs */
 336		if (backloged)
 337			return 0;
 338	} else {
 339		if (!sctp_newsk_ready(sk)) {
 340			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
 341				return 0;
 342			sctp_chunk_free(chunk);
 343		} else {
 344			sctp_inq_push(inqueue, chunk);
 345		}
 346	}
 347
 348done:
 349	/* Release the refs we took in sctp_add_backlog */
 350	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 351		sctp_transport_put(t);
 352	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 353		sctp_endpoint_put(sctp_ep(rcvr));
 354	else
 355		BUG();
 356
 357	return 0;
 358}
 359
 360static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 361{
 362	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 363	struct sctp_transport *t = chunk->transport;
 364	struct sctp_ep_common *rcvr = chunk->rcvr;
 365	int ret;
 366
 367	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
 368	if (!ret) {
 369		/* Hold the assoc/ep while hanging on the backlog queue.
 370		 * This way, we know structures we need will not disappear
 371		 * from us
 372		 */
 373		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 374			sctp_transport_hold(t);
 375		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 376			sctp_endpoint_hold(sctp_ep(rcvr));
 377		else
 378			BUG();
 379	}
 380	return ret;
 381
 382}
 383
 384/* Handle icmp frag needed error. */
 385void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 386			   struct sctp_transport *t, __u32 pmtu)
 387{
 388	if (!t || (t->pathmtu <= pmtu))
 389		return;
 390
 391	if (sock_owned_by_user(sk)) {
 392		atomic_set(&t->mtu_info, pmtu);
 393		asoc->pmtu_pending = 1;
 394		t->pmtu_pending = 1;
 395		return;
 396	}
 397
 398	if (!(t->param_flags & SPP_PMTUD_ENABLE))
 399		/* We can't allow retransmitting in such case, as the
 400		 * retransmission would be sized just as before, and thus we
 401		 * would get another icmp, and retransmit again.
 402		 */
 403		return;
 
 404
 405	/* Update transports view of the MTU. Return if no update was needed.
 406	 * If an update wasn't needed/possible, it also doesn't make sense to
 407	 * try to retransmit now.
 
 
 408	 */
 409	if (!sctp_transport_update_pmtu(t, pmtu))
 410		return;
 411
 412	/* Update association pmtu. */
 413	sctp_assoc_sync_pmtu(asoc);
 414
 415	/* Retransmit with the new pmtu setting. */
 416	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 417}
 418
 419void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
 420			struct sk_buff *skb)
 421{
 422	struct dst_entry *dst;
 423
 424	if (sock_owned_by_user(sk) || !t)
 425		return;
 426	dst = sctp_transport_dst_check(t);
 427	if (dst)
 428		dst->ops->redirect(dst, sk, skb);
 429}
 430
 431/*
 432 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 433 *
 434 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 435 *        or a "Protocol Unreachable" treat this message as an abort
 436 *        with the T bit set.
 437 *
 438 * This function sends an event to the state machine, which will abort the
 439 * association.
 440 *
 441 */
 442void sctp_icmp_proto_unreachable(struct sock *sk,
 443			   struct sctp_association *asoc,
 444			   struct sctp_transport *t)
 445{
 
 
 446	if (sock_owned_by_user(sk)) {
 447		if (timer_pending(&t->proto_unreach_timer))
 448			return;
 449		else {
 450			if (!mod_timer(&t->proto_unreach_timer,
 451						jiffies + (HZ/20)))
 452				sctp_association_hold(asoc);
 453		}
 
 454	} else {
 455		struct net *net = sock_net(sk);
 456
 457		pr_debug("%s: unrecognized next header type "
 458			 "encountered!\n", __func__);
 459
 460		if (del_timer(&t->proto_unreach_timer))
 461			sctp_association_put(asoc);
 462
 463		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 464			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 465			   asoc->state, asoc->ep, asoc, t,
 466			   GFP_ATOMIC);
 467	}
 468}
 469
 470/* Common lookup code for icmp/icmpv6 error handler. */
 471struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
 472			     struct sctphdr *sctphdr,
 473			     struct sctp_association **app,
 474			     struct sctp_transport **tpp)
 475{
 476	struct sctp_init_chunk *chunkhdr, _chunkhdr;
 477	union sctp_addr saddr;
 478	union sctp_addr daddr;
 479	struct sctp_af *af;
 480	struct sock *sk = NULL;
 481	struct sctp_association *asoc;
 482	struct sctp_transport *transport = NULL;
 
 483	__u32 vtag = ntohl(sctphdr->vtag);
 
 484
 485	*app = NULL; *tpp = NULL;
 486
 487	af = sctp_get_af_specific(family);
 488	if (unlikely(!af)) {
 489		return NULL;
 490	}
 491
 492	/* Initialize local addresses for lookups. */
 493	af->from_skb(&saddr, skb, 1);
 494	af->from_skb(&daddr, skb, 0);
 495
 496	/* Look for an association that matches the incoming ICMP error
 497	 * packet.
 498	 */
 499	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
 500	if (!asoc)
 501		return NULL;
 502
 503	sk = asoc->base.sk;
 504
 505	/* RFC 4960, Appendix C. ICMP Handling
 506	 *
 507	 * ICMP6) An implementation MUST validate that the Verification Tag
 508	 * contained in the ICMP message matches the Verification Tag of
 509	 * the peer.  If the Verification Tag is not 0 and does NOT
 510	 * match, discard the ICMP message.  If it is 0 and the ICMP
 511	 * message contains enough bytes to verify that the chunk type is
 512	 * an INIT chunk and that the Initiate Tag matches the tag of the
 513	 * peer, continue with ICMP7.  If the ICMP message is too short
 514	 * or the chunk type or the Initiate Tag does not match, silently
 515	 * discard the packet.
 516	 */
 517	if (vtag == 0) {
 518		/* chunk header + first 4 octects of init header */
 519		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
 520					      sizeof(struct sctphdr),
 521					      sizeof(struct sctp_chunkhdr) +
 522					      sizeof(__be32), &_chunkhdr);
 523		if (!chunkhdr ||
 524		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 525		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
 526			goto out;
 527
 528	} else if (vtag != asoc->c.peer_vtag) {
 529		goto out;
 530	}
 531
 532	bh_lock_sock(sk);
 533
 534	/* If too many ICMPs get dropped on busy
 535	 * servers this needs to be solved differently.
 536	 */
 537	if (sock_owned_by_user(sk))
 538		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 539
 540	*app = asoc;
 541	*tpp = transport;
 542	return sk;
 543
 544out:
 545	sctp_transport_put(transport);
 
 546	return NULL;
 547}
 548
 549/* Common cleanup code for icmp/icmpv6 error handler. */
 550void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
 551{
 552	bh_unlock_sock(sk);
 553	sctp_transport_put(t);
 
 554}
 555
 556/*
 557 * This routine is called by the ICMP module when it gets some
 558 * sort of error condition.  If err < 0 then the socket should
 559 * be closed and the error returned to the user.  If err > 0
 560 * it's just the icmp type << 8 | icmp code.  After adjustment
 561 * header points to the first 8 bytes of the sctp header.  We need
 562 * to find the appropriate port.
 563 *
 564 * The locking strategy used here is very "optimistic". When
 565 * someone else accesses the socket the ICMP is just dropped
 566 * and for some paths there is no check at all.
 567 * A more general error queue to queue errors for later handling
 568 * is probably better.
 569 *
 570 */
 571int sctp_v4_err(struct sk_buff *skb, __u32 info)
 572{
 573	const struct iphdr *iph = (const struct iphdr *)skb->data;
 574	const int ihlen = iph->ihl * 4;
 575	const int type = icmp_hdr(skb)->type;
 576	const int code = icmp_hdr(skb)->code;
 577	struct sock *sk;
 578	struct sctp_association *asoc = NULL;
 579	struct sctp_transport *transport;
 580	struct inet_sock *inet;
 581	__u16 saveip, savesctp;
 582	int err;
 583	struct net *net = dev_net(skb->dev);
 
 
 
 
 584
 585	/* Fix up skb to look at the embedded net header. */
 586	saveip = skb->network_header;
 587	savesctp = skb->transport_header;
 588	skb_reset_network_header(skb);
 589	skb_set_transport_header(skb, ihlen);
 590	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 591	/* Put back, the original values. */
 592	skb->network_header = saveip;
 593	skb->transport_header = savesctp;
 594	if (!sk) {
 595		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 596		return -ENOENT;
 597	}
 598	/* Warning:  The sock lock is held.  Remember to call
 599	 * sctp_err_finish!
 600	 */
 601
 602	switch (type) {
 603	case ICMP_PARAMETERPROB:
 604		err = EPROTO;
 605		break;
 606	case ICMP_DEST_UNREACH:
 607		if (code > NR_ICMP_UNREACH)
 608			goto out_unlock;
 609
 610		/* PMTU discovery (RFC1191) */
 611		if (ICMP_FRAG_NEEDED == code) {
 612			sctp_icmp_frag_needed(sk, asoc, transport,
 613					      SCTP_TRUNC4(info));
 614			goto out_unlock;
 615		} else {
 
 616			if (ICMP_PROT_UNREACH == code) {
 617				sctp_icmp_proto_unreachable(sk, asoc,
 618							    transport);
 619				goto out_unlock;
 620			}
 621		}
 622		err = icmp_err_convert[code].errno;
 623		break;
 624	case ICMP_TIME_EXCEEDED:
 625		/* Ignore any time exceeded errors due to fragment reassembly
 626		 * timeouts.
 627		 */
 628		if (ICMP_EXC_FRAGTIME == code)
 629			goto out_unlock;
 630
 631		err = EHOSTUNREACH;
 632		break;
 633	case ICMP_REDIRECT:
 634		sctp_icmp_redirect(sk, transport, skb);
 635		/* Fall through to out_unlock. */
 636	default:
 637		goto out_unlock;
 638	}
 639
 640	inet = inet_sk(sk);
 641	if (!sock_owned_by_user(sk) && inet->recverr) {
 642		sk->sk_err = err;
 643		sk->sk_error_report(sk);
 644	} else {  /* Only an error on timeout */
 645		sk->sk_err_soft = err;
 646	}
 647
 648out_unlock:
 649	sctp_err_finish(sk, transport);
 650	return 0;
 651}
 652
 653/*
 654 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 655 *
 656 * This function scans all the chunks in the OOTB packet to determine if
 657 * the packet should be discarded right away.  If a response might be needed
 658 * for this packet, or, if further processing is possible, the packet will
 659 * be queued to a proper inqueue for the next phase of handling.
 660 *
 661 * Output:
 662 * Return 0 - If further processing is needed.
 663 * Return 1 - If the packet can be discarded right away.
 664 */
 665static int sctp_rcv_ootb(struct sk_buff *skb)
 666{
 667	struct sctp_chunkhdr *ch, _ch;
 668	int ch_end, offset = 0;
 
 
 669
 670	/* Scan through all the chunks in the packet.  */
 671	do {
 672		/* Make sure we have at least the header there */
 673		if (offset + sizeof(_ch) > skb->len)
 674			break;
 675
 676		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
 677
 678		/* Break out if chunk length is less then minimal. */
 679		if (ntohs(ch->length) < sizeof(_ch))
 680			break;
 681
 682		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
 683		if (ch_end > skb->len)
 684			break;
 685
 686		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 687		 * receiver MUST silently discard the OOTB packet and take no
 688		 * further action.
 689		 */
 690		if (SCTP_CID_ABORT == ch->type)
 691			goto discard;
 692
 693		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 694		 * chunk, the receiver should silently discard the packet
 695		 * and take no further action.
 696		 */
 697		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 698			goto discard;
 699
 700		/* RFC 4460, 2.11.2
 701		 * This will discard packets with INIT chunk bundled as
 702		 * subsequent chunks in the packet.  When INIT is first,
 703		 * the normal INIT processing will discard the chunk.
 704		 */
 705		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 706			goto discard;
 707
 708		offset = ch_end;
 709	} while (ch_end < skb->len);
 710
 711	return 0;
 712
 713discard:
 714	return 1;
 715}
 716
 717/* Insert endpoint into the hash table.  */
 718static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
 719{
 720	struct sock *sk = ep->base.sk;
 721	struct net *net = sock_net(sk);
 722	struct sctp_hashbucket *head;
 723	struct sctp_ep_common *epb;
 724
 725	epb = &ep->base;
 726	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
 
 727	head = &sctp_ep_hashtable[epb->hashent];
 728
 729	if (sk->sk_reuseport) {
 730		bool any = sctp_is_ep_boundall(sk);
 731		struct sctp_ep_common *epb2;
 732		struct list_head *list;
 733		int cnt = 0, err = 1;
 734
 735		list_for_each(list, &ep->base.bind_addr.address_list)
 736			cnt++;
 737
 738		sctp_for_each_hentry(epb2, &head->chain) {
 739			struct sock *sk2 = epb2->sk;
 740
 741			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
 742			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
 743			    !sk2->sk_reuseport)
 744				continue;
 745
 746			err = sctp_bind_addrs_check(sctp_sk(sk2),
 747						    sctp_sk(sk), cnt);
 748			if (!err) {
 749				err = reuseport_add_sock(sk, sk2, any);
 750				if (err)
 751					return err;
 752				break;
 753			} else if (err < 0) {
 754				return err;
 755			}
 756		}
 757
 758		if (err) {
 759			err = reuseport_alloc(sk, any);
 760			if (err)
 761				return err;
 762		}
 763	}
 764
 765	write_lock(&head->lock);
 766	hlist_add_head(&epb->node, &head->chain);
 767	write_unlock(&head->lock);
 768	return 0;
 769}
 770
 771/* Add an endpoint to the hash. Local BH-safe. */
 772int sctp_hash_endpoint(struct sctp_endpoint *ep)
 773{
 774	int err;
 775
 776	local_bh_disable();
 777	err = __sctp_hash_endpoint(ep);
 778	local_bh_enable();
 779
 780	return err;
 781}
 782
 783/* Remove endpoint from the hash table.  */
 784static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 785{
 786	struct sock *sk = ep->base.sk;
 787	struct sctp_hashbucket *head;
 788	struct sctp_ep_common *epb;
 789
 790	epb = &ep->base;
 791
 792	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
 793
 794	head = &sctp_ep_hashtable[epb->hashent];
 795
 796	if (rcu_access_pointer(sk->sk_reuseport_cb))
 797		reuseport_detach_sock(sk);
 798
 799	write_lock(&head->lock);
 800	hlist_del_init(&epb->node);
 801	write_unlock(&head->lock);
 802}
 803
 804/* Remove endpoint from the hash.  Local BH-safe. */
 805void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 806{
 807	local_bh_disable();
 808	__sctp_unhash_endpoint(ep);
 809	local_bh_enable();
 810}
 811
 812static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
 813				const union sctp_addr *paddr, __u32 seed)
 814{
 815	__u32 addr;
 816
 817	if (paddr->sa.sa_family == AF_INET6)
 818		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 819	else
 820		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 821
 822	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 823			     (__force __u32)lport, net_hash_mix(net), seed);
 824}
 825
 826/* Look up an endpoint. */
 827static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
 828					struct net *net, struct sk_buff *skb,
 829					const union sctp_addr *laddr,
 830					const union sctp_addr *paddr)
 831{
 832	struct sctp_hashbucket *head;
 833	struct sctp_ep_common *epb;
 834	struct sctp_endpoint *ep;
 835	struct sock *sk;
 836	__be16 lport;
 837	int hash;
 838
 839	lport = laddr->v4.sin_port;
 840	hash = sctp_ep_hashfn(net, ntohs(lport));
 841	head = &sctp_ep_hashtable[hash];
 842	read_lock(&head->lock);
 843	sctp_for_each_hentry(epb, &head->chain) {
 844		ep = sctp_ep(epb);
 845		if (sctp_endpoint_is_match(ep, net, laddr))
 846			goto hit;
 847	}
 848
 849	ep = sctp_sk(net->sctp.ctl_sock)->ep;
 850
 851hit:
 852	sk = ep->base.sk;
 853	if (sk->sk_reuseport) {
 854		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
 855
 856		sk = reuseport_select_sock(sk, phash, skb,
 857					   sizeof(struct sctphdr));
 858		if (sk)
 859			ep = sctp_sk(sk)->ep;
 860	}
 861	sctp_endpoint_hold(ep);
 862	read_unlock(&head->lock);
 863	return ep;
 864}
 865
 866/* rhashtable for transport */
 867struct sctp_hash_cmp_arg {
 868	const union sctp_addr	*paddr;
 869	const struct net	*net;
 870	__be16			lport;
 871};
 872
 873static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
 874				const void *ptr)
 875{
 876	struct sctp_transport *t = (struct sctp_transport *)ptr;
 877	const struct sctp_hash_cmp_arg *x = arg->key;
 878	int err = 1;
 879
 880	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
 881		return err;
 882	if (!sctp_transport_hold(t))
 883		return err;
 884
 885	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
 886		goto out;
 887	if (x->lport != htons(t->asoc->base.bind_addr.port))
 888		goto out;
 889
 890	err = 0;
 891out:
 892	sctp_transport_put(t);
 893	return err;
 894}
 895
 896static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
 897{
 898	const struct sctp_transport *t = data;
 899
 900	return sctp_hashfn(sock_net(t->asoc->base.sk),
 901			   htons(t->asoc->base.bind_addr.port),
 902			   &t->ipaddr, seed);
 903}
 904
 905static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
 
 906{
 907	const struct sctp_hash_cmp_arg *x = data;
 
 908
 909	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
 
 
 910}
 911
 912static const struct rhashtable_params sctp_hash_params = {
 913	.head_offset		= offsetof(struct sctp_transport, node),
 914	.hashfn			= sctp_hash_key,
 915	.obj_hashfn		= sctp_hash_obj,
 916	.obj_cmpfn		= sctp_hash_cmp,
 917	.automatic_shrinking	= true,
 918};
 919
 920int sctp_transport_hashtable_init(void)
 921{
 922	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
 923}
 924
 925void sctp_transport_hashtable_destroy(void)
 926{
 927	rhltable_destroy(&sctp_transport_hashtable);
 928}
 929
 930int sctp_hash_transport(struct sctp_transport *t)
 931{
 932	struct sctp_transport *transport;
 933	struct rhlist_head *tmp, *list;
 934	struct sctp_hash_cmp_arg arg;
 935	int err;
 936
 937	if (t->asoc->temp)
 938		return 0;
 939
 940	arg.net   = sock_net(t->asoc->base.sk);
 941	arg.paddr = &t->ipaddr;
 942	arg.lport = htons(t->asoc->base.bind_addr.port);
 943
 944	rcu_read_lock();
 945	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 946			       sctp_hash_params);
 947
 948	rhl_for_each_entry_rcu(transport, tmp, list, node)
 949		if (transport->asoc->ep == t->asoc->ep) {
 950			rcu_read_unlock();
 951			return -EEXIST;
 952		}
 953	rcu_read_unlock();
 954
 955	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
 956				  &t->node, sctp_hash_params);
 957	if (err)
 958		pr_err_once("insert transport fail, errno %d\n", err);
 959
 960	return err;
 961}
 962
 963void sctp_unhash_transport(struct sctp_transport *t)
 
 964{
 965	if (t->asoc->temp)
 966		return;
 967
 968	rhltable_remove(&sctp_transport_hashtable, &t->node,
 969			sctp_hash_params);
 970}
 971
 972/* return a transport with holding it */
 973struct sctp_transport *sctp_addrs_lookup_transport(
 974				struct net *net,
 975				const union sctp_addr *laddr,
 976				const union sctp_addr *paddr)
 977{
 978	struct rhlist_head *tmp, *list;
 979	struct sctp_transport *t;
 980	struct sctp_hash_cmp_arg arg = {
 981		.paddr = paddr,
 982		.net   = net,
 983		.lport = laddr->v4.sin_port,
 984	};
 985
 986	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 987			       sctp_hash_params);
 988
 989	rhl_for_each_entry_rcu(t, tmp, list, node) {
 990		if (!sctp_transport_hold(t))
 991			continue;
 992
 993		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
 994					 laddr, sctp_sk(t->asoc->base.sk)))
 995			return t;
 996		sctp_transport_put(t);
 997	}
 998
 999	return NULL;
1000}
1001
1002/* return a transport without holding it, as it's only used under sock lock */
1003struct sctp_transport *sctp_epaddr_lookup_transport(
1004				const struct sctp_endpoint *ep,
1005				const union sctp_addr *paddr)
1006{
1007	struct net *net = sock_net(ep->base.sk);
1008	struct rhlist_head *tmp, *list;
1009	struct sctp_transport *t;
1010	struct sctp_hash_cmp_arg arg = {
1011		.paddr = paddr,
1012		.net   = net,
1013		.lport = htons(ep->base.bind_addr.port),
1014	};
1015
1016	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1017			       sctp_hash_params);
1018
1019	rhl_for_each_entry_rcu(t, tmp, list, node)
1020		if (ep == t->asoc->ep)
1021			return t;
1022
1023	return NULL;
1024}
1025
1026/* Look up an association. */
1027static struct sctp_association *__sctp_lookup_association(
1028					struct net *net,
1029					const union sctp_addr *local,
1030					const union sctp_addr *peer,
1031					struct sctp_transport **pt)
1032{
1033	struct sctp_transport *t;
1034	struct sctp_association *asoc = NULL;
 
 
 
 
1035
1036	t = sctp_addrs_lookup_transport(net, local, peer);
1037	if (!t)
1038		goto out;
 
 
 
 
 
 
 
 
 
1039
1040	asoc = t->asoc;
1041	*pt = t;
1042
1043out:
 
 
 
 
 
1044	return asoc;
1045}
1046
1047/* Look up an association. protected by RCU read lock */
1048static
1049struct sctp_association *sctp_lookup_association(struct net *net,
1050						 const union sctp_addr *laddr,
1051						 const union sctp_addr *paddr,
1052						 struct sctp_transport **transportp)
1053{
1054	struct sctp_association *asoc;
1055
1056	rcu_read_lock();
1057	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1058	rcu_read_unlock();
1059
1060	return asoc;
1061}
1062
1063/* Is there an association matching the given local and peer addresses? */
1064bool sctp_has_association(struct net *net,
1065			  const union sctp_addr *laddr,
1066			  const union sctp_addr *paddr)
1067{
 
1068	struct sctp_transport *transport;
1069
1070	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1071		sctp_transport_put(transport);
1072		return true;
1073	}
1074
1075	return false;
1076}
1077
1078/*
1079 * SCTP Implementors Guide, 2.18 Handling of address
1080 * parameters within the INIT or INIT-ACK.
1081 *
1082 * D) When searching for a matching TCB upon reception of an INIT
1083 *    or INIT-ACK chunk the receiver SHOULD use not only the
1084 *    source address of the packet (containing the INIT or
1085 *    INIT-ACK) but the receiver SHOULD also use all valid
1086 *    address parameters contained within the chunk.
1087 *
1088 * 2.18.3 Solution description
1089 *
1090 * This new text clearly specifies to an implementor the need
1091 * to look within the INIT or INIT-ACK. Any implementation that
1092 * does not do this, may not be able to establish associations
1093 * in certain circumstances.
1094 *
1095 */
1096static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1097	struct sk_buff *skb,
1098	const union sctp_addr *laddr, struct sctp_transport **transportp)
1099{
1100	struct sctp_association *asoc;
1101	union sctp_addr addr;
1102	union sctp_addr *paddr = &addr;
1103	struct sctphdr *sh = sctp_hdr(skb);
1104	union sctp_params params;
1105	struct sctp_init_chunk *init;
 
1106	struct sctp_af *af;
1107
1108	/*
1109	 * This code will NOT touch anything inside the chunk--it is
1110	 * strictly READ-ONLY.
1111	 *
1112	 * RFC 2960 3  SCTP packet Format
1113	 *
1114	 * Multiple chunks can be bundled into one SCTP packet up to
1115	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1116	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1117	 * other chunk in a packet.  See Section 6.10 for more details
1118	 * on chunk bundling.
1119	 */
1120
1121	/* Find the start of the TLVs and the end of the chunk.  This is
1122	 * the region we search for address parameters.
1123	 */
1124	init = (struct sctp_init_chunk *)skb->data;
1125
1126	/* Walk the parameters looking for embedded addresses. */
1127	sctp_walk_params(params, init, init_hdr.params) {
1128
1129		/* Note: Ignoring hostname addresses. */
1130		af = sctp_get_af_specific(param_type2af(params.p->type));
1131		if (!af)
1132			continue;
1133
1134		af->from_addr_param(paddr, params.addr, sh->source, 0);
1135
1136		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1137		if (asoc)
1138			return asoc;
1139	}
1140
1141	return NULL;
1142}
1143
1144/* ADD-IP, Section 5.2
1145 * When an endpoint receives an ASCONF Chunk from the remote peer
1146 * special procedures may be needed to identify the association the
1147 * ASCONF Chunk is associated with. To properly find the association
1148 * the following procedures SHOULD be followed:
1149 *
1150 * D2) If the association is not found, use the address found in the
1151 * Address Parameter TLV combined with the port number found in the
1152 * SCTP common header. If found proceed to rule D4.
1153 *
1154 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1155 * address found in the ASCONF Address Parameter TLV of each of the
1156 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1157 */
1158static struct sctp_association *__sctp_rcv_asconf_lookup(
1159					struct net *net,
1160					struct sctp_chunkhdr *ch,
1161					const union sctp_addr *laddr,
1162					__be16 peer_port,
1163					struct sctp_transport **transportp)
1164{
1165	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1166	struct sctp_af *af;
1167	union sctp_addr_param *param;
1168	union sctp_addr paddr;
1169
1170	/* Skip over the ADDIP header and find the Address parameter */
1171	param = (union sctp_addr_param *)(asconf + 1);
1172
1173	af = sctp_get_af_specific(param_type2af(param->p.type));
1174	if (unlikely(!af))
1175		return NULL;
1176
1177	af->from_addr_param(&paddr, param, peer_port, 0);
1178
1179	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1180}
1181
1182
1183/* SCTP-AUTH, Section 6.3:
1184*    If the receiver does not find a STCB for a packet containing an AUTH
1185*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1186*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1187*    association.
1188*
1189* This means that any chunks that can help us identify the association need
1190* to be looked at to find this association.
1191*/
1192static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1193				      struct sk_buff *skb,
1194				      const union sctp_addr *laddr,
1195				      struct sctp_transport **transportp)
1196{
1197	struct sctp_association *asoc = NULL;
1198	struct sctp_chunkhdr *ch;
1199	int have_auth = 0;
1200	unsigned int chunk_num = 1;
1201	__u8 *ch_end;
1202
1203	/* Walk through the chunks looking for AUTH or ASCONF chunks
1204	 * to help us find the association.
1205	 */
1206	ch = (struct sctp_chunkhdr *)skb->data;
1207	do {
1208		/* Break out if chunk length is less then minimal. */
1209		if (ntohs(ch->length) < sizeof(*ch))
1210			break;
1211
1212		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1213		if (ch_end > skb_tail_pointer(skb))
1214			break;
1215
1216		switch (ch->type) {
1217		case SCTP_CID_AUTH:
1218			have_auth = chunk_num;
1219			break;
1220
1221		case SCTP_CID_COOKIE_ECHO:
1222			/* If a packet arrives containing an AUTH chunk as
1223			 * a first chunk, a COOKIE-ECHO chunk as the second
1224			 * chunk, and possibly more chunks after them, and
1225			 * the receiver does not have an STCB for that
1226			 * packet, then authentication is based on
1227			 * the contents of the COOKIE- ECHO chunk.
1228			 */
1229			if (have_auth == 1 && chunk_num == 2)
1230				return NULL;
1231			break;
1232
1233		case SCTP_CID_ASCONF:
1234			if (have_auth || net->sctp.addip_noauth)
1235				asoc = __sctp_rcv_asconf_lookup(
1236						net, ch, laddr,
1237						sctp_hdr(skb)->source,
1238						transportp);
1239		default:
1240			break;
1241		}
1242
1243		if (asoc)
1244			break;
1245
1246		ch = (struct sctp_chunkhdr *)ch_end;
1247		chunk_num++;
1248	} while (ch_end < skb_tail_pointer(skb));
1249
1250	return asoc;
1251}
1252
1253/*
1254 * There are circumstances when we need to look inside the SCTP packet
1255 * for information to help us find the association.   Examples
1256 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1257 * chunks.
1258 */
1259static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1260				      struct sk_buff *skb,
1261				      const union sctp_addr *laddr,
1262				      struct sctp_transport **transportp)
1263{
1264	struct sctp_chunkhdr *ch;
1265
1266	/* We do not allow GSO frames here as we need to linearize and
1267	 * then cannot guarantee frame boundaries. This shouldn't be an
1268	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1269	 * those cannot be on GSO-style anyway.
1270	 */
1271	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1272		return NULL;
1273
1274	ch = (struct sctp_chunkhdr *)skb->data;
1275
1276	/* The code below will attempt to walk the chunk and extract
1277	 * parameter information.  Before we do that, we need to verify
1278	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1279	 * walk off the end.
1280	 */
1281	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1282		return NULL;
1283
1284	/* If this is INIT/INIT-ACK look inside the chunk too. */
1285	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1286		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
 
 
 
 
 
 
 
 
1287
1288	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
 
1289}
1290
1291/* Lookup an association for an inbound skb. */
1292static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1293				      struct sk_buff *skb,
1294				      const union sctp_addr *paddr,
1295				      const union sctp_addr *laddr,
1296				      struct sctp_transport **transportp)
1297{
1298	struct sctp_association *asoc;
1299
1300	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1301	if (asoc)
1302		goto out;
1303
1304	/* Further lookup for INIT/INIT-ACK packets.
1305	 * SCTP Implementors Guide, 2.18 Handling of address
1306	 * parameters within the INIT or INIT-ACK.
1307	 */
1308	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1309	if (asoc)
1310		goto out;
1311
1312	if (paddr->sa.sa_family == AF_INET)
1313		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1314			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1315			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1316	else
1317		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1318			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1319			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1320
1321out:
1322	return asoc;
1323}