Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
 
  94#include <linux/capability.h>
  95#include <linux/errno.h>
 
  96#include <linux/types.h>
  97#include <linux/socket.h>
  98#include <linux/in.h>
  99#include <linux/kernel.h>
 100#include <linux/module.h>
 101#include <linux/proc_fs.h>
 102#include <linux/seq_file.h>
 103#include <linux/sched.h>
 
 104#include <linux/timer.h>
 105#include <linux/string.h>
 106#include <linux/sockios.h>
 107#include <linux/net.h>
 108#include <linux/mm.h>
 109#include <linux/slab.h>
 110#include <linux/interrupt.h>
 111#include <linux/poll.h>
 112#include <linux/tcp.h>
 113#include <linux/init.h>
 114#include <linux/highmem.h>
 115#include <linux/user_namespace.h>
 116#include <linux/static_key.h>
 117#include <linux/memcontrol.h>
 118#include <linux/prefetch.h>
 119
 120#include <asm/uaccess.h>
 121
 122#include <linux/netdevice.h>
 123#include <net/protocol.h>
 124#include <linux/skbuff.h>
 125#include <net/net_namespace.h>
 126#include <net/request_sock.h>
 127#include <net/sock.h>
 128#include <linux/net_tstamp.h>
 129#include <net/xfrm.h>
 130#include <linux/ipsec.h>
 131#include <net/cls_cgroup.h>
 132#include <net/netprio_cgroup.h>
 
 133
 134#include <linux/filter.h>
 
 
 135
 136#include <trace/events/sock.h>
 137
 138#ifdef CONFIG_INET
 139#include <net/tcp.h>
 140#endif
 141
 142static DEFINE_MUTEX(proto_list_mutex);
 143static LIST_HEAD(proto_list);
 144
 145#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 147{
 148	struct proto *proto;
 149	int ret = 0;
 150
 151	mutex_lock(&proto_list_mutex);
 152	list_for_each_entry(proto, &proto_list, node) {
 153		if (proto->init_cgroup) {
 154			ret = proto->init_cgroup(memcg, ss);
 155			if (ret)
 156				goto out;
 157		}
 158	}
 159
 160	mutex_unlock(&proto_list_mutex);
 161	return ret;
 162out:
 163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
 164		if (proto->destroy_cgroup)
 165			proto->destroy_cgroup(memcg);
 166	mutex_unlock(&proto_list_mutex);
 167	return ret;
 168}
 
 169
 170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 171{
 172	struct proto *proto;
 
 
 173
 174	mutex_lock(&proto_list_mutex);
 175	list_for_each_entry_reverse(proto, &proto_list, node)
 176		if (proto->destroy_cgroup)
 177			proto->destroy_cgroup(memcg);
 178	mutex_unlock(&proto_list_mutex);
 
 
 
 
 
 
 
 179}
 180#endif
 181
 182/*
 183 * Each address family might have different locking rules, so we have
 184 * one slock key per address family:
 
 185 */
 186static struct lock_class_key af_family_keys[AF_MAX];
 
 187static struct lock_class_key af_family_slock_keys[AF_MAX];
 188
 189struct static_key memcg_socket_limit_enabled;
 190EXPORT_SYMBOL(memcg_socket_limit_enabled);
 191
 192/*
 193 * Make lock validator output more readable. (we pre-construct these
 194 * strings build-time, so that runtime initialization of socket
 195 * locks is fast):
 196 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197static const char *const af_family_key_strings[AF_MAX+1] = {
 198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
 212};
 213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 227  "slock-AF_NFC"   , "slock-AF_MAX"
 228};
 229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 243  "clock-AF_NFC"   , "clock-AF_MAX"
 
 
 
 
 
 
 244};
 245
 246/*
 247 * sk_callback_lock locking rules are per-address-family,
 248 * so split the lock classes by using a per-AF key:
 249 */
 250static struct lock_class_key af_callback_keys[AF_MAX];
 251
 252/* Take into consideration the size of the struct sk_buff overhead in the
 253 * determination of these values, since that is non-constant across
 254 * platforms.  This makes socket queueing behavior and performance
 255 * not depend upon such differences.
 256 */
 257#define _SK_MEM_PACKETS		256
 258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
 259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 261
 262/* Run time adjustable parameters. */
 263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 264EXPORT_SYMBOL(sysctl_wmem_max);
 265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 266EXPORT_SYMBOL(sysctl_rmem_max);
 267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 269
 270/* Maximal space eaten by iovec or ancillary data plus some space */
 271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 272EXPORT_SYMBOL(sysctl_optmem_max);
 273
 274#if defined(CONFIG_CGROUPS)
 275#if !defined(CONFIG_NET_CLS_CGROUP)
 276int net_cls_subsys_id = -1;
 277EXPORT_SYMBOL_GPL(net_cls_subsys_id);
 278#endif
 279#if !defined(CONFIG_NETPRIO_CGROUP)
 280int net_prio_subsys_id = -1;
 281EXPORT_SYMBOL_GPL(net_prio_subsys_id);
 282#endif
 283#endif
 284
 285static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 
 
 
 
 
 
 
 
 286{
 287	struct timeval tv;
 
 
 
 
 288
 289	if (optlen < sizeof(tv))
 290		return -EINVAL;
 291	if (copy_from_user(&tv, optval, sizeof(tv)))
 292		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 294		return -EDOM;
 295
 296	if (tv.tv_sec < 0) {
 297		static int warned __read_mostly;
 298
 299		*timeo_p = 0;
 300		if (warned < 10 && net_ratelimit()) {
 301			warned++;
 302			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 303				__func__, current->comm, task_pid_nr(current));
 304		}
 305		return 0;
 306	}
 307	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 308	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 309		return 0;
 310	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 311		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 312	return 0;
 313}
 314
 315static void sock_warn_obsolete_bsdism(const char *name)
 316{
 317	static int warned;
 318	static char warncomm[TASK_COMM_LEN];
 319	if (strcmp(warncomm, current->comm) && warned < 5) {
 320		strcpy(warncomm,  current->comm);
 321		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 322			warncomm, name);
 323		warned++;
 324	}
 325}
 326
 327#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 
 
 
 
 
 
 
 
 
 328
 329static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 330{
 331	if (sk->sk_flags & flags) {
 332		sk->sk_flags &= ~flags;
 333		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 
 334			net_disable_timestamp();
 335	}
 336}
 337
 338
 339int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 340{
 341	int err;
 342	int skb_len;
 343	unsigned long flags;
 344	struct sk_buff_head *list = &sk->sk_receive_queue;
 345
 346	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 347		atomic_inc(&sk->sk_drops);
 348		trace_sock_rcvqueue_full(sk, skb);
 349		return -ENOMEM;
 350	}
 351
 352	err = sk_filter(sk, skb);
 353	if (err)
 354		return err;
 355
 356	if (!sk_rmem_schedule(sk, skb->truesize)) {
 357		atomic_inc(&sk->sk_drops);
 358		return -ENOBUFS;
 359	}
 360
 361	skb->dev = NULL;
 362	skb_set_owner_r(skb, sk);
 363
 364	/* Cache the SKB length before we tack it onto the receive
 365	 * queue.  Once it is added it no longer belongs to us and
 366	 * may be freed by other threads of control pulling packets
 367	 * from the queue.
 368	 */
 369	skb_len = skb->len;
 370
 371	/* we escape from rcu protected region, make sure we dont leak
 372	 * a norefcounted dst
 373	 */
 374	skb_dst_force(skb);
 375
 376	spin_lock_irqsave(&list->lock, flags);
 377	skb->dropcount = atomic_read(&sk->sk_drops);
 378	__skb_queue_tail(list, skb);
 379	spin_unlock_irqrestore(&list->lock, flags);
 380
 381	if (!sock_flag(sk, SOCK_DEAD))
 382		sk->sk_data_ready(sk, skb_len);
 383	return 0;
 384}
 
 
 
 
 
 
 
 
 
 
 
 
 385EXPORT_SYMBOL(sock_queue_rcv_skb);
 386
 387int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 
 388{
 389	int rc = NET_RX_SUCCESS;
 390
 391	if (sk_filter(sk, skb))
 392		goto discard_and_relse;
 393
 394	skb->dev = NULL;
 395
 396	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
 397		atomic_inc(&sk->sk_drops);
 398		goto discard_and_relse;
 399	}
 400	if (nested)
 401		bh_lock_sock_nested(sk);
 402	else
 403		bh_lock_sock(sk);
 404	if (!sock_owned_by_user(sk)) {
 405		/*
 406		 * trylock + unlock semantics:
 407		 */
 408		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 409
 410		rc = sk_backlog_rcv(sk, skb);
 411
 412		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 413	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 414		bh_unlock_sock(sk);
 415		atomic_inc(&sk->sk_drops);
 416		goto discard_and_relse;
 417	}
 418
 419	bh_unlock_sock(sk);
 420out:
 421	sock_put(sk);
 
 422	return rc;
 423discard_and_relse:
 424	kfree_skb(skb);
 425	goto out;
 426}
 427EXPORT_SYMBOL(sk_receive_skb);
 428
 429void sk_reset_txq(struct sock *sk)
 430{
 431	sk_tx_queue_clear(sk);
 432}
 433EXPORT_SYMBOL(sk_reset_txq);
 434
 435struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 436{
 437	struct dst_entry *dst = __sk_dst_get(sk);
 438
 439	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 440		sk_tx_queue_clear(sk);
 
 441		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 442		dst_release(dst);
 443		return NULL;
 444	}
 445
 446	return dst;
 447}
 448EXPORT_SYMBOL(__sk_dst_check);
 449
 450struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 451{
 452	struct dst_entry *dst = sk_dst_get(sk);
 453
 454	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 455		sk_dst_reset(sk);
 456		dst_release(dst);
 457		return NULL;
 458	}
 459
 460	return dst;
 461}
 462EXPORT_SYMBOL(sk_dst_check);
 463
 464static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
 465{
 466	int ret = -ENOPROTOOPT;
 467#ifdef CONFIG_NETDEVICES
 468	struct net *net = sock_net(sk);
 469	char devname[IFNAMSIZ];
 470	int index;
 471
 472	/* Sorry... */
 473	ret = -EPERM;
 474	if (!capable(CAP_NET_RAW))
 
 
 
 
 475		goto out;
 476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	ret = -EINVAL;
 478	if (optlen < 0)
 479		goto out;
 480
 481	/* Bind this socket to a particular device like "eth0",
 482	 * as specified in the passed interface name. If the
 483	 * name is "" or the option length is zero the socket
 484	 * is not bound.
 485	 */
 486	if (optlen > IFNAMSIZ - 1)
 487		optlen = IFNAMSIZ - 1;
 488	memset(devname, 0, sizeof(devname));
 489
 490	ret = -EFAULT;
 491	if (copy_from_user(devname, optval, optlen))
 492		goto out;
 493
 494	index = 0;
 495	if (devname[0] != '\0') {
 496		struct net_device *dev;
 497
 498		rcu_read_lock();
 499		dev = dev_get_by_name_rcu(net, devname);
 500		if (dev)
 501			index = dev->ifindex;
 502		rcu_read_unlock();
 503		ret = -ENODEV;
 504		if (!dev)
 505			goto out;
 506	}
 507
 508	lock_sock(sk);
 509	sk->sk_bound_dev_if = index;
 510	sk_dst_reset(sk);
 511	release_sock(sk);
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513	ret = 0;
 514
 515out:
 516#endif
 517
 518	return ret;
 519}
 520
 521static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 522{
 523	if (valbool)
 524		sock_set_flag(sk, bit);
 525	else
 526		sock_reset_flag(sk, bit);
 527}
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529/*
 530 *	This is meant for all protocols to use and covers goings on
 531 *	at the socket level. Everything here is generic.
 532 */
 533
 534int sock_setsockopt(struct socket *sock, int level, int optname,
 535		    char __user *optval, unsigned int optlen)
 536{
 
 537	struct sock *sk = sock->sk;
 538	int val;
 539	int valbool;
 540	struct linger ling;
 541	int ret = 0;
 542
 543	/*
 544	 *	Options without arguments
 545	 */
 546
 547	if (optname == SO_BINDTODEVICE)
 548		return sock_bindtodevice(sk, optval, optlen);
 549
 550	if (optlen < sizeof(int))
 551		return -EINVAL;
 552
 553	if (get_user(val, (int __user *)optval))
 554		return -EFAULT;
 555
 556	valbool = val ? 1 : 0;
 557
 558	lock_sock(sk);
 559
 560	switch (optname) {
 561	case SO_DEBUG:
 562		if (val && !capable(CAP_NET_ADMIN))
 563			ret = -EACCES;
 564		else
 565			sock_valbool_flag(sk, SOCK_DBG, valbool);
 566		break;
 567	case SO_REUSEADDR:
 568		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 569		break;
 
 
 
 570	case SO_TYPE:
 571	case SO_PROTOCOL:
 572	case SO_DOMAIN:
 573	case SO_ERROR:
 574		ret = -ENOPROTOOPT;
 575		break;
 576	case SO_DONTROUTE:
 577		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 578		break;
 579	case SO_BROADCAST:
 580		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 581		break;
 582	case SO_SNDBUF:
 583		/* Don't error on this BSD doesn't and if you think
 584		 * about it this is right. Otherwise apps have to
 585		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 586		 * are treated in BSD as hints
 587		 */
 588		val = min_t(u32, val, sysctl_wmem_max);
 589set_sndbuf:
 
 
 
 
 590		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 591		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
 
 592		/* Wake up sending tasks if we upped the value. */
 593		sk->sk_write_space(sk);
 594		break;
 595
 596	case SO_SNDBUFFORCE:
 597		if (!capable(CAP_NET_ADMIN)) {
 598			ret = -EPERM;
 599			break;
 600		}
 
 
 
 
 
 
 601		goto set_sndbuf;
 602
 603	case SO_RCVBUF:
 604		/* Don't error on this BSD doesn't and if you think
 605		 * about it this is right. Otherwise apps have to
 606		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 607		 * are treated in BSD as hints
 608		 */
 609		val = min_t(u32, val, sysctl_rmem_max);
 610set_rcvbuf:
 
 
 
 
 611		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 612		/*
 613		 * We double it on the way in to account for
 614		 * "struct sk_buff" etc. overhead.   Applications
 615		 * assume that the SO_RCVBUF setting they make will
 616		 * allow that much actual data to be received on that
 617		 * socket.
 618		 *
 619		 * Applications are unaware that "struct sk_buff" and
 620		 * other overheads allocate from the receive buffer
 621		 * during socket buffer allocation.
 622		 *
 623		 * And after considering the possible alternatives,
 624		 * returning the value we actually used in getsockopt
 625		 * is the most desirable behavior.
 626		 */
 627		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
 
 628		break;
 629
 630	case SO_RCVBUFFORCE:
 631		if (!capable(CAP_NET_ADMIN)) {
 632			ret = -EPERM;
 633			break;
 634		}
 
 
 
 
 
 
 635		goto set_rcvbuf;
 636
 637	case SO_KEEPALIVE:
 638#ifdef CONFIG_INET
 639		if (sk->sk_protocol == IPPROTO_TCP)
 640			tcp_set_keepalive(sk, valbool);
 641#endif
 642		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 643		break;
 644
 645	case SO_OOBINLINE:
 646		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 647		break;
 648
 649	case SO_NO_CHECK:
 650		sk->sk_no_check = valbool;
 651		break;
 652
 653	case SO_PRIORITY:
 654		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
 
 655			sk->sk_priority = val;
 656		else
 657			ret = -EPERM;
 658		break;
 659
 660	case SO_LINGER:
 661		if (optlen < sizeof(ling)) {
 662			ret = -EINVAL;	/* 1003.1g */
 663			break;
 664		}
 665		if (copy_from_user(&ling, optval, sizeof(ling))) {
 666			ret = -EFAULT;
 667			break;
 668		}
 669		if (!ling.l_onoff)
 670			sock_reset_flag(sk, SOCK_LINGER);
 671		else {
 672#if (BITS_PER_LONG == 32)
 673			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 674				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 675			else
 676#endif
 677				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 678			sock_set_flag(sk, SOCK_LINGER);
 679		}
 680		break;
 681
 682	case SO_BSDCOMPAT:
 683		sock_warn_obsolete_bsdism("setsockopt");
 684		break;
 685
 686	case SO_PASSCRED:
 687		if (valbool)
 688			set_bit(SOCK_PASSCRED, &sock->flags);
 689		else
 690			clear_bit(SOCK_PASSCRED, &sock->flags);
 691		break;
 692
 693	case SO_TIMESTAMP:
 694	case SO_TIMESTAMPNS:
 
 
 695		if (valbool)  {
 696			if (optname == SO_TIMESTAMP)
 
 
 
 
 
 697				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 698			else
 699				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 700			sock_set_flag(sk, SOCK_RCVTSTAMP);
 701			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 702		} else {
 703			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 704			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 
 705		}
 706		break;
 707
 708	case SO_TIMESTAMPING:
 
 
 
 709		if (val & ~SOF_TIMESTAMPING_MASK) {
 710			ret = -EINVAL;
 711			break;
 712		}
 713		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 714				  val & SOF_TIMESTAMPING_TX_HARDWARE);
 715		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 716				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 717		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 718				  val & SOF_TIMESTAMPING_RX_HARDWARE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 720			sock_enable_timestamp(sk,
 721					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 722		else
 
 
 
 723			sock_disable_timestamp(sk,
 724					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 725		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 726				  val & SOF_TIMESTAMPING_SOFTWARE);
 727		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 728				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 729		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 730				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 731		break;
 732
 733	case SO_RCVLOWAT:
 734		if (val < 0)
 735			val = INT_MAX;
 736		sk->sk_rcvlowat = val ? : 1;
 
 
 
 737		break;
 738
 739	case SO_RCVTIMEO:
 740		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 741		break;
 742
 743	case SO_SNDTIMEO:
 744		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 
 745		break;
 746
 747	case SO_ATTACH_FILTER:
 748		ret = -EINVAL;
 749		if (optlen == sizeof(struct sock_fprog)) {
 750			struct sock_fprog fprog;
 751
 752			ret = -EFAULT;
 753			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 754				break;
 755
 756			ret = sk_attach_filter(&fprog, sk);
 757		}
 758		break;
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760	case SO_DETACH_FILTER:
 761		ret = sk_detach_filter(sk);
 762		break;
 763
 
 
 
 
 
 
 
 764	case SO_PASSSEC:
 765		if (valbool)
 766			set_bit(SOCK_PASSSEC, &sock->flags);
 767		else
 768			clear_bit(SOCK_PASSSEC, &sock->flags);
 769		break;
 770	case SO_MARK:
 771		if (!capable(CAP_NET_ADMIN))
 772			ret = -EPERM;
 773		else
 774			sk->sk_mark = val;
 
 
 775		break;
 776
 777		/* We implement the SO_SNDLOWAT etc to
 778		   not be settable (1003.1g 5.3) */
 779	case SO_RXQ_OVFL:
 780		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 781		break;
 782
 783	case SO_WIFI_STATUS:
 784		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
 785		break;
 786
 787	case SO_PEEK_OFF:
 788		if (sock->ops->set_peek_off)
 789			sock->ops->set_peek_off(sk, val);
 790		else
 791			ret = -EOPNOTSUPP;
 792		break;
 793
 794	case SO_NOFCS:
 795		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
 796		break;
 797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798	default:
 799		ret = -ENOPROTOOPT;
 800		break;
 801	}
 802	release_sock(sk);
 803	return ret;
 804}
 805EXPORT_SYMBOL(sock_setsockopt);
 806
 807
 808void cred_to_ucred(struct pid *pid, const struct cred *cred,
 809		   struct ucred *ucred)
 810{
 811	ucred->pid = pid_vnr(pid);
 812	ucred->uid = ucred->gid = -1;
 813	if (cred) {
 814		struct user_namespace *current_ns = current_user_ns();
 815
 816		ucred->uid = from_kuid(current_ns, cred->euid);
 817		ucred->gid = from_kgid(current_ns, cred->egid);
 818	}
 819}
 820EXPORT_SYMBOL_GPL(cred_to_ucred);
 
 
 
 
 
 
 
 
 
 
 
 821
 822int sock_getsockopt(struct socket *sock, int level, int optname,
 823		    char __user *optval, int __user *optlen)
 824{
 825	struct sock *sk = sock->sk;
 826
 827	union {
 828		int val;
 
 
 829		struct linger ling;
 830		struct timeval tm;
 
 
 
 831	} v;
 832
 833	int lv = sizeof(int);
 834	int len;
 835
 836	if (get_user(len, optlen))
 837		return -EFAULT;
 838	if (len < 0)
 839		return -EINVAL;
 840
 841	memset(&v, 0, sizeof(v));
 842
 843	switch (optname) {
 844	case SO_DEBUG:
 845		v.val = sock_flag(sk, SOCK_DBG);
 846		break;
 847
 848	case SO_DONTROUTE:
 849		v.val = sock_flag(sk, SOCK_LOCALROUTE);
 850		break;
 851
 852	case SO_BROADCAST:
 853		v.val = sock_flag(sk, SOCK_BROADCAST);
 854		break;
 855
 856	case SO_SNDBUF:
 857		v.val = sk->sk_sndbuf;
 858		break;
 859
 860	case SO_RCVBUF:
 861		v.val = sk->sk_rcvbuf;
 862		break;
 863
 864	case SO_REUSEADDR:
 865		v.val = sk->sk_reuse;
 866		break;
 867
 
 
 
 
 868	case SO_KEEPALIVE:
 869		v.val = sock_flag(sk, SOCK_KEEPOPEN);
 870		break;
 871
 872	case SO_TYPE:
 873		v.val = sk->sk_type;
 874		break;
 875
 876	case SO_PROTOCOL:
 877		v.val = sk->sk_protocol;
 878		break;
 879
 880	case SO_DOMAIN:
 881		v.val = sk->sk_family;
 882		break;
 883
 884	case SO_ERROR:
 885		v.val = -sock_error(sk);
 886		if (v.val == 0)
 887			v.val = xchg(&sk->sk_err_soft, 0);
 888		break;
 889
 890	case SO_OOBINLINE:
 891		v.val = sock_flag(sk, SOCK_URGINLINE);
 892		break;
 893
 894	case SO_NO_CHECK:
 895		v.val = sk->sk_no_check;
 896		break;
 897
 898	case SO_PRIORITY:
 899		v.val = sk->sk_priority;
 900		break;
 901
 902	case SO_LINGER:
 903		lv		= sizeof(v.ling);
 904		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
 905		v.ling.l_linger	= sk->sk_lingertime / HZ;
 906		break;
 907
 908	case SO_BSDCOMPAT:
 909		sock_warn_obsolete_bsdism("getsockopt");
 910		break;
 911
 912	case SO_TIMESTAMP:
 913		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
 914				!sock_flag(sk, SOCK_RCVTSTAMPNS);
 915		break;
 916
 917	case SO_TIMESTAMPNS:
 918		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 919		break;
 920
 921	case SO_TIMESTAMPING:
 922		v.val = 0;
 923		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 924			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
 925		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 926			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
 927		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
 928			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
 929		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
 930			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
 931		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
 932			v.val |= SOF_TIMESTAMPING_SOFTWARE;
 933		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
 934			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
 935		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
 936			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
 937		break;
 938
 939	case SO_RCVTIMEO:
 940		lv = sizeof(struct timeval);
 941		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
 942			v.tm.tv_sec = 0;
 943			v.tm.tv_usec = 0;
 944		} else {
 945			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
 946			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
 947		}
 948		break;
 949
 950	case SO_SNDTIMEO:
 951		lv = sizeof(struct timeval);
 952		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
 953			v.tm.tv_sec = 0;
 954			v.tm.tv_usec = 0;
 955		} else {
 956			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
 957			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
 958		}
 
 
 
 
 
 
 
 959		break;
 960
 961	case SO_RCVLOWAT:
 962		v.val = sk->sk_rcvlowat;
 963		break;
 964
 965	case SO_SNDLOWAT:
 966		v.val = 1;
 967		break;
 968
 969	case SO_PASSCRED:
 970		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
 971		break;
 972
 973	case SO_PEERCRED:
 974	{
 975		struct ucred peercred;
 976		if (len > sizeof(peercred))
 977			len = sizeof(peercred);
 978		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 979		if (copy_to_user(optval, &peercred, len))
 980			return -EFAULT;
 981		goto lenout;
 982	}
 983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984	case SO_PEERNAME:
 985	{
 986		char address[128];
 987
 988		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 
 989			return -ENOTCONN;
 990		if (lv < len)
 991			return -EINVAL;
 992		if (copy_to_user(optval, address, len))
 993			return -EFAULT;
 994		goto lenout;
 995	}
 996
 997	/* Dubious BSD thing... Probably nobody even uses it, but
 998	 * the UNIX standard wants it for whatever reason... -DaveM
 999	 */
1000	case SO_ACCEPTCONN:
1001		v.val = sk->sk_state == TCP_LISTEN;
1002		break;
1003
1004	case SO_PASSSEC:
1005		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1006		break;
1007
1008	case SO_PEERSEC:
1009		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1010
1011	case SO_MARK:
1012		v.val = sk->sk_mark;
1013		break;
1014
1015	case SO_RXQ_OVFL:
1016		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1017		break;
1018
1019	case SO_WIFI_STATUS:
1020		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1021		break;
1022
1023	case SO_PEEK_OFF:
1024		if (!sock->ops->set_peek_off)
1025			return -EOPNOTSUPP;
1026
1027		v.val = sk->sk_peek_off;
1028		break;
1029	case SO_NOFCS:
1030		v.val = sock_flag(sk, SOCK_NOFCS);
1031		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	default:
 
 
 
1033		return -ENOPROTOOPT;
1034	}
1035
1036	if (len > lv)
1037		len = lv;
1038	if (copy_to_user(optval, &v, len))
1039		return -EFAULT;
1040lenout:
1041	if (put_user(len, optlen))
1042		return -EFAULT;
1043	return 0;
1044}
1045
1046/*
1047 * Initialize an sk_lock.
1048 *
1049 * (We also register the sk_lock with the lock validator.)
1050 */
1051static inline void sock_lock_init(struct sock *sk)
1052{
1053	sock_lock_init_class_and_name(sk,
 
 
 
 
 
 
 
 
 
1054			af_family_slock_key_strings[sk->sk_family],
1055			af_family_slock_keys + sk->sk_family,
1056			af_family_key_strings[sk->sk_family],
1057			af_family_keys + sk->sk_family);
1058}
1059
1060/*
1061 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1062 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1063 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1064 */
1065static void sock_copy(struct sock *nsk, const struct sock *osk)
1066{
1067#ifdef CONFIG_SECURITY_NETWORK
1068	void *sptr = nsk->sk_security;
1069#endif
1070	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1071
1072	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1073	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1074
1075#ifdef CONFIG_SECURITY_NETWORK
1076	nsk->sk_security = sptr;
1077	security_sk_clone(osk, nsk);
1078#endif
1079}
1080
1081/*
1082 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1083 * un-modified. Special care is taken when initializing object to zero.
1084 */
1085static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1086{
1087	if (offsetof(struct sock, sk_node.next) != 0)
1088		memset(sk, 0, offsetof(struct sock, sk_node.next));
1089	memset(&sk->sk_node.pprev, 0,
1090	       size - offsetof(struct sock, sk_node.pprev));
1091}
1092
1093void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1094{
1095	unsigned long nulls1, nulls2;
1096
1097	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1098	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1099	if (nulls1 > nulls2)
1100		swap(nulls1, nulls2);
1101
1102	if (nulls1 != 0)
1103		memset((char *)sk, 0, nulls1);
1104	memset((char *)sk + nulls1 + sizeof(void *), 0,
1105	       nulls2 - nulls1 - sizeof(void *));
1106	memset((char *)sk + nulls2 + sizeof(void *), 0,
1107	       size - nulls2 - sizeof(void *));
1108}
1109EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1110
1111static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1112		int family)
1113{
1114	struct sock *sk;
1115	struct kmem_cache *slab;
1116
1117	slab = prot->slab;
1118	if (slab != NULL) {
1119		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1120		if (!sk)
1121			return sk;
1122		if (priority & __GFP_ZERO) {
1123			if (prot->clear_sk)
1124				prot->clear_sk(sk, prot->obj_size);
1125			else
1126				sk_prot_clear_nulls(sk, prot->obj_size);
1127		}
1128	} else
1129		sk = kmalloc(prot->obj_size, priority);
1130
1131	if (sk != NULL) {
1132		kmemcheck_annotate_bitfield(sk, flags);
1133
1134		if (security_sk_alloc(sk, family, priority))
1135			goto out_free;
1136
1137		if (!try_module_get(prot->owner))
1138			goto out_free_sec;
1139		sk_tx_queue_clear(sk);
1140	}
1141
1142	return sk;
1143
1144out_free_sec:
1145	security_sk_free(sk);
1146out_free:
1147	if (slab != NULL)
1148		kmem_cache_free(slab, sk);
1149	else
1150		kfree(sk);
1151	return NULL;
1152}
1153
1154static void sk_prot_free(struct proto *prot, struct sock *sk)
1155{
1156	struct kmem_cache *slab;
1157	struct module *owner;
1158
1159	owner = prot->owner;
1160	slab = prot->slab;
1161
 
 
1162	security_sk_free(sk);
1163	if (slab != NULL)
1164		kmem_cache_free(slab, sk);
1165	else
1166		kfree(sk);
1167	module_put(owner);
1168}
1169
1170#ifdef CONFIG_CGROUPS
1171void sock_update_classid(struct sock *sk)
1172{
1173	u32 classid;
1174
1175	rcu_read_lock();  /* doing current task, which cannot vanish. */
1176	classid = task_cls_classid(current);
1177	rcu_read_unlock();
1178	if (classid && classid != sk->sk_classid)
1179		sk->sk_classid = classid;
1180}
1181EXPORT_SYMBOL(sock_update_classid);
1182
1183void sock_update_netprioidx(struct sock *sk)
1184{
1185	if (in_interrupt())
1186		return;
1187
1188	sk->sk_cgrp_prioidx = task_netprioidx(current);
1189}
1190EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1191#endif
1192
1193/**
1194 *	sk_alloc - All socket objects are allocated here
1195 *	@net: the applicable net namespace
1196 *	@family: protocol family
1197 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1198 *	@prot: struct proto associated with this new sock instance
 
1199 */
1200struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1201		      struct proto *prot)
1202{
1203	struct sock *sk;
1204
1205	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1206	if (sk) {
1207		sk->sk_family = family;
1208		/*
1209		 * See comment in struct sock definition to understand
1210		 * why we need sk_prot_creator -acme
1211		 */
1212		sk->sk_prot = sk->sk_prot_creator = prot;
 
1213		sock_lock_init(sk);
1214		sock_net_set(sk, get_net(net));
1215		atomic_set(&sk->sk_wmem_alloc, 1);
 
 
 
1216
1217		sock_update_classid(sk);
1218		sock_update_netprioidx(sk);
 
 
 
 
 
1219	}
1220
1221	return sk;
1222}
1223EXPORT_SYMBOL(sk_alloc);
1224
1225static void __sk_free(struct sock *sk)
 
 
 
1226{
 
1227	struct sk_filter *filter;
1228
1229	if (sk->sk_destruct)
1230		sk->sk_destruct(sk);
1231
1232	filter = rcu_dereference_check(sk->sk_filter,
1233				       atomic_read(&sk->sk_wmem_alloc) == 0);
1234	if (filter) {
1235		sk_filter_uncharge(sk, filter);
1236		RCU_INIT_POINTER(sk->sk_filter, NULL);
1237	}
1238
1239	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1240
 
 
 
 
1241	if (atomic_read(&sk->sk_omem_alloc))
1242		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1243			 __func__, atomic_read(&sk->sk_omem_alloc));
1244
 
 
 
 
 
1245	if (sk->sk_peer_cred)
1246		put_cred(sk->sk_peer_cred);
1247	put_pid(sk->sk_peer_pid);
1248	put_net(sock_net(sk));
 
1249	sk_prot_free(sk->sk_prot_creator, sk);
1250}
1251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252void sk_free(struct sock *sk)
1253{
1254	/*
1255	 * We subtract one from sk_wmem_alloc and can know if
1256	 * some packets are still in some tx queue.
1257	 * If not null, sock_wfree() will call __sk_free(sk) later
1258	 */
1259	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1260		__sk_free(sk);
1261}
1262EXPORT_SYMBOL(sk_free);
1263
1264/*
1265 * Last sock_put should drop reference to sk->sk_net. It has already
1266 * been dropped in sk_change_net. Taking reference to stopping namespace
1267 * is not an option.
1268 * Take reference to a socket to remove it from hash _alive_ and after that
1269 * destroy it in the context of init_net.
1270 */
1271void sk_release_kernel(struct sock *sk)
1272{
1273	if (sk == NULL || sk->sk_socket == NULL)
1274		return;
1275
1276	sock_hold(sk);
1277	sock_release(sk->sk_socket);
1278	release_net(sock_net(sk));
1279	sock_net_set(sk, get_net(&init_net));
1280	sock_put(sk);
1281}
1282EXPORT_SYMBOL(sk_release_kernel);
1283
1284static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1285{
1286	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287		sock_update_memcg(newsk);
 
 
 
 
 
 
 
 
 
1288}
1289
1290/**
1291 *	sk_clone_lock - clone a socket, and lock its clone
1292 *	@sk: the socket to clone
1293 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1294 *
1295 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1296 */
1297struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1298{
1299	struct sock *newsk;
 
1300
1301	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1302	if (newsk != NULL) {
1303		struct sk_filter *filter;
1304
1305		sock_copy(newsk, sk);
1306
 
 
1307		/* SANITY */
1308		get_net(sock_net(newsk));
 
1309		sk_node_init(&newsk->sk_node);
1310		sock_lock_init(newsk);
1311		bh_lock_sock(newsk);
1312		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1313		newsk->sk_backlog.len = 0;
1314
1315		atomic_set(&newsk->sk_rmem_alloc, 0);
1316		/*
1317		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1318		 */
1319		atomic_set(&newsk->sk_wmem_alloc, 1);
1320		atomic_set(&newsk->sk_omem_alloc, 0);
1321		skb_queue_head_init(&newsk->sk_receive_queue);
1322		skb_queue_head_init(&newsk->sk_write_queue);
1323#ifdef CONFIG_NET_DMA
1324		skb_queue_head_init(&newsk->sk_async_wait_queue);
1325#endif
1326
1327		spin_lock_init(&newsk->sk_dst_lock);
1328		rwlock_init(&newsk->sk_callback_lock);
1329		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1330				af_callback_keys + newsk->sk_family,
1331				af_family_clock_key_strings[newsk->sk_family]);
1332
1333		newsk->sk_dst_cache	= NULL;
 
1334		newsk->sk_wmem_queued	= 0;
1335		newsk->sk_forward_alloc = 0;
 
1336		newsk->sk_send_head	= NULL;
1337		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
 
1338
1339		sock_reset_flag(newsk, SOCK_DONE);
1340		skb_queue_head_init(&newsk->sk_error_queue);
 
1341
1342		filter = rcu_dereference_protected(newsk->sk_filter, 1);
 
1343		if (filter != NULL)
1344			sk_filter_charge(newsk, filter);
 
 
 
 
 
 
1345
1346		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1347			/* It is still raw copy of parent, so invalidate
1348			 * destructor and make plain sk_free() */
1349			newsk->sk_destruct = NULL;
1350			bh_unlock_sock(newsk);
1351			sk_free(newsk);
 
 
 
 
 
 
 
 
 
1352			newsk = NULL;
1353			goto out;
1354		}
1355
1356		newsk->sk_err	   = 0;
 
1357		newsk->sk_priority = 0;
 
 
 
 
1358		/*
1359		 * Before updating sk_refcnt, we must commit prior changes to memory
1360		 * (Documentation/RCU/rculist_nulls.txt for details)
1361		 */
1362		smp_wmb();
1363		atomic_set(&newsk->sk_refcnt, 2);
1364
1365		/*
1366		 * Increment the counter in the same struct proto as the master
1367		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1368		 * is the same as sk->sk_prot->socks, as this field was copied
1369		 * with memcpy).
1370		 *
1371		 * This _changes_ the previous behaviour, where
1372		 * tcp_create_openreq_child always was incrementing the
1373		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1374		 * to be taken into account in all callers. -acme
1375		 */
1376		sk_refcnt_debug_inc(newsk);
1377		sk_set_socket(newsk, NULL);
1378		newsk->sk_wq = NULL;
1379
1380		sk_update_clone(sk, newsk);
1381
1382		if (newsk->sk_prot->sockets_allocated)
1383			sk_sockets_allocated_inc(newsk);
1384
1385		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
 
1386			net_enable_timestamp();
1387	}
1388out:
1389	return newsk;
1390}
1391EXPORT_SYMBOL_GPL(sk_clone_lock);
1392
 
 
 
 
 
 
 
 
 
 
1393void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1394{
1395	__sk_dst_set(sk, dst);
1396	sk->sk_route_caps = dst->dev->features;
 
 
1397	if (sk->sk_route_caps & NETIF_F_GSO)
1398		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1399	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1400	if (sk_can_gso(sk)) {
1401		if (dst->header_len) {
1402			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1403		} else {
1404			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1405			sk->sk_gso_max_size = dst->dev->gso_max_size;
1406			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1407		}
1408	}
 
1409}
1410EXPORT_SYMBOL_GPL(sk_setup_caps);
1411
1412void __init sk_init(void)
1413{
1414	if (totalram_pages <= 4096) {
1415		sysctl_wmem_max = 32767;
1416		sysctl_rmem_max = 32767;
1417		sysctl_wmem_default = 32767;
1418		sysctl_rmem_default = 32767;
1419	} else if (totalram_pages >= 131072) {
1420		sysctl_wmem_max = 131071;
1421		sysctl_rmem_max = 131071;
1422	}
1423}
1424
1425/*
1426 *	Simple resource managers for sockets.
1427 */
1428
1429
1430/*
1431 * Write buffer destructor automatically called from kfree_skb.
1432 */
1433void sock_wfree(struct sk_buff *skb)
1434{
1435	struct sock *sk = skb->sk;
1436	unsigned int len = skb->truesize;
1437
1438	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1439		/*
1440		 * Keep a reference on sk_wmem_alloc, this will be released
1441		 * after sk_write_space() call
1442		 */
1443		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1444		sk->sk_write_space(sk);
1445		len = 1;
1446	}
1447	/*
1448	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1449	 * could not do because of in-flight packets
1450	 */
1451	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1452		__sk_free(sk);
1453}
1454EXPORT_SYMBOL(sock_wfree);
1455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456/*
1457 * Read buffer destructor automatically called from kfree_skb.
1458 */
1459void sock_rfree(struct sk_buff *skb)
1460{
1461	struct sock *sk = skb->sk;
1462	unsigned int len = skb->truesize;
1463
1464	atomic_sub(len, &sk->sk_rmem_alloc);
1465	sk_mem_uncharge(sk, len);
1466}
1467EXPORT_SYMBOL(sock_rfree);
1468
 
 
 
 
 
 
 
 
 
1469
1470int sock_i_uid(struct sock *sk)
1471{
1472	int uid;
1473
1474	read_lock_bh(&sk->sk_callback_lock);
1475	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1476	read_unlock_bh(&sk->sk_callback_lock);
1477	return uid;
1478}
1479EXPORT_SYMBOL(sock_i_uid);
1480
1481unsigned long sock_i_ino(struct sock *sk)
1482{
1483	unsigned long ino;
1484
1485	read_lock_bh(&sk->sk_callback_lock);
1486	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1487	read_unlock_bh(&sk->sk_callback_lock);
1488	return ino;
1489}
1490EXPORT_SYMBOL(sock_i_ino);
1491
1492/*
1493 * Allocate a skb from the socket's send buffer.
1494 */
1495struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1496			     gfp_t priority)
1497{
1498	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1499		struct sk_buff *skb = alloc_skb(size, priority);
 
1500		if (skb) {
1501			skb_set_owner_w(skb, sk);
1502			return skb;
1503		}
1504	}
1505	return NULL;
1506}
1507EXPORT_SYMBOL(sock_wmalloc);
1508
1509/*
1510 * Allocate a skb from the socket's receive buffer.
1511 */
1512struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
 
 
 
 
1513			     gfp_t priority)
1514{
1515	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1516		struct sk_buff *skb = alloc_skb(size, priority);
1517		if (skb) {
1518			skb_set_owner_r(skb, sk);
1519			return skb;
1520		}
1521	}
1522	return NULL;
 
 
 
 
 
 
 
1523}
1524
1525/*
1526 * Allocate a memory block from the socket's option memory buffer.
1527 */
1528void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1529{
1530	if ((unsigned int)size <= sysctl_optmem_max &&
1531	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1532		void *mem;
1533		/* First do the add, to avoid the race if kmalloc
1534		 * might sleep.
1535		 */
1536		atomic_add(size, &sk->sk_omem_alloc);
1537		mem = kmalloc(size, priority);
1538		if (mem)
1539			return mem;
1540		atomic_sub(size, &sk->sk_omem_alloc);
1541	}
1542	return NULL;
1543}
1544EXPORT_SYMBOL(sock_kmalloc);
1545
1546/*
1547 * Free an option memory block.
 
1548 */
1549void sock_kfree_s(struct sock *sk, void *mem, int size)
 
1550{
1551	kfree(mem);
 
 
 
 
 
1552	atomic_sub(size, &sk->sk_omem_alloc);
1553}
 
 
 
 
 
1554EXPORT_SYMBOL(sock_kfree_s);
1555
 
 
 
 
 
 
1556/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1557   I think, these locks should be removed for datagram sockets.
1558 */
1559static long sock_wait_for_wmem(struct sock *sk, long timeo)
1560{
1561	DEFINE_WAIT(wait);
1562
1563	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1564	for (;;) {
1565		if (!timeo)
1566			break;
1567		if (signal_pending(current))
1568			break;
1569		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1570		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1571		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1572			break;
1573		if (sk->sk_shutdown & SEND_SHUTDOWN)
1574			break;
1575		if (sk->sk_err)
1576			break;
1577		timeo = schedule_timeout(timeo);
1578	}
1579	finish_wait(sk_sleep(sk), &wait);
1580	return timeo;
1581}
1582
1583
1584/*
1585 *	Generic send/receive buffer handlers
1586 */
1587
1588struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1589				     unsigned long data_len, int noblock,
1590				     int *errcode)
1591{
1592	struct sk_buff *skb;
1593	gfp_t gfp_mask;
1594	long timeo;
1595	int err;
1596	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1597
1598	err = -EMSGSIZE;
1599	if (npages > MAX_SKB_FRAGS)
1600		goto failure;
1601
1602	gfp_mask = sk->sk_allocation;
1603	if (gfp_mask & __GFP_WAIT)
1604		gfp_mask |= __GFP_REPEAT;
1605
1606	timeo = sock_sndtimeo(sk, noblock);
1607	while (1) {
1608		err = sock_error(sk);
1609		if (err != 0)
1610			goto failure;
1611
1612		err = -EPIPE;
1613		if (sk->sk_shutdown & SEND_SHUTDOWN)
1614			goto failure;
1615
1616		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1617			skb = alloc_skb(header_len, gfp_mask);
1618			if (skb) {
1619				int i;
1620
1621				/* No pages, we're done... */
1622				if (!data_len)
1623					break;
1624
1625				skb->truesize += data_len;
1626				skb_shinfo(skb)->nr_frags = npages;
1627				for (i = 0; i < npages; i++) {
1628					struct page *page;
1629
1630					page = alloc_pages(sk->sk_allocation, 0);
1631					if (!page) {
1632						err = -ENOBUFS;
1633						skb_shinfo(skb)->nr_frags = i;
1634						kfree_skb(skb);
1635						goto failure;
1636					}
1637
1638					__skb_fill_page_desc(skb, i,
1639							page, 0,
1640							(data_len >= PAGE_SIZE ?
1641							 PAGE_SIZE :
1642							 data_len));
1643					data_len -= PAGE_SIZE;
1644				}
1645
1646				/* Full success... */
1647				break;
1648			}
1649			err = -ENOBUFS;
1650			goto failure;
1651		}
1652		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1653		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1654		err = -EAGAIN;
1655		if (!timeo)
1656			goto failure;
1657		if (signal_pending(current))
1658			goto interrupted;
1659		timeo = sock_wait_for_wmem(sk, timeo);
1660	}
1661
1662	skb_set_owner_w(skb, sk);
 
 
1663	return skb;
1664
1665interrupted:
1666	err = sock_intr_errno(timeo);
1667failure:
1668	*errcode = err;
1669	return NULL;
1670}
1671EXPORT_SYMBOL(sock_alloc_send_pskb);
1672
1673struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1674				    int noblock, int *errcode)
1675{
1676	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1677}
1678EXPORT_SYMBOL(sock_alloc_send_skb);
1679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680static void __lock_sock(struct sock *sk)
1681	__releases(&sk->sk_lock.slock)
1682	__acquires(&sk->sk_lock.slock)
1683{
1684	DEFINE_WAIT(wait);
1685
1686	for (;;) {
1687		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1688					TASK_UNINTERRUPTIBLE);
1689		spin_unlock_bh(&sk->sk_lock.slock);
1690		schedule();
1691		spin_lock_bh(&sk->sk_lock.slock);
1692		if (!sock_owned_by_user(sk))
1693			break;
1694	}
1695	finish_wait(&sk->sk_lock.wq, &wait);
1696}
1697
1698static void __release_sock(struct sock *sk)
1699	__releases(&sk->sk_lock.slock)
1700	__acquires(&sk->sk_lock.slock)
1701{
1702	struct sk_buff *skb = sk->sk_backlog.head;
1703
1704	do {
1705		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1706		bh_unlock_sock(sk);
1707
1708		do {
1709			struct sk_buff *next = skb->next;
1710
 
 
1711			prefetch(next);
1712			WARN_ON_ONCE(skb_dst_is_noref(skb));
1713			skb->next = NULL;
1714			sk_backlog_rcv(sk, skb);
1715
1716			/*
1717			 * We are in process context here with softirqs
1718			 * disabled, use cond_resched_softirq() to preempt.
1719			 * This is safe to do because we've taken the backlog
1720			 * queue private:
1721			 */
1722			cond_resched_softirq();
1723
1724			skb = next;
1725		} while (skb != NULL);
1726
1727		bh_lock_sock(sk);
1728	} while ((skb = sk->sk_backlog.head) != NULL);
1729
1730	/*
1731	 * Doing the zeroing here guarantee we can not loop forever
1732	 * while a wild producer attempts to flood us.
1733	 */
1734	sk->sk_backlog.len = 0;
1735}
1736
 
 
 
 
 
 
 
1737/**
1738 * sk_wait_data - wait for data to arrive at sk_receive_queue
1739 * @sk:    sock to wait on
1740 * @timeo: for how long
 
1741 *
1742 * Now socket state including sk->sk_err is changed only under lock,
1743 * hence we may omit checks after joining wait queue.
1744 * We check receive queue before schedule() only as optimization;
1745 * it is very likely that release_sock() added new data.
1746 */
1747int sk_wait_data(struct sock *sk, long *timeo)
1748{
 
1749	int rc;
1750	DEFINE_WAIT(wait);
1751
1752	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1753	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1754	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1755	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1756	finish_wait(sk_sleep(sk), &wait);
1757	return rc;
1758}
1759EXPORT_SYMBOL(sk_wait_data);
1760
1761/**
1762 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1763 *	@sk: socket
1764 *	@size: memory size to allocate
 
1765 *	@kind: allocation type
1766 *
1767 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1768 *	rmem allocation. This function assumes that protocols which have
1769 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1770 */
1771int __sk_mem_schedule(struct sock *sk, int size, int kind)
1772{
1773	struct proto *prot = sk->sk_prot;
1774	int amt = sk_mem_pages(size);
1775	long allocated;
1776	int parent_status = UNDER_LIMIT;
1777
1778	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1779
1780	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
 
 
1781
1782	/* Under limit. */
1783	if (parent_status == UNDER_LIMIT &&
1784			allocated <= sk_prot_mem_limits(sk, 0)) {
1785		sk_leave_memory_pressure(sk);
1786		return 1;
1787	}
1788
1789	/* Under pressure. (we or our parents) */
1790	if ((parent_status > SOFT_LIMIT) ||
1791			allocated > sk_prot_mem_limits(sk, 1))
1792		sk_enter_memory_pressure(sk);
1793
1794	/* Over hard limit (we or our parents) */
1795	if ((parent_status == OVER_LIMIT) ||
1796			(allocated > sk_prot_mem_limits(sk, 2)))
1797		goto suppress_allocation;
1798
1799	/* guarantee minimum buffer size under pressure */
1800	if (kind == SK_MEM_RECV) {
1801		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1802			return 1;
1803
1804	} else { /* SK_MEM_SEND */
 
 
1805		if (sk->sk_type == SOCK_STREAM) {
1806			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1807				return 1;
1808		} else if (atomic_read(&sk->sk_wmem_alloc) <
1809			   prot->sysctl_wmem[0])
1810				return 1;
 
1811	}
1812
1813	if (sk_has_memory_pressure(sk)) {
1814		int alloc;
1815
1816		if (!sk_under_memory_pressure(sk))
1817			return 1;
1818		alloc = sk_sockets_allocated_read_positive(sk);
1819		if (sk_prot_mem_limits(sk, 2) > alloc *
1820		    sk_mem_pages(sk->sk_wmem_queued +
1821				 atomic_read(&sk->sk_rmem_alloc) +
1822				 sk->sk_forward_alloc))
1823			return 1;
1824	}
1825
1826suppress_allocation:
1827
1828	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1829		sk_stream_moderate_sndbuf(sk);
1830
1831		/* Fail only if socket is _under_ its sndbuf.
1832		 * In this case we cannot block, so that we have to fail.
1833		 */
1834		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1835			return 1;
1836	}
1837
1838	trace_sock_exceed_buf_limit(sk, prot, allocated);
1839
1840	/* Alas. Undo changes. */
1841	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1842
1843	sk_memory_allocated_sub(sk, amt);
1844
 
 
 
1845	return 0;
1846}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847EXPORT_SYMBOL(__sk_mem_schedule);
1848
1849/**
1850 *	__sk_reclaim - reclaim memory_allocated
1851 *	@sk: socket
 
 
 
1852 */
1853void __sk_mem_reclaim(struct sock *sk)
1854{
1855	sk_memory_allocated_sub(sk,
1856				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1857	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
 
1858
1859	if (sk_under_memory_pressure(sk) &&
1860	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1861		sk_leave_memory_pressure(sk);
1862}
 
 
 
 
 
 
 
 
 
 
 
 
 
1863EXPORT_SYMBOL(__sk_mem_reclaim);
1864
 
 
 
 
 
 
1865
1866/*
1867 * Set of default routines for initialising struct proto_ops when
1868 * the protocol does not support a particular function. In certain
1869 * cases where it makes no sense for a protocol to have a "do nothing"
1870 * function, some default processing is provided.
1871 */
1872
1873int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1874{
1875	return -EOPNOTSUPP;
1876}
1877EXPORT_SYMBOL(sock_no_bind);
1878
1879int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1880		    int len, int flags)
1881{
1882	return -EOPNOTSUPP;
1883}
1884EXPORT_SYMBOL(sock_no_connect);
1885
1886int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1887{
1888	return -EOPNOTSUPP;
1889}
1890EXPORT_SYMBOL(sock_no_socketpair);
1891
1892int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
 
1893{
1894	return -EOPNOTSUPP;
1895}
1896EXPORT_SYMBOL(sock_no_accept);
1897
1898int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1899		    int *len, int peer)
1900{
1901	return -EOPNOTSUPP;
1902}
1903EXPORT_SYMBOL(sock_no_getname);
1904
1905unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1906{
1907	return 0;
1908}
1909EXPORT_SYMBOL(sock_no_poll);
1910
1911int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1912{
1913	return -EOPNOTSUPP;
1914}
1915EXPORT_SYMBOL(sock_no_ioctl);
1916
1917int sock_no_listen(struct socket *sock, int backlog)
1918{
1919	return -EOPNOTSUPP;
1920}
1921EXPORT_SYMBOL(sock_no_listen);
1922
1923int sock_no_shutdown(struct socket *sock, int how)
1924{
1925	return -EOPNOTSUPP;
1926}
1927EXPORT_SYMBOL(sock_no_shutdown);
1928
1929int sock_no_setsockopt(struct socket *sock, int level, int optname,
1930		    char __user *optval, unsigned int optlen)
1931{
1932	return -EOPNOTSUPP;
1933}
1934EXPORT_SYMBOL(sock_no_setsockopt);
1935
1936int sock_no_getsockopt(struct socket *sock, int level, int optname,
1937		    char __user *optval, int __user *optlen)
1938{
1939	return -EOPNOTSUPP;
1940}
1941EXPORT_SYMBOL(sock_no_getsockopt);
1942
1943int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1944		    size_t len)
1945{
1946	return -EOPNOTSUPP;
1947}
1948EXPORT_SYMBOL(sock_no_sendmsg);
1949
1950int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1951		    size_t len, int flags)
 
 
 
 
 
 
1952{
1953	return -EOPNOTSUPP;
1954}
1955EXPORT_SYMBOL(sock_no_recvmsg);
1956
1957int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1958{
1959	/* Mirror missing mmap method error code */
1960	return -ENODEV;
1961}
1962EXPORT_SYMBOL(sock_no_mmap);
1963
1964ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1965{
1966	ssize_t res;
1967	struct msghdr msg = {.msg_flags = flags};
1968	struct kvec iov;
1969	char *kaddr = kmap(page);
1970	iov.iov_base = kaddr + offset;
1971	iov.iov_len = size;
1972	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1973	kunmap(page);
1974	return res;
1975}
1976EXPORT_SYMBOL(sock_no_sendpage);
1977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1978/*
1979 *	Default Socket Callbacks
1980 */
1981
1982static void sock_def_wakeup(struct sock *sk)
1983{
1984	struct socket_wq *wq;
1985
1986	rcu_read_lock();
1987	wq = rcu_dereference(sk->sk_wq);
1988	if (wq_has_sleeper(wq))
1989		wake_up_interruptible_all(&wq->wait);
1990	rcu_read_unlock();
1991}
1992
1993static void sock_def_error_report(struct sock *sk)
1994{
1995	struct socket_wq *wq;
1996
1997	rcu_read_lock();
1998	wq = rcu_dereference(sk->sk_wq);
1999	if (wq_has_sleeper(wq))
2000		wake_up_interruptible_poll(&wq->wait, POLLERR);
2001	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2002	rcu_read_unlock();
2003}
2004
2005static void sock_def_readable(struct sock *sk, int len)
2006{
2007	struct socket_wq *wq;
2008
2009	rcu_read_lock();
2010	wq = rcu_dereference(sk->sk_wq);
2011	if (wq_has_sleeper(wq))
2012		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2013						POLLRDNORM | POLLRDBAND);
2014	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2015	rcu_read_unlock();
2016}
2017
2018static void sock_def_write_space(struct sock *sk)
2019{
2020	struct socket_wq *wq;
2021
2022	rcu_read_lock();
2023
2024	/* Do not wake up a writer until he can make "significant"
2025	 * progress.  --DaveM
2026	 */
2027	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2028		wq = rcu_dereference(sk->sk_wq);
2029		if (wq_has_sleeper(wq))
2030			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2031						POLLWRNORM | POLLWRBAND);
2032
2033		/* Should agree with poll, otherwise some programs break */
2034		if (sock_writeable(sk))
2035			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2036	}
2037
2038	rcu_read_unlock();
2039}
2040
2041static void sock_def_destruct(struct sock *sk)
2042{
2043	kfree(sk->sk_protinfo);
2044}
2045
2046void sk_send_sigurg(struct sock *sk)
2047{
2048	if (sk->sk_socket && sk->sk_socket->file)
2049		if (send_sigurg(&sk->sk_socket->file->f_owner))
2050			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2051}
2052EXPORT_SYMBOL(sk_send_sigurg);
2053
2054void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2055		    unsigned long expires)
2056{
2057	if (!mod_timer(timer, expires))
2058		sock_hold(sk);
2059}
2060EXPORT_SYMBOL(sk_reset_timer);
2061
2062void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2063{
2064	if (timer_pending(timer) && del_timer(timer))
2065		__sock_put(sk);
2066}
2067EXPORT_SYMBOL(sk_stop_timer);
2068
2069void sock_init_data(struct socket *sock, struct sock *sk)
2070{
2071	skb_queue_head_init(&sk->sk_receive_queue);
2072	skb_queue_head_init(&sk->sk_write_queue);
2073	skb_queue_head_init(&sk->sk_error_queue);
2074#ifdef CONFIG_NET_DMA
2075	skb_queue_head_init(&sk->sk_async_wait_queue);
2076#endif
2077
2078	sk->sk_send_head	=	NULL;
2079
2080	init_timer(&sk->sk_timer);
2081
2082	sk->sk_allocation	=	GFP_KERNEL;
2083	sk->sk_rcvbuf		=	sysctl_rmem_default;
2084	sk->sk_sndbuf		=	sysctl_wmem_default;
2085	sk->sk_state		=	TCP_CLOSE;
2086	sk_set_socket(sk, sock);
2087
2088	sock_set_flag(sk, SOCK_ZAPPED);
2089
2090	if (sock) {
2091		sk->sk_type	=	sock->type;
2092		sk->sk_wq	=	sock->wq;
2093		sock->sk	=	sk;
2094	} else
2095		sk->sk_wq	=	NULL;
 
 
 
2096
2097	spin_lock_init(&sk->sk_dst_lock);
2098	rwlock_init(&sk->sk_callback_lock);
2099	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
 
 
2100			af_callback_keys + sk->sk_family,
2101			af_family_clock_key_strings[sk->sk_family]);
2102
2103	sk->sk_state_change	=	sock_def_wakeup;
2104	sk->sk_data_ready	=	sock_def_readable;
2105	sk->sk_write_space	=	sock_def_write_space;
2106	sk->sk_error_report	=	sock_def_error_report;
2107	sk->sk_destruct		=	sock_def_destruct;
2108
2109	sk->sk_sndmsg_page	=	NULL;
2110	sk->sk_sndmsg_off	=	0;
2111	sk->sk_peek_off		=	-1;
2112
2113	sk->sk_peer_pid 	=	NULL;
2114	sk->sk_peer_cred	=	NULL;
2115	sk->sk_write_pending	=	0;
2116	sk->sk_rcvlowat		=	1;
2117	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2118	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2119
2120	sk->sk_stamp = ktime_set(-1L, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121
 
2122	/*
2123	 * Before updating sk_refcnt, we must commit prior changes to memory
2124	 * (Documentation/RCU/rculist_nulls.txt for details)
2125	 */
2126	smp_wmb();
2127	atomic_set(&sk->sk_refcnt, 1);
2128	atomic_set(&sk->sk_drops, 0);
2129}
2130EXPORT_SYMBOL(sock_init_data);
2131
2132void lock_sock_nested(struct sock *sk, int subclass)
2133{
2134	might_sleep();
2135	spin_lock_bh(&sk->sk_lock.slock);
2136	if (sk->sk_lock.owned)
2137		__lock_sock(sk);
2138	sk->sk_lock.owned = 1;
2139	spin_unlock(&sk->sk_lock.slock);
2140	/*
2141	 * The sk_lock has mutex_lock() semantics here:
2142	 */
2143	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2144	local_bh_enable();
2145}
2146EXPORT_SYMBOL(lock_sock_nested);
2147
2148void release_sock(struct sock *sk)
2149{
2150	/*
2151	 * The sk_lock has mutex_unlock() semantics:
2152	 */
2153	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2154
2155	spin_lock_bh(&sk->sk_lock.slock);
2156	if (sk->sk_backlog.tail)
2157		__release_sock(sk);
2158	sk->sk_lock.owned = 0;
 
 
 
 
 
 
 
2159	if (waitqueue_active(&sk->sk_lock.wq))
2160		wake_up(&sk->sk_lock.wq);
2161	spin_unlock_bh(&sk->sk_lock.slock);
2162}
2163EXPORT_SYMBOL(release_sock);
2164
2165/**
2166 * lock_sock_fast - fast version of lock_sock
2167 * @sk: socket
2168 *
2169 * This version should be used for very small section, where process wont block
2170 * return false if fast path is taken
 
2171 *   sk_lock.slock locked, owned = 0, BH disabled
2172 * return true if slow path is taken
 
 
2173 *   sk_lock.slock unlocked, owned = 1, BH enabled
2174 */
2175bool lock_sock_fast(struct sock *sk)
2176{
2177	might_sleep();
2178	spin_lock_bh(&sk->sk_lock.slock);
2179
2180	if (!sk->sk_lock.owned)
2181		/*
2182		 * Note : We must disable BH
2183		 */
2184		return false;
2185
2186	__lock_sock(sk);
2187	sk->sk_lock.owned = 1;
2188	spin_unlock(&sk->sk_lock.slock);
2189	/*
2190	 * The sk_lock has mutex_lock() semantics here:
2191	 */
2192	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2193	local_bh_enable();
2194	return true;
2195}
2196EXPORT_SYMBOL(lock_sock_fast);
2197
2198int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2199{
2200	struct timeval tv;
2201	if (!sock_flag(sk, SOCK_TIMESTAMP))
2202		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2203	tv = ktime_to_timeval(sk->sk_stamp);
2204	if (tv.tv_sec == -1)
2205		return -ENOENT;
2206	if (tv.tv_sec == 0) {
2207		sk->sk_stamp = ktime_get_real();
2208		tv = ktime_to_timeval(sk->sk_stamp);
2209	}
2210	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2211}
2212EXPORT_SYMBOL(sock_get_timestamp);
2213
2214int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2215{
2216	struct timespec ts;
2217	if (!sock_flag(sk, SOCK_TIMESTAMP))
2218		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2219	ts = ktime_to_timespec(sk->sk_stamp);
2220	if (ts.tv_sec == -1)
2221		return -ENOENT;
2222	if (ts.tv_sec == 0) {
2223		sk->sk_stamp = ktime_get_real();
2224		ts = ktime_to_timespec(sk->sk_stamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225	}
2226	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
2227}
2228EXPORT_SYMBOL(sock_get_timestampns);
2229
2230void sock_enable_timestamp(struct sock *sk, int flag)
2231{
2232	if (!sock_flag(sk, flag)) {
2233		unsigned long previous_flags = sk->sk_flags;
2234
2235		sock_set_flag(sk, flag);
2236		/*
2237		 * we just set one of the two flags which require net
2238		 * time stamping, but time stamping might have been on
2239		 * already because of the other one
2240		 */
2241		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
 
2242			net_enable_timestamp();
2243	}
2244}
2245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246/*
2247 *	Get a socket option on an socket.
2248 *
2249 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2250 *	asynchronous errors should be reported by getsockopt. We assume
2251 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2252 */
2253int sock_common_getsockopt(struct socket *sock, int level, int optname,
2254			   char __user *optval, int __user *optlen)
2255{
2256	struct sock *sk = sock->sk;
2257
2258	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2259}
2260EXPORT_SYMBOL(sock_common_getsockopt);
2261
2262#ifdef CONFIG_COMPAT
2263int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2264				  char __user *optval, int __user *optlen)
2265{
2266	struct sock *sk = sock->sk;
2267
2268	if (sk->sk_prot->compat_getsockopt != NULL)
2269		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2270						      optval, optlen);
2271	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2272}
2273EXPORT_SYMBOL(compat_sock_common_getsockopt);
2274#endif
2275
2276int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2277			struct msghdr *msg, size_t size, int flags)
2278{
2279	struct sock *sk = sock->sk;
2280	int addr_len = 0;
2281	int err;
2282
2283	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2284				   flags & ~MSG_DONTWAIT, &addr_len);
2285	if (err >= 0)
2286		msg->msg_namelen = addr_len;
2287	return err;
2288}
2289EXPORT_SYMBOL(sock_common_recvmsg);
2290
2291/*
2292 *	Set socket options on an inet socket.
2293 */
2294int sock_common_setsockopt(struct socket *sock, int level, int optname,
2295			   char __user *optval, unsigned int optlen)
2296{
2297	struct sock *sk = sock->sk;
2298
2299	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2300}
2301EXPORT_SYMBOL(sock_common_setsockopt);
2302
2303#ifdef CONFIG_COMPAT
2304int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2305				  char __user *optval, unsigned int optlen)
2306{
2307	struct sock *sk = sock->sk;
2308
2309	if (sk->sk_prot->compat_setsockopt != NULL)
2310		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2311						      optval, optlen);
2312	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2313}
2314EXPORT_SYMBOL(compat_sock_common_setsockopt);
2315#endif
2316
2317void sk_common_release(struct sock *sk)
2318{
2319	if (sk->sk_prot->destroy)
2320		sk->sk_prot->destroy(sk);
2321
2322	/*
2323	 * Observation: when sock_common_release is called, processes have
2324	 * no access to socket. But net still has.
2325	 * Step one, detach it from networking:
2326	 *
2327	 * A. Remove from hash tables.
2328	 */
2329
2330	sk->sk_prot->unhash(sk);
2331
2332	/*
2333	 * In this point socket cannot receive new packets, but it is possible
2334	 * that some packets are in flight because some CPU runs receiver and
2335	 * did hash table lookup before we unhashed socket. They will achieve
2336	 * receive queue and will be purged by socket destructor.
2337	 *
2338	 * Also we still have packets pending on receive queue and probably,
2339	 * our own packets waiting in device queues. sock_destroy will drain
2340	 * receive queue, but transmitted packets will delay socket destruction
2341	 * until the last reference will be released.
2342	 */
2343
2344	sock_orphan(sk);
2345
2346	xfrm_sk_free_policy(sk);
2347
2348	sk_refcnt_debug_release(sk);
 
2349	sock_put(sk);
2350}
2351EXPORT_SYMBOL(sk_common_release);
2352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353#ifdef CONFIG_PROC_FS
2354#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2355struct prot_inuse {
2356	int val[PROTO_INUSE_NR];
2357};
2358
2359static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2360
2361#ifdef CONFIG_NET_NS
2362void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2363{
2364	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2365}
2366EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2367
2368int sock_prot_inuse_get(struct net *net, struct proto *prot)
2369{
2370	int cpu, idx = prot->inuse_idx;
2371	int res = 0;
2372
2373	for_each_possible_cpu(cpu)
2374		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2375
2376	return res >= 0 ? res : 0;
2377}
2378EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380static int __net_init sock_inuse_init_net(struct net *net)
2381{
2382	net->core.inuse = alloc_percpu(struct prot_inuse);
2383	return net->core.inuse ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
2384}
2385
2386static void __net_exit sock_inuse_exit_net(struct net *net)
2387{
2388	free_percpu(net->core.inuse);
 
2389}
2390
2391static struct pernet_operations net_inuse_ops = {
2392	.init = sock_inuse_init_net,
2393	.exit = sock_inuse_exit_net,
2394};
2395
2396static __init int net_inuse_init(void)
2397{
2398	if (register_pernet_subsys(&net_inuse_ops))
2399		panic("Cannot initialize net inuse counters");
2400
2401	return 0;
2402}
2403
2404core_initcall(net_inuse_init);
2405#else
2406static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2407
2408void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2409{
2410	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2411}
2412EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2413
2414int sock_prot_inuse_get(struct net *net, struct proto *prot)
2415{
2416	int cpu, idx = prot->inuse_idx;
2417	int res = 0;
2418
2419	for_each_possible_cpu(cpu)
2420		res += per_cpu(prot_inuse, cpu).val[idx];
2421
2422	return res >= 0 ? res : 0;
2423}
2424EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2425#endif
2426
2427static void assign_proto_idx(struct proto *prot)
2428{
2429	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2430
2431	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2432		pr_err("PROTO_INUSE_NR exhausted\n");
2433		return;
2434	}
2435
2436	set_bit(prot->inuse_idx, proto_inuse_idx);
 
2437}
2438
2439static void release_proto_idx(struct proto *prot)
2440{
2441	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2442		clear_bit(prot->inuse_idx, proto_inuse_idx);
2443}
2444#else
2445static inline void assign_proto_idx(struct proto *prot)
2446{
 
2447}
2448
2449static inline void release_proto_idx(struct proto *prot)
2450{
2451}
 
 
 
 
2452#endif
2453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454int proto_register(struct proto *prot, int alloc_slab)
2455{
 
 
2456	if (alloc_slab) {
2457		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2458					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
 
 
2459					NULL);
2460
2461		if (prot->slab == NULL) {
2462			pr_crit("%s: Can't create sock SLAB cache!\n",
2463				prot->name);
2464			goto out;
2465		}
2466
2467		if (prot->rsk_prot != NULL) {
2468			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2469			if (prot->rsk_prot->slab_name == NULL)
2470				goto out_free_sock_slab;
2471
2472			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2473								 prot->rsk_prot->obj_size, 0,
2474								 SLAB_HWCACHE_ALIGN, NULL);
2475
2476			if (prot->rsk_prot->slab == NULL) {
2477				pr_crit("%s: Can't create request sock SLAB cache!\n",
2478					prot->name);
2479				goto out_free_request_sock_slab_name;
2480			}
2481		}
2482
2483		if (prot->twsk_prot != NULL) {
2484			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2485
2486			if (prot->twsk_prot->twsk_slab_name == NULL)
2487				goto out_free_request_sock_slab;
2488
2489			prot->twsk_prot->twsk_slab =
2490				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2491						  prot->twsk_prot->twsk_obj_size,
2492						  0,
2493						  SLAB_HWCACHE_ALIGN |
2494							prot->slab_flags,
2495						  NULL);
2496			if (prot->twsk_prot->twsk_slab == NULL)
2497				goto out_free_timewait_sock_slab_name;
2498		}
2499	}
2500
2501	mutex_lock(&proto_list_mutex);
 
 
 
 
 
2502	list_add(&prot->node, &proto_list);
2503	assign_proto_idx(prot);
2504	mutex_unlock(&proto_list_mutex);
2505	return 0;
2506
2507out_free_timewait_sock_slab_name:
2508	kfree(prot->twsk_prot->twsk_slab_name);
 
2509out_free_request_sock_slab:
2510	if (prot->rsk_prot && prot->rsk_prot->slab) {
2511		kmem_cache_destroy(prot->rsk_prot->slab);
2512		prot->rsk_prot->slab = NULL;
2513	}
2514out_free_request_sock_slab_name:
2515	if (prot->rsk_prot)
2516		kfree(prot->rsk_prot->slab_name);
2517out_free_sock_slab:
2518	kmem_cache_destroy(prot->slab);
2519	prot->slab = NULL;
2520out:
2521	return -ENOBUFS;
2522}
2523EXPORT_SYMBOL(proto_register);
2524
2525void proto_unregister(struct proto *prot)
2526{
2527	mutex_lock(&proto_list_mutex);
2528	release_proto_idx(prot);
2529	list_del(&prot->node);
2530	mutex_unlock(&proto_list_mutex);
2531
2532	if (prot->slab != NULL) {
2533		kmem_cache_destroy(prot->slab);
2534		prot->slab = NULL;
2535	}
2536
2537	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2538		kmem_cache_destroy(prot->rsk_prot->slab);
2539		kfree(prot->rsk_prot->slab_name);
2540		prot->rsk_prot->slab = NULL;
2541	}
2542
2543	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2544		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2545		kfree(prot->twsk_prot->twsk_slab_name);
2546		prot->twsk_prot->twsk_slab = NULL;
2547	}
2548}
2549EXPORT_SYMBOL(proto_unregister);
2550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551#ifdef CONFIG_PROC_FS
2552static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2553	__acquires(proto_list_mutex)
2554{
2555	mutex_lock(&proto_list_mutex);
2556	return seq_list_start_head(&proto_list, *pos);
2557}
2558
2559static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2560{
2561	return seq_list_next(v, &proto_list, pos);
2562}
2563
2564static void proto_seq_stop(struct seq_file *seq, void *v)
2565	__releases(proto_list_mutex)
2566{
2567	mutex_unlock(&proto_list_mutex);
2568}
2569
2570static char proto_method_implemented(const void *method)
2571{
2572	return method == NULL ? 'n' : 'y';
2573}
2574static long sock_prot_memory_allocated(struct proto *proto)
2575{
2576	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2577}
2578
2579static char *sock_prot_memory_pressure(struct proto *proto)
2580{
2581	return proto->memory_pressure != NULL ?
2582	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2583}
2584
2585static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2586{
2587
2588	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2589			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2590		   proto->name,
2591		   proto->obj_size,
2592		   sock_prot_inuse_get(seq_file_net(seq), proto),
2593		   sock_prot_memory_allocated(proto),
2594		   sock_prot_memory_pressure(proto),
2595		   proto->max_header,
2596		   proto->slab == NULL ? "no" : "yes",
2597		   module_name(proto->owner),
2598		   proto_method_implemented(proto->close),
2599		   proto_method_implemented(proto->connect),
2600		   proto_method_implemented(proto->disconnect),
2601		   proto_method_implemented(proto->accept),
2602		   proto_method_implemented(proto->ioctl),
2603		   proto_method_implemented(proto->init),
2604		   proto_method_implemented(proto->destroy),
2605		   proto_method_implemented(proto->shutdown),
2606		   proto_method_implemented(proto->setsockopt),
2607		   proto_method_implemented(proto->getsockopt),
2608		   proto_method_implemented(proto->sendmsg),
2609		   proto_method_implemented(proto->recvmsg),
2610		   proto_method_implemented(proto->sendpage),
2611		   proto_method_implemented(proto->bind),
2612		   proto_method_implemented(proto->backlog_rcv),
2613		   proto_method_implemented(proto->hash),
2614		   proto_method_implemented(proto->unhash),
2615		   proto_method_implemented(proto->get_port),
2616		   proto_method_implemented(proto->enter_memory_pressure));
2617}
2618
2619static int proto_seq_show(struct seq_file *seq, void *v)
2620{
2621	if (v == &proto_list)
2622		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2623			   "protocol",
2624			   "size",
2625			   "sockets",
2626			   "memory",
2627			   "press",
2628			   "maxhdr",
2629			   "slab",
2630			   "module",
2631			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2632	else
2633		proto_seq_printf(seq, list_entry(v, struct proto, node));
2634	return 0;
2635}
2636
2637static const struct seq_operations proto_seq_ops = {
2638	.start  = proto_seq_start,
2639	.next   = proto_seq_next,
2640	.stop   = proto_seq_stop,
2641	.show   = proto_seq_show,
2642};
2643
2644static int proto_seq_open(struct inode *inode, struct file *file)
2645{
2646	return seq_open_net(inode, file, &proto_seq_ops,
2647			    sizeof(struct seq_net_private));
2648}
2649
2650static const struct file_operations proto_seq_fops = {
2651	.owner		= THIS_MODULE,
2652	.open		= proto_seq_open,
2653	.read		= seq_read,
2654	.llseek		= seq_lseek,
2655	.release	= seq_release_net,
2656};
2657
2658static __net_init int proto_init_net(struct net *net)
2659{
2660	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
 
2661		return -ENOMEM;
2662
2663	return 0;
2664}
2665
2666static __net_exit void proto_exit_net(struct net *net)
2667{
2668	proc_net_remove(net, "protocols");
2669}
2670
2671
2672static __net_initdata struct pernet_operations proto_net_ops = {
2673	.init = proto_init_net,
2674	.exit = proto_exit_net,
2675};
2676
2677static int __init proto_init(void)
2678{
2679	return register_pernet_subsys(&proto_net_ops);
2680}
2681
2682subsys_initcall(proto_init);
2683
2684#endif /* PROC_FS */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netdevice.h>
 120#include <net/protocol.h>
 121#include <linux/skbuff.h>
 122#include <net/net_namespace.h>
 123#include <net/request_sock.h>
 124#include <net/sock.h>
 125#include <linux/net_tstamp.h>
 126#include <net/xfrm.h>
 127#include <linux/ipsec.h>
 128#include <net/cls_cgroup.h>
 129#include <net/netprio_cgroup.h>
 130#include <linux/sock_diag.h>
 131
 132#include <linux/filter.h>
 133#include <net/sock_reuseport.h>
 134#include <net/bpf_sk_storage.h>
 135
 136#include <trace/events/sock.h>
 137
 
 138#include <net/tcp.h>
 139#include <net/busy_poll.h>
 140
 141static DEFINE_MUTEX(proto_list_mutex);
 142static LIST_HEAD(proto_list);
 143
 144static void sock_inuse_add(struct net *net, int val);
 
 
 
 
 145
 146/**
 147 * sk_ns_capable - General socket capability test
 148 * @sk: Socket to use a capability on or through
 149 * @user_ns: The user namespace of the capability to use
 150 * @cap: The capability to use
 151 *
 152 * Test to see if the opener of the socket had when the socket was
 153 * created and the current process has the capability @cap in the user
 154 * namespace @user_ns.
 155 */
 156bool sk_ns_capable(const struct sock *sk,
 157		   struct user_namespace *user_ns, int cap)
 158{
 159	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 160		ns_capable(user_ns, cap);
 
 
 161}
 162EXPORT_SYMBOL(sk_ns_capable);
 163
 164/**
 165 * sk_capable - Socket global capability test
 166 * @sk: Socket to use a capability on or through
 167 * @cap: The global capability to use
 168 *
 169 * Test to see if the opener of the socket had when the socket was
 170 * created and the current process has the capability @cap in all user
 171 * namespaces.
 172 */
 173bool sk_capable(const struct sock *sk, int cap)
 174{
 175	return sk_ns_capable(sk, &init_user_ns, cap);
 176}
 177EXPORT_SYMBOL(sk_capable);
 178
 179/**
 180 * sk_net_capable - Network namespace socket capability test
 181 * @sk: Socket to use a capability on or through
 182 * @cap: The capability to use
 183 *
 184 * Test to see if the opener of the socket had when the socket was created
 185 * and the current process has the capability @cap over the network namespace
 186 * the socket is a member of.
 187 */
 188bool sk_net_capable(const struct sock *sk, int cap)
 189{
 190	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 191}
 192EXPORT_SYMBOL(sk_net_capable);
 193
 194/*
 195 * Each address family might have different locking rules, so we have
 196 * one slock key per address family and separate keys for internal and
 197 * userspace sockets.
 198 */
 199static struct lock_class_key af_family_keys[AF_MAX];
 200static struct lock_class_key af_family_kern_keys[AF_MAX];
 201static struct lock_class_key af_family_slock_keys[AF_MAX];
 202static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 
 
 203
 204/*
 205 * Make lock validator output more readable. (we pre-construct these
 206 * strings build-time, so that runtime initialization of socket
 207 * locks is fast):
 208 */
 209
 210#define _sock_locks(x)						  \
 211  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 212  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 213  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 214  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 215  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 216  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 217  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 218  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 219  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 220  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 221  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 222  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 223  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 224  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 225  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 226  x "AF_MAX"
 227
 228static const char *const af_family_key_strings[AF_MAX+1] = {
 229	_sock_locks("sk_lock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 230};
 231static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 232	_sock_locks("slock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 233};
 234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 235	_sock_locks("clock-")
 236};
 237
 238static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 239	_sock_locks("k-sk_lock-")
 240};
 241static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-slock-")
 243};
 244static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-clock-")
 246};
 247static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 248	_sock_locks("rlock-")
 249};
 250static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("wlock-")
 252};
 253static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 254	_sock_locks("elock-")
 255};
 256
 257/*
 258 * sk_callback_lock and sk queues locking rules are per-address-family,
 259 * so split the lock classes by using a per-AF key:
 260 */
 261static struct lock_class_key af_callback_keys[AF_MAX];
 262static struct lock_class_key af_rlock_keys[AF_MAX];
 263static struct lock_class_key af_wlock_keys[AF_MAX];
 264static struct lock_class_key af_elock_keys[AF_MAX];
 265static struct lock_class_key af_kern_callback_keys[AF_MAX];
 
 
 
 
 
 
 266
 267/* Run time adjustable parameters. */
 268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 269EXPORT_SYMBOL(sysctl_wmem_max);
 270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 271EXPORT_SYMBOL(sysctl_rmem_max);
 272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 274
 275/* Maximal space eaten by iovec or ancillary data plus some space */
 276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 277EXPORT_SYMBOL(sysctl_optmem_max);
 278
 279int sysctl_tstamp_allow_data __read_mostly = 1;
 280
 281DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 282EXPORT_SYMBOL_GPL(memalloc_socks_key);
 
 
 
 
 
 
 283
 284/**
 285 * sk_set_memalloc - sets %SOCK_MEMALLOC
 286 * @sk: socket to set it on
 287 *
 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 289 * It's the responsibility of the admin to adjust min_free_kbytes
 290 * to meet the requirements
 291 */
 292void sk_set_memalloc(struct sock *sk)
 293{
 294	sock_set_flag(sk, SOCK_MEMALLOC);
 295	sk->sk_allocation |= __GFP_MEMALLOC;
 296	static_branch_inc(&memalloc_socks_key);
 297}
 298EXPORT_SYMBOL_GPL(sk_set_memalloc);
 299
 300void sk_clear_memalloc(struct sock *sk)
 301{
 302	sock_reset_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation &= ~__GFP_MEMALLOC;
 304	static_branch_dec(&memalloc_socks_key);
 305
 306	/*
 307	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 308	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 309	 * it has rmem allocations due to the last swapfile being deactivated
 310	 * but there is a risk that the socket is unusable due to exceeding
 311	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 312	 */
 313	sk_mem_reclaim(sk);
 314}
 315EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 316
 317int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 318{
 319	int ret;
 320	unsigned int noreclaim_flag;
 321
 322	/* these should have been dropped before queueing */
 323	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 324
 325	noreclaim_flag = memalloc_noreclaim_save();
 326	ret = sk->sk_backlog_rcv(sk, skb);
 327	memalloc_noreclaim_restore(noreclaim_flag);
 328
 329	return ret;
 330}
 331EXPORT_SYMBOL(__sk_backlog_rcv);
 332
 333static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 334{
 335	struct __kernel_sock_timeval tv;
 336	int size;
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		size = sizeof(old_tv);
 358	} else {
 359		*(struct __kernel_sock_timeval *)optval = tv;
 360		size = sizeof(tv);
 361	}
 362
 363	return size;
 364}
 365
 366static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
 367{
 368	struct __kernel_sock_timeval tv;
 369
 370	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 371		struct old_timeval32 tv32;
 372
 373		if (optlen < sizeof(tv32))
 374			return -EINVAL;
 375
 376		if (copy_from_user(&tv32, optval, sizeof(tv32)))
 377			return -EFAULT;
 378		tv.tv_sec = tv32.tv_sec;
 379		tv.tv_usec = tv32.tv_usec;
 380	} else if (old_timeval) {
 381		struct __kernel_old_timeval old_tv;
 382
 383		if (optlen < sizeof(old_tv))
 384			return -EINVAL;
 385		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
 386			return -EFAULT;
 387		tv.tv_sec = old_tv.tv_sec;
 388		tv.tv_usec = old_tv.tv_usec;
 389	} else {
 390		if (optlen < sizeof(tv))
 391			return -EINVAL;
 392		if (copy_from_user(&tv, optval, sizeof(tv)))
 393			return -EFAULT;
 394	}
 395	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 396		return -EDOM;
 397
 398	if (tv.tv_sec < 0) {
 399		static int warned __read_mostly;
 400
 401		*timeo_p = 0;
 402		if (warned < 10 && net_ratelimit()) {
 403			warned++;
 404			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 405				__func__, current->comm, task_pid_nr(current));
 406		}
 407		return 0;
 408	}
 409	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 410	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 411		return 0;
 412	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 413		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 414	return 0;
 415}
 416
 417static void sock_warn_obsolete_bsdism(const char *name)
 418{
 419	static int warned;
 420	static char warncomm[TASK_COMM_LEN];
 421	if (strcmp(warncomm, current->comm) && warned < 5) {
 422		strcpy(warncomm,  current->comm);
 423		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 424			warncomm, name);
 425		warned++;
 426	}
 427}
 428
 429static bool sock_needs_netstamp(const struct sock *sk)
 430{
 431	switch (sk->sk_family) {
 432	case AF_UNSPEC:
 433	case AF_UNIX:
 434		return false;
 435	default:
 436		return true;
 437	}
 438}
 439
 440static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 441{
 442	if (sk->sk_flags & flags) {
 443		sk->sk_flags &= ~flags;
 444		if (sock_needs_netstamp(sk) &&
 445		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 446			net_disable_timestamp();
 447	}
 448}
 449
 450
 451int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 452{
 
 
 453	unsigned long flags;
 454	struct sk_buff_head *list = &sk->sk_receive_queue;
 455
 456	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 457		atomic_inc(&sk->sk_drops);
 458		trace_sock_rcvqueue_full(sk, skb);
 459		return -ENOMEM;
 460	}
 461
 462	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 
 
 
 
 463		atomic_inc(&sk->sk_drops);
 464		return -ENOBUFS;
 465	}
 466
 467	skb->dev = NULL;
 468	skb_set_owner_r(skb, sk);
 469
 
 
 
 
 
 
 
 470	/* we escape from rcu protected region, make sure we dont leak
 471	 * a norefcounted dst
 472	 */
 473	skb_dst_force(skb);
 474
 475	spin_lock_irqsave(&list->lock, flags);
 476	sock_skb_set_dropcount(sk, skb);
 477	__skb_queue_tail(list, skb);
 478	spin_unlock_irqrestore(&list->lock, flags);
 479
 480	if (!sock_flag(sk, SOCK_DEAD))
 481		sk->sk_data_ready(sk);
 482	return 0;
 483}
 484EXPORT_SYMBOL(__sock_queue_rcv_skb);
 485
 486int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 487{
 488	int err;
 489
 490	err = sk_filter(sk, skb);
 491	if (err)
 492		return err;
 493
 494	return __sock_queue_rcv_skb(sk, skb);
 495}
 496EXPORT_SYMBOL(sock_queue_rcv_skb);
 497
 498int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 499		     const int nested, unsigned int trim_cap, bool refcounted)
 500{
 501	int rc = NET_RX_SUCCESS;
 502
 503	if (sk_filter_trim_cap(sk, skb, trim_cap))
 504		goto discard_and_relse;
 505
 506	skb->dev = NULL;
 507
 508	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 509		atomic_inc(&sk->sk_drops);
 510		goto discard_and_relse;
 511	}
 512	if (nested)
 513		bh_lock_sock_nested(sk);
 514	else
 515		bh_lock_sock(sk);
 516	if (!sock_owned_by_user(sk)) {
 517		/*
 518		 * trylock + unlock semantics:
 519		 */
 520		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 521
 522		rc = sk_backlog_rcv(sk, skb);
 523
 524		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 525	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 526		bh_unlock_sock(sk);
 527		atomic_inc(&sk->sk_drops);
 528		goto discard_and_relse;
 529	}
 530
 531	bh_unlock_sock(sk);
 532out:
 533	if (refcounted)
 534		sock_put(sk);
 535	return rc;
 536discard_and_relse:
 537	kfree_skb(skb);
 538	goto out;
 539}
 540EXPORT_SYMBOL(__sk_receive_skb);
 
 
 
 
 
 
 541
 542struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 543{
 544	struct dst_entry *dst = __sk_dst_get(sk);
 545
 546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 547		sk_tx_queue_clear(sk);
 548		sk->sk_dst_pending_confirm = 0;
 549		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 550		dst_release(dst);
 551		return NULL;
 552	}
 553
 554	return dst;
 555}
 556EXPORT_SYMBOL(__sk_dst_check);
 557
 558struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 559{
 560	struct dst_entry *dst = sk_dst_get(sk);
 561
 562	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 563		sk_dst_reset(sk);
 564		dst_release(dst);
 565		return NULL;
 566	}
 567
 568	return dst;
 569}
 570EXPORT_SYMBOL(sk_dst_check);
 571
 572static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
 573{
 574	int ret = -ENOPROTOOPT;
 575#ifdef CONFIG_NETDEVICES
 576	struct net *net = sock_net(sk);
 
 
 577
 578	/* Sorry... */
 579	ret = -EPERM;
 580	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 581		goto out;
 582
 583	ret = -EINVAL;
 584	if (ifindex < 0)
 585		goto out;
 586
 587	sk->sk_bound_dev_if = ifindex;
 588	if (sk->sk_prot->rehash)
 589		sk->sk_prot->rehash(sk);
 590	sk_dst_reset(sk);
 591
 592	ret = 0;
 593
 594out:
 595#endif
 596
 597	return ret;
 598}
 599
 600static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 601				int optlen)
 602{
 603	int ret = -ENOPROTOOPT;
 604#ifdef CONFIG_NETDEVICES
 605	struct net *net = sock_net(sk);
 606	char devname[IFNAMSIZ];
 607	int index;
 608
 609	ret = -EINVAL;
 610	if (optlen < 0)
 611		goto out;
 612
 613	/* Bind this socket to a particular device like "eth0",
 614	 * as specified in the passed interface name. If the
 615	 * name is "" or the option length is zero the socket
 616	 * is not bound.
 617	 */
 618	if (optlen > IFNAMSIZ - 1)
 619		optlen = IFNAMSIZ - 1;
 620	memset(devname, 0, sizeof(devname));
 621
 622	ret = -EFAULT;
 623	if (copy_from_user(devname, optval, optlen))
 624		goto out;
 625
 626	index = 0;
 627	if (devname[0] != '\0') {
 628		struct net_device *dev;
 629
 630		rcu_read_lock();
 631		dev = dev_get_by_name_rcu(net, devname);
 632		if (dev)
 633			index = dev->ifindex;
 634		rcu_read_unlock();
 635		ret = -ENODEV;
 636		if (!dev)
 637			goto out;
 638	}
 639
 640	lock_sock(sk);
 641	ret = sock_setbindtodevice_locked(sk, index);
 
 642	release_sock(sk);
 643
 644out:
 645#endif
 646
 647	return ret;
 648}
 649
 650static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 651				int __user *optlen, int len)
 652{
 653	int ret = -ENOPROTOOPT;
 654#ifdef CONFIG_NETDEVICES
 655	struct net *net = sock_net(sk);
 656	char devname[IFNAMSIZ];
 657
 658	if (sk->sk_bound_dev_if == 0) {
 659		len = 0;
 660		goto zero;
 661	}
 662
 663	ret = -EINVAL;
 664	if (len < IFNAMSIZ)
 665		goto out;
 666
 667	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 668	if (ret)
 669		goto out;
 670
 671	len = strlen(devname) + 1;
 672
 673	ret = -EFAULT;
 674	if (copy_to_user(optval, devname, len))
 675		goto out;
 676
 677zero:
 678	ret = -EFAULT;
 679	if (put_user(len, optlen))
 680		goto out;
 681
 682	ret = 0;
 683
 684out:
 685#endif
 686
 687	return ret;
 688}
 689
 690static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 691{
 692	if (valbool)
 693		sock_set_flag(sk, bit);
 694	else
 695		sock_reset_flag(sk, bit);
 696}
 697
 698bool sk_mc_loop(struct sock *sk)
 699{
 700	if (dev_recursion_level())
 701		return false;
 702	if (!sk)
 703		return true;
 704	switch (sk->sk_family) {
 705	case AF_INET:
 706		return inet_sk(sk)->mc_loop;
 707#if IS_ENABLED(CONFIG_IPV6)
 708	case AF_INET6:
 709		return inet6_sk(sk)->mc_loop;
 710#endif
 711	}
 712	WARN_ON(1);
 713	return true;
 714}
 715EXPORT_SYMBOL(sk_mc_loop);
 716
 717/*
 718 *	This is meant for all protocols to use and covers goings on
 719 *	at the socket level. Everything here is generic.
 720 */
 721
 722int sock_setsockopt(struct socket *sock, int level, int optname,
 723		    char __user *optval, unsigned int optlen)
 724{
 725	struct sock_txtime sk_txtime;
 726	struct sock *sk = sock->sk;
 727	int val;
 728	int valbool;
 729	struct linger ling;
 730	int ret = 0;
 731
 732	/*
 733	 *	Options without arguments
 734	 */
 735
 736	if (optname == SO_BINDTODEVICE)
 737		return sock_setbindtodevice(sk, optval, optlen);
 738
 739	if (optlen < sizeof(int))
 740		return -EINVAL;
 741
 742	if (get_user(val, (int __user *)optval))
 743		return -EFAULT;
 744
 745	valbool = val ? 1 : 0;
 746
 747	lock_sock(sk);
 748
 749	switch (optname) {
 750	case SO_DEBUG:
 751		if (val && !capable(CAP_NET_ADMIN))
 752			ret = -EACCES;
 753		else
 754			sock_valbool_flag(sk, SOCK_DBG, valbool);
 755		break;
 756	case SO_REUSEADDR:
 757		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 758		break;
 759	case SO_REUSEPORT:
 760		sk->sk_reuseport = valbool;
 761		break;
 762	case SO_TYPE:
 763	case SO_PROTOCOL:
 764	case SO_DOMAIN:
 765	case SO_ERROR:
 766		ret = -ENOPROTOOPT;
 767		break;
 768	case SO_DONTROUTE:
 769		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 770		sk_dst_reset(sk);
 771		break;
 772	case SO_BROADCAST:
 773		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 774		break;
 775	case SO_SNDBUF:
 776		/* Don't error on this BSD doesn't and if you think
 777		 * about it this is right. Otherwise apps have to
 778		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 779		 * are treated in BSD as hints
 780		 */
 781		val = min_t(u32, val, sysctl_wmem_max);
 782set_sndbuf:
 783		/* Ensure val * 2 fits into an int, to prevent max_t()
 784		 * from treating it as a negative value.
 785		 */
 786		val = min_t(int, val, INT_MAX / 2);
 787		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 788		WRITE_ONCE(sk->sk_sndbuf,
 789			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 790		/* Wake up sending tasks if we upped the value. */
 791		sk->sk_write_space(sk);
 792		break;
 793
 794	case SO_SNDBUFFORCE:
 795		if (!capable(CAP_NET_ADMIN)) {
 796			ret = -EPERM;
 797			break;
 798		}
 799
 800		/* No negative values (to prevent underflow, as val will be
 801		 * multiplied by 2).
 802		 */
 803		if (val < 0)
 804			val = 0;
 805		goto set_sndbuf;
 806
 807	case SO_RCVBUF:
 808		/* Don't error on this BSD doesn't and if you think
 809		 * about it this is right. Otherwise apps have to
 810		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 811		 * are treated in BSD as hints
 812		 */
 813		val = min_t(u32, val, sysctl_rmem_max);
 814set_rcvbuf:
 815		/* Ensure val * 2 fits into an int, to prevent max_t()
 816		 * from treating it as a negative value.
 817		 */
 818		val = min_t(int, val, INT_MAX / 2);
 819		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 820		/*
 821		 * We double it on the way in to account for
 822		 * "struct sk_buff" etc. overhead.   Applications
 823		 * assume that the SO_RCVBUF setting they make will
 824		 * allow that much actual data to be received on that
 825		 * socket.
 826		 *
 827		 * Applications are unaware that "struct sk_buff" and
 828		 * other overheads allocate from the receive buffer
 829		 * during socket buffer allocation.
 830		 *
 831		 * And after considering the possible alternatives,
 832		 * returning the value we actually used in getsockopt
 833		 * is the most desirable behavior.
 834		 */
 835		WRITE_ONCE(sk->sk_rcvbuf,
 836			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
 837		break;
 838
 839	case SO_RCVBUFFORCE:
 840		if (!capable(CAP_NET_ADMIN)) {
 841			ret = -EPERM;
 842			break;
 843		}
 844
 845		/* No negative values (to prevent underflow, as val will be
 846		 * multiplied by 2).
 847		 */
 848		if (val < 0)
 849			val = 0;
 850		goto set_rcvbuf;
 851
 852	case SO_KEEPALIVE:
 853		if (sk->sk_prot->keepalive)
 854			sk->sk_prot->keepalive(sk, valbool);
 
 
 855		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 856		break;
 857
 858	case SO_OOBINLINE:
 859		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 860		break;
 861
 862	case SO_NO_CHECK:
 863		sk->sk_no_check_tx = valbool;
 864		break;
 865
 866	case SO_PRIORITY:
 867		if ((val >= 0 && val <= 6) ||
 868		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 869			sk->sk_priority = val;
 870		else
 871			ret = -EPERM;
 872		break;
 873
 874	case SO_LINGER:
 875		if (optlen < sizeof(ling)) {
 876			ret = -EINVAL;	/* 1003.1g */
 877			break;
 878		}
 879		if (copy_from_user(&ling, optval, sizeof(ling))) {
 880			ret = -EFAULT;
 881			break;
 882		}
 883		if (!ling.l_onoff)
 884			sock_reset_flag(sk, SOCK_LINGER);
 885		else {
 886#if (BITS_PER_LONG == 32)
 887			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 888				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 889			else
 890#endif
 891				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 892			sock_set_flag(sk, SOCK_LINGER);
 893		}
 894		break;
 895
 896	case SO_BSDCOMPAT:
 897		sock_warn_obsolete_bsdism("setsockopt");
 898		break;
 899
 900	case SO_PASSCRED:
 901		if (valbool)
 902			set_bit(SOCK_PASSCRED, &sock->flags);
 903		else
 904			clear_bit(SOCK_PASSCRED, &sock->flags);
 905		break;
 906
 907	case SO_TIMESTAMP_OLD:
 908	case SO_TIMESTAMP_NEW:
 909	case SO_TIMESTAMPNS_OLD:
 910	case SO_TIMESTAMPNS_NEW:
 911		if (valbool)  {
 912			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
 913				sock_set_flag(sk, SOCK_TSTAMP_NEW);
 914			else
 915				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 916
 917			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
 918				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 919			else
 920				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 921			sock_set_flag(sk, SOCK_RCVTSTAMP);
 922			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 923		} else {
 924			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 925			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 926			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 927		}
 928		break;
 929
 930	case SO_TIMESTAMPING_NEW:
 931		sock_set_flag(sk, SOCK_TSTAMP_NEW);
 932		/* fall through */
 933	case SO_TIMESTAMPING_OLD:
 934		if (val & ~SOF_TIMESTAMPING_MASK) {
 935			ret = -EINVAL;
 936			break;
 937		}
 938
 939		if (val & SOF_TIMESTAMPING_OPT_ID &&
 940		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 941			if (sk->sk_protocol == IPPROTO_TCP &&
 942			    sk->sk_type == SOCK_STREAM) {
 943				if ((1 << sk->sk_state) &
 944				    (TCPF_CLOSE | TCPF_LISTEN)) {
 945					ret = -EINVAL;
 946					break;
 947				}
 948				sk->sk_tskey = tcp_sk(sk)->snd_una;
 949			} else {
 950				sk->sk_tskey = 0;
 951			}
 952		}
 953
 954		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 955		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 956			ret = -EINVAL;
 957			break;
 958		}
 959
 960		sk->sk_tsflags = val;
 961		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 962			sock_enable_timestamp(sk,
 963					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 964		else {
 965			if (optname == SO_TIMESTAMPING_NEW)
 966				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 967
 968			sock_disable_timestamp(sk,
 969					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 970		}
 
 
 
 
 
 971		break;
 972
 973	case SO_RCVLOWAT:
 974		if (val < 0)
 975			val = INT_MAX;
 976		if (sock->ops->set_rcvlowat)
 977			ret = sock->ops->set_rcvlowat(sk, val);
 978		else
 979			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
 980		break;
 981
 982	case SO_RCVTIMEO_OLD:
 983	case SO_RCVTIMEO_NEW:
 984		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
 985		break;
 986
 987	case SO_SNDTIMEO_OLD:
 988	case SO_SNDTIMEO_NEW:
 989		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
 990		break;
 991
 992	case SO_ATTACH_FILTER:
 993		ret = -EINVAL;
 994		if (optlen == sizeof(struct sock_fprog)) {
 995			struct sock_fprog fprog;
 996
 997			ret = -EFAULT;
 998			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 999				break;
1000
1001			ret = sk_attach_filter(&fprog, sk);
1002		}
1003		break;
1004
1005	case SO_ATTACH_BPF:
1006		ret = -EINVAL;
1007		if (optlen == sizeof(u32)) {
1008			u32 ufd;
1009
1010			ret = -EFAULT;
1011			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012				break;
1013
1014			ret = sk_attach_bpf(ufd, sk);
1015		}
1016		break;
1017
1018	case SO_ATTACH_REUSEPORT_CBPF:
1019		ret = -EINVAL;
1020		if (optlen == sizeof(struct sock_fprog)) {
1021			struct sock_fprog fprog;
1022
1023			ret = -EFAULT;
1024			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025				break;
1026
1027			ret = sk_reuseport_attach_filter(&fprog, sk);
1028		}
1029		break;
1030
1031	case SO_ATTACH_REUSEPORT_EBPF:
1032		ret = -EINVAL;
1033		if (optlen == sizeof(u32)) {
1034			u32 ufd;
1035
1036			ret = -EFAULT;
1037			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038				break;
1039
1040			ret = sk_reuseport_attach_bpf(ufd, sk);
1041		}
1042		break;
1043
1044	case SO_DETACH_REUSEPORT_BPF:
1045		ret = reuseport_detach_prog(sk);
1046		break;
1047
1048	case SO_DETACH_FILTER:
1049		ret = sk_detach_filter(sk);
1050		break;
1051
1052	case SO_LOCK_FILTER:
1053		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054			ret = -EPERM;
1055		else
1056			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057		break;
1058
1059	case SO_PASSSEC:
1060		if (valbool)
1061			set_bit(SOCK_PASSSEC, &sock->flags);
1062		else
1063			clear_bit(SOCK_PASSSEC, &sock->flags);
1064		break;
1065	case SO_MARK:
1066		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067			ret = -EPERM;
1068		} else if (val != sk->sk_mark) {
1069			sk->sk_mark = val;
1070			sk_dst_reset(sk);
1071		}
1072		break;
1073
 
 
1074	case SO_RXQ_OVFL:
1075		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076		break;
1077
1078	case SO_WIFI_STATUS:
1079		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080		break;
1081
1082	case SO_PEEK_OFF:
1083		if (sock->ops->set_peek_off)
1084			ret = sock->ops->set_peek_off(sk, val);
1085		else
1086			ret = -EOPNOTSUPP;
1087		break;
1088
1089	case SO_NOFCS:
1090		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091		break;
1092
1093	case SO_SELECT_ERR_QUEUE:
1094		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095		break;
1096
1097#ifdef CONFIG_NET_RX_BUSY_POLL
1098	case SO_BUSY_POLL:
1099		/* allow unprivileged users to decrease the value */
1100		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101			ret = -EPERM;
1102		else {
1103			if (val < 0)
1104				ret = -EINVAL;
1105			else
1106				sk->sk_ll_usec = val;
1107		}
1108		break;
1109#endif
1110
1111	case SO_MAX_PACING_RATE:
1112		{
1113		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114
1115		if (sizeof(ulval) != sizeof(val) &&
1116		    optlen >= sizeof(ulval) &&
1117		    get_user(ulval, (unsigned long __user *)optval)) {
1118			ret = -EFAULT;
1119			break;
1120		}
1121		if (ulval != ~0UL)
1122			cmpxchg(&sk->sk_pacing_status,
1123				SK_PACING_NONE,
1124				SK_PACING_NEEDED);
1125		sk->sk_max_pacing_rate = ulval;
1126		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127		break;
1128		}
1129	case SO_INCOMING_CPU:
1130		WRITE_ONCE(sk->sk_incoming_cpu, val);
1131		break;
1132
1133	case SO_CNX_ADVICE:
1134		if (val == 1)
1135			dst_negative_advice(sk);
1136		break;
1137
1138	case SO_ZEROCOPY:
1139		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140			if (!((sk->sk_type == SOCK_STREAM &&
1141			       sk->sk_protocol == IPPROTO_TCP) ||
1142			      (sk->sk_type == SOCK_DGRAM &&
1143			       sk->sk_protocol == IPPROTO_UDP)))
1144				ret = -ENOTSUPP;
1145		} else if (sk->sk_family != PF_RDS) {
1146			ret = -ENOTSUPP;
1147		}
1148		if (!ret) {
1149			if (val < 0 || val > 1)
1150				ret = -EINVAL;
1151			else
1152				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153		}
1154		break;
1155
1156	case SO_TXTIME:
1157		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158			ret = -EPERM;
1159		} else if (optlen != sizeof(struct sock_txtime)) {
1160			ret = -EINVAL;
1161		} else if (copy_from_user(&sk_txtime, optval,
1162			   sizeof(struct sock_txtime))) {
1163			ret = -EFAULT;
1164		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165			ret = -EINVAL;
1166		} else {
1167			sock_valbool_flag(sk, SOCK_TXTIME, true);
1168			sk->sk_clockid = sk_txtime.clockid;
1169			sk->sk_txtime_deadline_mode =
1170				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171			sk->sk_txtime_report_errors =
1172				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1173		}
1174		break;
1175
1176	case SO_BINDTOIFINDEX:
1177		ret = sock_setbindtodevice_locked(sk, val);
1178		break;
1179
1180	default:
1181		ret = -ENOPROTOOPT;
1182		break;
1183	}
1184	release_sock(sk);
1185	return ret;
1186}
1187EXPORT_SYMBOL(sock_setsockopt);
1188
1189
1190static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191			  struct ucred *ucred)
1192{
1193	ucred->pid = pid_vnr(pid);
1194	ucred->uid = ucred->gid = -1;
1195	if (cred) {
1196		struct user_namespace *current_ns = current_user_ns();
1197
1198		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200	}
1201}
1202
1203static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204{
1205	struct user_namespace *user_ns = current_user_ns();
1206	int i;
1207
1208	for (i = 0; i < src->ngroups; i++)
1209		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210			return -EFAULT;
1211
1212	return 0;
1213}
1214
1215int sock_getsockopt(struct socket *sock, int level, int optname,
1216		    char __user *optval, int __user *optlen)
1217{
1218	struct sock *sk = sock->sk;
1219
1220	union {
1221		int val;
1222		u64 val64;
1223		unsigned long ulval;
1224		struct linger ling;
1225		struct old_timeval32 tm32;
1226		struct __kernel_old_timeval tm;
1227		struct  __kernel_sock_timeval stm;
1228		struct sock_txtime txtime;
1229	} v;
1230
1231	int lv = sizeof(int);
1232	int len;
1233
1234	if (get_user(len, optlen))
1235		return -EFAULT;
1236	if (len < 0)
1237		return -EINVAL;
1238
1239	memset(&v, 0, sizeof(v));
1240
1241	switch (optname) {
1242	case SO_DEBUG:
1243		v.val = sock_flag(sk, SOCK_DBG);
1244		break;
1245
1246	case SO_DONTROUTE:
1247		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248		break;
1249
1250	case SO_BROADCAST:
1251		v.val = sock_flag(sk, SOCK_BROADCAST);
1252		break;
1253
1254	case SO_SNDBUF:
1255		v.val = sk->sk_sndbuf;
1256		break;
1257
1258	case SO_RCVBUF:
1259		v.val = sk->sk_rcvbuf;
1260		break;
1261
1262	case SO_REUSEADDR:
1263		v.val = sk->sk_reuse;
1264		break;
1265
1266	case SO_REUSEPORT:
1267		v.val = sk->sk_reuseport;
1268		break;
1269
1270	case SO_KEEPALIVE:
1271		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272		break;
1273
1274	case SO_TYPE:
1275		v.val = sk->sk_type;
1276		break;
1277
1278	case SO_PROTOCOL:
1279		v.val = sk->sk_protocol;
1280		break;
1281
1282	case SO_DOMAIN:
1283		v.val = sk->sk_family;
1284		break;
1285
1286	case SO_ERROR:
1287		v.val = -sock_error(sk);
1288		if (v.val == 0)
1289			v.val = xchg(&sk->sk_err_soft, 0);
1290		break;
1291
1292	case SO_OOBINLINE:
1293		v.val = sock_flag(sk, SOCK_URGINLINE);
1294		break;
1295
1296	case SO_NO_CHECK:
1297		v.val = sk->sk_no_check_tx;
1298		break;
1299
1300	case SO_PRIORITY:
1301		v.val = sk->sk_priority;
1302		break;
1303
1304	case SO_LINGER:
1305		lv		= sizeof(v.ling);
1306		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1307		v.ling.l_linger	= sk->sk_lingertime / HZ;
1308		break;
1309
1310	case SO_BSDCOMPAT:
1311		sock_warn_obsolete_bsdism("getsockopt");
1312		break;
1313
1314	case SO_TIMESTAMP_OLD:
1315		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1318		break;
1319
1320	case SO_TIMESTAMPNS_OLD:
1321		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322		break;
1323
1324	case SO_TIMESTAMP_NEW:
1325		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326		break;
1327
1328	case SO_TIMESTAMPNS_NEW:
1329		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330		break;
1331
1332	case SO_TIMESTAMPING_OLD:
1333		v.val = sk->sk_tsflags;
1334		break;
1335
1336	case SO_RCVTIMEO_OLD:
1337	case SO_RCVTIMEO_NEW:
1338		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339		break;
1340
1341	case SO_SNDTIMEO_OLD:
1342	case SO_SNDTIMEO_NEW:
1343		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344		break;
1345
1346	case SO_RCVLOWAT:
1347		v.val = sk->sk_rcvlowat;
1348		break;
1349
1350	case SO_SNDLOWAT:
1351		v.val = 1;
1352		break;
1353
1354	case SO_PASSCRED:
1355		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356		break;
1357
1358	case SO_PEERCRED:
1359	{
1360		struct ucred peercred;
1361		if (len > sizeof(peercred))
1362			len = sizeof(peercred);
1363		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364		if (copy_to_user(optval, &peercred, len))
1365			return -EFAULT;
1366		goto lenout;
1367	}
1368
1369	case SO_PEERGROUPS:
1370	{
1371		int ret, n;
1372
1373		if (!sk->sk_peer_cred)
1374			return -ENODATA;
1375
1376		n = sk->sk_peer_cred->group_info->ngroups;
1377		if (len < n * sizeof(gid_t)) {
1378			len = n * sizeof(gid_t);
1379			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380		}
1381		len = n * sizeof(gid_t);
1382
1383		ret = groups_to_user((gid_t __user *)optval,
1384				     sk->sk_peer_cred->group_info);
1385		if (ret)
1386			return ret;
1387		goto lenout;
1388	}
1389
1390	case SO_PEERNAME:
1391	{
1392		char address[128];
1393
1394		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395		if (lv < 0)
1396			return -ENOTCONN;
1397		if (lv < len)
1398			return -EINVAL;
1399		if (copy_to_user(optval, address, len))
1400			return -EFAULT;
1401		goto lenout;
1402	}
1403
1404	/* Dubious BSD thing... Probably nobody even uses it, but
1405	 * the UNIX standard wants it for whatever reason... -DaveM
1406	 */
1407	case SO_ACCEPTCONN:
1408		v.val = sk->sk_state == TCP_LISTEN;
1409		break;
1410
1411	case SO_PASSSEC:
1412		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413		break;
1414
1415	case SO_PEERSEC:
1416		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417
1418	case SO_MARK:
1419		v.val = sk->sk_mark;
1420		break;
1421
1422	case SO_RXQ_OVFL:
1423		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424		break;
1425
1426	case SO_WIFI_STATUS:
1427		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428		break;
1429
1430	case SO_PEEK_OFF:
1431		if (!sock->ops->set_peek_off)
1432			return -EOPNOTSUPP;
1433
1434		v.val = sk->sk_peek_off;
1435		break;
1436	case SO_NOFCS:
1437		v.val = sock_flag(sk, SOCK_NOFCS);
1438		break;
1439
1440	case SO_BINDTODEVICE:
1441		return sock_getbindtodevice(sk, optval, optlen, len);
1442
1443	case SO_GET_FILTER:
1444		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445		if (len < 0)
1446			return len;
1447
1448		goto lenout;
1449
1450	case SO_LOCK_FILTER:
1451		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452		break;
1453
1454	case SO_BPF_EXTENSIONS:
1455		v.val = bpf_tell_extensions();
1456		break;
1457
1458	case SO_SELECT_ERR_QUEUE:
1459		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460		break;
1461
1462#ifdef CONFIG_NET_RX_BUSY_POLL
1463	case SO_BUSY_POLL:
1464		v.val = sk->sk_ll_usec;
1465		break;
1466#endif
1467
1468	case SO_MAX_PACING_RATE:
1469		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470			lv = sizeof(v.ulval);
1471			v.ulval = sk->sk_max_pacing_rate;
1472		} else {
1473			/* 32bit version */
1474			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475		}
1476		break;
1477
1478	case SO_INCOMING_CPU:
1479		v.val = READ_ONCE(sk->sk_incoming_cpu);
1480		break;
1481
1482	case SO_MEMINFO:
1483	{
1484		u32 meminfo[SK_MEMINFO_VARS];
1485
1486		sk_get_meminfo(sk, meminfo);
1487
1488		len = min_t(unsigned int, len, sizeof(meminfo));
1489		if (copy_to_user(optval, &meminfo, len))
1490			return -EFAULT;
1491
1492		goto lenout;
1493	}
1494
1495#ifdef CONFIG_NET_RX_BUSY_POLL
1496	case SO_INCOMING_NAPI_ID:
1497		v.val = READ_ONCE(sk->sk_napi_id);
1498
1499		/* aggregate non-NAPI IDs down to 0 */
1500		if (v.val < MIN_NAPI_ID)
1501			v.val = 0;
1502
1503		break;
1504#endif
1505
1506	case SO_COOKIE:
1507		lv = sizeof(u64);
1508		if (len < lv)
1509			return -EINVAL;
1510		v.val64 = sock_gen_cookie(sk);
1511		break;
1512
1513	case SO_ZEROCOPY:
1514		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515		break;
1516
1517	case SO_TXTIME:
1518		lv = sizeof(v.txtime);
1519		v.txtime.clockid = sk->sk_clockid;
1520		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521				  SOF_TXTIME_DEADLINE_MODE : 0;
1522		v.txtime.flags |= sk->sk_txtime_report_errors ?
1523				  SOF_TXTIME_REPORT_ERRORS : 0;
1524		break;
1525
1526	case SO_BINDTOIFINDEX:
1527		v.val = sk->sk_bound_dev_if;
1528		break;
1529
1530	default:
1531		/* We implement the SO_SNDLOWAT etc to not be settable
1532		 * (1003.1g 7).
1533		 */
1534		return -ENOPROTOOPT;
1535	}
1536
1537	if (len > lv)
1538		len = lv;
1539	if (copy_to_user(optval, &v, len))
1540		return -EFAULT;
1541lenout:
1542	if (put_user(len, optlen))
1543		return -EFAULT;
1544	return 0;
1545}
1546
1547/*
1548 * Initialize an sk_lock.
1549 *
1550 * (We also register the sk_lock with the lock validator.)
1551 */
1552static inline void sock_lock_init(struct sock *sk)
1553{
1554	if (sk->sk_kern_sock)
1555		sock_lock_init_class_and_name(
1556			sk,
1557			af_family_kern_slock_key_strings[sk->sk_family],
1558			af_family_kern_slock_keys + sk->sk_family,
1559			af_family_kern_key_strings[sk->sk_family],
1560			af_family_kern_keys + sk->sk_family);
1561	else
1562		sock_lock_init_class_and_name(
1563			sk,
1564			af_family_slock_key_strings[sk->sk_family],
1565			af_family_slock_keys + sk->sk_family,
1566			af_family_key_strings[sk->sk_family],
1567			af_family_keys + sk->sk_family);
1568}
1569
1570/*
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574 */
1575static void sock_copy(struct sock *nsk, const struct sock *osk)
1576{
1577#ifdef CONFIG_SECURITY_NETWORK
1578	void *sptr = nsk->sk_security;
1579#endif
1580	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581
1582	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584
1585#ifdef CONFIG_SECURITY_NETWORK
1586	nsk->sk_security = sptr;
1587	security_sk_clone(osk, nsk);
1588#endif
1589}
1590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592		int family)
1593{
1594	struct sock *sk;
1595	struct kmem_cache *slab;
1596
1597	slab = prot->slab;
1598	if (slab != NULL) {
1599		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600		if (!sk)
1601			return sk;
1602		if (want_init_on_alloc(priority))
1603			sk_prot_clear_nulls(sk, prot->obj_size);
 
 
 
 
1604	} else
1605		sk = kmalloc(prot->obj_size, priority);
1606
1607	if (sk != NULL) {
 
 
1608		if (security_sk_alloc(sk, family, priority))
1609			goto out_free;
1610
1611		if (!try_module_get(prot->owner))
1612			goto out_free_sec;
1613		sk_tx_queue_clear(sk);
1614	}
1615
1616	return sk;
1617
1618out_free_sec:
1619	security_sk_free(sk);
1620out_free:
1621	if (slab != NULL)
1622		kmem_cache_free(slab, sk);
1623	else
1624		kfree(sk);
1625	return NULL;
1626}
1627
1628static void sk_prot_free(struct proto *prot, struct sock *sk)
1629{
1630	struct kmem_cache *slab;
1631	struct module *owner;
1632
1633	owner = prot->owner;
1634	slab = prot->slab;
1635
1636	cgroup_sk_free(&sk->sk_cgrp_data);
1637	mem_cgroup_sk_free(sk);
1638	security_sk_free(sk);
1639	if (slab != NULL)
1640		kmem_cache_free(slab, sk);
1641	else
1642		kfree(sk);
1643	module_put(owner);
1644}
1645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646/**
1647 *	sk_alloc - All socket objects are allocated here
1648 *	@net: the applicable net namespace
1649 *	@family: protocol family
1650 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 *	@prot: struct proto associated with this new sock instance
1652 *	@kern: is this to be a kernel socket?
1653 */
1654struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655		      struct proto *prot, int kern)
1656{
1657	struct sock *sk;
1658
1659	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660	if (sk) {
1661		sk->sk_family = family;
1662		/*
1663		 * See comment in struct sock definition to understand
1664		 * why we need sk_prot_creator -acme
1665		 */
1666		sk->sk_prot = sk->sk_prot_creator = prot;
1667		sk->sk_kern_sock = kern;
1668		sock_lock_init(sk);
1669		sk->sk_net_refcnt = kern ? 0 : 1;
1670		if (likely(sk->sk_net_refcnt)) {
1671			get_net(net);
1672			sock_inuse_add(net, 1);
1673		}
1674
1675		sock_net_set(sk, net);
1676		refcount_set(&sk->sk_wmem_alloc, 1);
1677
1678		mem_cgroup_sk_alloc(sk);
1679		cgroup_sk_alloc(&sk->sk_cgrp_data);
1680		sock_update_classid(&sk->sk_cgrp_data);
1681		sock_update_netprioidx(&sk->sk_cgrp_data);
1682	}
1683
1684	return sk;
1685}
1686EXPORT_SYMBOL(sk_alloc);
1687
1688/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689 * grace period. This is the case for UDP sockets and TCP listeners.
1690 */
1691static void __sk_destruct(struct rcu_head *head)
1692{
1693	struct sock *sk = container_of(head, struct sock, sk_rcu);
1694	struct sk_filter *filter;
1695
1696	if (sk->sk_destruct)
1697		sk->sk_destruct(sk);
1698
1699	filter = rcu_dereference_check(sk->sk_filter,
1700				       refcount_read(&sk->sk_wmem_alloc) == 0);
1701	if (filter) {
1702		sk_filter_uncharge(sk, filter);
1703		RCU_INIT_POINTER(sk->sk_filter, NULL);
1704	}
1705
1706	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708#ifdef CONFIG_BPF_SYSCALL
1709	bpf_sk_storage_free(sk);
1710#endif
1711
1712	if (atomic_read(&sk->sk_omem_alloc))
1713		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714			 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716	if (sk->sk_frag.page) {
1717		put_page(sk->sk_frag.page);
1718		sk->sk_frag.page = NULL;
1719	}
1720
1721	if (sk->sk_peer_cred)
1722		put_cred(sk->sk_peer_cred);
1723	put_pid(sk->sk_peer_pid);
1724	if (likely(sk->sk_net_refcnt))
1725		put_net(sock_net(sk));
1726	sk_prot_free(sk->sk_prot_creator, sk);
1727}
1728
1729void sk_destruct(struct sock *sk)
1730{
1731	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732
1733	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734		reuseport_detach_sock(sk);
1735		use_call_rcu = true;
1736	}
1737
1738	if (use_call_rcu)
1739		call_rcu(&sk->sk_rcu, __sk_destruct);
1740	else
1741		__sk_destruct(&sk->sk_rcu);
1742}
1743
1744static void __sk_free(struct sock *sk)
1745{
1746	if (likely(sk->sk_net_refcnt))
1747		sock_inuse_add(sock_net(sk), -1);
1748
1749	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750		sock_diag_broadcast_destroy(sk);
1751	else
1752		sk_destruct(sk);
1753}
1754
1755void sk_free(struct sock *sk)
1756{
1757	/*
1758	 * We subtract one from sk_wmem_alloc and can know if
1759	 * some packets are still in some tx queue.
1760	 * If not null, sock_wfree() will call __sk_free(sk) later
1761	 */
1762	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763		__sk_free(sk);
1764}
1765EXPORT_SYMBOL(sk_free);
1766
1767static void sk_init_common(struct sock *sk)
 
 
 
 
 
 
 
1768{
1769	skb_queue_head_init(&sk->sk_receive_queue);
1770	skb_queue_head_init(&sk->sk_write_queue);
1771	skb_queue_head_init(&sk->sk_error_queue);
 
 
 
 
 
 
 
1772
1773	rwlock_init(&sk->sk_callback_lock);
1774	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775			af_rlock_keys + sk->sk_family,
1776			af_family_rlock_key_strings[sk->sk_family]);
1777	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778			af_wlock_keys + sk->sk_family,
1779			af_family_wlock_key_strings[sk->sk_family]);
1780	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781			af_elock_keys + sk->sk_family,
1782			af_family_elock_key_strings[sk->sk_family]);
1783	lockdep_set_class_and_name(&sk->sk_callback_lock,
1784			af_callback_keys + sk->sk_family,
1785			af_family_clock_key_strings[sk->sk_family]);
1786}
1787
1788/**
1789 *	sk_clone_lock - clone a socket, and lock its clone
1790 *	@sk: the socket to clone
1791 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 *
1793 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 */
1795struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796{
1797	struct sock *newsk;
1798	bool is_charged = true;
1799
1800	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801	if (newsk != NULL) {
1802		struct sk_filter *filter;
1803
1804		sock_copy(newsk, sk);
1805
1806		newsk->sk_prot_creator = sk->sk_prot;
1807
1808		/* SANITY */
1809		if (likely(newsk->sk_net_refcnt))
1810			get_net(sock_net(newsk));
1811		sk_node_init(&newsk->sk_node);
1812		sock_lock_init(newsk);
1813		bh_lock_sock(newsk);
1814		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815		newsk->sk_backlog.len = 0;
1816
1817		atomic_set(&newsk->sk_rmem_alloc, 0);
1818		/*
1819		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820		 */
1821		refcount_set(&newsk->sk_wmem_alloc, 1);
1822		atomic_set(&newsk->sk_omem_alloc, 0);
1823		sk_init_common(newsk);
 
 
 
 
 
 
 
 
 
 
1824
1825		newsk->sk_dst_cache	= NULL;
1826		newsk->sk_dst_pending_confirm = 0;
1827		newsk->sk_wmem_queued	= 0;
1828		newsk->sk_forward_alloc = 0;
1829		atomic_set(&newsk->sk_drops, 0);
1830		newsk->sk_send_head	= NULL;
1831		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832		atomic_set(&newsk->sk_zckey, 0);
1833
1834		sock_reset_flag(newsk, SOCK_DONE);
1835		mem_cgroup_sk_alloc(newsk);
1836		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837
1838		rcu_read_lock();
1839		filter = rcu_dereference(sk->sk_filter);
1840		if (filter != NULL)
1841			/* though it's an empty new sock, the charging may fail
1842			 * if sysctl_optmem_max was changed between creation of
1843			 * original socket and cloning
1844			 */
1845			is_charged = sk_filter_charge(newsk, filter);
1846		RCU_INIT_POINTER(newsk->sk_filter, filter);
1847		rcu_read_unlock();
1848
1849		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850			/* We need to make sure that we don't uncharge the new
1851			 * socket if we couldn't charge it in the first place
1852			 * as otherwise we uncharge the parent's filter.
1853			 */
1854			if (!is_charged)
1855				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856			sk_free_unlock_clone(newsk);
1857			newsk = NULL;
1858			goto out;
1859		}
1860		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861
1862		if (bpf_sk_storage_clone(sk, newsk)) {
1863			sk_free_unlock_clone(newsk);
1864			newsk = NULL;
1865			goto out;
1866		}
1867
1868		newsk->sk_err	   = 0;
1869		newsk->sk_err_soft = 0;
1870		newsk->sk_priority = 0;
1871		newsk->sk_incoming_cpu = raw_smp_processor_id();
1872		if (likely(newsk->sk_net_refcnt))
1873			sock_inuse_add(sock_net(newsk), 1);
1874
1875		/*
1876		 * Before updating sk_refcnt, we must commit prior changes to memory
1877		 * (Documentation/RCU/rculist_nulls.txt for details)
1878		 */
1879		smp_wmb();
1880		refcount_set(&newsk->sk_refcnt, 2);
1881
1882		/*
1883		 * Increment the counter in the same struct proto as the master
1884		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885		 * is the same as sk->sk_prot->socks, as this field was copied
1886		 * with memcpy).
1887		 *
1888		 * This _changes_ the previous behaviour, where
1889		 * tcp_create_openreq_child always was incrementing the
1890		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891		 * to be taken into account in all callers. -acme
1892		 */
1893		sk_refcnt_debug_inc(newsk);
1894		sk_set_socket(newsk, NULL);
1895		RCU_INIT_POINTER(newsk->sk_wq, NULL);
 
 
1896
1897		if (newsk->sk_prot->sockets_allocated)
1898			sk_sockets_allocated_inc(newsk);
1899
1900		if (sock_needs_netstamp(sk) &&
1901		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902			net_enable_timestamp();
1903	}
1904out:
1905	return newsk;
1906}
1907EXPORT_SYMBOL_GPL(sk_clone_lock);
1908
1909void sk_free_unlock_clone(struct sock *sk)
1910{
1911	/* It is still raw copy of parent, so invalidate
1912	 * destructor and make plain sk_free() */
1913	sk->sk_destruct = NULL;
1914	bh_unlock_sock(sk);
1915	sk_free(sk);
1916}
1917EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918
1919void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920{
1921	u32 max_segs = 1;
1922
1923	sk_dst_set(sk, dst);
1924	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925	if (sk->sk_route_caps & NETIF_F_GSO)
1926		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928	if (sk_can_gso(sk)) {
1929		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931		} else {
1932			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933			sk->sk_gso_max_size = dst->dev->gso_max_size;
1934			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935		}
1936	}
1937	sk->sk_gso_max_segs = max_segs;
1938}
1939EXPORT_SYMBOL_GPL(sk_setup_caps);
1940
 
 
 
 
 
 
 
 
 
 
 
 
 
1941/*
1942 *	Simple resource managers for sockets.
1943 */
1944
1945
1946/*
1947 * Write buffer destructor automatically called from kfree_skb.
1948 */
1949void sock_wfree(struct sk_buff *skb)
1950{
1951	struct sock *sk = skb->sk;
1952	unsigned int len = skb->truesize;
1953
1954	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955		/*
1956		 * Keep a reference on sk_wmem_alloc, this will be released
1957		 * after sk_write_space() call
1958		 */
1959		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960		sk->sk_write_space(sk);
1961		len = 1;
1962	}
1963	/*
1964	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965	 * could not do because of in-flight packets
1966	 */
1967	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968		__sk_free(sk);
1969}
1970EXPORT_SYMBOL(sock_wfree);
1971
1972/* This variant of sock_wfree() is used by TCP,
1973 * since it sets SOCK_USE_WRITE_QUEUE.
1974 */
1975void __sock_wfree(struct sk_buff *skb)
1976{
1977	struct sock *sk = skb->sk;
1978
1979	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980		__sk_free(sk);
1981}
1982
1983void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984{
1985	skb_orphan(skb);
1986	skb->sk = sk;
1987#ifdef CONFIG_INET
1988	if (unlikely(!sk_fullsock(sk))) {
1989		skb->destructor = sock_edemux;
1990		sock_hold(sk);
1991		return;
1992	}
1993#endif
1994	skb->destructor = sock_wfree;
1995	skb_set_hash_from_sk(skb, sk);
1996	/*
1997	 * We used to take a refcount on sk, but following operation
1998	 * is enough to guarantee sk_free() wont free this sock until
1999	 * all in-flight packets are completed
2000	 */
2001	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002}
2003EXPORT_SYMBOL(skb_set_owner_w);
2004
2005static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006{
2007#ifdef CONFIG_TLS_DEVICE
2008	/* Drivers depend on in-order delivery for crypto offload,
2009	 * partial orphan breaks out-of-order-OK logic.
2010	 */
2011	if (skb->decrypted)
2012		return false;
2013#endif
2014	return (skb->destructor == sock_wfree ||
2015		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016}
2017
2018/* This helper is used by netem, as it can hold packets in its
2019 * delay queue. We want to allow the owner socket to send more
2020 * packets, as if they were already TX completed by a typical driver.
2021 * But we also want to keep skb->sk set because some packet schedulers
2022 * rely on it (sch_fq for example).
2023 */
2024void skb_orphan_partial(struct sk_buff *skb)
2025{
2026	if (skb_is_tcp_pure_ack(skb))
2027		return;
2028
2029	if (can_skb_orphan_partial(skb)) {
2030		struct sock *sk = skb->sk;
2031
2032		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034			skb->destructor = sock_efree;
2035		}
2036	} else {
2037		skb_orphan(skb);
2038	}
2039}
2040EXPORT_SYMBOL(skb_orphan_partial);
2041
2042/*
2043 * Read buffer destructor automatically called from kfree_skb.
2044 */
2045void sock_rfree(struct sk_buff *skb)
2046{
2047	struct sock *sk = skb->sk;
2048	unsigned int len = skb->truesize;
2049
2050	atomic_sub(len, &sk->sk_rmem_alloc);
2051	sk_mem_uncharge(sk, len);
2052}
2053EXPORT_SYMBOL(sock_rfree);
2054
2055/*
2056 * Buffer destructor for skbs that are not used directly in read or write
2057 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058 */
2059void sock_efree(struct sk_buff *skb)
2060{
2061	sock_put(skb->sk);
2062}
2063EXPORT_SYMBOL(sock_efree);
2064
2065kuid_t sock_i_uid(struct sock *sk)
2066{
2067	kuid_t uid;
2068
2069	read_lock_bh(&sk->sk_callback_lock);
2070	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071	read_unlock_bh(&sk->sk_callback_lock);
2072	return uid;
2073}
2074EXPORT_SYMBOL(sock_i_uid);
2075
2076unsigned long sock_i_ino(struct sock *sk)
2077{
2078	unsigned long ino;
2079
2080	read_lock_bh(&sk->sk_callback_lock);
2081	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082	read_unlock_bh(&sk->sk_callback_lock);
2083	return ino;
2084}
2085EXPORT_SYMBOL(sock_i_ino);
2086
2087/*
2088 * Allocate a skb from the socket's send buffer.
2089 */
2090struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091			     gfp_t priority)
2092{
2093	if (force ||
2094	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095		struct sk_buff *skb = alloc_skb(size, priority);
2096
2097		if (skb) {
2098			skb_set_owner_w(skb, sk);
2099			return skb;
2100		}
2101	}
2102	return NULL;
2103}
2104EXPORT_SYMBOL(sock_wmalloc);
2105
2106static void sock_ofree(struct sk_buff *skb)
2107{
2108	struct sock *sk = skb->sk;
2109
2110	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111}
2112
2113struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114			     gfp_t priority)
2115{
2116	struct sk_buff *skb;
2117
2118	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120	    sysctl_optmem_max)
2121		return NULL;
2122
2123	skb = alloc_skb(size, priority);
2124	if (!skb)
2125		return NULL;
2126
2127	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128	skb->sk = sk;
2129	skb->destructor = sock_ofree;
2130	return skb;
2131}
2132
2133/*
2134 * Allocate a memory block from the socket's option memory buffer.
2135 */
2136void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137{
2138	if ((unsigned int)size <= sysctl_optmem_max &&
2139	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140		void *mem;
2141		/* First do the add, to avoid the race if kmalloc
2142		 * might sleep.
2143		 */
2144		atomic_add(size, &sk->sk_omem_alloc);
2145		mem = kmalloc(size, priority);
2146		if (mem)
2147			return mem;
2148		atomic_sub(size, &sk->sk_omem_alloc);
2149	}
2150	return NULL;
2151}
2152EXPORT_SYMBOL(sock_kmalloc);
2153
2154/* Free an option memory block. Note, we actually want the inline
2155 * here as this allows gcc to detect the nullify and fold away the
2156 * condition entirely.
2157 */
2158static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159				  const bool nullify)
2160{
2161	if (WARN_ON_ONCE(!mem))
2162		return;
2163	if (nullify)
2164		kzfree(mem);
2165	else
2166		kfree(mem);
2167	atomic_sub(size, &sk->sk_omem_alloc);
2168}
2169
2170void sock_kfree_s(struct sock *sk, void *mem, int size)
2171{
2172	__sock_kfree_s(sk, mem, size, false);
2173}
2174EXPORT_SYMBOL(sock_kfree_s);
2175
2176void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177{
2178	__sock_kfree_s(sk, mem, size, true);
2179}
2180EXPORT_SYMBOL(sock_kzfree_s);
2181
2182/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183   I think, these locks should be removed for datagram sockets.
2184 */
2185static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186{
2187	DEFINE_WAIT(wait);
2188
2189	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190	for (;;) {
2191		if (!timeo)
2192			break;
2193		if (signal_pending(current))
2194			break;
2195		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198			break;
2199		if (sk->sk_shutdown & SEND_SHUTDOWN)
2200			break;
2201		if (sk->sk_err)
2202			break;
2203		timeo = schedule_timeout(timeo);
2204	}
2205	finish_wait(sk_sleep(sk), &wait);
2206	return timeo;
2207}
2208
2209
2210/*
2211 *	Generic send/receive buffer handlers
2212 */
2213
2214struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215				     unsigned long data_len, int noblock,
2216				     int *errcode, int max_page_order)
2217{
2218	struct sk_buff *skb;
 
2219	long timeo;
2220	int err;
 
 
 
 
 
 
 
 
 
2221
2222	timeo = sock_sndtimeo(sk, noblock);
2223	for (;;) {
2224		err = sock_error(sk);
2225		if (err != 0)
2226			goto failure;
2227
2228		err = -EPIPE;
2229		if (sk->sk_shutdown & SEND_SHUTDOWN)
2230			goto failure;
2231
2232		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234
2235		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 
 
 
 
 
2236		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237		err = -EAGAIN;
2238		if (!timeo)
2239			goto failure;
2240		if (signal_pending(current))
2241			goto interrupted;
2242		timeo = sock_wait_for_wmem(sk, timeo);
2243	}
2244	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245				   errcode, sk->sk_allocation);
2246	if (skb)
2247		skb_set_owner_w(skb, sk);
2248	return skb;
2249
2250interrupted:
2251	err = sock_intr_errno(timeo);
2252failure:
2253	*errcode = err;
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_alloc_send_pskb);
2257
2258struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259				    int noblock, int *errcode)
2260{
2261	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262}
2263EXPORT_SYMBOL(sock_alloc_send_skb);
2264
2265int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266		     struct sockcm_cookie *sockc)
2267{
2268	u32 tsflags;
2269
2270	switch (cmsg->cmsg_type) {
2271	case SO_MARK:
2272		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273			return -EPERM;
2274		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275			return -EINVAL;
2276		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277		break;
2278	case SO_TIMESTAMPING_OLD:
2279		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280			return -EINVAL;
2281
2282		tsflags = *(u32 *)CMSG_DATA(cmsg);
2283		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284			return -EINVAL;
2285
2286		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287		sockc->tsflags |= tsflags;
2288		break;
2289	case SCM_TXTIME:
2290		if (!sock_flag(sk, SOCK_TXTIME))
2291			return -EINVAL;
2292		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293			return -EINVAL;
2294		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295		break;
2296	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297	case SCM_RIGHTS:
2298	case SCM_CREDENTIALS:
2299		break;
2300	default:
2301		return -EINVAL;
2302	}
2303	return 0;
2304}
2305EXPORT_SYMBOL(__sock_cmsg_send);
2306
2307int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308		   struct sockcm_cookie *sockc)
2309{
2310	struct cmsghdr *cmsg;
2311	int ret;
2312
2313	for_each_cmsghdr(cmsg, msg) {
2314		if (!CMSG_OK(msg, cmsg))
2315			return -EINVAL;
2316		if (cmsg->cmsg_level != SOL_SOCKET)
2317			continue;
2318		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319		if (ret)
2320			return ret;
2321	}
2322	return 0;
2323}
2324EXPORT_SYMBOL(sock_cmsg_send);
2325
2326static void sk_enter_memory_pressure(struct sock *sk)
2327{
2328	if (!sk->sk_prot->enter_memory_pressure)
2329		return;
2330
2331	sk->sk_prot->enter_memory_pressure(sk);
2332}
2333
2334static void sk_leave_memory_pressure(struct sock *sk)
2335{
2336	if (sk->sk_prot->leave_memory_pressure) {
2337		sk->sk_prot->leave_memory_pressure(sk);
2338	} else {
2339		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340
2341		if (memory_pressure && READ_ONCE(*memory_pressure))
2342			WRITE_ONCE(*memory_pressure, 0);
2343	}
2344}
2345
2346/* On 32bit arches, an skb frag is limited to 2^15 */
2347#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2348DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349
2350/**
2351 * skb_page_frag_refill - check that a page_frag contains enough room
2352 * @sz: minimum size of the fragment we want to get
2353 * @pfrag: pointer to page_frag
2354 * @gfp: priority for memory allocation
2355 *
2356 * Note: While this allocator tries to use high order pages, there is
2357 * no guarantee that allocations succeed. Therefore, @sz MUST be
2358 * less or equal than PAGE_SIZE.
2359 */
2360bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361{
2362	if (pfrag->page) {
2363		if (page_ref_count(pfrag->page) == 1) {
2364			pfrag->offset = 0;
2365			return true;
2366		}
2367		if (pfrag->offset + sz <= pfrag->size)
2368			return true;
2369		put_page(pfrag->page);
2370	}
2371
2372	pfrag->offset = 0;
2373	if (SKB_FRAG_PAGE_ORDER &&
2374	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375		/* Avoid direct reclaim but allow kswapd to wake */
2376		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377					  __GFP_COMP | __GFP_NOWARN |
2378					  __GFP_NORETRY,
2379					  SKB_FRAG_PAGE_ORDER);
2380		if (likely(pfrag->page)) {
2381			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382			return true;
2383		}
2384	}
2385	pfrag->page = alloc_page(gfp);
2386	if (likely(pfrag->page)) {
2387		pfrag->size = PAGE_SIZE;
2388		return true;
2389	}
2390	return false;
2391}
2392EXPORT_SYMBOL(skb_page_frag_refill);
2393
2394bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395{
2396	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397		return true;
2398
2399	sk_enter_memory_pressure(sk);
2400	sk_stream_moderate_sndbuf(sk);
2401	return false;
2402}
2403EXPORT_SYMBOL(sk_page_frag_refill);
2404
2405static void __lock_sock(struct sock *sk)
2406	__releases(&sk->sk_lock.slock)
2407	__acquires(&sk->sk_lock.slock)
2408{
2409	DEFINE_WAIT(wait);
2410
2411	for (;;) {
2412		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413					TASK_UNINTERRUPTIBLE);
2414		spin_unlock_bh(&sk->sk_lock.slock);
2415		schedule();
2416		spin_lock_bh(&sk->sk_lock.slock);
2417		if (!sock_owned_by_user(sk))
2418			break;
2419	}
2420	finish_wait(&sk->sk_lock.wq, &wait);
2421}
2422
2423void __release_sock(struct sock *sk)
2424	__releases(&sk->sk_lock.slock)
2425	__acquires(&sk->sk_lock.slock)
2426{
2427	struct sk_buff *skb, *next;
2428
2429	while ((skb = sk->sk_backlog.head) != NULL) {
2430		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
 
2431
2432		spin_unlock_bh(&sk->sk_lock.slock);
 
2433
2434		do {
2435			next = skb->next;
2436			prefetch(next);
2437			WARN_ON_ONCE(skb_dst_is_noref(skb));
2438			skb_mark_not_on_list(skb);
2439			sk_backlog_rcv(sk, skb);
2440
2441			cond_resched();
 
 
 
 
 
 
2442
2443			skb = next;
2444		} while (skb != NULL);
2445
2446		spin_lock_bh(&sk->sk_lock.slock);
2447	}
2448
2449	/*
2450	 * Doing the zeroing here guarantee we can not loop forever
2451	 * while a wild producer attempts to flood us.
2452	 */
2453	sk->sk_backlog.len = 0;
2454}
2455
2456void __sk_flush_backlog(struct sock *sk)
2457{
2458	spin_lock_bh(&sk->sk_lock.slock);
2459	__release_sock(sk);
2460	spin_unlock_bh(&sk->sk_lock.slock);
2461}
2462
2463/**
2464 * sk_wait_data - wait for data to arrive at sk_receive_queue
2465 * @sk:    sock to wait on
2466 * @timeo: for how long
2467 * @skb:   last skb seen on sk_receive_queue
2468 *
2469 * Now socket state including sk->sk_err is changed only under lock,
2470 * hence we may omit checks after joining wait queue.
2471 * We check receive queue before schedule() only as optimization;
2472 * it is very likely that release_sock() added new data.
2473 */
2474int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475{
2476	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477	int rc;
 
2478
2479	add_wait_queue(sk_sleep(sk), &wait);
2480	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483	remove_wait_queue(sk_sleep(sk), &wait);
2484	return rc;
2485}
2486EXPORT_SYMBOL(sk_wait_data);
2487
2488/**
2489 *	__sk_mem_raise_allocated - increase memory_allocated
2490 *	@sk: socket
2491 *	@size: memory size to allocate
2492 *	@amt: pages to allocate
2493 *	@kind: allocation type
2494 *
2495 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
2496 */
2497int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498{
2499	struct proto *prot = sk->sk_prot;
2500	long allocated = sk_memory_allocated_add(sk, amt);
2501	bool charged = true;
 
 
 
2502
2503	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505		goto suppress_allocation;
2506
2507	/* Under limit. */
2508	if (allocated <= sk_prot_mem_limits(sk, 0)) {
 
2509		sk_leave_memory_pressure(sk);
2510		return 1;
2511	}
2512
2513	/* Under pressure. */
2514	if (allocated > sk_prot_mem_limits(sk, 1))
 
2515		sk_enter_memory_pressure(sk);
2516
2517	/* Over hard limit. */
2518	if (allocated > sk_prot_mem_limits(sk, 2))
 
2519		goto suppress_allocation;
2520
2521	/* guarantee minimum buffer size under pressure */
2522	if (kind == SK_MEM_RECV) {
2523		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524			return 1;
2525
2526	} else { /* SK_MEM_SEND */
2527		int wmem0 = sk_get_wmem0(sk, prot);
2528
2529		if (sk->sk_type == SOCK_STREAM) {
2530			if (sk->sk_wmem_queued < wmem0)
2531				return 1;
2532		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
 
2533				return 1;
2534		}
2535	}
2536
2537	if (sk_has_memory_pressure(sk)) {
2538		u64 alloc;
2539
2540		if (!sk_under_memory_pressure(sk))
2541			return 1;
2542		alloc = sk_sockets_allocated_read_positive(sk);
2543		if (sk_prot_mem_limits(sk, 2) > alloc *
2544		    sk_mem_pages(sk->sk_wmem_queued +
2545				 atomic_read(&sk->sk_rmem_alloc) +
2546				 sk->sk_forward_alloc))
2547			return 1;
2548	}
2549
2550suppress_allocation:
2551
2552	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553		sk_stream_moderate_sndbuf(sk);
2554
2555		/* Fail only if socket is _under_ its sndbuf.
2556		 * In this case we cannot block, so that we have to fail.
2557		 */
2558		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559			return 1;
2560	}
2561
2562	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
 
 
2564
2565	sk_memory_allocated_sub(sk, amt);
2566
2567	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569
2570	return 0;
2571}
2572EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573
2574/**
2575 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576 *	@sk: socket
2577 *	@size: memory size to allocate
2578 *	@kind: allocation type
2579 *
2580 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581 *	rmem allocation. This function assumes that protocols which have
2582 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2583 */
2584int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585{
2586	int ret, amt = sk_mem_pages(size);
2587
2588	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590	if (!ret)
2591		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592	return ret;
2593}
2594EXPORT_SYMBOL(__sk_mem_schedule);
2595
2596/**
2597 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2598 *	@sk: socket
2599 *	@amount: number of quanta
2600 *
2601 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602 */
2603void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604{
2605	sk_memory_allocated_sub(sk, amount);
2606
2607	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609
2610	if (sk_under_memory_pressure(sk) &&
2611	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612		sk_leave_memory_pressure(sk);
2613}
2614EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615
2616/**
2617 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618 *	@sk: socket
2619 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620 */
2621void __sk_mem_reclaim(struct sock *sk, int amount)
2622{
2623	amount >>= SK_MEM_QUANTUM_SHIFT;
2624	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625	__sk_mem_reduce_allocated(sk, amount);
2626}
2627EXPORT_SYMBOL(__sk_mem_reclaim);
2628
2629int sk_set_peek_off(struct sock *sk, int val)
2630{
2631	sk->sk_peek_off = val;
2632	return 0;
2633}
2634EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635
2636/*
2637 * Set of default routines for initialising struct proto_ops when
2638 * the protocol does not support a particular function. In certain
2639 * cases where it makes no sense for a protocol to have a "do nothing"
2640 * function, some default processing is provided.
2641 */
2642
2643int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644{
2645	return -EOPNOTSUPP;
2646}
2647EXPORT_SYMBOL(sock_no_bind);
2648
2649int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650		    int len, int flags)
2651{
2652	return -EOPNOTSUPP;
2653}
2654EXPORT_SYMBOL(sock_no_connect);
2655
2656int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657{
2658	return -EOPNOTSUPP;
2659}
2660EXPORT_SYMBOL(sock_no_socketpair);
2661
2662int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663		   bool kern)
2664{
2665	return -EOPNOTSUPP;
2666}
2667EXPORT_SYMBOL(sock_no_accept);
2668
2669int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670		    int peer)
2671{
2672	return -EOPNOTSUPP;
2673}
2674EXPORT_SYMBOL(sock_no_getname);
2675
 
 
 
 
 
 
2676int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677{
2678	return -EOPNOTSUPP;
2679}
2680EXPORT_SYMBOL(sock_no_ioctl);
2681
2682int sock_no_listen(struct socket *sock, int backlog)
2683{
2684	return -EOPNOTSUPP;
2685}
2686EXPORT_SYMBOL(sock_no_listen);
2687
2688int sock_no_shutdown(struct socket *sock, int how)
2689{
2690	return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(sock_no_shutdown);
2693
2694int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695		    char __user *optval, unsigned int optlen)
2696{
2697	return -EOPNOTSUPP;
2698}
2699EXPORT_SYMBOL(sock_no_setsockopt);
2700
2701int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702		    char __user *optval, int __user *optlen)
2703{
2704	return -EOPNOTSUPP;
2705}
2706EXPORT_SYMBOL(sock_no_getsockopt);
2707
2708int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
 
2709{
2710	return -EOPNOTSUPP;
2711}
2712EXPORT_SYMBOL(sock_no_sendmsg);
2713
2714int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715{
2716	return -EOPNOTSUPP;
2717}
2718EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719
2720int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721		    int flags)
2722{
2723	return -EOPNOTSUPP;
2724}
2725EXPORT_SYMBOL(sock_no_recvmsg);
2726
2727int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728{
2729	/* Mirror missing mmap method error code */
2730	return -ENODEV;
2731}
2732EXPORT_SYMBOL(sock_no_mmap);
2733
2734ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735{
2736	ssize_t res;
2737	struct msghdr msg = {.msg_flags = flags};
2738	struct kvec iov;
2739	char *kaddr = kmap(page);
2740	iov.iov_base = kaddr + offset;
2741	iov.iov_len = size;
2742	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743	kunmap(page);
2744	return res;
2745}
2746EXPORT_SYMBOL(sock_no_sendpage);
2747
2748ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749				int offset, size_t size, int flags)
2750{
2751	ssize_t res;
2752	struct msghdr msg = {.msg_flags = flags};
2753	struct kvec iov;
2754	char *kaddr = kmap(page);
2755
2756	iov.iov_base = kaddr + offset;
2757	iov.iov_len = size;
2758	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759	kunmap(page);
2760	return res;
2761}
2762EXPORT_SYMBOL(sock_no_sendpage_locked);
2763
2764/*
2765 *	Default Socket Callbacks
2766 */
2767
2768static void sock_def_wakeup(struct sock *sk)
2769{
2770	struct socket_wq *wq;
2771
2772	rcu_read_lock();
2773	wq = rcu_dereference(sk->sk_wq);
2774	if (skwq_has_sleeper(wq))
2775		wake_up_interruptible_all(&wq->wait);
2776	rcu_read_unlock();
2777}
2778
2779static void sock_def_error_report(struct sock *sk)
2780{
2781	struct socket_wq *wq;
2782
2783	rcu_read_lock();
2784	wq = rcu_dereference(sk->sk_wq);
2785	if (skwq_has_sleeper(wq))
2786		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788	rcu_read_unlock();
2789}
2790
2791static void sock_def_readable(struct sock *sk)
2792{
2793	struct socket_wq *wq;
2794
2795	rcu_read_lock();
2796	wq = rcu_dereference(sk->sk_wq);
2797	if (skwq_has_sleeper(wq))
2798		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799						EPOLLRDNORM | EPOLLRDBAND);
2800	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801	rcu_read_unlock();
2802}
2803
2804static void sock_def_write_space(struct sock *sk)
2805{
2806	struct socket_wq *wq;
2807
2808	rcu_read_lock();
2809
2810	/* Do not wake up a writer until he can make "significant"
2811	 * progress.  --DaveM
2812	 */
2813	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814		wq = rcu_dereference(sk->sk_wq);
2815		if (skwq_has_sleeper(wq))
2816			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817						EPOLLWRNORM | EPOLLWRBAND);
2818
2819		/* Should agree with poll, otherwise some programs break */
2820		if (sock_writeable(sk))
2821			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822	}
2823
2824	rcu_read_unlock();
2825}
2826
2827static void sock_def_destruct(struct sock *sk)
2828{
 
2829}
2830
2831void sk_send_sigurg(struct sock *sk)
2832{
2833	if (sk->sk_socket && sk->sk_socket->file)
2834		if (send_sigurg(&sk->sk_socket->file->f_owner))
2835			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836}
2837EXPORT_SYMBOL(sk_send_sigurg);
2838
2839void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840		    unsigned long expires)
2841{
2842	if (!mod_timer(timer, expires))
2843		sock_hold(sk);
2844}
2845EXPORT_SYMBOL(sk_reset_timer);
2846
2847void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848{
2849	if (del_timer(timer))
2850		__sock_put(sk);
2851}
2852EXPORT_SYMBOL(sk_stop_timer);
2853
2854void sock_init_data(struct socket *sock, struct sock *sk)
2855{
2856	sk_init_common(sk);
 
 
 
 
 
 
2857	sk->sk_send_head	=	NULL;
2858
2859	timer_setup(&sk->sk_timer, NULL, 0);
2860
2861	sk->sk_allocation	=	GFP_KERNEL;
2862	sk->sk_rcvbuf		=	sysctl_rmem_default;
2863	sk->sk_sndbuf		=	sysctl_wmem_default;
2864	sk->sk_state		=	TCP_CLOSE;
2865	sk_set_socket(sk, sock);
2866
2867	sock_set_flag(sk, SOCK_ZAPPED);
2868
2869	if (sock) {
2870		sk->sk_type	=	sock->type;
2871		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872		sock->sk	=	sk;
2873		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2874	} else {
2875		RCU_INIT_POINTER(sk->sk_wq, NULL);
2876		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2877	}
2878
 
2879	rwlock_init(&sk->sk_callback_lock);
2880	if (sk->sk_kern_sock)
2881		lockdep_set_class_and_name(
2882			&sk->sk_callback_lock,
2883			af_kern_callback_keys + sk->sk_family,
2884			af_family_kern_clock_key_strings[sk->sk_family]);
2885	else
2886		lockdep_set_class_and_name(
2887			&sk->sk_callback_lock,
2888			af_callback_keys + sk->sk_family,
2889			af_family_clock_key_strings[sk->sk_family]);
2890
2891	sk->sk_state_change	=	sock_def_wakeup;
2892	sk->sk_data_ready	=	sock_def_readable;
2893	sk->sk_write_space	=	sock_def_write_space;
2894	sk->sk_error_report	=	sock_def_error_report;
2895	sk->sk_destruct		=	sock_def_destruct;
2896
2897	sk->sk_frag.page	=	NULL;
2898	sk->sk_frag.offset	=	0;
2899	sk->sk_peek_off		=	-1;
2900
2901	sk->sk_peer_pid 	=	NULL;
2902	sk->sk_peer_cred	=	NULL;
2903	sk->sk_write_pending	=	0;
2904	sk->sk_rcvlowat		=	1;
2905	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2906	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2907
2908	sk->sk_stamp = SK_DEFAULT_STAMP;
2909#if BITS_PER_LONG==32
2910	seqlock_init(&sk->sk_stamp_seq);
2911#endif
2912	atomic_set(&sk->sk_zckey, 0);
2913
2914#ifdef CONFIG_NET_RX_BUSY_POLL
2915	sk->sk_napi_id		=	0;
2916	sk->sk_ll_usec		=	sysctl_net_busy_read;
2917#endif
2918
2919	sk->sk_max_pacing_rate = ~0UL;
2920	sk->sk_pacing_rate = ~0UL;
2921	sk->sk_pacing_shift = 10;
2922	sk->sk_incoming_cpu = -1;
2923
2924	sk_rx_queue_clear(sk);
2925	/*
2926	 * Before updating sk_refcnt, we must commit prior changes to memory
2927	 * (Documentation/RCU/rculist_nulls.txt for details)
2928	 */
2929	smp_wmb();
2930	refcount_set(&sk->sk_refcnt, 1);
2931	atomic_set(&sk->sk_drops, 0);
2932}
2933EXPORT_SYMBOL(sock_init_data);
2934
2935void lock_sock_nested(struct sock *sk, int subclass)
2936{
2937	might_sleep();
2938	spin_lock_bh(&sk->sk_lock.slock);
2939	if (sk->sk_lock.owned)
2940		__lock_sock(sk);
2941	sk->sk_lock.owned = 1;
2942	spin_unlock(&sk->sk_lock.slock);
2943	/*
2944	 * The sk_lock has mutex_lock() semantics here:
2945	 */
2946	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947	local_bh_enable();
2948}
2949EXPORT_SYMBOL(lock_sock_nested);
2950
2951void release_sock(struct sock *sk)
2952{
 
 
 
 
 
2953	spin_lock_bh(&sk->sk_lock.slock);
2954	if (sk->sk_backlog.tail)
2955		__release_sock(sk);
2956
2957	/* Warning : release_cb() might need to release sk ownership,
2958	 * ie call sock_release_ownership(sk) before us.
2959	 */
2960	if (sk->sk_prot->release_cb)
2961		sk->sk_prot->release_cb(sk);
2962
2963	sock_release_ownership(sk);
2964	if (waitqueue_active(&sk->sk_lock.wq))
2965		wake_up(&sk->sk_lock.wq);
2966	spin_unlock_bh(&sk->sk_lock.slock);
2967}
2968EXPORT_SYMBOL(release_sock);
2969
2970/**
2971 * lock_sock_fast - fast version of lock_sock
2972 * @sk: socket
2973 *
2974 * This version should be used for very small section, where process wont block
2975 * return false if fast path is taken:
2976 *
2977 *   sk_lock.slock locked, owned = 0, BH disabled
2978 *
2979 * return true if slow path is taken:
2980 *
2981 *   sk_lock.slock unlocked, owned = 1, BH enabled
2982 */
2983bool lock_sock_fast(struct sock *sk)
2984{
2985	might_sleep();
2986	spin_lock_bh(&sk->sk_lock.slock);
2987
2988	if (!sk->sk_lock.owned)
2989		/*
2990		 * Note : We must disable BH
2991		 */
2992		return false;
2993
2994	__lock_sock(sk);
2995	sk->sk_lock.owned = 1;
2996	spin_unlock(&sk->sk_lock.slock);
2997	/*
2998	 * The sk_lock has mutex_lock() semantics here:
2999	 */
3000	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001	local_bh_enable();
3002	return true;
3003}
3004EXPORT_SYMBOL(lock_sock_fast);
3005
3006int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007		   bool timeval, bool time32)
3008{
3009	struct sock *sk = sock->sk;
3010	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3011
3012	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3014	if (ts.tv_sec == -1)
3015		return -ENOENT;
3016	if (ts.tv_sec == 0) {
3017		ktime_t kt = ktime_get_real();
3018		sock_write_timestamp(sk, kt);;
3019		ts = ktime_to_timespec64(kt);
3020	}
3021
3022	if (timeval)
3023		ts.tv_nsec /= 1000;
3024
3025#ifdef CONFIG_COMPAT_32BIT_TIME
3026	if (time32)
3027		return put_old_timespec32(&ts, userstamp);
3028#endif
3029#ifdef CONFIG_SPARC64
3030	/* beware of padding in sparc64 timeval */
3031	if (timeval && !in_compat_syscall()) {
3032		struct __kernel_old_timeval __user tv = {
3033			.tv_sec = ts.tv_sec,
3034			.tv_usec = ts.tv_nsec,
3035		};
3036		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037			return -EFAULT;
3038		return 0;
3039	}
3040#endif
3041	return put_timespec64(&ts, userstamp);
3042}
3043EXPORT_SYMBOL(sock_gettstamp);
3044
3045void sock_enable_timestamp(struct sock *sk, int flag)
3046{
3047	if (!sock_flag(sk, flag)) {
3048		unsigned long previous_flags = sk->sk_flags;
3049
3050		sock_set_flag(sk, flag);
3051		/*
3052		 * we just set one of the two flags which require net
3053		 * time stamping, but time stamping might have been on
3054		 * already because of the other one
3055		 */
3056		if (sock_needs_netstamp(sk) &&
3057		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3058			net_enable_timestamp();
3059	}
3060}
3061
3062int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063		       int level, int type)
3064{
3065	struct sock_exterr_skb *serr;
3066	struct sk_buff *skb;
3067	int copied, err;
3068
3069	err = -EAGAIN;
3070	skb = sock_dequeue_err_skb(sk);
3071	if (skb == NULL)
3072		goto out;
3073
3074	copied = skb->len;
3075	if (copied > len) {
3076		msg->msg_flags |= MSG_TRUNC;
3077		copied = len;
3078	}
3079	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080	if (err)
3081		goto out_free_skb;
3082
3083	sock_recv_timestamp(msg, sk, skb);
3084
3085	serr = SKB_EXT_ERR(skb);
3086	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087
3088	msg->msg_flags |= MSG_ERRQUEUE;
3089	err = copied;
3090
3091out_free_skb:
3092	kfree_skb(skb);
3093out:
3094	return err;
3095}
3096EXPORT_SYMBOL(sock_recv_errqueue);
3097
3098/*
3099 *	Get a socket option on an socket.
3100 *
3101 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3102 *	asynchronous errors should be reported by getsockopt. We assume
3103 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3104 */
3105int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106			   char __user *optval, int __user *optlen)
3107{
3108	struct sock *sk = sock->sk;
3109
3110	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111}
3112EXPORT_SYMBOL(sock_common_getsockopt);
3113
3114#ifdef CONFIG_COMPAT
3115int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116				  char __user *optval, int __user *optlen)
3117{
3118	struct sock *sk = sock->sk;
3119
3120	if (sk->sk_prot->compat_getsockopt != NULL)
3121		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122						      optval, optlen);
3123	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124}
3125EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126#endif
3127
3128int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129			int flags)
3130{
3131	struct sock *sk = sock->sk;
3132	int addr_len = 0;
3133	int err;
3134
3135	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136				   flags & ~MSG_DONTWAIT, &addr_len);
3137	if (err >= 0)
3138		msg->msg_namelen = addr_len;
3139	return err;
3140}
3141EXPORT_SYMBOL(sock_common_recvmsg);
3142
3143/*
3144 *	Set socket options on an inet socket.
3145 */
3146int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147			   char __user *optval, unsigned int optlen)
3148{
3149	struct sock *sk = sock->sk;
3150
3151	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152}
3153EXPORT_SYMBOL(sock_common_setsockopt);
3154
3155#ifdef CONFIG_COMPAT
3156int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157				  char __user *optval, unsigned int optlen)
3158{
3159	struct sock *sk = sock->sk;
3160
3161	if (sk->sk_prot->compat_setsockopt != NULL)
3162		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163						      optval, optlen);
3164	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165}
3166EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167#endif
3168
3169void sk_common_release(struct sock *sk)
3170{
3171	if (sk->sk_prot->destroy)
3172		sk->sk_prot->destroy(sk);
3173
3174	/*
3175	 * Observation: when sock_common_release is called, processes have
3176	 * no access to socket. But net still has.
3177	 * Step one, detach it from networking:
3178	 *
3179	 * A. Remove from hash tables.
3180	 */
3181
3182	sk->sk_prot->unhash(sk);
3183
3184	/*
3185	 * In this point socket cannot receive new packets, but it is possible
3186	 * that some packets are in flight because some CPU runs receiver and
3187	 * did hash table lookup before we unhashed socket. They will achieve
3188	 * receive queue and will be purged by socket destructor.
3189	 *
3190	 * Also we still have packets pending on receive queue and probably,
3191	 * our own packets waiting in device queues. sock_destroy will drain
3192	 * receive queue, but transmitted packets will delay socket destruction
3193	 * until the last reference will be released.
3194	 */
3195
3196	sock_orphan(sk);
3197
3198	xfrm_sk_free_policy(sk);
3199
3200	sk_refcnt_debug_release(sk);
3201
3202	sock_put(sk);
3203}
3204EXPORT_SYMBOL(sk_common_release);
3205
3206void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207{
3208	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209
3210	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3223struct prot_inuse {
3224	int val[PROTO_INUSE_NR];
3225};
3226
3227static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228
 
3229void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230{
3231	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232}
3233EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234
3235int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236{
3237	int cpu, idx = prot->inuse_idx;
3238	int res = 0;
3239
3240	for_each_possible_cpu(cpu)
3241		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242
3243	return res >= 0 ? res : 0;
3244}
3245EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246
3247static void sock_inuse_add(struct net *net, int val)
3248{
3249	this_cpu_add(*net->core.sock_inuse, val);
3250}
3251
3252int sock_inuse_get(struct net *net)
3253{
3254	int cpu, res = 0;
3255
3256	for_each_possible_cpu(cpu)
3257		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258
3259	return res;
3260}
3261
3262EXPORT_SYMBOL_GPL(sock_inuse_get);
3263
3264static int __net_init sock_inuse_init_net(struct net *net)
3265{
3266	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267	if (net->core.prot_inuse == NULL)
3268		return -ENOMEM;
3269
3270	net->core.sock_inuse = alloc_percpu(int);
3271	if (net->core.sock_inuse == NULL)
3272		goto out;
3273
3274	return 0;
3275
3276out:
3277	free_percpu(net->core.prot_inuse);
3278	return -ENOMEM;
3279}
3280
3281static void __net_exit sock_inuse_exit_net(struct net *net)
3282{
3283	free_percpu(net->core.prot_inuse);
3284	free_percpu(net->core.sock_inuse);
3285}
3286
3287static struct pernet_operations net_inuse_ops = {
3288	.init = sock_inuse_init_net,
3289	.exit = sock_inuse_exit_net,
3290};
3291
3292static __init int net_inuse_init(void)
3293{
3294	if (register_pernet_subsys(&net_inuse_ops))
3295		panic("Cannot initialize net inuse counters");
3296
3297	return 0;
3298}
3299
3300core_initcall(net_inuse_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3301
3302static int assign_proto_idx(struct proto *prot)
3303{
3304	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305
3306	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307		pr_err("PROTO_INUSE_NR exhausted\n");
3308		return -ENOSPC;
3309	}
3310
3311	set_bit(prot->inuse_idx, proto_inuse_idx);
3312	return 0;
3313}
3314
3315static void release_proto_idx(struct proto *prot)
3316{
3317	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318		clear_bit(prot->inuse_idx, proto_inuse_idx);
3319}
3320#else
3321static inline int assign_proto_idx(struct proto *prot)
3322{
3323	return 0;
3324}
3325
3326static inline void release_proto_idx(struct proto *prot)
3327{
3328}
3329
3330static void sock_inuse_add(struct net *net, int val)
3331{
3332}
3333#endif
3334
3335static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336{
3337	if (!rsk_prot)
3338		return;
3339	kfree(rsk_prot->slab_name);
3340	rsk_prot->slab_name = NULL;
3341	kmem_cache_destroy(rsk_prot->slab);
3342	rsk_prot->slab = NULL;
3343}
3344
3345static int req_prot_init(const struct proto *prot)
3346{
3347	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348
3349	if (!rsk_prot)
3350		return 0;
3351
3352	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353					prot->name);
3354	if (!rsk_prot->slab_name)
3355		return -ENOMEM;
3356
3357	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358					   rsk_prot->obj_size, 0,
3359					   SLAB_ACCOUNT | prot->slab_flags,
3360					   NULL);
3361
3362	if (!rsk_prot->slab) {
3363		pr_crit("%s: Can't create request sock SLAB cache!\n",
3364			prot->name);
3365		return -ENOMEM;
3366	}
3367	return 0;
3368}
3369
3370int proto_register(struct proto *prot, int alloc_slab)
3371{
3372	int ret = -ENOBUFS;
3373
3374	if (alloc_slab) {
3375		prot->slab = kmem_cache_create_usercopy(prot->name,
3376					prot->obj_size, 0,
3377					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378					prot->slab_flags,
3379					prot->useroffset, prot->usersize,
3380					NULL);
3381
3382		if (prot->slab == NULL) {
3383			pr_crit("%s: Can't create sock SLAB cache!\n",
3384				prot->name);
3385			goto out;
3386		}
3387
3388		if (req_prot_init(prot))
3389			goto out_free_request_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
3390
3391		if (prot->twsk_prot != NULL) {
3392			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393
3394			if (prot->twsk_prot->twsk_slab_name == NULL)
3395				goto out_free_request_sock_slab;
3396
3397			prot->twsk_prot->twsk_slab =
3398				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399						  prot->twsk_prot->twsk_obj_size,
3400						  0,
3401						  SLAB_ACCOUNT |
3402						  prot->slab_flags,
3403						  NULL);
3404			if (prot->twsk_prot->twsk_slab == NULL)
3405				goto out_free_timewait_sock_slab_name;
3406		}
3407	}
3408
3409	mutex_lock(&proto_list_mutex);
3410	ret = assign_proto_idx(prot);
3411	if (ret) {
3412		mutex_unlock(&proto_list_mutex);
3413		goto out_free_timewait_sock_slab_name;
3414	}
3415	list_add(&prot->node, &proto_list);
 
3416	mutex_unlock(&proto_list_mutex);
3417	return ret;
3418
3419out_free_timewait_sock_slab_name:
3420	if (alloc_slab && prot->twsk_prot)
3421		kfree(prot->twsk_prot->twsk_slab_name);
3422out_free_request_sock_slab:
3423	if (alloc_slab) {
3424		req_prot_cleanup(prot->rsk_prot);
3425
3426		kmem_cache_destroy(prot->slab);
3427		prot->slab = NULL;
3428	}
 
 
 
 
3429out:
3430	return ret;
3431}
3432EXPORT_SYMBOL(proto_register);
3433
3434void proto_unregister(struct proto *prot)
3435{
3436	mutex_lock(&proto_list_mutex);
3437	release_proto_idx(prot);
3438	list_del(&prot->node);
3439	mutex_unlock(&proto_list_mutex);
3440
3441	kmem_cache_destroy(prot->slab);
3442	prot->slab = NULL;
 
 
3443
3444	req_prot_cleanup(prot->rsk_prot);
 
 
 
 
3445
3446	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448		kfree(prot->twsk_prot->twsk_slab_name);
3449		prot->twsk_prot->twsk_slab = NULL;
3450	}
3451}
3452EXPORT_SYMBOL(proto_unregister);
3453
3454int sock_load_diag_module(int family, int protocol)
3455{
3456	if (!protocol) {
3457		if (!sock_is_registered(family))
3458			return -ENOENT;
3459
3460		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461				      NETLINK_SOCK_DIAG, family);
3462	}
3463
3464#ifdef CONFIG_INET
3465	if (family == AF_INET &&
3466	    protocol != IPPROTO_RAW &&
3467	    !rcu_access_pointer(inet_protos[protocol]))
3468		return -ENOENT;
3469#endif
3470
3471	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472			      NETLINK_SOCK_DIAG, family, protocol);
3473}
3474EXPORT_SYMBOL(sock_load_diag_module);
3475
3476#ifdef CONFIG_PROC_FS
3477static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478	__acquires(proto_list_mutex)
3479{
3480	mutex_lock(&proto_list_mutex);
3481	return seq_list_start_head(&proto_list, *pos);
3482}
3483
3484static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485{
3486	return seq_list_next(v, &proto_list, pos);
3487}
3488
3489static void proto_seq_stop(struct seq_file *seq, void *v)
3490	__releases(proto_list_mutex)
3491{
3492	mutex_unlock(&proto_list_mutex);
3493}
3494
3495static char proto_method_implemented(const void *method)
3496{
3497	return method == NULL ? 'n' : 'y';
3498}
3499static long sock_prot_memory_allocated(struct proto *proto)
3500{
3501	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502}
3503
3504static const char *sock_prot_memory_pressure(struct proto *proto)
3505{
3506	return proto->memory_pressure != NULL ?
3507	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508}
3509
3510static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511{
3512
3513	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3514			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515		   proto->name,
3516		   proto->obj_size,
3517		   sock_prot_inuse_get(seq_file_net(seq), proto),
3518		   sock_prot_memory_allocated(proto),
3519		   sock_prot_memory_pressure(proto),
3520		   proto->max_header,
3521		   proto->slab == NULL ? "no" : "yes",
3522		   module_name(proto->owner),
3523		   proto_method_implemented(proto->close),
3524		   proto_method_implemented(proto->connect),
3525		   proto_method_implemented(proto->disconnect),
3526		   proto_method_implemented(proto->accept),
3527		   proto_method_implemented(proto->ioctl),
3528		   proto_method_implemented(proto->init),
3529		   proto_method_implemented(proto->destroy),
3530		   proto_method_implemented(proto->shutdown),
3531		   proto_method_implemented(proto->setsockopt),
3532		   proto_method_implemented(proto->getsockopt),
3533		   proto_method_implemented(proto->sendmsg),
3534		   proto_method_implemented(proto->recvmsg),
3535		   proto_method_implemented(proto->sendpage),
3536		   proto_method_implemented(proto->bind),
3537		   proto_method_implemented(proto->backlog_rcv),
3538		   proto_method_implemented(proto->hash),
3539		   proto_method_implemented(proto->unhash),
3540		   proto_method_implemented(proto->get_port),
3541		   proto_method_implemented(proto->enter_memory_pressure));
3542}
3543
3544static int proto_seq_show(struct seq_file *seq, void *v)
3545{
3546	if (v == &proto_list)
3547		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548			   "protocol",
3549			   "size",
3550			   "sockets",
3551			   "memory",
3552			   "press",
3553			   "maxhdr",
3554			   "slab",
3555			   "module",
3556			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557	else
3558		proto_seq_printf(seq, list_entry(v, struct proto, node));
3559	return 0;
3560}
3561
3562static const struct seq_operations proto_seq_ops = {
3563	.start  = proto_seq_start,
3564	.next   = proto_seq_next,
3565	.stop   = proto_seq_stop,
3566	.show   = proto_seq_show,
3567};
3568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3569static __net_init int proto_init_net(struct net *net)
3570{
3571	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572			sizeof(struct seq_net_private)))
3573		return -ENOMEM;
3574
3575	return 0;
3576}
3577
3578static __net_exit void proto_exit_net(struct net *net)
3579{
3580	remove_proc_entry("protocols", net->proc_net);
3581}
3582
3583
3584static __net_initdata struct pernet_operations proto_net_ops = {
3585	.init = proto_init_net,
3586	.exit = proto_exit_net,
3587};
3588
3589static int __init proto_init(void)
3590{
3591	return register_pernet_subsys(&proto_net_ops);
3592}
3593
3594subsys_initcall(proto_init);
3595
3596#endif /* PROC_FS */
3597
3598#ifdef CONFIG_NET_RX_BUSY_POLL
3599bool sk_busy_loop_end(void *p, unsigned long start_time)
3600{
3601	struct sock *sk = p;
3602
3603	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604	       sk_busy_loop_timeout(sk, start_time);
3605}
3606EXPORT_SYMBOL(sk_busy_loop_end);
3607#endif /* CONFIG_NET_RX_BUSY_POLL */