Loading...
1/*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/idr.h>
17#include <linux/file.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/hash.h>
21#include <linux/sysfs.h>
22#include <linux/dcache.h>
23#include <linux/percpu.h>
24#include <linux/ptrace.h>
25#include <linux/reboot.h>
26#include <linux/vmstat.h>
27#include <linux/device.h>
28#include <linux/export.h>
29#include <linux/vmalloc.h>
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
35#include <linux/kernel_stat.h>
36#include <linux/perf_event.h>
37#include <linux/ftrace_event.h>
38#include <linux/hw_breakpoint.h>
39
40#include "internal.h"
41
42#include <asm/irq_regs.h>
43
44struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
138struct static_key_deferred perf_sched_events __read_mostly;
139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141
142static atomic_t nr_mmap_events __read_mostly;
143static atomic_t nr_comm_events __read_mostly;
144static atomic_t nr_task_events __read_mostly;
145
146static LIST_HEAD(pmus);
147static DEFINE_MUTEX(pmus_lock);
148static struct srcu_struct pmus_srcu;
149
150/*
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
156 */
157int sysctl_perf_event_paranoid __read_mostly = 1;
158
159/* Minimum for 512 kiB + 1 user control page */
160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161
162/*
163 * max perf event sample rate
164 */
165#define DEFAULT_MAX_SAMPLE_RATE 100000
166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173{
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182}
183
184static atomic64_t perf_event_id;
185
186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193static void update_context_time(struct perf_event_context *ctx);
194static u64 perf_event_time(struct perf_event *event);
195
196static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
199void __weak perf_event_print_debug(void) { }
200
201extern __weak const char *perf_pmu_name(void)
202{
203 return "pmu";
204}
205
206static inline u64 perf_clock(void)
207{
208 return local_clock();
209}
210
211static inline struct perf_cpu_context *
212__get_cpu_context(struct perf_event_context *ctx)
213{
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215}
216
217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223}
224
225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227{
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231}
232
233#ifdef CONFIG_CGROUP_PERF
234
235/*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
240static inline struct perf_cgroup *
241perf_cgroup_from_task(struct task_struct *task)
242{
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245}
246
247static inline bool
248perf_cgroup_match(struct perf_event *event)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254}
255
256static inline bool perf_tryget_cgroup(struct perf_event *event)
257{
258 return css_tryget(&event->cgrp->css);
259}
260
261static inline void perf_put_cgroup(struct perf_event *event)
262{
263 css_put(&event->cgrp->css);
264}
265
266static inline void perf_detach_cgroup(struct perf_event *event)
267{
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270}
271
272static inline int is_cgroup_event(struct perf_event *event)
273{
274 return event->cgrp != NULL;
275}
276
277static inline u64 perf_cgroup_event_time(struct perf_event *event)
278{
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283}
284
285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286{
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296}
297
298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299{
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303}
304
305static inline void update_cgrp_time_from_event(struct perf_event *event)
306{
307 struct perf_cgroup *cgrp;
308
309 /*
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
312 */
313 if (!is_cgroup_event(event))
314 return;
315
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
322}
323
324static inline void
325perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
327{
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
341 info->timestamp = ctx->timestamp;
342}
343
344#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347/*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353void perf_cgroup_switch(struct task_struct *task, int mode)
354{
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
396 WARN_ON_ONCE(cpuctx->cgrp);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 }
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412}
413
414static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
416{
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439}
440
441static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
443{
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462}
463
464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467{
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
486 /* must be done before we fput() the file */
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
492
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
501 }
502out:
503 fput_light(file, fput_needed);
504 return ret;
505}
506
507static inline void
508perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509{
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513}
514
515static inline void
516perf_cgroup_defer_enabled(struct perf_event *event)
517{
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526}
527
528static inline void
529perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531{
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547}
548#else /* !CONFIG_CGROUP_PERF */
549
550static inline bool
551perf_cgroup_match(struct perf_event *event)
552{
553 return true;
554}
555
556static inline void perf_detach_cgroup(struct perf_event *event)
557{}
558
559static inline int is_cgroup_event(struct perf_event *event)
560{
561 return 0;
562}
563
564static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565{
566 return 0;
567}
568
569static inline void update_cgrp_time_from_event(struct perf_event *event)
570{
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575}
576
577static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
579{
580}
581
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584{
585}
586
587static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590{
591 return -EINVAL;
592}
593
594static inline void
595perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
597{
598}
599
600void
601perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602{
603}
604
605static inline void
606perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607{
608}
609
610static inline u64 perf_cgroup_event_time(struct perf_event *event)
611{
612 return 0;
613}
614
615static inline void
616perf_cgroup_defer_enabled(struct perf_event *event)
617{
618}
619
620static inline void
621perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623{
624}
625#endif
626
627void perf_pmu_disable(struct pmu *pmu)
628{
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
632}
633
634void perf_pmu_enable(struct pmu *pmu)
635{
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
639}
640
641static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643/*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
648static void perf_pmu_rotate_start(struct pmu *pmu)
649{
650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 struct list_head *head = &__get_cpu_var(rotation_list);
652
653 WARN_ON(!irqs_disabled());
654
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
657}
658
659static void get_ctx(struct perf_event_context *ctx)
660{
661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662}
663
664static void put_ctx(struct perf_event_context *ctx)
665{
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
669 if (ctx->task)
670 put_task_struct(ctx->task);
671 kfree_rcu(ctx, rcu_head);
672 }
673}
674
675static void unclone_ctx(struct perf_event_context *ctx)
676{
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681}
682
683static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684{
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692}
693
694static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695{
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703}
704
705/*
706 * If we inherit events we want to return the parent event id
707 * to userspace.
708 */
709static u64 primary_event_id(struct perf_event *event)
710{
711 u64 id = event->id;
712
713 if (event->parent)
714 id = event->parent->id;
715
716 return id;
717}
718
719/*
720 * Get the perf_event_context for a task and lock it.
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
724static struct perf_event_context *
725perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726{
727 struct perf_event_context *ctx;
728
729 rcu_read_lock();
730retry:
731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
736 * perf_event_task_sched_out, though the
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
743 raw_spin_lock_irqsave(&ctx->lock, *flags);
744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 goto retry;
747 }
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 ctx = NULL;
752 }
753 }
754 rcu_read_unlock();
755 return ctx;
756}
757
758/*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
763static struct perf_event_context *
764perf_pin_task_context(struct task_struct *task, int ctxn)
765{
766 struct perf_event_context *ctx;
767 unsigned long flags;
768
769 ctx = perf_lock_task_context(task, ctxn, &flags);
770 if (ctx) {
771 ++ctx->pin_count;
772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 }
774 return ctx;
775}
776
777static void perf_unpin_context(struct perf_event_context *ctx)
778{
779 unsigned long flags;
780
781 raw_spin_lock_irqsave(&ctx->lock, flags);
782 --ctx->pin_count;
783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
784}
785
786/*
787 * Update the record of the current time in a context.
788 */
789static void update_context_time(struct perf_event_context *ctx)
790{
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795}
796
797static u64 perf_event_time(struct perf_event *event)
798{
799 struct perf_event_context *ctx = event->ctx;
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
804 return ctx ? ctx->time : 0;
805}
806
807/*
808 * Update the total_time_enabled and total_time_running fields for a event.
809 * The caller of this function needs to hold the ctx->lock.
810 */
811static void update_event_times(struct perf_event *event)
812{
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
830 run_end = perf_cgroup_event_time(event);
831 else if (ctx->is_active)
832 run_end = ctx->time;
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
841 run_end = perf_event_time(event);
842
843 event->total_time_running = run_end - event->tstamp_running;
844
845}
846
847/*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850static void update_group_times(struct perf_event *leader)
851{
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857}
858
859static struct list_head *
860ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861{
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866}
867
868/*
869 * Add a event from the lists for its context.
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
872static void
873list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874{
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
877
878 /*
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
882 */
883 if (event->group_leader == event) {
884 struct list_head *list;
885
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
891 }
892
893 if (is_cgroup_event(event))
894 ctx->nr_cgroups++;
895
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
899 list_add_rcu(&event->event_entry, &ctx->event_list);
900 if (!ctx->nr_events)
901 perf_pmu_rotate_start(ctx->pmu);
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
904 ctx->nr_stat++;
905}
906
907/*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911static void perf_event__read_size(struct perf_event *event)
912{
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933}
934
935static void perf_event__header_size(struct perf_event *event)
936{
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956}
957
958static void perf_event__id_header_size(struct perf_event *event)
959{
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
979 event->id_header_size = size;
980}
981
982static void perf_group_attach(struct perf_event *event)
983{
984 struct perf_event *group_leader = event->group_leader, *pos;
985
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
1008}
1009
1010/*
1011 * Remove a event from the lists for its context.
1012 * Must be called with ctx->mutex and ctx->lock held.
1013 */
1014static void
1015list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016{
1017 struct perf_cpu_context *cpuctx;
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 return;
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
1026 if (is_cgroup_event(event)) {
1027 ctx->nr_cgroups--;
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
1037
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
1043 ctx->nr_stat--;
1044
1045 list_del_rcu(&event->event_entry);
1046
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
1049
1050 update_group_times(event);
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
1061}
1062
1063static void perf_group_detach(struct perf_event *event)
1064{
1065 struct perf_event *sibling, *tmp;
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
1082 goto out;
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
1087
1088 /*
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
1091 * to whatever list we are on.
1092 */
1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
1096 sibling->group_leader = sibling;
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
1100 }
1101
1102out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
1107}
1108
1109static inline int
1110event_filter_match(struct perf_event *event)
1111{
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
1114}
1115
1116static void
1117event_sched_out(struct perf_event *event,
1118 struct perf_cpu_context *cpuctx,
1119 struct perf_event_context *ctx)
1120{
1121 u64 tstamp = perf_event_time(event);
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
1131 delta = tstamp - event->tstamp_stopped;
1132 event->tstamp_running += delta;
1133 event->tstamp_stopped = tstamp;
1134 }
1135
1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 return;
1138
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
1143 }
1144 event->tstamp_stopped = tstamp;
1145 event->pmu->del(event, 0);
1146 event->oncpu = -1;
1147
1148 if (!is_software_event(event))
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 cpuctx->exclusive = 0;
1155}
1156
1157static void
1158group_sched_out(struct perf_event *group_event,
1159 struct perf_cpu_context *cpuctx,
1160 struct perf_event_context *ctx)
1161{
1162 struct perf_event *event;
1163 int state = group_event->state;
1164
1165 event_sched_out(group_event, cpuctx, ctx);
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
1172
1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 cpuctx->exclusive = 0;
1175}
1176
1177/*
1178 * Cross CPU call to remove a performance event
1179 *
1180 * We disable the event on the hardware level first. After that we
1181 * remove it from the context list.
1182 */
1183static int __perf_remove_from_context(void *info)
1184{
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188
1189 raw_spin_lock(&ctx->lock);
1190 event_sched_out(event, cpuctx, ctx);
1191 list_del_event(event, ctx);
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
1196 raw_spin_unlock(&ctx->lock);
1197
1198 return 0;
1199}
1200
1201
1202/*
1203 * Remove the event from a task's (or a CPU's) list of events.
1204 *
1205 * CPU events are removed with a smp call. For task events we only
1206 * call when the task is on a CPU.
1207 *
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
1212 * When called from perf_event_exit_task, it's OK because the
1213 * context has been detached from its task.
1214 */
1215static void perf_remove_from_context(struct perf_event *event)
1216{
1217 struct perf_event_context *ctx = event->ctx;
1218 struct task_struct *task = ctx->task;
1219
1220 lockdep_assert_held(&ctx->mutex);
1221
1222 if (!task) {
1223 /*
1224 * Per cpu events are removed via an smp call and
1225 * the removal is always successful.
1226 */
1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 return;
1229 }
1230
1231retry:
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
1234
1235 raw_spin_lock_irq(&ctx->lock);
1236 /*
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
1239 */
1240 if (ctx->is_active) {
1241 raw_spin_unlock_irq(&ctx->lock);
1242 goto retry;
1243 }
1244
1245 /*
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
1248 */
1249 list_del_event(event, ctx);
1250 raw_spin_unlock_irq(&ctx->lock);
1251}
1252
1253/*
1254 * Cross CPU call to disable a performance event
1255 */
1256static int __perf_event_disable(void *info)
1257{
1258 struct perf_event *event = info;
1259 struct perf_event_context *ctx = event->ctx;
1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261
1262 /*
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
1268 */
1269 if (ctx->task && cpuctx->task_ctx != ctx)
1270 return -EINVAL;
1271
1272 raw_spin_lock(&ctx->lock);
1273
1274 /*
1275 * If the event is on, turn it off.
1276 * If it is in error state, leave it in error state.
1277 */
1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 update_context_time(ctx);
1280 update_cgrp_time_from_event(event);
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
1284 else
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
1287 }
1288
1289 raw_spin_unlock(&ctx->lock);
1290
1291 return 0;
1292}
1293
1294/*
1295 * Disable a event.
1296 *
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
1299 * remains valid. This condition is satisifed when called through
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
1304 * is the current context on this CPU and preemption is disabled,
1305 * hence we can't get into perf_event_task_sched_out for this context.
1306 */
1307void perf_event_disable(struct perf_event *event)
1308{
1309 struct perf_event_context *ctx = event->ctx;
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
1314 * Disable the event on the cpu that it's on
1315 */
1316 cpu_function_call(event->cpu, __perf_event_disable, event);
1317 return;
1318 }
1319
1320retry:
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
1323
1324 raw_spin_lock_irq(&ctx->lock);
1325 /*
1326 * If the event is still active, we need to retry the cross-call.
1327 */
1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 raw_spin_unlock_irq(&ctx->lock);
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
1345 }
1346 raw_spin_unlock_irq(&ctx->lock);
1347}
1348EXPORT_SYMBOL_GPL(perf_event_disable);
1349
1350static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353{
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383}
1384
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
1389static int
1390event_sched_in(struct perf_event *event,
1391 struct perf_cpu_context *cpuctx,
1392 struct perf_event_context *ctx)
1393{
1394 u64 tstamp = perf_event_time(event);
1395
1396 if (event->state <= PERF_EVENT_STATE_OFF)
1397 return 0;
1398
1399 event->state = PERF_EVENT_STATE_ACTIVE;
1400 event->oncpu = smp_processor_id();
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
1417 if (event->pmu->add(event, PERF_EF_START)) {
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
1420 return -EAGAIN;
1421 }
1422
1423 event->tstamp_running += tstamp - event->tstamp_stopped;
1424
1425 perf_set_shadow_time(event, ctx, tstamp);
1426
1427 if (!is_software_event(event))
1428 cpuctx->active_oncpu++;
1429 ctx->nr_active++;
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
1432
1433 if (event->attr.exclusive)
1434 cpuctx->exclusive = 1;
1435
1436 return 0;
1437}
1438
1439static int
1440group_sched_in(struct perf_event *group_event,
1441 struct perf_cpu_context *cpuctx,
1442 struct perf_event_context *ctx)
1443{
1444 struct perf_event *event, *partial_group = NULL;
1445 struct pmu *pmu = group_event->pmu;
1446 u64 now = ctx->time;
1447 bool simulate = false;
1448
1449 if (group_event->state == PERF_EVENT_STATE_OFF)
1450 return 0;
1451
1452 pmu->start_txn(pmu);
1453
1454 if (event_sched_in(group_event, cpuctx, ctx)) {
1455 pmu->cancel_txn(pmu);
1456 return -EAGAIN;
1457 }
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 if (event_sched_in(event, cpuctx, ctx)) {
1464 partial_group = event;
1465 goto group_error;
1466 }
1467 }
1468
1469 if (!pmu->commit_txn(pmu))
1470 return 0;
1471
1472group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
1486 */
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
1497 }
1498 event_sched_out(group_event, cpuctx, ctx);
1499
1500 pmu->cancel_txn(pmu);
1501
1502 return -EAGAIN;
1503}
1504
1505/*
1506 * Work out whether we can put this event group on the CPU now.
1507 */
1508static int group_can_go_on(struct perf_event *event,
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511{
1512 /*
1513 * Groups consisting entirely of software events can always go on.
1514 */
1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
1519 * events can go on.
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
1525 * events on the CPU, it can't go on.
1526 */
1527 if (event->attr.exclusive && cpuctx->active_oncpu)
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534}
1535
1536static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
1538{
1539 u64 tstamp = perf_event_time(event);
1540
1541 list_add_event(event, ctx);
1542 perf_group_attach(event);
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
1546}
1547
1548static void task_ctx_sched_out(struct perf_event_context *ctx);
1549static void
1550ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
1554
1555static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558{
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565}
1566
1567/*
1568 * Cross CPU call to install and enable a performance event
1569 *
1570 * Must be called with ctx->mutex held
1571 */
1572static int __perf_install_in_context(void *info)
1573{
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
1580 perf_ctx_lock(cpuctx, task_ctx);
1581 perf_pmu_disable(cpuctx->ctx.pmu);
1582
1583 /*
1584 * If there was an active task_ctx schedule it out.
1585 */
1586 if (task_ctx)
1587 task_ctx_sched_out(task_ctx);
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
1602 task = task_ctx->task;
1603 }
1604
1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606
1607 update_context_time(ctx);
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
1614
1615 add_event_to_ctx(event, ctx);
1616
1617 /*
1618 * Schedule everything back in
1619 */
1620 perf_event_sched_in(cpuctx, task_ctx, task);
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
1624
1625 return 0;
1626}
1627
1628/*
1629 * Attach a performance event to a context
1630 *
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
1633 *
1634 * If the event is attached to a task which is on a CPU we use a smp
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638static void
1639perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
1641 int cpu)
1642{
1643 struct task_struct *task = ctx->task;
1644
1645 lockdep_assert_held(&ctx->mutex);
1646
1647 event->ctx = ctx;
1648
1649 if (!task) {
1650 /*
1651 * Per cpu events are installed via an smp call and
1652 * the install is always successful.
1653 */
1654 cpu_function_call(cpu, __perf_install_in_context, event);
1655 return;
1656 }
1657
1658retry:
1659 if (!task_function_call(task, __perf_install_in_context, event))
1660 return;
1661
1662 raw_spin_lock_irq(&ctx->lock);
1663 /*
1664 * If we failed to find a running task, but find the context active now
1665 * that we've acquired the ctx->lock, retry.
1666 */
1667 if (ctx->is_active) {
1668 raw_spin_unlock_irq(&ctx->lock);
1669 goto retry;
1670 }
1671
1672 /*
1673 * Since the task isn't running, its safe to add the event, us holding
1674 * the ctx->lock ensures the task won't get scheduled in.
1675 */
1676 add_event_to_ctx(event, ctx);
1677 raw_spin_unlock_irq(&ctx->lock);
1678}
1679
1680/*
1681 * Put a event into inactive state and update time fields.
1682 * Enabling the leader of a group effectively enables all
1683 * the group members that aren't explicitly disabled, so we
1684 * have to update their ->tstamp_enabled also.
1685 * Note: this works for group members as well as group leaders
1686 * since the non-leader members' sibling_lists will be empty.
1687 */
1688static void __perf_event_mark_enabled(struct perf_event *event)
1689{
1690 struct perf_event *sub;
1691 u64 tstamp = perf_event_time(event);
1692
1693 event->state = PERF_EVENT_STATE_INACTIVE;
1694 event->tstamp_enabled = tstamp - event->total_time_enabled;
1695 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1696 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1697 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1698 }
1699}
1700
1701/*
1702 * Cross CPU call to enable a performance event
1703 */
1704static int __perf_event_enable(void *info)
1705{
1706 struct perf_event *event = info;
1707 struct perf_event_context *ctx = event->ctx;
1708 struct perf_event *leader = event->group_leader;
1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 int err;
1711
1712 if (WARN_ON_ONCE(!ctx->is_active))
1713 return -EINVAL;
1714
1715 raw_spin_lock(&ctx->lock);
1716 update_context_time(ctx);
1717
1718 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1719 goto unlock;
1720
1721 /*
1722 * set current task's cgroup time reference point
1723 */
1724 perf_cgroup_set_timestamp(current, ctx);
1725
1726 __perf_event_mark_enabled(event);
1727
1728 if (!event_filter_match(event)) {
1729 if (is_cgroup_event(event))
1730 perf_cgroup_defer_enabled(event);
1731 goto unlock;
1732 }
1733
1734 /*
1735 * If the event is in a group and isn't the group leader,
1736 * then don't put it on unless the group is on.
1737 */
1738 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1739 goto unlock;
1740
1741 if (!group_can_go_on(event, cpuctx, 1)) {
1742 err = -EEXIST;
1743 } else {
1744 if (event == leader)
1745 err = group_sched_in(event, cpuctx, ctx);
1746 else
1747 err = event_sched_in(event, cpuctx, ctx);
1748 }
1749
1750 if (err) {
1751 /*
1752 * If this event can't go on and it's part of a
1753 * group, then the whole group has to come off.
1754 */
1755 if (leader != event)
1756 group_sched_out(leader, cpuctx, ctx);
1757 if (leader->attr.pinned) {
1758 update_group_times(leader);
1759 leader->state = PERF_EVENT_STATE_ERROR;
1760 }
1761 }
1762
1763unlock:
1764 raw_spin_unlock(&ctx->lock);
1765
1766 return 0;
1767}
1768
1769/*
1770 * Enable a event.
1771 *
1772 * If event->ctx is a cloned context, callers must make sure that
1773 * every task struct that event->ctx->task could possibly point to
1774 * remains valid. This condition is satisfied when called through
1775 * perf_event_for_each_child or perf_event_for_each as described
1776 * for perf_event_disable.
1777 */
1778void perf_event_enable(struct perf_event *event)
1779{
1780 struct perf_event_context *ctx = event->ctx;
1781 struct task_struct *task = ctx->task;
1782
1783 if (!task) {
1784 /*
1785 * Enable the event on the cpu that it's on
1786 */
1787 cpu_function_call(event->cpu, __perf_event_enable, event);
1788 return;
1789 }
1790
1791 raw_spin_lock_irq(&ctx->lock);
1792 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1793 goto out;
1794
1795 /*
1796 * If the event is in error state, clear that first.
1797 * That way, if we see the event in error state below, we
1798 * know that it has gone back into error state, as distinct
1799 * from the task having been scheduled away before the
1800 * cross-call arrived.
1801 */
1802 if (event->state == PERF_EVENT_STATE_ERROR)
1803 event->state = PERF_EVENT_STATE_OFF;
1804
1805retry:
1806 if (!ctx->is_active) {
1807 __perf_event_mark_enabled(event);
1808 goto out;
1809 }
1810
1811 raw_spin_unlock_irq(&ctx->lock);
1812
1813 if (!task_function_call(task, __perf_event_enable, event))
1814 return;
1815
1816 raw_spin_lock_irq(&ctx->lock);
1817
1818 /*
1819 * If the context is active and the event is still off,
1820 * we need to retry the cross-call.
1821 */
1822 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1823 /*
1824 * task could have been flipped by a concurrent
1825 * perf_event_context_sched_out()
1826 */
1827 task = ctx->task;
1828 goto retry;
1829 }
1830
1831out:
1832 raw_spin_unlock_irq(&ctx->lock);
1833}
1834EXPORT_SYMBOL_GPL(perf_event_enable);
1835
1836int perf_event_refresh(struct perf_event *event, int refresh)
1837{
1838 /*
1839 * not supported on inherited events
1840 */
1841 if (event->attr.inherit || !is_sampling_event(event))
1842 return -EINVAL;
1843
1844 atomic_add(refresh, &event->event_limit);
1845 perf_event_enable(event);
1846
1847 return 0;
1848}
1849EXPORT_SYMBOL_GPL(perf_event_refresh);
1850
1851static void ctx_sched_out(struct perf_event_context *ctx,
1852 struct perf_cpu_context *cpuctx,
1853 enum event_type_t event_type)
1854{
1855 struct perf_event *event;
1856 int is_active = ctx->is_active;
1857
1858 ctx->is_active &= ~event_type;
1859 if (likely(!ctx->nr_events))
1860 return;
1861
1862 update_context_time(ctx);
1863 update_cgrp_time_from_cpuctx(cpuctx);
1864 if (!ctx->nr_active)
1865 return;
1866
1867 perf_pmu_disable(ctx->pmu);
1868 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1869 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1870 group_sched_out(event, cpuctx, ctx);
1871 }
1872
1873 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1874 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1875 group_sched_out(event, cpuctx, ctx);
1876 }
1877 perf_pmu_enable(ctx->pmu);
1878}
1879
1880/*
1881 * Test whether two contexts are equivalent, i.e. whether they
1882 * have both been cloned from the same version of the same context
1883 * and they both have the same number of enabled events.
1884 * If the number of enabled events is the same, then the set
1885 * of enabled events should be the same, because these are both
1886 * inherited contexts, therefore we can't access individual events
1887 * in them directly with an fd; we can only enable/disable all
1888 * events via prctl, or enable/disable all events in a family
1889 * via ioctl, which will have the same effect on both contexts.
1890 */
1891static int context_equiv(struct perf_event_context *ctx1,
1892 struct perf_event_context *ctx2)
1893{
1894 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1895 && ctx1->parent_gen == ctx2->parent_gen
1896 && !ctx1->pin_count && !ctx2->pin_count;
1897}
1898
1899static void __perf_event_sync_stat(struct perf_event *event,
1900 struct perf_event *next_event)
1901{
1902 u64 value;
1903
1904 if (!event->attr.inherit_stat)
1905 return;
1906
1907 /*
1908 * Update the event value, we cannot use perf_event_read()
1909 * because we're in the middle of a context switch and have IRQs
1910 * disabled, which upsets smp_call_function_single(), however
1911 * we know the event must be on the current CPU, therefore we
1912 * don't need to use it.
1913 */
1914 switch (event->state) {
1915 case PERF_EVENT_STATE_ACTIVE:
1916 event->pmu->read(event);
1917 /* fall-through */
1918
1919 case PERF_EVENT_STATE_INACTIVE:
1920 update_event_times(event);
1921 break;
1922
1923 default:
1924 break;
1925 }
1926
1927 /*
1928 * In order to keep per-task stats reliable we need to flip the event
1929 * values when we flip the contexts.
1930 */
1931 value = local64_read(&next_event->count);
1932 value = local64_xchg(&event->count, value);
1933 local64_set(&next_event->count, value);
1934
1935 swap(event->total_time_enabled, next_event->total_time_enabled);
1936 swap(event->total_time_running, next_event->total_time_running);
1937
1938 /*
1939 * Since we swizzled the values, update the user visible data too.
1940 */
1941 perf_event_update_userpage(event);
1942 perf_event_update_userpage(next_event);
1943}
1944
1945#define list_next_entry(pos, member) \
1946 list_entry(pos->member.next, typeof(*pos), member)
1947
1948static void perf_event_sync_stat(struct perf_event_context *ctx,
1949 struct perf_event_context *next_ctx)
1950{
1951 struct perf_event *event, *next_event;
1952
1953 if (!ctx->nr_stat)
1954 return;
1955
1956 update_context_time(ctx);
1957
1958 event = list_first_entry(&ctx->event_list,
1959 struct perf_event, event_entry);
1960
1961 next_event = list_first_entry(&next_ctx->event_list,
1962 struct perf_event, event_entry);
1963
1964 while (&event->event_entry != &ctx->event_list &&
1965 &next_event->event_entry != &next_ctx->event_list) {
1966
1967 __perf_event_sync_stat(event, next_event);
1968
1969 event = list_next_entry(event, event_entry);
1970 next_event = list_next_entry(next_event, event_entry);
1971 }
1972}
1973
1974static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1975 struct task_struct *next)
1976{
1977 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1978 struct perf_event_context *next_ctx;
1979 struct perf_event_context *parent;
1980 struct perf_cpu_context *cpuctx;
1981 int do_switch = 1;
1982
1983 if (likely(!ctx))
1984 return;
1985
1986 cpuctx = __get_cpu_context(ctx);
1987 if (!cpuctx->task_ctx)
1988 return;
1989
1990 rcu_read_lock();
1991 parent = rcu_dereference(ctx->parent_ctx);
1992 next_ctx = next->perf_event_ctxp[ctxn];
1993 if (parent && next_ctx &&
1994 rcu_dereference(next_ctx->parent_ctx) == parent) {
1995 /*
1996 * Looks like the two contexts are clones, so we might be
1997 * able to optimize the context switch. We lock both
1998 * contexts and check that they are clones under the
1999 * lock (including re-checking that neither has been
2000 * uncloned in the meantime). It doesn't matter which
2001 * order we take the locks because no other cpu could
2002 * be trying to lock both of these tasks.
2003 */
2004 raw_spin_lock(&ctx->lock);
2005 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2006 if (context_equiv(ctx, next_ctx)) {
2007 /*
2008 * XXX do we need a memory barrier of sorts
2009 * wrt to rcu_dereference() of perf_event_ctxp
2010 */
2011 task->perf_event_ctxp[ctxn] = next_ctx;
2012 next->perf_event_ctxp[ctxn] = ctx;
2013 ctx->task = next;
2014 next_ctx->task = task;
2015 do_switch = 0;
2016
2017 perf_event_sync_stat(ctx, next_ctx);
2018 }
2019 raw_spin_unlock(&next_ctx->lock);
2020 raw_spin_unlock(&ctx->lock);
2021 }
2022 rcu_read_unlock();
2023
2024 if (do_switch) {
2025 raw_spin_lock(&ctx->lock);
2026 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2027 cpuctx->task_ctx = NULL;
2028 raw_spin_unlock(&ctx->lock);
2029 }
2030}
2031
2032#define for_each_task_context_nr(ctxn) \
2033 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2034
2035/*
2036 * Called from scheduler to remove the events of the current task,
2037 * with interrupts disabled.
2038 *
2039 * We stop each event and update the event value in event->count.
2040 *
2041 * This does not protect us against NMI, but disable()
2042 * sets the disabled bit in the control field of event _before_
2043 * accessing the event control register. If a NMI hits, then it will
2044 * not restart the event.
2045 */
2046void __perf_event_task_sched_out(struct task_struct *task,
2047 struct task_struct *next)
2048{
2049 int ctxn;
2050
2051 for_each_task_context_nr(ctxn)
2052 perf_event_context_sched_out(task, ctxn, next);
2053
2054 /*
2055 * if cgroup events exist on this CPU, then we need
2056 * to check if we have to switch out PMU state.
2057 * cgroup event are system-wide mode only
2058 */
2059 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2060 perf_cgroup_sched_out(task, next);
2061}
2062
2063static void task_ctx_sched_out(struct perf_event_context *ctx)
2064{
2065 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2066
2067 if (!cpuctx->task_ctx)
2068 return;
2069
2070 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2071 return;
2072
2073 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2074 cpuctx->task_ctx = NULL;
2075}
2076
2077/*
2078 * Called with IRQs disabled
2079 */
2080static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2081 enum event_type_t event_type)
2082{
2083 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2084}
2085
2086static void
2087ctx_pinned_sched_in(struct perf_event_context *ctx,
2088 struct perf_cpu_context *cpuctx)
2089{
2090 struct perf_event *event;
2091
2092 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2093 if (event->state <= PERF_EVENT_STATE_OFF)
2094 continue;
2095 if (!event_filter_match(event))
2096 continue;
2097
2098 /* may need to reset tstamp_enabled */
2099 if (is_cgroup_event(event))
2100 perf_cgroup_mark_enabled(event, ctx);
2101
2102 if (group_can_go_on(event, cpuctx, 1))
2103 group_sched_in(event, cpuctx, ctx);
2104
2105 /*
2106 * If this pinned group hasn't been scheduled,
2107 * put it in error state.
2108 */
2109 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2110 update_group_times(event);
2111 event->state = PERF_EVENT_STATE_ERROR;
2112 }
2113 }
2114}
2115
2116static void
2117ctx_flexible_sched_in(struct perf_event_context *ctx,
2118 struct perf_cpu_context *cpuctx)
2119{
2120 struct perf_event *event;
2121 int can_add_hw = 1;
2122
2123 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2124 /* Ignore events in OFF or ERROR state */
2125 if (event->state <= PERF_EVENT_STATE_OFF)
2126 continue;
2127 /*
2128 * Listen to the 'cpu' scheduling filter constraint
2129 * of events:
2130 */
2131 if (!event_filter_match(event))
2132 continue;
2133
2134 /* may need to reset tstamp_enabled */
2135 if (is_cgroup_event(event))
2136 perf_cgroup_mark_enabled(event, ctx);
2137
2138 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2139 if (group_sched_in(event, cpuctx, ctx))
2140 can_add_hw = 0;
2141 }
2142 }
2143}
2144
2145static void
2146ctx_sched_in(struct perf_event_context *ctx,
2147 struct perf_cpu_context *cpuctx,
2148 enum event_type_t event_type,
2149 struct task_struct *task)
2150{
2151 u64 now;
2152 int is_active = ctx->is_active;
2153
2154 ctx->is_active |= event_type;
2155 if (likely(!ctx->nr_events))
2156 return;
2157
2158 now = perf_clock();
2159 ctx->timestamp = now;
2160 perf_cgroup_set_timestamp(task, ctx);
2161 /*
2162 * First go through the list and put on any pinned groups
2163 * in order to give them the best chance of going on.
2164 */
2165 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2166 ctx_pinned_sched_in(ctx, cpuctx);
2167
2168 /* Then walk through the lower prio flexible groups */
2169 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2170 ctx_flexible_sched_in(ctx, cpuctx);
2171}
2172
2173static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2174 enum event_type_t event_type,
2175 struct task_struct *task)
2176{
2177 struct perf_event_context *ctx = &cpuctx->ctx;
2178
2179 ctx_sched_in(ctx, cpuctx, event_type, task);
2180}
2181
2182static void perf_event_context_sched_in(struct perf_event_context *ctx,
2183 struct task_struct *task)
2184{
2185 struct perf_cpu_context *cpuctx;
2186
2187 cpuctx = __get_cpu_context(ctx);
2188 if (cpuctx->task_ctx == ctx)
2189 return;
2190
2191 perf_ctx_lock(cpuctx, ctx);
2192 perf_pmu_disable(ctx->pmu);
2193 /*
2194 * We want to keep the following priority order:
2195 * cpu pinned (that don't need to move), task pinned,
2196 * cpu flexible, task flexible.
2197 */
2198 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2199
2200 if (ctx->nr_events)
2201 cpuctx->task_ctx = ctx;
2202
2203 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2204
2205 perf_pmu_enable(ctx->pmu);
2206 perf_ctx_unlock(cpuctx, ctx);
2207
2208 /*
2209 * Since these rotations are per-cpu, we need to ensure the
2210 * cpu-context we got scheduled on is actually rotating.
2211 */
2212 perf_pmu_rotate_start(ctx->pmu);
2213}
2214
2215/*
2216 * When sampling the branck stack in system-wide, it may be necessary
2217 * to flush the stack on context switch. This happens when the branch
2218 * stack does not tag its entries with the pid of the current task.
2219 * Otherwise it becomes impossible to associate a branch entry with a
2220 * task. This ambiguity is more likely to appear when the branch stack
2221 * supports priv level filtering and the user sets it to monitor only
2222 * at the user level (which could be a useful measurement in system-wide
2223 * mode). In that case, the risk is high of having a branch stack with
2224 * branch from multiple tasks. Flushing may mean dropping the existing
2225 * entries or stashing them somewhere in the PMU specific code layer.
2226 *
2227 * This function provides the context switch callback to the lower code
2228 * layer. It is invoked ONLY when there is at least one system-wide context
2229 * with at least one active event using taken branch sampling.
2230 */
2231static void perf_branch_stack_sched_in(struct task_struct *prev,
2232 struct task_struct *task)
2233{
2234 struct perf_cpu_context *cpuctx;
2235 struct pmu *pmu;
2236 unsigned long flags;
2237
2238 /* no need to flush branch stack if not changing task */
2239 if (prev == task)
2240 return;
2241
2242 local_irq_save(flags);
2243
2244 rcu_read_lock();
2245
2246 list_for_each_entry_rcu(pmu, &pmus, entry) {
2247 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2248
2249 /*
2250 * check if the context has at least one
2251 * event using PERF_SAMPLE_BRANCH_STACK
2252 */
2253 if (cpuctx->ctx.nr_branch_stack > 0
2254 && pmu->flush_branch_stack) {
2255
2256 pmu = cpuctx->ctx.pmu;
2257
2258 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2259
2260 perf_pmu_disable(pmu);
2261
2262 pmu->flush_branch_stack();
2263
2264 perf_pmu_enable(pmu);
2265
2266 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2267 }
2268 }
2269
2270 rcu_read_unlock();
2271
2272 local_irq_restore(flags);
2273}
2274
2275/*
2276 * Called from scheduler to add the events of the current task
2277 * with interrupts disabled.
2278 *
2279 * We restore the event value and then enable it.
2280 *
2281 * This does not protect us against NMI, but enable()
2282 * sets the enabled bit in the control field of event _before_
2283 * accessing the event control register. If a NMI hits, then it will
2284 * keep the event running.
2285 */
2286void __perf_event_task_sched_in(struct task_struct *prev,
2287 struct task_struct *task)
2288{
2289 struct perf_event_context *ctx;
2290 int ctxn;
2291
2292 for_each_task_context_nr(ctxn) {
2293 ctx = task->perf_event_ctxp[ctxn];
2294 if (likely(!ctx))
2295 continue;
2296
2297 perf_event_context_sched_in(ctx, task);
2298 }
2299 /*
2300 * if cgroup events exist on this CPU, then we need
2301 * to check if we have to switch in PMU state.
2302 * cgroup event are system-wide mode only
2303 */
2304 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2305 perf_cgroup_sched_in(prev, task);
2306
2307 /* check for system-wide branch_stack events */
2308 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2309 perf_branch_stack_sched_in(prev, task);
2310}
2311
2312static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2313{
2314 u64 frequency = event->attr.sample_freq;
2315 u64 sec = NSEC_PER_SEC;
2316 u64 divisor, dividend;
2317
2318 int count_fls, nsec_fls, frequency_fls, sec_fls;
2319
2320 count_fls = fls64(count);
2321 nsec_fls = fls64(nsec);
2322 frequency_fls = fls64(frequency);
2323 sec_fls = 30;
2324
2325 /*
2326 * We got @count in @nsec, with a target of sample_freq HZ
2327 * the target period becomes:
2328 *
2329 * @count * 10^9
2330 * period = -------------------
2331 * @nsec * sample_freq
2332 *
2333 */
2334
2335 /*
2336 * Reduce accuracy by one bit such that @a and @b converge
2337 * to a similar magnitude.
2338 */
2339#define REDUCE_FLS(a, b) \
2340do { \
2341 if (a##_fls > b##_fls) { \
2342 a >>= 1; \
2343 a##_fls--; \
2344 } else { \
2345 b >>= 1; \
2346 b##_fls--; \
2347 } \
2348} while (0)
2349
2350 /*
2351 * Reduce accuracy until either term fits in a u64, then proceed with
2352 * the other, so that finally we can do a u64/u64 division.
2353 */
2354 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2355 REDUCE_FLS(nsec, frequency);
2356 REDUCE_FLS(sec, count);
2357 }
2358
2359 if (count_fls + sec_fls > 64) {
2360 divisor = nsec * frequency;
2361
2362 while (count_fls + sec_fls > 64) {
2363 REDUCE_FLS(count, sec);
2364 divisor >>= 1;
2365 }
2366
2367 dividend = count * sec;
2368 } else {
2369 dividend = count * sec;
2370
2371 while (nsec_fls + frequency_fls > 64) {
2372 REDUCE_FLS(nsec, frequency);
2373 dividend >>= 1;
2374 }
2375
2376 divisor = nsec * frequency;
2377 }
2378
2379 if (!divisor)
2380 return dividend;
2381
2382 return div64_u64(dividend, divisor);
2383}
2384
2385static DEFINE_PER_CPU(int, perf_throttled_count);
2386static DEFINE_PER_CPU(u64, perf_throttled_seq);
2387
2388static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2389{
2390 struct hw_perf_event *hwc = &event->hw;
2391 s64 period, sample_period;
2392 s64 delta;
2393
2394 period = perf_calculate_period(event, nsec, count);
2395
2396 delta = (s64)(period - hwc->sample_period);
2397 delta = (delta + 7) / 8; /* low pass filter */
2398
2399 sample_period = hwc->sample_period + delta;
2400
2401 if (!sample_period)
2402 sample_period = 1;
2403
2404 hwc->sample_period = sample_period;
2405
2406 if (local64_read(&hwc->period_left) > 8*sample_period) {
2407 if (disable)
2408 event->pmu->stop(event, PERF_EF_UPDATE);
2409
2410 local64_set(&hwc->period_left, 0);
2411
2412 if (disable)
2413 event->pmu->start(event, PERF_EF_RELOAD);
2414 }
2415}
2416
2417/*
2418 * combine freq adjustment with unthrottling to avoid two passes over the
2419 * events. At the same time, make sure, having freq events does not change
2420 * the rate of unthrottling as that would introduce bias.
2421 */
2422static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2423 int needs_unthr)
2424{
2425 struct perf_event *event;
2426 struct hw_perf_event *hwc;
2427 u64 now, period = TICK_NSEC;
2428 s64 delta;
2429
2430 /*
2431 * only need to iterate over all events iff:
2432 * - context have events in frequency mode (needs freq adjust)
2433 * - there are events to unthrottle on this cpu
2434 */
2435 if (!(ctx->nr_freq || needs_unthr))
2436 return;
2437
2438 raw_spin_lock(&ctx->lock);
2439 perf_pmu_disable(ctx->pmu);
2440
2441 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2442 if (event->state != PERF_EVENT_STATE_ACTIVE)
2443 continue;
2444
2445 if (!event_filter_match(event))
2446 continue;
2447
2448 hwc = &event->hw;
2449
2450 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2451 hwc->interrupts = 0;
2452 perf_log_throttle(event, 1);
2453 event->pmu->start(event, 0);
2454 }
2455
2456 if (!event->attr.freq || !event->attr.sample_freq)
2457 continue;
2458
2459 /*
2460 * stop the event and update event->count
2461 */
2462 event->pmu->stop(event, PERF_EF_UPDATE);
2463
2464 now = local64_read(&event->count);
2465 delta = now - hwc->freq_count_stamp;
2466 hwc->freq_count_stamp = now;
2467
2468 /*
2469 * restart the event
2470 * reload only if value has changed
2471 * we have stopped the event so tell that
2472 * to perf_adjust_period() to avoid stopping it
2473 * twice.
2474 */
2475 if (delta > 0)
2476 perf_adjust_period(event, period, delta, false);
2477
2478 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2479 }
2480
2481 perf_pmu_enable(ctx->pmu);
2482 raw_spin_unlock(&ctx->lock);
2483}
2484
2485/*
2486 * Round-robin a context's events:
2487 */
2488static void rotate_ctx(struct perf_event_context *ctx)
2489{
2490 /*
2491 * Rotate the first entry last of non-pinned groups. Rotation might be
2492 * disabled by the inheritance code.
2493 */
2494 if (!ctx->rotate_disable)
2495 list_rotate_left(&ctx->flexible_groups);
2496}
2497
2498/*
2499 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2500 * because they're strictly cpu affine and rotate_start is called with IRQs
2501 * disabled, while rotate_context is called from IRQ context.
2502 */
2503static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2504{
2505 struct perf_event_context *ctx = NULL;
2506 int rotate = 0, remove = 1;
2507
2508 if (cpuctx->ctx.nr_events) {
2509 remove = 0;
2510 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2511 rotate = 1;
2512 }
2513
2514 ctx = cpuctx->task_ctx;
2515 if (ctx && ctx->nr_events) {
2516 remove = 0;
2517 if (ctx->nr_events != ctx->nr_active)
2518 rotate = 1;
2519 }
2520
2521 if (!rotate)
2522 goto done;
2523
2524 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2525 perf_pmu_disable(cpuctx->ctx.pmu);
2526
2527 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2528 if (ctx)
2529 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2530
2531 rotate_ctx(&cpuctx->ctx);
2532 if (ctx)
2533 rotate_ctx(ctx);
2534
2535 perf_event_sched_in(cpuctx, ctx, current);
2536
2537 perf_pmu_enable(cpuctx->ctx.pmu);
2538 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2539done:
2540 if (remove)
2541 list_del_init(&cpuctx->rotation_list);
2542}
2543
2544void perf_event_task_tick(void)
2545{
2546 struct list_head *head = &__get_cpu_var(rotation_list);
2547 struct perf_cpu_context *cpuctx, *tmp;
2548 struct perf_event_context *ctx;
2549 int throttled;
2550
2551 WARN_ON(!irqs_disabled());
2552
2553 __this_cpu_inc(perf_throttled_seq);
2554 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2555
2556 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2557 ctx = &cpuctx->ctx;
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2559
2560 ctx = cpuctx->task_ctx;
2561 if (ctx)
2562 perf_adjust_freq_unthr_context(ctx, throttled);
2563
2564 if (cpuctx->jiffies_interval == 1 ||
2565 !(jiffies % cpuctx->jiffies_interval))
2566 perf_rotate_context(cpuctx);
2567 }
2568}
2569
2570static int event_enable_on_exec(struct perf_event *event,
2571 struct perf_event_context *ctx)
2572{
2573 if (!event->attr.enable_on_exec)
2574 return 0;
2575
2576 event->attr.enable_on_exec = 0;
2577 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2578 return 0;
2579
2580 __perf_event_mark_enabled(event);
2581
2582 return 1;
2583}
2584
2585/*
2586 * Enable all of a task's events that have been marked enable-on-exec.
2587 * This expects task == current.
2588 */
2589static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2590{
2591 struct perf_event *event;
2592 unsigned long flags;
2593 int enabled = 0;
2594 int ret;
2595
2596 local_irq_save(flags);
2597 if (!ctx || !ctx->nr_events)
2598 goto out;
2599
2600 /*
2601 * We must ctxsw out cgroup events to avoid conflict
2602 * when invoking perf_task_event_sched_in() later on
2603 * in this function. Otherwise we end up trying to
2604 * ctxswin cgroup events which are already scheduled
2605 * in.
2606 */
2607 perf_cgroup_sched_out(current, NULL);
2608
2609 raw_spin_lock(&ctx->lock);
2610 task_ctx_sched_out(ctx);
2611
2612 list_for_each_entry(event, &ctx->event_list, event_entry) {
2613 ret = event_enable_on_exec(event, ctx);
2614 if (ret)
2615 enabled = 1;
2616 }
2617
2618 /*
2619 * Unclone this context if we enabled any event.
2620 */
2621 if (enabled)
2622 unclone_ctx(ctx);
2623
2624 raw_spin_unlock(&ctx->lock);
2625
2626 /*
2627 * Also calls ctxswin for cgroup events, if any:
2628 */
2629 perf_event_context_sched_in(ctx, ctx->task);
2630out:
2631 local_irq_restore(flags);
2632}
2633
2634/*
2635 * Cross CPU call to read the hardware event
2636 */
2637static void __perf_event_read(void *info)
2638{
2639 struct perf_event *event = info;
2640 struct perf_event_context *ctx = event->ctx;
2641 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2642
2643 /*
2644 * If this is a task context, we need to check whether it is
2645 * the current task context of this cpu. If not it has been
2646 * scheduled out before the smp call arrived. In that case
2647 * event->count would have been updated to a recent sample
2648 * when the event was scheduled out.
2649 */
2650 if (ctx->task && cpuctx->task_ctx != ctx)
2651 return;
2652
2653 raw_spin_lock(&ctx->lock);
2654 if (ctx->is_active) {
2655 update_context_time(ctx);
2656 update_cgrp_time_from_event(event);
2657 }
2658 update_event_times(event);
2659 if (event->state == PERF_EVENT_STATE_ACTIVE)
2660 event->pmu->read(event);
2661 raw_spin_unlock(&ctx->lock);
2662}
2663
2664static inline u64 perf_event_count(struct perf_event *event)
2665{
2666 return local64_read(&event->count) + atomic64_read(&event->child_count);
2667}
2668
2669static u64 perf_event_read(struct perf_event *event)
2670{
2671 /*
2672 * If event is enabled and currently active on a CPU, update the
2673 * value in the event structure:
2674 */
2675 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2676 smp_call_function_single(event->oncpu,
2677 __perf_event_read, event, 1);
2678 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2679 struct perf_event_context *ctx = event->ctx;
2680 unsigned long flags;
2681
2682 raw_spin_lock_irqsave(&ctx->lock, flags);
2683 /*
2684 * may read while context is not active
2685 * (e.g., thread is blocked), in that case
2686 * we cannot update context time
2687 */
2688 if (ctx->is_active) {
2689 update_context_time(ctx);
2690 update_cgrp_time_from_event(event);
2691 }
2692 update_event_times(event);
2693 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2694 }
2695
2696 return perf_event_count(event);
2697}
2698
2699/*
2700 * Initialize the perf_event context in a task_struct:
2701 */
2702static void __perf_event_init_context(struct perf_event_context *ctx)
2703{
2704 raw_spin_lock_init(&ctx->lock);
2705 mutex_init(&ctx->mutex);
2706 INIT_LIST_HEAD(&ctx->pinned_groups);
2707 INIT_LIST_HEAD(&ctx->flexible_groups);
2708 INIT_LIST_HEAD(&ctx->event_list);
2709 atomic_set(&ctx->refcount, 1);
2710}
2711
2712static struct perf_event_context *
2713alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2714{
2715 struct perf_event_context *ctx;
2716
2717 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2718 if (!ctx)
2719 return NULL;
2720
2721 __perf_event_init_context(ctx);
2722 if (task) {
2723 ctx->task = task;
2724 get_task_struct(task);
2725 }
2726 ctx->pmu = pmu;
2727
2728 return ctx;
2729}
2730
2731static struct task_struct *
2732find_lively_task_by_vpid(pid_t vpid)
2733{
2734 struct task_struct *task;
2735 int err;
2736
2737 rcu_read_lock();
2738 if (!vpid)
2739 task = current;
2740 else
2741 task = find_task_by_vpid(vpid);
2742 if (task)
2743 get_task_struct(task);
2744 rcu_read_unlock();
2745
2746 if (!task)
2747 return ERR_PTR(-ESRCH);
2748
2749 /* Reuse ptrace permission checks for now. */
2750 err = -EACCES;
2751 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2752 goto errout;
2753
2754 return task;
2755errout:
2756 put_task_struct(task);
2757 return ERR_PTR(err);
2758
2759}
2760
2761/*
2762 * Returns a matching context with refcount and pincount.
2763 */
2764static struct perf_event_context *
2765find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2766{
2767 struct perf_event_context *ctx;
2768 struct perf_cpu_context *cpuctx;
2769 unsigned long flags;
2770 int ctxn, err;
2771
2772 if (!task) {
2773 /* Must be root to operate on a CPU event: */
2774 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2775 return ERR_PTR(-EACCES);
2776
2777 /*
2778 * We could be clever and allow to attach a event to an
2779 * offline CPU and activate it when the CPU comes up, but
2780 * that's for later.
2781 */
2782 if (!cpu_online(cpu))
2783 return ERR_PTR(-ENODEV);
2784
2785 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2786 ctx = &cpuctx->ctx;
2787 get_ctx(ctx);
2788 ++ctx->pin_count;
2789
2790 return ctx;
2791 }
2792
2793 err = -EINVAL;
2794 ctxn = pmu->task_ctx_nr;
2795 if (ctxn < 0)
2796 goto errout;
2797
2798retry:
2799 ctx = perf_lock_task_context(task, ctxn, &flags);
2800 if (ctx) {
2801 unclone_ctx(ctx);
2802 ++ctx->pin_count;
2803 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2804 } else {
2805 ctx = alloc_perf_context(pmu, task);
2806 err = -ENOMEM;
2807 if (!ctx)
2808 goto errout;
2809
2810 err = 0;
2811 mutex_lock(&task->perf_event_mutex);
2812 /*
2813 * If it has already passed perf_event_exit_task().
2814 * we must see PF_EXITING, it takes this mutex too.
2815 */
2816 if (task->flags & PF_EXITING)
2817 err = -ESRCH;
2818 else if (task->perf_event_ctxp[ctxn])
2819 err = -EAGAIN;
2820 else {
2821 get_ctx(ctx);
2822 ++ctx->pin_count;
2823 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2824 }
2825 mutex_unlock(&task->perf_event_mutex);
2826
2827 if (unlikely(err)) {
2828 put_ctx(ctx);
2829
2830 if (err == -EAGAIN)
2831 goto retry;
2832 goto errout;
2833 }
2834 }
2835
2836 return ctx;
2837
2838errout:
2839 return ERR_PTR(err);
2840}
2841
2842static void perf_event_free_filter(struct perf_event *event);
2843
2844static void free_event_rcu(struct rcu_head *head)
2845{
2846 struct perf_event *event;
2847
2848 event = container_of(head, struct perf_event, rcu_head);
2849 if (event->ns)
2850 put_pid_ns(event->ns);
2851 perf_event_free_filter(event);
2852 kfree(event);
2853}
2854
2855static void ring_buffer_put(struct ring_buffer *rb);
2856
2857static void free_event(struct perf_event *event)
2858{
2859 irq_work_sync(&event->pending);
2860
2861 if (!event->parent) {
2862 if (event->attach_state & PERF_ATTACH_TASK)
2863 static_key_slow_dec_deferred(&perf_sched_events);
2864 if (event->attr.mmap || event->attr.mmap_data)
2865 atomic_dec(&nr_mmap_events);
2866 if (event->attr.comm)
2867 atomic_dec(&nr_comm_events);
2868 if (event->attr.task)
2869 atomic_dec(&nr_task_events);
2870 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2871 put_callchain_buffers();
2872 if (is_cgroup_event(event)) {
2873 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2874 static_key_slow_dec_deferred(&perf_sched_events);
2875 }
2876
2877 if (has_branch_stack(event)) {
2878 static_key_slow_dec_deferred(&perf_sched_events);
2879 /* is system-wide event */
2880 if (!(event->attach_state & PERF_ATTACH_TASK))
2881 atomic_dec(&per_cpu(perf_branch_stack_events,
2882 event->cpu));
2883 }
2884 }
2885
2886 if (event->rb) {
2887 ring_buffer_put(event->rb);
2888 event->rb = NULL;
2889 }
2890
2891 if (is_cgroup_event(event))
2892 perf_detach_cgroup(event);
2893
2894 if (event->destroy)
2895 event->destroy(event);
2896
2897 if (event->ctx)
2898 put_ctx(event->ctx);
2899
2900 call_rcu(&event->rcu_head, free_event_rcu);
2901}
2902
2903int perf_event_release_kernel(struct perf_event *event)
2904{
2905 struct perf_event_context *ctx = event->ctx;
2906
2907 WARN_ON_ONCE(ctx->parent_ctx);
2908 /*
2909 * There are two ways this annotation is useful:
2910 *
2911 * 1) there is a lock recursion from perf_event_exit_task
2912 * see the comment there.
2913 *
2914 * 2) there is a lock-inversion with mmap_sem through
2915 * perf_event_read_group(), which takes faults while
2916 * holding ctx->mutex, however this is called after
2917 * the last filedesc died, so there is no possibility
2918 * to trigger the AB-BA case.
2919 */
2920 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2921 raw_spin_lock_irq(&ctx->lock);
2922 perf_group_detach(event);
2923 raw_spin_unlock_irq(&ctx->lock);
2924 perf_remove_from_context(event);
2925 mutex_unlock(&ctx->mutex);
2926
2927 free_event(event);
2928
2929 return 0;
2930}
2931EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2932
2933/*
2934 * Called when the last reference to the file is gone.
2935 */
2936static void put_event(struct perf_event *event)
2937{
2938 struct task_struct *owner;
2939
2940 if (!atomic_long_dec_and_test(&event->refcount))
2941 return;
2942
2943 rcu_read_lock();
2944 owner = ACCESS_ONCE(event->owner);
2945 /*
2946 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2947 * !owner it means the list deletion is complete and we can indeed
2948 * free this event, otherwise we need to serialize on
2949 * owner->perf_event_mutex.
2950 */
2951 smp_read_barrier_depends();
2952 if (owner) {
2953 /*
2954 * Since delayed_put_task_struct() also drops the last
2955 * task reference we can safely take a new reference
2956 * while holding the rcu_read_lock().
2957 */
2958 get_task_struct(owner);
2959 }
2960 rcu_read_unlock();
2961
2962 if (owner) {
2963 mutex_lock(&owner->perf_event_mutex);
2964 /*
2965 * We have to re-check the event->owner field, if it is cleared
2966 * we raced with perf_event_exit_task(), acquiring the mutex
2967 * ensured they're done, and we can proceed with freeing the
2968 * event.
2969 */
2970 if (event->owner)
2971 list_del_init(&event->owner_entry);
2972 mutex_unlock(&owner->perf_event_mutex);
2973 put_task_struct(owner);
2974 }
2975
2976 perf_event_release_kernel(event);
2977}
2978
2979static int perf_release(struct inode *inode, struct file *file)
2980{
2981 put_event(file->private_data);
2982 return 0;
2983}
2984
2985u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2986{
2987 struct perf_event *child;
2988 u64 total = 0;
2989
2990 *enabled = 0;
2991 *running = 0;
2992
2993 mutex_lock(&event->child_mutex);
2994 total += perf_event_read(event);
2995 *enabled += event->total_time_enabled +
2996 atomic64_read(&event->child_total_time_enabled);
2997 *running += event->total_time_running +
2998 atomic64_read(&event->child_total_time_running);
2999
3000 list_for_each_entry(child, &event->child_list, child_list) {
3001 total += perf_event_read(child);
3002 *enabled += child->total_time_enabled;
3003 *running += child->total_time_running;
3004 }
3005 mutex_unlock(&event->child_mutex);
3006
3007 return total;
3008}
3009EXPORT_SYMBOL_GPL(perf_event_read_value);
3010
3011static int perf_event_read_group(struct perf_event *event,
3012 u64 read_format, char __user *buf)
3013{
3014 struct perf_event *leader = event->group_leader, *sub;
3015 int n = 0, size = 0, ret = -EFAULT;
3016 struct perf_event_context *ctx = leader->ctx;
3017 u64 values[5];
3018 u64 count, enabled, running;
3019
3020 mutex_lock(&ctx->mutex);
3021 count = perf_event_read_value(leader, &enabled, &running);
3022
3023 values[n++] = 1 + leader->nr_siblings;
3024 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3025 values[n++] = enabled;
3026 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3027 values[n++] = running;
3028 values[n++] = count;
3029 if (read_format & PERF_FORMAT_ID)
3030 values[n++] = primary_event_id(leader);
3031
3032 size = n * sizeof(u64);
3033
3034 if (copy_to_user(buf, values, size))
3035 goto unlock;
3036
3037 ret = size;
3038
3039 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3040 n = 0;
3041
3042 values[n++] = perf_event_read_value(sub, &enabled, &running);
3043 if (read_format & PERF_FORMAT_ID)
3044 values[n++] = primary_event_id(sub);
3045
3046 size = n * sizeof(u64);
3047
3048 if (copy_to_user(buf + ret, values, size)) {
3049 ret = -EFAULT;
3050 goto unlock;
3051 }
3052
3053 ret += size;
3054 }
3055unlock:
3056 mutex_unlock(&ctx->mutex);
3057
3058 return ret;
3059}
3060
3061static int perf_event_read_one(struct perf_event *event,
3062 u64 read_format, char __user *buf)
3063{
3064 u64 enabled, running;
3065 u64 values[4];
3066 int n = 0;
3067
3068 values[n++] = perf_event_read_value(event, &enabled, &running);
3069 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3070 values[n++] = enabled;
3071 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3072 values[n++] = running;
3073 if (read_format & PERF_FORMAT_ID)
3074 values[n++] = primary_event_id(event);
3075
3076 if (copy_to_user(buf, values, n * sizeof(u64)))
3077 return -EFAULT;
3078
3079 return n * sizeof(u64);
3080}
3081
3082/*
3083 * Read the performance event - simple non blocking version for now
3084 */
3085static ssize_t
3086perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3087{
3088 u64 read_format = event->attr.read_format;
3089 int ret;
3090
3091 /*
3092 * Return end-of-file for a read on a event that is in
3093 * error state (i.e. because it was pinned but it couldn't be
3094 * scheduled on to the CPU at some point).
3095 */
3096 if (event->state == PERF_EVENT_STATE_ERROR)
3097 return 0;
3098
3099 if (count < event->read_size)
3100 return -ENOSPC;
3101
3102 WARN_ON_ONCE(event->ctx->parent_ctx);
3103 if (read_format & PERF_FORMAT_GROUP)
3104 ret = perf_event_read_group(event, read_format, buf);
3105 else
3106 ret = perf_event_read_one(event, read_format, buf);
3107
3108 return ret;
3109}
3110
3111static ssize_t
3112perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3113{
3114 struct perf_event *event = file->private_data;
3115
3116 return perf_read_hw(event, buf, count);
3117}
3118
3119static unsigned int perf_poll(struct file *file, poll_table *wait)
3120{
3121 struct perf_event *event = file->private_data;
3122 struct ring_buffer *rb;
3123 unsigned int events = POLL_HUP;
3124
3125 /*
3126 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3127 * grabs the rb reference but perf_event_set_output() overrides it.
3128 * Here is the timeline for two threads T1, T2:
3129 * t0: T1, rb = rcu_dereference(event->rb)
3130 * t1: T2, old_rb = event->rb
3131 * t2: T2, event->rb = new rb
3132 * t3: T2, ring_buffer_detach(old_rb)
3133 * t4: T1, ring_buffer_attach(rb1)
3134 * t5: T1, poll_wait(event->waitq)
3135 *
3136 * To avoid this problem, we grab mmap_mutex in perf_poll()
3137 * thereby ensuring that the assignment of the new ring buffer
3138 * and the detachment of the old buffer appear atomic to perf_poll()
3139 */
3140 mutex_lock(&event->mmap_mutex);
3141
3142 rcu_read_lock();
3143 rb = rcu_dereference(event->rb);
3144 if (rb) {
3145 ring_buffer_attach(event, rb);
3146 events = atomic_xchg(&rb->poll, 0);
3147 }
3148 rcu_read_unlock();
3149
3150 mutex_unlock(&event->mmap_mutex);
3151
3152 poll_wait(file, &event->waitq, wait);
3153
3154 return events;
3155}
3156
3157static void perf_event_reset(struct perf_event *event)
3158{
3159 (void)perf_event_read(event);
3160 local64_set(&event->count, 0);
3161 perf_event_update_userpage(event);
3162}
3163
3164/*
3165 * Holding the top-level event's child_mutex means that any
3166 * descendant process that has inherited this event will block
3167 * in sync_child_event if it goes to exit, thus satisfying the
3168 * task existence requirements of perf_event_enable/disable.
3169 */
3170static void perf_event_for_each_child(struct perf_event *event,
3171 void (*func)(struct perf_event *))
3172{
3173 struct perf_event *child;
3174
3175 WARN_ON_ONCE(event->ctx->parent_ctx);
3176 mutex_lock(&event->child_mutex);
3177 func(event);
3178 list_for_each_entry(child, &event->child_list, child_list)
3179 func(child);
3180 mutex_unlock(&event->child_mutex);
3181}
3182
3183static void perf_event_for_each(struct perf_event *event,
3184 void (*func)(struct perf_event *))
3185{
3186 struct perf_event_context *ctx = event->ctx;
3187 struct perf_event *sibling;
3188
3189 WARN_ON_ONCE(ctx->parent_ctx);
3190 mutex_lock(&ctx->mutex);
3191 event = event->group_leader;
3192
3193 perf_event_for_each_child(event, func);
3194 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3195 perf_event_for_each_child(sibling, func);
3196 mutex_unlock(&ctx->mutex);
3197}
3198
3199static int perf_event_period(struct perf_event *event, u64 __user *arg)
3200{
3201 struct perf_event_context *ctx = event->ctx;
3202 int ret = 0;
3203 u64 value;
3204
3205 if (!is_sampling_event(event))
3206 return -EINVAL;
3207
3208 if (copy_from_user(&value, arg, sizeof(value)))
3209 return -EFAULT;
3210
3211 if (!value)
3212 return -EINVAL;
3213
3214 raw_spin_lock_irq(&ctx->lock);
3215 if (event->attr.freq) {
3216 if (value > sysctl_perf_event_sample_rate) {
3217 ret = -EINVAL;
3218 goto unlock;
3219 }
3220
3221 event->attr.sample_freq = value;
3222 } else {
3223 event->attr.sample_period = value;
3224 event->hw.sample_period = value;
3225 }
3226unlock:
3227 raw_spin_unlock_irq(&ctx->lock);
3228
3229 return ret;
3230}
3231
3232static const struct file_operations perf_fops;
3233
3234static struct file *perf_fget_light(int fd, int *fput_needed)
3235{
3236 struct file *file;
3237
3238 file = fget_light(fd, fput_needed);
3239 if (!file)
3240 return ERR_PTR(-EBADF);
3241
3242 if (file->f_op != &perf_fops) {
3243 fput_light(file, *fput_needed);
3244 *fput_needed = 0;
3245 return ERR_PTR(-EBADF);
3246 }
3247
3248 return file;
3249}
3250
3251static int perf_event_set_output(struct perf_event *event,
3252 struct perf_event *output_event);
3253static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3254
3255static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3256{
3257 struct perf_event *event = file->private_data;
3258 void (*func)(struct perf_event *);
3259 u32 flags = arg;
3260
3261 switch (cmd) {
3262 case PERF_EVENT_IOC_ENABLE:
3263 func = perf_event_enable;
3264 break;
3265 case PERF_EVENT_IOC_DISABLE:
3266 func = perf_event_disable;
3267 break;
3268 case PERF_EVENT_IOC_RESET:
3269 func = perf_event_reset;
3270 break;
3271
3272 case PERF_EVENT_IOC_REFRESH:
3273 return perf_event_refresh(event, arg);
3274
3275 case PERF_EVENT_IOC_PERIOD:
3276 return perf_event_period(event, (u64 __user *)arg);
3277
3278 case PERF_EVENT_IOC_SET_OUTPUT:
3279 {
3280 struct file *output_file = NULL;
3281 struct perf_event *output_event = NULL;
3282 int fput_needed = 0;
3283 int ret;
3284
3285 if (arg != -1) {
3286 output_file = perf_fget_light(arg, &fput_needed);
3287 if (IS_ERR(output_file))
3288 return PTR_ERR(output_file);
3289 output_event = output_file->private_data;
3290 }
3291
3292 ret = perf_event_set_output(event, output_event);
3293 if (output_event)
3294 fput_light(output_file, fput_needed);
3295
3296 return ret;
3297 }
3298
3299 case PERF_EVENT_IOC_SET_FILTER:
3300 return perf_event_set_filter(event, (void __user *)arg);
3301
3302 default:
3303 return -ENOTTY;
3304 }
3305
3306 if (flags & PERF_IOC_FLAG_GROUP)
3307 perf_event_for_each(event, func);
3308 else
3309 perf_event_for_each_child(event, func);
3310
3311 return 0;
3312}
3313
3314int perf_event_task_enable(void)
3315{
3316 struct perf_event *event;
3317
3318 mutex_lock(¤t->perf_event_mutex);
3319 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3320 perf_event_for_each_child(event, perf_event_enable);
3321 mutex_unlock(¤t->perf_event_mutex);
3322
3323 return 0;
3324}
3325
3326int perf_event_task_disable(void)
3327{
3328 struct perf_event *event;
3329
3330 mutex_lock(¤t->perf_event_mutex);
3331 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3332 perf_event_for_each_child(event, perf_event_disable);
3333 mutex_unlock(¤t->perf_event_mutex);
3334
3335 return 0;
3336}
3337
3338static int perf_event_index(struct perf_event *event)
3339{
3340 if (event->hw.state & PERF_HES_STOPPED)
3341 return 0;
3342
3343 if (event->state != PERF_EVENT_STATE_ACTIVE)
3344 return 0;
3345
3346 return event->pmu->event_idx(event);
3347}
3348
3349static void calc_timer_values(struct perf_event *event,
3350 u64 *now,
3351 u64 *enabled,
3352 u64 *running)
3353{
3354 u64 ctx_time;
3355
3356 *now = perf_clock();
3357 ctx_time = event->shadow_ctx_time + *now;
3358 *enabled = ctx_time - event->tstamp_enabled;
3359 *running = ctx_time - event->tstamp_running;
3360}
3361
3362void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3363{
3364}
3365
3366/*
3367 * Callers need to ensure there can be no nesting of this function, otherwise
3368 * the seqlock logic goes bad. We can not serialize this because the arch
3369 * code calls this from NMI context.
3370 */
3371void perf_event_update_userpage(struct perf_event *event)
3372{
3373 struct perf_event_mmap_page *userpg;
3374 struct ring_buffer *rb;
3375 u64 enabled, running, now;
3376
3377 rcu_read_lock();
3378 /*
3379 * compute total_time_enabled, total_time_running
3380 * based on snapshot values taken when the event
3381 * was last scheduled in.
3382 *
3383 * we cannot simply called update_context_time()
3384 * because of locking issue as we can be called in
3385 * NMI context
3386 */
3387 calc_timer_values(event, &now, &enabled, &running);
3388 rb = rcu_dereference(event->rb);
3389 if (!rb)
3390 goto unlock;
3391
3392 userpg = rb->user_page;
3393
3394 /*
3395 * Disable preemption so as to not let the corresponding user-space
3396 * spin too long if we get preempted.
3397 */
3398 preempt_disable();
3399 ++userpg->lock;
3400 barrier();
3401 userpg->index = perf_event_index(event);
3402 userpg->offset = perf_event_count(event);
3403 if (userpg->index)
3404 userpg->offset -= local64_read(&event->hw.prev_count);
3405
3406 userpg->time_enabled = enabled +
3407 atomic64_read(&event->child_total_time_enabled);
3408
3409 userpg->time_running = running +
3410 atomic64_read(&event->child_total_time_running);
3411
3412 arch_perf_update_userpage(userpg, now);
3413
3414 barrier();
3415 ++userpg->lock;
3416 preempt_enable();
3417unlock:
3418 rcu_read_unlock();
3419}
3420
3421static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3422{
3423 struct perf_event *event = vma->vm_file->private_data;
3424 struct ring_buffer *rb;
3425 int ret = VM_FAULT_SIGBUS;
3426
3427 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3428 if (vmf->pgoff == 0)
3429 ret = 0;
3430 return ret;
3431 }
3432
3433 rcu_read_lock();
3434 rb = rcu_dereference(event->rb);
3435 if (!rb)
3436 goto unlock;
3437
3438 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3439 goto unlock;
3440
3441 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3442 if (!vmf->page)
3443 goto unlock;
3444
3445 get_page(vmf->page);
3446 vmf->page->mapping = vma->vm_file->f_mapping;
3447 vmf->page->index = vmf->pgoff;
3448
3449 ret = 0;
3450unlock:
3451 rcu_read_unlock();
3452
3453 return ret;
3454}
3455
3456static void ring_buffer_attach(struct perf_event *event,
3457 struct ring_buffer *rb)
3458{
3459 unsigned long flags;
3460
3461 if (!list_empty(&event->rb_entry))
3462 return;
3463
3464 spin_lock_irqsave(&rb->event_lock, flags);
3465 if (!list_empty(&event->rb_entry))
3466 goto unlock;
3467
3468 list_add(&event->rb_entry, &rb->event_list);
3469unlock:
3470 spin_unlock_irqrestore(&rb->event_lock, flags);
3471}
3472
3473static void ring_buffer_detach(struct perf_event *event,
3474 struct ring_buffer *rb)
3475{
3476 unsigned long flags;
3477
3478 if (list_empty(&event->rb_entry))
3479 return;
3480
3481 spin_lock_irqsave(&rb->event_lock, flags);
3482 list_del_init(&event->rb_entry);
3483 wake_up_all(&event->waitq);
3484 spin_unlock_irqrestore(&rb->event_lock, flags);
3485}
3486
3487static void ring_buffer_wakeup(struct perf_event *event)
3488{
3489 struct ring_buffer *rb;
3490
3491 rcu_read_lock();
3492 rb = rcu_dereference(event->rb);
3493 if (!rb)
3494 goto unlock;
3495
3496 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3497 wake_up_all(&event->waitq);
3498
3499unlock:
3500 rcu_read_unlock();
3501}
3502
3503static void rb_free_rcu(struct rcu_head *rcu_head)
3504{
3505 struct ring_buffer *rb;
3506
3507 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3508 rb_free(rb);
3509}
3510
3511static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3512{
3513 struct ring_buffer *rb;
3514
3515 rcu_read_lock();
3516 rb = rcu_dereference(event->rb);
3517 if (rb) {
3518 if (!atomic_inc_not_zero(&rb->refcount))
3519 rb = NULL;
3520 }
3521 rcu_read_unlock();
3522
3523 return rb;
3524}
3525
3526static void ring_buffer_put(struct ring_buffer *rb)
3527{
3528 struct perf_event *event, *n;
3529 unsigned long flags;
3530
3531 if (!atomic_dec_and_test(&rb->refcount))
3532 return;
3533
3534 spin_lock_irqsave(&rb->event_lock, flags);
3535 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3536 list_del_init(&event->rb_entry);
3537 wake_up_all(&event->waitq);
3538 }
3539 spin_unlock_irqrestore(&rb->event_lock, flags);
3540
3541 call_rcu(&rb->rcu_head, rb_free_rcu);
3542}
3543
3544static void perf_mmap_open(struct vm_area_struct *vma)
3545{
3546 struct perf_event *event = vma->vm_file->private_data;
3547
3548 atomic_inc(&event->mmap_count);
3549}
3550
3551static void perf_mmap_close(struct vm_area_struct *vma)
3552{
3553 struct perf_event *event = vma->vm_file->private_data;
3554
3555 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3556 unsigned long size = perf_data_size(event->rb);
3557 struct user_struct *user = event->mmap_user;
3558 struct ring_buffer *rb = event->rb;
3559
3560 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3561 vma->vm_mm->pinned_vm -= event->mmap_locked;
3562 rcu_assign_pointer(event->rb, NULL);
3563 ring_buffer_detach(event, rb);
3564 mutex_unlock(&event->mmap_mutex);
3565
3566 ring_buffer_put(rb);
3567 free_uid(user);
3568 }
3569}
3570
3571static const struct vm_operations_struct perf_mmap_vmops = {
3572 .open = perf_mmap_open,
3573 .close = perf_mmap_close,
3574 .fault = perf_mmap_fault,
3575 .page_mkwrite = perf_mmap_fault,
3576};
3577
3578static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3579{
3580 struct perf_event *event = file->private_data;
3581 unsigned long user_locked, user_lock_limit;
3582 struct user_struct *user = current_user();
3583 unsigned long locked, lock_limit;
3584 struct ring_buffer *rb;
3585 unsigned long vma_size;
3586 unsigned long nr_pages;
3587 long user_extra, extra;
3588 int ret = 0, flags = 0;
3589
3590 /*
3591 * Don't allow mmap() of inherited per-task counters. This would
3592 * create a performance issue due to all children writing to the
3593 * same rb.
3594 */
3595 if (event->cpu == -1 && event->attr.inherit)
3596 return -EINVAL;
3597
3598 if (!(vma->vm_flags & VM_SHARED))
3599 return -EINVAL;
3600
3601 vma_size = vma->vm_end - vma->vm_start;
3602 nr_pages = (vma_size / PAGE_SIZE) - 1;
3603
3604 /*
3605 * If we have rb pages ensure they're a power-of-two number, so we
3606 * can do bitmasks instead of modulo.
3607 */
3608 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3609 return -EINVAL;
3610
3611 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3612 return -EINVAL;
3613
3614 if (vma->vm_pgoff != 0)
3615 return -EINVAL;
3616
3617 WARN_ON_ONCE(event->ctx->parent_ctx);
3618 mutex_lock(&event->mmap_mutex);
3619 if (event->rb) {
3620 if (event->rb->nr_pages == nr_pages)
3621 atomic_inc(&event->rb->refcount);
3622 else
3623 ret = -EINVAL;
3624 goto unlock;
3625 }
3626
3627 user_extra = nr_pages + 1;
3628 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3629
3630 /*
3631 * Increase the limit linearly with more CPUs:
3632 */
3633 user_lock_limit *= num_online_cpus();
3634
3635 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3636
3637 extra = 0;
3638 if (user_locked > user_lock_limit)
3639 extra = user_locked - user_lock_limit;
3640
3641 lock_limit = rlimit(RLIMIT_MEMLOCK);
3642 lock_limit >>= PAGE_SHIFT;
3643 locked = vma->vm_mm->pinned_vm + extra;
3644
3645 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3646 !capable(CAP_IPC_LOCK)) {
3647 ret = -EPERM;
3648 goto unlock;
3649 }
3650
3651 WARN_ON(event->rb);
3652
3653 if (vma->vm_flags & VM_WRITE)
3654 flags |= RING_BUFFER_WRITABLE;
3655
3656 rb = rb_alloc(nr_pages,
3657 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3658 event->cpu, flags);
3659
3660 if (!rb) {
3661 ret = -ENOMEM;
3662 goto unlock;
3663 }
3664 rcu_assign_pointer(event->rb, rb);
3665
3666 atomic_long_add(user_extra, &user->locked_vm);
3667 event->mmap_locked = extra;
3668 event->mmap_user = get_current_user();
3669 vma->vm_mm->pinned_vm += event->mmap_locked;
3670
3671 perf_event_update_userpage(event);
3672
3673unlock:
3674 if (!ret)
3675 atomic_inc(&event->mmap_count);
3676 mutex_unlock(&event->mmap_mutex);
3677
3678 vma->vm_flags |= VM_RESERVED;
3679 vma->vm_ops = &perf_mmap_vmops;
3680
3681 return ret;
3682}
3683
3684static int perf_fasync(int fd, struct file *filp, int on)
3685{
3686 struct inode *inode = filp->f_path.dentry->d_inode;
3687 struct perf_event *event = filp->private_data;
3688 int retval;
3689
3690 mutex_lock(&inode->i_mutex);
3691 retval = fasync_helper(fd, filp, on, &event->fasync);
3692 mutex_unlock(&inode->i_mutex);
3693
3694 if (retval < 0)
3695 return retval;
3696
3697 return 0;
3698}
3699
3700static const struct file_operations perf_fops = {
3701 .llseek = no_llseek,
3702 .release = perf_release,
3703 .read = perf_read,
3704 .poll = perf_poll,
3705 .unlocked_ioctl = perf_ioctl,
3706 .compat_ioctl = perf_ioctl,
3707 .mmap = perf_mmap,
3708 .fasync = perf_fasync,
3709};
3710
3711/*
3712 * Perf event wakeup
3713 *
3714 * If there's data, ensure we set the poll() state and publish everything
3715 * to user-space before waking everybody up.
3716 */
3717
3718void perf_event_wakeup(struct perf_event *event)
3719{
3720 ring_buffer_wakeup(event);
3721
3722 if (event->pending_kill) {
3723 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3724 event->pending_kill = 0;
3725 }
3726}
3727
3728static void perf_pending_event(struct irq_work *entry)
3729{
3730 struct perf_event *event = container_of(entry,
3731 struct perf_event, pending);
3732
3733 if (event->pending_disable) {
3734 event->pending_disable = 0;
3735 __perf_event_disable(event);
3736 }
3737
3738 if (event->pending_wakeup) {
3739 event->pending_wakeup = 0;
3740 perf_event_wakeup(event);
3741 }
3742}
3743
3744/*
3745 * We assume there is only KVM supporting the callbacks.
3746 * Later on, we might change it to a list if there is
3747 * another virtualization implementation supporting the callbacks.
3748 */
3749struct perf_guest_info_callbacks *perf_guest_cbs;
3750
3751int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3752{
3753 perf_guest_cbs = cbs;
3754 return 0;
3755}
3756EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3757
3758int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3759{
3760 perf_guest_cbs = NULL;
3761 return 0;
3762}
3763EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3764
3765static void __perf_event_header__init_id(struct perf_event_header *header,
3766 struct perf_sample_data *data,
3767 struct perf_event *event)
3768{
3769 u64 sample_type = event->attr.sample_type;
3770
3771 data->type = sample_type;
3772 header->size += event->id_header_size;
3773
3774 if (sample_type & PERF_SAMPLE_TID) {
3775 /* namespace issues */
3776 data->tid_entry.pid = perf_event_pid(event, current);
3777 data->tid_entry.tid = perf_event_tid(event, current);
3778 }
3779
3780 if (sample_type & PERF_SAMPLE_TIME)
3781 data->time = perf_clock();
3782
3783 if (sample_type & PERF_SAMPLE_ID)
3784 data->id = primary_event_id(event);
3785
3786 if (sample_type & PERF_SAMPLE_STREAM_ID)
3787 data->stream_id = event->id;
3788
3789 if (sample_type & PERF_SAMPLE_CPU) {
3790 data->cpu_entry.cpu = raw_smp_processor_id();
3791 data->cpu_entry.reserved = 0;
3792 }
3793}
3794
3795void perf_event_header__init_id(struct perf_event_header *header,
3796 struct perf_sample_data *data,
3797 struct perf_event *event)
3798{
3799 if (event->attr.sample_id_all)
3800 __perf_event_header__init_id(header, data, event);
3801}
3802
3803static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3804 struct perf_sample_data *data)
3805{
3806 u64 sample_type = data->type;
3807
3808 if (sample_type & PERF_SAMPLE_TID)
3809 perf_output_put(handle, data->tid_entry);
3810
3811 if (sample_type & PERF_SAMPLE_TIME)
3812 perf_output_put(handle, data->time);
3813
3814 if (sample_type & PERF_SAMPLE_ID)
3815 perf_output_put(handle, data->id);
3816
3817 if (sample_type & PERF_SAMPLE_STREAM_ID)
3818 perf_output_put(handle, data->stream_id);
3819
3820 if (sample_type & PERF_SAMPLE_CPU)
3821 perf_output_put(handle, data->cpu_entry);
3822}
3823
3824void perf_event__output_id_sample(struct perf_event *event,
3825 struct perf_output_handle *handle,
3826 struct perf_sample_data *sample)
3827{
3828 if (event->attr.sample_id_all)
3829 __perf_event__output_id_sample(handle, sample);
3830}
3831
3832static void perf_output_read_one(struct perf_output_handle *handle,
3833 struct perf_event *event,
3834 u64 enabled, u64 running)
3835{
3836 u64 read_format = event->attr.read_format;
3837 u64 values[4];
3838 int n = 0;
3839
3840 values[n++] = perf_event_count(event);
3841 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3842 values[n++] = enabled +
3843 atomic64_read(&event->child_total_time_enabled);
3844 }
3845 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3846 values[n++] = running +
3847 atomic64_read(&event->child_total_time_running);
3848 }
3849 if (read_format & PERF_FORMAT_ID)
3850 values[n++] = primary_event_id(event);
3851
3852 __output_copy(handle, values, n * sizeof(u64));
3853}
3854
3855/*
3856 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3857 */
3858static void perf_output_read_group(struct perf_output_handle *handle,
3859 struct perf_event *event,
3860 u64 enabled, u64 running)
3861{
3862 struct perf_event *leader = event->group_leader, *sub;
3863 u64 read_format = event->attr.read_format;
3864 u64 values[5];
3865 int n = 0;
3866
3867 values[n++] = 1 + leader->nr_siblings;
3868
3869 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3870 values[n++] = enabled;
3871
3872 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3873 values[n++] = running;
3874
3875 if (leader != event)
3876 leader->pmu->read(leader);
3877
3878 values[n++] = perf_event_count(leader);
3879 if (read_format & PERF_FORMAT_ID)
3880 values[n++] = primary_event_id(leader);
3881
3882 __output_copy(handle, values, n * sizeof(u64));
3883
3884 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3885 n = 0;
3886
3887 if (sub != event)
3888 sub->pmu->read(sub);
3889
3890 values[n++] = perf_event_count(sub);
3891 if (read_format & PERF_FORMAT_ID)
3892 values[n++] = primary_event_id(sub);
3893
3894 __output_copy(handle, values, n * sizeof(u64));
3895 }
3896}
3897
3898#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3899 PERF_FORMAT_TOTAL_TIME_RUNNING)
3900
3901static void perf_output_read(struct perf_output_handle *handle,
3902 struct perf_event *event)
3903{
3904 u64 enabled = 0, running = 0, now;
3905 u64 read_format = event->attr.read_format;
3906
3907 /*
3908 * compute total_time_enabled, total_time_running
3909 * based on snapshot values taken when the event
3910 * was last scheduled in.
3911 *
3912 * we cannot simply called update_context_time()
3913 * because of locking issue as we are called in
3914 * NMI context
3915 */
3916 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3917 calc_timer_values(event, &now, &enabled, &running);
3918
3919 if (event->attr.read_format & PERF_FORMAT_GROUP)
3920 perf_output_read_group(handle, event, enabled, running);
3921 else
3922 perf_output_read_one(handle, event, enabled, running);
3923}
3924
3925void perf_output_sample(struct perf_output_handle *handle,
3926 struct perf_event_header *header,
3927 struct perf_sample_data *data,
3928 struct perf_event *event)
3929{
3930 u64 sample_type = data->type;
3931
3932 perf_output_put(handle, *header);
3933
3934 if (sample_type & PERF_SAMPLE_IP)
3935 perf_output_put(handle, data->ip);
3936
3937 if (sample_type & PERF_SAMPLE_TID)
3938 perf_output_put(handle, data->tid_entry);
3939
3940 if (sample_type & PERF_SAMPLE_TIME)
3941 perf_output_put(handle, data->time);
3942
3943 if (sample_type & PERF_SAMPLE_ADDR)
3944 perf_output_put(handle, data->addr);
3945
3946 if (sample_type & PERF_SAMPLE_ID)
3947 perf_output_put(handle, data->id);
3948
3949 if (sample_type & PERF_SAMPLE_STREAM_ID)
3950 perf_output_put(handle, data->stream_id);
3951
3952 if (sample_type & PERF_SAMPLE_CPU)
3953 perf_output_put(handle, data->cpu_entry);
3954
3955 if (sample_type & PERF_SAMPLE_PERIOD)
3956 perf_output_put(handle, data->period);
3957
3958 if (sample_type & PERF_SAMPLE_READ)
3959 perf_output_read(handle, event);
3960
3961 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3962 if (data->callchain) {
3963 int size = 1;
3964
3965 if (data->callchain)
3966 size += data->callchain->nr;
3967
3968 size *= sizeof(u64);
3969
3970 __output_copy(handle, data->callchain, size);
3971 } else {
3972 u64 nr = 0;
3973 perf_output_put(handle, nr);
3974 }
3975 }
3976
3977 if (sample_type & PERF_SAMPLE_RAW) {
3978 if (data->raw) {
3979 perf_output_put(handle, data->raw->size);
3980 __output_copy(handle, data->raw->data,
3981 data->raw->size);
3982 } else {
3983 struct {
3984 u32 size;
3985 u32 data;
3986 } raw = {
3987 .size = sizeof(u32),
3988 .data = 0,
3989 };
3990 perf_output_put(handle, raw);
3991 }
3992 }
3993
3994 if (!event->attr.watermark) {
3995 int wakeup_events = event->attr.wakeup_events;
3996
3997 if (wakeup_events) {
3998 struct ring_buffer *rb = handle->rb;
3999 int events = local_inc_return(&rb->events);
4000
4001 if (events >= wakeup_events) {
4002 local_sub(wakeup_events, &rb->events);
4003 local_inc(&rb->wakeup);
4004 }
4005 }
4006 }
4007
4008 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4009 if (data->br_stack) {
4010 size_t size;
4011
4012 size = data->br_stack->nr
4013 * sizeof(struct perf_branch_entry);
4014
4015 perf_output_put(handle, data->br_stack->nr);
4016 perf_output_copy(handle, data->br_stack->entries, size);
4017 } else {
4018 /*
4019 * we always store at least the value of nr
4020 */
4021 u64 nr = 0;
4022 perf_output_put(handle, nr);
4023 }
4024 }
4025}
4026
4027void perf_prepare_sample(struct perf_event_header *header,
4028 struct perf_sample_data *data,
4029 struct perf_event *event,
4030 struct pt_regs *regs)
4031{
4032 u64 sample_type = event->attr.sample_type;
4033
4034 header->type = PERF_RECORD_SAMPLE;
4035 header->size = sizeof(*header) + event->header_size;
4036
4037 header->misc = 0;
4038 header->misc |= perf_misc_flags(regs);
4039
4040 __perf_event_header__init_id(header, data, event);
4041
4042 if (sample_type & PERF_SAMPLE_IP)
4043 data->ip = perf_instruction_pointer(regs);
4044
4045 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4046 int size = 1;
4047
4048 data->callchain = perf_callchain(regs);
4049
4050 if (data->callchain)
4051 size += data->callchain->nr;
4052
4053 header->size += size * sizeof(u64);
4054 }
4055
4056 if (sample_type & PERF_SAMPLE_RAW) {
4057 int size = sizeof(u32);
4058
4059 if (data->raw)
4060 size += data->raw->size;
4061 else
4062 size += sizeof(u32);
4063
4064 WARN_ON_ONCE(size & (sizeof(u64)-1));
4065 header->size += size;
4066 }
4067
4068 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4069 int size = sizeof(u64); /* nr */
4070 if (data->br_stack) {
4071 size += data->br_stack->nr
4072 * sizeof(struct perf_branch_entry);
4073 }
4074 header->size += size;
4075 }
4076}
4077
4078static void perf_event_output(struct perf_event *event,
4079 struct perf_sample_data *data,
4080 struct pt_regs *regs)
4081{
4082 struct perf_output_handle handle;
4083 struct perf_event_header header;
4084
4085 /* protect the callchain buffers */
4086 rcu_read_lock();
4087
4088 perf_prepare_sample(&header, data, event, regs);
4089
4090 if (perf_output_begin(&handle, event, header.size))
4091 goto exit;
4092
4093 perf_output_sample(&handle, &header, data, event);
4094
4095 perf_output_end(&handle);
4096
4097exit:
4098 rcu_read_unlock();
4099}
4100
4101/*
4102 * read event_id
4103 */
4104
4105struct perf_read_event {
4106 struct perf_event_header header;
4107
4108 u32 pid;
4109 u32 tid;
4110};
4111
4112static void
4113perf_event_read_event(struct perf_event *event,
4114 struct task_struct *task)
4115{
4116 struct perf_output_handle handle;
4117 struct perf_sample_data sample;
4118 struct perf_read_event read_event = {
4119 .header = {
4120 .type = PERF_RECORD_READ,
4121 .misc = 0,
4122 .size = sizeof(read_event) + event->read_size,
4123 },
4124 .pid = perf_event_pid(event, task),
4125 .tid = perf_event_tid(event, task),
4126 };
4127 int ret;
4128
4129 perf_event_header__init_id(&read_event.header, &sample, event);
4130 ret = perf_output_begin(&handle, event, read_event.header.size);
4131 if (ret)
4132 return;
4133
4134 perf_output_put(&handle, read_event);
4135 perf_output_read(&handle, event);
4136 perf_event__output_id_sample(event, &handle, &sample);
4137
4138 perf_output_end(&handle);
4139}
4140
4141/*
4142 * task tracking -- fork/exit
4143 *
4144 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4145 */
4146
4147struct perf_task_event {
4148 struct task_struct *task;
4149 struct perf_event_context *task_ctx;
4150
4151 struct {
4152 struct perf_event_header header;
4153
4154 u32 pid;
4155 u32 ppid;
4156 u32 tid;
4157 u32 ptid;
4158 u64 time;
4159 } event_id;
4160};
4161
4162static void perf_event_task_output(struct perf_event *event,
4163 struct perf_task_event *task_event)
4164{
4165 struct perf_output_handle handle;
4166 struct perf_sample_data sample;
4167 struct task_struct *task = task_event->task;
4168 int ret, size = task_event->event_id.header.size;
4169
4170 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4171
4172 ret = perf_output_begin(&handle, event,
4173 task_event->event_id.header.size);
4174 if (ret)
4175 goto out;
4176
4177 task_event->event_id.pid = perf_event_pid(event, task);
4178 task_event->event_id.ppid = perf_event_pid(event, current);
4179
4180 task_event->event_id.tid = perf_event_tid(event, task);
4181 task_event->event_id.ptid = perf_event_tid(event, current);
4182
4183 perf_output_put(&handle, task_event->event_id);
4184
4185 perf_event__output_id_sample(event, &handle, &sample);
4186
4187 perf_output_end(&handle);
4188out:
4189 task_event->event_id.header.size = size;
4190}
4191
4192static int perf_event_task_match(struct perf_event *event)
4193{
4194 if (event->state < PERF_EVENT_STATE_INACTIVE)
4195 return 0;
4196
4197 if (!event_filter_match(event))
4198 return 0;
4199
4200 if (event->attr.comm || event->attr.mmap ||
4201 event->attr.mmap_data || event->attr.task)
4202 return 1;
4203
4204 return 0;
4205}
4206
4207static void perf_event_task_ctx(struct perf_event_context *ctx,
4208 struct perf_task_event *task_event)
4209{
4210 struct perf_event *event;
4211
4212 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4213 if (perf_event_task_match(event))
4214 perf_event_task_output(event, task_event);
4215 }
4216}
4217
4218static void perf_event_task_event(struct perf_task_event *task_event)
4219{
4220 struct perf_cpu_context *cpuctx;
4221 struct perf_event_context *ctx;
4222 struct pmu *pmu;
4223 int ctxn;
4224
4225 rcu_read_lock();
4226 list_for_each_entry_rcu(pmu, &pmus, entry) {
4227 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4228 if (cpuctx->active_pmu != pmu)
4229 goto next;
4230 perf_event_task_ctx(&cpuctx->ctx, task_event);
4231
4232 ctx = task_event->task_ctx;
4233 if (!ctx) {
4234 ctxn = pmu->task_ctx_nr;
4235 if (ctxn < 0)
4236 goto next;
4237 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4238 }
4239 if (ctx)
4240 perf_event_task_ctx(ctx, task_event);
4241next:
4242 put_cpu_ptr(pmu->pmu_cpu_context);
4243 }
4244 rcu_read_unlock();
4245}
4246
4247static void perf_event_task(struct task_struct *task,
4248 struct perf_event_context *task_ctx,
4249 int new)
4250{
4251 struct perf_task_event task_event;
4252
4253 if (!atomic_read(&nr_comm_events) &&
4254 !atomic_read(&nr_mmap_events) &&
4255 !atomic_read(&nr_task_events))
4256 return;
4257
4258 task_event = (struct perf_task_event){
4259 .task = task,
4260 .task_ctx = task_ctx,
4261 .event_id = {
4262 .header = {
4263 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4264 .misc = 0,
4265 .size = sizeof(task_event.event_id),
4266 },
4267 /* .pid */
4268 /* .ppid */
4269 /* .tid */
4270 /* .ptid */
4271 .time = perf_clock(),
4272 },
4273 };
4274
4275 perf_event_task_event(&task_event);
4276}
4277
4278void perf_event_fork(struct task_struct *task)
4279{
4280 perf_event_task(task, NULL, 1);
4281}
4282
4283/*
4284 * comm tracking
4285 */
4286
4287struct perf_comm_event {
4288 struct task_struct *task;
4289 char *comm;
4290 int comm_size;
4291
4292 struct {
4293 struct perf_event_header header;
4294
4295 u32 pid;
4296 u32 tid;
4297 } event_id;
4298};
4299
4300static void perf_event_comm_output(struct perf_event *event,
4301 struct perf_comm_event *comm_event)
4302{
4303 struct perf_output_handle handle;
4304 struct perf_sample_data sample;
4305 int size = comm_event->event_id.header.size;
4306 int ret;
4307
4308 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4309 ret = perf_output_begin(&handle, event,
4310 comm_event->event_id.header.size);
4311
4312 if (ret)
4313 goto out;
4314
4315 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4316 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4317
4318 perf_output_put(&handle, comm_event->event_id);
4319 __output_copy(&handle, comm_event->comm,
4320 comm_event->comm_size);
4321
4322 perf_event__output_id_sample(event, &handle, &sample);
4323
4324 perf_output_end(&handle);
4325out:
4326 comm_event->event_id.header.size = size;
4327}
4328
4329static int perf_event_comm_match(struct perf_event *event)
4330{
4331 if (event->state < PERF_EVENT_STATE_INACTIVE)
4332 return 0;
4333
4334 if (!event_filter_match(event))
4335 return 0;
4336
4337 if (event->attr.comm)
4338 return 1;
4339
4340 return 0;
4341}
4342
4343static void perf_event_comm_ctx(struct perf_event_context *ctx,
4344 struct perf_comm_event *comm_event)
4345{
4346 struct perf_event *event;
4347
4348 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4349 if (perf_event_comm_match(event))
4350 perf_event_comm_output(event, comm_event);
4351 }
4352}
4353
4354static void perf_event_comm_event(struct perf_comm_event *comm_event)
4355{
4356 struct perf_cpu_context *cpuctx;
4357 struct perf_event_context *ctx;
4358 char comm[TASK_COMM_LEN];
4359 unsigned int size;
4360 struct pmu *pmu;
4361 int ctxn;
4362
4363 memset(comm, 0, sizeof(comm));
4364 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4365 size = ALIGN(strlen(comm)+1, sizeof(u64));
4366
4367 comm_event->comm = comm;
4368 comm_event->comm_size = size;
4369
4370 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4371 rcu_read_lock();
4372 list_for_each_entry_rcu(pmu, &pmus, entry) {
4373 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4374 if (cpuctx->active_pmu != pmu)
4375 goto next;
4376 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4377
4378 ctxn = pmu->task_ctx_nr;
4379 if (ctxn < 0)
4380 goto next;
4381
4382 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4383 if (ctx)
4384 perf_event_comm_ctx(ctx, comm_event);
4385next:
4386 put_cpu_ptr(pmu->pmu_cpu_context);
4387 }
4388 rcu_read_unlock();
4389}
4390
4391void perf_event_comm(struct task_struct *task)
4392{
4393 struct perf_comm_event comm_event;
4394 struct perf_event_context *ctx;
4395 int ctxn;
4396
4397 for_each_task_context_nr(ctxn) {
4398 ctx = task->perf_event_ctxp[ctxn];
4399 if (!ctx)
4400 continue;
4401
4402 perf_event_enable_on_exec(ctx);
4403 }
4404
4405 if (!atomic_read(&nr_comm_events))
4406 return;
4407
4408 comm_event = (struct perf_comm_event){
4409 .task = task,
4410 /* .comm */
4411 /* .comm_size */
4412 .event_id = {
4413 .header = {
4414 .type = PERF_RECORD_COMM,
4415 .misc = 0,
4416 /* .size */
4417 },
4418 /* .pid */
4419 /* .tid */
4420 },
4421 };
4422
4423 perf_event_comm_event(&comm_event);
4424}
4425
4426/*
4427 * mmap tracking
4428 */
4429
4430struct perf_mmap_event {
4431 struct vm_area_struct *vma;
4432
4433 const char *file_name;
4434 int file_size;
4435
4436 struct {
4437 struct perf_event_header header;
4438
4439 u32 pid;
4440 u32 tid;
4441 u64 start;
4442 u64 len;
4443 u64 pgoff;
4444 } event_id;
4445};
4446
4447static void perf_event_mmap_output(struct perf_event *event,
4448 struct perf_mmap_event *mmap_event)
4449{
4450 struct perf_output_handle handle;
4451 struct perf_sample_data sample;
4452 int size = mmap_event->event_id.header.size;
4453 int ret;
4454
4455 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4456 ret = perf_output_begin(&handle, event,
4457 mmap_event->event_id.header.size);
4458 if (ret)
4459 goto out;
4460
4461 mmap_event->event_id.pid = perf_event_pid(event, current);
4462 mmap_event->event_id.tid = perf_event_tid(event, current);
4463
4464 perf_output_put(&handle, mmap_event->event_id);
4465 __output_copy(&handle, mmap_event->file_name,
4466 mmap_event->file_size);
4467
4468 perf_event__output_id_sample(event, &handle, &sample);
4469
4470 perf_output_end(&handle);
4471out:
4472 mmap_event->event_id.header.size = size;
4473}
4474
4475static int perf_event_mmap_match(struct perf_event *event,
4476 struct perf_mmap_event *mmap_event,
4477 int executable)
4478{
4479 if (event->state < PERF_EVENT_STATE_INACTIVE)
4480 return 0;
4481
4482 if (!event_filter_match(event))
4483 return 0;
4484
4485 if ((!executable && event->attr.mmap_data) ||
4486 (executable && event->attr.mmap))
4487 return 1;
4488
4489 return 0;
4490}
4491
4492static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4493 struct perf_mmap_event *mmap_event,
4494 int executable)
4495{
4496 struct perf_event *event;
4497
4498 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4499 if (perf_event_mmap_match(event, mmap_event, executable))
4500 perf_event_mmap_output(event, mmap_event);
4501 }
4502}
4503
4504static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4505{
4506 struct perf_cpu_context *cpuctx;
4507 struct perf_event_context *ctx;
4508 struct vm_area_struct *vma = mmap_event->vma;
4509 struct file *file = vma->vm_file;
4510 unsigned int size;
4511 char tmp[16];
4512 char *buf = NULL;
4513 const char *name;
4514 struct pmu *pmu;
4515 int ctxn;
4516
4517 memset(tmp, 0, sizeof(tmp));
4518
4519 if (file) {
4520 /*
4521 * d_path works from the end of the rb backwards, so we
4522 * need to add enough zero bytes after the string to handle
4523 * the 64bit alignment we do later.
4524 */
4525 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4526 if (!buf) {
4527 name = strncpy(tmp, "//enomem", sizeof(tmp));
4528 goto got_name;
4529 }
4530 name = d_path(&file->f_path, buf, PATH_MAX);
4531 if (IS_ERR(name)) {
4532 name = strncpy(tmp, "//toolong", sizeof(tmp));
4533 goto got_name;
4534 }
4535 } else {
4536 if (arch_vma_name(mmap_event->vma)) {
4537 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4538 sizeof(tmp));
4539 goto got_name;
4540 }
4541
4542 if (!vma->vm_mm) {
4543 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4544 goto got_name;
4545 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4546 vma->vm_end >= vma->vm_mm->brk) {
4547 name = strncpy(tmp, "[heap]", sizeof(tmp));
4548 goto got_name;
4549 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4550 vma->vm_end >= vma->vm_mm->start_stack) {
4551 name = strncpy(tmp, "[stack]", sizeof(tmp));
4552 goto got_name;
4553 }
4554
4555 name = strncpy(tmp, "//anon", sizeof(tmp));
4556 goto got_name;
4557 }
4558
4559got_name:
4560 size = ALIGN(strlen(name)+1, sizeof(u64));
4561
4562 mmap_event->file_name = name;
4563 mmap_event->file_size = size;
4564
4565 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4566
4567 rcu_read_lock();
4568 list_for_each_entry_rcu(pmu, &pmus, entry) {
4569 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4570 if (cpuctx->active_pmu != pmu)
4571 goto next;
4572 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4573 vma->vm_flags & VM_EXEC);
4574
4575 ctxn = pmu->task_ctx_nr;
4576 if (ctxn < 0)
4577 goto next;
4578
4579 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4580 if (ctx) {
4581 perf_event_mmap_ctx(ctx, mmap_event,
4582 vma->vm_flags & VM_EXEC);
4583 }
4584next:
4585 put_cpu_ptr(pmu->pmu_cpu_context);
4586 }
4587 rcu_read_unlock();
4588
4589 kfree(buf);
4590}
4591
4592void perf_event_mmap(struct vm_area_struct *vma)
4593{
4594 struct perf_mmap_event mmap_event;
4595
4596 if (!atomic_read(&nr_mmap_events))
4597 return;
4598
4599 mmap_event = (struct perf_mmap_event){
4600 .vma = vma,
4601 /* .file_name */
4602 /* .file_size */
4603 .event_id = {
4604 .header = {
4605 .type = PERF_RECORD_MMAP,
4606 .misc = PERF_RECORD_MISC_USER,
4607 /* .size */
4608 },
4609 /* .pid */
4610 /* .tid */
4611 .start = vma->vm_start,
4612 .len = vma->vm_end - vma->vm_start,
4613 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4614 },
4615 };
4616
4617 perf_event_mmap_event(&mmap_event);
4618}
4619
4620/*
4621 * IRQ throttle logging
4622 */
4623
4624static void perf_log_throttle(struct perf_event *event, int enable)
4625{
4626 struct perf_output_handle handle;
4627 struct perf_sample_data sample;
4628 int ret;
4629
4630 struct {
4631 struct perf_event_header header;
4632 u64 time;
4633 u64 id;
4634 u64 stream_id;
4635 } throttle_event = {
4636 .header = {
4637 .type = PERF_RECORD_THROTTLE,
4638 .misc = 0,
4639 .size = sizeof(throttle_event),
4640 },
4641 .time = perf_clock(),
4642 .id = primary_event_id(event),
4643 .stream_id = event->id,
4644 };
4645
4646 if (enable)
4647 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4648
4649 perf_event_header__init_id(&throttle_event.header, &sample, event);
4650
4651 ret = perf_output_begin(&handle, event,
4652 throttle_event.header.size);
4653 if (ret)
4654 return;
4655
4656 perf_output_put(&handle, throttle_event);
4657 perf_event__output_id_sample(event, &handle, &sample);
4658 perf_output_end(&handle);
4659}
4660
4661/*
4662 * Generic event overflow handling, sampling.
4663 */
4664
4665static int __perf_event_overflow(struct perf_event *event,
4666 int throttle, struct perf_sample_data *data,
4667 struct pt_regs *regs)
4668{
4669 int events = atomic_read(&event->event_limit);
4670 struct hw_perf_event *hwc = &event->hw;
4671 u64 seq;
4672 int ret = 0;
4673
4674 /*
4675 * Non-sampling counters might still use the PMI to fold short
4676 * hardware counters, ignore those.
4677 */
4678 if (unlikely(!is_sampling_event(event)))
4679 return 0;
4680
4681 seq = __this_cpu_read(perf_throttled_seq);
4682 if (seq != hwc->interrupts_seq) {
4683 hwc->interrupts_seq = seq;
4684 hwc->interrupts = 1;
4685 } else {
4686 hwc->interrupts++;
4687 if (unlikely(throttle
4688 && hwc->interrupts >= max_samples_per_tick)) {
4689 __this_cpu_inc(perf_throttled_count);
4690 hwc->interrupts = MAX_INTERRUPTS;
4691 perf_log_throttle(event, 0);
4692 ret = 1;
4693 }
4694 }
4695
4696 if (event->attr.freq) {
4697 u64 now = perf_clock();
4698 s64 delta = now - hwc->freq_time_stamp;
4699
4700 hwc->freq_time_stamp = now;
4701
4702 if (delta > 0 && delta < 2*TICK_NSEC)
4703 perf_adjust_period(event, delta, hwc->last_period, true);
4704 }
4705
4706 /*
4707 * XXX event_limit might not quite work as expected on inherited
4708 * events
4709 */
4710
4711 event->pending_kill = POLL_IN;
4712 if (events && atomic_dec_and_test(&event->event_limit)) {
4713 ret = 1;
4714 event->pending_kill = POLL_HUP;
4715 event->pending_disable = 1;
4716 irq_work_queue(&event->pending);
4717 }
4718
4719 if (event->overflow_handler)
4720 event->overflow_handler(event, data, regs);
4721 else
4722 perf_event_output(event, data, regs);
4723
4724 if (event->fasync && event->pending_kill) {
4725 event->pending_wakeup = 1;
4726 irq_work_queue(&event->pending);
4727 }
4728
4729 return ret;
4730}
4731
4732int perf_event_overflow(struct perf_event *event,
4733 struct perf_sample_data *data,
4734 struct pt_regs *regs)
4735{
4736 return __perf_event_overflow(event, 1, data, regs);
4737}
4738
4739/*
4740 * Generic software event infrastructure
4741 */
4742
4743struct swevent_htable {
4744 struct swevent_hlist *swevent_hlist;
4745 struct mutex hlist_mutex;
4746 int hlist_refcount;
4747
4748 /* Recursion avoidance in each contexts */
4749 int recursion[PERF_NR_CONTEXTS];
4750};
4751
4752static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4753
4754/*
4755 * We directly increment event->count and keep a second value in
4756 * event->hw.period_left to count intervals. This period event
4757 * is kept in the range [-sample_period, 0] so that we can use the
4758 * sign as trigger.
4759 */
4760
4761static u64 perf_swevent_set_period(struct perf_event *event)
4762{
4763 struct hw_perf_event *hwc = &event->hw;
4764 u64 period = hwc->last_period;
4765 u64 nr, offset;
4766 s64 old, val;
4767
4768 hwc->last_period = hwc->sample_period;
4769
4770again:
4771 old = val = local64_read(&hwc->period_left);
4772 if (val < 0)
4773 return 0;
4774
4775 nr = div64_u64(period + val, period);
4776 offset = nr * period;
4777 val -= offset;
4778 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4779 goto again;
4780
4781 return nr;
4782}
4783
4784static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4785 struct perf_sample_data *data,
4786 struct pt_regs *regs)
4787{
4788 struct hw_perf_event *hwc = &event->hw;
4789 int throttle = 0;
4790
4791 if (!overflow)
4792 overflow = perf_swevent_set_period(event);
4793
4794 if (hwc->interrupts == MAX_INTERRUPTS)
4795 return;
4796
4797 for (; overflow; overflow--) {
4798 if (__perf_event_overflow(event, throttle,
4799 data, regs)) {
4800 /*
4801 * We inhibit the overflow from happening when
4802 * hwc->interrupts == MAX_INTERRUPTS.
4803 */
4804 break;
4805 }
4806 throttle = 1;
4807 }
4808}
4809
4810static void perf_swevent_event(struct perf_event *event, u64 nr,
4811 struct perf_sample_data *data,
4812 struct pt_regs *regs)
4813{
4814 struct hw_perf_event *hwc = &event->hw;
4815
4816 local64_add(nr, &event->count);
4817
4818 if (!regs)
4819 return;
4820
4821 if (!is_sampling_event(event))
4822 return;
4823
4824 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4825 data->period = nr;
4826 return perf_swevent_overflow(event, 1, data, regs);
4827 } else
4828 data->period = event->hw.last_period;
4829
4830 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4831 return perf_swevent_overflow(event, 1, data, regs);
4832
4833 if (local64_add_negative(nr, &hwc->period_left))
4834 return;
4835
4836 perf_swevent_overflow(event, 0, data, regs);
4837}
4838
4839static int perf_exclude_event(struct perf_event *event,
4840 struct pt_regs *regs)
4841{
4842 if (event->hw.state & PERF_HES_STOPPED)
4843 return 1;
4844
4845 if (regs) {
4846 if (event->attr.exclude_user && user_mode(regs))
4847 return 1;
4848
4849 if (event->attr.exclude_kernel && !user_mode(regs))
4850 return 1;
4851 }
4852
4853 return 0;
4854}
4855
4856static int perf_swevent_match(struct perf_event *event,
4857 enum perf_type_id type,
4858 u32 event_id,
4859 struct perf_sample_data *data,
4860 struct pt_regs *regs)
4861{
4862 if (event->attr.type != type)
4863 return 0;
4864
4865 if (event->attr.config != event_id)
4866 return 0;
4867
4868 if (perf_exclude_event(event, regs))
4869 return 0;
4870
4871 return 1;
4872}
4873
4874static inline u64 swevent_hash(u64 type, u32 event_id)
4875{
4876 u64 val = event_id | (type << 32);
4877
4878 return hash_64(val, SWEVENT_HLIST_BITS);
4879}
4880
4881static inline struct hlist_head *
4882__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4883{
4884 u64 hash = swevent_hash(type, event_id);
4885
4886 return &hlist->heads[hash];
4887}
4888
4889/* For the read side: events when they trigger */
4890static inline struct hlist_head *
4891find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4892{
4893 struct swevent_hlist *hlist;
4894
4895 hlist = rcu_dereference(swhash->swevent_hlist);
4896 if (!hlist)
4897 return NULL;
4898
4899 return __find_swevent_head(hlist, type, event_id);
4900}
4901
4902/* For the event head insertion and removal in the hlist */
4903static inline struct hlist_head *
4904find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4905{
4906 struct swevent_hlist *hlist;
4907 u32 event_id = event->attr.config;
4908 u64 type = event->attr.type;
4909
4910 /*
4911 * Event scheduling is always serialized against hlist allocation
4912 * and release. Which makes the protected version suitable here.
4913 * The context lock guarantees that.
4914 */
4915 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4916 lockdep_is_held(&event->ctx->lock));
4917 if (!hlist)
4918 return NULL;
4919
4920 return __find_swevent_head(hlist, type, event_id);
4921}
4922
4923static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4924 u64 nr,
4925 struct perf_sample_data *data,
4926 struct pt_regs *regs)
4927{
4928 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4929 struct perf_event *event;
4930 struct hlist_node *node;
4931 struct hlist_head *head;
4932
4933 rcu_read_lock();
4934 head = find_swevent_head_rcu(swhash, type, event_id);
4935 if (!head)
4936 goto end;
4937
4938 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4939 if (perf_swevent_match(event, type, event_id, data, regs))
4940 perf_swevent_event(event, nr, data, regs);
4941 }
4942end:
4943 rcu_read_unlock();
4944}
4945
4946int perf_swevent_get_recursion_context(void)
4947{
4948 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4949
4950 return get_recursion_context(swhash->recursion);
4951}
4952EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4953
4954inline void perf_swevent_put_recursion_context(int rctx)
4955{
4956 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4957
4958 put_recursion_context(swhash->recursion, rctx);
4959}
4960
4961void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4962{
4963 struct perf_sample_data data;
4964 int rctx;
4965
4966 preempt_disable_notrace();
4967 rctx = perf_swevent_get_recursion_context();
4968 if (rctx < 0)
4969 return;
4970
4971 perf_sample_data_init(&data, addr, 0);
4972
4973 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4974
4975 perf_swevent_put_recursion_context(rctx);
4976 preempt_enable_notrace();
4977}
4978
4979static void perf_swevent_read(struct perf_event *event)
4980{
4981}
4982
4983static int perf_swevent_add(struct perf_event *event, int flags)
4984{
4985 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4986 struct hw_perf_event *hwc = &event->hw;
4987 struct hlist_head *head;
4988
4989 if (is_sampling_event(event)) {
4990 hwc->last_period = hwc->sample_period;
4991 perf_swevent_set_period(event);
4992 }
4993
4994 hwc->state = !(flags & PERF_EF_START);
4995
4996 head = find_swevent_head(swhash, event);
4997 if (WARN_ON_ONCE(!head))
4998 return -EINVAL;
4999
5000 hlist_add_head_rcu(&event->hlist_entry, head);
5001
5002 return 0;
5003}
5004
5005static void perf_swevent_del(struct perf_event *event, int flags)
5006{
5007 hlist_del_rcu(&event->hlist_entry);
5008}
5009
5010static void perf_swevent_start(struct perf_event *event, int flags)
5011{
5012 event->hw.state = 0;
5013}
5014
5015static void perf_swevent_stop(struct perf_event *event, int flags)
5016{
5017 event->hw.state = PERF_HES_STOPPED;
5018}
5019
5020/* Deref the hlist from the update side */
5021static inline struct swevent_hlist *
5022swevent_hlist_deref(struct swevent_htable *swhash)
5023{
5024 return rcu_dereference_protected(swhash->swevent_hlist,
5025 lockdep_is_held(&swhash->hlist_mutex));
5026}
5027
5028static void swevent_hlist_release(struct swevent_htable *swhash)
5029{
5030 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5031
5032 if (!hlist)
5033 return;
5034
5035 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5036 kfree_rcu(hlist, rcu_head);
5037}
5038
5039static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5040{
5041 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5042
5043 mutex_lock(&swhash->hlist_mutex);
5044
5045 if (!--swhash->hlist_refcount)
5046 swevent_hlist_release(swhash);
5047
5048 mutex_unlock(&swhash->hlist_mutex);
5049}
5050
5051static void swevent_hlist_put(struct perf_event *event)
5052{
5053 int cpu;
5054
5055 if (event->cpu != -1) {
5056 swevent_hlist_put_cpu(event, event->cpu);
5057 return;
5058 }
5059
5060 for_each_possible_cpu(cpu)
5061 swevent_hlist_put_cpu(event, cpu);
5062}
5063
5064static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5065{
5066 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5067 int err = 0;
5068
5069 mutex_lock(&swhash->hlist_mutex);
5070
5071 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5072 struct swevent_hlist *hlist;
5073
5074 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5075 if (!hlist) {
5076 err = -ENOMEM;
5077 goto exit;
5078 }
5079 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5080 }
5081 swhash->hlist_refcount++;
5082exit:
5083 mutex_unlock(&swhash->hlist_mutex);
5084
5085 return err;
5086}
5087
5088static int swevent_hlist_get(struct perf_event *event)
5089{
5090 int err;
5091 int cpu, failed_cpu;
5092
5093 if (event->cpu != -1)
5094 return swevent_hlist_get_cpu(event, event->cpu);
5095
5096 get_online_cpus();
5097 for_each_possible_cpu(cpu) {
5098 err = swevent_hlist_get_cpu(event, cpu);
5099 if (err) {
5100 failed_cpu = cpu;
5101 goto fail;
5102 }
5103 }
5104 put_online_cpus();
5105
5106 return 0;
5107fail:
5108 for_each_possible_cpu(cpu) {
5109 if (cpu == failed_cpu)
5110 break;
5111 swevent_hlist_put_cpu(event, cpu);
5112 }
5113
5114 put_online_cpus();
5115 return err;
5116}
5117
5118struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5119
5120static void sw_perf_event_destroy(struct perf_event *event)
5121{
5122 u64 event_id = event->attr.config;
5123
5124 WARN_ON(event->parent);
5125
5126 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5127 swevent_hlist_put(event);
5128}
5129
5130static int perf_swevent_init(struct perf_event *event)
5131{
5132 int event_id = event->attr.config;
5133
5134 if (event->attr.type != PERF_TYPE_SOFTWARE)
5135 return -ENOENT;
5136
5137 /*
5138 * no branch sampling for software events
5139 */
5140 if (has_branch_stack(event))
5141 return -EOPNOTSUPP;
5142
5143 switch (event_id) {
5144 case PERF_COUNT_SW_CPU_CLOCK:
5145 case PERF_COUNT_SW_TASK_CLOCK:
5146 return -ENOENT;
5147
5148 default:
5149 break;
5150 }
5151
5152 if (event_id >= PERF_COUNT_SW_MAX)
5153 return -ENOENT;
5154
5155 if (!event->parent) {
5156 int err;
5157
5158 err = swevent_hlist_get(event);
5159 if (err)
5160 return err;
5161
5162 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5163 event->destroy = sw_perf_event_destroy;
5164 }
5165
5166 return 0;
5167}
5168
5169static int perf_swevent_event_idx(struct perf_event *event)
5170{
5171 return 0;
5172}
5173
5174static struct pmu perf_swevent = {
5175 .task_ctx_nr = perf_sw_context,
5176
5177 .event_init = perf_swevent_init,
5178 .add = perf_swevent_add,
5179 .del = perf_swevent_del,
5180 .start = perf_swevent_start,
5181 .stop = perf_swevent_stop,
5182 .read = perf_swevent_read,
5183
5184 .event_idx = perf_swevent_event_idx,
5185};
5186
5187#ifdef CONFIG_EVENT_TRACING
5188
5189static int perf_tp_filter_match(struct perf_event *event,
5190 struct perf_sample_data *data)
5191{
5192 void *record = data->raw->data;
5193
5194 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5195 return 1;
5196 return 0;
5197}
5198
5199static int perf_tp_event_match(struct perf_event *event,
5200 struct perf_sample_data *data,
5201 struct pt_regs *regs)
5202{
5203 if (event->hw.state & PERF_HES_STOPPED)
5204 return 0;
5205 /*
5206 * All tracepoints are from kernel-space.
5207 */
5208 if (event->attr.exclude_kernel)
5209 return 0;
5210
5211 if (!perf_tp_filter_match(event, data))
5212 return 0;
5213
5214 return 1;
5215}
5216
5217void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5218 struct pt_regs *regs, struct hlist_head *head, int rctx)
5219{
5220 struct perf_sample_data data;
5221 struct perf_event *event;
5222 struct hlist_node *node;
5223
5224 struct perf_raw_record raw = {
5225 .size = entry_size,
5226 .data = record,
5227 };
5228
5229 perf_sample_data_init(&data, addr, 0);
5230 data.raw = &raw;
5231
5232 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5233 if (perf_tp_event_match(event, &data, regs))
5234 perf_swevent_event(event, count, &data, regs);
5235 }
5236
5237 perf_swevent_put_recursion_context(rctx);
5238}
5239EXPORT_SYMBOL_GPL(perf_tp_event);
5240
5241static void tp_perf_event_destroy(struct perf_event *event)
5242{
5243 perf_trace_destroy(event);
5244}
5245
5246static int perf_tp_event_init(struct perf_event *event)
5247{
5248 int err;
5249
5250 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5251 return -ENOENT;
5252
5253 /*
5254 * no branch sampling for tracepoint events
5255 */
5256 if (has_branch_stack(event))
5257 return -EOPNOTSUPP;
5258
5259 err = perf_trace_init(event);
5260 if (err)
5261 return err;
5262
5263 event->destroy = tp_perf_event_destroy;
5264
5265 return 0;
5266}
5267
5268static struct pmu perf_tracepoint = {
5269 .task_ctx_nr = perf_sw_context,
5270
5271 .event_init = perf_tp_event_init,
5272 .add = perf_trace_add,
5273 .del = perf_trace_del,
5274 .start = perf_swevent_start,
5275 .stop = perf_swevent_stop,
5276 .read = perf_swevent_read,
5277
5278 .event_idx = perf_swevent_event_idx,
5279};
5280
5281static inline void perf_tp_register(void)
5282{
5283 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5284}
5285
5286static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5287{
5288 char *filter_str;
5289 int ret;
5290
5291 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5292 return -EINVAL;
5293
5294 filter_str = strndup_user(arg, PAGE_SIZE);
5295 if (IS_ERR(filter_str))
5296 return PTR_ERR(filter_str);
5297
5298 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5299
5300 kfree(filter_str);
5301 return ret;
5302}
5303
5304static void perf_event_free_filter(struct perf_event *event)
5305{
5306 ftrace_profile_free_filter(event);
5307}
5308
5309#else
5310
5311static inline void perf_tp_register(void)
5312{
5313}
5314
5315static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5316{
5317 return -ENOENT;
5318}
5319
5320static void perf_event_free_filter(struct perf_event *event)
5321{
5322}
5323
5324#endif /* CONFIG_EVENT_TRACING */
5325
5326#ifdef CONFIG_HAVE_HW_BREAKPOINT
5327void perf_bp_event(struct perf_event *bp, void *data)
5328{
5329 struct perf_sample_data sample;
5330 struct pt_regs *regs = data;
5331
5332 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5333
5334 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5335 perf_swevent_event(bp, 1, &sample, regs);
5336}
5337#endif
5338
5339/*
5340 * hrtimer based swevent callback
5341 */
5342
5343static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5344{
5345 enum hrtimer_restart ret = HRTIMER_RESTART;
5346 struct perf_sample_data data;
5347 struct pt_regs *regs;
5348 struct perf_event *event;
5349 u64 period;
5350
5351 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5352
5353 if (event->state != PERF_EVENT_STATE_ACTIVE)
5354 return HRTIMER_NORESTART;
5355
5356 event->pmu->read(event);
5357
5358 perf_sample_data_init(&data, 0, event->hw.last_period);
5359 regs = get_irq_regs();
5360
5361 if (regs && !perf_exclude_event(event, regs)) {
5362 if (!(event->attr.exclude_idle && is_idle_task(current)))
5363 if (__perf_event_overflow(event, 1, &data, regs))
5364 ret = HRTIMER_NORESTART;
5365 }
5366
5367 period = max_t(u64, 10000, event->hw.sample_period);
5368 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5369
5370 return ret;
5371}
5372
5373static void perf_swevent_start_hrtimer(struct perf_event *event)
5374{
5375 struct hw_perf_event *hwc = &event->hw;
5376 s64 period;
5377
5378 if (!is_sampling_event(event))
5379 return;
5380
5381 period = local64_read(&hwc->period_left);
5382 if (period) {
5383 if (period < 0)
5384 period = 10000;
5385
5386 local64_set(&hwc->period_left, 0);
5387 } else {
5388 period = max_t(u64, 10000, hwc->sample_period);
5389 }
5390 __hrtimer_start_range_ns(&hwc->hrtimer,
5391 ns_to_ktime(period), 0,
5392 HRTIMER_MODE_REL_PINNED, 0);
5393}
5394
5395static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5396{
5397 struct hw_perf_event *hwc = &event->hw;
5398
5399 if (is_sampling_event(event)) {
5400 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5401 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5402
5403 hrtimer_cancel(&hwc->hrtimer);
5404 }
5405}
5406
5407static void perf_swevent_init_hrtimer(struct perf_event *event)
5408{
5409 struct hw_perf_event *hwc = &event->hw;
5410
5411 if (!is_sampling_event(event))
5412 return;
5413
5414 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5415 hwc->hrtimer.function = perf_swevent_hrtimer;
5416
5417 /*
5418 * Since hrtimers have a fixed rate, we can do a static freq->period
5419 * mapping and avoid the whole period adjust feedback stuff.
5420 */
5421 if (event->attr.freq) {
5422 long freq = event->attr.sample_freq;
5423
5424 event->attr.sample_period = NSEC_PER_SEC / freq;
5425 hwc->sample_period = event->attr.sample_period;
5426 local64_set(&hwc->period_left, hwc->sample_period);
5427 event->attr.freq = 0;
5428 }
5429}
5430
5431/*
5432 * Software event: cpu wall time clock
5433 */
5434
5435static void cpu_clock_event_update(struct perf_event *event)
5436{
5437 s64 prev;
5438 u64 now;
5439
5440 now = local_clock();
5441 prev = local64_xchg(&event->hw.prev_count, now);
5442 local64_add(now - prev, &event->count);
5443}
5444
5445static void cpu_clock_event_start(struct perf_event *event, int flags)
5446{
5447 local64_set(&event->hw.prev_count, local_clock());
5448 perf_swevent_start_hrtimer(event);
5449}
5450
5451static void cpu_clock_event_stop(struct perf_event *event, int flags)
5452{
5453 perf_swevent_cancel_hrtimer(event);
5454 cpu_clock_event_update(event);
5455}
5456
5457static int cpu_clock_event_add(struct perf_event *event, int flags)
5458{
5459 if (flags & PERF_EF_START)
5460 cpu_clock_event_start(event, flags);
5461
5462 return 0;
5463}
5464
5465static void cpu_clock_event_del(struct perf_event *event, int flags)
5466{
5467 cpu_clock_event_stop(event, flags);
5468}
5469
5470static void cpu_clock_event_read(struct perf_event *event)
5471{
5472 cpu_clock_event_update(event);
5473}
5474
5475static int cpu_clock_event_init(struct perf_event *event)
5476{
5477 if (event->attr.type != PERF_TYPE_SOFTWARE)
5478 return -ENOENT;
5479
5480 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5481 return -ENOENT;
5482
5483 /*
5484 * no branch sampling for software events
5485 */
5486 if (has_branch_stack(event))
5487 return -EOPNOTSUPP;
5488
5489 perf_swevent_init_hrtimer(event);
5490
5491 return 0;
5492}
5493
5494static struct pmu perf_cpu_clock = {
5495 .task_ctx_nr = perf_sw_context,
5496
5497 .event_init = cpu_clock_event_init,
5498 .add = cpu_clock_event_add,
5499 .del = cpu_clock_event_del,
5500 .start = cpu_clock_event_start,
5501 .stop = cpu_clock_event_stop,
5502 .read = cpu_clock_event_read,
5503
5504 .event_idx = perf_swevent_event_idx,
5505};
5506
5507/*
5508 * Software event: task time clock
5509 */
5510
5511static void task_clock_event_update(struct perf_event *event, u64 now)
5512{
5513 u64 prev;
5514 s64 delta;
5515
5516 prev = local64_xchg(&event->hw.prev_count, now);
5517 delta = now - prev;
5518 local64_add(delta, &event->count);
5519}
5520
5521static void task_clock_event_start(struct perf_event *event, int flags)
5522{
5523 local64_set(&event->hw.prev_count, event->ctx->time);
5524 perf_swevent_start_hrtimer(event);
5525}
5526
5527static void task_clock_event_stop(struct perf_event *event, int flags)
5528{
5529 perf_swevent_cancel_hrtimer(event);
5530 task_clock_event_update(event, event->ctx->time);
5531}
5532
5533static int task_clock_event_add(struct perf_event *event, int flags)
5534{
5535 if (flags & PERF_EF_START)
5536 task_clock_event_start(event, flags);
5537
5538 return 0;
5539}
5540
5541static void task_clock_event_del(struct perf_event *event, int flags)
5542{
5543 task_clock_event_stop(event, PERF_EF_UPDATE);
5544}
5545
5546static void task_clock_event_read(struct perf_event *event)
5547{
5548 u64 now = perf_clock();
5549 u64 delta = now - event->ctx->timestamp;
5550 u64 time = event->ctx->time + delta;
5551
5552 task_clock_event_update(event, time);
5553}
5554
5555static int task_clock_event_init(struct perf_event *event)
5556{
5557 if (event->attr.type != PERF_TYPE_SOFTWARE)
5558 return -ENOENT;
5559
5560 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5561 return -ENOENT;
5562
5563 /*
5564 * no branch sampling for software events
5565 */
5566 if (has_branch_stack(event))
5567 return -EOPNOTSUPP;
5568
5569 perf_swevent_init_hrtimer(event);
5570
5571 return 0;
5572}
5573
5574static struct pmu perf_task_clock = {
5575 .task_ctx_nr = perf_sw_context,
5576
5577 .event_init = task_clock_event_init,
5578 .add = task_clock_event_add,
5579 .del = task_clock_event_del,
5580 .start = task_clock_event_start,
5581 .stop = task_clock_event_stop,
5582 .read = task_clock_event_read,
5583
5584 .event_idx = perf_swevent_event_idx,
5585};
5586
5587static void perf_pmu_nop_void(struct pmu *pmu)
5588{
5589}
5590
5591static int perf_pmu_nop_int(struct pmu *pmu)
5592{
5593 return 0;
5594}
5595
5596static void perf_pmu_start_txn(struct pmu *pmu)
5597{
5598 perf_pmu_disable(pmu);
5599}
5600
5601static int perf_pmu_commit_txn(struct pmu *pmu)
5602{
5603 perf_pmu_enable(pmu);
5604 return 0;
5605}
5606
5607static void perf_pmu_cancel_txn(struct pmu *pmu)
5608{
5609 perf_pmu_enable(pmu);
5610}
5611
5612static int perf_event_idx_default(struct perf_event *event)
5613{
5614 return event->hw.idx + 1;
5615}
5616
5617/*
5618 * Ensures all contexts with the same task_ctx_nr have the same
5619 * pmu_cpu_context too.
5620 */
5621static void *find_pmu_context(int ctxn)
5622{
5623 struct pmu *pmu;
5624
5625 if (ctxn < 0)
5626 return NULL;
5627
5628 list_for_each_entry(pmu, &pmus, entry) {
5629 if (pmu->task_ctx_nr == ctxn)
5630 return pmu->pmu_cpu_context;
5631 }
5632
5633 return NULL;
5634}
5635
5636static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5637{
5638 int cpu;
5639
5640 for_each_possible_cpu(cpu) {
5641 struct perf_cpu_context *cpuctx;
5642
5643 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5644
5645 if (cpuctx->active_pmu == old_pmu)
5646 cpuctx->active_pmu = pmu;
5647 }
5648}
5649
5650static void free_pmu_context(struct pmu *pmu)
5651{
5652 struct pmu *i;
5653
5654 mutex_lock(&pmus_lock);
5655 /*
5656 * Like a real lame refcount.
5657 */
5658 list_for_each_entry(i, &pmus, entry) {
5659 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5660 update_pmu_context(i, pmu);
5661 goto out;
5662 }
5663 }
5664
5665 free_percpu(pmu->pmu_cpu_context);
5666out:
5667 mutex_unlock(&pmus_lock);
5668}
5669static struct idr pmu_idr;
5670
5671static ssize_t
5672type_show(struct device *dev, struct device_attribute *attr, char *page)
5673{
5674 struct pmu *pmu = dev_get_drvdata(dev);
5675
5676 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5677}
5678
5679static struct device_attribute pmu_dev_attrs[] = {
5680 __ATTR_RO(type),
5681 __ATTR_NULL,
5682};
5683
5684static int pmu_bus_running;
5685static struct bus_type pmu_bus = {
5686 .name = "event_source",
5687 .dev_attrs = pmu_dev_attrs,
5688};
5689
5690static void pmu_dev_release(struct device *dev)
5691{
5692 kfree(dev);
5693}
5694
5695static int pmu_dev_alloc(struct pmu *pmu)
5696{
5697 int ret = -ENOMEM;
5698
5699 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5700 if (!pmu->dev)
5701 goto out;
5702
5703 pmu->dev->groups = pmu->attr_groups;
5704 device_initialize(pmu->dev);
5705 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5706 if (ret)
5707 goto free_dev;
5708
5709 dev_set_drvdata(pmu->dev, pmu);
5710 pmu->dev->bus = &pmu_bus;
5711 pmu->dev->release = pmu_dev_release;
5712 ret = device_add(pmu->dev);
5713 if (ret)
5714 goto free_dev;
5715
5716out:
5717 return ret;
5718
5719free_dev:
5720 put_device(pmu->dev);
5721 goto out;
5722}
5723
5724static struct lock_class_key cpuctx_mutex;
5725static struct lock_class_key cpuctx_lock;
5726
5727int perf_pmu_register(struct pmu *pmu, char *name, int type)
5728{
5729 int cpu, ret;
5730
5731 mutex_lock(&pmus_lock);
5732 ret = -ENOMEM;
5733 pmu->pmu_disable_count = alloc_percpu(int);
5734 if (!pmu->pmu_disable_count)
5735 goto unlock;
5736
5737 pmu->type = -1;
5738 if (!name)
5739 goto skip_type;
5740 pmu->name = name;
5741
5742 if (type < 0) {
5743 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5744 if (!err)
5745 goto free_pdc;
5746
5747 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5748 if (err) {
5749 ret = err;
5750 goto free_pdc;
5751 }
5752 }
5753 pmu->type = type;
5754
5755 if (pmu_bus_running) {
5756 ret = pmu_dev_alloc(pmu);
5757 if (ret)
5758 goto free_idr;
5759 }
5760
5761skip_type:
5762 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5763 if (pmu->pmu_cpu_context)
5764 goto got_cpu_context;
5765
5766 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5767 if (!pmu->pmu_cpu_context)
5768 goto free_dev;
5769
5770 for_each_possible_cpu(cpu) {
5771 struct perf_cpu_context *cpuctx;
5772
5773 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5774 __perf_event_init_context(&cpuctx->ctx);
5775 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5776 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5777 cpuctx->ctx.type = cpu_context;
5778 cpuctx->ctx.pmu = pmu;
5779 cpuctx->jiffies_interval = 1;
5780 INIT_LIST_HEAD(&cpuctx->rotation_list);
5781 cpuctx->active_pmu = pmu;
5782 }
5783
5784got_cpu_context:
5785 if (!pmu->start_txn) {
5786 if (pmu->pmu_enable) {
5787 /*
5788 * If we have pmu_enable/pmu_disable calls, install
5789 * transaction stubs that use that to try and batch
5790 * hardware accesses.
5791 */
5792 pmu->start_txn = perf_pmu_start_txn;
5793 pmu->commit_txn = perf_pmu_commit_txn;
5794 pmu->cancel_txn = perf_pmu_cancel_txn;
5795 } else {
5796 pmu->start_txn = perf_pmu_nop_void;
5797 pmu->commit_txn = perf_pmu_nop_int;
5798 pmu->cancel_txn = perf_pmu_nop_void;
5799 }
5800 }
5801
5802 if (!pmu->pmu_enable) {
5803 pmu->pmu_enable = perf_pmu_nop_void;
5804 pmu->pmu_disable = perf_pmu_nop_void;
5805 }
5806
5807 if (!pmu->event_idx)
5808 pmu->event_idx = perf_event_idx_default;
5809
5810 list_add_rcu(&pmu->entry, &pmus);
5811 ret = 0;
5812unlock:
5813 mutex_unlock(&pmus_lock);
5814
5815 return ret;
5816
5817free_dev:
5818 device_del(pmu->dev);
5819 put_device(pmu->dev);
5820
5821free_idr:
5822 if (pmu->type >= PERF_TYPE_MAX)
5823 idr_remove(&pmu_idr, pmu->type);
5824
5825free_pdc:
5826 free_percpu(pmu->pmu_disable_count);
5827 goto unlock;
5828}
5829
5830void perf_pmu_unregister(struct pmu *pmu)
5831{
5832 mutex_lock(&pmus_lock);
5833 list_del_rcu(&pmu->entry);
5834 mutex_unlock(&pmus_lock);
5835
5836 /*
5837 * We dereference the pmu list under both SRCU and regular RCU, so
5838 * synchronize against both of those.
5839 */
5840 synchronize_srcu(&pmus_srcu);
5841 synchronize_rcu();
5842
5843 free_percpu(pmu->pmu_disable_count);
5844 if (pmu->type >= PERF_TYPE_MAX)
5845 idr_remove(&pmu_idr, pmu->type);
5846 device_del(pmu->dev);
5847 put_device(pmu->dev);
5848 free_pmu_context(pmu);
5849}
5850
5851struct pmu *perf_init_event(struct perf_event *event)
5852{
5853 struct pmu *pmu = NULL;
5854 int idx;
5855 int ret;
5856
5857 idx = srcu_read_lock(&pmus_srcu);
5858
5859 rcu_read_lock();
5860 pmu = idr_find(&pmu_idr, event->attr.type);
5861 rcu_read_unlock();
5862 if (pmu) {
5863 event->pmu = pmu;
5864 ret = pmu->event_init(event);
5865 if (ret)
5866 pmu = ERR_PTR(ret);
5867 goto unlock;
5868 }
5869
5870 list_for_each_entry_rcu(pmu, &pmus, entry) {
5871 event->pmu = pmu;
5872 ret = pmu->event_init(event);
5873 if (!ret)
5874 goto unlock;
5875
5876 if (ret != -ENOENT) {
5877 pmu = ERR_PTR(ret);
5878 goto unlock;
5879 }
5880 }
5881 pmu = ERR_PTR(-ENOENT);
5882unlock:
5883 srcu_read_unlock(&pmus_srcu, idx);
5884
5885 return pmu;
5886}
5887
5888/*
5889 * Allocate and initialize a event structure
5890 */
5891static struct perf_event *
5892perf_event_alloc(struct perf_event_attr *attr, int cpu,
5893 struct task_struct *task,
5894 struct perf_event *group_leader,
5895 struct perf_event *parent_event,
5896 perf_overflow_handler_t overflow_handler,
5897 void *context)
5898{
5899 struct pmu *pmu;
5900 struct perf_event *event;
5901 struct hw_perf_event *hwc;
5902 long err;
5903
5904 if ((unsigned)cpu >= nr_cpu_ids) {
5905 if (!task || cpu != -1)
5906 return ERR_PTR(-EINVAL);
5907 }
5908
5909 event = kzalloc(sizeof(*event), GFP_KERNEL);
5910 if (!event)
5911 return ERR_PTR(-ENOMEM);
5912
5913 /*
5914 * Single events are their own group leaders, with an
5915 * empty sibling list:
5916 */
5917 if (!group_leader)
5918 group_leader = event;
5919
5920 mutex_init(&event->child_mutex);
5921 INIT_LIST_HEAD(&event->child_list);
5922
5923 INIT_LIST_HEAD(&event->group_entry);
5924 INIT_LIST_HEAD(&event->event_entry);
5925 INIT_LIST_HEAD(&event->sibling_list);
5926 INIT_LIST_HEAD(&event->rb_entry);
5927
5928 init_waitqueue_head(&event->waitq);
5929 init_irq_work(&event->pending, perf_pending_event);
5930
5931 mutex_init(&event->mmap_mutex);
5932
5933 atomic_long_set(&event->refcount, 1);
5934 event->cpu = cpu;
5935 event->attr = *attr;
5936 event->group_leader = group_leader;
5937 event->pmu = NULL;
5938 event->oncpu = -1;
5939
5940 event->parent = parent_event;
5941
5942 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5943 event->id = atomic64_inc_return(&perf_event_id);
5944
5945 event->state = PERF_EVENT_STATE_INACTIVE;
5946
5947 if (task) {
5948 event->attach_state = PERF_ATTACH_TASK;
5949#ifdef CONFIG_HAVE_HW_BREAKPOINT
5950 /*
5951 * hw_breakpoint is a bit difficult here..
5952 */
5953 if (attr->type == PERF_TYPE_BREAKPOINT)
5954 event->hw.bp_target = task;
5955#endif
5956 }
5957
5958 if (!overflow_handler && parent_event) {
5959 overflow_handler = parent_event->overflow_handler;
5960 context = parent_event->overflow_handler_context;
5961 }
5962
5963 event->overflow_handler = overflow_handler;
5964 event->overflow_handler_context = context;
5965
5966 if (attr->disabled)
5967 event->state = PERF_EVENT_STATE_OFF;
5968
5969 pmu = NULL;
5970
5971 hwc = &event->hw;
5972 hwc->sample_period = attr->sample_period;
5973 if (attr->freq && attr->sample_freq)
5974 hwc->sample_period = 1;
5975 hwc->last_period = hwc->sample_period;
5976
5977 local64_set(&hwc->period_left, hwc->sample_period);
5978
5979 /*
5980 * we currently do not support PERF_FORMAT_GROUP on inherited events
5981 */
5982 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5983 goto done;
5984
5985 pmu = perf_init_event(event);
5986
5987done:
5988 err = 0;
5989 if (!pmu)
5990 err = -EINVAL;
5991 else if (IS_ERR(pmu))
5992 err = PTR_ERR(pmu);
5993
5994 if (err) {
5995 if (event->ns)
5996 put_pid_ns(event->ns);
5997 kfree(event);
5998 return ERR_PTR(err);
5999 }
6000
6001 if (!event->parent) {
6002 if (event->attach_state & PERF_ATTACH_TASK)
6003 static_key_slow_inc(&perf_sched_events.key);
6004 if (event->attr.mmap || event->attr.mmap_data)
6005 atomic_inc(&nr_mmap_events);
6006 if (event->attr.comm)
6007 atomic_inc(&nr_comm_events);
6008 if (event->attr.task)
6009 atomic_inc(&nr_task_events);
6010 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6011 err = get_callchain_buffers();
6012 if (err) {
6013 free_event(event);
6014 return ERR_PTR(err);
6015 }
6016 }
6017 if (has_branch_stack(event)) {
6018 static_key_slow_inc(&perf_sched_events.key);
6019 if (!(event->attach_state & PERF_ATTACH_TASK))
6020 atomic_inc(&per_cpu(perf_branch_stack_events,
6021 event->cpu));
6022 }
6023 }
6024
6025 return event;
6026}
6027
6028static int perf_copy_attr(struct perf_event_attr __user *uattr,
6029 struct perf_event_attr *attr)
6030{
6031 u32 size;
6032 int ret;
6033
6034 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6035 return -EFAULT;
6036
6037 /*
6038 * zero the full structure, so that a short copy will be nice.
6039 */
6040 memset(attr, 0, sizeof(*attr));
6041
6042 ret = get_user(size, &uattr->size);
6043 if (ret)
6044 return ret;
6045
6046 if (size > PAGE_SIZE) /* silly large */
6047 goto err_size;
6048
6049 if (!size) /* abi compat */
6050 size = PERF_ATTR_SIZE_VER0;
6051
6052 if (size < PERF_ATTR_SIZE_VER0)
6053 goto err_size;
6054
6055 /*
6056 * If we're handed a bigger struct than we know of,
6057 * ensure all the unknown bits are 0 - i.e. new
6058 * user-space does not rely on any kernel feature
6059 * extensions we dont know about yet.
6060 */
6061 if (size > sizeof(*attr)) {
6062 unsigned char __user *addr;
6063 unsigned char __user *end;
6064 unsigned char val;
6065
6066 addr = (void __user *)uattr + sizeof(*attr);
6067 end = (void __user *)uattr + size;
6068
6069 for (; addr < end; addr++) {
6070 ret = get_user(val, addr);
6071 if (ret)
6072 return ret;
6073 if (val)
6074 goto err_size;
6075 }
6076 size = sizeof(*attr);
6077 }
6078
6079 ret = copy_from_user(attr, uattr, size);
6080 if (ret)
6081 return -EFAULT;
6082
6083 if (attr->__reserved_1)
6084 return -EINVAL;
6085
6086 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6087 return -EINVAL;
6088
6089 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6090 return -EINVAL;
6091
6092 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6093 u64 mask = attr->branch_sample_type;
6094
6095 /* only using defined bits */
6096 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6097 return -EINVAL;
6098
6099 /* at least one branch bit must be set */
6100 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6101 return -EINVAL;
6102
6103 /* kernel level capture: check permissions */
6104 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6105 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6106 return -EACCES;
6107
6108 /* propagate priv level, when not set for branch */
6109 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6110
6111 /* exclude_kernel checked on syscall entry */
6112 if (!attr->exclude_kernel)
6113 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6114
6115 if (!attr->exclude_user)
6116 mask |= PERF_SAMPLE_BRANCH_USER;
6117
6118 if (!attr->exclude_hv)
6119 mask |= PERF_SAMPLE_BRANCH_HV;
6120 /*
6121 * adjust user setting (for HW filter setup)
6122 */
6123 attr->branch_sample_type = mask;
6124 }
6125 }
6126out:
6127 return ret;
6128
6129err_size:
6130 put_user(sizeof(*attr), &uattr->size);
6131 ret = -E2BIG;
6132 goto out;
6133}
6134
6135static int
6136perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6137{
6138 struct ring_buffer *rb = NULL, *old_rb = NULL;
6139 int ret = -EINVAL;
6140
6141 if (!output_event)
6142 goto set;
6143
6144 /* don't allow circular references */
6145 if (event == output_event)
6146 goto out;
6147
6148 /*
6149 * Don't allow cross-cpu buffers
6150 */
6151 if (output_event->cpu != event->cpu)
6152 goto out;
6153
6154 /*
6155 * If its not a per-cpu rb, it must be the same task.
6156 */
6157 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6158 goto out;
6159
6160set:
6161 mutex_lock(&event->mmap_mutex);
6162 /* Can't redirect output if we've got an active mmap() */
6163 if (atomic_read(&event->mmap_count))
6164 goto unlock;
6165
6166 if (output_event) {
6167 /* get the rb we want to redirect to */
6168 rb = ring_buffer_get(output_event);
6169 if (!rb)
6170 goto unlock;
6171 }
6172
6173 old_rb = event->rb;
6174 rcu_assign_pointer(event->rb, rb);
6175 if (old_rb)
6176 ring_buffer_detach(event, old_rb);
6177 ret = 0;
6178unlock:
6179 mutex_unlock(&event->mmap_mutex);
6180
6181 if (old_rb)
6182 ring_buffer_put(old_rb);
6183out:
6184 return ret;
6185}
6186
6187/**
6188 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6189 *
6190 * @attr_uptr: event_id type attributes for monitoring/sampling
6191 * @pid: target pid
6192 * @cpu: target cpu
6193 * @group_fd: group leader event fd
6194 */
6195SYSCALL_DEFINE5(perf_event_open,
6196 struct perf_event_attr __user *, attr_uptr,
6197 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6198{
6199 struct perf_event *group_leader = NULL, *output_event = NULL;
6200 struct perf_event *event, *sibling;
6201 struct perf_event_attr attr;
6202 struct perf_event_context *ctx;
6203 struct file *event_file = NULL;
6204 struct file *group_file = NULL;
6205 struct task_struct *task = NULL;
6206 struct pmu *pmu;
6207 int event_fd;
6208 int move_group = 0;
6209 int fput_needed = 0;
6210 int err;
6211
6212 /* for future expandability... */
6213 if (flags & ~PERF_FLAG_ALL)
6214 return -EINVAL;
6215
6216 err = perf_copy_attr(attr_uptr, &attr);
6217 if (err)
6218 return err;
6219
6220 if (!attr.exclude_kernel) {
6221 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6222 return -EACCES;
6223 }
6224
6225 if (attr.freq) {
6226 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6227 return -EINVAL;
6228 }
6229
6230 /*
6231 * In cgroup mode, the pid argument is used to pass the fd
6232 * opened to the cgroup directory in cgroupfs. The cpu argument
6233 * designates the cpu on which to monitor threads from that
6234 * cgroup.
6235 */
6236 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6237 return -EINVAL;
6238
6239 event_fd = get_unused_fd_flags(O_RDWR);
6240 if (event_fd < 0)
6241 return event_fd;
6242
6243 if (group_fd != -1) {
6244 group_file = perf_fget_light(group_fd, &fput_needed);
6245 if (IS_ERR(group_file)) {
6246 err = PTR_ERR(group_file);
6247 goto err_fd;
6248 }
6249 group_leader = group_file->private_data;
6250 if (flags & PERF_FLAG_FD_OUTPUT)
6251 output_event = group_leader;
6252 if (flags & PERF_FLAG_FD_NO_GROUP)
6253 group_leader = NULL;
6254 }
6255
6256 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6257 task = find_lively_task_by_vpid(pid);
6258 if (IS_ERR(task)) {
6259 err = PTR_ERR(task);
6260 goto err_group_fd;
6261 }
6262 }
6263
6264 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6265 NULL, NULL);
6266 if (IS_ERR(event)) {
6267 err = PTR_ERR(event);
6268 goto err_task;
6269 }
6270
6271 if (flags & PERF_FLAG_PID_CGROUP) {
6272 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6273 if (err)
6274 goto err_alloc;
6275 /*
6276 * one more event:
6277 * - that has cgroup constraint on event->cpu
6278 * - that may need work on context switch
6279 */
6280 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6281 static_key_slow_inc(&perf_sched_events.key);
6282 }
6283
6284 /*
6285 * Special case software events and allow them to be part of
6286 * any hardware group.
6287 */
6288 pmu = event->pmu;
6289
6290 if (group_leader &&
6291 (is_software_event(event) != is_software_event(group_leader))) {
6292 if (is_software_event(event)) {
6293 /*
6294 * If event and group_leader are not both a software
6295 * event, and event is, then group leader is not.
6296 *
6297 * Allow the addition of software events to !software
6298 * groups, this is safe because software events never
6299 * fail to schedule.
6300 */
6301 pmu = group_leader->pmu;
6302 } else if (is_software_event(group_leader) &&
6303 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6304 /*
6305 * In case the group is a pure software group, and we
6306 * try to add a hardware event, move the whole group to
6307 * the hardware context.
6308 */
6309 move_group = 1;
6310 }
6311 }
6312
6313 /*
6314 * Get the target context (task or percpu):
6315 */
6316 ctx = find_get_context(pmu, task, cpu);
6317 if (IS_ERR(ctx)) {
6318 err = PTR_ERR(ctx);
6319 goto err_alloc;
6320 }
6321
6322 if (task) {
6323 put_task_struct(task);
6324 task = NULL;
6325 }
6326
6327 /*
6328 * Look up the group leader (we will attach this event to it):
6329 */
6330 if (group_leader) {
6331 err = -EINVAL;
6332
6333 /*
6334 * Do not allow a recursive hierarchy (this new sibling
6335 * becoming part of another group-sibling):
6336 */
6337 if (group_leader->group_leader != group_leader)
6338 goto err_context;
6339 /*
6340 * Do not allow to attach to a group in a different
6341 * task or CPU context:
6342 */
6343 if (move_group) {
6344 if (group_leader->ctx->type != ctx->type)
6345 goto err_context;
6346 } else {
6347 if (group_leader->ctx != ctx)
6348 goto err_context;
6349 }
6350
6351 /*
6352 * Only a group leader can be exclusive or pinned
6353 */
6354 if (attr.exclusive || attr.pinned)
6355 goto err_context;
6356 }
6357
6358 if (output_event) {
6359 err = perf_event_set_output(event, output_event);
6360 if (err)
6361 goto err_context;
6362 }
6363
6364 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6365 if (IS_ERR(event_file)) {
6366 err = PTR_ERR(event_file);
6367 goto err_context;
6368 }
6369
6370 if (move_group) {
6371 struct perf_event_context *gctx = group_leader->ctx;
6372
6373 mutex_lock(&gctx->mutex);
6374 perf_remove_from_context(group_leader);
6375 list_for_each_entry(sibling, &group_leader->sibling_list,
6376 group_entry) {
6377 perf_remove_from_context(sibling);
6378 put_ctx(gctx);
6379 }
6380 mutex_unlock(&gctx->mutex);
6381 put_ctx(gctx);
6382 }
6383
6384 WARN_ON_ONCE(ctx->parent_ctx);
6385 mutex_lock(&ctx->mutex);
6386
6387 if (move_group) {
6388 perf_install_in_context(ctx, group_leader, cpu);
6389 get_ctx(ctx);
6390 list_for_each_entry(sibling, &group_leader->sibling_list,
6391 group_entry) {
6392 perf_install_in_context(ctx, sibling, cpu);
6393 get_ctx(ctx);
6394 }
6395 }
6396
6397 perf_install_in_context(ctx, event, cpu);
6398 ++ctx->generation;
6399 perf_unpin_context(ctx);
6400 mutex_unlock(&ctx->mutex);
6401
6402 event->owner = current;
6403
6404 mutex_lock(¤t->perf_event_mutex);
6405 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
6406 mutex_unlock(¤t->perf_event_mutex);
6407
6408 /*
6409 * Precalculate sample_data sizes
6410 */
6411 perf_event__header_size(event);
6412 perf_event__id_header_size(event);
6413
6414 /*
6415 * Drop the reference on the group_event after placing the
6416 * new event on the sibling_list. This ensures destruction
6417 * of the group leader will find the pointer to itself in
6418 * perf_group_detach().
6419 */
6420 fput_light(group_file, fput_needed);
6421 fd_install(event_fd, event_file);
6422 return event_fd;
6423
6424err_context:
6425 perf_unpin_context(ctx);
6426 put_ctx(ctx);
6427err_alloc:
6428 free_event(event);
6429err_task:
6430 if (task)
6431 put_task_struct(task);
6432err_group_fd:
6433 fput_light(group_file, fput_needed);
6434err_fd:
6435 put_unused_fd(event_fd);
6436 return err;
6437}
6438
6439/**
6440 * perf_event_create_kernel_counter
6441 *
6442 * @attr: attributes of the counter to create
6443 * @cpu: cpu in which the counter is bound
6444 * @task: task to profile (NULL for percpu)
6445 */
6446struct perf_event *
6447perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6448 struct task_struct *task,
6449 perf_overflow_handler_t overflow_handler,
6450 void *context)
6451{
6452 struct perf_event_context *ctx;
6453 struct perf_event *event;
6454 int err;
6455
6456 /*
6457 * Get the target context (task or percpu):
6458 */
6459
6460 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6461 overflow_handler, context);
6462 if (IS_ERR(event)) {
6463 err = PTR_ERR(event);
6464 goto err;
6465 }
6466
6467 ctx = find_get_context(event->pmu, task, cpu);
6468 if (IS_ERR(ctx)) {
6469 err = PTR_ERR(ctx);
6470 goto err_free;
6471 }
6472
6473 WARN_ON_ONCE(ctx->parent_ctx);
6474 mutex_lock(&ctx->mutex);
6475 perf_install_in_context(ctx, event, cpu);
6476 ++ctx->generation;
6477 perf_unpin_context(ctx);
6478 mutex_unlock(&ctx->mutex);
6479
6480 return event;
6481
6482err_free:
6483 free_event(event);
6484err:
6485 return ERR_PTR(err);
6486}
6487EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6488
6489static void sync_child_event(struct perf_event *child_event,
6490 struct task_struct *child)
6491{
6492 struct perf_event *parent_event = child_event->parent;
6493 u64 child_val;
6494
6495 if (child_event->attr.inherit_stat)
6496 perf_event_read_event(child_event, child);
6497
6498 child_val = perf_event_count(child_event);
6499
6500 /*
6501 * Add back the child's count to the parent's count:
6502 */
6503 atomic64_add(child_val, &parent_event->child_count);
6504 atomic64_add(child_event->total_time_enabled,
6505 &parent_event->child_total_time_enabled);
6506 atomic64_add(child_event->total_time_running,
6507 &parent_event->child_total_time_running);
6508
6509 /*
6510 * Remove this event from the parent's list
6511 */
6512 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6513 mutex_lock(&parent_event->child_mutex);
6514 list_del_init(&child_event->child_list);
6515 mutex_unlock(&parent_event->child_mutex);
6516
6517 /*
6518 * Release the parent event, if this was the last
6519 * reference to it.
6520 */
6521 put_event(parent_event);
6522}
6523
6524static void
6525__perf_event_exit_task(struct perf_event *child_event,
6526 struct perf_event_context *child_ctx,
6527 struct task_struct *child)
6528{
6529 if (child_event->parent) {
6530 raw_spin_lock_irq(&child_ctx->lock);
6531 perf_group_detach(child_event);
6532 raw_spin_unlock_irq(&child_ctx->lock);
6533 }
6534
6535 perf_remove_from_context(child_event);
6536
6537 /*
6538 * It can happen that the parent exits first, and has events
6539 * that are still around due to the child reference. These
6540 * events need to be zapped.
6541 */
6542 if (child_event->parent) {
6543 sync_child_event(child_event, child);
6544 free_event(child_event);
6545 }
6546}
6547
6548static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6549{
6550 struct perf_event *child_event, *tmp;
6551 struct perf_event_context *child_ctx;
6552 unsigned long flags;
6553
6554 if (likely(!child->perf_event_ctxp[ctxn])) {
6555 perf_event_task(child, NULL, 0);
6556 return;
6557 }
6558
6559 local_irq_save(flags);
6560 /*
6561 * We can't reschedule here because interrupts are disabled,
6562 * and either child is current or it is a task that can't be
6563 * scheduled, so we are now safe from rescheduling changing
6564 * our context.
6565 */
6566 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6567
6568 /*
6569 * Take the context lock here so that if find_get_context is
6570 * reading child->perf_event_ctxp, we wait until it has
6571 * incremented the context's refcount before we do put_ctx below.
6572 */
6573 raw_spin_lock(&child_ctx->lock);
6574 task_ctx_sched_out(child_ctx);
6575 child->perf_event_ctxp[ctxn] = NULL;
6576 /*
6577 * If this context is a clone; unclone it so it can't get
6578 * swapped to another process while we're removing all
6579 * the events from it.
6580 */
6581 unclone_ctx(child_ctx);
6582 update_context_time(child_ctx);
6583 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6584
6585 /*
6586 * Report the task dead after unscheduling the events so that we
6587 * won't get any samples after PERF_RECORD_EXIT. We can however still
6588 * get a few PERF_RECORD_READ events.
6589 */
6590 perf_event_task(child, child_ctx, 0);
6591
6592 /*
6593 * We can recurse on the same lock type through:
6594 *
6595 * __perf_event_exit_task()
6596 * sync_child_event()
6597 * put_event()
6598 * mutex_lock(&ctx->mutex)
6599 *
6600 * But since its the parent context it won't be the same instance.
6601 */
6602 mutex_lock(&child_ctx->mutex);
6603
6604again:
6605 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6606 group_entry)
6607 __perf_event_exit_task(child_event, child_ctx, child);
6608
6609 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6610 group_entry)
6611 __perf_event_exit_task(child_event, child_ctx, child);
6612
6613 /*
6614 * If the last event was a group event, it will have appended all
6615 * its siblings to the list, but we obtained 'tmp' before that which
6616 * will still point to the list head terminating the iteration.
6617 */
6618 if (!list_empty(&child_ctx->pinned_groups) ||
6619 !list_empty(&child_ctx->flexible_groups))
6620 goto again;
6621
6622 mutex_unlock(&child_ctx->mutex);
6623
6624 put_ctx(child_ctx);
6625}
6626
6627/*
6628 * When a child task exits, feed back event values to parent events.
6629 */
6630void perf_event_exit_task(struct task_struct *child)
6631{
6632 struct perf_event *event, *tmp;
6633 int ctxn;
6634
6635 mutex_lock(&child->perf_event_mutex);
6636 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6637 owner_entry) {
6638 list_del_init(&event->owner_entry);
6639
6640 /*
6641 * Ensure the list deletion is visible before we clear
6642 * the owner, closes a race against perf_release() where
6643 * we need to serialize on the owner->perf_event_mutex.
6644 */
6645 smp_wmb();
6646 event->owner = NULL;
6647 }
6648 mutex_unlock(&child->perf_event_mutex);
6649
6650 for_each_task_context_nr(ctxn)
6651 perf_event_exit_task_context(child, ctxn);
6652}
6653
6654static void perf_free_event(struct perf_event *event,
6655 struct perf_event_context *ctx)
6656{
6657 struct perf_event *parent = event->parent;
6658
6659 if (WARN_ON_ONCE(!parent))
6660 return;
6661
6662 mutex_lock(&parent->child_mutex);
6663 list_del_init(&event->child_list);
6664 mutex_unlock(&parent->child_mutex);
6665
6666 put_event(parent);
6667
6668 perf_group_detach(event);
6669 list_del_event(event, ctx);
6670 free_event(event);
6671}
6672
6673/*
6674 * free an unexposed, unused context as created by inheritance by
6675 * perf_event_init_task below, used by fork() in case of fail.
6676 */
6677void perf_event_free_task(struct task_struct *task)
6678{
6679 struct perf_event_context *ctx;
6680 struct perf_event *event, *tmp;
6681 int ctxn;
6682
6683 for_each_task_context_nr(ctxn) {
6684 ctx = task->perf_event_ctxp[ctxn];
6685 if (!ctx)
6686 continue;
6687
6688 mutex_lock(&ctx->mutex);
6689again:
6690 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6691 group_entry)
6692 perf_free_event(event, ctx);
6693
6694 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6695 group_entry)
6696 perf_free_event(event, ctx);
6697
6698 if (!list_empty(&ctx->pinned_groups) ||
6699 !list_empty(&ctx->flexible_groups))
6700 goto again;
6701
6702 mutex_unlock(&ctx->mutex);
6703
6704 put_ctx(ctx);
6705 }
6706}
6707
6708void perf_event_delayed_put(struct task_struct *task)
6709{
6710 int ctxn;
6711
6712 for_each_task_context_nr(ctxn)
6713 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6714}
6715
6716/*
6717 * inherit a event from parent task to child task:
6718 */
6719static struct perf_event *
6720inherit_event(struct perf_event *parent_event,
6721 struct task_struct *parent,
6722 struct perf_event_context *parent_ctx,
6723 struct task_struct *child,
6724 struct perf_event *group_leader,
6725 struct perf_event_context *child_ctx)
6726{
6727 struct perf_event *child_event;
6728 unsigned long flags;
6729
6730 /*
6731 * Instead of creating recursive hierarchies of events,
6732 * we link inherited events back to the original parent,
6733 * which has a filp for sure, which we use as the reference
6734 * count:
6735 */
6736 if (parent_event->parent)
6737 parent_event = parent_event->parent;
6738
6739 child_event = perf_event_alloc(&parent_event->attr,
6740 parent_event->cpu,
6741 child,
6742 group_leader, parent_event,
6743 NULL, NULL);
6744 if (IS_ERR(child_event))
6745 return child_event;
6746
6747 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
6748 free_event(child_event);
6749 return NULL;
6750 }
6751
6752 get_ctx(child_ctx);
6753
6754 /*
6755 * Make the child state follow the state of the parent event,
6756 * not its attr.disabled bit. We hold the parent's mutex,
6757 * so we won't race with perf_event_{en, dis}able_family.
6758 */
6759 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6760 child_event->state = PERF_EVENT_STATE_INACTIVE;
6761 else
6762 child_event->state = PERF_EVENT_STATE_OFF;
6763
6764 if (parent_event->attr.freq) {
6765 u64 sample_period = parent_event->hw.sample_period;
6766 struct hw_perf_event *hwc = &child_event->hw;
6767
6768 hwc->sample_period = sample_period;
6769 hwc->last_period = sample_period;
6770
6771 local64_set(&hwc->period_left, sample_period);
6772 }
6773
6774 child_event->ctx = child_ctx;
6775 child_event->overflow_handler = parent_event->overflow_handler;
6776 child_event->overflow_handler_context
6777 = parent_event->overflow_handler_context;
6778
6779 /*
6780 * Precalculate sample_data sizes
6781 */
6782 perf_event__header_size(child_event);
6783 perf_event__id_header_size(child_event);
6784
6785 /*
6786 * Link it up in the child's context:
6787 */
6788 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6789 add_event_to_ctx(child_event, child_ctx);
6790 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6791
6792 /*
6793 * Link this into the parent event's child list
6794 */
6795 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6796 mutex_lock(&parent_event->child_mutex);
6797 list_add_tail(&child_event->child_list, &parent_event->child_list);
6798 mutex_unlock(&parent_event->child_mutex);
6799
6800 return child_event;
6801}
6802
6803static int inherit_group(struct perf_event *parent_event,
6804 struct task_struct *parent,
6805 struct perf_event_context *parent_ctx,
6806 struct task_struct *child,
6807 struct perf_event_context *child_ctx)
6808{
6809 struct perf_event *leader;
6810 struct perf_event *sub;
6811 struct perf_event *child_ctr;
6812
6813 leader = inherit_event(parent_event, parent, parent_ctx,
6814 child, NULL, child_ctx);
6815 if (IS_ERR(leader))
6816 return PTR_ERR(leader);
6817 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6818 child_ctr = inherit_event(sub, parent, parent_ctx,
6819 child, leader, child_ctx);
6820 if (IS_ERR(child_ctr))
6821 return PTR_ERR(child_ctr);
6822 }
6823 return 0;
6824}
6825
6826static int
6827inherit_task_group(struct perf_event *event, struct task_struct *parent,
6828 struct perf_event_context *parent_ctx,
6829 struct task_struct *child, int ctxn,
6830 int *inherited_all)
6831{
6832 int ret;
6833 struct perf_event_context *child_ctx;
6834
6835 if (!event->attr.inherit) {
6836 *inherited_all = 0;
6837 return 0;
6838 }
6839
6840 child_ctx = child->perf_event_ctxp[ctxn];
6841 if (!child_ctx) {
6842 /*
6843 * This is executed from the parent task context, so
6844 * inherit events that have been marked for cloning.
6845 * First allocate and initialize a context for the
6846 * child.
6847 */
6848
6849 child_ctx = alloc_perf_context(event->pmu, child);
6850 if (!child_ctx)
6851 return -ENOMEM;
6852
6853 child->perf_event_ctxp[ctxn] = child_ctx;
6854 }
6855
6856 ret = inherit_group(event, parent, parent_ctx,
6857 child, child_ctx);
6858
6859 if (ret)
6860 *inherited_all = 0;
6861
6862 return ret;
6863}
6864
6865/*
6866 * Initialize the perf_event context in task_struct
6867 */
6868int perf_event_init_context(struct task_struct *child, int ctxn)
6869{
6870 struct perf_event_context *child_ctx, *parent_ctx;
6871 struct perf_event_context *cloned_ctx;
6872 struct perf_event *event;
6873 struct task_struct *parent = current;
6874 int inherited_all = 1;
6875 unsigned long flags;
6876 int ret = 0;
6877
6878 if (likely(!parent->perf_event_ctxp[ctxn]))
6879 return 0;
6880
6881 /*
6882 * If the parent's context is a clone, pin it so it won't get
6883 * swapped under us.
6884 */
6885 parent_ctx = perf_pin_task_context(parent, ctxn);
6886
6887 /*
6888 * No need to check if parent_ctx != NULL here; since we saw
6889 * it non-NULL earlier, the only reason for it to become NULL
6890 * is if we exit, and since we're currently in the middle of
6891 * a fork we can't be exiting at the same time.
6892 */
6893
6894 /*
6895 * Lock the parent list. No need to lock the child - not PID
6896 * hashed yet and not running, so nobody can access it.
6897 */
6898 mutex_lock(&parent_ctx->mutex);
6899
6900 /*
6901 * We dont have to disable NMIs - we are only looking at
6902 * the list, not manipulating it:
6903 */
6904 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6905 ret = inherit_task_group(event, parent, parent_ctx,
6906 child, ctxn, &inherited_all);
6907 if (ret)
6908 break;
6909 }
6910
6911 /*
6912 * We can't hold ctx->lock when iterating the ->flexible_group list due
6913 * to allocations, but we need to prevent rotation because
6914 * rotate_ctx() will change the list from interrupt context.
6915 */
6916 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6917 parent_ctx->rotate_disable = 1;
6918 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6919
6920 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6921 ret = inherit_task_group(event, parent, parent_ctx,
6922 child, ctxn, &inherited_all);
6923 if (ret)
6924 break;
6925 }
6926
6927 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6928 parent_ctx->rotate_disable = 0;
6929
6930 child_ctx = child->perf_event_ctxp[ctxn];
6931
6932 if (child_ctx && inherited_all) {
6933 /*
6934 * Mark the child context as a clone of the parent
6935 * context, or of whatever the parent is a clone of.
6936 *
6937 * Note that if the parent is a clone, the holding of
6938 * parent_ctx->lock avoids it from being uncloned.
6939 */
6940 cloned_ctx = parent_ctx->parent_ctx;
6941 if (cloned_ctx) {
6942 child_ctx->parent_ctx = cloned_ctx;
6943 child_ctx->parent_gen = parent_ctx->parent_gen;
6944 } else {
6945 child_ctx->parent_ctx = parent_ctx;
6946 child_ctx->parent_gen = parent_ctx->generation;
6947 }
6948 get_ctx(child_ctx->parent_ctx);
6949 }
6950
6951 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6952 mutex_unlock(&parent_ctx->mutex);
6953
6954 perf_unpin_context(parent_ctx);
6955 put_ctx(parent_ctx);
6956
6957 return ret;
6958}
6959
6960/*
6961 * Initialize the perf_event context in task_struct
6962 */
6963int perf_event_init_task(struct task_struct *child)
6964{
6965 int ctxn, ret;
6966
6967 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6968 mutex_init(&child->perf_event_mutex);
6969 INIT_LIST_HEAD(&child->perf_event_list);
6970
6971 for_each_task_context_nr(ctxn) {
6972 ret = perf_event_init_context(child, ctxn);
6973 if (ret)
6974 return ret;
6975 }
6976
6977 return 0;
6978}
6979
6980static void __init perf_event_init_all_cpus(void)
6981{
6982 struct swevent_htable *swhash;
6983 int cpu;
6984
6985 for_each_possible_cpu(cpu) {
6986 swhash = &per_cpu(swevent_htable, cpu);
6987 mutex_init(&swhash->hlist_mutex);
6988 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6989 }
6990}
6991
6992static void __cpuinit perf_event_init_cpu(int cpu)
6993{
6994 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6995
6996 mutex_lock(&swhash->hlist_mutex);
6997 if (swhash->hlist_refcount > 0) {
6998 struct swevent_hlist *hlist;
6999
7000 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7001 WARN_ON(!hlist);
7002 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7003 }
7004 mutex_unlock(&swhash->hlist_mutex);
7005}
7006
7007#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7008static void perf_pmu_rotate_stop(struct pmu *pmu)
7009{
7010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7011
7012 WARN_ON(!irqs_disabled());
7013
7014 list_del_init(&cpuctx->rotation_list);
7015}
7016
7017static void __perf_event_exit_context(void *__info)
7018{
7019 struct perf_event_context *ctx = __info;
7020 struct perf_event *event, *tmp;
7021
7022 perf_pmu_rotate_stop(ctx->pmu);
7023
7024 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7025 __perf_remove_from_context(event);
7026 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7027 __perf_remove_from_context(event);
7028}
7029
7030static void perf_event_exit_cpu_context(int cpu)
7031{
7032 struct perf_event_context *ctx;
7033 struct pmu *pmu;
7034 int idx;
7035
7036 idx = srcu_read_lock(&pmus_srcu);
7037 list_for_each_entry_rcu(pmu, &pmus, entry) {
7038 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7039
7040 mutex_lock(&ctx->mutex);
7041 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7042 mutex_unlock(&ctx->mutex);
7043 }
7044 srcu_read_unlock(&pmus_srcu, idx);
7045}
7046
7047static void perf_event_exit_cpu(int cpu)
7048{
7049 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7050
7051 mutex_lock(&swhash->hlist_mutex);
7052 swevent_hlist_release(swhash);
7053 mutex_unlock(&swhash->hlist_mutex);
7054
7055 perf_event_exit_cpu_context(cpu);
7056}
7057#else
7058static inline void perf_event_exit_cpu(int cpu) { }
7059#endif
7060
7061static int
7062perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7063{
7064 int cpu;
7065
7066 for_each_online_cpu(cpu)
7067 perf_event_exit_cpu(cpu);
7068
7069 return NOTIFY_OK;
7070}
7071
7072/*
7073 * Run the perf reboot notifier at the very last possible moment so that
7074 * the generic watchdog code runs as long as possible.
7075 */
7076static struct notifier_block perf_reboot_notifier = {
7077 .notifier_call = perf_reboot,
7078 .priority = INT_MIN,
7079};
7080
7081static int __cpuinit
7082perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7083{
7084 unsigned int cpu = (long)hcpu;
7085
7086 switch (action & ~CPU_TASKS_FROZEN) {
7087
7088 case CPU_UP_PREPARE:
7089 case CPU_DOWN_FAILED:
7090 perf_event_init_cpu(cpu);
7091 break;
7092
7093 case CPU_UP_CANCELED:
7094 case CPU_DOWN_PREPARE:
7095 perf_event_exit_cpu(cpu);
7096 break;
7097
7098 default:
7099 break;
7100 }
7101
7102 return NOTIFY_OK;
7103}
7104
7105void __init perf_event_init(void)
7106{
7107 int ret;
7108
7109 idr_init(&pmu_idr);
7110
7111 perf_event_init_all_cpus();
7112 init_srcu_struct(&pmus_srcu);
7113 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7114 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7115 perf_pmu_register(&perf_task_clock, NULL, -1);
7116 perf_tp_register();
7117 perf_cpu_notifier(perf_cpu_notify);
7118 register_reboot_notifier(&perf_reboot_notifier);
7119
7120 ret = init_hw_breakpoint();
7121 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7122
7123 /* do not patch jump label more than once per second */
7124 jump_label_rate_limit(&perf_sched_events, HZ);
7125
7126 /*
7127 * Build time assertion that we keep the data_head at the intended
7128 * location. IOW, validation we got the __reserved[] size right.
7129 */
7130 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7131 != 1024);
7132}
7133
7134static int __init perf_event_sysfs_init(void)
7135{
7136 struct pmu *pmu;
7137 int ret;
7138
7139 mutex_lock(&pmus_lock);
7140
7141 ret = bus_register(&pmu_bus);
7142 if (ret)
7143 goto unlock;
7144
7145 list_for_each_entry(pmu, &pmus, entry) {
7146 if (!pmu->name || pmu->type < 0)
7147 continue;
7148
7149 ret = pmu_dev_alloc(pmu);
7150 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7151 }
7152 pmu_bus_running = 1;
7153 ret = 0;
7154
7155unlock:
7156 mutex_unlock(&pmus_lock);
7157
7158 return ret;
7159}
7160device_initcall(perf_event_sysfs_init);
7161
7162#ifdef CONFIG_CGROUP_PERF
7163static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7164{
7165 struct perf_cgroup *jc;
7166
7167 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7168 if (!jc)
7169 return ERR_PTR(-ENOMEM);
7170
7171 jc->info = alloc_percpu(struct perf_cgroup_info);
7172 if (!jc->info) {
7173 kfree(jc);
7174 return ERR_PTR(-ENOMEM);
7175 }
7176
7177 return &jc->css;
7178}
7179
7180static void perf_cgroup_destroy(struct cgroup *cont)
7181{
7182 struct perf_cgroup *jc;
7183 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7184 struct perf_cgroup, css);
7185 free_percpu(jc->info);
7186 kfree(jc);
7187}
7188
7189static int __perf_cgroup_move(void *info)
7190{
7191 struct task_struct *task = info;
7192 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7193 return 0;
7194}
7195
7196static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7197{
7198 struct task_struct *task;
7199
7200 cgroup_taskset_for_each(task, cgrp, tset)
7201 task_function_call(task, __perf_cgroup_move, task);
7202}
7203
7204static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7205 struct task_struct *task)
7206{
7207 /*
7208 * cgroup_exit() is called in the copy_process() failure path.
7209 * Ignore this case since the task hasn't ran yet, this avoids
7210 * trying to poke a half freed task state from generic code.
7211 */
7212 if (!(task->flags & PF_EXITING))
7213 return;
7214
7215 task_function_call(task, __perf_cgroup_move, task);
7216}
7217
7218struct cgroup_subsys perf_subsys = {
7219 .name = "perf_event",
7220 .subsys_id = perf_subsys_id,
7221 .create = perf_cgroup_create,
7222 .destroy = perf_cgroup_destroy,
7223 .exit = perf_cgroup_exit,
7224 .attach = perf_cgroup_attach,
7225};
7226#endif /* CONFIG_CGROUP_PERF */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/cpu.h>
14#include <linux/smp.h>
15#include <linux/idr.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/slab.h>
19#include <linux/hash.h>
20#include <linux/tick.h>
21#include <linux/sysfs.h>
22#include <linux/dcache.h>
23#include <linux/percpu.h>
24#include <linux/ptrace.h>
25#include <linux/reboot.h>
26#include <linux/vmstat.h>
27#include <linux/device.h>
28#include <linux/export.h>
29#include <linux/vmalloc.h>
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
35#include <linux/kernel_stat.h>
36#include <linux/cgroup.h>
37#include <linux/perf_event.h>
38#include <linux/trace_events.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/mm_types.h>
41#include <linux/module.h>
42#include <linux/mman.h>
43#include <linux/compat.h>
44#include <linux/bpf.h>
45#include <linux/filter.h>
46#include <linux/namei.h>
47#include <linux/parser.h>
48#include <linux/sched/clock.h>
49#include <linux/sched/mm.h>
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
52
53#include "internal.h"
54
55#include <asm/irq_regs.h>
56
57typedef int (*remote_function_f)(void *);
58
59struct remote_function_call {
60 struct task_struct *p;
61 remote_function_f func;
62 void *info;
63 int ret;
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
103task_function_call(struct task_struct *p, remote_function_f func, void *info)
104{
105 struct remote_function_call data = {
106 .p = p,
107 .func = func,
108 .info = info,
109 .ret = -EAGAIN,
110 };
111 int ret;
112
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
118
119 return ret;
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
131static int cpu_function_call(int cpu, remote_function_f func, void *info)
132{
133 struct remote_function_call data = {
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
153{
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172}
173
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
206 struct perf_event_context *ctx = event->ctx;
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 int ret = 0;
210
211 lockdep_assert_irqs_disabled();
212
213 perf_ctx_lock(cpuctx, task_ctx);
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
217 */
218 if (ctx->task) {
219 if (ctx->task != current) {
220 ret = -ESRCH;
221 goto unlock;
222 }
223
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 }
240
241 efs->func(event, cpuctx, ctx, efs->data);
242unlock:
243 perf_ctx_unlock(cpuctx, task_ctx);
244
245 return ret;
246}
247
248static void event_function_call(struct perf_event *event, event_f func, void *data)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
257
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
266
267 if (!task) {
268 cpu_function_call(event->cpu, event_function, &efs);
269 return;
270 }
271
272 if (task == TASK_TOMBSTONE)
273 return;
274
275again:
276 if (!task_function_call(task, event_function, &efs))
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
288 }
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
308 lockdep_assert_irqs_disabled();
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
349
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
360 EVENT_TIME = 0x4,
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
383static atomic_t nr_namespaces_events __read_mostly;
384static atomic_t nr_task_events __read_mostly;
385static atomic_t nr_freq_events __read_mostly;
386static atomic_t nr_switch_events __read_mostly;
387static atomic_t nr_ksymbol_events __read_mostly;
388static atomic_t nr_bpf_events __read_mostly;
389
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
393static cpumask_var_t perf_online_mask;
394
395/*
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
401 */
402int sysctl_perf_event_paranoid __read_mostly = 2;
403
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407/*
408 * max perf event sample rate
409 */
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422static void update_perf_cpu_limits(void)
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
432}
433
434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 /*
443 * If throttling is disabled don't allow the write:
444 */
445 if (write && (perf_cpu == 100 || perf_cpu == 0))
446 return -EINVAL;
447
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467 if (ret || !write)
468 return ret;
469
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
478
479 return 0;
480}
481
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
489static DEFINE_PER_CPU(u64, running_sample_length);
490
491static u64 __report_avg;
492static u64 __report_allowed;
493
494static void perf_duration_warn(struct irq_work *w)
495{
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
511
512 if (max_len == 0)
513 return;
514
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
520
521 /*
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
525 */
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
528 return;
529
530 __report_avg = avg_len;
531 __report_allowed = max_len;
532
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
542
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549 if (!irq_work_queue(&perf_duration_work)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg, __report_allowed,
553 sysctl_perf_event_sample_rate);
554 }
555}
556
557static atomic64_t perf_event_id;
558
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
568
569void __weak perf_event_print_debug(void) { }
570
571extern __weak const char *perf_pmu_name(void)
572{
573 return "pmu";
574}
575
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
647 for_each_sibling_event(sibling, leader)
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
668#ifdef CONFIG_CGROUP_PERF
669
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
692}
693
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
696 css_put(&event->cgrp->css);
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
741 struct perf_cgroup *cgrp;
742
743 /*
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
746 */
747 if (!is_cgroup_event(event))
748 return;
749
750 cgrp = perf_cgroup_from_task(current, event->ctx);
751 /*
752 * Do not update time when cgroup is not active
753 */
754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 __update_cgrp_time(event->cgrp);
756}
757
758static inline void
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
764 struct cgroup_subsys_state *css;
765
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
772 return;
773
774 cgrp = perf_cgroup_from_task(task, ctx);
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
781}
782
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
794static void perf_cgroup_switch(struct task_struct *task, int mode)
795{
796 struct perf_cpu_context *cpuctx;
797 struct list_head *list;
798 unsigned long flags;
799
800 /*
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
803 */
804 local_irq_save(flags);
805
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
812
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
821
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 }
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 }
838
839 local_irq_restore(flags);
840}
841
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
844{
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
848 rcu_read_lock();
849 /*
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
853 */
854 cgrp1 = perf_cgroup_from_task(task, NULL);
855 cgrp2 = perf_cgroup_from_task(next, NULL);
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865 rcu_read_unlock();
866}
867
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
870{
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
874 rcu_read_lock();
875 /*
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
879 */
880 cgrp1 = perf_cgroup_from_task(task, NULL);
881 cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891 rcu_read_unlock();
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
900 struct fd f = fdget(fd);
901 int ret = 0;
902
903 if (!f.file)
904 return -EBADF;
905
906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 &perf_event_cgrp_subsys);
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
924 }
925out:
926 fdput(f);
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
947 struct list_head *cpuctx_entry;
948
949 if (!is_cgroup_event(event))
950 return;
951
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
969 }
970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
985}
986
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
1013{
1014}
1015
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
1031{
1032}
1033
1034static inline void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
1055#endif
1056
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
1063 * function must be called with interrupts disabled
1064 */
1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066{
1067 struct perf_cpu_context *cpuctx;
1068 bool rotations;
1069
1070 lockdep_assert_irqs_disabled();
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 rotations = perf_rotate_context(cpuctx);
1074
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083}
1084
1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086{
1087 struct hrtimer *timer = &cpuctx->hrtimer;
1088 struct pmu *pmu = cpuctx->ctx.pmu;
1089 u64 interval;
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 timer->function = perf_mux_hrtimer_handler;
1108}
1109
1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111{
1112 struct hrtimer *timer = &cpuctx->hrtimer;
1113 struct pmu *pmu = cpuctx->ctx.pmu;
1114 unsigned long flags;
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
1118 return 0;
1119
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128 return 0;
1129}
1130
1131void perf_pmu_disable(struct pmu *pmu)
1132{
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
1136}
1137
1138void perf_pmu_enable(struct pmu *pmu)
1139{
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
1143}
1144
1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147/*
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
1152 */
1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154{
1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157 lockdep_assert_irqs_disabled();
1158
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
1166 lockdep_assert_irqs_disabled();
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
1171}
1172
1173static void get_ctx(struct perf_event_context *ctx)
1174{
1175 refcount_inc(&ctx->refcount);
1176}
1177
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
1187static void put_ctx(struct perf_event_context *ctx)
1188{
1189 if (refcount_dec_and_test(&ctx->refcount)) {
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 put_task_struct(ctx->task);
1194 call_rcu(&ctx->rcu_head, free_ctx);
1195 }
1196}
1197
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
1251 * cred_guard_mutex
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
1254 * perf_event::child_mutex;
1255 * perf_event_context::lock
1256 * perf_event::mmap_mutex
1257 * mmap_sem
1258 * perf_addr_filters_head::lock
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
1263 */
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
1271 ctx = READ_ONCE(event->ctx);
1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
1278 mutex_lock_nested(&ctx->mutex, nesting);
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
1308{
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
1314 ctx->parent_ctx = NULL;
1315 ctx->generation++;
1316
1317 return parent_ctx;
1318}
1319
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
1322{
1323 u32 nr;
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
1335}
1336
1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338{
1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340}
1341
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
1345}
1346
1347/*
1348 * If we inherit events we want to return the parent event id
1349 * to userspace.
1350 */
1351static u64 primary_event_id(struct perf_event *event)
1352{
1353 u64 id = event->id;
1354
1355 if (event->parent)
1356 id = event->parent->id;
1357
1358 return id;
1359}
1360
1361/*
1362 * Get the perf_event_context for a task and lock it.
1363 *
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
1367static struct perf_event_context *
1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369{
1370 struct perf_event_context *ctx;
1371
1372retry:
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 * part of the read side critical section was irqs-enabled -- see
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 * side critical section has interrupts disabled.
1381 */
1382 local_irq_save(*flags);
1383 rcu_read_lock();
1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
1389 * perf_event_task_sched_out, though the
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
1396 raw_spin_lock(&ctx->lock);
1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 raw_spin_unlock(&ctx->lock);
1399 rcu_read_unlock();
1400 local_irq_restore(*flags);
1401 goto retry;
1402 }
1403
1404 if (ctx->task == TASK_TOMBSTONE ||
1405 !refcount_inc_not_zero(&ctx->refcount)) {
1406 raw_spin_unlock(&ctx->lock);
1407 ctx = NULL;
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
1410 }
1411 }
1412 rcu_read_unlock();
1413 if (!ctx)
1414 local_irq_restore(*flags);
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
1425{
1426 struct perf_event_context *ctx;
1427 unsigned long flags;
1428
1429 ctx = perf_lock_task_context(task, ctxn, &flags);
1430 if (ctx) {
1431 ++ctx->pin_count;
1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 }
1434 return ctx;
1435}
1436
1437static void perf_unpin_context(struct perf_event_context *ctx)
1438{
1439 unsigned long flags;
1440
1441 raw_spin_lock_irqsave(&ctx->lock, flags);
1442 --ctx->pin_count;
1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444}
1445
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
1464 return ctx ? ctx->time : 0;
1465}
1466
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
1488/*
1489 * Helper function to initialize event group nodes.
1490 */
1491static void init_event_group(struct perf_event *event)
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
1499 * based on event attrs bits.
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
1510/*
1511 * Helper function to initializes perf_event_group trees.
1512 */
1513static void perf_event_groups_init(struct perf_event_groups *groups)
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
1524 */
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527{
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
1539}
1540
1541/*
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
1548 struct perf_event *event)
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
1561 node_event = container_of(*node, struct perf_event, group_node);
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
1574 * Helper function to insert event into the pinned or flexible groups.
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
1586 * Delete a group from a tree.
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
1590 struct perf_event *event)
1591{
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
1594
1595 rb_erase(&event->group_node, &groups->tree);
1596 init_event_group(event);
1597}
1598
1599/*
1600 * Helper function to delete event from its groups.
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
1612 * Get the leftmost event in the @cpu subtree.
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
1621 node_event = container_of(node, struct perf_event, group_node);
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
1651/*
1652 * Iterate through the whole groups tree.
1653 */
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
1659
1660/*
1661 * Add an event from the lists for its context.
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
1664static void
1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666{
1667 lockdep_assert_held(&ctx->lock);
1668
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672 event->tstamp = perf_event_time(event);
1673
1674 /*
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
1678 */
1679 if (event->group_leader == event) {
1680 event->group_caps = event->event_caps;
1681 add_event_to_groups(event, ctx);
1682 }
1683
1684 list_update_cgroup_event(event, ctx, true);
1685
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
1689 ctx->nr_stat++;
1690
1691 ctx->generation++;
1692}
1693
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 nr += nr_siblings;
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728{
1729 struct perf_sample_data *data;
1730 u16 size = 0;
1731
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
1756 event->header_size = size;
1757}
1758
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
1794 event->id_header_size = size;
1795}
1796
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
1818static void perf_group_attach(struct perf_event *event)
1819{
1820 struct perf_event *group_leader = event->group_leader, *pos;
1821
1822 lockdep_assert_held(&event->ctx->lock);
1823
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837 group_leader->group_caps &= event->event_caps;
1838
1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 group_leader->nr_siblings++;
1841
1842 perf_event__header_size(group_leader);
1843
1844 for_each_sibling_event(pos, group_leader)
1845 perf_event__header_size(pos);
1846}
1847
1848/*
1849 * Remove an event from the lists for its context.
1850 * Must be called with ctx->mutex and ctx->lock held.
1851 */
1852static void
1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854{
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 return;
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866 list_update_cgroup_event(event, ctx, false);
1867
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
1870 ctx->nr_stat--;
1871
1872 list_del_rcu(&event->event_entry);
1873
1874 if (event->group_leader == event)
1875 del_event_from_groups(event, ctx);
1876
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887 ctx->generation++;
1888}
1889
1890static int
1891perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892{
1893 if (!has_aux(aux_event))
1894 return 0;
1895
1896 if (!event->pmu->aux_output_match)
1897 return 0;
1898
1899 return event->pmu->aux_output_match(aux_event);
1900}
1901
1902static void put_event(struct perf_event *event);
1903static void event_sched_out(struct perf_event *event,
1904 struct perf_cpu_context *cpuctx,
1905 struct perf_event_context *ctx);
1906
1907static void perf_put_aux_event(struct perf_event *event)
1908{
1909 struct perf_event_context *ctx = event->ctx;
1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 struct perf_event *iter;
1912
1913 /*
1914 * If event uses aux_event tear down the link
1915 */
1916 if (event->aux_event) {
1917 iter = event->aux_event;
1918 event->aux_event = NULL;
1919 put_event(iter);
1920 return;
1921 }
1922
1923 /*
1924 * If the event is an aux_event, tear down all links to
1925 * it from other events.
1926 */
1927 for_each_sibling_event(iter, event->group_leader) {
1928 if (iter->aux_event != event)
1929 continue;
1930
1931 iter->aux_event = NULL;
1932 put_event(event);
1933
1934 /*
1935 * If it's ACTIVE, schedule it out and put it into ERROR
1936 * state so that we don't try to schedule it again. Note
1937 * that perf_event_enable() will clear the ERROR status.
1938 */
1939 event_sched_out(iter, cpuctx, ctx);
1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 }
1942}
1943
1944static int perf_get_aux_event(struct perf_event *event,
1945 struct perf_event *group_leader)
1946{
1947 /*
1948 * Our group leader must be an aux event if we want to be
1949 * an aux_output. This way, the aux event will precede its
1950 * aux_output events in the group, and therefore will always
1951 * schedule first.
1952 */
1953 if (!group_leader)
1954 return 0;
1955
1956 if (!perf_aux_output_match(event, group_leader))
1957 return 0;
1958
1959 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 return 0;
1961
1962 /*
1963 * Link aux_outputs to their aux event; this is undone in
1964 * perf_group_detach() by perf_put_aux_event(). When the
1965 * group in torn down, the aux_output events loose their
1966 * link to the aux_event and can't schedule any more.
1967 */
1968 event->aux_event = group_leader;
1969
1970 return 1;
1971}
1972
1973static void perf_group_detach(struct perf_event *event)
1974{
1975 struct perf_event *sibling, *tmp;
1976 struct perf_event_context *ctx = event->ctx;
1977
1978 lockdep_assert_held(&ctx->lock);
1979
1980 /*
1981 * We can have double detach due to exit/hot-unplug + close.
1982 */
1983 if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 return;
1985
1986 event->attach_state &= ~PERF_ATTACH_GROUP;
1987
1988 perf_put_aux_event(event);
1989
1990 /*
1991 * If this is a sibling, remove it from its group.
1992 */
1993 if (event->group_leader != event) {
1994 list_del_init(&event->sibling_list);
1995 event->group_leader->nr_siblings--;
1996 goto out;
1997 }
1998
1999 /*
2000 * If this was a group event with sibling events then
2001 * upgrade the siblings to singleton events by adding them
2002 * to whatever list we are on.
2003 */
2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005
2006 sibling->group_leader = sibling;
2007 list_del_init(&sibling->sibling_list);
2008
2009 /* Inherit group flags from the previous leader */
2010 sibling->group_caps = event->group_caps;
2011
2012 if (!RB_EMPTY_NODE(&event->group_node)) {
2013 add_event_to_groups(sibling, event->ctx);
2014
2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 struct list_head *list = sibling->attr.pinned ?
2017 &ctx->pinned_active : &ctx->flexible_active;
2018
2019 list_add_tail(&sibling->active_list, list);
2020 }
2021 }
2022
2023 WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 }
2025
2026out:
2027 perf_event__header_size(event->group_leader);
2028
2029 for_each_sibling_event(tmp, event->group_leader)
2030 perf_event__header_size(tmp);
2031}
2032
2033static bool is_orphaned_event(struct perf_event *event)
2034{
2035 return event->state == PERF_EVENT_STATE_DEAD;
2036}
2037
2038static inline int __pmu_filter_match(struct perf_event *event)
2039{
2040 struct pmu *pmu = event->pmu;
2041 return pmu->filter_match ? pmu->filter_match(event) : 1;
2042}
2043
2044/*
2045 * Check whether we should attempt to schedule an event group based on
2046 * PMU-specific filtering. An event group can consist of HW and SW events,
2047 * potentially with a SW leader, so we must check all the filters, to
2048 * determine whether a group is schedulable:
2049 */
2050static inline int pmu_filter_match(struct perf_event *event)
2051{
2052 struct perf_event *sibling;
2053
2054 if (!__pmu_filter_match(event))
2055 return 0;
2056
2057 for_each_sibling_event(sibling, event) {
2058 if (!__pmu_filter_match(sibling))
2059 return 0;
2060 }
2061
2062 return 1;
2063}
2064
2065static inline int
2066event_filter_match(struct perf_event *event)
2067{
2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 perf_cgroup_match(event) && pmu_filter_match(event);
2070}
2071
2072static void
2073event_sched_out(struct perf_event *event,
2074 struct perf_cpu_context *cpuctx,
2075 struct perf_event_context *ctx)
2076{
2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078
2079 WARN_ON_ONCE(event->ctx != ctx);
2080 lockdep_assert_held(&ctx->lock);
2081
2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 return;
2084
2085 /*
2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 * we can schedule events _OUT_ individually through things like
2088 * __perf_remove_from_context().
2089 */
2090 list_del_init(&event->active_list);
2091
2092 perf_pmu_disable(event->pmu);
2093
2094 event->pmu->del(event, 0);
2095 event->oncpu = -1;
2096
2097 if (READ_ONCE(event->pending_disable) >= 0) {
2098 WRITE_ONCE(event->pending_disable, -1);
2099 state = PERF_EVENT_STATE_OFF;
2100 }
2101 perf_event_set_state(event, state);
2102
2103 if (!is_software_event(event))
2104 cpuctx->active_oncpu--;
2105 if (!--ctx->nr_active)
2106 perf_event_ctx_deactivate(ctx);
2107 if (event->attr.freq && event->attr.sample_freq)
2108 ctx->nr_freq--;
2109 if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 cpuctx->exclusive = 0;
2111
2112 perf_pmu_enable(event->pmu);
2113}
2114
2115static void
2116group_sched_out(struct perf_event *group_event,
2117 struct perf_cpu_context *cpuctx,
2118 struct perf_event_context *ctx)
2119{
2120 struct perf_event *event;
2121
2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 return;
2124
2125 perf_pmu_disable(ctx->pmu);
2126
2127 event_sched_out(group_event, cpuctx, ctx);
2128
2129 /*
2130 * Schedule out siblings (if any):
2131 */
2132 for_each_sibling_event(event, group_event)
2133 event_sched_out(event, cpuctx, ctx);
2134
2135 perf_pmu_enable(ctx->pmu);
2136
2137 if (group_event->attr.exclusive)
2138 cpuctx->exclusive = 0;
2139}
2140
2141#define DETACH_GROUP 0x01UL
2142
2143/*
2144 * Cross CPU call to remove a performance event
2145 *
2146 * We disable the event on the hardware level first. After that we
2147 * remove it from the context list.
2148 */
2149static void
2150__perf_remove_from_context(struct perf_event *event,
2151 struct perf_cpu_context *cpuctx,
2152 struct perf_event_context *ctx,
2153 void *info)
2154{
2155 unsigned long flags = (unsigned long)info;
2156
2157 if (ctx->is_active & EVENT_TIME) {
2158 update_context_time(ctx);
2159 update_cgrp_time_from_cpuctx(cpuctx);
2160 }
2161
2162 event_sched_out(event, cpuctx, ctx);
2163 if (flags & DETACH_GROUP)
2164 perf_group_detach(event);
2165 list_del_event(event, ctx);
2166
2167 if (!ctx->nr_events && ctx->is_active) {
2168 ctx->is_active = 0;
2169 if (ctx->task) {
2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 cpuctx->task_ctx = NULL;
2172 }
2173 }
2174}
2175
2176/*
2177 * Remove the event from a task's (or a CPU's) list of events.
2178 *
2179 * If event->ctx is a cloned context, callers must make sure that
2180 * every task struct that event->ctx->task could possibly point to
2181 * remains valid. This is OK when called from perf_release since
2182 * that only calls us on the top-level context, which can't be a clone.
2183 * When called from perf_event_exit_task, it's OK because the
2184 * context has been detached from its task.
2185 */
2186static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187{
2188 struct perf_event_context *ctx = event->ctx;
2189
2190 lockdep_assert_held(&ctx->mutex);
2191
2192 event_function_call(event, __perf_remove_from_context, (void *)flags);
2193
2194 /*
2195 * The above event_function_call() can NO-OP when it hits
2196 * TASK_TOMBSTONE. In that case we must already have been detached
2197 * from the context (by perf_event_exit_event()) but the grouping
2198 * might still be in-tact.
2199 */
2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 if ((flags & DETACH_GROUP) &&
2202 (event->attach_state & PERF_ATTACH_GROUP)) {
2203 /*
2204 * Since in that case we cannot possibly be scheduled, simply
2205 * detach now.
2206 */
2207 raw_spin_lock_irq(&ctx->lock);
2208 perf_group_detach(event);
2209 raw_spin_unlock_irq(&ctx->lock);
2210 }
2211}
2212
2213/*
2214 * Cross CPU call to disable a performance event
2215 */
2216static void __perf_event_disable(struct perf_event *event,
2217 struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 void *info)
2220{
2221 if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 return;
2223
2224 if (ctx->is_active & EVENT_TIME) {
2225 update_context_time(ctx);
2226 update_cgrp_time_from_event(event);
2227 }
2228
2229 if (event == event->group_leader)
2230 group_sched_out(event, cpuctx, ctx);
2231 else
2232 event_sched_out(event, cpuctx, ctx);
2233
2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235}
2236
2237/*
2238 * Disable an event.
2239 *
2240 * If event->ctx is a cloned context, callers must make sure that
2241 * every task struct that event->ctx->task could possibly point to
2242 * remains valid. This condition is satisfied when called through
2243 * perf_event_for_each_child or perf_event_for_each because they
2244 * hold the top-level event's child_mutex, so any descendant that
2245 * goes to exit will block in perf_event_exit_event().
2246 *
2247 * When called from perf_pending_event it's OK because event->ctx
2248 * is the current context on this CPU and preemption is disabled,
2249 * hence we can't get into perf_event_task_sched_out for this context.
2250 */
2251static void _perf_event_disable(struct perf_event *event)
2252{
2253 struct perf_event_context *ctx = event->ctx;
2254
2255 raw_spin_lock_irq(&ctx->lock);
2256 if (event->state <= PERF_EVENT_STATE_OFF) {
2257 raw_spin_unlock_irq(&ctx->lock);
2258 return;
2259 }
2260 raw_spin_unlock_irq(&ctx->lock);
2261
2262 event_function_call(event, __perf_event_disable, NULL);
2263}
2264
2265void perf_event_disable_local(struct perf_event *event)
2266{
2267 event_function_local(event, __perf_event_disable, NULL);
2268}
2269
2270/*
2271 * Strictly speaking kernel users cannot create groups and therefore this
2272 * interface does not need the perf_event_ctx_lock() magic.
2273 */
2274void perf_event_disable(struct perf_event *event)
2275{
2276 struct perf_event_context *ctx;
2277
2278 ctx = perf_event_ctx_lock(event);
2279 _perf_event_disable(event);
2280 perf_event_ctx_unlock(event, ctx);
2281}
2282EXPORT_SYMBOL_GPL(perf_event_disable);
2283
2284void perf_event_disable_inatomic(struct perf_event *event)
2285{
2286 WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 /* can fail, see perf_pending_event_disable() */
2288 irq_work_queue(&event->pending);
2289}
2290
2291static void perf_set_shadow_time(struct perf_event *event,
2292 struct perf_event_context *ctx)
2293{
2294 /*
2295 * use the correct time source for the time snapshot
2296 *
2297 * We could get by without this by leveraging the
2298 * fact that to get to this function, the caller
2299 * has most likely already called update_context_time()
2300 * and update_cgrp_time_xx() and thus both timestamp
2301 * are identical (or very close). Given that tstamp is,
2302 * already adjusted for cgroup, we could say that:
2303 * tstamp - ctx->timestamp
2304 * is equivalent to
2305 * tstamp - cgrp->timestamp.
2306 *
2307 * Then, in perf_output_read(), the calculation would
2308 * work with no changes because:
2309 * - event is guaranteed scheduled in
2310 * - no scheduled out in between
2311 * - thus the timestamp would be the same
2312 *
2313 * But this is a bit hairy.
2314 *
2315 * So instead, we have an explicit cgroup call to remain
2316 * within the time time source all along. We believe it
2317 * is cleaner and simpler to understand.
2318 */
2319 if (is_cgroup_event(event))
2320 perf_cgroup_set_shadow_time(event, event->tstamp);
2321 else
2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323}
2324
2325#define MAX_INTERRUPTS (~0ULL)
2326
2327static void perf_log_throttle(struct perf_event *event, int enable);
2328static void perf_log_itrace_start(struct perf_event *event);
2329
2330static int
2331event_sched_in(struct perf_event *event,
2332 struct perf_cpu_context *cpuctx,
2333 struct perf_event_context *ctx)
2334{
2335 int ret = 0;
2336
2337 lockdep_assert_held(&ctx->lock);
2338
2339 if (event->state <= PERF_EVENT_STATE_OFF)
2340 return 0;
2341
2342 WRITE_ONCE(event->oncpu, smp_processor_id());
2343 /*
2344 * Order event::oncpu write to happen before the ACTIVE state is
2345 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 * ->oncpu if it sees ACTIVE.
2347 */
2348 smp_wmb();
2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350
2351 /*
2352 * Unthrottle events, since we scheduled we might have missed several
2353 * ticks already, also for a heavily scheduling task there is little
2354 * guarantee it'll get a tick in a timely manner.
2355 */
2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 perf_log_throttle(event, 1);
2358 event->hw.interrupts = 0;
2359 }
2360
2361 perf_pmu_disable(event->pmu);
2362
2363 perf_set_shadow_time(event, ctx);
2364
2365 perf_log_itrace_start(event);
2366
2367 if (event->pmu->add(event, PERF_EF_START)) {
2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 event->oncpu = -1;
2370 ret = -EAGAIN;
2371 goto out;
2372 }
2373
2374 if (!is_software_event(event))
2375 cpuctx->active_oncpu++;
2376 if (!ctx->nr_active++)
2377 perf_event_ctx_activate(ctx);
2378 if (event->attr.freq && event->attr.sample_freq)
2379 ctx->nr_freq++;
2380
2381 if (event->attr.exclusive)
2382 cpuctx->exclusive = 1;
2383
2384out:
2385 perf_pmu_enable(event->pmu);
2386
2387 return ret;
2388}
2389
2390static int
2391group_sched_in(struct perf_event *group_event,
2392 struct perf_cpu_context *cpuctx,
2393 struct perf_event_context *ctx)
2394{
2395 struct perf_event *event, *partial_group = NULL;
2396 struct pmu *pmu = ctx->pmu;
2397
2398 if (group_event->state == PERF_EVENT_STATE_OFF)
2399 return 0;
2400
2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402
2403 if (event_sched_in(group_event, cpuctx, ctx)) {
2404 pmu->cancel_txn(pmu);
2405 perf_mux_hrtimer_restart(cpuctx);
2406 return -EAGAIN;
2407 }
2408
2409 /*
2410 * Schedule in siblings as one group (if any):
2411 */
2412 for_each_sibling_event(event, group_event) {
2413 if (event_sched_in(event, cpuctx, ctx)) {
2414 partial_group = event;
2415 goto group_error;
2416 }
2417 }
2418
2419 if (!pmu->commit_txn(pmu))
2420 return 0;
2421
2422group_error:
2423 /*
2424 * Groups can be scheduled in as one unit only, so undo any
2425 * partial group before returning:
2426 * The events up to the failed event are scheduled out normally.
2427 */
2428 for_each_sibling_event(event, group_event) {
2429 if (event == partial_group)
2430 break;
2431
2432 event_sched_out(event, cpuctx, ctx);
2433 }
2434 event_sched_out(group_event, cpuctx, ctx);
2435
2436 pmu->cancel_txn(pmu);
2437
2438 perf_mux_hrtimer_restart(cpuctx);
2439
2440 return -EAGAIN;
2441}
2442
2443/*
2444 * Work out whether we can put this event group on the CPU now.
2445 */
2446static int group_can_go_on(struct perf_event *event,
2447 struct perf_cpu_context *cpuctx,
2448 int can_add_hw)
2449{
2450 /*
2451 * Groups consisting entirely of software events can always go on.
2452 */
2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 return 1;
2455 /*
2456 * If an exclusive group is already on, no other hardware
2457 * events can go on.
2458 */
2459 if (cpuctx->exclusive)
2460 return 0;
2461 /*
2462 * If this group is exclusive and there are already
2463 * events on the CPU, it can't go on.
2464 */
2465 if (event->attr.exclusive && cpuctx->active_oncpu)
2466 return 0;
2467 /*
2468 * Otherwise, try to add it if all previous groups were able
2469 * to go on.
2470 */
2471 return can_add_hw;
2472}
2473
2474static void add_event_to_ctx(struct perf_event *event,
2475 struct perf_event_context *ctx)
2476{
2477 list_add_event(event, ctx);
2478 perf_group_attach(event);
2479}
2480
2481static void ctx_sched_out(struct perf_event_context *ctx,
2482 struct perf_cpu_context *cpuctx,
2483 enum event_type_t event_type);
2484static void
2485ctx_sched_in(struct perf_event_context *ctx,
2486 struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type,
2488 struct task_struct *task);
2489
2490static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 struct perf_event_context *ctx,
2492 enum event_type_t event_type)
2493{
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 return;
2499
2500 ctx_sched_out(ctx, cpuctx, event_type);
2501}
2502
2503static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 struct perf_event_context *ctx,
2505 struct task_struct *task)
2506{
2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 if (ctx)
2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 if (ctx)
2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513}
2514
2515/*
2516 * We want to maintain the following priority of scheduling:
2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518 * - task pinned (EVENT_PINNED)
2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520 * - task flexible (EVENT_FLEXIBLE).
2521 *
2522 * In order to avoid unscheduling and scheduling back in everything every
2523 * time an event is added, only do it for the groups of equal priority and
2524 * below.
2525 *
2526 * This can be called after a batch operation on task events, in which case
2527 * event_type is a bit mask of the types of events involved. For CPU events,
2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529 */
2530static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 struct perf_event_context *task_ctx,
2532 enum event_type_t event_type)
2533{
2534 enum event_type_t ctx_event_type;
2535 bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537 /*
2538 * If pinned groups are involved, flexible groups also need to be
2539 * scheduled out.
2540 */
2541 if (event_type & EVENT_PINNED)
2542 event_type |= EVENT_FLEXIBLE;
2543
2544 ctx_event_type = event_type & EVENT_ALL;
2545
2546 perf_pmu_disable(cpuctx->ctx.pmu);
2547 if (task_ctx)
2548 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550 /*
2551 * Decide which cpu ctx groups to schedule out based on the types
2552 * of events that caused rescheduling:
2553 * - EVENT_CPU: schedule out corresponding groups;
2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 * - otherwise, do nothing more.
2556 */
2557 if (cpu_event)
2558 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 else if (ctx_event_type & EVENT_PINNED)
2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
2562 perf_event_sched_in(cpuctx, task_ctx, current);
2563 perf_pmu_enable(cpuctx->ctx.pmu);
2564}
2565
2566void perf_pmu_resched(struct pmu *pmu)
2567{
2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571 perf_ctx_lock(cpuctx, task_ctx);
2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 perf_ctx_unlock(cpuctx, task_ctx);
2574}
2575
2576/*
2577 * Cross CPU call to install and enable a performance event
2578 *
2579 * Very similar to remote_function() + event_function() but cannot assume that
2580 * things like ctx->is_active and cpuctx->task_ctx are set.
2581 */
2582static int __perf_install_in_context(void *info)
2583{
2584 struct perf_event *event = info;
2585 struct perf_event_context *ctx = event->ctx;
2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 bool reprogram = true;
2589 int ret = 0;
2590
2591 raw_spin_lock(&cpuctx->ctx.lock);
2592 if (ctx->task) {
2593 raw_spin_lock(&ctx->lock);
2594 task_ctx = ctx;
2595
2596 reprogram = (ctx->task == current);
2597
2598 /*
2599 * If the task is running, it must be running on this CPU,
2600 * otherwise we cannot reprogram things.
2601 *
2602 * If its not running, we don't care, ctx->lock will
2603 * serialize against it becoming runnable.
2604 */
2605 if (task_curr(ctx->task) && !reprogram) {
2606 ret = -ESRCH;
2607 goto unlock;
2608 }
2609
2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 } else if (task_ctx) {
2612 raw_spin_lock(&task_ctx->lock);
2613 }
2614
2615#ifdef CONFIG_CGROUP_PERF
2616 if (is_cgroup_event(event)) {
2617 /*
2618 * If the current cgroup doesn't match the event's
2619 * cgroup, we should not try to schedule it.
2620 */
2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 event->cgrp->css.cgroup);
2624 }
2625#endif
2626
2627 if (reprogram) {
2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 add_event_to_ctx(event, ctx);
2630 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 } else {
2632 add_event_to_ctx(event, ctx);
2633 }
2634
2635unlock:
2636 perf_ctx_unlock(cpuctx, task_ctx);
2637
2638 return ret;
2639}
2640
2641static bool exclusive_event_installable(struct perf_event *event,
2642 struct perf_event_context *ctx);
2643
2644/*
2645 * Attach a performance event to a context.
2646 *
2647 * Very similar to event_function_call, see comment there.
2648 */
2649static void
2650perf_install_in_context(struct perf_event_context *ctx,
2651 struct perf_event *event,
2652 int cpu)
2653{
2654 struct task_struct *task = READ_ONCE(ctx->task);
2655
2656 lockdep_assert_held(&ctx->mutex);
2657
2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
2660 if (event->cpu != -1)
2661 event->cpu = cpu;
2662
2663 /*
2664 * Ensures that if we can observe event->ctx, both the event and ctx
2665 * will be 'complete'. See perf_iterate_sb_cpu().
2666 */
2667 smp_store_release(&event->ctx, ctx);
2668
2669 if (!task) {
2670 cpu_function_call(cpu, __perf_install_in_context, event);
2671 return;
2672 }
2673
2674 /*
2675 * Should not happen, we validate the ctx is still alive before calling.
2676 */
2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 return;
2679
2680 /*
2681 * Installing events is tricky because we cannot rely on ctx->is_active
2682 * to be set in case this is the nr_events 0 -> 1 transition.
2683 *
2684 * Instead we use task_curr(), which tells us if the task is running.
2685 * However, since we use task_curr() outside of rq::lock, we can race
2686 * against the actual state. This means the result can be wrong.
2687 *
2688 * If we get a false positive, we retry, this is harmless.
2689 *
2690 * If we get a false negative, things are complicated. If we are after
2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 * value must be correct. If we're before, it doesn't matter since
2693 * perf_event_context_sched_in() will program the counter.
2694 *
2695 * However, this hinges on the remote context switch having observed
2696 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 * ctx::lock in perf_event_context_sched_in().
2698 *
2699 * We do this by task_function_call(), if the IPI fails to hit the task
2700 * we know any future context switch of task must see the
2701 * perf_event_ctpx[] store.
2702 */
2703
2704 /*
2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 * task_cpu() load, such that if the IPI then does not find the task
2707 * running, a future context switch of that task must observe the
2708 * store.
2709 */
2710 smp_mb();
2711again:
2712 if (!task_function_call(task, __perf_install_in_context, event))
2713 return;
2714
2715 raw_spin_lock_irq(&ctx->lock);
2716 task = ctx->task;
2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 /*
2719 * Cannot happen because we already checked above (which also
2720 * cannot happen), and we hold ctx->mutex, which serializes us
2721 * against perf_event_exit_task_context().
2722 */
2723 raw_spin_unlock_irq(&ctx->lock);
2724 return;
2725 }
2726 /*
2727 * If the task is not running, ctx->lock will avoid it becoming so,
2728 * thus we can safely install the event.
2729 */
2730 if (task_curr(task)) {
2731 raw_spin_unlock_irq(&ctx->lock);
2732 goto again;
2733 }
2734 add_event_to_ctx(event, ctx);
2735 raw_spin_unlock_irq(&ctx->lock);
2736}
2737
2738/*
2739 * Cross CPU call to enable a performance event
2740 */
2741static void __perf_event_enable(struct perf_event *event,
2742 struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 void *info)
2745{
2746 struct perf_event *leader = event->group_leader;
2747 struct perf_event_context *task_ctx;
2748
2749 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 event->state <= PERF_EVENT_STATE_ERROR)
2751 return;
2752
2753 if (ctx->is_active)
2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757
2758 if (!ctx->is_active)
2759 return;
2760
2761 if (!event_filter_match(event)) {
2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 return;
2764 }
2765
2766 /*
2767 * If the event is in a group and isn't the group leader,
2768 * then don't put it on unless the group is on.
2769 */
2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 return;
2773 }
2774
2775 task_ctx = cpuctx->task_ctx;
2776 if (ctx->task)
2777 WARN_ON_ONCE(task_ctx != ctx);
2778
2779 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780}
2781
2782/*
2783 * Enable an event.
2784 *
2785 * If event->ctx is a cloned context, callers must make sure that
2786 * every task struct that event->ctx->task could possibly point to
2787 * remains valid. This condition is satisfied when called through
2788 * perf_event_for_each_child or perf_event_for_each as described
2789 * for perf_event_disable.
2790 */
2791static void _perf_event_enable(struct perf_event *event)
2792{
2793 struct perf_event_context *ctx = event->ctx;
2794
2795 raw_spin_lock_irq(&ctx->lock);
2796 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 event->state < PERF_EVENT_STATE_ERROR) {
2798 raw_spin_unlock_irq(&ctx->lock);
2799 return;
2800 }
2801
2802 /*
2803 * If the event is in error state, clear that first.
2804 *
2805 * That way, if we see the event in error state below, we know that it
2806 * has gone back into error state, as distinct from the task having
2807 * been scheduled away before the cross-call arrived.
2808 */
2809 if (event->state == PERF_EVENT_STATE_ERROR)
2810 event->state = PERF_EVENT_STATE_OFF;
2811 raw_spin_unlock_irq(&ctx->lock);
2812
2813 event_function_call(event, __perf_event_enable, NULL);
2814}
2815
2816/*
2817 * See perf_event_disable();
2818 */
2819void perf_event_enable(struct perf_event *event)
2820{
2821 struct perf_event_context *ctx;
2822
2823 ctx = perf_event_ctx_lock(event);
2824 _perf_event_enable(event);
2825 perf_event_ctx_unlock(event, ctx);
2826}
2827EXPORT_SYMBOL_GPL(perf_event_enable);
2828
2829struct stop_event_data {
2830 struct perf_event *event;
2831 unsigned int restart;
2832};
2833
2834static int __perf_event_stop(void *info)
2835{
2836 struct stop_event_data *sd = info;
2837 struct perf_event *event = sd->event;
2838
2839 /* if it's already INACTIVE, do nothing */
2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 return 0;
2842
2843 /* matches smp_wmb() in event_sched_in() */
2844 smp_rmb();
2845
2846 /*
2847 * There is a window with interrupts enabled before we get here,
2848 * so we need to check again lest we try to stop another CPU's event.
2849 */
2850 if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 return -EAGAIN;
2852
2853 event->pmu->stop(event, PERF_EF_UPDATE);
2854
2855 /*
2856 * May race with the actual stop (through perf_pmu_output_stop()),
2857 * but it is only used for events with AUX ring buffer, and such
2858 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 * see comments in perf_aux_output_begin().
2860 *
2861 * Since this is happening on an event-local CPU, no trace is lost
2862 * while restarting.
2863 */
2864 if (sd->restart)
2865 event->pmu->start(event, 0);
2866
2867 return 0;
2868}
2869
2870static int perf_event_stop(struct perf_event *event, int restart)
2871{
2872 struct stop_event_data sd = {
2873 .event = event,
2874 .restart = restart,
2875 };
2876 int ret = 0;
2877
2878 do {
2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 return 0;
2881
2882 /* matches smp_wmb() in event_sched_in() */
2883 smp_rmb();
2884
2885 /*
2886 * We only want to restart ACTIVE events, so if the event goes
2887 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 * fall through with ret==-ENXIO.
2889 */
2890 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 __perf_event_stop, &sd);
2892 } while (ret == -EAGAIN);
2893
2894 return ret;
2895}
2896
2897/*
2898 * In order to contain the amount of racy and tricky in the address filter
2899 * configuration management, it is a two part process:
2900 *
2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902 * we update the addresses of corresponding vmas in
2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904 * (p2) when an event is scheduled in (pmu::add), it calls
2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906 * if the generation has changed since the previous call.
2907 *
2908 * If (p1) happens while the event is active, we restart it to force (p2).
2909 *
2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2912 * ioctl;
2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2915 * for reading;
2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917 * of exec.
2918 */
2919void perf_event_addr_filters_sync(struct perf_event *event)
2920{
2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923 if (!has_addr_filter(event))
2924 return;
2925
2926 raw_spin_lock(&ifh->lock);
2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 event->pmu->addr_filters_sync(event);
2929 event->hw.addr_filters_gen = event->addr_filters_gen;
2930 }
2931 raw_spin_unlock(&ifh->lock);
2932}
2933EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
2935static int _perf_event_refresh(struct perf_event *event, int refresh)
2936{
2937 /*
2938 * not supported on inherited events
2939 */
2940 if (event->attr.inherit || !is_sampling_event(event))
2941 return -EINVAL;
2942
2943 atomic_add(refresh, &event->event_limit);
2944 _perf_event_enable(event);
2945
2946 return 0;
2947}
2948
2949/*
2950 * See perf_event_disable()
2951 */
2952int perf_event_refresh(struct perf_event *event, int refresh)
2953{
2954 struct perf_event_context *ctx;
2955 int ret;
2956
2957 ctx = perf_event_ctx_lock(event);
2958 ret = _perf_event_refresh(event, refresh);
2959 perf_event_ctx_unlock(event, ctx);
2960
2961 return ret;
2962}
2963EXPORT_SYMBOL_GPL(perf_event_refresh);
2964
2965static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 struct perf_event_attr *attr)
2967{
2968 int err;
2969
2970 _perf_event_disable(bp);
2971
2972 err = modify_user_hw_breakpoint_check(bp, attr, true);
2973
2974 if (!bp->attr.disabled)
2975 _perf_event_enable(bp);
2976
2977 return err;
2978}
2979
2980static int perf_event_modify_attr(struct perf_event *event,
2981 struct perf_event_attr *attr)
2982{
2983 if (event->attr.type != attr->type)
2984 return -EINVAL;
2985
2986 switch (event->attr.type) {
2987 case PERF_TYPE_BREAKPOINT:
2988 return perf_event_modify_breakpoint(event, attr);
2989 default:
2990 /* Place holder for future additions. */
2991 return -EOPNOTSUPP;
2992 }
2993}
2994
2995static void ctx_sched_out(struct perf_event_context *ctx,
2996 struct perf_cpu_context *cpuctx,
2997 enum event_type_t event_type)
2998{
2999 struct perf_event *event, *tmp;
3000 int is_active = ctx->is_active;
3001
3002 lockdep_assert_held(&ctx->lock);
3003
3004 if (likely(!ctx->nr_events)) {
3005 /*
3006 * See __perf_remove_from_context().
3007 */
3008 WARN_ON_ONCE(ctx->is_active);
3009 if (ctx->task)
3010 WARN_ON_ONCE(cpuctx->task_ctx);
3011 return;
3012 }
3013
3014 ctx->is_active &= ~event_type;
3015 if (!(ctx->is_active & EVENT_ALL))
3016 ctx->is_active = 0;
3017
3018 if (ctx->task) {
3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 if (!ctx->is_active)
3021 cpuctx->task_ctx = NULL;
3022 }
3023
3024 /*
3025 * Always update time if it was set; not only when it changes.
3026 * Otherwise we can 'forget' to update time for any but the last
3027 * context we sched out. For example:
3028 *
3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 * ctx_sched_out(.event_type = EVENT_PINNED)
3031 *
3032 * would only update time for the pinned events.
3033 */
3034 if (is_active & EVENT_TIME) {
3035 /* update (and stop) ctx time */
3036 update_context_time(ctx);
3037 update_cgrp_time_from_cpuctx(cpuctx);
3038 }
3039
3040 is_active ^= ctx->is_active; /* changed bits */
3041
3042 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 return;
3044
3045 /*
3046 * If we had been multiplexing, no rotations are necessary, now no events
3047 * are active.
3048 */
3049 ctx->rotate_necessary = 0;
3050
3051 perf_pmu_disable(ctx->pmu);
3052 if (is_active & EVENT_PINNED) {
3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 group_sched_out(event, cpuctx, ctx);
3055 }
3056
3057 if (is_active & EVENT_FLEXIBLE) {
3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 group_sched_out(event, cpuctx, ctx);
3060 }
3061 perf_pmu_enable(ctx->pmu);
3062}
3063
3064/*
3065 * Test whether two contexts are equivalent, i.e. whether they have both been
3066 * cloned from the same version of the same context.
3067 *
3068 * Equivalence is measured using a generation number in the context that is
3069 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070 * and list_del_event().
3071 */
3072static int context_equiv(struct perf_event_context *ctx1,
3073 struct perf_event_context *ctx2)
3074{
3075 lockdep_assert_held(&ctx1->lock);
3076 lockdep_assert_held(&ctx2->lock);
3077
3078 /* Pinning disables the swap optimization */
3079 if (ctx1->pin_count || ctx2->pin_count)
3080 return 0;
3081
3082 /* If ctx1 is the parent of ctx2 */
3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 return 1;
3085
3086 /* If ctx2 is the parent of ctx1 */
3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 return 1;
3089
3090 /*
3091 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 * hierarchy, see perf_event_init_context().
3093 */
3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 ctx1->parent_gen == ctx2->parent_gen)
3096 return 1;
3097
3098 /* Unmatched */
3099 return 0;
3100}
3101
3102static void __perf_event_sync_stat(struct perf_event *event,
3103 struct perf_event *next_event)
3104{
3105 u64 value;
3106
3107 if (!event->attr.inherit_stat)
3108 return;
3109
3110 /*
3111 * Update the event value, we cannot use perf_event_read()
3112 * because we're in the middle of a context switch and have IRQs
3113 * disabled, which upsets smp_call_function_single(), however
3114 * we know the event must be on the current CPU, therefore we
3115 * don't need to use it.
3116 */
3117 if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 event->pmu->read(event);
3119
3120 perf_event_update_time(event);
3121
3122 /*
3123 * In order to keep per-task stats reliable we need to flip the event
3124 * values when we flip the contexts.
3125 */
3126 value = local64_read(&next_event->count);
3127 value = local64_xchg(&event->count, value);
3128 local64_set(&next_event->count, value);
3129
3130 swap(event->total_time_enabled, next_event->total_time_enabled);
3131 swap(event->total_time_running, next_event->total_time_running);
3132
3133 /*
3134 * Since we swizzled the values, update the user visible data too.
3135 */
3136 perf_event_update_userpage(event);
3137 perf_event_update_userpage(next_event);
3138}
3139
3140static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 struct perf_event_context *next_ctx)
3142{
3143 struct perf_event *event, *next_event;
3144
3145 if (!ctx->nr_stat)
3146 return;
3147
3148 update_context_time(ctx);
3149
3150 event = list_first_entry(&ctx->event_list,
3151 struct perf_event, event_entry);
3152
3153 next_event = list_first_entry(&next_ctx->event_list,
3154 struct perf_event, event_entry);
3155
3156 while (&event->event_entry != &ctx->event_list &&
3157 &next_event->event_entry != &next_ctx->event_list) {
3158
3159 __perf_event_sync_stat(event, next_event);
3160
3161 event = list_next_entry(event, event_entry);
3162 next_event = list_next_entry(next_event, event_entry);
3163 }
3164}
3165
3166static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 struct task_struct *next)
3168{
3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 struct perf_event_context *next_ctx;
3171 struct perf_event_context *parent, *next_parent;
3172 struct perf_cpu_context *cpuctx;
3173 int do_switch = 1;
3174
3175 if (likely(!ctx))
3176 return;
3177
3178 cpuctx = __get_cpu_context(ctx);
3179 if (!cpuctx->task_ctx)
3180 return;
3181
3182 rcu_read_lock();
3183 next_ctx = next->perf_event_ctxp[ctxn];
3184 if (!next_ctx)
3185 goto unlock;
3186
3187 parent = rcu_dereference(ctx->parent_ctx);
3188 next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190 /* If neither context have a parent context; they cannot be clones. */
3191 if (!parent && !next_parent)
3192 goto unlock;
3193
3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 /*
3196 * Looks like the two contexts are clones, so we might be
3197 * able to optimize the context switch. We lock both
3198 * contexts and check that they are clones under the
3199 * lock (including re-checking that neither has been
3200 * uncloned in the meantime). It doesn't matter which
3201 * order we take the locks because no other cpu could
3202 * be trying to lock both of these tasks.
3203 */
3204 raw_spin_lock(&ctx->lock);
3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 if (context_equiv(ctx, next_ctx)) {
3207 WRITE_ONCE(ctx->task, next);
3208 WRITE_ONCE(next_ctx->task, task);
3209
3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
3212 /*
3213 * RCU_INIT_POINTER here is safe because we've not
3214 * modified the ctx and the above modification of
3215 * ctx->task and ctx->task_ctx_data are immaterial
3216 * since those values are always verified under
3217 * ctx->lock which we're now holding.
3218 */
3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
3222 do_switch = 0;
3223
3224 perf_event_sync_stat(ctx, next_ctx);
3225 }
3226 raw_spin_unlock(&next_ctx->lock);
3227 raw_spin_unlock(&ctx->lock);
3228 }
3229unlock:
3230 rcu_read_unlock();
3231
3232 if (do_switch) {
3233 raw_spin_lock(&ctx->lock);
3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 raw_spin_unlock(&ctx->lock);
3236 }
3237}
3238
3239static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
3241void perf_sched_cb_dec(struct pmu *pmu)
3242{
3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
3245 this_cpu_dec(perf_sched_cb_usages);
3246
3247 if (!--cpuctx->sched_cb_usage)
3248 list_del(&cpuctx->sched_cb_entry);
3249}
3250
3251
3252void perf_sched_cb_inc(struct pmu *pmu)
3253{
3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256 if (!cpuctx->sched_cb_usage++)
3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
3259 this_cpu_inc(perf_sched_cb_usages);
3260}
3261
3262/*
3263 * This function provides the context switch callback to the lower code
3264 * layer. It is invoked ONLY when the context switch callback is enabled.
3265 *
3266 * This callback is relevant even to per-cpu events; for example multi event
3267 * PEBS requires this to provide PID/TID information. This requires we flush
3268 * all queued PEBS records before we context switch to a new task.
3269 */
3270static void perf_pmu_sched_task(struct task_struct *prev,
3271 struct task_struct *next,
3272 bool sched_in)
3273{
3274 struct perf_cpu_context *cpuctx;
3275 struct pmu *pmu;
3276
3277 if (prev == next)
3278 return;
3279
3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282
3283 if (WARN_ON_ONCE(!pmu->sched_task))
3284 continue;
3285
3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 perf_pmu_disable(pmu);
3288
3289 pmu->sched_task(cpuctx->task_ctx, sched_in);
3290
3291 perf_pmu_enable(pmu);
3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 }
3294}
3295
3296static void perf_event_switch(struct task_struct *task,
3297 struct task_struct *next_prev, bool sched_in);
3298
3299#define for_each_task_context_nr(ctxn) \
3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302/*
3303 * Called from scheduler to remove the events of the current task,
3304 * with interrupts disabled.
3305 *
3306 * We stop each event and update the event value in event->count.
3307 *
3308 * This does not protect us against NMI, but disable()
3309 * sets the disabled bit in the control field of event _before_
3310 * accessing the event control register. If a NMI hits, then it will
3311 * not restart the event.
3312 */
3313void __perf_event_task_sched_out(struct task_struct *task,
3314 struct task_struct *next)
3315{
3316 int ctxn;
3317
3318 if (__this_cpu_read(perf_sched_cb_usages))
3319 perf_pmu_sched_task(task, next, false);
3320
3321 if (atomic_read(&nr_switch_events))
3322 perf_event_switch(task, next, false);
3323
3324 for_each_task_context_nr(ctxn)
3325 perf_event_context_sched_out(task, ctxn, next);
3326
3327 /*
3328 * if cgroup events exist on this CPU, then we need
3329 * to check if we have to switch out PMU state.
3330 * cgroup event are system-wide mode only
3331 */
3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 perf_cgroup_sched_out(task, next);
3334}
3335
3336/*
3337 * Called with IRQs disabled
3338 */
3339static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 enum event_type_t event_type)
3341{
3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343}
3344
3345static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 int (*func)(struct perf_event *, void *), void *data)
3347{
3348 struct perf_event **evt, *evt1, *evt2;
3349 int ret;
3350
3351 evt1 = perf_event_groups_first(groups, -1);
3352 evt2 = perf_event_groups_first(groups, cpu);
3353
3354 while (evt1 || evt2) {
3355 if (evt1 && evt2) {
3356 if (evt1->group_index < evt2->group_index)
3357 evt = &evt1;
3358 else
3359 evt = &evt2;
3360 } else if (evt1) {
3361 evt = &evt1;
3362 } else {
3363 evt = &evt2;
3364 }
3365
3366 ret = func(*evt, data);
3367 if (ret)
3368 return ret;
3369
3370 *evt = perf_event_groups_next(*evt);
3371 }
3372
3373 return 0;
3374}
3375
3376struct sched_in_data {
3377 struct perf_event_context *ctx;
3378 struct perf_cpu_context *cpuctx;
3379 int can_add_hw;
3380};
3381
3382static int pinned_sched_in(struct perf_event *event, void *data)
3383{
3384 struct sched_in_data *sid = data;
3385
3386 if (event->state <= PERF_EVENT_STATE_OFF)
3387 return 0;
3388
3389 if (!event_filter_match(event))
3390 return 0;
3391
3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 }
3396
3397 /*
3398 * If this pinned group hasn't been scheduled,
3399 * put it in error state.
3400 */
3401 if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404 return 0;
3405}
3406
3407static int flexible_sched_in(struct perf_event *event, void *data)
3408{
3409 struct sched_in_data *sid = data;
3410
3411 if (event->state <= PERF_EVENT_STATE_OFF)
3412 return 0;
3413
3414 if (!event_filter_match(event))
3415 return 0;
3416
3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 if (ret) {
3420 sid->can_add_hw = 0;
3421 sid->ctx->rotate_necessary = 1;
3422 return 0;
3423 }
3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 }
3426
3427 return 0;
3428}
3429
3430static void
3431ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 struct perf_cpu_context *cpuctx)
3433{
3434 struct sched_in_data sid = {
3435 .ctx = ctx,
3436 .cpuctx = cpuctx,
3437 .can_add_hw = 1,
3438 };
3439
3440 visit_groups_merge(&ctx->pinned_groups,
3441 smp_processor_id(),
3442 pinned_sched_in, &sid);
3443}
3444
3445static void
3446ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 struct perf_cpu_context *cpuctx)
3448{
3449 struct sched_in_data sid = {
3450 .ctx = ctx,
3451 .cpuctx = cpuctx,
3452 .can_add_hw = 1,
3453 };
3454
3455 visit_groups_merge(&ctx->flexible_groups,
3456 smp_processor_id(),
3457 flexible_sched_in, &sid);
3458}
3459
3460static void
3461ctx_sched_in(struct perf_event_context *ctx,
3462 struct perf_cpu_context *cpuctx,
3463 enum event_type_t event_type,
3464 struct task_struct *task)
3465{
3466 int is_active = ctx->is_active;
3467 u64 now;
3468
3469 lockdep_assert_held(&ctx->lock);
3470
3471 if (likely(!ctx->nr_events))
3472 return;
3473
3474 ctx->is_active |= (event_type | EVENT_TIME);
3475 if (ctx->task) {
3476 if (!is_active)
3477 cpuctx->task_ctx = ctx;
3478 else
3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 }
3481
3482 is_active ^= ctx->is_active; /* changed bits */
3483
3484 if (is_active & EVENT_TIME) {
3485 /* start ctx time */
3486 now = perf_clock();
3487 ctx->timestamp = now;
3488 perf_cgroup_set_timestamp(task, ctx);
3489 }
3490
3491 /*
3492 * First go through the list and put on any pinned groups
3493 * in order to give them the best chance of going on.
3494 */
3495 if (is_active & EVENT_PINNED)
3496 ctx_pinned_sched_in(ctx, cpuctx);
3497
3498 /* Then walk through the lower prio flexible groups */
3499 if (is_active & EVENT_FLEXIBLE)
3500 ctx_flexible_sched_in(ctx, cpuctx);
3501}
3502
3503static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 enum event_type_t event_type,
3505 struct task_struct *task)
3506{
3507 struct perf_event_context *ctx = &cpuctx->ctx;
3508
3509 ctx_sched_in(ctx, cpuctx, event_type, task);
3510}
3511
3512static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 struct task_struct *task)
3514{
3515 struct perf_cpu_context *cpuctx;
3516
3517 cpuctx = __get_cpu_context(ctx);
3518 if (cpuctx->task_ctx == ctx)
3519 return;
3520
3521 perf_ctx_lock(cpuctx, ctx);
3522 /*
3523 * We must check ctx->nr_events while holding ctx->lock, such
3524 * that we serialize against perf_install_in_context().
3525 */
3526 if (!ctx->nr_events)
3527 goto unlock;
3528
3529 perf_pmu_disable(ctx->pmu);
3530 /*
3531 * We want to keep the following priority order:
3532 * cpu pinned (that don't need to move), task pinned,
3533 * cpu flexible, task flexible.
3534 *
3535 * However, if task's ctx is not carrying any pinned
3536 * events, no need to flip the cpuctx's events around.
3537 */
3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 perf_event_sched_in(cpuctx, ctx, task);
3541 perf_pmu_enable(ctx->pmu);
3542
3543unlock:
3544 perf_ctx_unlock(cpuctx, ctx);
3545}
3546
3547/*
3548 * Called from scheduler to add the events of the current task
3549 * with interrupts disabled.
3550 *
3551 * We restore the event value and then enable it.
3552 *
3553 * This does not protect us against NMI, but enable()
3554 * sets the enabled bit in the control field of event _before_
3555 * accessing the event control register. If a NMI hits, then it will
3556 * keep the event running.
3557 */
3558void __perf_event_task_sched_in(struct task_struct *prev,
3559 struct task_struct *task)
3560{
3561 struct perf_event_context *ctx;
3562 int ctxn;
3563
3564 /*
3565 * If cgroup events exist on this CPU, then we need to check if we have
3566 * to switch in PMU state; cgroup event are system-wide mode only.
3567 *
3568 * Since cgroup events are CPU events, we must schedule these in before
3569 * we schedule in the task events.
3570 */
3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 perf_cgroup_sched_in(prev, task);
3573
3574 for_each_task_context_nr(ctxn) {
3575 ctx = task->perf_event_ctxp[ctxn];
3576 if (likely(!ctx))
3577 continue;
3578
3579 perf_event_context_sched_in(ctx, task);
3580 }
3581
3582 if (atomic_read(&nr_switch_events))
3583 perf_event_switch(task, prev, true);
3584
3585 if (__this_cpu_read(perf_sched_cb_usages))
3586 perf_pmu_sched_task(prev, task, true);
3587}
3588
3589static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590{
3591 u64 frequency = event->attr.sample_freq;
3592 u64 sec = NSEC_PER_SEC;
3593 u64 divisor, dividend;
3594
3595 int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597 count_fls = fls64(count);
3598 nsec_fls = fls64(nsec);
3599 frequency_fls = fls64(frequency);
3600 sec_fls = 30;
3601
3602 /*
3603 * We got @count in @nsec, with a target of sample_freq HZ
3604 * the target period becomes:
3605 *
3606 * @count * 10^9
3607 * period = -------------------
3608 * @nsec * sample_freq
3609 *
3610 */
3611
3612 /*
3613 * Reduce accuracy by one bit such that @a and @b converge
3614 * to a similar magnitude.
3615 */
3616#define REDUCE_FLS(a, b) \
3617do { \
3618 if (a##_fls > b##_fls) { \
3619 a >>= 1; \
3620 a##_fls--; \
3621 } else { \
3622 b >>= 1; \
3623 b##_fls--; \
3624 } \
3625} while (0)
3626
3627 /*
3628 * Reduce accuracy until either term fits in a u64, then proceed with
3629 * the other, so that finally we can do a u64/u64 division.
3630 */
3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 REDUCE_FLS(nsec, frequency);
3633 REDUCE_FLS(sec, count);
3634 }
3635
3636 if (count_fls + sec_fls > 64) {
3637 divisor = nsec * frequency;
3638
3639 while (count_fls + sec_fls > 64) {
3640 REDUCE_FLS(count, sec);
3641 divisor >>= 1;
3642 }
3643
3644 dividend = count * sec;
3645 } else {
3646 dividend = count * sec;
3647
3648 while (nsec_fls + frequency_fls > 64) {
3649 REDUCE_FLS(nsec, frequency);
3650 dividend >>= 1;
3651 }
3652
3653 divisor = nsec * frequency;
3654 }
3655
3656 if (!divisor)
3657 return dividend;
3658
3659 return div64_u64(dividend, divisor);
3660}
3661
3662static DEFINE_PER_CPU(int, perf_throttled_count);
3663static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
3665static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666{
3667 struct hw_perf_event *hwc = &event->hw;
3668 s64 period, sample_period;
3669 s64 delta;
3670
3671 period = perf_calculate_period(event, nsec, count);
3672
3673 delta = (s64)(period - hwc->sample_period);
3674 delta = (delta + 7) / 8; /* low pass filter */
3675
3676 sample_period = hwc->sample_period + delta;
3677
3678 if (!sample_period)
3679 sample_period = 1;
3680
3681 hwc->sample_period = sample_period;
3682
3683 if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 if (disable)
3685 event->pmu->stop(event, PERF_EF_UPDATE);
3686
3687 local64_set(&hwc->period_left, 0);
3688
3689 if (disable)
3690 event->pmu->start(event, PERF_EF_RELOAD);
3691 }
3692}
3693
3694/*
3695 * combine freq adjustment with unthrottling to avoid two passes over the
3696 * events. At the same time, make sure, having freq events does not change
3697 * the rate of unthrottling as that would introduce bias.
3698 */
3699static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 int needs_unthr)
3701{
3702 struct perf_event *event;
3703 struct hw_perf_event *hwc;
3704 u64 now, period = TICK_NSEC;
3705 s64 delta;
3706
3707 /*
3708 * only need to iterate over all events iff:
3709 * - context have events in frequency mode (needs freq adjust)
3710 * - there are events to unthrottle on this cpu
3711 */
3712 if (!(ctx->nr_freq || needs_unthr))
3713 return;
3714
3715 raw_spin_lock(&ctx->lock);
3716 perf_pmu_disable(ctx->pmu);
3717
3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 continue;
3721
3722 if (!event_filter_match(event))
3723 continue;
3724
3725 perf_pmu_disable(event->pmu);
3726
3727 hwc = &event->hw;
3728
3729 if (hwc->interrupts == MAX_INTERRUPTS) {
3730 hwc->interrupts = 0;
3731 perf_log_throttle(event, 1);
3732 event->pmu->start(event, 0);
3733 }
3734
3735 if (!event->attr.freq || !event->attr.sample_freq)
3736 goto next;
3737
3738 /*
3739 * stop the event and update event->count
3740 */
3741 event->pmu->stop(event, PERF_EF_UPDATE);
3742
3743 now = local64_read(&event->count);
3744 delta = now - hwc->freq_count_stamp;
3745 hwc->freq_count_stamp = now;
3746
3747 /*
3748 * restart the event
3749 * reload only if value has changed
3750 * we have stopped the event so tell that
3751 * to perf_adjust_period() to avoid stopping it
3752 * twice.
3753 */
3754 if (delta > 0)
3755 perf_adjust_period(event, period, delta, false);
3756
3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 next:
3759 perf_pmu_enable(event->pmu);
3760 }
3761
3762 perf_pmu_enable(ctx->pmu);
3763 raw_spin_unlock(&ctx->lock);
3764}
3765
3766/*
3767 * Move @event to the tail of the @ctx's elegible events.
3768 */
3769static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770{
3771 /*
3772 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 * disabled by the inheritance code.
3774 */
3775 if (ctx->rotate_disable)
3776 return;
3777
3778 perf_event_groups_delete(&ctx->flexible_groups, event);
3779 perf_event_groups_insert(&ctx->flexible_groups, event);
3780}
3781
3782/* pick an event from the flexible_groups to rotate */
3783static inline struct perf_event *
3784ctx_event_to_rotate(struct perf_event_context *ctx)
3785{
3786 struct perf_event *event;
3787
3788 /* pick the first active flexible event */
3789 event = list_first_entry_or_null(&ctx->flexible_active,
3790 struct perf_event, active_list);
3791
3792 /* if no active flexible event, pick the first event */
3793 if (!event) {
3794 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 typeof(*event), group_node);
3796 }
3797
3798 return event;
3799}
3800
3801static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802{
3803 struct perf_event *cpu_event = NULL, *task_event = NULL;
3804 struct perf_event_context *task_ctx = NULL;
3805 int cpu_rotate, task_rotate;
3806
3807 /*
3808 * Since we run this from IRQ context, nobody can install new
3809 * events, thus the event count values are stable.
3810 */
3811
3812 cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 task_ctx = cpuctx->task_ctx;
3814 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3815
3816 if (!(cpu_rotate || task_rotate))
3817 return false;
3818
3819 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3820 perf_pmu_disable(cpuctx->ctx.pmu);
3821
3822 if (task_rotate)
3823 task_event = ctx_event_to_rotate(task_ctx);
3824 if (cpu_rotate)
3825 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3826
3827 /*
3828 * As per the order given at ctx_resched() first 'pop' task flexible
3829 * and then, if needed CPU flexible.
3830 */
3831 if (task_event || (task_ctx && cpu_event))
3832 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3833 if (cpu_event)
3834 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3835
3836 if (task_event)
3837 rotate_ctx(task_ctx, task_event);
3838 if (cpu_event)
3839 rotate_ctx(&cpuctx->ctx, cpu_event);
3840
3841 perf_event_sched_in(cpuctx, task_ctx, current);
3842
3843 perf_pmu_enable(cpuctx->ctx.pmu);
3844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3845
3846 return true;
3847}
3848
3849void perf_event_task_tick(void)
3850{
3851 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 struct perf_event_context *ctx, *tmp;
3853 int throttled;
3854
3855 lockdep_assert_irqs_disabled();
3856
3857 __this_cpu_inc(perf_throttled_seq);
3858 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3859 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3860
3861 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3862 perf_adjust_freq_unthr_context(ctx, throttled);
3863}
3864
3865static int event_enable_on_exec(struct perf_event *event,
3866 struct perf_event_context *ctx)
3867{
3868 if (!event->attr.enable_on_exec)
3869 return 0;
3870
3871 event->attr.enable_on_exec = 0;
3872 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 return 0;
3874
3875 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3876
3877 return 1;
3878}
3879
3880/*
3881 * Enable all of a task's events that have been marked enable-on-exec.
3882 * This expects task == current.
3883 */
3884static void perf_event_enable_on_exec(int ctxn)
3885{
3886 struct perf_event_context *ctx, *clone_ctx = NULL;
3887 enum event_type_t event_type = 0;
3888 struct perf_cpu_context *cpuctx;
3889 struct perf_event *event;
3890 unsigned long flags;
3891 int enabled = 0;
3892
3893 local_irq_save(flags);
3894 ctx = current->perf_event_ctxp[ctxn];
3895 if (!ctx || !ctx->nr_events)
3896 goto out;
3897
3898 cpuctx = __get_cpu_context(ctx);
3899 perf_ctx_lock(cpuctx, ctx);
3900 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3901 list_for_each_entry(event, &ctx->event_list, event_entry) {
3902 enabled |= event_enable_on_exec(event, ctx);
3903 event_type |= get_event_type(event);
3904 }
3905
3906 /*
3907 * Unclone and reschedule this context if we enabled any event.
3908 */
3909 if (enabled) {
3910 clone_ctx = unclone_ctx(ctx);
3911 ctx_resched(cpuctx, ctx, event_type);
3912 } else {
3913 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3914 }
3915 perf_ctx_unlock(cpuctx, ctx);
3916
3917out:
3918 local_irq_restore(flags);
3919
3920 if (clone_ctx)
3921 put_ctx(clone_ctx);
3922}
3923
3924struct perf_read_data {
3925 struct perf_event *event;
3926 bool group;
3927 int ret;
3928};
3929
3930static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3931{
3932 u16 local_pkg, event_pkg;
3933
3934 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3935 int local_cpu = smp_processor_id();
3936
3937 event_pkg = topology_physical_package_id(event_cpu);
3938 local_pkg = topology_physical_package_id(local_cpu);
3939
3940 if (event_pkg == local_pkg)
3941 return local_cpu;
3942 }
3943
3944 return event_cpu;
3945}
3946
3947/*
3948 * Cross CPU call to read the hardware event
3949 */
3950static void __perf_event_read(void *info)
3951{
3952 struct perf_read_data *data = info;
3953 struct perf_event *sub, *event = data->event;
3954 struct perf_event_context *ctx = event->ctx;
3955 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3956 struct pmu *pmu = event->pmu;
3957
3958 /*
3959 * If this is a task context, we need to check whether it is
3960 * the current task context of this cpu. If not it has been
3961 * scheduled out before the smp call arrived. In that case
3962 * event->count would have been updated to a recent sample
3963 * when the event was scheduled out.
3964 */
3965 if (ctx->task && cpuctx->task_ctx != ctx)
3966 return;
3967
3968 raw_spin_lock(&ctx->lock);
3969 if (ctx->is_active & EVENT_TIME) {
3970 update_context_time(ctx);
3971 update_cgrp_time_from_event(event);
3972 }
3973
3974 perf_event_update_time(event);
3975 if (data->group)
3976 perf_event_update_sibling_time(event);
3977
3978 if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 goto unlock;
3980
3981 if (!data->group) {
3982 pmu->read(event);
3983 data->ret = 0;
3984 goto unlock;
3985 }
3986
3987 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988
3989 pmu->read(event);
3990
3991 for_each_sibling_event(sub, event) {
3992 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 /*
3994 * Use sibling's PMU rather than @event's since
3995 * sibling could be on different (eg: software) PMU.
3996 */
3997 sub->pmu->read(sub);
3998 }
3999 }
4000
4001 data->ret = pmu->commit_txn(pmu);
4002
4003unlock:
4004 raw_spin_unlock(&ctx->lock);
4005}
4006
4007static inline u64 perf_event_count(struct perf_event *event)
4008{
4009 return local64_read(&event->count) + atomic64_read(&event->child_count);
4010}
4011
4012/*
4013 * NMI-safe method to read a local event, that is an event that
4014 * is:
4015 * - either for the current task, or for this CPU
4016 * - does not have inherit set, for inherited task events
4017 * will not be local and we cannot read them atomically
4018 * - must not have a pmu::count method
4019 */
4020int perf_event_read_local(struct perf_event *event, u64 *value,
4021 u64 *enabled, u64 *running)
4022{
4023 unsigned long flags;
4024 int ret = 0;
4025
4026 /*
4027 * Disabling interrupts avoids all counter scheduling (context
4028 * switches, timer based rotation and IPIs).
4029 */
4030 local_irq_save(flags);
4031
4032 /*
4033 * It must not be an event with inherit set, we cannot read
4034 * all child counters from atomic context.
4035 */
4036 if (event->attr.inherit) {
4037 ret = -EOPNOTSUPP;
4038 goto out;
4039 }
4040
4041 /* If this is a per-task event, it must be for current */
4042 if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 event->hw.target != current) {
4044 ret = -EINVAL;
4045 goto out;
4046 }
4047
4048 /* If this is a per-CPU event, it must be for this CPU */
4049 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 event->cpu != smp_processor_id()) {
4051 ret = -EINVAL;
4052 goto out;
4053 }
4054
4055 /* If this is a pinned event it must be running on this CPU */
4056 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 ret = -EBUSY;
4058 goto out;
4059 }
4060
4061 /*
4062 * If the event is currently on this CPU, its either a per-task event,
4063 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 * oncpu == -1).
4065 */
4066 if (event->oncpu == smp_processor_id())
4067 event->pmu->read(event);
4068
4069 *value = local64_read(&event->count);
4070 if (enabled || running) {
4071 u64 now = event->shadow_ctx_time + perf_clock();
4072 u64 __enabled, __running;
4073
4074 __perf_update_times(event, now, &__enabled, &__running);
4075 if (enabled)
4076 *enabled = __enabled;
4077 if (running)
4078 *running = __running;
4079 }
4080out:
4081 local_irq_restore(flags);
4082
4083 return ret;
4084}
4085
4086static int perf_event_read(struct perf_event *event, bool group)
4087{
4088 enum perf_event_state state = READ_ONCE(event->state);
4089 int event_cpu, ret = 0;
4090
4091 /*
4092 * If event is enabled and currently active on a CPU, update the
4093 * value in the event structure:
4094 */
4095again:
4096 if (state == PERF_EVENT_STATE_ACTIVE) {
4097 struct perf_read_data data;
4098
4099 /*
4100 * Orders the ->state and ->oncpu loads such that if we see
4101 * ACTIVE we must also see the right ->oncpu.
4102 *
4103 * Matches the smp_wmb() from event_sched_in().
4104 */
4105 smp_rmb();
4106
4107 event_cpu = READ_ONCE(event->oncpu);
4108 if ((unsigned)event_cpu >= nr_cpu_ids)
4109 return 0;
4110
4111 data = (struct perf_read_data){
4112 .event = event,
4113 .group = group,
4114 .ret = 0,
4115 };
4116
4117 preempt_disable();
4118 event_cpu = __perf_event_read_cpu(event, event_cpu);
4119
4120 /*
4121 * Purposely ignore the smp_call_function_single() return
4122 * value.
4123 *
4124 * If event_cpu isn't a valid CPU it means the event got
4125 * scheduled out and that will have updated the event count.
4126 *
4127 * Therefore, either way, we'll have an up-to-date event count
4128 * after this.
4129 */
4130 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 preempt_enable();
4132 ret = data.ret;
4133
4134 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4135 struct perf_event_context *ctx = event->ctx;
4136 unsigned long flags;
4137
4138 raw_spin_lock_irqsave(&ctx->lock, flags);
4139 state = event->state;
4140 if (state != PERF_EVENT_STATE_INACTIVE) {
4141 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 goto again;
4143 }
4144
4145 /*
4146 * May read while context is not active (e.g., thread is
4147 * blocked), in that case we cannot update context time
4148 */
4149 if (ctx->is_active & EVENT_TIME) {
4150 update_context_time(ctx);
4151 update_cgrp_time_from_event(event);
4152 }
4153
4154 perf_event_update_time(event);
4155 if (group)
4156 perf_event_update_sibling_time(event);
4157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158 }
4159
4160 return ret;
4161}
4162
4163/*
4164 * Initialize the perf_event context in a task_struct:
4165 */
4166static void __perf_event_init_context(struct perf_event_context *ctx)
4167{
4168 raw_spin_lock_init(&ctx->lock);
4169 mutex_init(&ctx->mutex);
4170 INIT_LIST_HEAD(&ctx->active_ctx_list);
4171 perf_event_groups_init(&ctx->pinned_groups);
4172 perf_event_groups_init(&ctx->flexible_groups);
4173 INIT_LIST_HEAD(&ctx->event_list);
4174 INIT_LIST_HEAD(&ctx->pinned_active);
4175 INIT_LIST_HEAD(&ctx->flexible_active);
4176 refcount_set(&ctx->refcount, 1);
4177}
4178
4179static struct perf_event_context *
4180alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181{
4182 struct perf_event_context *ctx;
4183
4184 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 if (!ctx)
4186 return NULL;
4187
4188 __perf_event_init_context(ctx);
4189 if (task)
4190 ctx->task = get_task_struct(task);
4191 ctx->pmu = pmu;
4192
4193 return ctx;
4194}
4195
4196static struct task_struct *
4197find_lively_task_by_vpid(pid_t vpid)
4198{
4199 struct task_struct *task;
4200
4201 rcu_read_lock();
4202 if (!vpid)
4203 task = current;
4204 else
4205 task = find_task_by_vpid(vpid);
4206 if (task)
4207 get_task_struct(task);
4208 rcu_read_unlock();
4209
4210 if (!task)
4211 return ERR_PTR(-ESRCH);
4212
4213 return task;
4214}
4215
4216/*
4217 * Returns a matching context with refcount and pincount.
4218 */
4219static struct perf_event_context *
4220find_get_context(struct pmu *pmu, struct task_struct *task,
4221 struct perf_event *event)
4222{
4223 struct perf_event_context *ctx, *clone_ctx = NULL;
4224 struct perf_cpu_context *cpuctx;
4225 void *task_ctx_data = NULL;
4226 unsigned long flags;
4227 int ctxn, err;
4228 int cpu = event->cpu;
4229
4230 if (!task) {
4231 /* Must be root to operate on a CPU event: */
4232 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4233 return ERR_PTR(-EACCES);
4234
4235 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4236 ctx = &cpuctx->ctx;
4237 get_ctx(ctx);
4238 ++ctx->pin_count;
4239
4240 return ctx;
4241 }
4242
4243 err = -EINVAL;
4244 ctxn = pmu->task_ctx_nr;
4245 if (ctxn < 0)
4246 goto errout;
4247
4248 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4249 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4250 if (!task_ctx_data) {
4251 err = -ENOMEM;
4252 goto errout;
4253 }
4254 }
4255
4256retry:
4257 ctx = perf_lock_task_context(task, ctxn, &flags);
4258 if (ctx) {
4259 clone_ctx = unclone_ctx(ctx);
4260 ++ctx->pin_count;
4261
4262 if (task_ctx_data && !ctx->task_ctx_data) {
4263 ctx->task_ctx_data = task_ctx_data;
4264 task_ctx_data = NULL;
4265 }
4266 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4267
4268 if (clone_ctx)
4269 put_ctx(clone_ctx);
4270 } else {
4271 ctx = alloc_perf_context(pmu, task);
4272 err = -ENOMEM;
4273 if (!ctx)
4274 goto errout;
4275
4276 if (task_ctx_data) {
4277 ctx->task_ctx_data = task_ctx_data;
4278 task_ctx_data = NULL;
4279 }
4280
4281 err = 0;
4282 mutex_lock(&task->perf_event_mutex);
4283 /*
4284 * If it has already passed perf_event_exit_task().
4285 * we must see PF_EXITING, it takes this mutex too.
4286 */
4287 if (task->flags & PF_EXITING)
4288 err = -ESRCH;
4289 else if (task->perf_event_ctxp[ctxn])
4290 err = -EAGAIN;
4291 else {
4292 get_ctx(ctx);
4293 ++ctx->pin_count;
4294 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4295 }
4296 mutex_unlock(&task->perf_event_mutex);
4297
4298 if (unlikely(err)) {
4299 put_ctx(ctx);
4300
4301 if (err == -EAGAIN)
4302 goto retry;
4303 goto errout;
4304 }
4305 }
4306
4307 kfree(task_ctx_data);
4308 return ctx;
4309
4310errout:
4311 kfree(task_ctx_data);
4312 return ERR_PTR(err);
4313}
4314
4315static void perf_event_free_filter(struct perf_event *event);
4316static void perf_event_free_bpf_prog(struct perf_event *event);
4317
4318static void free_event_rcu(struct rcu_head *head)
4319{
4320 struct perf_event *event;
4321
4322 event = container_of(head, struct perf_event, rcu_head);
4323 if (event->ns)
4324 put_pid_ns(event->ns);
4325 perf_event_free_filter(event);
4326 kfree(event);
4327}
4328
4329static void ring_buffer_attach(struct perf_event *event,
4330 struct ring_buffer *rb);
4331
4332static void detach_sb_event(struct perf_event *event)
4333{
4334 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4335
4336 raw_spin_lock(&pel->lock);
4337 list_del_rcu(&event->sb_list);
4338 raw_spin_unlock(&pel->lock);
4339}
4340
4341static bool is_sb_event(struct perf_event *event)
4342{
4343 struct perf_event_attr *attr = &event->attr;
4344
4345 if (event->parent)
4346 return false;
4347
4348 if (event->attach_state & PERF_ATTACH_TASK)
4349 return false;
4350
4351 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4352 attr->comm || attr->comm_exec ||
4353 attr->task || attr->ksymbol ||
4354 attr->context_switch ||
4355 attr->bpf_event)
4356 return true;
4357 return false;
4358}
4359
4360static void unaccount_pmu_sb_event(struct perf_event *event)
4361{
4362 if (is_sb_event(event))
4363 detach_sb_event(event);
4364}
4365
4366static void unaccount_event_cpu(struct perf_event *event, int cpu)
4367{
4368 if (event->parent)
4369 return;
4370
4371 if (is_cgroup_event(event))
4372 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4373}
4374
4375#ifdef CONFIG_NO_HZ_FULL
4376static DEFINE_SPINLOCK(nr_freq_lock);
4377#endif
4378
4379static void unaccount_freq_event_nohz(void)
4380{
4381#ifdef CONFIG_NO_HZ_FULL
4382 spin_lock(&nr_freq_lock);
4383 if (atomic_dec_and_test(&nr_freq_events))
4384 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4385 spin_unlock(&nr_freq_lock);
4386#endif
4387}
4388
4389static void unaccount_freq_event(void)
4390{
4391 if (tick_nohz_full_enabled())
4392 unaccount_freq_event_nohz();
4393 else
4394 atomic_dec(&nr_freq_events);
4395}
4396
4397static void unaccount_event(struct perf_event *event)
4398{
4399 bool dec = false;
4400
4401 if (event->parent)
4402 return;
4403
4404 if (event->attach_state & PERF_ATTACH_TASK)
4405 dec = true;
4406 if (event->attr.mmap || event->attr.mmap_data)
4407 atomic_dec(&nr_mmap_events);
4408 if (event->attr.comm)
4409 atomic_dec(&nr_comm_events);
4410 if (event->attr.namespaces)
4411 atomic_dec(&nr_namespaces_events);
4412 if (event->attr.task)
4413 atomic_dec(&nr_task_events);
4414 if (event->attr.freq)
4415 unaccount_freq_event();
4416 if (event->attr.context_switch) {
4417 dec = true;
4418 atomic_dec(&nr_switch_events);
4419 }
4420 if (is_cgroup_event(event))
4421 dec = true;
4422 if (has_branch_stack(event))
4423 dec = true;
4424 if (event->attr.ksymbol)
4425 atomic_dec(&nr_ksymbol_events);
4426 if (event->attr.bpf_event)
4427 atomic_dec(&nr_bpf_events);
4428
4429 if (dec) {
4430 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4431 schedule_delayed_work(&perf_sched_work, HZ);
4432 }
4433
4434 unaccount_event_cpu(event, event->cpu);
4435
4436 unaccount_pmu_sb_event(event);
4437}
4438
4439static void perf_sched_delayed(struct work_struct *work)
4440{
4441 mutex_lock(&perf_sched_mutex);
4442 if (atomic_dec_and_test(&perf_sched_count))
4443 static_branch_disable(&perf_sched_events);
4444 mutex_unlock(&perf_sched_mutex);
4445}
4446
4447/*
4448 * The following implement mutual exclusion of events on "exclusive" pmus
4449 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4450 * at a time, so we disallow creating events that might conflict, namely:
4451 *
4452 * 1) cpu-wide events in the presence of per-task events,
4453 * 2) per-task events in the presence of cpu-wide events,
4454 * 3) two matching events on the same context.
4455 *
4456 * The former two cases are handled in the allocation path (perf_event_alloc(),
4457 * _free_event()), the latter -- before the first perf_install_in_context().
4458 */
4459static int exclusive_event_init(struct perf_event *event)
4460{
4461 struct pmu *pmu = event->pmu;
4462
4463 if (!is_exclusive_pmu(pmu))
4464 return 0;
4465
4466 /*
4467 * Prevent co-existence of per-task and cpu-wide events on the
4468 * same exclusive pmu.
4469 *
4470 * Negative pmu::exclusive_cnt means there are cpu-wide
4471 * events on this "exclusive" pmu, positive means there are
4472 * per-task events.
4473 *
4474 * Since this is called in perf_event_alloc() path, event::ctx
4475 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4476 * to mean "per-task event", because unlike other attach states it
4477 * never gets cleared.
4478 */
4479 if (event->attach_state & PERF_ATTACH_TASK) {
4480 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4481 return -EBUSY;
4482 } else {
4483 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4484 return -EBUSY;
4485 }
4486
4487 return 0;
4488}
4489
4490static void exclusive_event_destroy(struct perf_event *event)
4491{
4492 struct pmu *pmu = event->pmu;
4493
4494 if (!is_exclusive_pmu(pmu))
4495 return;
4496
4497 /* see comment in exclusive_event_init() */
4498 if (event->attach_state & PERF_ATTACH_TASK)
4499 atomic_dec(&pmu->exclusive_cnt);
4500 else
4501 atomic_inc(&pmu->exclusive_cnt);
4502}
4503
4504static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4505{
4506 if ((e1->pmu == e2->pmu) &&
4507 (e1->cpu == e2->cpu ||
4508 e1->cpu == -1 ||
4509 e2->cpu == -1))
4510 return true;
4511 return false;
4512}
4513
4514static bool exclusive_event_installable(struct perf_event *event,
4515 struct perf_event_context *ctx)
4516{
4517 struct perf_event *iter_event;
4518 struct pmu *pmu = event->pmu;
4519
4520 lockdep_assert_held(&ctx->mutex);
4521
4522 if (!is_exclusive_pmu(pmu))
4523 return true;
4524
4525 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4526 if (exclusive_event_match(iter_event, event))
4527 return false;
4528 }
4529
4530 return true;
4531}
4532
4533static void perf_addr_filters_splice(struct perf_event *event,
4534 struct list_head *head);
4535
4536static void _free_event(struct perf_event *event)
4537{
4538 irq_work_sync(&event->pending);
4539
4540 unaccount_event(event);
4541
4542 if (event->rb) {
4543 /*
4544 * Can happen when we close an event with re-directed output.
4545 *
4546 * Since we have a 0 refcount, perf_mmap_close() will skip
4547 * over us; possibly making our ring_buffer_put() the last.
4548 */
4549 mutex_lock(&event->mmap_mutex);
4550 ring_buffer_attach(event, NULL);
4551 mutex_unlock(&event->mmap_mutex);
4552 }
4553
4554 if (is_cgroup_event(event))
4555 perf_detach_cgroup(event);
4556
4557 if (!event->parent) {
4558 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4559 put_callchain_buffers();
4560 }
4561
4562 perf_event_free_bpf_prog(event);
4563 perf_addr_filters_splice(event, NULL);
4564 kfree(event->addr_filter_ranges);
4565
4566 if (event->destroy)
4567 event->destroy(event);
4568
4569 /*
4570 * Must be after ->destroy(), due to uprobe_perf_close() using
4571 * hw.target.
4572 */
4573 if (event->hw.target)
4574 put_task_struct(event->hw.target);
4575
4576 /*
4577 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4578 * all task references must be cleaned up.
4579 */
4580 if (event->ctx)
4581 put_ctx(event->ctx);
4582
4583 exclusive_event_destroy(event);
4584 module_put(event->pmu->module);
4585
4586 call_rcu(&event->rcu_head, free_event_rcu);
4587}
4588
4589/*
4590 * Used to free events which have a known refcount of 1, such as in error paths
4591 * where the event isn't exposed yet and inherited events.
4592 */
4593static void free_event(struct perf_event *event)
4594{
4595 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4596 "unexpected event refcount: %ld; ptr=%p\n",
4597 atomic_long_read(&event->refcount), event)) {
4598 /* leak to avoid use-after-free */
4599 return;
4600 }
4601
4602 _free_event(event);
4603}
4604
4605/*
4606 * Remove user event from the owner task.
4607 */
4608static void perf_remove_from_owner(struct perf_event *event)
4609{
4610 struct task_struct *owner;
4611
4612 rcu_read_lock();
4613 /*
4614 * Matches the smp_store_release() in perf_event_exit_task(). If we
4615 * observe !owner it means the list deletion is complete and we can
4616 * indeed free this event, otherwise we need to serialize on
4617 * owner->perf_event_mutex.
4618 */
4619 owner = READ_ONCE(event->owner);
4620 if (owner) {
4621 /*
4622 * Since delayed_put_task_struct() also drops the last
4623 * task reference we can safely take a new reference
4624 * while holding the rcu_read_lock().
4625 */
4626 get_task_struct(owner);
4627 }
4628 rcu_read_unlock();
4629
4630 if (owner) {
4631 /*
4632 * If we're here through perf_event_exit_task() we're already
4633 * holding ctx->mutex which would be an inversion wrt. the
4634 * normal lock order.
4635 *
4636 * However we can safely take this lock because its the child
4637 * ctx->mutex.
4638 */
4639 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4640
4641 /*
4642 * We have to re-check the event->owner field, if it is cleared
4643 * we raced with perf_event_exit_task(), acquiring the mutex
4644 * ensured they're done, and we can proceed with freeing the
4645 * event.
4646 */
4647 if (event->owner) {
4648 list_del_init(&event->owner_entry);
4649 smp_store_release(&event->owner, NULL);
4650 }
4651 mutex_unlock(&owner->perf_event_mutex);
4652 put_task_struct(owner);
4653 }
4654}
4655
4656static void put_event(struct perf_event *event)
4657{
4658 if (!atomic_long_dec_and_test(&event->refcount))
4659 return;
4660
4661 _free_event(event);
4662}
4663
4664/*
4665 * Kill an event dead; while event:refcount will preserve the event
4666 * object, it will not preserve its functionality. Once the last 'user'
4667 * gives up the object, we'll destroy the thing.
4668 */
4669int perf_event_release_kernel(struct perf_event *event)
4670{
4671 struct perf_event_context *ctx = event->ctx;
4672 struct perf_event *child, *tmp;
4673 LIST_HEAD(free_list);
4674
4675 /*
4676 * If we got here through err_file: fput(event_file); we will not have
4677 * attached to a context yet.
4678 */
4679 if (!ctx) {
4680 WARN_ON_ONCE(event->attach_state &
4681 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4682 goto no_ctx;
4683 }
4684
4685 if (!is_kernel_event(event))
4686 perf_remove_from_owner(event);
4687
4688 ctx = perf_event_ctx_lock(event);
4689 WARN_ON_ONCE(ctx->parent_ctx);
4690 perf_remove_from_context(event, DETACH_GROUP);
4691
4692 raw_spin_lock_irq(&ctx->lock);
4693 /*
4694 * Mark this event as STATE_DEAD, there is no external reference to it
4695 * anymore.
4696 *
4697 * Anybody acquiring event->child_mutex after the below loop _must_
4698 * also see this, most importantly inherit_event() which will avoid
4699 * placing more children on the list.
4700 *
4701 * Thus this guarantees that we will in fact observe and kill _ALL_
4702 * child events.
4703 */
4704 event->state = PERF_EVENT_STATE_DEAD;
4705 raw_spin_unlock_irq(&ctx->lock);
4706
4707 perf_event_ctx_unlock(event, ctx);
4708
4709again:
4710 mutex_lock(&event->child_mutex);
4711 list_for_each_entry(child, &event->child_list, child_list) {
4712
4713 /*
4714 * Cannot change, child events are not migrated, see the
4715 * comment with perf_event_ctx_lock_nested().
4716 */
4717 ctx = READ_ONCE(child->ctx);
4718 /*
4719 * Since child_mutex nests inside ctx::mutex, we must jump
4720 * through hoops. We start by grabbing a reference on the ctx.
4721 *
4722 * Since the event cannot get freed while we hold the
4723 * child_mutex, the context must also exist and have a !0
4724 * reference count.
4725 */
4726 get_ctx(ctx);
4727
4728 /*
4729 * Now that we have a ctx ref, we can drop child_mutex, and
4730 * acquire ctx::mutex without fear of it going away. Then we
4731 * can re-acquire child_mutex.
4732 */
4733 mutex_unlock(&event->child_mutex);
4734 mutex_lock(&ctx->mutex);
4735 mutex_lock(&event->child_mutex);
4736
4737 /*
4738 * Now that we hold ctx::mutex and child_mutex, revalidate our
4739 * state, if child is still the first entry, it didn't get freed
4740 * and we can continue doing so.
4741 */
4742 tmp = list_first_entry_or_null(&event->child_list,
4743 struct perf_event, child_list);
4744 if (tmp == child) {
4745 perf_remove_from_context(child, DETACH_GROUP);
4746 list_move(&child->child_list, &free_list);
4747 /*
4748 * This matches the refcount bump in inherit_event();
4749 * this can't be the last reference.
4750 */
4751 put_event(event);
4752 }
4753
4754 mutex_unlock(&event->child_mutex);
4755 mutex_unlock(&ctx->mutex);
4756 put_ctx(ctx);
4757 goto again;
4758 }
4759 mutex_unlock(&event->child_mutex);
4760
4761 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4762 void *var = &child->ctx->refcount;
4763
4764 list_del(&child->child_list);
4765 free_event(child);
4766
4767 /*
4768 * Wake any perf_event_free_task() waiting for this event to be
4769 * freed.
4770 */
4771 smp_mb(); /* pairs with wait_var_event() */
4772 wake_up_var(var);
4773 }
4774
4775no_ctx:
4776 put_event(event); /* Must be the 'last' reference */
4777 return 0;
4778}
4779EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4780
4781/*
4782 * Called when the last reference to the file is gone.
4783 */
4784static int perf_release(struct inode *inode, struct file *file)
4785{
4786 perf_event_release_kernel(file->private_data);
4787 return 0;
4788}
4789
4790static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4791{
4792 struct perf_event *child;
4793 u64 total = 0;
4794
4795 *enabled = 0;
4796 *running = 0;
4797
4798 mutex_lock(&event->child_mutex);
4799
4800 (void)perf_event_read(event, false);
4801 total += perf_event_count(event);
4802
4803 *enabled += event->total_time_enabled +
4804 atomic64_read(&event->child_total_time_enabled);
4805 *running += event->total_time_running +
4806 atomic64_read(&event->child_total_time_running);
4807
4808 list_for_each_entry(child, &event->child_list, child_list) {
4809 (void)perf_event_read(child, false);
4810 total += perf_event_count(child);
4811 *enabled += child->total_time_enabled;
4812 *running += child->total_time_running;
4813 }
4814 mutex_unlock(&event->child_mutex);
4815
4816 return total;
4817}
4818
4819u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4820{
4821 struct perf_event_context *ctx;
4822 u64 count;
4823
4824 ctx = perf_event_ctx_lock(event);
4825 count = __perf_event_read_value(event, enabled, running);
4826 perf_event_ctx_unlock(event, ctx);
4827
4828 return count;
4829}
4830EXPORT_SYMBOL_GPL(perf_event_read_value);
4831
4832static int __perf_read_group_add(struct perf_event *leader,
4833 u64 read_format, u64 *values)
4834{
4835 struct perf_event_context *ctx = leader->ctx;
4836 struct perf_event *sub;
4837 unsigned long flags;
4838 int n = 1; /* skip @nr */
4839 int ret;
4840
4841 ret = perf_event_read(leader, true);
4842 if (ret)
4843 return ret;
4844
4845 raw_spin_lock_irqsave(&ctx->lock, flags);
4846
4847 /*
4848 * Since we co-schedule groups, {enabled,running} times of siblings
4849 * will be identical to those of the leader, so we only publish one
4850 * set.
4851 */
4852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4853 values[n++] += leader->total_time_enabled +
4854 atomic64_read(&leader->child_total_time_enabled);
4855 }
4856
4857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4858 values[n++] += leader->total_time_running +
4859 atomic64_read(&leader->child_total_time_running);
4860 }
4861
4862 /*
4863 * Write {count,id} tuples for every sibling.
4864 */
4865 values[n++] += perf_event_count(leader);
4866 if (read_format & PERF_FORMAT_ID)
4867 values[n++] = primary_event_id(leader);
4868
4869 for_each_sibling_event(sub, leader) {
4870 values[n++] += perf_event_count(sub);
4871 if (read_format & PERF_FORMAT_ID)
4872 values[n++] = primary_event_id(sub);
4873 }
4874
4875 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4876 return 0;
4877}
4878
4879static int perf_read_group(struct perf_event *event,
4880 u64 read_format, char __user *buf)
4881{
4882 struct perf_event *leader = event->group_leader, *child;
4883 struct perf_event_context *ctx = leader->ctx;
4884 int ret;
4885 u64 *values;
4886
4887 lockdep_assert_held(&ctx->mutex);
4888
4889 values = kzalloc(event->read_size, GFP_KERNEL);
4890 if (!values)
4891 return -ENOMEM;
4892
4893 values[0] = 1 + leader->nr_siblings;
4894
4895 /*
4896 * By locking the child_mutex of the leader we effectively
4897 * lock the child list of all siblings.. XXX explain how.
4898 */
4899 mutex_lock(&leader->child_mutex);
4900
4901 ret = __perf_read_group_add(leader, read_format, values);
4902 if (ret)
4903 goto unlock;
4904
4905 list_for_each_entry(child, &leader->child_list, child_list) {
4906 ret = __perf_read_group_add(child, read_format, values);
4907 if (ret)
4908 goto unlock;
4909 }
4910
4911 mutex_unlock(&leader->child_mutex);
4912
4913 ret = event->read_size;
4914 if (copy_to_user(buf, values, event->read_size))
4915 ret = -EFAULT;
4916 goto out;
4917
4918unlock:
4919 mutex_unlock(&leader->child_mutex);
4920out:
4921 kfree(values);
4922 return ret;
4923}
4924
4925static int perf_read_one(struct perf_event *event,
4926 u64 read_format, char __user *buf)
4927{
4928 u64 enabled, running;
4929 u64 values[4];
4930 int n = 0;
4931
4932 values[n++] = __perf_event_read_value(event, &enabled, &running);
4933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4934 values[n++] = enabled;
4935 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4936 values[n++] = running;
4937 if (read_format & PERF_FORMAT_ID)
4938 values[n++] = primary_event_id(event);
4939
4940 if (copy_to_user(buf, values, n * sizeof(u64)))
4941 return -EFAULT;
4942
4943 return n * sizeof(u64);
4944}
4945
4946static bool is_event_hup(struct perf_event *event)
4947{
4948 bool no_children;
4949
4950 if (event->state > PERF_EVENT_STATE_EXIT)
4951 return false;
4952
4953 mutex_lock(&event->child_mutex);
4954 no_children = list_empty(&event->child_list);
4955 mutex_unlock(&event->child_mutex);
4956 return no_children;
4957}
4958
4959/*
4960 * Read the performance event - simple non blocking version for now
4961 */
4962static ssize_t
4963__perf_read(struct perf_event *event, char __user *buf, size_t count)
4964{
4965 u64 read_format = event->attr.read_format;
4966 int ret;
4967
4968 /*
4969 * Return end-of-file for a read on an event that is in
4970 * error state (i.e. because it was pinned but it couldn't be
4971 * scheduled on to the CPU at some point).
4972 */
4973 if (event->state == PERF_EVENT_STATE_ERROR)
4974 return 0;
4975
4976 if (count < event->read_size)
4977 return -ENOSPC;
4978
4979 WARN_ON_ONCE(event->ctx->parent_ctx);
4980 if (read_format & PERF_FORMAT_GROUP)
4981 ret = perf_read_group(event, read_format, buf);
4982 else
4983 ret = perf_read_one(event, read_format, buf);
4984
4985 return ret;
4986}
4987
4988static ssize_t
4989perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4990{
4991 struct perf_event *event = file->private_data;
4992 struct perf_event_context *ctx;
4993 int ret;
4994
4995 ctx = perf_event_ctx_lock(event);
4996 ret = __perf_read(event, buf, count);
4997 perf_event_ctx_unlock(event, ctx);
4998
4999 return ret;
5000}
5001
5002static __poll_t perf_poll(struct file *file, poll_table *wait)
5003{
5004 struct perf_event *event = file->private_data;
5005 struct ring_buffer *rb;
5006 __poll_t events = EPOLLHUP;
5007
5008 poll_wait(file, &event->waitq, wait);
5009
5010 if (is_event_hup(event))
5011 return events;
5012
5013 /*
5014 * Pin the event->rb by taking event->mmap_mutex; otherwise
5015 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5016 */
5017 mutex_lock(&event->mmap_mutex);
5018 rb = event->rb;
5019 if (rb)
5020 events = atomic_xchg(&rb->poll, 0);
5021 mutex_unlock(&event->mmap_mutex);
5022 return events;
5023}
5024
5025static void _perf_event_reset(struct perf_event *event)
5026{
5027 (void)perf_event_read(event, false);
5028 local64_set(&event->count, 0);
5029 perf_event_update_userpage(event);
5030}
5031
5032/*
5033 * Holding the top-level event's child_mutex means that any
5034 * descendant process that has inherited this event will block
5035 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5036 * task existence requirements of perf_event_enable/disable.
5037 */
5038static void perf_event_for_each_child(struct perf_event *event,
5039 void (*func)(struct perf_event *))
5040{
5041 struct perf_event *child;
5042
5043 WARN_ON_ONCE(event->ctx->parent_ctx);
5044
5045 mutex_lock(&event->child_mutex);
5046 func(event);
5047 list_for_each_entry(child, &event->child_list, child_list)
5048 func(child);
5049 mutex_unlock(&event->child_mutex);
5050}
5051
5052static void perf_event_for_each(struct perf_event *event,
5053 void (*func)(struct perf_event *))
5054{
5055 struct perf_event_context *ctx = event->ctx;
5056 struct perf_event *sibling;
5057
5058 lockdep_assert_held(&ctx->mutex);
5059
5060 event = event->group_leader;
5061
5062 perf_event_for_each_child(event, func);
5063 for_each_sibling_event(sibling, event)
5064 perf_event_for_each_child(sibling, func);
5065}
5066
5067static void __perf_event_period(struct perf_event *event,
5068 struct perf_cpu_context *cpuctx,
5069 struct perf_event_context *ctx,
5070 void *info)
5071{
5072 u64 value = *((u64 *)info);
5073 bool active;
5074
5075 if (event->attr.freq) {
5076 event->attr.sample_freq = value;
5077 } else {
5078 event->attr.sample_period = value;
5079 event->hw.sample_period = value;
5080 }
5081
5082 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5083 if (active) {
5084 perf_pmu_disable(ctx->pmu);
5085 /*
5086 * We could be throttled; unthrottle now to avoid the tick
5087 * trying to unthrottle while we already re-started the event.
5088 */
5089 if (event->hw.interrupts == MAX_INTERRUPTS) {
5090 event->hw.interrupts = 0;
5091 perf_log_throttle(event, 1);
5092 }
5093 event->pmu->stop(event, PERF_EF_UPDATE);
5094 }
5095
5096 local64_set(&event->hw.period_left, 0);
5097
5098 if (active) {
5099 event->pmu->start(event, PERF_EF_RELOAD);
5100 perf_pmu_enable(ctx->pmu);
5101 }
5102}
5103
5104static int perf_event_check_period(struct perf_event *event, u64 value)
5105{
5106 return event->pmu->check_period(event, value);
5107}
5108
5109static int perf_event_period(struct perf_event *event, u64 __user *arg)
5110{
5111 u64 value;
5112
5113 if (!is_sampling_event(event))
5114 return -EINVAL;
5115
5116 if (copy_from_user(&value, arg, sizeof(value)))
5117 return -EFAULT;
5118
5119 if (!value)
5120 return -EINVAL;
5121
5122 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5123 return -EINVAL;
5124
5125 if (perf_event_check_period(event, value))
5126 return -EINVAL;
5127
5128 if (!event->attr.freq && (value & (1ULL << 63)))
5129 return -EINVAL;
5130
5131 event_function_call(event, __perf_event_period, &value);
5132
5133 return 0;
5134}
5135
5136static const struct file_operations perf_fops;
5137
5138static inline int perf_fget_light(int fd, struct fd *p)
5139{
5140 struct fd f = fdget(fd);
5141 if (!f.file)
5142 return -EBADF;
5143
5144 if (f.file->f_op != &perf_fops) {
5145 fdput(f);
5146 return -EBADF;
5147 }
5148 *p = f;
5149 return 0;
5150}
5151
5152static int perf_event_set_output(struct perf_event *event,
5153 struct perf_event *output_event);
5154static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5155static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5156static int perf_copy_attr(struct perf_event_attr __user *uattr,
5157 struct perf_event_attr *attr);
5158
5159static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5160{
5161 void (*func)(struct perf_event *);
5162 u32 flags = arg;
5163
5164 switch (cmd) {
5165 case PERF_EVENT_IOC_ENABLE:
5166 func = _perf_event_enable;
5167 break;
5168 case PERF_EVENT_IOC_DISABLE:
5169 func = _perf_event_disable;
5170 break;
5171 case PERF_EVENT_IOC_RESET:
5172 func = _perf_event_reset;
5173 break;
5174
5175 case PERF_EVENT_IOC_REFRESH:
5176 return _perf_event_refresh(event, arg);
5177
5178 case PERF_EVENT_IOC_PERIOD:
5179 return perf_event_period(event, (u64 __user *)arg);
5180
5181 case PERF_EVENT_IOC_ID:
5182 {
5183 u64 id = primary_event_id(event);
5184
5185 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5186 return -EFAULT;
5187 return 0;
5188 }
5189
5190 case PERF_EVENT_IOC_SET_OUTPUT:
5191 {
5192 int ret;
5193 if (arg != -1) {
5194 struct perf_event *output_event;
5195 struct fd output;
5196 ret = perf_fget_light(arg, &output);
5197 if (ret)
5198 return ret;
5199 output_event = output.file->private_data;
5200 ret = perf_event_set_output(event, output_event);
5201 fdput(output);
5202 } else {
5203 ret = perf_event_set_output(event, NULL);
5204 }
5205 return ret;
5206 }
5207
5208 case PERF_EVENT_IOC_SET_FILTER:
5209 return perf_event_set_filter(event, (void __user *)arg);
5210
5211 case PERF_EVENT_IOC_SET_BPF:
5212 return perf_event_set_bpf_prog(event, arg);
5213
5214 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5215 struct ring_buffer *rb;
5216
5217 rcu_read_lock();
5218 rb = rcu_dereference(event->rb);
5219 if (!rb || !rb->nr_pages) {
5220 rcu_read_unlock();
5221 return -EINVAL;
5222 }
5223 rb_toggle_paused(rb, !!arg);
5224 rcu_read_unlock();
5225 return 0;
5226 }
5227
5228 case PERF_EVENT_IOC_QUERY_BPF:
5229 return perf_event_query_prog_array(event, (void __user *)arg);
5230
5231 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5232 struct perf_event_attr new_attr;
5233 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5234 &new_attr);
5235
5236 if (err)
5237 return err;
5238
5239 return perf_event_modify_attr(event, &new_attr);
5240 }
5241 default:
5242 return -ENOTTY;
5243 }
5244
5245 if (flags & PERF_IOC_FLAG_GROUP)
5246 perf_event_for_each(event, func);
5247 else
5248 perf_event_for_each_child(event, func);
5249
5250 return 0;
5251}
5252
5253static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5254{
5255 struct perf_event *event = file->private_data;
5256 struct perf_event_context *ctx;
5257 long ret;
5258
5259 ctx = perf_event_ctx_lock(event);
5260 ret = _perf_ioctl(event, cmd, arg);
5261 perf_event_ctx_unlock(event, ctx);
5262
5263 return ret;
5264}
5265
5266#ifdef CONFIG_COMPAT
5267static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5268 unsigned long arg)
5269{
5270 switch (_IOC_NR(cmd)) {
5271 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5272 case _IOC_NR(PERF_EVENT_IOC_ID):
5273 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5274 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5275 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5276 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5277 cmd &= ~IOCSIZE_MASK;
5278 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5279 }
5280 break;
5281 }
5282 return perf_ioctl(file, cmd, arg);
5283}
5284#else
5285# define perf_compat_ioctl NULL
5286#endif
5287
5288int perf_event_task_enable(void)
5289{
5290 struct perf_event_context *ctx;
5291 struct perf_event *event;
5292
5293 mutex_lock(¤t->perf_event_mutex);
5294 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5295 ctx = perf_event_ctx_lock(event);
5296 perf_event_for_each_child(event, _perf_event_enable);
5297 perf_event_ctx_unlock(event, ctx);
5298 }
5299 mutex_unlock(¤t->perf_event_mutex);
5300
5301 return 0;
5302}
5303
5304int perf_event_task_disable(void)
5305{
5306 struct perf_event_context *ctx;
5307 struct perf_event *event;
5308
5309 mutex_lock(¤t->perf_event_mutex);
5310 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5311 ctx = perf_event_ctx_lock(event);
5312 perf_event_for_each_child(event, _perf_event_disable);
5313 perf_event_ctx_unlock(event, ctx);
5314 }
5315 mutex_unlock(¤t->perf_event_mutex);
5316
5317 return 0;
5318}
5319
5320static int perf_event_index(struct perf_event *event)
5321{
5322 if (event->hw.state & PERF_HES_STOPPED)
5323 return 0;
5324
5325 if (event->state != PERF_EVENT_STATE_ACTIVE)
5326 return 0;
5327
5328 return event->pmu->event_idx(event);
5329}
5330
5331static void calc_timer_values(struct perf_event *event,
5332 u64 *now,
5333 u64 *enabled,
5334 u64 *running)
5335{
5336 u64 ctx_time;
5337
5338 *now = perf_clock();
5339 ctx_time = event->shadow_ctx_time + *now;
5340 __perf_update_times(event, ctx_time, enabled, running);
5341}
5342
5343static void perf_event_init_userpage(struct perf_event *event)
5344{
5345 struct perf_event_mmap_page *userpg;
5346 struct ring_buffer *rb;
5347
5348 rcu_read_lock();
5349 rb = rcu_dereference(event->rb);
5350 if (!rb)
5351 goto unlock;
5352
5353 userpg = rb->user_page;
5354
5355 /* Allow new userspace to detect that bit 0 is deprecated */
5356 userpg->cap_bit0_is_deprecated = 1;
5357 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5358 userpg->data_offset = PAGE_SIZE;
5359 userpg->data_size = perf_data_size(rb);
5360
5361unlock:
5362 rcu_read_unlock();
5363}
5364
5365void __weak arch_perf_update_userpage(
5366 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5367{
5368}
5369
5370/*
5371 * Callers need to ensure there can be no nesting of this function, otherwise
5372 * the seqlock logic goes bad. We can not serialize this because the arch
5373 * code calls this from NMI context.
5374 */
5375void perf_event_update_userpage(struct perf_event *event)
5376{
5377 struct perf_event_mmap_page *userpg;
5378 struct ring_buffer *rb;
5379 u64 enabled, running, now;
5380
5381 rcu_read_lock();
5382 rb = rcu_dereference(event->rb);
5383 if (!rb)
5384 goto unlock;
5385
5386 /*
5387 * compute total_time_enabled, total_time_running
5388 * based on snapshot values taken when the event
5389 * was last scheduled in.
5390 *
5391 * we cannot simply called update_context_time()
5392 * because of locking issue as we can be called in
5393 * NMI context
5394 */
5395 calc_timer_values(event, &now, &enabled, &running);
5396
5397 userpg = rb->user_page;
5398 /*
5399 * Disable preemption to guarantee consistent time stamps are stored to
5400 * the user page.
5401 */
5402 preempt_disable();
5403 ++userpg->lock;
5404 barrier();
5405 userpg->index = perf_event_index(event);
5406 userpg->offset = perf_event_count(event);
5407 if (userpg->index)
5408 userpg->offset -= local64_read(&event->hw.prev_count);
5409
5410 userpg->time_enabled = enabled +
5411 atomic64_read(&event->child_total_time_enabled);
5412
5413 userpg->time_running = running +
5414 atomic64_read(&event->child_total_time_running);
5415
5416 arch_perf_update_userpage(event, userpg, now);
5417
5418 barrier();
5419 ++userpg->lock;
5420 preempt_enable();
5421unlock:
5422 rcu_read_unlock();
5423}
5424EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5425
5426static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5427{
5428 struct perf_event *event = vmf->vma->vm_file->private_data;
5429 struct ring_buffer *rb;
5430 vm_fault_t ret = VM_FAULT_SIGBUS;
5431
5432 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5433 if (vmf->pgoff == 0)
5434 ret = 0;
5435 return ret;
5436 }
5437
5438 rcu_read_lock();
5439 rb = rcu_dereference(event->rb);
5440 if (!rb)
5441 goto unlock;
5442
5443 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5444 goto unlock;
5445
5446 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5447 if (!vmf->page)
5448 goto unlock;
5449
5450 get_page(vmf->page);
5451 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5452 vmf->page->index = vmf->pgoff;
5453
5454 ret = 0;
5455unlock:
5456 rcu_read_unlock();
5457
5458 return ret;
5459}
5460
5461static void ring_buffer_attach(struct perf_event *event,
5462 struct ring_buffer *rb)
5463{
5464 struct ring_buffer *old_rb = NULL;
5465 unsigned long flags;
5466
5467 if (event->rb) {
5468 /*
5469 * Should be impossible, we set this when removing
5470 * event->rb_entry and wait/clear when adding event->rb_entry.
5471 */
5472 WARN_ON_ONCE(event->rcu_pending);
5473
5474 old_rb = event->rb;
5475 spin_lock_irqsave(&old_rb->event_lock, flags);
5476 list_del_rcu(&event->rb_entry);
5477 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5478
5479 event->rcu_batches = get_state_synchronize_rcu();
5480 event->rcu_pending = 1;
5481 }
5482
5483 if (rb) {
5484 if (event->rcu_pending) {
5485 cond_synchronize_rcu(event->rcu_batches);
5486 event->rcu_pending = 0;
5487 }
5488
5489 spin_lock_irqsave(&rb->event_lock, flags);
5490 list_add_rcu(&event->rb_entry, &rb->event_list);
5491 spin_unlock_irqrestore(&rb->event_lock, flags);
5492 }
5493
5494 /*
5495 * Avoid racing with perf_mmap_close(AUX): stop the event
5496 * before swizzling the event::rb pointer; if it's getting
5497 * unmapped, its aux_mmap_count will be 0 and it won't
5498 * restart. See the comment in __perf_pmu_output_stop().
5499 *
5500 * Data will inevitably be lost when set_output is done in
5501 * mid-air, but then again, whoever does it like this is
5502 * not in for the data anyway.
5503 */
5504 if (has_aux(event))
5505 perf_event_stop(event, 0);
5506
5507 rcu_assign_pointer(event->rb, rb);
5508
5509 if (old_rb) {
5510 ring_buffer_put(old_rb);
5511 /*
5512 * Since we detached before setting the new rb, so that we
5513 * could attach the new rb, we could have missed a wakeup.
5514 * Provide it now.
5515 */
5516 wake_up_all(&event->waitq);
5517 }
5518}
5519
5520static void ring_buffer_wakeup(struct perf_event *event)
5521{
5522 struct ring_buffer *rb;
5523
5524 rcu_read_lock();
5525 rb = rcu_dereference(event->rb);
5526 if (rb) {
5527 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5528 wake_up_all(&event->waitq);
5529 }
5530 rcu_read_unlock();
5531}
5532
5533struct ring_buffer *ring_buffer_get(struct perf_event *event)
5534{
5535 struct ring_buffer *rb;
5536
5537 rcu_read_lock();
5538 rb = rcu_dereference(event->rb);
5539 if (rb) {
5540 if (!refcount_inc_not_zero(&rb->refcount))
5541 rb = NULL;
5542 }
5543 rcu_read_unlock();
5544
5545 return rb;
5546}
5547
5548void ring_buffer_put(struct ring_buffer *rb)
5549{
5550 if (!refcount_dec_and_test(&rb->refcount))
5551 return;
5552
5553 WARN_ON_ONCE(!list_empty(&rb->event_list));
5554
5555 call_rcu(&rb->rcu_head, rb_free_rcu);
5556}
5557
5558static void perf_mmap_open(struct vm_area_struct *vma)
5559{
5560 struct perf_event *event = vma->vm_file->private_data;
5561
5562 atomic_inc(&event->mmap_count);
5563 atomic_inc(&event->rb->mmap_count);
5564
5565 if (vma->vm_pgoff)
5566 atomic_inc(&event->rb->aux_mmap_count);
5567
5568 if (event->pmu->event_mapped)
5569 event->pmu->event_mapped(event, vma->vm_mm);
5570}
5571
5572static void perf_pmu_output_stop(struct perf_event *event);
5573
5574/*
5575 * A buffer can be mmap()ed multiple times; either directly through the same
5576 * event, or through other events by use of perf_event_set_output().
5577 *
5578 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5579 * the buffer here, where we still have a VM context. This means we need
5580 * to detach all events redirecting to us.
5581 */
5582static void perf_mmap_close(struct vm_area_struct *vma)
5583{
5584 struct perf_event *event = vma->vm_file->private_data;
5585
5586 struct ring_buffer *rb = ring_buffer_get(event);
5587 struct user_struct *mmap_user = rb->mmap_user;
5588 int mmap_locked = rb->mmap_locked;
5589 unsigned long size = perf_data_size(rb);
5590
5591 if (event->pmu->event_unmapped)
5592 event->pmu->event_unmapped(event, vma->vm_mm);
5593
5594 /*
5595 * rb->aux_mmap_count will always drop before rb->mmap_count and
5596 * event->mmap_count, so it is ok to use event->mmap_mutex to
5597 * serialize with perf_mmap here.
5598 */
5599 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5600 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5601 /*
5602 * Stop all AUX events that are writing to this buffer,
5603 * so that we can free its AUX pages and corresponding PMU
5604 * data. Note that after rb::aux_mmap_count dropped to zero,
5605 * they won't start any more (see perf_aux_output_begin()).
5606 */
5607 perf_pmu_output_stop(event);
5608
5609 /* now it's safe to free the pages */
5610 if (!rb->aux_mmap_locked)
5611 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5612 else
5613 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5614
5615 /* this has to be the last one */
5616 rb_free_aux(rb);
5617 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5618
5619 mutex_unlock(&event->mmap_mutex);
5620 }
5621
5622 atomic_dec(&rb->mmap_count);
5623
5624 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5625 goto out_put;
5626
5627 ring_buffer_attach(event, NULL);
5628 mutex_unlock(&event->mmap_mutex);
5629
5630 /* If there's still other mmap()s of this buffer, we're done. */
5631 if (atomic_read(&rb->mmap_count))
5632 goto out_put;
5633
5634 /*
5635 * No other mmap()s, detach from all other events that might redirect
5636 * into the now unreachable buffer. Somewhat complicated by the
5637 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5638 */
5639again:
5640 rcu_read_lock();
5641 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5642 if (!atomic_long_inc_not_zero(&event->refcount)) {
5643 /*
5644 * This event is en-route to free_event() which will
5645 * detach it and remove it from the list.
5646 */
5647 continue;
5648 }
5649 rcu_read_unlock();
5650
5651 mutex_lock(&event->mmap_mutex);
5652 /*
5653 * Check we didn't race with perf_event_set_output() which can
5654 * swizzle the rb from under us while we were waiting to
5655 * acquire mmap_mutex.
5656 *
5657 * If we find a different rb; ignore this event, a next
5658 * iteration will no longer find it on the list. We have to
5659 * still restart the iteration to make sure we're not now
5660 * iterating the wrong list.
5661 */
5662 if (event->rb == rb)
5663 ring_buffer_attach(event, NULL);
5664
5665 mutex_unlock(&event->mmap_mutex);
5666 put_event(event);
5667
5668 /*
5669 * Restart the iteration; either we're on the wrong list or
5670 * destroyed its integrity by doing a deletion.
5671 */
5672 goto again;
5673 }
5674 rcu_read_unlock();
5675
5676 /*
5677 * It could be there's still a few 0-ref events on the list; they'll
5678 * get cleaned up by free_event() -- they'll also still have their
5679 * ref on the rb and will free it whenever they are done with it.
5680 *
5681 * Aside from that, this buffer is 'fully' detached and unmapped,
5682 * undo the VM accounting.
5683 */
5684
5685 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5686 &mmap_user->locked_vm);
5687 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5688 free_uid(mmap_user);
5689
5690out_put:
5691 ring_buffer_put(rb); /* could be last */
5692}
5693
5694static const struct vm_operations_struct perf_mmap_vmops = {
5695 .open = perf_mmap_open,
5696 .close = perf_mmap_close, /* non mergeable */
5697 .fault = perf_mmap_fault,
5698 .page_mkwrite = perf_mmap_fault,
5699};
5700
5701static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5702{
5703 struct perf_event *event = file->private_data;
5704 unsigned long user_locked, user_lock_limit;
5705 struct user_struct *user = current_user();
5706 unsigned long locked, lock_limit;
5707 struct ring_buffer *rb = NULL;
5708 unsigned long vma_size;
5709 unsigned long nr_pages;
5710 long user_extra = 0, extra = 0;
5711 int ret = 0, flags = 0;
5712
5713 /*
5714 * Don't allow mmap() of inherited per-task counters. This would
5715 * create a performance issue due to all children writing to the
5716 * same rb.
5717 */
5718 if (event->cpu == -1 && event->attr.inherit)
5719 return -EINVAL;
5720
5721 if (!(vma->vm_flags & VM_SHARED))
5722 return -EINVAL;
5723
5724 vma_size = vma->vm_end - vma->vm_start;
5725
5726 if (vma->vm_pgoff == 0) {
5727 nr_pages = (vma_size / PAGE_SIZE) - 1;
5728 } else {
5729 /*
5730 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5731 * mapped, all subsequent mappings should have the same size
5732 * and offset. Must be above the normal perf buffer.
5733 */
5734 u64 aux_offset, aux_size;
5735
5736 if (!event->rb)
5737 return -EINVAL;
5738
5739 nr_pages = vma_size / PAGE_SIZE;
5740
5741 mutex_lock(&event->mmap_mutex);
5742 ret = -EINVAL;
5743
5744 rb = event->rb;
5745 if (!rb)
5746 goto aux_unlock;
5747
5748 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5749 aux_size = READ_ONCE(rb->user_page->aux_size);
5750
5751 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5752 goto aux_unlock;
5753
5754 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5755 goto aux_unlock;
5756
5757 /* already mapped with a different offset */
5758 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5759 goto aux_unlock;
5760
5761 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5762 goto aux_unlock;
5763
5764 /* already mapped with a different size */
5765 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5766 goto aux_unlock;
5767
5768 if (!is_power_of_2(nr_pages))
5769 goto aux_unlock;
5770
5771 if (!atomic_inc_not_zero(&rb->mmap_count))
5772 goto aux_unlock;
5773
5774 if (rb_has_aux(rb)) {
5775 atomic_inc(&rb->aux_mmap_count);
5776 ret = 0;
5777 goto unlock;
5778 }
5779
5780 atomic_set(&rb->aux_mmap_count, 1);
5781 user_extra = nr_pages;
5782
5783 goto accounting;
5784 }
5785
5786 /*
5787 * If we have rb pages ensure they're a power-of-two number, so we
5788 * can do bitmasks instead of modulo.
5789 */
5790 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5791 return -EINVAL;
5792
5793 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5794 return -EINVAL;
5795
5796 WARN_ON_ONCE(event->ctx->parent_ctx);
5797again:
5798 mutex_lock(&event->mmap_mutex);
5799 if (event->rb) {
5800 if (event->rb->nr_pages != nr_pages) {
5801 ret = -EINVAL;
5802 goto unlock;
5803 }
5804
5805 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5806 /*
5807 * Raced against perf_mmap_close() through
5808 * perf_event_set_output(). Try again, hope for better
5809 * luck.
5810 */
5811 mutex_unlock(&event->mmap_mutex);
5812 goto again;
5813 }
5814
5815 goto unlock;
5816 }
5817
5818 user_extra = nr_pages + 1;
5819
5820accounting:
5821 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5822
5823 /*
5824 * Increase the limit linearly with more CPUs:
5825 */
5826 user_lock_limit *= num_online_cpus();
5827
5828 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5829
5830 if (user_locked <= user_lock_limit) {
5831 /* charge all to locked_vm */
5832 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5833 /* charge all to pinned_vm */
5834 extra = user_extra;
5835 user_extra = 0;
5836 } else {
5837 /*
5838 * charge locked_vm until it hits user_lock_limit;
5839 * charge the rest from pinned_vm
5840 */
5841 extra = user_locked - user_lock_limit;
5842 user_extra -= extra;
5843 }
5844
5845 lock_limit = rlimit(RLIMIT_MEMLOCK);
5846 lock_limit >>= PAGE_SHIFT;
5847 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5848
5849 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5850 !capable(CAP_IPC_LOCK)) {
5851 ret = -EPERM;
5852 goto unlock;
5853 }
5854
5855 WARN_ON(!rb && event->rb);
5856
5857 if (vma->vm_flags & VM_WRITE)
5858 flags |= RING_BUFFER_WRITABLE;
5859
5860 if (!rb) {
5861 rb = rb_alloc(nr_pages,
5862 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5863 event->cpu, flags);
5864
5865 if (!rb) {
5866 ret = -ENOMEM;
5867 goto unlock;
5868 }
5869
5870 atomic_set(&rb->mmap_count, 1);
5871 rb->mmap_user = get_current_user();
5872 rb->mmap_locked = extra;
5873
5874 ring_buffer_attach(event, rb);
5875
5876 perf_event_init_userpage(event);
5877 perf_event_update_userpage(event);
5878 } else {
5879 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5880 event->attr.aux_watermark, flags);
5881 if (!ret)
5882 rb->aux_mmap_locked = extra;
5883 }
5884
5885unlock:
5886 if (!ret) {
5887 atomic_long_add(user_extra, &user->locked_vm);
5888 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5889
5890 atomic_inc(&event->mmap_count);
5891 } else if (rb) {
5892 atomic_dec(&rb->mmap_count);
5893 }
5894aux_unlock:
5895 mutex_unlock(&event->mmap_mutex);
5896
5897 /*
5898 * Since pinned accounting is per vm we cannot allow fork() to copy our
5899 * vma.
5900 */
5901 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5902 vma->vm_ops = &perf_mmap_vmops;
5903
5904 if (event->pmu->event_mapped)
5905 event->pmu->event_mapped(event, vma->vm_mm);
5906
5907 return ret;
5908}
5909
5910static int perf_fasync(int fd, struct file *filp, int on)
5911{
5912 struct inode *inode = file_inode(filp);
5913 struct perf_event *event = filp->private_data;
5914 int retval;
5915
5916 inode_lock(inode);
5917 retval = fasync_helper(fd, filp, on, &event->fasync);
5918 inode_unlock(inode);
5919
5920 if (retval < 0)
5921 return retval;
5922
5923 return 0;
5924}
5925
5926static const struct file_operations perf_fops = {
5927 .llseek = no_llseek,
5928 .release = perf_release,
5929 .read = perf_read,
5930 .poll = perf_poll,
5931 .unlocked_ioctl = perf_ioctl,
5932 .compat_ioctl = perf_compat_ioctl,
5933 .mmap = perf_mmap,
5934 .fasync = perf_fasync,
5935};
5936
5937/*
5938 * Perf event wakeup
5939 *
5940 * If there's data, ensure we set the poll() state and publish everything
5941 * to user-space before waking everybody up.
5942 */
5943
5944static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5945{
5946 /* only the parent has fasync state */
5947 if (event->parent)
5948 event = event->parent;
5949 return &event->fasync;
5950}
5951
5952void perf_event_wakeup(struct perf_event *event)
5953{
5954 ring_buffer_wakeup(event);
5955
5956 if (event->pending_kill) {
5957 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5958 event->pending_kill = 0;
5959 }
5960}
5961
5962static void perf_pending_event_disable(struct perf_event *event)
5963{
5964 int cpu = READ_ONCE(event->pending_disable);
5965
5966 if (cpu < 0)
5967 return;
5968
5969 if (cpu == smp_processor_id()) {
5970 WRITE_ONCE(event->pending_disable, -1);
5971 perf_event_disable_local(event);
5972 return;
5973 }
5974
5975 /*
5976 * CPU-A CPU-B
5977 *
5978 * perf_event_disable_inatomic()
5979 * @pending_disable = CPU-A;
5980 * irq_work_queue();
5981 *
5982 * sched-out
5983 * @pending_disable = -1;
5984 *
5985 * sched-in
5986 * perf_event_disable_inatomic()
5987 * @pending_disable = CPU-B;
5988 * irq_work_queue(); // FAILS
5989 *
5990 * irq_work_run()
5991 * perf_pending_event()
5992 *
5993 * But the event runs on CPU-B and wants disabling there.
5994 */
5995 irq_work_queue_on(&event->pending, cpu);
5996}
5997
5998static void perf_pending_event(struct irq_work *entry)
5999{
6000 struct perf_event *event = container_of(entry, struct perf_event, pending);
6001 int rctx;
6002
6003 rctx = perf_swevent_get_recursion_context();
6004 /*
6005 * If we 'fail' here, that's OK, it means recursion is already disabled
6006 * and we won't recurse 'further'.
6007 */
6008
6009 perf_pending_event_disable(event);
6010
6011 if (event->pending_wakeup) {
6012 event->pending_wakeup = 0;
6013 perf_event_wakeup(event);
6014 }
6015
6016 if (rctx >= 0)
6017 perf_swevent_put_recursion_context(rctx);
6018}
6019
6020/*
6021 * We assume there is only KVM supporting the callbacks.
6022 * Later on, we might change it to a list if there is
6023 * another virtualization implementation supporting the callbacks.
6024 */
6025struct perf_guest_info_callbacks *perf_guest_cbs;
6026
6027int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6028{
6029 perf_guest_cbs = cbs;
6030 return 0;
6031}
6032EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6033
6034int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6035{
6036 perf_guest_cbs = NULL;
6037 return 0;
6038}
6039EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6040
6041static void
6042perf_output_sample_regs(struct perf_output_handle *handle,
6043 struct pt_regs *regs, u64 mask)
6044{
6045 int bit;
6046 DECLARE_BITMAP(_mask, 64);
6047
6048 bitmap_from_u64(_mask, mask);
6049 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6050 u64 val;
6051
6052 val = perf_reg_value(regs, bit);
6053 perf_output_put(handle, val);
6054 }
6055}
6056
6057static void perf_sample_regs_user(struct perf_regs *regs_user,
6058 struct pt_regs *regs,
6059 struct pt_regs *regs_user_copy)
6060{
6061 if (user_mode(regs)) {
6062 regs_user->abi = perf_reg_abi(current);
6063 regs_user->regs = regs;
6064 } else if (!(current->flags & PF_KTHREAD)) {
6065 perf_get_regs_user(regs_user, regs, regs_user_copy);
6066 } else {
6067 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6068 regs_user->regs = NULL;
6069 }
6070}
6071
6072static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6073 struct pt_regs *regs)
6074{
6075 regs_intr->regs = regs;
6076 regs_intr->abi = perf_reg_abi(current);
6077}
6078
6079
6080/*
6081 * Get remaining task size from user stack pointer.
6082 *
6083 * It'd be better to take stack vma map and limit this more
6084 * precisely, but there's no way to get it safely under interrupt,
6085 * so using TASK_SIZE as limit.
6086 */
6087static u64 perf_ustack_task_size(struct pt_regs *regs)
6088{
6089 unsigned long addr = perf_user_stack_pointer(regs);
6090
6091 if (!addr || addr >= TASK_SIZE)
6092 return 0;
6093
6094 return TASK_SIZE - addr;
6095}
6096
6097static u16
6098perf_sample_ustack_size(u16 stack_size, u16 header_size,
6099 struct pt_regs *regs)
6100{
6101 u64 task_size;
6102
6103 /* No regs, no stack pointer, no dump. */
6104 if (!regs)
6105 return 0;
6106
6107 /*
6108 * Check if we fit in with the requested stack size into the:
6109 * - TASK_SIZE
6110 * If we don't, we limit the size to the TASK_SIZE.
6111 *
6112 * - remaining sample size
6113 * If we don't, we customize the stack size to
6114 * fit in to the remaining sample size.
6115 */
6116
6117 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6118 stack_size = min(stack_size, (u16) task_size);
6119
6120 /* Current header size plus static size and dynamic size. */
6121 header_size += 2 * sizeof(u64);
6122
6123 /* Do we fit in with the current stack dump size? */
6124 if ((u16) (header_size + stack_size) < header_size) {
6125 /*
6126 * If we overflow the maximum size for the sample,
6127 * we customize the stack dump size to fit in.
6128 */
6129 stack_size = USHRT_MAX - header_size - sizeof(u64);
6130 stack_size = round_up(stack_size, sizeof(u64));
6131 }
6132
6133 return stack_size;
6134}
6135
6136static void
6137perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6138 struct pt_regs *regs)
6139{
6140 /* Case of a kernel thread, nothing to dump */
6141 if (!regs) {
6142 u64 size = 0;
6143 perf_output_put(handle, size);
6144 } else {
6145 unsigned long sp;
6146 unsigned int rem;
6147 u64 dyn_size;
6148 mm_segment_t fs;
6149
6150 /*
6151 * We dump:
6152 * static size
6153 * - the size requested by user or the best one we can fit
6154 * in to the sample max size
6155 * data
6156 * - user stack dump data
6157 * dynamic size
6158 * - the actual dumped size
6159 */
6160
6161 /* Static size. */
6162 perf_output_put(handle, dump_size);
6163
6164 /* Data. */
6165 sp = perf_user_stack_pointer(regs);
6166 fs = get_fs();
6167 set_fs(USER_DS);
6168 rem = __output_copy_user(handle, (void *) sp, dump_size);
6169 set_fs(fs);
6170 dyn_size = dump_size - rem;
6171
6172 perf_output_skip(handle, rem);
6173
6174 /* Dynamic size. */
6175 perf_output_put(handle, dyn_size);
6176 }
6177}
6178
6179static void __perf_event_header__init_id(struct perf_event_header *header,
6180 struct perf_sample_data *data,
6181 struct perf_event *event)
6182{
6183 u64 sample_type = event->attr.sample_type;
6184
6185 data->type = sample_type;
6186 header->size += event->id_header_size;
6187
6188 if (sample_type & PERF_SAMPLE_TID) {
6189 /* namespace issues */
6190 data->tid_entry.pid = perf_event_pid(event, current);
6191 data->tid_entry.tid = perf_event_tid(event, current);
6192 }
6193
6194 if (sample_type & PERF_SAMPLE_TIME)
6195 data->time = perf_event_clock(event);
6196
6197 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6198 data->id = primary_event_id(event);
6199
6200 if (sample_type & PERF_SAMPLE_STREAM_ID)
6201 data->stream_id = event->id;
6202
6203 if (sample_type & PERF_SAMPLE_CPU) {
6204 data->cpu_entry.cpu = raw_smp_processor_id();
6205 data->cpu_entry.reserved = 0;
6206 }
6207}
6208
6209void perf_event_header__init_id(struct perf_event_header *header,
6210 struct perf_sample_data *data,
6211 struct perf_event *event)
6212{
6213 if (event->attr.sample_id_all)
6214 __perf_event_header__init_id(header, data, event);
6215}
6216
6217static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6218 struct perf_sample_data *data)
6219{
6220 u64 sample_type = data->type;
6221
6222 if (sample_type & PERF_SAMPLE_TID)
6223 perf_output_put(handle, data->tid_entry);
6224
6225 if (sample_type & PERF_SAMPLE_TIME)
6226 perf_output_put(handle, data->time);
6227
6228 if (sample_type & PERF_SAMPLE_ID)
6229 perf_output_put(handle, data->id);
6230
6231 if (sample_type & PERF_SAMPLE_STREAM_ID)
6232 perf_output_put(handle, data->stream_id);
6233
6234 if (sample_type & PERF_SAMPLE_CPU)
6235 perf_output_put(handle, data->cpu_entry);
6236
6237 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6238 perf_output_put(handle, data->id);
6239}
6240
6241void perf_event__output_id_sample(struct perf_event *event,
6242 struct perf_output_handle *handle,
6243 struct perf_sample_data *sample)
6244{
6245 if (event->attr.sample_id_all)
6246 __perf_event__output_id_sample(handle, sample);
6247}
6248
6249static void perf_output_read_one(struct perf_output_handle *handle,
6250 struct perf_event *event,
6251 u64 enabled, u64 running)
6252{
6253 u64 read_format = event->attr.read_format;
6254 u64 values[4];
6255 int n = 0;
6256
6257 values[n++] = perf_event_count(event);
6258 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6259 values[n++] = enabled +
6260 atomic64_read(&event->child_total_time_enabled);
6261 }
6262 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6263 values[n++] = running +
6264 atomic64_read(&event->child_total_time_running);
6265 }
6266 if (read_format & PERF_FORMAT_ID)
6267 values[n++] = primary_event_id(event);
6268
6269 __output_copy(handle, values, n * sizeof(u64));
6270}
6271
6272static void perf_output_read_group(struct perf_output_handle *handle,
6273 struct perf_event *event,
6274 u64 enabled, u64 running)
6275{
6276 struct perf_event *leader = event->group_leader, *sub;
6277 u64 read_format = event->attr.read_format;
6278 u64 values[5];
6279 int n = 0;
6280
6281 values[n++] = 1 + leader->nr_siblings;
6282
6283 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6284 values[n++] = enabled;
6285
6286 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6287 values[n++] = running;
6288
6289 if ((leader != event) &&
6290 (leader->state == PERF_EVENT_STATE_ACTIVE))
6291 leader->pmu->read(leader);
6292
6293 values[n++] = perf_event_count(leader);
6294 if (read_format & PERF_FORMAT_ID)
6295 values[n++] = primary_event_id(leader);
6296
6297 __output_copy(handle, values, n * sizeof(u64));
6298
6299 for_each_sibling_event(sub, leader) {
6300 n = 0;
6301
6302 if ((sub != event) &&
6303 (sub->state == PERF_EVENT_STATE_ACTIVE))
6304 sub->pmu->read(sub);
6305
6306 values[n++] = perf_event_count(sub);
6307 if (read_format & PERF_FORMAT_ID)
6308 values[n++] = primary_event_id(sub);
6309
6310 __output_copy(handle, values, n * sizeof(u64));
6311 }
6312}
6313
6314#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6315 PERF_FORMAT_TOTAL_TIME_RUNNING)
6316
6317/*
6318 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6319 *
6320 * The problem is that its both hard and excessively expensive to iterate the
6321 * child list, not to mention that its impossible to IPI the children running
6322 * on another CPU, from interrupt/NMI context.
6323 */
6324static void perf_output_read(struct perf_output_handle *handle,
6325 struct perf_event *event)
6326{
6327 u64 enabled = 0, running = 0, now;
6328 u64 read_format = event->attr.read_format;
6329
6330 /*
6331 * compute total_time_enabled, total_time_running
6332 * based on snapshot values taken when the event
6333 * was last scheduled in.
6334 *
6335 * we cannot simply called update_context_time()
6336 * because of locking issue as we are called in
6337 * NMI context
6338 */
6339 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6340 calc_timer_values(event, &now, &enabled, &running);
6341
6342 if (event->attr.read_format & PERF_FORMAT_GROUP)
6343 perf_output_read_group(handle, event, enabled, running);
6344 else
6345 perf_output_read_one(handle, event, enabled, running);
6346}
6347
6348void perf_output_sample(struct perf_output_handle *handle,
6349 struct perf_event_header *header,
6350 struct perf_sample_data *data,
6351 struct perf_event *event)
6352{
6353 u64 sample_type = data->type;
6354
6355 perf_output_put(handle, *header);
6356
6357 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6358 perf_output_put(handle, data->id);
6359
6360 if (sample_type & PERF_SAMPLE_IP)
6361 perf_output_put(handle, data->ip);
6362
6363 if (sample_type & PERF_SAMPLE_TID)
6364 perf_output_put(handle, data->tid_entry);
6365
6366 if (sample_type & PERF_SAMPLE_TIME)
6367 perf_output_put(handle, data->time);
6368
6369 if (sample_type & PERF_SAMPLE_ADDR)
6370 perf_output_put(handle, data->addr);
6371
6372 if (sample_type & PERF_SAMPLE_ID)
6373 perf_output_put(handle, data->id);
6374
6375 if (sample_type & PERF_SAMPLE_STREAM_ID)
6376 perf_output_put(handle, data->stream_id);
6377
6378 if (sample_type & PERF_SAMPLE_CPU)
6379 perf_output_put(handle, data->cpu_entry);
6380
6381 if (sample_type & PERF_SAMPLE_PERIOD)
6382 perf_output_put(handle, data->period);
6383
6384 if (sample_type & PERF_SAMPLE_READ)
6385 perf_output_read(handle, event);
6386
6387 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6388 int size = 1;
6389
6390 size += data->callchain->nr;
6391 size *= sizeof(u64);
6392 __output_copy(handle, data->callchain, size);
6393 }
6394
6395 if (sample_type & PERF_SAMPLE_RAW) {
6396 struct perf_raw_record *raw = data->raw;
6397
6398 if (raw) {
6399 struct perf_raw_frag *frag = &raw->frag;
6400
6401 perf_output_put(handle, raw->size);
6402 do {
6403 if (frag->copy) {
6404 __output_custom(handle, frag->copy,
6405 frag->data, frag->size);
6406 } else {
6407 __output_copy(handle, frag->data,
6408 frag->size);
6409 }
6410 if (perf_raw_frag_last(frag))
6411 break;
6412 frag = frag->next;
6413 } while (1);
6414 if (frag->pad)
6415 __output_skip(handle, NULL, frag->pad);
6416 } else {
6417 struct {
6418 u32 size;
6419 u32 data;
6420 } raw = {
6421 .size = sizeof(u32),
6422 .data = 0,
6423 };
6424 perf_output_put(handle, raw);
6425 }
6426 }
6427
6428 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6429 if (data->br_stack) {
6430 size_t size;
6431
6432 size = data->br_stack->nr
6433 * sizeof(struct perf_branch_entry);
6434
6435 perf_output_put(handle, data->br_stack->nr);
6436 perf_output_copy(handle, data->br_stack->entries, size);
6437 } else {
6438 /*
6439 * we always store at least the value of nr
6440 */
6441 u64 nr = 0;
6442 perf_output_put(handle, nr);
6443 }
6444 }
6445
6446 if (sample_type & PERF_SAMPLE_REGS_USER) {
6447 u64 abi = data->regs_user.abi;
6448
6449 /*
6450 * If there are no regs to dump, notice it through
6451 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6452 */
6453 perf_output_put(handle, abi);
6454
6455 if (abi) {
6456 u64 mask = event->attr.sample_regs_user;
6457 perf_output_sample_regs(handle,
6458 data->regs_user.regs,
6459 mask);
6460 }
6461 }
6462
6463 if (sample_type & PERF_SAMPLE_STACK_USER) {
6464 perf_output_sample_ustack(handle,
6465 data->stack_user_size,
6466 data->regs_user.regs);
6467 }
6468
6469 if (sample_type & PERF_SAMPLE_WEIGHT)
6470 perf_output_put(handle, data->weight);
6471
6472 if (sample_type & PERF_SAMPLE_DATA_SRC)
6473 perf_output_put(handle, data->data_src.val);
6474
6475 if (sample_type & PERF_SAMPLE_TRANSACTION)
6476 perf_output_put(handle, data->txn);
6477
6478 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6479 u64 abi = data->regs_intr.abi;
6480 /*
6481 * If there are no regs to dump, notice it through
6482 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6483 */
6484 perf_output_put(handle, abi);
6485
6486 if (abi) {
6487 u64 mask = event->attr.sample_regs_intr;
6488
6489 perf_output_sample_regs(handle,
6490 data->regs_intr.regs,
6491 mask);
6492 }
6493 }
6494
6495 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6496 perf_output_put(handle, data->phys_addr);
6497
6498 if (!event->attr.watermark) {
6499 int wakeup_events = event->attr.wakeup_events;
6500
6501 if (wakeup_events) {
6502 struct ring_buffer *rb = handle->rb;
6503 int events = local_inc_return(&rb->events);
6504
6505 if (events >= wakeup_events) {
6506 local_sub(wakeup_events, &rb->events);
6507 local_inc(&rb->wakeup);
6508 }
6509 }
6510 }
6511}
6512
6513static u64 perf_virt_to_phys(u64 virt)
6514{
6515 u64 phys_addr = 0;
6516 struct page *p = NULL;
6517
6518 if (!virt)
6519 return 0;
6520
6521 if (virt >= TASK_SIZE) {
6522 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6523 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6524 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6525 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6526 } else {
6527 /*
6528 * Walking the pages tables for user address.
6529 * Interrupts are disabled, so it prevents any tear down
6530 * of the page tables.
6531 * Try IRQ-safe __get_user_pages_fast first.
6532 * If failed, leave phys_addr as 0.
6533 */
6534 if ((current->mm != NULL) &&
6535 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6536 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6537
6538 if (p)
6539 put_page(p);
6540 }
6541
6542 return phys_addr;
6543}
6544
6545static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6546
6547struct perf_callchain_entry *
6548perf_callchain(struct perf_event *event, struct pt_regs *regs)
6549{
6550 bool kernel = !event->attr.exclude_callchain_kernel;
6551 bool user = !event->attr.exclude_callchain_user;
6552 /* Disallow cross-task user callchains. */
6553 bool crosstask = event->ctx->task && event->ctx->task != current;
6554 const u32 max_stack = event->attr.sample_max_stack;
6555 struct perf_callchain_entry *callchain;
6556
6557 if (!kernel && !user)
6558 return &__empty_callchain;
6559
6560 callchain = get_perf_callchain(regs, 0, kernel, user,
6561 max_stack, crosstask, true);
6562 return callchain ?: &__empty_callchain;
6563}
6564
6565void perf_prepare_sample(struct perf_event_header *header,
6566 struct perf_sample_data *data,
6567 struct perf_event *event,
6568 struct pt_regs *regs)
6569{
6570 u64 sample_type = event->attr.sample_type;
6571
6572 header->type = PERF_RECORD_SAMPLE;
6573 header->size = sizeof(*header) + event->header_size;
6574
6575 header->misc = 0;
6576 header->misc |= perf_misc_flags(regs);
6577
6578 __perf_event_header__init_id(header, data, event);
6579
6580 if (sample_type & PERF_SAMPLE_IP)
6581 data->ip = perf_instruction_pointer(regs);
6582
6583 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6584 int size = 1;
6585
6586 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6587 data->callchain = perf_callchain(event, regs);
6588
6589 size += data->callchain->nr;
6590
6591 header->size += size * sizeof(u64);
6592 }
6593
6594 if (sample_type & PERF_SAMPLE_RAW) {
6595 struct perf_raw_record *raw = data->raw;
6596 int size;
6597
6598 if (raw) {
6599 struct perf_raw_frag *frag = &raw->frag;
6600 u32 sum = 0;
6601
6602 do {
6603 sum += frag->size;
6604 if (perf_raw_frag_last(frag))
6605 break;
6606 frag = frag->next;
6607 } while (1);
6608
6609 size = round_up(sum + sizeof(u32), sizeof(u64));
6610 raw->size = size - sizeof(u32);
6611 frag->pad = raw->size - sum;
6612 } else {
6613 size = sizeof(u64);
6614 }
6615
6616 header->size += size;
6617 }
6618
6619 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6620 int size = sizeof(u64); /* nr */
6621 if (data->br_stack) {
6622 size += data->br_stack->nr
6623 * sizeof(struct perf_branch_entry);
6624 }
6625 header->size += size;
6626 }
6627
6628 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6629 perf_sample_regs_user(&data->regs_user, regs,
6630 &data->regs_user_copy);
6631
6632 if (sample_type & PERF_SAMPLE_REGS_USER) {
6633 /* regs dump ABI info */
6634 int size = sizeof(u64);
6635
6636 if (data->regs_user.regs) {
6637 u64 mask = event->attr.sample_regs_user;
6638 size += hweight64(mask) * sizeof(u64);
6639 }
6640
6641 header->size += size;
6642 }
6643
6644 if (sample_type & PERF_SAMPLE_STACK_USER) {
6645 /*
6646 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6647 * processed as the last one or have additional check added
6648 * in case new sample type is added, because we could eat
6649 * up the rest of the sample size.
6650 */
6651 u16 stack_size = event->attr.sample_stack_user;
6652 u16 size = sizeof(u64);
6653
6654 stack_size = perf_sample_ustack_size(stack_size, header->size,
6655 data->regs_user.regs);
6656
6657 /*
6658 * If there is something to dump, add space for the dump
6659 * itself and for the field that tells the dynamic size,
6660 * which is how many have been actually dumped.
6661 */
6662 if (stack_size)
6663 size += sizeof(u64) + stack_size;
6664
6665 data->stack_user_size = stack_size;
6666 header->size += size;
6667 }
6668
6669 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6670 /* regs dump ABI info */
6671 int size = sizeof(u64);
6672
6673 perf_sample_regs_intr(&data->regs_intr, regs);
6674
6675 if (data->regs_intr.regs) {
6676 u64 mask = event->attr.sample_regs_intr;
6677
6678 size += hweight64(mask) * sizeof(u64);
6679 }
6680
6681 header->size += size;
6682 }
6683
6684 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6685 data->phys_addr = perf_virt_to_phys(data->addr);
6686}
6687
6688static __always_inline int
6689__perf_event_output(struct perf_event *event,
6690 struct perf_sample_data *data,
6691 struct pt_regs *regs,
6692 int (*output_begin)(struct perf_output_handle *,
6693 struct perf_event *,
6694 unsigned int))
6695{
6696 struct perf_output_handle handle;
6697 struct perf_event_header header;
6698 int err;
6699
6700 /* protect the callchain buffers */
6701 rcu_read_lock();
6702
6703 perf_prepare_sample(&header, data, event, regs);
6704
6705 err = output_begin(&handle, event, header.size);
6706 if (err)
6707 goto exit;
6708
6709 perf_output_sample(&handle, &header, data, event);
6710
6711 perf_output_end(&handle);
6712
6713exit:
6714 rcu_read_unlock();
6715 return err;
6716}
6717
6718void
6719perf_event_output_forward(struct perf_event *event,
6720 struct perf_sample_data *data,
6721 struct pt_regs *regs)
6722{
6723 __perf_event_output(event, data, regs, perf_output_begin_forward);
6724}
6725
6726void
6727perf_event_output_backward(struct perf_event *event,
6728 struct perf_sample_data *data,
6729 struct pt_regs *regs)
6730{
6731 __perf_event_output(event, data, regs, perf_output_begin_backward);
6732}
6733
6734int
6735perf_event_output(struct perf_event *event,
6736 struct perf_sample_data *data,
6737 struct pt_regs *regs)
6738{
6739 return __perf_event_output(event, data, regs, perf_output_begin);
6740}
6741
6742/*
6743 * read event_id
6744 */
6745
6746struct perf_read_event {
6747 struct perf_event_header header;
6748
6749 u32 pid;
6750 u32 tid;
6751};
6752
6753static void
6754perf_event_read_event(struct perf_event *event,
6755 struct task_struct *task)
6756{
6757 struct perf_output_handle handle;
6758 struct perf_sample_data sample;
6759 struct perf_read_event read_event = {
6760 .header = {
6761 .type = PERF_RECORD_READ,
6762 .misc = 0,
6763 .size = sizeof(read_event) + event->read_size,
6764 },
6765 .pid = perf_event_pid(event, task),
6766 .tid = perf_event_tid(event, task),
6767 };
6768 int ret;
6769
6770 perf_event_header__init_id(&read_event.header, &sample, event);
6771 ret = perf_output_begin(&handle, event, read_event.header.size);
6772 if (ret)
6773 return;
6774
6775 perf_output_put(&handle, read_event);
6776 perf_output_read(&handle, event);
6777 perf_event__output_id_sample(event, &handle, &sample);
6778
6779 perf_output_end(&handle);
6780}
6781
6782typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6783
6784static void
6785perf_iterate_ctx(struct perf_event_context *ctx,
6786 perf_iterate_f output,
6787 void *data, bool all)
6788{
6789 struct perf_event *event;
6790
6791 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6792 if (!all) {
6793 if (event->state < PERF_EVENT_STATE_INACTIVE)
6794 continue;
6795 if (!event_filter_match(event))
6796 continue;
6797 }
6798
6799 output(event, data);
6800 }
6801}
6802
6803static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6804{
6805 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6806 struct perf_event *event;
6807
6808 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6809 /*
6810 * Skip events that are not fully formed yet; ensure that
6811 * if we observe event->ctx, both event and ctx will be
6812 * complete enough. See perf_install_in_context().
6813 */
6814 if (!smp_load_acquire(&event->ctx))
6815 continue;
6816
6817 if (event->state < PERF_EVENT_STATE_INACTIVE)
6818 continue;
6819 if (!event_filter_match(event))
6820 continue;
6821 output(event, data);
6822 }
6823}
6824
6825/*
6826 * Iterate all events that need to receive side-band events.
6827 *
6828 * For new callers; ensure that account_pmu_sb_event() includes
6829 * your event, otherwise it might not get delivered.
6830 */
6831static void
6832perf_iterate_sb(perf_iterate_f output, void *data,
6833 struct perf_event_context *task_ctx)
6834{
6835 struct perf_event_context *ctx;
6836 int ctxn;
6837
6838 rcu_read_lock();
6839 preempt_disable();
6840
6841 /*
6842 * If we have task_ctx != NULL we only notify the task context itself.
6843 * The task_ctx is set only for EXIT events before releasing task
6844 * context.
6845 */
6846 if (task_ctx) {
6847 perf_iterate_ctx(task_ctx, output, data, false);
6848 goto done;
6849 }
6850
6851 perf_iterate_sb_cpu(output, data);
6852
6853 for_each_task_context_nr(ctxn) {
6854 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6855 if (ctx)
6856 perf_iterate_ctx(ctx, output, data, false);
6857 }
6858done:
6859 preempt_enable();
6860 rcu_read_unlock();
6861}
6862
6863/*
6864 * Clear all file-based filters at exec, they'll have to be
6865 * re-instated when/if these objects are mmapped again.
6866 */
6867static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6868{
6869 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6870 struct perf_addr_filter *filter;
6871 unsigned int restart = 0, count = 0;
6872 unsigned long flags;
6873
6874 if (!has_addr_filter(event))
6875 return;
6876
6877 raw_spin_lock_irqsave(&ifh->lock, flags);
6878 list_for_each_entry(filter, &ifh->list, entry) {
6879 if (filter->path.dentry) {
6880 event->addr_filter_ranges[count].start = 0;
6881 event->addr_filter_ranges[count].size = 0;
6882 restart++;
6883 }
6884
6885 count++;
6886 }
6887
6888 if (restart)
6889 event->addr_filters_gen++;
6890 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6891
6892 if (restart)
6893 perf_event_stop(event, 1);
6894}
6895
6896void perf_event_exec(void)
6897{
6898 struct perf_event_context *ctx;
6899 int ctxn;
6900
6901 rcu_read_lock();
6902 for_each_task_context_nr(ctxn) {
6903 ctx = current->perf_event_ctxp[ctxn];
6904 if (!ctx)
6905 continue;
6906
6907 perf_event_enable_on_exec(ctxn);
6908
6909 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6910 true);
6911 }
6912 rcu_read_unlock();
6913}
6914
6915struct remote_output {
6916 struct ring_buffer *rb;
6917 int err;
6918};
6919
6920static void __perf_event_output_stop(struct perf_event *event, void *data)
6921{
6922 struct perf_event *parent = event->parent;
6923 struct remote_output *ro = data;
6924 struct ring_buffer *rb = ro->rb;
6925 struct stop_event_data sd = {
6926 .event = event,
6927 };
6928
6929 if (!has_aux(event))
6930 return;
6931
6932 if (!parent)
6933 parent = event;
6934
6935 /*
6936 * In case of inheritance, it will be the parent that links to the
6937 * ring-buffer, but it will be the child that's actually using it.
6938 *
6939 * We are using event::rb to determine if the event should be stopped,
6940 * however this may race with ring_buffer_attach() (through set_output),
6941 * which will make us skip the event that actually needs to be stopped.
6942 * So ring_buffer_attach() has to stop an aux event before re-assigning
6943 * its rb pointer.
6944 */
6945 if (rcu_dereference(parent->rb) == rb)
6946 ro->err = __perf_event_stop(&sd);
6947}
6948
6949static int __perf_pmu_output_stop(void *info)
6950{
6951 struct perf_event *event = info;
6952 struct pmu *pmu = event->ctx->pmu;
6953 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6954 struct remote_output ro = {
6955 .rb = event->rb,
6956 };
6957
6958 rcu_read_lock();
6959 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6960 if (cpuctx->task_ctx)
6961 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6962 &ro, false);
6963 rcu_read_unlock();
6964
6965 return ro.err;
6966}
6967
6968static void perf_pmu_output_stop(struct perf_event *event)
6969{
6970 struct perf_event *iter;
6971 int err, cpu;
6972
6973restart:
6974 rcu_read_lock();
6975 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6976 /*
6977 * For per-CPU events, we need to make sure that neither they
6978 * nor their children are running; for cpu==-1 events it's
6979 * sufficient to stop the event itself if it's active, since
6980 * it can't have children.
6981 */
6982 cpu = iter->cpu;
6983 if (cpu == -1)
6984 cpu = READ_ONCE(iter->oncpu);
6985
6986 if (cpu == -1)
6987 continue;
6988
6989 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6990 if (err == -EAGAIN) {
6991 rcu_read_unlock();
6992 goto restart;
6993 }
6994 }
6995 rcu_read_unlock();
6996}
6997
6998/*
6999 * task tracking -- fork/exit
7000 *
7001 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7002 */
7003
7004struct perf_task_event {
7005 struct task_struct *task;
7006 struct perf_event_context *task_ctx;
7007
7008 struct {
7009 struct perf_event_header header;
7010
7011 u32 pid;
7012 u32 ppid;
7013 u32 tid;
7014 u32 ptid;
7015 u64 time;
7016 } event_id;
7017};
7018
7019static int perf_event_task_match(struct perf_event *event)
7020{
7021 return event->attr.comm || event->attr.mmap ||
7022 event->attr.mmap2 || event->attr.mmap_data ||
7023 event->attr.task;
7024}
7025
7026static void perf_event_task_output(struct perf_event *event,
7027 void *data)
7028{
7029 struct perf_task_event *task_event = data;
7030 struct perf_output_handle handle;
7031 struct perf_sample_data sample;
7032 struct task_struct *task = task_event->task;
7033 int ret, size = task_event->event_id.header.size;
7034
7035 if (!perf_event_task_match(event))
7036 return;
7037
7038 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7039
7040 ret = perf_output_begin(&handle, event,
7041 task_event->event_id.header.size);
7042 if (ret)
7043 goto out;
7044
7045 task_event->event_id.pid = perf_event_pid(event, task);
7046 task_event->event_id.ppid = perf_event_pid(event, current);
7047
7048 task_event->event_id.tid = perf_event_tid(event, task);
7049 task_event->event_id.ptid = perf_event_tid(event, current);
7050
7051 task_event->event_id.time = perf_event_clock(event);
7052
7053 perf_output_put(&handle, task_event->event_id);
7054
7055 perf_event__output_id_sample(event, &handle, &sample);
7056
7057 perf_output_end(&handle);
7058out:
7059 task_event->event_id.header.size = size;
7060}
7061
7062static void perf_event_task(struct task_struct *task,
7063 struct perf_event_context *task_ctx,
7064 int new)
7065{
7066 struct perf_task_event task_event;
7067
7068 if (!atomic_read(&nr_comm_events) &&
7069 !atomic_read(&nr_mmap_events) &&
7070 !atomic_read(&nr_task_events))
7071 return;
7072
7073 task_event = (struct perf_task_event){
7074 .task = task,
7075 .task_ctx = task_ctx,
7076 .event_id = {
7077 .header = {
7078 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7079 .misc = 0,
7080 .size = sizeof(task_event.event_id),
7081 },
7082 /* .pid */
7083 /* .ppid */
7084 /* .tid */
7085 /* .ptid */
7086 /* .time */
7087 },
7088 };
7089
7090 perf_iterate_sb(perf_event_task_output,
7091 &task_event,
7092 task_ctx);
7093}
7094
7095void perf_event_fork(struct task_struct *task)
7096{
7097 perf_event_task(task, NULL, 1);
7098 perf_event_namespaces(task);
7099}
7100
7101/*
7102 * comm tracking
7103 */
7104
7105struct perf_comm_event {
7106 struct task_struct *task;
7107 char *comm;
7108 int comm_size;
7109
7110 struct {
7111 struct perf_event_header header;
7112
7113 u32 pid;
7114 u32 tid;
7115 } event_id;
7116};
7117
7118static int perf_event_comm_match(struct perf_event *event)
7119{
7120 return event->attr.comm;
7121}
7122
7123static void perf_event_comm_output(struct perf_event *event,
7124 void *data)
7125{
7126 struct perf_comm_event *comm_event = data;
7127 struct perf_output_handle handle;
7128 struct perf_sample_data sample;
7129 int size = comm_event->event_id.header.size;
7130 int ret;
7131
7132 if (!perf_event_comm_match(event))
7133 return;
7134
7135 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7136 ret = perf_output_begin(&handle, event,
7137 comm_event->event_id.header.size);
7138
7139 if (ret)
7140 goto out;
7141
7142 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7143 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7144
7145 perf_output_put(&handle, comm_event->event_id);
7146 __output_copy(&handle, comm_event->comm,
7147 comm_event->comm_size);
7148
7149 perf_event__output_id_sample(event, &handle, &sample);
7150
7151 perf_output_end(&handle);
7152out:
7153 comm_event->event_id.header.size = size;
7154}
7155
7156static void perf_event_comm_event(struct perf_comm_event *comm_event)
7157{
7158 char comm[TASK_COMM_LEN];
7159 unsigned int size;
7160
7161 memset(comm, 0, sizeof(comm));
7162 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7163 size = ALIGN(strlen(comm)+1, sizeof(u64));
7164
7165 comm_event->comm = comm;
7166 comm_event->comm_size = size;
7167
7168 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7169
7170 perf_iterate_sb(perf_event_comm_output,
7171 comm_event,
7172 NULL);
7173}
7174
7175void perf_event_comm(struct task_struct *task, bool exec)
7176{
7177 struct perf_comm_event comm_event;
7178
7179 if (!atomic_read(&nr_comm_events))
7180 return;
7181
7182 comm_event = (struct perf_comm_event){
7183 .task = task,
7184 /* .comm */
7185 /* .comm_size */
7186 .event_id = {
7187 .header = {
7188 .type = PERF_RECORD_COMM,
7189 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7190 /* .size */
7191 },
7192 /* .pid */
7193 /* .tid */
7194 },
7195 };
7196
7197 perf_event_comm_event(&comm_event);
7198}
7199
7200/*
7201 * namespaces tracking
7202 */
7203
7204struct perf_namespaces_event {
7205 struct task_struct *task;
7206
7207 struct {
7208 struct perf_event_header header;
7209
7210 u32 pid;
7211 u32 tid;
7212 u64 nr_namespaces;
7213 struct perf_ns_link_info link_info[NR_NAMESPACES];
7214 } event_id;
7215};
7216
7217static int perf_event_namespaces_match(struct perf_event *event)
7218{
7219 return event->attr.namespaces;
7220}
7221
7222static void perf_event_namespaces_output(struct perf_event *event,
7223 void *data)
7224{
7225 struct perf_namespaces_event *namespaces_event = data;
7226 struct perf_output_handle handle;
7227 struct perf_sample_data sample;
7228 u16 header_size = namespaces_event->event_id.header.size;
7229 int ret;
7230
7231 if (!perf_event_namespaces_match(event))
7232 return;
7233
7234 perf_event_header__init_id(&namespaces_event->event_id.header,
7235 &sample, event);
7236 ret = perf_output_begin(&handle, event,
7237 namespaces_event->event_id.header.size);
7238 if (ret)
7239 goto out;
7240
7241 namespaces_event->event_id.pid = perf_event_pid(event,
7242 namespaces_event->task);
7243 namespaces_event->event_id.tid = perf_event_tid(event,
7244 namespaces_event->task);
7245
7246 perf_output_put(&handle, namespaces_event->event_id);
7247
7248 perf_event__output_id_sample(event, &handle, &sample);
7249
7250 perf_output_end(&handle);
7251out:
7252 namespaces_event->event_id.header.size = header_size;
7253}
7254
7255static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7256 struct task_struct *task,
7257 const struct proc_ns_operations *ns_ops)
7258{
7259 struct path ns_path;
7260 struct inode *ns_inode;
7261 void *error;
7262
7263 error = ns_get_path(&ns_path, task, ns_ops);
7264 if (!error) {
7265 ns_inode = ns_path.dentry->d_inode;
7266 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7267 ns_link_info->ino = ns_inode->i_ino;
7268 path_put(&ns_path);
7269 }
7270}
7271
7272void perf_event_namespaces(struct task_struct *task)
7273{
7274 struct perf_namespaces_event namespaces_event;
7275 struct perf_ns_link_info *ns_link_info;
7276
7277 if (!atomic_read(&nr_namespaces_events))
7278 return;
7279
7280 namespaces_event = (struct perf_namespaces_event){
7281 .task = task,
7282 .event_id = {
7283 .header = {
7284 .type = PERF_RECORD_NAMESPACES,
7285 .misc = 0,
7286 .size = sizeof(namespaces_event.event_id),
7287 },
7288 /* .pid */
7289 /* .tid */
7290 .nr_namespaces = NR_NAMESPACES,
7291 /* .link_info[NR_NAMESPACES] */
7292 },
7293 };
7294
7295 ns_link_info = namespaces_event.event_id.link_info;
7296
7297 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7298 task, &mntns_operations);
7299
7300#ifdef CONFIG_USER_NS
7301 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7302 task, &userns_operations);
7303#endif
7304#ifdef CONFIG_NET_NS
7305 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7306 task, &netns_operations);
7307#endif
7308#ifdef CONFIG_UTS_NS
7309 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7310 task, &utsns_operations);
7311#endif
7312#ifdef CONFIG_IPC_NS
7313 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7314 task, &ipcns_operations);
7315#endif
7316#ifdef CONFIG_PID_NS
7317 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7318 task, &pidns_operations);
7319#endif
7320#ifdef CONFIG_CGROUPS
7321 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7322 task, &cgroupns_operations);
7323#endif
7324
7325 perf_iterate_sb(perf_event_namespaces_output,
7326 &namespaces_event,
7327 NULL);
7328}
7329
7330/*
7331 * mmap tracking
7332 */
7333
7334struct perf_mmap_event {
7335 struct vm_area_struct *vma;
7336
7337 const char *file_name;
7338 int file_size;
7339 int maj, min;
7340 u64 ino;
7341 u64 ino_generation;
7342 u32 prot, flags;
7343
7344 struct {
7345 struct perf_event_header header;
7346
7347 u32 pid;
7348 u32 tid;
7349 u64 start;
7350 u64 len;
7351 u64 pgoff;
7352 } event_id;
7353};
7354
7355static int perf_event_mmap_match(struct perf_event *event,
7356 void *data)
7357{
7358 struct perf_mmap_event *mmap_event = data;
7359 struct vm_area_struct *vma = mmap_event->vma;
7360 int executable = vma->vm_flags & VM_EXEC;
7361
7362 return (!executable && event->attr.mmap_data) ||
7363 (executable && (event->attr.mmap || event->attr.mmap2));
7364}
7365
7366static void perf_event_mmap_output(struct perf_event *event,
7367 void *data)
7368{
7369 struct perf_mmap_event *mmap_event = data;
7370 struct perf_output_handle handle;
7371 struct perf_sample_data sample;
7372 int size = mmap_event->event_id.header.size;
7373 u32 type = mmap_event->event_id.header.type;
7374 int ret;
7375
7376 if (!perf_event_mmap_match(event, data))
7377 return;
7378
7379 if (event->attr.mmap2) {
7380 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7381 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7382 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7383 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7384 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7385 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7386 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7387 }
7388
7389 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7390 ret = perf_output_begin(&handle, event,
7391 mmap_event->event_id.header.size);
7392 if (ret)
7393 goto out;
7394
7395 mmap_event->event_id.pid = perf_event_pid(event, current);
7396 mmap_event->event_id.tid = perf_event_tid(event, current);
7397
7398 perf_output_put(&handle, mmap_event->event_id);
7399
7400 if (event->attr.mmap2) {
7401 perf_output_put(&handle, mmap_event->maj);
7402 perf_output_put(&handle, mmap_event->min);
7403 perf_output_put(&handle, mmap_event->ino);
7404 perf_output_put(&handle, mmap_event->ino_generation);
7405 perf_output_put(&handle, mmap_event->prot);
7406 perf_output_put(&handle, mmap_event->flags);
7407 }
7408
7409 __output_copy(&handle, mmap_event->file_name,
7410 mmap_event->file_size);
7411
7412 perf_event__output_id_sample(event, &handle, &sample);
7413
7414 perf_output_end(&handle);
7415out:
7416 mmap_event->event_id.header.size = size;
7417 mmap_event->event_id.header.type = type;
7418}
7419
7420static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7421{
7422 struct vm_area_struct *vma = mmap_event->vma;
7423 struct file *file = vma->vm_file;
7424 int maj = 0, min = 0;
7425 u64 ino = 0, gen = 0;
7426 u32 prot = 0, flags = 0;
7427 unsigned int size;
7428 char tmp[16];
7429 char *buf = NULL;
7430 char *name;
7431
7432 if (vma->vm_flags & VM_READ)
7433 prot |= PROT_READ;
7434 if (vma->vm_flags & VM_WRITE)
7435 prot |= PROT_WRITE;
7436 if (vma->vm_flags & VM_EXEC)
7437 prot |= PROT_EXEC;
7438
7439 if (vma->vm_flags & VM_MAYSHARE)
7440 flags = MAP_SHARED;
7441 else
7442 flags = MAP_PRIVATE;
7443
7444 if (vma->vm_flags & VM_DENYWRITE)
7445 flags |= MAP_DENYWRITE;
7446 if (vma->vm_flags & VM_MAYEXEC)
7447 flags |= MAP_EXECUTABLE;
7448 if (vma->vm_flags & VM_LOCKED)
7449 flags |= MAP_LOCKED;
7450 if (vma->vm_flags & VM_HUGETLB)
7451 flags |= MAP_HUGETLB;
7452
7453 if (file) {
7454 struct inode *inode;
7455 dev_t dev;
7456
7457 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7458 if (!buf) {
7459 name = "//enomem";
7460 goto cpy_name;
7461 }
7462 /*
7463 * d_path() works from the end of the rb backwards, so we
7464 * need to add enough zero bytes after the string to handle
7465 * the 64bit alignment we do later.
7466 */
7467 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7468 if (IS_ERR(name)) {
7469 name = "//toolong";
7470 goto cpy_name;
7471 }
7472 inode = file_inode(vma->vm_file);
7473 dev = inode->i_sb->s_dev;
7474 ino = inode->i_ino;
7475 gen = inode->i_generation;
7476 maj = MAJOR(dev);
7477 min = MINOR(dev);
7478
7479 goto got_name;
7480 } else {
7481 if (vma->vm_ops && vma->vm_ops->name) {
7482 name = (char *) vma->vm_ops->name(vma);
7483 if (name)
7484 goto cpy_name;
7485 }
7486
7487 name = (char *)arch_vma_name(vma);
7488 if (name)
7489 goto cpy_name;
7490
7491 if (vma->vm_start <= vma->vm_mm->start_brk &&
7492 vma->vm_end >= vma->vm_mm->brk) {
7493 name = "[heap]";
7494 goto cpy_name;
7495 }
7496 if (vma->vm_start <= vma->vm_mm->start_stack &&
7497 vma->vm_end >= vma->vm_mm->start_stack) {
7498 name = "[stack]";
7499 goto cpy_name;
7500 }
7501
7502 name = "//anon";
7503 goto cpy_name;
7504 }
7505
7506cpy_name:
7507 strlcpy(tmp, name, sizeof(tmp));
7508 name = tmp;
7509got_name:
7510 /*
7511 * Since our buffer works in 8 byte units we need to align our string
7512 * size to a multiple of 8. However, we must guarantee the tail end is
7513 * zero'd out to avoid leaking random bits to userspace.
7514 */
7515 size = strlen(name)+1;
7516 while (!IS_ALIGNED(size, sizeof(u64)))
7517 name[size++] = '\0';
7518
7519 mmap_event->file_name = name;
7520 mmap_event->file_size = size;
7521 mmap_event->maj = maj;
7522 mmap_event->min = min;
7523 mmap_event->ino = ino;
7524 mmap_event->ino_generation = gen;
7525 mmap_event->prot = prot;
7526 mmap_event->flags = flags;
7527
7528 if (!(vma->vm_flags & VM_EXEC))
7529 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7530
7531 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7532
7533 perf_iterate_sb(perf_event_mmap_output,
7534 mmap_event,
7535 NULL);
7536
7537 kfree(buf);
7538}
7539
7540/*
7541 * Check whether inode and address range match filter criteria.
7542 */
7543static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7544 struct file *file, unsigned long offset,
7545 unsigned long size)
7546{
7547 /* d_inode(NULL) won't be equal to any mapped user-space file */
7548 if (!filter->path.dentry)
7549 return false;
7550
7551 if (d_inode(filter->path.dentry) != file_inode(file))
7552 return false;
7553
7554 if (filter->offset > offset + size)
7555 return false;
7556
7557 if (filter->offset + filter->size < offset)
7558 return false;
7559
7560 return true;
7561}
7562
7563static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7564 struct vm_area_struct *vma,
7565 struct perf_addr_filter_range *fr)
7566{
7567 unsigned long vma_size = vma->vm_end - vma->vm_start;
7568 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7569 struct file *file = vma->vm_file;
7570
7571 if (!perf_addr_filter_match(filter, file, off, vma_size))
7572 return false;
7573
7574 if (filter->offset < off) {
7575 fr->start = vma->vm_start;
7576 fr->size = min(vma_size, filter->size - (off - filter->offset));
7577 } else {
7578 fr->start = vma->vm_start + filter->offset - off;
7579 fr->size = min(vma->vm_end - fr->start, filter->size);
7580 }
7581
7582 return true;
7583}
7584
7585static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7586{
7587 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7588 struct vm_area_struct *vma = data;
7589 struct perf_addr_filter *filter;
7590 unsigned int restart = 0, count = 0;
7591 unsigned long flags;
7592
7593 if (!has_addr_filter(event))
7594 return;
7595
7596 if (!vma->vm_file)
7597 return;
7598
7599 raw_spin_lock_irqsave(&ifh->lock, flags);
7600 list_for_each_entry(filter, &ifh->list, entry) {
7601 if (perf_addr_filter_vma_adjust(filter, vma,
7602 &event->addr_filter_ranges[count]))
7603 restart++;
7604
7605 count++;
7606 }
7607
7608 if (restart)
7609 event->addr_filters_gen++;
7610 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7611
7612 if (restart)
7613 perf_event_stop(event, 1);
7614}
7615
7616/*
7617 * Adjust all task's events' filters to the new vma
7618 */
7619static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7620{
7621 struct perf_event_context *ctx;
7622 int ctxn;
7623
7624 /*
7625 * Data tracing isn't supported yet and as such there is no need
7626 * to keep track of anything that isn't related to executable code:
7627 */
7628 if (!(vma->vm_flags & VM_EXEC))
7629 return;
7630
7631 rcu_read_lock();
7632 for_each_task_context_nr(ctxn) {
7633 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7634 if (!ctx)
7635 continue;
7636
7637 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7638 }
7639 rcu_read_unlock();
7640}
7641
7642void perf_event_mmap(struct vm_area_struct *vma)
7643{
7644 struct perf_mmap_event mmap_event;
7645
7646 if (!atomic_read(&nr_mmap_events))
7647 return;
7648
7649 mmap_event = (struct perf_mmap_event){
7650 .vma = vma,
7651 /* .file_name */
7652 /* .file_size */
7653 .event_id = {
7654 .header = {
7655 .type = PERF_RECORD_MMAP,
7656 .misc = PERF_RECORD_MISC_USER,
7657 /* .size */
7658 },
7659 /* .pid */
7660 /* .tid */
7661 .start = vma->vm_start,
7662 .len = vma->vm_end - vma->vm_start,
7663 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7664 },
7665 /* .maj (attr_mmap2 only) */
7666 /* .min (attr_mmap2 only) */
7667 /* .ino (attr_mmap2 only) */
7668 /* .ino_generation (attr_mmap2 only) */
7669 /* .prot (attr_mmap2 only) */
7670 /* .flags (attr_mmap2 only) */
7671 };
7672
7673 perf_addr_filters_adjust(vma);
7674 perf_event_mmap_event(&mmap_event);
7675}
7676
7677void perf_event_aux_event(struct perf_event *event, unsigned long head,
7678 unsigned long size, u64 flags)
7679{
7680 struct perf_output_handle handle;
7681 struct perf_sample_data sample;
7682 struct perf_aux_event {
7683 struct perf_event_header header;
7684 u64 offset;
7685 u64 size;
7686 u64 flags;
7687 } rec = {
7688 .header = {
7689 .type = PERF_RECORD_AUX,
7690 .misc = 0,
7691 .size = sizeof(rec),
7692 },
7693 .offset = head,
7694 .size = size,
7695 .flags = flags,
7696 };
7697 int ret;
7698
7699 perf_event_header__init_id(&rec.header, &sample, event);
7700 ret = perf_output_begin(&handle, event, rec.header.size);
7701
7702 if (ret)
7703 return;
7704
7705 perf_output_put(&handle, rec);
7706 perf_event__output_id_sample(event, &handle, &sample);
7707
7708 perf_output_end(&handle);
7709}
7710
7711/*
7712 * Lost/dropped samples logging
7713 */
7714void perf_log_lost_samples(struct perf_event *event, u64 lost)
7715{
7716 struct perf_output_handle handle;
7717 struct perf_sample_data sample;
7718 int ret;
7719
7720 struct {
7721 struct perf_event_header header;
7722 u64 lost;
7723 } lost_samples_event = {
7724 .header = {
7725 .type = PERF_RECORD_LOST_SAMPLES,
7726 .misc = 0,
7727 .size = sizeof(lost_samples_event),
7728 },
7729 .lost = lost,
7730 };
7731
7732 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7733
7734 ret = perf_output_begin(&handle, event,
7735 lost_samples_event.header.size);
7736 if (ret)
7737 return;
7738
7739 perf_output_put(&handle, lost_samples_event);
7740 perf_event__output_id_sample(event, &handle, &sample);
7741 perf_output_end(&handle);
7742}
7743
7744/*
7745 * context_switch tracking
7746 */
7747
7748struct perf_switch_event {
7749 struct task_struct *task;
7750 struct task_struct *next_prev;
7751
7752 struct {
7753 struct perf_event_header header;
7754 u32 next_prev_pid;
7755 u32 next_prev_tid;
7756 } event_id;
7757};
7758
7759static int perf_event_switch_match(struct perf_event *event)
7760{
7761 return event->attr.context_switch;
7762}
7763
7764static void perf_event_switch_output(struct perf_event *event, void *data)
7765{
7766 struct perf_switch_event *se = data;
7767 struct perf_output_handle handle;
7768 struct perf_sample_data sample;
7769 int ret;
7770
7771 if (!perf_event_switch_match(event))
7772 return;
7773
7774 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7775 if (event->ctx->task) {
7776 se->event_id.header.type = PERF_RECORD_SWITCH;
7777 se->event_id.header.size = sizeof(se->event_id.header);
7778 } else {
7779 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7780 se->event_id.header.size = sizeof(se->event_id);
7781 se->event_id.next_prev_pid =
7782 perf_event_pid(event, se->next_prev);
7783 se->event_id.next_prev_tid =
7784 perf_event_tid(event, se->next_prev);
7785 }
7786
7787 perf_event_header__init_id(&se->event_id.header, &sample, event);
7788
7789 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7790 if (ret)
7791 return;
7792
7793 if (event->ctx->task)
7794 perf_output_put(&handle, se->event_id.header);
7795 else
7796 perf_output_put(&handle, se->event_id);
7797
7798 perf_event__output_id_sample(event, &handle, &sample);
7799
7800 perf_output_end(&handle);
7801}
7802
7803static void perf_event_switch(struct task_struct *task,
7804 struct task_struct *next_prev, bool sched_in)
7805{
7806 struct perf_switch_event switch_event;
7807
7808 /* N.B. caller checks nr_switch_events != 0 */
7809
7810 switch_event = (struct perf_switch_event){
7811 .task = task,
7812 .next_prev = next_prev,
7813 .event_id = {
7814 .header = {
7815 /* .type */
7816 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7817 /* .size */
7818 },
7819 /* .next_prev_pid */
7820 /* .next_prev_tid */
7821 },
7822 };
7823
7824 if (!sched_in && task->state == TASK_RUNNING)
7825 switch_event.event_id.header.misc |=
7826 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7827
7828 perf_iterate_sb(perf_event_switch_output,
7829 &switch_event,
7830 NULL);
7831}
7832
7833/*
7834 * IRQ throttle logging
7835 */
7836
7837static void perf_log_throttle(struct perf_event *event, int enable)
7838{
7839 struct perf_output_handle handle;
7840 struct perf_sample_data sample;
7841 int ret;
7842
7843 struct {
7844 struct perf_event_header header;
7845 u64 time;
7846 u64 id;
7847 u64 stream_id;
7848 } throttle_event = {
7849 .header = {
7850 .type = PERF_RECORD_THROTTLE,
7851 .misc = 0,
7852 .size = sizeof(throttle_event),
7853 },
7854 .time = perf_event_clock(event),
7855 .id = primary_event_id(event),
7856 .stream_id = event->id,
7857 };
7858
7859 if (enable)
7860 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7861
7862 perf_event_header__init_id(&throttle_event.header, &sample, event);
7863
7864 ret = perf_output_begin(&handle, event,
7865 throttle_event.header.size);
7866 if (ret)
7867 return;
7868
7869 perf_output_put(&handle, throttle_event);
7870 perf_event__output_id_sample(event, &handle, &sample);
7871 perf_output_end(&handle);
7872}
7873
7874/*
7875 * ksymbol register/unregister tracking
7876 */
7877
7878struct perf_ksymbol_event {
7879 const char *name;
7880 int name_len;
7881 struct {
7882 struct perf_event_header header;
7883 u64 addr;
7884 u32 len;
7885 u16 ksym_type;
7886 u16 flags;
7887 } event_id;
7888};
7889
7890static int perf_event_ksymbol_match(struct perf_event *event)
7891{
7892 return event->attr.ksymbol;
7893}
7894
7895static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7896{
7897 struct perf_ksymbol_event *ksymbol_event = data;
7898 struct perf_output_handle handle;
7899 struct perf_sample_data sample;
7900 int ret;
7901
7902 if (!perf_event_ksymbol_match(event))
7903 return;
7904
7905 perf_event_header__init_id(&ksymbol_event->event_id.header,
7906 &sample, event);
7907 ret = perf_output_begin(&handle, event,
7908 ksymbol_event->event_id.header.size);
7909 if (ret)
7910 return;
7911
7912 perf_output_put(&handle, ksymbol_event->event_id);
7913 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7914 perf_event__output_id_sample(event, &handle, &sample);
7915
7916 perf_output_end(&handle);
7917}
7918
7919void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7920 const char *sym)
7921{
7922 struct perf_ksymbol_event ksymbol_event;
7923 char name[KSYM_NAME_LEN];
7924 u16 flags = 0;
7925 int name_len;
7926
7927 if (!atomic_read(&nr_ksymbol_events))
7928 return;
7929
7930 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7931 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7932 goto err;
7933
7934 strlcpy(name, sym, KSYM_NAME_LEN);
7935 name_len = strlen(name) + 1;
7936 while (!IS_ALIGNED(name_len, sizeof(u64)))
7937 name[name_len++] = '\0';
7938 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7939
7940 if (unregister)
7941 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7942
7943 ksymbol_event = (struct perf_ksymbol_event){
7944 .name = name,
7945 .name_len = name_len,
7946 .event_id = {
7947 .header = {
7948 .type = PERF_RECORD_KSYMBOL,
7949 .size = sizeof(ksymbol_event.event_id) +
7950 name_len,
7951 },
7952 .addr = addr,
7953 .len = len,
7954 .ksym_type = ksym_type,
7955 .flags = flags,
7956 },
7957 };
7958
7959 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7960 return;
7961err:
7962 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7963}
7964
7965/*
7966 * bpf program load/unload tracking
7967 */
7968
7969struct perf_bpf_event {
7970 struct bpf_prog *prog;
7971 struct {
7972 struct perf_event_header header;
7973 u16 type;
7974 u16 flags;
7975 u32 id;
7976 u8 tag[BPF_TAG_SIZE];
7977 } event_id;
7978};
7979
7980static int perf_event_bpf_match(struct perf_event *event)
7981{
7982 return event->attr.bpf_event;
7983}
7984
7985static void perf_event_bpf_output(struct perf_event *event, void *data)
7986{
7987 struct perf_bpf_event *bpf_event = data;
7988 struct perf_output_handle handle;
7989 struct perf_sample_data sample;
7990 int ret;
7991
7992 if (!perf_event_bpf_match(event))
7993 return;
7994
7995 perf_event_header__init_id(&bpf_event->event_id.header,
7996 &sample, event);
7997 ret = perf_output_begin(&handle, event,
7998 bpf_event->event_id.header.size);
7999 if (ret)
8000 return;
8001
8002 perf_output_put(&handle, bpf_event->event_id);
8003 perf_event__output_id_sample(event, &handle, &sample);
8004
8005 perf_output_end(&handle);
8006}
8007
8008static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8009 enum perf_bpf_event_type type)
8010{
8011 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8012 char sym[KSYM_NAME_LEN];
8013 int i;
8014
8015 if (prog->aux->func_cnt == 0) {
8016 bpf_get_prog_name(prog, sym);
8017 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8018 (u64)(unsigned long)prog->bpf_func,
8019 prog->jited_len, unregister, sym);
8020 } else {
8021 for (i = 0; i < prog->aux->func_cnt; i++) {
8022 struct bpf_prog *subprog = prog->aux->func[i];
8023
8024 bpf_get_prog_name(subprog, sym);
8025 perf_event_ksymbol(
8026 PERF_RECORD_KSYMBOL_TYPE_BPF,
8027 (u64)(unsigned long)subprog->bpf_func,
8028 subprog->jited_len, unregister, sym);
8029 }
8030 }
8031}
8032
8033void perf_event_bpf_event(struct bpf_prog *prog,
8034 enum perf_bpf_event_type type,
8035 u16 flags)
8036{
8037 struct perf_bpf_event bpf_event;
8038
8039 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8040 type >= PERF_BPF_EVENT_MAX)
8041 return;
8042
8043 switch (type) {
8044 case PERF_BPF_EVENT_PROG_LOAD:
8045 case PERF_BPF_EVENT_PROG_UNLOAD:
8046 if (atomic_read(&nr_ksymbol_events))
8047 perf_event_bpf_emit_ksymbols(prog, type);
8048 break;
8049 default:
8050 break;
8051 }
8052
8053 if (!atomic_read(&nr_bpf_events))
8054 return;
8055
8056 bpf_event = (struct perf_bpf_event){
8057 .prog = prog,
8058 .event_id = {
8059 .header = {
8060 .type = PERF_RECORD_BPF_EVENT,
8061 .size = sizeof(bpf_event.event_id),
8062 },
8063 .type = type,
8064 .flags = flags,
8065 .id = prog->aux->id,
8066 },
8067 };
8068
8069 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8070
8071 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8072 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8073}
8074
8075void perf_event_itrace_started(struct perf_event *event)
8076{
8077 event->attach_state |= PERF_ATTACH_ITRACE;
8078}
8079
8080static void perf_log_itrace_start(struct perf_event *event)
8081{
8082 struct perf_output_handle handle;
8083 struct perf_sample_data sample;
8084 struct perf_aux_event {
8085 struct perf_event_header header;
8086 u32 pid;
8087 u32 tid;
8088 } rec;
8089 int ret;
8090
8091 if (event->parent)
8092 event = event->parent;
8093
8094 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8095 event->attach_state & PERF_ATTACH_ITRACE)
8096 return;
8097
8098 rec.header.type = PERF_RECORD_ITRACE_START;
8099 rec.header.misc = 0;
8100 rec.header.size = sizeof(rec);
8101 rec.pid = perf_event_pid(event, current);
8102 rec.tid = perf_event_tid(event, current);
8103
8104 perf_event_header__init_id(&rec.header, &sample, event);
8105 ret = perf_output_begin(&handle, event, rec.header.size);
8106
8107 if (ret)
8108 return;
8109
8110 perf_output_put(&handle, rec);
8111 perf_event__output_id_sample(event, &handle, &sample);
8112
8113 perf_output_end(&handle);
8114}
8115
8116static int
8117__perf_event_account_interrupt(struct perf_event *event, int throttle)
8118{
8119 struct hw_perf_event *hwc = &event->hw;
8120 int ret = 0;
8121 u64 seq;
8122
8123 seq = __this_cpu_read(perf_throttled_seq);
8124 if (seq != hwc->interrupts_seq) {
8125 hwc->interrupts_seq = seq;
8126 hwc->interrupts = 1;
8127 } else {
8128 hwc->interrupts++;
8129 if (unlikely(throttle
8130 && hwc->interrupts >= max_samples_per_tick)) {
8131 __this_cpu_inc(perf_throttled_count);
8132 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8133 hwc->interrupts = MAX_INTERRUPTS;
8134 perf_log_throttle(event, 0);
8135 ret = 1;
8136 }
8137 }
8138
8139 if (event->attr.freq) {
8140 u64 now = perf_clock();
8141 s64 delta = now - hwc->freq_time_stamp;
8142
8143 hwc->freq_time_stamp = now;
8144
8145 if (delta > 0 && delta < 2*TICK_NSEC)
8146 perf_adjust_period(event, delta, hwc->last_period, true);
8147 }
8148
8149 return ret;
8150}
8151
8152int perf_event_account_interrupt(struct perf_event *event)
8153{
8154 return __perf_event_account_interrupt(event, 1);
8155}
8156
8157/*
8158 * Generic event overflow handling, sampling.
8159 */
8160
8161static int __perf_event_overflow(struct perf_event *event,
8162 int throttle, struct perf_sample_data *data,
8163 struct pt_regs *regs)
8164{
8165 int events = atomic_read(&event->event_limit);
8166 int ret = 0;
8167
8168 /*
8169 * Non-sampling counters might still use the PMI to fold short
8170 * hardware counters, ignore those.
8171 */
8172 if (unlikely(!is_sampling_event(event)))
8173 return 0;
8174
8175 ret = __perf_event_account_interrupt(event, throttle);
8176
8177 /*
8178 * XXX event_limit might not quite work as expected on inherited
8179 * events
8180 */
8181
8182 event->pending_kill = POLL_IN;
8183 if (events && atomic_dec_and_test(&event->event_limit)) {
8184 ret = 1;
8185 event->pending_kill = POLL_HUP;
8186
8187 perf_event_disable_inatomic(event);
8188 }
8189
8190 READ_ONCE(event->overflow_handler)(event, data, regs);
8191
8192 if (*perf_event_fasync(event) && event->pending_kill) {
8193 event->pending_wakeup = 1;
8194 irq_work_queue(&event->pending);
8195 }
8196
8197 return ret;
8198}
8199
8200int perf_event_overflow(struct perf_event *event,
8201 struct perf_sample_data *data,
8202 struct pt_regs *regs)
8203{
8204 return __perf_event_overflow(event, 1, data, regs);
8205}
8206
8207/*
8208 * Generic software event infrastructure
8209 */
8210
8211struct swevent_htable {
8212 struct swevent_hlist *swevent_hlist;
8213 struct mutex hlist_mutex;
8214 int hlist_refcount;
8215
8216 /* Recursion avoidance in each contexts */
8217 int recursion[PERF_NR_CONTEXTS];
8218};
8219
8220static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8221
8222/*
8223 * We directly increment event->count and keep a second value in
8224 * event->hw.period_left to count intervals. This period event
8225 * is kept in the range [-sample_period, 0] so that we can use the
8226 * sign as trigger.
8227 */
8228
8229u64 perf_swevent_set_period(struct perf_event *event)
8230{
8231 struct hw_perf_event *hwc = &event->hw;
8232 u64 period = hwc->last_period;
8233 u64 nr, offset;
8234 s64 old, val;
8235
8236 hwc->last_period = hwc->sample_period;
8237
8238again:
8239 old = val = local64_read(&hwc->period_left);
8240 if (val < 0)
8241 return 0;
8242
8243 nr = div64_u64(period + val, period);
8244 offset = nr * period;
8245 val -= offset;
8246 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8247 goto again;
8248
8249 return nr;
8250}
8251
8252static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8253 struct perf_sample_data *data,
8254 struct pt_regs *regs)
8255{
8256 struct hw_perf_event *hwc = &event->hw;
8257 int throttle = 0;
8258
8259 if (!overflow)
8260 overflow = perf_swevent_set_period(event);
8261
8262 if (hwc->interrupts == MAX_INTERRUPTS)
8263 return;
8264
8265 for (; overflow; overflow--) {
8266 if (__perf_event_overflow(event, throttle,
8267 data, regs)) {
8268 /*
8269 * We inhibit the overflow from happening when
8270 * hwc->interrupts == MAX_INTERRUPTS.
8271 */
8272 break;
8273 }
8274 throttle = 1;
8275 }
8276}
8277
8278static void perf_swevent_event(struct perf_event *event, u64 nr,
8279 struct perf_sample_data *data,
8280 struct pt_regs *regs)
8281{
8282 struct hw_perf_event *hwc = &event->hw;
8283
8284 local64_add(nr, &event->count);
8285
8286 if (!regs)
8287 return;
8288
8289 if (!is_sampling_event(event))
8290 return;
8291
8292 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8293 data->period = nr;
8294 return perf_swevent_overflow(event, 1, data, regs);
8295 } else
8296 data->period = event->hw.last_period;
8297
8298 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8299 return perf_swevent_overflow(event, 1, data, regs);
8300
8301 if (local64_add_negative(nr, &hwc->period_left))
8302 return;
8303
8304 perf_swevent_overflow(event, 0, data, regs);
8305}
8306
8307static int perf_exclude_event(struct perf_event *event,
8308 struct pt_regs *regs)
8309{
8310 if (event->hw.state & PERF_HES_STOPPED)
8311 return 1;
8312
8313 if (regs) {
8314 if (event->attr.exclude_user && user_mode(regs))
8315 return 1;
8316
8317 if (event->attr.exclude_kernel && !user_mode(regs))
8318 return 1;
8319 }
8320
8321 return 0;
8322}
8323
8324static int perf_swevent_match(struct perf_event *event,
8325 enum perf_type_id type,
8326 u32 event_id,
8327 struct perf_sample_data *data,
8328 struct pt_regs *regs)
8329{
8330 if (event->attr.type != type)
8331 return 0;
8332
8333 if (event->attr.config != event_id)
8334 return 0;
8335
8336 if (perf_exclude_event(event, regs))
8337 return 0;
8338
8339 return 1;
8340}
8341
8342static inline u64 swevent_hash(u64 type, u32 event_id)
8343{
8344 u64 val = event_id | (type << 32);
8345
8346 return hash_64(val, SWEVENT_HLIST_BITS);
8347}
8348
8349static inline struct hlist_head *
8350__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8351{
8352 u64 hash = swevent_hash(type, event_id);
8353
8354 return &hlist->heads[hash];
8355}
8356
8357/* For the read side: events when they trigger */
8358static inline struct hlist_head *
8359find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8360{
8361 struct swevent_hlist *hlist;
8362
8363 hlist = rcu_dereference(swhash->swevent_hlist);
8364 if (!hlist)
8365 return NULL;
8366
8367 return __find_swevent_head(hlist, type, event_id);
8368}
8369
8370/* For the event head insertion and removal in the hlist */
8371static inline struct hlist_head *
8372find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8373{
8374 struct swevent_hlist *hlist;
8375 u32 event_id = event->attr.config;
8376 u64 type = event->attr.type;
8377
8378 /*
8379 * Event scheduling is always serialized against hlist allocation
8380 * and release. Which makes the protected version suitable here.
8381 * The context lock guarantees that.
8382 */
8383 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8384 lockdep_is_held(&event->ctx->lock));
8385 if (!hlist)
8386 return NULL;
8387
8388 return __find_swevent_head(hlist, type, event_id);
8389}
8390
8391static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8392 u64 nr,
8393 struct perf_sample_data *data,
8394 struct pt_regs *regs)
8395{
8396 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8397 struct perf_event *event;
8398 struct hlist_head *head;
8399
8400 rcu_read_lock();
8401 head = find_swevent_head_rcu(swhash, type, event_id);
8402 if (!head)
8403 goto end;
8404
8405 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8406 if (perf_swevent_match(event, type, event_id, data, regs))
8407 perf_swevent_event(event, nr, data, regs);
8408 }
8409end:
8410 rcu_read_unlock();
8411}
8412
8413DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8414
8415int perf_swevent_get_recursion_context(void)
8416{
8417 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8418
8419 return get_recursion_context(swhash->recursion);
8420}
8421EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8422
8423void perf_swevent_put_recursion_context(int rctx)
8424{
8425 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8426
8427 put_recursion_context(swhash->recursion, rctx);
8428}
8429
8430void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8431{
8432 struct perf_sample_data data;
8433
8434 if (WARN_ON_ONCE(!regs))
8435 return;
8436
8437 perf_sample_data_init(&data, addr, 0);
8438 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8439}
8440
8441void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8442{
8443 int rctx;
8444
8445 preempt_disable_notrace();
8446 rctx = perf_swevent_get_recursion_context();
8447 if (unlikely(rctx < 0))
8448 goto fail;
8449
8450 ___perf_sw_event(event_id, nr, regs, addr);
8451
8452 perf_swevent_put_recursion_context(rctx);
8453fail:
8454 preempt_enable_notrace();
8455}
8456
8457static void perf_swevent_read(struct perf_event *event)
8458{
8459}
8460
8461static int perf_swevent_add(struct perf_event *event, int flags)
8462{
8463 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8464 struct hw_perf_event *hwc = &event->hw;
8465 struct hlist_head *head;
8466
8467 if (is_sampling_event(event)) {
8468 hwc->last_period = hwc->sample_period;
8469 perf_swevent_set_period(event);
8470 }
8471
8472 hwc->state = !(flags & PERF_EF_START);
8473
8474 head = find_swevent_head(swhash, event);
8475 if (WARN_ON_ONCE(!head))
8476 return -EINVAL;
8477
8478 hlist_add_head_rcu(&event->hlist_entry, head);
8479 perf_event_update_userpage(event);
8480
8481 return 0;
8482}
8483
8484static void perf_swevent_del(struct perf_event *event, int flags)
8485{
8486 hlist_del_rcu(&event->hlist_entry);
8487}
8488
8489static void perf_swevent_start(struct perf_event *event, int flags)
8490{
8491 event->hw.state = 0;
8492}
8493
8494static void perf_swevent_stop(struct perf_event *event, int flags)
8495{
8496 event->hw.state = PERF_HES_STOPPED;
8497}
8498
8499/* Deref the hlist from the update side */
8500static inline struct swevent_hlist *
8501swevent_hlist_deref(struct swevent_htable *swhash)
8502{
8503 return rcu_dereference_protected(swhash->swevent_hlist,
8504 lockdep_is_held(&swhash->hlist_mutex));
8505}
8506
8507static void swevent_hlist_release(struct swevent_htable *swhash)
8508{
8509 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8510
8511 if (!hlist)
8512 return;
8513
8514 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8515 kfree_rcu(hlist, rcu_head);
8516}
8517
8518static void swevent_hlist_put_cpu(int cpu)
8519{
8520 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8521
8522 mutex_lock(&swhash->hlist_mutex);
8523
8524 if (!--swhash->hlist_refcount)
8525 swevent_hlist_release(swhash);
8526
8527 mutex_unlock(&swhash->hlist_mutex);
8528}
8529
8530static void swevent_hlist_put(void)
8531{
8532 int cpu;
8533
8534 for_each_possible_cpu(cpu)
8535 swevent_hlist_put_cpu(cpu);
8536}
8537
8538static int swevent_hlist_get_cpu(int cpu)
8539{
8540 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8541 int err = 0;
8542
8543 mutex_lock(&swhash->hlist_mutex);
8544 if (!swevent_hlist_deref(swhash) &&
8545 cpumask_test_cpu(cpu, perf_online_mask)) {
8546 struct swevent_hlist *hlist;
8547
8548 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8549 if (!hlist) {
8550 err = -ENOMEM;
8551 goto exit;
8552 }
8553 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8554 }
8555 swhash->hlist_refcount++;
8556exit:
8557 mutex_unlock(&swhash->hlist_mutex);
8558
8559 return err;
8560}
8561
8562static int swevent_hlist_get(void)
8563{
8564 int err, cpu, failed_cpu;
8565
8566 mutex_lock(&pmus_lock);
8567 for_each_possible_cpu(cpu) {
8568 err = swevent_hlist_get_cpu(cpu);
8569 if (err) {
8570 failed_cpu = cpu;
8571 goto fail;
8572 }
8573 }
8574 mutex_unlock(&pmus_lock);
8575 return 0;
8576fail:
8577 for_each_possible_cpu(cpu) {
8578 if (cpu == failed_cpu)
8579 break;
8580 swevent_hlist_put_cpu(cpu);
8581 }
8582 mutex_unlock(&pmus_lock);
8583 return err;
8584}
8585
8586struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8587
8588static void sw_perf_event_destroy(struct perf_event *event)
8589{
8590 u64 event_id = event->attr.config;
8591
8592 WARN_ON(event->parent);
8593
8594 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8595 swevent_hlist_put();
8596}
8597
8598static int perf_swevent_init(struct perf_event *event)
8599{
8600 u64 event_id = event->attr.config;
8601
8602 if (event->attr.type != PERF_TYPE_SOFTWARE)
8603 return -ENOENT;
8604
8605 /*
8606 * no branch sampling for software events
8607 */
8608 if (has_branch_stack(event))
8609 return -EOPNOTSUPP;
8610
8611 switch (event_id) {
8612 case PERF_COUNT_SW_CPU_CLOCK:
8613 case PERF_COUNT_SW_TASK_CLOCK:
8614 return -ENOENT;
8615
8616 default:
8617 break;
8618 }
8619
8620 if (event_id >= PERF_COUNT_SW_MAX)
8621 return -ENOENT;
8622
8623 if (!event->parent) {
8624 int err;
8625
8626 err = swevent_hlist_get();
8627 if (err)
8628 return err;
8629
8630 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8631 event->destroy = sw_perf_event_destroy;
8632 }
8633
8634 return 0;
8635}
8636
8637static struct pmu perf_swevent = {
8638 .task_ctx_nr = perf_sw_context,
8639
8640 .capabilities = PERF_PMU_CAP_NO_NMI,
8641
8642 .event_init = perf_swevent_init,
8643 .add = perf_swevent_add,
8644 .del = perf_swevent_del,
8645 .start = perf_swevent_start,
8646 .stop = perf_swevent_stop,
8647 .read = perf_swevent_read,
8648};
8649
8650#ifdef CONFIG_EVENT_TRACING
8651
8652static int perf_tp_filter_match(struct perf_event *event,
8653 struct perf_sample_data *data)
8654{
8655 void *record = data->raw->frag.data;
8656
8657 /* only top level events have filters set */
8658 if (event->parent)
8659 event = event->parent;
8660
8661 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8662 return 1;
8663 return 0;
8664}
8665
8666static int perf_tp_event_match(struct perf_event *event,
8667 struct perf_sample_data *data,
8668 struct pt_regs *regs)
8669{
8670 if (event->hw.state & PERF_HES_STOPPED)
8671 return 0;
8672 /*
8673 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8674 */
8675 if (event->attr.exclude_kernel && !user_mode(regs))
8676 return 0;
8677
8678 if (!perf_tp_filter_match(event, data))
8679 return 0;
8680
8681 return 1;
8682}
8683
8684void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8685 struct trace_event_call *call, u64 count,
8686 struct pt_regs *regs, struct hlist_head *head,
8687 struct task_struct *task)
8688{
8689 if (bpf_prog_array_valid(call)) {
8690 *(struct pt_regs **)raw_data = regs;
8691 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8692 perf_swevent_put_recursion_context(rctx);
8693 return;
8694 }
8695 }
8696 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8697 rctx, task);
8698}
8699EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8700
8701void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8702 struct pt_regs *regs, struct hlist_head *head, int rctx,
8703 struct task_struct *task)
8704{
8705 struct perf_sample_data data;
8706 struct perf_event *event;
8707
8708 struct perf_raw_record raw = {
8709 .frag = {
8710 .size = entry_size,
8711 .data = record,
8712 },
8713 };
8714
8715 perf_sample_data_init(&data, 0, 0);
8716 data.raw = &raw;
8717
8718 perf_trace_buf_update(record, event_type);
8719
8720 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8721 if (perf_tp_event_match(event, &data, regs))
8722 perf_swevent_event(event, count, &data, regs);
8723 }
8724
8725 /*
8726 * If we got specified a target task, also iterate its context and
8727 * deliver this event there too.
8728 */
8729 if (task && task != current) {
8730 struct perf_event_context *ctx;
8731 struct trace_entry *entry = record;
8732
8733 rcu_read_lock();
8734 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8735 if (!ctx)
8736 goto unlock;
8737
8738 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8739 if (event->cpu != smp_processor_id())
8740 continue;
8741 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8742 continue;
8743 if (event->attr.config != entry->type)
8744 continue;
8745 if (perf_tp_event_match(event, &data, regs))
8746 perf_swevent_event(event, count, &data, regs);
8747 }
8748unlock:
8749 rcu_read_unlock();
8750 }
8751
8752 perf_swevent_put_recursion_context(rctx);
8753}
8754EXPORT_SYMBOL_GPL(perf_tp_event);
8755
8756static void tp_perf_event_destroy(struct perf_event *event)
8757{
8758 perf_trace_destroy(event);
8759}
8760
8761static int perf_tp_event_init(struct perf_event *event)
8762{
8763 int err;
8764
8765 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8766 return -ENOENT;
8767
8768 /*
8769 * no branch sampling for tracepoint events
8770 */
8771 if (has_branch_stack(event))
8772 return -EOPNOTSUPP;
8773
8774 err = perf_trace_init(event);
8775 if (err)
8776 return err;
8777
8778 event->destroy = tp_perf_event_destroy;
8779
8780 return 0;
8781}
8782
8783static struct pmu perf_tracepoint = {
8784 .task_ctx_nr = perf_sw_context,
8785
8786 .event_init = perf_tp_event_init,
8787 .add = perf_trace_add,
8788 .del = perf_trace_del,
8789 .start = perf_swevent_start,
8790 .stop = perf_swevent_stop,
8791 .read = perf_swevent_read,
8792};
8793
8794#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8795/*
8796 * Flags in config, used by dynamic PMU kprobe and uprobe
8797 * The flags should match following PMU_FORMAT_ATTR().
8798 *
8799 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8800 * if not set, create kprobe/uprobe
8801 *
8802 * The following values specify a reference counter (or semaphore in the
8803 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8804 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8805 *
8806 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8807 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
8808 */
8809enum perf_probe_config {
8810 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8811 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8812 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8813};
8814
8815PMU_FORMAT_ATTR(retprobe, "config:0");
8816#endif
8817
8818#ifdef CONFIG_KPROBE_EVENTS
8819static struct attribute *kprobe_attrs[] = {
8820 &format_attr_retprobe.attr,
8821 NULL,
8822};
8823
8824static struct attribute_group kprobe_format_group = {
8825 .name = "format",
8826 .attrs = kprobe_attrs,
8827};
8828
8829static const struct attribute_group *kprobe_attr_groups[] = {
8830 &kprobe_format_group,
8831 NULL,
8832};
8833
8834static int perf_kprobe_event_init(struct perf_event *event);
8835static struct pmu perf_kprobe = {
8836 .task_ctx_nr = perf_sw_context,
8837 .event_init = perf_kprobe_event_init,
8838 .add = perf_trace_add,
8839 .del = perf_trace_del,
8840 .start = perf_swevent_start,
8841 .stop = perf_swevent_stop,
8842 .read = perf_swevent_read,
8843 .attr_groups = kprobe_attr_groups,
8844};
8845
8846static int perf_kprobe_event_init(struct perf_event *event)
8847{
8848 int err;
8849 bool is_retprobe;
8850
8851 if (event->attr.type != perf_kprobe.type)
8852 return -ENOENT;
8853
8854 if (!capable(CAP_SYS_ADMIN))
8855 return -EACCES;
8856
8857 /*
8858 * no branch sampling for probe events
8859 */
8860 if (has_branch_stack(event))
8861 return -EOPNOTSUPP;
8862
8863 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8864 err = perf_kprobe_init(event, is_retprobe);
8865 if (err)
8866 return err;
8867
8868 event->destroy = perf_kprobe_destroy;
8869
8870 return 0;
8871}
8872#endif /* CONFIG_KPROBE_EVENTS */
8873
8874#ifdef CONFIG_UPROBE_EVENTS
8875PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8876
8877static struct attribute *uprobe_attrs[] = {
8878 &format_attr_retprobe.attr,
8879 &format_attr_ref_ctr_offset.attr,
8880 NULL,
8881};
8882
8883static struct attribute_group uprobe_format_group = {
8884 .name = "format",
8885 .attrs = uprobe_attrs,
8886};
8887
8888static const struct attribute_group *uprobe_attr_groups[] = {
8889 &uprobe_format_group,
8890 NULL,
8891};
8892
8893static int perf_uprobe_event_init(struct perf_event *event);
8894static struct pmu perf_uprobe = {
8895 .task_ctx_nr = perf_sw_context,
8896 .event_init = perf_uprobe_event_init,
8897 .add = perf_trace_add,
8898 .del = perf_trace_del,
8899 .start = perf_swevent_start,
8900 .stop = perf_swevent_stop,
8901 .read = perf_swevent_read,
8902 .attr_groups = uprobe_attr_groups,
8903};
8904
8905static int perf_uprobe_event_init(struct perf_event *event)
8906{
8907 int err;
8908 unsigned long ref_ctr_offset;
8909 bool is_retprobe;
8910
8911 if (event->attr.type != perf_uprobe.type)
8912 return -ENOENT;
8913
8914 if (!capable(CAP_SYS_ADMIN))
8915 return -EACCES;
8916
8917 /*
8918 * no branch sampling for probe events
8919 */
8920 if (has_branch_stack(event))
8921 return -EOPNOTSUPP;
8922
8923 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8924 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8925 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8926 if (err)
8927 return err;
8928
8929 event->destroy = perf_uprobe_destroy;
8930
8931 return 0;
8932}
8933#endif /* CONFIG_UPROBE_EVENTS */
8934
8935static inline void perf_tp_register(void)
8936{
8937 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8938#ifdef CONFIG_KPROBE_EVENTS
8939 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8940#endif
8941#ifdef CONFIG_UPROBE_EVENTS
8942 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8943#endif
8944}
8945
8946static void perf_event_free_filter(struct perf_event *event)
8947{
8948 ftrace_profile_free_filter(event);
8949}
8950
8951#ifdef CONFIG_BPF_SYSCALL
8952static void bpf_overflow_handler(struct perf_event *event,
8953 struct perf_sample_data *data,
8954 struct pt_regs *regs)
8955{
8956 struct bpf_perf_event_data_kern ctx = {
8957 .data = data,
8958 .event = event,
8959 };
8960 int ret = 0;
8961
8962 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8963 preempt_disable();
8964 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8965 goto out;
8966 rcu_read_lock();
8967 ret = BPF_PROG_RUN(event->prog, &ctx);
8968 rcu_read_unlock();
8969out:
8970 __this_cpu_dec(bpf_prog_active);
8971 preempt_enable();
8972 if (!ret)
8973 return;
8974
8975 event->orig_overflow_handler(event, data, regs);
8976}
8977
8978static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8979{
8980 struct bpf_prog *prog;
8981
8982 if (event->overflow_handler_context)
8983 /* hw breakpoint or kernel counter */
8984 return -EINVAL;
8985
8986 if (event->prog)
8987 return -EEXIST;
8988
8989 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8990 if (IS_ERR(prog))
8991 return PTR_ERR(prog);
8992
8993 event->prog = prog;
8994 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8995 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8996 return 0;
8997}
8998
8999static void perf_event_free_bpf_handler(struct perf_event *event)
9000{
9001 struct bpf_prog *prog = event->prog;
9002
9003 if (!prog)
9004 return;
9005
9006 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9007 event->prog = NULL;
9008 bpf_prog_put(prog);
9009}
9010#else
9011static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9012{
9013 return -EOPNOTSUPP;
9014}
9015static void perf_event_free_bpf_handler(struct perf_event *event)
9016{
9017}
9018#endif
9019
9020/*
9021 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9022 * with perf_event_open()
9023 */
9024static inline bool perf_event_is_tracing(struct perf_event *event)
9025{
9026 if (event->pmu == &perf_tracepoint)
9027 return true;
9028#ifdef CONFIG_KPROBE_EVENTS
9029 if (event->pmu == &perf_kprobe)
9030 return true;
9031#endif
9032#ifdef CONFIG_UPROBE_EVENTS
9033 if (event->pmu == &perf_uprobe)
9034 return true;
9035#endif
9036 return false;
9037}
9038
9039static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9040{
9041 bool is_kprobe, is_tracepoint, is_syscall_tp;
9042 struct bpf_prog *prog;
9043 int ret;
9044
9045 if (!perf_event_is_tracing(event))
9046 return perf_event_set_bpf_handler(event, prog_fd);
9047
9048 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9049 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9050 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9051 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9052 /* bpf programs can only be attached to u/kprobe or tracepoint */
9053 return -EINVAL;
9054
9055 prog = bpf_prog_get(prog_fd);
9056 if (IS_ERR(prog))
9057 return PTR_ERR(prog);
9058
9059 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9060 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9061 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9062 /* valid fd, but invalid bpf program type */
9063 bpf_prog_put(prog);
9064 return -EINVAL;
9065 }
9066
9067 /* Kprobe override only works for kprobes, not uprobes. */
9068 if (prog->kprobe_override &&
9069 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9070 bpf_prog_put(prog);
9071 return -EINVAL;
9072 }
9073
9074 if (is_tracepoint || is_syscall_tp) {
9075 int off = trace_event_get_offsets(event->tp_event);
9076
9077 if (prog->aux->max_ctx_offset > off) {
9078 bpf_prog_put(prog);
9079 return -EACCES;
9080 }
9081 }
9082
9083 ret = perf_event_attach_bpf_prog(event, prog);
9084 if (ret)
9085 bpf_prog_put(prog);
9086 return ret;
9087}
9088
9089static void perf_event_free_bpf_prog(struct perf_event *event)
9090{
9091 if (!perf_event_is_tracing(event)) {
9092 perf_event_free_bpf_handler(event);
9093 return;
9094 }
9095 perf_event_detach_bpf_prog(event);
9096}
9097
9098#else
9099
9100static inline void perf_tp_register(void)
9101{
9102}
9103
9104static void perf_event_free_filter(struct perf_event *event)
9105{
9106}
9107
9108static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9109{
9110 return -ENOENT;
9111}
9112
9113static void perf_event_free_bpf_prog(struct perf_event *event)
9114{
9115}
9116#endif /* CONFIG_EVENT_TRACING */
9117
9118#ifdef CONFIG_HAVE_HW_BREAKPOINT
9119void perf_bp_event(struct perf_event *bp, void *data)
9120{
9121 struct perf_sample_data sample;
9122 struct pt_regs *regs = data;
9123
9124 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9125
9126 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9127 perf_swevent_event(bp, 1, &sample, regs);
9128}
9129#endif
9130
9131/*
9132 * Allocate a new address filter
9133 */
9134static struct perf_addr_filter *
9135perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9136{
9137 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9138 struct perf_addr_filter *filter;
9139
9140 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9141 if (!filter)
9142 return NULL;
9143
9144 INIT_LIST_HEAD(&filter->entry);
9145 list_add_tail(&filter->entry, filters);
9146
9147 return filter;
9148}
9149
9150static void free_filters_list(struct list_head *filters)
9151{
9152 struct perf_addr_filter *filter, *iter;
9153
9154 list_for_each_entry_safe(filter, iter, filters, entry) {
9155 path_put(&filter->path);
9156 list_del(&filter->entry);
9157 kfree(filter);
9158 }
9159}
9160
9161/*
9162 * Free existing address filters and optionally install new ones
9163 */
9164static void perf_addr_filters_splice(struct perf_event *event,
9165 struct list_head *head)
9166{
9167 unsigned long flags;
9168 LIST_HEAD(list);
9169
9170 if (!has_addr_filter(event))
9171 return;
9172
9173 /* don't bother with children, they don't have their own filters */
9174 if (event->parent)
9175 return;
9176
9177 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9178
9179 list_splice_init(&event->addr_filters.list, &list);
9180 if (head)
9181 list_splice(head, &event->addr_filters.list);
9182
9183 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9184
9185 free_filters_list(&list);
9186}
9187
9188/*
9189 * Scan through mm's vmas and see if one of them matches the
9190 * @filter; if so, adjust filter's address range.
9191 * Called with mm::mmap_sem down for reading.
9192 */
9193static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9194 struct mm_struct *mm,
9195 struct perf_addr_filter_range *fr)
9196{
9197 struct vm_area_struct *vma;
9198
9199 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9200 if (!vma->vm_file)
9201 continue;
9202
9203 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9204 return;
9205 }
9206}
9207
9208/*
9209 * Update event's address range filters based on the
9210 * task's existing mappings, if any.
9211 */
9212static void perf_event_addr_filters_apply(struct perf_event *event)
9213{
9214 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9215 struct task_struct *task = READ_ONCE(event->ctx->task);
9216 struct perf_addr_filter *filter;
9217 struct mm_struct *mm = NULL;
9218 unsigned int count = 0;
9219 unsigned long flags;
9220
9221 /*
9222 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9223 * will stop on the parent's child_mutex that our caller is also holding
9224 */
9225 if (task == TASK_TOMBSTONE)
9226 return;
9227
9228 if (ifh->nr_file_filters) {
9229 mm = get_task_mm(event->ctx->task);
9230 if (!mm)
9231 goto restart;
9232
9233 down_read(&mm->mmap_sem);
9234 }
9235
9236 raw_spin_lock_irqsave(&ifh->lock, flags);
9237 list_for_each_entry(filter, &ifh->list, entry) {
9238 if (filter->path.dentry) {
9239 /*
9240 * Adjust base offset if the filter is associated to a
9241 * binary that needs to be mapped:
9242 */
9243 event->addr_filter_ranges[count].start = 0;
9244 event->addr_filter_ranges[count].size = 0;
9245
9246 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9247 } else {
9248 event->addr_filter_ranges[count].start = filter->offset;
9249 event->addr_filter_ranges[count].size = filter->size;
9250 }
9251
9252 count++;
9253 }
9254
9255 event->addr_filters_gen++;
9256 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9257
9258 if (ifh->nr_file_filters) {
9259 up_read(&mm->mmap_sem);
9260
9261 mmput(mm);
9262 }
9263
9264restart:
9265 perf_event_stop(event, 1);
9266}
9267
9268/*
9269 * Address range filtering: limiting the data to certain
9270 * instruction address ranges. Filters are ioctl()ed to us from
9271 * userspace as ascii strings.
9272 *
9273 * Filter string format:
9274 *
9275 * ACTION RANGE_SPEC
9276 * where ACTION is one of the
9277 * * "filter": limit the trace to this region
9278 * * "start": start tracing from this address
9279 * * "stop": stop tracing at this address/region;
9280 * RANGE_SPEC is
9281 * * for kernel addresses: <start address>[/<size>]
9282 * * for object files: <start address>[/<size>]@</path/to/object/file>
9283 *
9284 * if <size> is not specified or is zero, the range is treated as a single
9285 * address; not valid for ACTION=="filter".
9286 */
9287enum {
9288 IF_ACT_NONE = -1,
9289 IF_ACT_FILTER,
9290 IF_ACT_START,
9291 IF_ACT_STOP,
9292 IF_SRC_FILE,
9293 IF_SRC_KERNEL,
9294 IF_SRC_FILEADDR,
9295 IF_SRC_KERNELADDR,
9296};
9297
9298enum {
9299 IF_STATE_ACTION = 0,
9300 IF_STATE_SOURCE,
9301 IF_STATE_END,
9302};
9303
9304static const match_table_t if_tokens = {
9305 { IF_ACT_FILTER, "filter" },
9306 { IF_ACT_START, "start" },
9307 { IF_ACT_STOP, "stop" },
9308 { IF_SRC_FILE, "%u/%u@%s" },
9309 { IF_SRC_KERNEL, "%u/%u" },
9310 { IF_SRC_FILEADDR, "%u@%s" },
9311 { IF_SRC_KERNELADDR, "%u" },
9312 { IF_ACT_NONE, NULL },
9313};
9314
9315/*
9316 * Address filter string parser
9317 */
9318static int
9319perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9320 struct list_head *filters)
9321{
9322 struct perf_addr_filter *filter = NULL;
9323 char *start, *orig, *filename = NULL;
9324 substring_t args[MAX_OPT_ARGS];
9325 int state = IF_STATE_ACTION, token;
9326 unsigned int kernel = 0;
9327 int ret = -EINVAL;
9328
9329 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9330 if (!fstr)
9331 return -ENOMEM;
9332
9333 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9334 static const enum perf_addr_filter_action_t actions[] = {
9335 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9336 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9337 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9338 };
9339 ret = -EINVAL;
9340
9341 if (!*start)
9342 continue;
9343
9344 /* filter definition begins */
9345 if (state == IF_STATE_ACTION) {
9346 filter = perf_addr_filter_new(event, filters);
9347 if (!filter)
9348 goto fail;
9349 }
9350
9351 token = match_token(start, if_tokens, args);
9352 switch (token) {
9353 case IF_ACT_FILTER:
9354 case IF_ACT_START:
9355 case IF_ACT_STOP:
9356 if (state != IF_STATE_ACTION)
9357 goto fail;
9358
9359 filter->action = actions[token];
9360 state = IF_STATE_SOURCE;
9361 break;
9362
9363 case IF_SRC_KERNELADDR:
9364 case IF_SRC_KERNEL:
9365 kernel = 1;
9366 /* fall through */
9367
9368 case IF_SRC_FILEADDR:
9369 case IF_SRC_FILE:
9370 if (state != IF_STATE_SOURCE)
9371 goto fail;
9372
9373 *args[0].to = 0;
9374 ret = kstrtoul(args[0].from, 0, &filter->offset);
9375 if (ret)
9376 goto fail;
9377
9378 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9379 *args[1].to = 0;
9380 ret = kstrtoul(args[1].from, 0, &filter->size);
9381 if (ret)
9382 goto fail;
9383 }
9384
9385 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9386 int fpos = token == IF_SRC_FILE ? 2 : 1;
9387
9388 filename = match_strdup(&args[fpos]);
9389 if (!filename) {
9390 ret = -ENOMEM;
9391 goto fail;
9392 }
9393 }
9394
9395 state = IF_STATE_END;
9396 break;
9397
9398 default:
9399 goto fail;
9400 }
9401
9402 /*
9403 * Filter definition is fully parsed, validate and install it.
9404 * Make sure that it doesn't contradict itself or the event's
9405 * attribute.
9406 */
9407 if (state == IF_STATE_END) {
9408 ret = -EINVAL;
9409 if (kernel && event->attr.exclude_kernel)
9410 goto fail;
9411
9412 /*
9413 * ACTION "filter" must have a non-zero length region
9414 * specified.
9415 */
9416 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9417 !filter->size)
9418 goto fail;
9419
9420 if (!kernel) {
9421 if (!filename)
9422 goto fail;
9423
9424 /*
9425 * For now, we only support file-based filters
9426 * in per-task events; doing so for CPU-wide
9427 * events requires additional context switching
9428 * trickery, since same object code will be
9429 * mapped at different virtual addresses in
9430 * different processes.
9431 */
9432 ret = -EOPNOTSUPP;
9433 if (!event->ctx->task)
9434 goto fail_free_name;
9435
9436 /* look up the path and grab its inode */
9437 ret = kern_path(filename, LOOKUP_FOLLOW,
9438 &filter->path);
9439 if (ret)
9440 goto fail_free_name;
9441
9442 kfree(filename);
9443 filename = NULL;
9444
9445 ret = -EINVAL;
9446 if (!filter->path.dentry ||
9447 !S_ISREG(d_inode(filter->path.dentry)
9448 ->i_mode))
9449 goto fail;
9450
9451 event->addr_filters.nr_file_filters++;
9452 }
9453
9454 /* ready to consume more filters */
9455 state = IF_STATE_ACTION;
9456 filter = NULL;
9457 }
9458 }
9459
9460 if (state != IF_STATE_ACTION)
9461 goto fail;
9462
9463 kfree(orig);
9464
9465 return 0;
9466
9467fail_free_name:
9468 kfree(filename);
9469fail:
9470 free_filters_list(filters);
9471 kfree(orig);
9472
9473 return ret;
9474}
9475
9476static int
9477perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9478{
9479 LIST_HEAD(filters);
9480 int ret;
9481
9482 /*
9483 * Since this is called in perf_ioctl() path, we're already holding
9484 * ctx::mutex.
9485 */
9486 lockdep_assert_held(&event->ctx->mutex);
9487
9488 if (WARN_ON_ONCE(event->parent))
9489 return -EINVAL;
9490
9491 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9492 if (ret)
9493 goto fail_clear_files;
9494
9495 ret = event->pmu->addr_filters_validate(&filters);
9496 if (ret)
9497 goto fail_free_filters;
9498
9499 /* remove existing filters, if any */
9500 perf_addr_filters_splice(event, &filters);
9501
9502 /* install new filters */
9503 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9504
9505 return ret;
9506
9507fail_free_filters:
9508 free_filters_list(&filters);
9509
9510fail_clear_files:
9511 event->addr_filters.nr_file_filters = 0;
9512
9513 return ret;
9514}
9515
9516static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9517{
9518 int ret = -EINVAL;
9519 char *filter_str;
9520
9521 filter_str = strndup_user(arg, PAGE_SIZE);
9522 if (IS_ERR(filter_str))
9523 return PTR_ERR(filter_str);
9524
9525#ifdef CONFIG_EVENT_TRACING
9526 if (perf_event_is_tracing(event)) {
9527 struct perf_event_context *ctx = event->ctx;
9528
9529 /*
9530 * Beware, here be dragons!!
9531 *
9532 * the tracepoint muck will deadlock against ctx->mutex, but
9533 * the tracepoint stuff does not actually need it. So
9534 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9535 * already have a reference on ctx.
9536 *
9537 * This can result in event getting moved to a different ctx,
9538 * but that does not affect the tracepoint state.
9539 */
9540 mutex_unlock(&ctx->mutex);
9541 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9542 mutex_lock(&ctx->mutex);
9543 } else
9544#endif
9545 if (has_addr_filter(event))
9546 ret = perf_event_set_addr_filter(event, filter_str);
9547
9548 kfree(filter_str);
9549 return ret;
9550}
9551
9552/*
9553 * hrtimer based swevent callback
9554 */
9555
9556static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9557{
9558 enum hrtimer_restart ret = HRTIMER_RESTART;
9559 struct perf_sample_data data;
9560 struct pt_regs *regs;
9561 struct perf_event *event;
9562 u64 period;
9563
9564 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9565
9566 if (event->state != PERF_EVENT_STATE_ACTIVE)
9567 return HRTIMER_NORESTART;
9568
9569 event->pmu->read(event);
9570
9571 perf_sample_data_init(&data, 0, event->hw.last_period);
9572 regs = get_irq_regs();
9573
9574 if (regs && !perf_exclude_event(event, regs)) {
9575 if (!(event->attr.exclude_idle && is_idle_task(current)))
9576 if (__perf_event_overflow(event, 1, &data, regs))
9577 ret = HRTIMER_NORESTART;
9578 }
9579
9580 period = max_t(u64, 10000, event->hw.sample_period);
9581 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9582
9583 return ret;
9584}
9585
9586static void perf_swevent_start_hrtimer(struct perf_event *event)
9587{
9588 struct hw_perf_event *hwc = &event->hw;
9589 s64 period;
9590
9591 if (!is_sampling_event(event))
9592 return;
9593
9594 period = local64_read(&hwc->period_left);
9595 if (period) {
9596 if (period < 0)
9597 period = 10000;
9598
9599 local64_set(&hwc->period_left, 0);
9600 } else {
9601 period = max_t(u64, 10000, hwc->sample_period);
9602 }
9603 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9604 HRTIMER_MODE_REL_PINNED_HARD);
9605}
9606
9607static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9608{
9609 struct hw_perf_event *hwc = &event->hw;
9610
9611 if (is_sampling_event(event)) {
9612 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9613 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9614
9615 hrtimer_cancel(&hwc->hrtimer);
9616 }
9617}
9618
9619static void perf_swevent_init_hrtimer(struct perf_event *event)
9620{
9621 struct hw_perf_event *hwc = &event->hw;
9622
9623 if (!is_sampling_event(event))
9624 return;
9625
9626 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9627 hwc->hrtimer.function = perf_swevent_hrtimer;
9628
9629 /*
9630 * Since hrtimers have a fixed rate, we can do a static freq->period
9631 * mapping and avoid the whole period adjust feedback stuff.
9632 */
9633 if (event->attr.freq) {
9634 long freq = event->attr.sample_freq;
9635
9636 event->attr.sample_period = NSEC_PER_SEC / freq;
9637 hwc->sample_period = event->attr.sample_period;
9638 local64_set(&hwc->period_left, hwc->sample_period);
9639 hwc->last_period = hwc->sample_period;
9640 event->attr.freq = 0;
9641 }
9642}
9643
9644/*
9645 * Software event: cpu wall time clock
9646 */
9647
9648static void cpu_clock_event_update(struct perf_event *event)
9649{
9650 s64 prev;
9651 u64 now;
9652
9653 now = local_clock();
9654 prev = local64_xchg(&event->hw.prev_count, now);
9655 local64_add(now - prev, &event->count);
9656}
9657
9658static void cpu_clock_event_start(struct perf_event *event, int flags)
9659{
9660 local64_set(&event->hw.prev_count, local_clock());
9661 perf_swevent_start_hrtimer(event);
9662}
9663
9664static void cpu_clock_event_stop(struct perf_event *event, int flags)
9665{
9666 perf_swevent_cancel_hrtimer(event);
9667 cpu_clock_event_update(event);
9668}
9669
9670static int cpu_clock_event_add(struct perf_event *event, int flags)
9671{
9672 if (flags & PERF_EF_START)
9673 cpu_clock_event_start(event, flags);
9674 perf_event_update_userpage(event);
9675
9676 return 0;
9677}
9678
9679static void cpu_clock_event_del(struct perf_event *event, int flags)
9680{
9681 cpu_clock_event_stop(event, flags);
9682}
9683
9684static void cpu_clock_event_read(struct perf_event *event)
9685{
9686 cpu_clock_event_update(event);
9687}
9688
9689static int cpu_clock_event_init(struct perf_event *event)
9690{
9691 if (event->attr.type != PERF_TYPE_SOFTWARE)
9692 return -ENOENT;
9693
9694 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9695 return -ENOENT;
9696
9697 /*
9698 * no branch sampling for software events
9699 */
9700 if (has_branch_stack(event))
9701 return -EOPNOTSUPP;
9702
9703 perf_swevent_init_hrtimer(event);
9704
9705 return 0;
9706}
9707
9708static struct pmu perf_cpu_clock = {
9709 .task_ctx_nr = perf_sw_context,
9710
9711 .capabilities = PERF_PMU_CAP_NO_NMI,
9712
9713 .event_init = cpu_clock_event_init,
9714 .add = cpu_clock_event_add,
9715 .del = cpu_clock_event_del,
9716 .start = cpu_clock_event_start,
9717 .stop = cpu_clock_event_stop,
9718 .read = cpu_clock_event_read,
9719};
9720
9721/*
9722 * Software event: task time clock
9723 */
9724
9725static void task_clock_event_update(struct perf_event *event, u64 now)
9726{
9727 u64 prev;
9728 s64 delta;
9729
9730 prev = local64_xchg(&event->hw.prev_count, now);
9731 delta = now - prev;
9732 local64_add(delta, &event->count);
9733}
9734
9735static void task_clock_event_start(struct perf_event *event, int flags)
9736{
9737 local64_set(&event->hw.prev_count, event->ctx->time);
9738 perf_swevent_start_hrtimer(event);
9739}
9740
9741static void task_clock_event_stop(struct perf_event *event, int flags)
9742{
9743 perf_swevent_cancel_hrtimer(event);
9744 task_clock_event_update(event, event->ctx->time);
9745}
9746
9747static int task_clock_event_add(struct perf_event *event, int flags)
9748{
9749 if (flags & PERF_EF_START)
9750 task_clock_event_start(event, flags);
9751 perf_event_update_userpage(event);
9752
9753 return 0;
9754}
9755
9756static void task_clock_event_del(struct perf_event *event, int flags)
9757{
9758 task_clock_event_stop(event, PERF_EF_UPDATE);
9759}
9760
9761static void task_clock_event_read(struct perf_event *event)
9762{
9763 u64 now = perf_clock();
9764 u64 delta = now - event->ctx->timestamp;
9765 u64 time = event->ctx->time + delta;
9766
9767 task_clock_event_update(event, time);
9768}
9769
9770static int task_clock_event_init(struct perf_event *event)
9771{
9772 if (event->attr.type != PERF_TYPE_SOFTWARE)
9773 return -ENOENT;
9774
9775 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9776 return -ENOENT;
9777
9778 /*
9779 * no branch sampling for software events
9780 */
9781 if (has_branch_stack(event))
9782 return -EOPNOTSUPP;
9783
9784 perf_swevent_init_hrtimer(event);
9785
9786 return 0;
9787}
9788
9789static struct pmu perf_task_clock = {
9790 .task_ctx_nr = perf_sw_context,
9791
9792 .capabilities = PERF_PMU_CAP_NO_NMI,
9793
9794 .event_init = task_clock_event_init,
9795 .add = task_clock_event_add,
9796 .del = task_clock_event_del,
9797 .start = task_clock_event_start,
9798 .stop = task_clock_event_stop,
9799 .read = task_clock_event_read,
9800};
9801
9802static void perf_pmu_nop_void(struct pmu *pmu)
9803{
9804}
9805
9806static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9807{
9808}
9809
9810static int perf_pmu_nop_int(struct pmu *pmu)
9811{
9812 return 0;
9813}
9814
9815static int perf_event_nop_int(struct perf_event *event, u64 value)
9816{
9817 return 0;
9818}
9819
9820static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9821
9822static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9823{
9824 __this_cpu_write(nop_txn_flags, flags);
9825
9826 if (flags & ~PERF_PMU_TXN_ADD)
9827 return;
9828
9829 perf_pmu_disable(pmu);
9830}
9831
9832static int perf_pmu_commit_txn(struct pmu *pmu)
9833{
9834 unsigned int flags = __this_cpu_read(nop_txn_flags);
9835
9836 __this_cpu_write(nop_txn_flags, 0);
9837
9838 if (flags & ~PERF_PMU_TXN_ADD)
9839 return 0;
9840
9841 perf_pmu_enable(pmu);
9842 return 0;
9843}
9844
9845static void perf_pmu_cancel_txn(struct pmu *pmu)
9846{
9847 unsigned int flags = __this_cpu_read(nop_txn_flags);
9848
9849 __this_cpu_write(nop_txn_flags, 0);
9850
9851 if (flags & ~PERF_PMU_TXN_ADD)
9852 return;
9853
9854 perf_pmu_enable(pmu);
9855}
9856
9857static int perf_event_idx_default(struct perf_event *event)
9858{
9859 return 0;
9860}
9861
9862/*
9863 * Ensures all contexts with the same task_ctx_nr have the same
9864 * pmu_cpu_context too.
9865 */
9866static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9867{
9868 struct pmu *pmu;
9869
9870 if (ctxn < 0)
9871 return NULL;
9872
9873 list_for_each_entry(pmu, &pmus, entry) {
9874 if (pmu->task_ctx_nr == ctxn)
9875 return pmu->pmu_cpu_context;
9876 }
9877
9878 return NULL;
9879}
9880
9881static void free_pmu_context(struct pmu *pmu)
9882{
9883 /*
9884 * Static contexts such as perf_sw_context have a global lifetime
9885 * and may be shared between different PMUs. Avoid freeing them
9886 * when a single PMU is going away.
9887 */
9888 if (pmu->task_ctx_nr > perf_invalid_context)
9889 return;
9890
9891 free_percpu(pmu->pmu_cpu_context);
9892}
9893
9894/*
9895 * Let userspace know that this PMU supports address range filtering:
9896 */
9897static ssize_t nr_addr_filters_show(struct device *dev,
9898 struct device_attribute *attr,
9899 char *page)
9900{
9901 struct pmu *pmu = dev_get_drvdata(dev);
9902
9903 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9904}
9905DEVICE_ATTR_RO(nr_addr_filters);
9906
9907static struct idr pmu_idr;
9908
9909static ssize_t
9910type_show(struct device *dev, struct device_attribute *attr, char *page)
9911{
9912 struct pmu *pmu = dev_get_drvdata(dev);
9913
9914 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9915}
9916static DEVICE_ATTR_RO(type);
9917
9918static ssize_t
9919perf_event_mux_interval_ms_show(struct device *dev,
9920 struct device_attribute *attr,
9921 char *page)
9922{
9923 struct pmu *pmu = dev_get_drvdata(dev);
9924
9925 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9926}
9927
9928static DEFINE_MUTEX(mux_interval_mutex);
9929
9930static ssize_t
9931perf_event_mux_interval_ms_store(struct device *dev,
9932 struct device_attribute *attr,
9933 const char *buf, size_t count)
9934{
9935 struct pmu *pmu = dev_get_drvdata(dev);
9936 int timer, cpu, ret;
9937
9938 ret = kstrtoint(buf, 0, &timer);
9939 if (ret)
9940 return ret;
9941
9942 if (timer < 1)
9943 return -EINVAL;
9944
9945 /* same value, noting to do */
9946 if (timer == pmu->hrtimer_interval_ms)
9947 return count;
9948
9949 mutex_lock(&mux_interval_mutex);
9950 pmu->hrtimer_interval_ms = timer;
9951
9952 /* update all cpuctx for this PMU */
9953 cpus_read_lock();
9954 for_each_online_cpu(cpu) {
9955 struct perf_cpu_context *cpuctx;
9956 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9957 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9958
9959 cpu_function_call(cpu,
9960 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9961 }
9962 cpus_read_unlock();
9963 mutex_unlock(&mux_interval_mutex);
9964
9965 return count;
9966}
9967static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9968
9969static struct attribute *pmu_dev_attrs[] = {
9970 &dev_attr_type.attr,
9971 &dev_attr_perf_event_mux_interval_ms.attr,
9972 NULL,
9973};
9974ATTRIBUTE_GROUPS(pmu_dev);
9975
9976static int pmu_bus_running;
9977static struct bus_type pmu_bus = {
9978 .name = "event_source",
9979 .dev_groups = pmu_dev_groups,
9980};
9981
9982static void pmu_dev_release(struct device *dev)
9983{
9984 kfree(dev);
9985}
9986
9987static int pmu_dev_alloc(struct pmu *pmu)
9988{
9989 int ret = -ENOMEM;
9990
9991 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9992 if (!pmu->dev)
9993 goto out;
9994
9995 pmu->dev->groups = pmu->attr_groups;
9996 device_initialize(pmu->dev);
9997 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9998 if (ret)
9999 goto free_dev;
10000
10001 dev_set_drvdata(pmu->dev, pmu);
10002 pmu->dev->bus = &pmu_bus;
10003 pmu->dev->release = pmu_dev_release;
10004 ret = device_add(pmu->dev);
10005 if (ret)
10006 goto free_dev;
10007
10008 /* For PMUs with address filters, throw in an extra attribute: */
10009 if (pmu->nr_addr_filters)
10010 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10011
10012 if (ret)
10013 goto del_dev;
10014
10015 if (pmu->attr_update)
10016 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10017
10018 if (ret)
10019 goto del_dev;
10020
10021out:
10022 return ret;
10023
10024del_dev:
10025 device_del(pmu->dev);
10026
10027free_dev:
10028 put_device(pmu->dev);
10029 goto out;
10030}
10031
10032static struct lock_class_key cpuctx_mutex;
10033static struct lock_class_key cpuctx_lock;
10034
10035int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10036{
10037 int cpu, ret;
10038
10039 mutex_lock(&pmus_lock);
10040 ret = -ENOMEM;
10041 pmu->pmu_disable_count = alloc_percpu(int);
10042 if (!pmu->pmu_disable_count)
10043 goto unlock;
10044
10045 pmu->type = -1;
10046 if (!name)
10047 goto skip_type;
10048 pmu->name = name;
10049
10050 if (type < 0) {
10051 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10052 if (type < 0) {
10053 ret = type;
10054 goto free_pdc;
10055 }
10056 }
10057 pmu->type = type;
10058
10059 if (pmu_bus_running) {
10060 ret = pmu_dev_alloc(pmu);
10061 if (ret)
10062 goto free_idr;
10063 }
10064
10065skip_type:
10066 if (pmu->task_ctx_nr == perf_hw_context) {
10067 static int hw_context_taken = 0;
10068
10069 /*
10070 * Other than systems with heterogeneous CPUs, it never makes
10071 * sense for two PMUs to share perf_hw_context. PMUs which are
10072 * uncore must use perf_invalid_context.
10073 */
10074 if (WARN_ON_ONCE(hw_context_taken &&
10075 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10076 pmu->task_ctx_nr = perf_invalid_context;
10077
10078 hw_context_taken = 1;
10079 }
10080
10081 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10082 if (pmu->pmu_cpu_context)
10083 goto got_cpu_context;
10084
10085 ret = -ENOMEM;
10086 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10087 if (!pmu->pmu_cpu_context)
10088 goto free_dev;
10089
10090 for_each_possible_cpu(cpu) {
10091 struct perf_cpu_context *cpuctx;
10092
10093 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10094 __perf_event_init_context(&cpuctx->ctx);
10095 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10096 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10097 cpuctx->ctx.pmu = pmu;
10098 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10099
10100 __perf_mux_hrtimer_init(cpuctx, cpu);
10101 }
10102
10103got_cpu_context:
10104 if (!pmu->start_txn) {
10105 if (pmu->pmu_enable) {
10106 /*
10107 * If we have pmu_enable/pmu_disable calls, install
10108 * transaction stubs that use that to try and batch
10109 * hardware accesses.
10110 */
10111 pmu->start_txn = perf_pmu_start_txn;
10112 pmu->commit_txn = perf_pmu_commit_txn;
10113 pmu->cancel_txn = perf_pmu_cancel_txn;
10114 } else {
10115 pmu->start_txn = perf_pmu_nop_txn;
10116 pmu->commit_txn = perf_pmu_nop_int;
10117 pmu->cancel_txn = perf_pmu_nop_void;
10118 }
10119 }
10120
10121 if (!pmu->pmu_enable) {
10122 pmu->pmu_enable = perf_pmu_nop_void;
10123 pmu->pmu_disable = perf_pmu_nop_void;
10124 }
10125
10126 if (!pmu->check_period)
10127 pmu->check_period = perf_event_nop_int;
10128
10129 if (!pmu->event_idx)
10130 pmu->event_idx = perf_event_idx_default;
10131
10132 list_add_rcu(&pmu->entry, &pmus);
10133 atomic_set(&pmu->exclusive_cnt, 0);
10134 ret = 0;
10135unlock:
10136 mutex_unlock(&pmus_lock);
10137
10138 return ret;
10139
10140free_dev:
10141 device_del(pmu->dev);
10142 put_device(pmu->dev);
10143
10144free_idr:
10145 if (pmu->type >= PERF_TYPE_MAX)
10146 idr_remove(&pmu_idr, pmu->type);
10147
10148free_pdc:
10149 free_percpu(pmu->pmu_disable_count);
10150 goto unlock;
10151}
10152EXPORT_SYMBOL_GPL(perf_pmu_register);
10153
10154void perf_pmu_unregister(struct pmu *pmu)
10155{
10156 mutex_lock(&pmus_lock);
10157 list_del_rcu(&pmu->entry);
10158
10159 /*
10160 * We dereference the pmu list under both SRCU and regular RCU, so
10161 * synchronize against both of those.
10162 */
10163 synchronize_srcu(&pmus_srcu);
10164 synchronize_rcu();
10165
10166 free_percpu(pmu->pmu_disable_count);
10167 if (pmu->type >= PERF_TYPE_MAX)
10168 idr_remove(&pmu_idr, pmu->type);
10169 if (pmu_bus_running) {
10170 if (pmu->nr_addr_filters)
10171 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10172 device_del(pmu->dev);
10173 put_device(pmu->dev);
10174 }
10175 free_pmu_context(pmu);
10176 mutex_unlock(&pmus_lock);
10177}
10178EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10179
10180static inline bool has_extended_regs(struct perf_event *event)
10181{
10182 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10183 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10184}
10185
10186static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10187{
10188 struct perf_event_context *ctx = NULL;
10189 int ret;
10190
10191 if (!try_module_get(pmu->module))
10192 return -ENODEV;
10193
10194 /*
10195 * A number of pmu->event_init() methods iterate the sibling_list to,
10196 * for example, validate if the group fits on the PMU. Therefore,
10197 * if this is a sibling event, acquire the ctx->mutex to protect
10198 * the sibling_list.
10199 */
10200 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10201 /*
10202 * This ctx->mutex can nest when we're called through
10203 * inheritance. See the perf_event_ctx_lock_nested() comment.
10204 */
10205 ctx = perf_event_ctx_lock_nested(event->group_leader,
10206 SINGLE_DEPTH_NESTING);
10207 BUG_ON(!ctx);
10208 }
10209
10210 event->pmu = pmu;
10211 ret = pmu->event_init(event);
10212
10213 if (ctx)
10214 perf_event_ctx_unlock(event->group_leader, ctx);
10215
10216 if (!ret) {
10217 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10218 has_extended_regs(event))
10219 ret = -EOPNOTSUPP;
10220
10221 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10222 event_has_any_exclude_flag(event))
10223 ret = -EINVAL;
10224
10225 if (ret && event->destroy)
10226 event->destroy(event);
10227 }
10228
10229 if (ret)
10230 module_put(pmu->module);
10231
10232 return ret;
10233}
10234
10235static struct pmu *perf_init_event(struct perf_event *event)
10236{
10237 struct pmu *pmu;
10238 int idx;
10239 int ret;
10240
10241 idx = srcu_read_lock(&pmus_srcu);
10242
10243 /* Try parent's PMU first: */
10244 if (event->parent && event->parent->pmu) {
10245 pmu = event->parent->pmu;
10246 ret = perf_try_init_event(pmu, event);
10247 if (!ret)
10248 goto unlock;
10249 }
10250
10251 rcu_read_lock();
10252 pmu = idr_find(&pmu_idr, event->attr.type);
10253 rcu_read_unlock();
10254 if (pmu) {
10255 ret = perf_try_init_event(pmu, event);
10256 if (ret)
10257 pmu = ERR_PTR(ret);
10258 goto unlock;
10259 }
10260
10261 list_for_each_entry_rcu(pmu, &pmus, entry) {
10262 ret = perf_try_init_event(pmu, event);
10263 if (!ret)
10264 goto unlock;
10265
10266 if (ret != -ENOENT) {
10267 pmu = ERR_PTR(ret);
10268 goto unlock;
10269 }
10270 }
10271 pmu = ERR_PTR(-ENOENT);
10272unlock:
10273 srcu_read_unlock(&pmus_srcu, idx);
10274
10275 return pmu;
10276}
10277
10278static void attach_sb_event(struct perf_event *event)
10279{
10280 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10281
10282 raw_spin_lock(&pel->lock);
10283 list_add_rcu(&event->sb_list, &pel->list);
10284 raw_spin_unlock(&pel->lock);
10285}
10286
10287/*
10288 * We keep a list of all !task (and therefore per-cpu) events
10289 * that need to receive side-band records.
10290 *
10291 * This avoids having to scan all the various PMU per-cpu contexts
10292 * looking for them.
10293 */
10294static void account_pmu_sb_event(struct perf_event *event)
10295{
10296 if (is_sb_event(event))
10297 attach_sb_event(event);
10298}
10299
10300static void account_event_cpu(struct perf_event *event, int cpu)
10301{
10302 if (event->parent)
10303 return;
10304
10305 if (is_cgroup_event(event))
10306 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10307}
10308
10309/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10310static void account_freq_event_nohz(void)
10311{
10312#ifdef CONFIG_NO_HZ_FULL
10313 /* Lock so we don't race with concurrent unaccount */
10314 spin_lock(&nr_freq_lock);
10315 if (atomic_inc_return(&nr_freq_events) == 1)
10316 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10317 spin_unlock(&nr_freq_lock);
10318#endif
10319}
10320
10321static void account_freq_event(void)
10322{
10323 if (tick_nohz_full_enabled())
10324 account_freq_event_nohz();
10325 else
10326 atomic_inc(&nr_freq_events);
10327}
10328
10329
10330static void account_event(struct perf_event *event)
10331{
10332 bool inc = false;
10333
10334 if (event->parent)
10335 return;
10336
10337 if (event->attach_state & PERF_ATTACH_TASK)
10338 inc = true;
10339 if (event->attr.mmap || event->attr.mmap_data)
10340 atomic_inc(&nr_mmap_events);
10341 if (event->attr.comm)
10342 atomic_inc(&nr_comm_events);
10343 if (event->attr.namespaces)
10344 atomic_inc(&nr_namespaces_events);
10345 if (event->attr.task)
10346 atomic_inc(&nr_task_events);
10347 if (event->attr.freq)
10348 account_freq_event();
10349 if (event->attr.context_switch) {
10350 atomic_inc(&nr_switch_events);
10351 inc = true;
10352 }
10353 if (has_branch_stack(event))
10354 inc = true;
10355 if (is_cgroup_event(event))
10356 inc = true;
10357 if (event->attr.ksymbol)
10358 atomic_inc(&nr_ksymbol_events);
10359 if (event->attr.bpf_event)
10360 atomic_inc(&nr_bpf_events);
10361
10362 if (inc) {
10363 /*
10364 * We need the mutex here because static_branch_enable()
10365 * must complete *before* the perf_sched_count increment
10366 * becomes visible.
10367 */
10368 if (atomic_inc_not_zero(&perf_sched_count))
10369 goto enabled;
10370
10371 mutex_lock(&perf_sched_mutex);
10372 if (!atomic_read(&perf_sched_count)) {
10373 static_branch_enable(&perf_sched_events);
10374 /*
10375 * Guarantee that all CPUs observe they key change and
10376 * call the perf scheduling hooks before proceeding to
10377 * install events that need them.
10378 */
10379 synchronize_rcu();
10380 }
10381 /*
10382 * Now that we have waited for the sync_sched(), allow further
10383 * increments to by-pass the mutex.
10384 */
10385 atomic_inc(&perf_sched_count);
10386 mutex_unlock(&perf_sched_mutex);
10387 }
10388enabled:
10389
10390 account_event_cpu(event, event->cpu);
10391
10392 account_pmu_sb_event(event);
10393}
10394
10395/*
10396 * Allocate and initialize an event structure
10397 */
10398static struct perf_event *
10399perf_event_alloc(struct perf_event_attr *attr, int cpu,
10400 struct task_struct *task,
10401 struct perf_event *group_leader,
10402 struct perf_event *parent_event,
10403 perf_overflow_handler_t overflow_handler,
10404 void *context, int cgroup_fd)
10405{
10406 struct pmu *pmu;
10407 struct perf_event *event;
10408 struct hw_perf_event *hwc;
10409 long err = -EINVAL;
10410
10411 if ((unsigned)cpu >= nr_cpu_ids) {
10412 if (!task || cpu != -1)
10413 return ERR_PTR(-EINVAL);
10414 }
10415
10416 event = kzalloc(sizeof(*event), GFP_KERNEL);
10417 if (!event)
10418 return ERR_PTR(-ENOMEM);
10419
10420 /*
10421 * Single events are their own group leaders, with an
10422 * empty sibling list:
10423 */
10424 if (!group_leader)
10425 group_leader = event;
10426
10427 mutex_init(&event->child_mutex);
10428 INIT_LIST_HEAD(&event->child_list);
10429
10430 INIT_LIST_HEAD(&event->event_entry);
10431 INIT_LIST_HEAD(&event->sibling_list);
10432 INIT_LIST_HEAD(&event->active_list);
10433 init_event_group(event);
10434 INIT_LIST_HEAD(&event->rb_entry);
10435 INIT_LIST_HEAD(&event->active_entry);
10436 INIT_LIST_HEAD(&event->addr_filters.list);
10437 INIT_HLIST_NODE(&event->hlist_entry);
10438
10439
10440 init_waitqueue_head(&event->waitq);
10441 event->pending_disable = -1;
10442 init_irq_work(&event->pending, perf_pending_event);
10443
10444 mutex_init(&event->mmap_mutex);
10445 raw_spin_lock_init(&event->addr_filters.lock);
10446
10447 atomic_long_set(&event->refcount, 1);
10448 event->cpu = cpu;
10449 event->attr = *attr;
10450 event->group_leader = group_leader;
10451 event->pmu = NULL;
10452 event->oncpu = -1;
10453
10454 event->parent = parent_event;
10455
10456 event->ns = get_pid_ns(task_active_pid_ns(current));
10457 event->id = atomic64_inc_return(&perf_event_id);
10458
10459 event->state = PERF_EVENT_STATE_INACTIVE;
10460
10461 if (task) {
10462 event->attach_state = PERF_ATTACH_TASK;
10463 /*
10464 * XXX pmu::event_init needs to know what task to account to
10465 * and we cannot use the ctx information because we need the
10466 * pmu before we get a ctx.
10467 */
10468 event->hw.target = get_task_struct(task);
10469 }
10470
10471 event->clock = &local_clock;
10472 if (parent_event)
10473 event->clock = parent_event->clock;
10474
10475 if (!overflow_handler && parent_event) {
10476 overflow_handler = parent_event->overflow_handler;
10477 context = parent_event->overflow_handler_context;
10478#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10479 if (overflow_handler == bpf_overflow_handler) {
10480 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10481
10482 if (IS_ERR(prog)) {
10483 err = PTR_ERR(prog);
10484 goto err_ns;
10485 }
10486 event->prog = prog;
10487 event->orig_overflow_handler =
10488 parent_event->orig_overflow_handler;
10489 }
10490#endif
10491 }
10492
10493 if (overflow_handler) {
10494 event->overflow_handler = overflow_handler;
10495 event->overflow_handler_context = context;
10496 } else if (is_write_backward(event)){
10497 event->overflow_handler = perf_event_output_backward;
10498 event->overflow_handler_context = NULL;
10499 } else {
10500 event->overflow_handler = perf_event_output_forward;
10501 event->overflow_handler_context = NULL;
10502 }
10503
10504 perf_event__state_init(event);
10505
10506 pmu = NULL;
10507
10508 hwc = &event->hw;
10509 hwc->sample_period = attr->sample_period;
10510 if (attr->freq && attr->sample_freq)
10511 hwc->sample_period = 1;
10512 hwc->last_period = hwc->sample_period;
10513
10514 local64_set(&hwc->period_left, hwc->sample_period);
10515
10516 /*
10517 * We currently do not support PERF_SAMPLE_READ on inherited events.
10518 * See perf_output_read().
10519 */
10520 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10521 goto err_ns;
10522
10523 if (!has_branch_stack(event))
10524 event->attr.branch_sample_type = 0;
10525
10526 if (cgroup_fd != -1) {
10527 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10528 if (err)
10529 goto err_ns;
10530 }
10531
10532 pmu = perf_init_event(event);
10533 if (IS_ERR(pmu)) {
10534 err = PTR_ERR(pmu);
10535 goto err_ns;
10536 }
10537
10538 /*
10539 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10540 * be different on other CPUs in the uncore mask.
10541 */
10542 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10543 err = -EINVAL;
10544 goto err_pmu;
10545 }
10546
10547 if (event->attr.aux_output &&
10548 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10549 err = -EOPNOTSUPP;
10550 goto err_pmu;
10551 }
10552
10553 err = exclusive_event_init(event);
10554 if (err)
10555 goto err_pmu;
10556
10557 if (has_addr_filter(event)) {
10558 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10559 sizeof(struct perf_addr_filter_range),
10560 GFP_KERNEL);
10561 if (!event->addr_filter_ranges) {
10562 err = -ENOMEM;
10563 goto err_per_task;
10564 }
10565
10566 /*
10567 * Clone the parent's vma offsets: they are valid until exec()
10568 * even if the mm is not shared with the parent.
10569 */
10570 if (event->parent) {
10571 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10572
10573 raw_spin_lock_irq(&ifh->lock);
10574 memcpy(event->addr_filter_ranges,
10575 event->parent->addr_filter_ranges,
10576 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10577 raw_spin_unlock_irq(&ifh->lock);
10578 }
10579
10580 /* force hw sync on the address filters */
10581 event->addr_filters_gen = 1;
10582 }
10583
10584 if (!event->parent) {
10585 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10586 err = get_callchain_buffers(attr->sample_max_stack);
10587 if (err)
10588 goto err_addr_filters;
10589 }
10590 }
10591
10592 /* symmetric to unaccount_event() in _free_event() */
10593 account_event(event);
10594
10595 return event;
10596
10597err_addr_filters:
10598 kfree(event->addr_filter_ranges);
10599
10600err_per_task:
10601 exclusive_event_destroy(event);
10602
10603err_pmu:
10604 if (event->destroy)
10605 event->destroy(event);
10606 module_put(pmu->module);
10607err_ns:
10608 if (is_cgroup_event(event))
10609 perf_detach_cgroup(event);
10610 if (event->ns)
10611 put_pid_ns(event->ns);
10612 if (event->hw.target)
10613 put_task_struct(event->hw.target);
10614 kfree(event);
10615
10616 return ERR_PTR(err);
10617}
10618
10619static int perf_copy_attr(struct perf_event_attr __user *uattr,
10620 struct perf_event_attr *attr)
10621{
10622 u32 size;
10623 int ret;
10624
10625 /* Zero the full structure, so that a short copy will be nice. */
10626 memset(attr, 0, sizeof(*attr));
10627
10628 ret = get_user(size, &uattr->size);
10629 if (ret)
10630 return ret;
10631
10632 /* ABI compatibility quirk: */
10633 if (!size)
10634 size = PERF_ATTR_SIZE_VER0;
10635 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10636 goto err_size;
10637
10638 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10639 if (ret) {
10640 if (ret == -E2BIG)
10641 goto err_size;
10642 return ret;
10643 }
10644
10645 attr->size = size;
10646
10647 if (attr->__reserved_1 || attr->__reserved_2)
10648 return -EINVAL;
10649
10650 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10651 return -EINVAL;
10652
10653 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10654 return -EINVAL;
10655
10656 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10657 u64 mask = attr->branch_sample_type;
10658
10659 /* only using defined bits */
10660 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10661 return -EINVAL;
10662
10663 /* at least one branch bit must be set */
10664 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10665 return -EINVAL;
10666
10667 /* propagate priv level, when not set for branch */
10668 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10669
10670 /* exclude_kernel checked on syscall entry */
10671 if (!attr->exclude_kernel)
10672 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10673
10674 if (!attr->exclude_user)
10675 mask |= PERF_SAMPLE_BRANCH_USER;
10676
10677 if (!attr->exclude_hv)
10678 mask |= PERF_SAMPLE_BRANCH_HV;
10679 /*
10680 * adjust user setting (for HW filter setup)
10681 */
10682 attr->branch_sample_type = mask;
10683 }
10684 /* privileged levels capture (kernel, hv): check permissions */
10685 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10686 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10687 return -EACCES;
10688 }
10689
10690 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10691 ret = perf_reg_validate(attr->sample_regs_user);
10692 if (ret)
10693 return ret;
10694 }
10695
10696 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10697 if (!arch_perf_have_user_stack_dump())
10698 return -ENOSYS;
10699
10700 /*
10701 * We have __u32 type for the size, but so far
10702 * we can only use __u16 as maximum due to the
10703 * __u16 sample size limit.
10704 */
10705 if (attr->sample_stack_user >= USHRT_MAX)
10706 return -EINVAL;
10707 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10708 return -EINVAL;
10709 }
10710
10711 if (!attr->sample_max_stack)
10712 attr->sample_max_stack = sysctl_perf_event_max_stack;
10713
10714 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10715 ret = perf_reg_validate(attr->sample_regs_intr);
10716out:
10717 return ret;
10718
10719err_size:
10720 put_user(sizeof(*attr), &uattr->size);
10721 ret = -E2BIG;
10722 goto out;
10723}
10724
10725static int
10726perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10727{
10728 struct ring_buffer *rb = NULL;
10729 int ret = -EINVAL;
10730
10731 if (!output_event)
10732 goto set;
10733
10734 /* don't allow circular references */
10735 if (event == output_event)
10736 goto out;
10737
10738 /*
10739 * Don't allow cross-cpu buffers
10740 */
10741 if (output_event->cpu != event->cpu)
10742 goto out;
10743
10744 /*
10745 * If its not a per-cpu rb, it must be the same task.
10746 */
10747 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10748 goto out;
10749
10750 /*
10751 * Mixing clocks in the same buffer is trouble you don't need.
10752 */
10753 if (output_event->clock != event->clock)
10754 goto out;
10755
10756 /*
10757 * Either writing ring buffer from beginning or from end.
10758 * Mixing is not allowed.
10759 */
10760 if (is_write_backward(output_event) != is_write_backward(event))
10761 goto out;
10762
10763 /*
10764 * If both events generate aux data, they must be on the same PMU
10765 */
10766 if (has_aux(event) && has_aux(output_event) &&
10767 event->pmu != output_event->pmu)
10768 goto out;
10769
10770set:
10771 mutex_lock(&event->mmap_mutex);
10772 /* Can't redirect output if we've got an active mmap() */
10773 if (atomic_read(&event->mmap_count))
10774 goto unlock;
10775
10776 if (output_event) {
10777 /* get the rb we want to redirect to */
10778 rb = ring_buffer_get(output_event);
10779 if (!rb)
10780 goto unlock;
10781 }
10782
10783 ring_buffer_attach(event, rb);
10784
10785 ret = 0;
10786unlock:
10787 mutex_unlock(&event->mmap_mutex);
10788
10789out:
10790 return ret;
10791}
10792
10793static void mutex_lock_double(struct mutex *a, struct mutex *b)
10794{
10795 if (b < a)
10796 swap(a, b);
10797
10798 mutex_lock(a);
10799 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10800}
10801
10802static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10803{
10804 bool nmi_safe = false;
10805
10806 switch (clk_id) {
10807 case CLOCK_MONOTONIC:
10808 event->clock = &ktime_get_mono_fast_ns;
10809 nmi_safe = true;
10810 break;
10811
10812 case CLOCK_MONOTONIC_RAW:
10813 event->clock = &ktime_get_raw_fast_ns;
10814 nmi_safe = true;
10815 break;
10816
10817 case CLOCK_REALTIME:
10818 event->clock = &ktime_get_real_ns;
10819 break;
10820
10821 case CLOCK_BOOTTIME:
10822 event->clock = &ktime_get_boottime_ns;
10823 break;
10824
10825 case CLOCK_TAI:
10826 event->clock = &ktime_get_clocktai_ns;
10827 break;
10828
10829 default:
10830 return -EINVAL;
10831 }
10832
10833 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10834 return -EINVAL;
10835
10836 return 0;
10837}
10838
10839/*
10840 * Variation on perf_event_ctx_lock_nested(), except we take two context
10841 * mutexes.
10842 */
10843static struct perf_event_context *
10844__perf_event_ctx_lock_double(struct perf_event *group_leader,
10845 struct perf_event_context *ctx)
10846{
10847 struct perf_event_context *gctx;
10848
10849again:
10850 rcu_read_lock();
10851 gctx = READ_ONCE(group_leader->ctx);
10852 if (!refcount_inc_not_zero(&gctx->refcount)) {
10853 rcu_read_unlock();
10854 goto again;
10855 }
10856 rcu_read_unlock();
10857
10858 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10859
10860 if (group_leader->ctx != gctx) {
10861 mutex_unlock(&ctx->mutex);
10862 mutex_unlock(&gctx->mutex);
10863 put_ctx(gctx);
10864 goto again;
10865 }
10866
10867 return gctx;
10868}
10869
10870/**
10871 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10872 *
10873 * @attr_uptr: event_id type attributes for monitoring/sampling
10874 * @pid: target pid
10875 * @cpu: target cpu
10876 * @group_fd: group leader event fd
10877 */
10878SYSCALL_DEFINE5(perf_event_open,
10879 struct perf_event_attr __user *, attr_uptr,
10880 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10881{
10882 struct perf_event *group_leader = NULL, *output_event = NULL;
10883 struct perf_event *event, *sibling;
10884 struct perf_event_attr attr;
10885 struct perf_event_context *ctx, *uninitialized_var(gctx);
10886 struct file *event_file = NULL;
10887 struct fd group = {NULL, 0};
10888 struct task_struct *task = NULL;
10889 struct pmu *pmu;
10890 int event_fd;
10891 int move_group = 0;
10892 int err;
10893 int f_flags = O_RDWR;
10894 int cgroup_fd = -1;
10895
10896 /* for future expandability... */
10897 if (flags & ~PERF_FLAG_ALL)
10898 return -EINVAL;
10899
10900 err = perf_copy_attr(attr_uptr, &attr);
10901 if (err)
10902 return err;
10903
10904 if (!attr.exclude_kernel) {
10905 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10906 return -EACCES;
10907 }
10908
10909 if (attr.namespaces) {
10910 if (!capable(CAP_SYS_ADMIN))
10911 return -EACCES;
10912 }
10913
10914 if (attr.freq) {
10915 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10916 return -EINVAL;
10917 } else {
10918 if (attr.sample_period & (1ULL << 63))
10919 return -EINVAL;
10920 }
10921
10922 /* Only privileged users can get physical addresses */
10923 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10924 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10925 return -EACCES;
10926
10927 err = security_locked_down(LOCKDOWN_PERF);
10928 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10929 /* REGS_INTR can leak data, lockdown must prevent this */
10930 return err;
10931
10932 err = 0;
10933
10934 /*
10935 * In cgroup mode, the pid argument is used to pass the fd
10936 * opened to the cgroup directory in cgroupfs. The cpu argument
10937 * designates the cpu on which to monitor threads from that
10938 * cgroup.
10939 */
10940 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10941 return -EINVAL;
10942
10943 if (flags & PERF_FLAG_FD_CLOEXEC)
10944 f_flags |= O_CLOEXEC;
10945
10946 event_fd = get_unused_fd_flags(f_flags);
10947 if (event_fd < 0)
10948 return event_fd;
10949
10950 if (group_fd != -1) {
10951 err = perf_fget_light(group_fd, &group);
10952 if (err)
10953 goto err_fd;
10954 group_leader = group.file->private_data;
10955 if (flags & PERF_FLAG_FD_OUTPUT)
10956 output_event = group_leader;
10957 if (flags & PERF_FLAG_FD_NO_GROUP)
10958 group_leader = NULL;
10959 }
10960
10961 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10962 task = find_lively_task_by_vpid(pid);
10963 if (IS_ERR(task)) {
10964 err = PTR_ERR(task);
10965 goto err_group_fd;
10966 }
10967 }
10968
10969 if (task && group_leader &&
10970 group_leader->attr.inherit != attr.inherit) {
10971 err = -EINVAL;
10972 goto err_task;
10973 }
10974
10975 if (task) {
10976 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10977 if (err)
10978 goto err_task;
10979
10980 /*
10981 * Reuse ptrace permission checks for now.
10982 *
10983 * We must hold cred_guard_mutex across this and any potential
10984 * perf_install_in_context() call for this new event to
10985 * serialize against exec() altering our credentials (and the
10986 * perf_event_exit_task() that could imply).
10987 */
10988 err = -EACCES;
10989 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10990 goto err_cred;
10991 }
10992
10993 if (flags & PERF_FLAG_PID_CGROUP)
10994 cgroup_fd = pid;
10995
10996 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10997 NULL, NULL, cgroup_fd);
10998 if (IS_ERR(event)) {
10999 err = PTR_ERR(event);
11000 goto err_cred;
11001 }
11002
11003 if (is_sampling_event(event)) {
11004 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11005 err = -EOPNOTSUPP;
11006 goto err_alloc;
11007 }
11008 }
11009
11010 /*
11011 * Special case software events and allow them to be part of
11012 * any hardware group.
11013 */
11014 pmu = event->pmu;
11015
11016 if (attr.use_clockid) {
11017 err = perf_event_set_clock(event, attr.clockid);
11018 if (err)
11019 goto err_alloc;
11020 }
11021
11022 if (pmu->task_ctx_nr == perf_sw_context)
11023 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11024
11025 if (group_leader) {
11026 if (is_software_event(event) &&
11027 !in_software_context(group_leader)) {
11028 /*
11029 * If the event is a sw event, but the group_leader
11030 * is on hw context.
11031 *
11032 * Allow the addition of software events to hw
11033 * groups, this is safe because software events
11034 * never fail to schedule.
11035 */
11036 pmu = group_leader->ctx->pmu;
11037 } else if (!is_software_event(event) &&
11038 is_software_event(group_leader) &&
11039 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11040 /*
11041 * In case the group is a pure software group, and we
11042 * try to add a hardware event, move the whole group to
11043 * the hardware context.
11044 */
11045 move_group = 1;
11046 }
11047 }
11048
11049 /*
11050 * Get the target context (task or percpu):
11051 */
11052 ctx = find_get_context(pmu, task, event);
11053 if (IS_ERR(ctx)) {
11054 err = PTR_ERR(ctx);
11055 goto err_alloc;
11056 }
11057
11058 /*
11059 * Look up the group leader (we will attach this event to it):
11060 */
11061 if (group_leader) {
11062 err = -EINVAL;
11063
11064 /*
11065 * Do not allow a recursive hierarchy (this new sibling
11066 * becoming part of another group-sibling):
11067 */
11068 if (group_leader->group_leader != group_leader)
11069 goto err_context;
11070
11071 /* All events in a group should have the same clock */
11072 if (group_leader->clock != event->clock)
11073 goto err_context;
11074
11075 /*
11076 * Make sure we're both events for the same CPU;
11077 * grouping events for different CPUs is broken; since
11078 * you can never concurrently schedule them anyhow.
11079 */
11080 if (group_leader->cpu != event->cpu)
11081 goto err_context;
11082
11083 /*
11084 * Make sure we're both on the same task, or both
11085 * per-CPU events.
11086 */
11087 if (group_leader->ctx->task != ctx->task)
11088 goto err_context;
11089
11090 /*
11091 * Do not allow to attach to a group in a different task
11092 * or CPU context. If we're moving SW events, we'll fix
11093 * this up later, so allow that.
11094 */
11095 if (!move_group && group_leader->ctx != ctx)
11096 goto err_context;
11097
11098 /*
11099 * Only a group leader can be exclusive or pinned
11100 */
11101 if (attr.exclusive || attr.pinned)
11102 goto err_context;
11103 }
11104
11105 if (output_event) {
11106 err = perf_event_set_output(event, output_event);
11107 if (err)
11108 goto err_context;
11109 }
11110
11111 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11112 f_flags);
11113 if (IS_ERR(event_file)) {
11114 err = PTR_ERR(event_file);
11115 event_file = NULL;
11116 goto err_context;
11117 }
11118
11119 if (move_group) {
11120 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11121
11122 if (gctx->task == TASK_TOMBSTONE) {
11123 err = -ESRCH;
11124 goto err_locked;
11125 }
11126
11127 /*
11128 * Check if we raced against another sys_perf_event_open() call
11129 * moving the software group underneath us.
11130 */
11131 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11132 /*
11133 * If someone moved the group out from under us, check
11134 * if this new event wound up on the same ctx, if so
11135 * its the regular !move_group case, otherwise fail.
11136 */
11137 if (gctx != ctx) {
11138 err = -EINVAL;
11139 goto err_locked;
11140 } else {
11141 perf_event_ctx_unlock(group_leader, gctx);
11142 move_group = 0;
11143 }
11144 }
11145
11146 /*
11147 * Failure to create exclusive events returns -EBUSY.
11148 */
11149 err = -EBUSY;
11150 if (!exclusive_event_installable(group_leader, ctx))
11151 goto err_locked;
11152
11153 for_each_sibling_event(sibling, group_leader) {
11154 if (!exclusive_event_installable(sibling, ctx))
11155 goto err_locked;
11156 }
11157 } else {
11158 mutex_lock(&ctx->mutex);
11159 }
11160
11161 if (ctx->task == TASK_TOMBSTONE) {
11162 err = -ESRCH;
11163 goto err_locked;
11164 }
11165
11166 if (!perf_event_validate_size(event)) {
11167 err = -E2BIG;
11168 goto err_locked;
11169 }
11170
11171 if (!task) {
11172 /*
11173 * Check if the @cpu we're creating an event for is online.
11174 *
11175 * We use the perf_cpu_context::ctx::mutex to serialize against
11176 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11177 */
11178 struct perf_cpu_context *cpuctx =
11179 container_of(ctx, struct perf_cpu_context, ctx);
11180
11181 if (!cpuctx->online) {
11182 err = -ENODEV;
11183 goto err_locked;
11184 }
11185 }
11186
11187 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11188 goto err_locked;
11189
11190 /*
11191 * Must be under the same ctx::mutex as perf_install_in_context(),
11192 * because we need to serialize with concurrent event creation.
11193 */
11194 if (!exclusive_event_installable(event, ctx)) {
11195 err = -EBUSY;
11196 goto err_locked;
11197 }
11198
11199 WARN_ON_ONCE(ctx->parent_ctx);
11200
11201 /*
11202 * This is the point on no return; we cannot fail hereafter. This is
11203 * where we start modifying current state.
11204 */
11205
11206 if (move_group) {
11207 /*
11208 * See perf_event_ctx_lock() for comments on the details
11209 * of swizzling perf_event::ctx.
11210 */
11211 perf_remove_from_context(group_leader, 0);
11212 put_ctx(gctx);
11213
11214 for_each_sibling_event(sibling, group_leader) {
11215 perf_remove_from_context(sibling, 0);
11216 put_ctx(gctx);
11217 }
11218
11219 /*
11220 * Wait for everybody to stop referencing the events through
11221 * the old lists, before installing it on new lists.
11222 */
11223 synchronize_rcu();
11224
11225 /*
11226 * Install the group siblings before the group leader.
11227 *
11228 * Because a group leader will try and install the entire group
11229 * (through the sibling list, which is still in-tact), we can
11230 * end up with siblings installed in the wrong context.
11231 *
11232 * By installing siblings first we NO-OP because they're not
11233 * reachable through the group lists.
11234 */
11235 for_each_sibling_event(sibling, group_leader) {
11236 perf_event__state_init(sibling);
11237 perf_install_in_context(ctx, sibling, sibling->cpu);
11238 get_ctx(ctx);
11239 }
11240
11241 /*
11242 * Removing from the context ends up with disabled
11243 * event. What we want here is event in the initial
11244 * startup state, ready to be add into new context.
11245 */
11246 perf_event__state_init(group_leader);
11247 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11248 get_ctx(ctx);
11249 }
11250
11251 /*
11252 * Precalculate sample_data sizes; do while holding ctx::mutex such
11253 * that we're serialized against further additions and before
11254 * perf_install_in_context() which is the point the event is active and
11255 * can use these values.
11256 */
11257 perf_event__header_size(event);
11258 perf_event__id_header_size(event);
11259
11260 event->owner = current;
11261
11262 perf_install_in_context(ctx, event, event->cpu);
11263 perf_unpin_context(ctx);
11264
11265 if (move_group)
11266 perf_event_ctx_unlock(group_leader, gctx);
11267 mutex_unlock(&ctx->mutex);
11268
11269 if (task) {
11270 mutex_unlock(&task->signal->cred_guard_mutex);
11271 put_task_struct(task);
11272 }
11273
11274 mutex_lock(¤t->perf_event_mutex);
11275 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
11276 mutex_unlock(¤t->perf_event_mutex);
11277
11278 /*
11279 * Drop the reference on the group_event after placing the
11280 * new event on the sibling_list. This ensures destruction
11281 * of the group leader will find the pointer to itself in
11282 * perf_group_detach().
11283 */
11284 fdput(group);
11285 fd_install(event_fd, event_file);
11286 return event_fd;
11287
11288err_locked:
11289 if (move_group)
11290 perf_event_ctx_unlock(group_leader, gctx);
11291 mutex_unlock(&ctx->mutex);
11292/* err_file: */
11293 fput(event_file);
11294err_context:
11295 perf_unpin_context(ctx);
11296 put_ctx(ctx);
11297err_alloc:
11298 /*
11299 * If event_file is set, the fput() above will have called ->release()
11300 * and that will take care of freeing the event.
11301 */
11302 if (!event_file)
11303 free_event(event);
11304err_cred:
11305 if (task)
11306 mutex_unlock(&task->signal->cred_guard_mutex);
11307err_task:
11308 if (task)
11309 put_task_struct(task);
11310err_group_fd:
11311 fdput(group);
11312err_fd:
11313 put_unused_fd(event_fd);
11314 return err;
11315}
11316
11317/**
11318 * perf_event_create_kernel_counter
11319 *
11320 * @attr: attributes of the counter to create
11321 * @cpu: cpu in which the counter is bound
11322 * @task: task to profile (NULL for percpu)
11323 */
11324struct perf_event *
11325perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11326 struct task_struct *task,
11327 perf_overflow_handler_t overflow_handler,
11328 void *context)
11329{
11330 struct perf_event_context *ctx;
11331 struct perf_event *event;
11332 int err;
11333
11334 /*
11335 * Grouping is not supported for kernel events, neither is 'AUX',
11336 * make sure the caller's intentions are adjusted.
11337 */
11338 if (attr->aux_output)
11339 return ERR_PTR(-EINVAL);
11340
11341 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11342 overflow_handler, context, -1);
11343 if (IS_ERR(event)) {
11344 err = PTR_ERR(event);
11345 goto err;
11346 }
11347
11348 /* Mark owner so we could distinguish it from user events. */
11349 event->owner = TASK_TOMBSTONE;
11350
11351 /*
11352 * Get the target context (task or percpu):
11353 */
11354 ctx = find_get_context(event->pmu, task, event);
11355 if (IS_ERR(ctx)) {
11356 err = PTR_ERR(ctx);
11357 goto err_free;
11358 }
11359
11360 WARN_ON_ONCE(ctx->parent_ctx);
11361 mutex_lock(&ctx->mutex);
11362 if (ctx->task == TASK_TOMBSTONE) {
11363 err = -ESRCH;
11364 goto err_unlock;
11365 }
11366
11367 if (!task) {
11368 /*
11369 * Check if the @cpu we're creating an event for is online.
11370 *
11371 * We use the perf_cpu_context::ctx::mutex to serialize against
11372 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11373 */
11374 struct perf_cpu_context *cpuctx =
11375 container_of(ctx, struct perf_cpu_context, ctx);
11376 if (!cpuctx->online) {
11377 err = -ENODEV;
11378 goto err_unlock;
11379 }
11380 }
11381
11382 if (!exclusive_event_installable(event, ctx)) {
11383 err = -EBUSY;
11384 goto err_unlock;
11385 }
11386
11387 perf_install_in_context(ctx, event, event->cpu);
11388 perf_unpin_context(ctx);
11389 mutex_unlock(&ctx->mutex);
11390
11391 return event;
11392
11393err_unlock:
11394 mutex_unlock(&ctx->mutex);
11395 perf_unpin_context(ctx);
11396 put_ctx(ctx);
11397err_free:
11398 free_event(event);
11399err:
11400 return ERR_PTR(err);
11401}
11402EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11403
11404void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11405{
11406 struct perf_event_context *src_ctx;
11407 struct perf_event_context *dst_ctx;
11408 struct perf_event *event, *tmp;
11409 LIST_HEAD(events);
11410
11411 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11412 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11413
11414 /*
11415 * See perf_event_ctx_lock() for comments on the details
11416 * of swizzling perf_event::ctx.
11417 */
11418 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11419 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11420 event_entry) {
11421 perf_remove_from_context(event, 0);
11422 unaccount_event_cpu(event, src_cpu);
11423 put_ctx(src_ctx);
11424 list_add(&event->migrate_entry, &events);
11425 }
11426
11427 /*
11428 * Wait for the events to quiesce before re-instating them.
11429 */
11430 synchronize_rcu();
11431
11432 /*
11433 * Re-instate events in 2 passes.
11434 *
11435 * Skip over group leaders and only install siblings on this first
11436 * pass, siblings will not get enabled without a leader, however a
11437 * leader will enable its siblings, even if those are still on the old
11438 * context.
11439 */
11440 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11441 if (event->group_leader == event)
11442 continue;
11443
11444 list_del(&event->migrate_entry);
11445 if (event->state >= PERF_EVENT_STATE_OFF)
11446 event->state = PERF_EVENT_STATE_INACTIVE;
11447 account_event_cpu(event, dst_cpu);
11448 perf_install_in_context(dst_ctx, event, dst_cpu);
11449 get_ctx(dst_ctx);
11450 }
11451
11452 /*
11453 * Once all the siblings are setup properly, install the group leaders
11454 * to make it go.
11455 */
11456 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11457 list_del(&event->migrate_entry);
11458 if (event->state >= PERF_EVENT_STATE_OFF)
11459 event->state = PERF_EVENT_STATE_INACTIVE;
11460 account_event_cpu(event, dst_cpu);
11461 perf_install_in_context(dst_ctx, event, dst_cpu);
11462 get_ctx(dst_ctx);
11463 }
11464 mutex_unlock(&dst_ctx->mutex);
11465 mutex_unlock(&src_ctx->mutex);
11466}
11467EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11468
11469static void sync_child_event(struct perf_event *child_event,
11470 struct task_struct *child)
11471{
11472 struct perf_event *parent_event = child_event->parent;
11473 u64 child_val;
11474
11475 if (child_event->attr.inherit_stat)
11476 perf_event_read_event(child_event, child);
11477
11478 child_val = perf_event_count(child_event);
11479
11480 /*
11481 * Add back the child's count to the parent's count:
11482 */
11483 atomic64_add(child_val, &parent_event->child_count);
11484 atomic64_add(child_event->total_time_enabled,
11485 &parent_event->child_total_time_enabled);
11486 atomic64_add(child_event->total_time_running,
11487 &parent_event->child_total_time_running);
11488}
11489
11490static void
11491perf_event_exit_event(struct perf_event *child_event,
11492 struct perf_event_context *child_ctx,
11493 struct task_struct *child)
11494{
11495 struct perf_event *parent_event = child_event->parent;
11496
11497 /*
11498 * Do not destroy the 'original' grouping; because of the context
11499 * switch optimization the original events could've ended up in a
11500 * random child task.
11501 *
11502 * If we were to destroy the original group, all group related
11503 * operations would cease to function properly after this random
11504 * child dies.
11505 *
11506 * Do destroy all inherited groups, we don't care about those
11507 * and being thorough is better.
11508 */
11509 raw_spin_lock_irq(&child_ctx->lock);
11510 WARN_ON_ONCE(child_ctx->is_active);
11511
11512 if (parent_event)
11513 perf_group_detach(child_event);
11514 list_del_event(child_event, child_ctx);
11515 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11516 raw_spin_unlock_irq(&child_ctx->lock);
11517
11518 /*
11519 * Parent events are governed by their filedesc, retain them.
11520 */
11521 if (!parent_event) {
11522 perf_event_wakeup(child_event);
11523 return;
11524 }
11525 /*
11526 * Child events can be cleaned up.
11527 */
11528
11529 sync_child_event(child_event, child);
11530
11531 /*
11532 * Remove this event from the parent's list
11533 */
11534 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11535 mutex_lock(&parent_event->child_mutex);
11536 list_del_init(&child_event->child_list);
11537 mutex_unlock(&parent_event->child_mutex);
11538
11539 /*
11540 * Kick perf_poll() for is_event_hup().
11541 */
11542 perf_event_wakeup(parent_event);
11543 free_event(child_event);
11544 put_event(parent_event);
11545}
11546
11547static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11548{
11549 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11550 struct perf_event *child_event, *next;
11551
11552 WARN_ON_ONCE(child != current);
11553
11554 child_ctx = perf_pin_task_context(child, ctxn);
11555 if (!child_ctx)
11556 return;
11557
11558 /*
11559 * In order to reduce the amount of tricky in ctx tear-down, we hold
11560 * ctx::mutex over the entire thing. This serializes against almost
11561 * everything that wants to access the ctx.
11562 *
11563 * The exception is sys_perf_event_open() /
11564 * perf_event_create_kernel_count() which does find_get_context()
11565 * without ctx::mutex (it cannot because of the move_group double mutex
11566 * lock thing). See the comments in perf_install_in_context().
11567 */
11568 mutex_lock(&child_ctx->mutex);
11569
11570 /*
11571 * In a single ctx::lock section, de-schedule the events and detach the
11572 * context from the task such that we cannot ever get it scheduled back
11573 * in.
11574 */
11575 raw_spin_lock_irq(&child_ctx->lock);
11576 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11577
11578 /*
11579 * Now that the context is inactive, destroy the task <-> ctx relation
11580 * and mark the context dead.
11581 */
11582 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11583 put_ctx(child_ctx); /* cannot be last */
11584 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11585 put_task_struct(current); /* cannot be last */
11586
11587 clone_ctx = unclone_ctx(child_ctx);
11588 raw_spin_unlock_irq(&child_ctx->lock);
11589
11590 if (clone_ctx)
11591 put_ctx(clone_ctx);
11592
11593 /*
11594 * Report the task dead after unscheduling the events so that we
11595 * won't get any samples after PERF_RECORD_EXIT. We can however still
11596 * get a few PERF_RECORD_READ events.
11597 */
11598 perf_event_task(child, child_ctx, 0);
11599
11600 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11601 perf_event_exit_event(child_event, child_ctx, child);
11602
11603 mutex_unlock(&child_ctx->mutex);
11604
11605 put_ctx(child_ctx);
11606}
11607
11608/*
11609 * When a child task exits, feed back event values to parent events.
11610 *
11611 * Can be called with cred_guard_mutex held when called from
11612 * install_exec_creds().
11613 */
11614void perf_event_exit_task(struct task_struct *child)
11615{
11616 struct perf_event *event, *tmp;
11617 int ctxn;
11618
11619 mutex_lock(&child->perf_event_mutex);
11620 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11621 owner_entry) {
11622 list_del_init(&event->owner_entry);
11623
11624 /*
11625 * Ensure the list deletion is visible before we clear
11626 * the owner, closes a race against perf_release() where
11627 * we need to serialize on the owner->perf_event_mutex.
11628 */
11629 smp_store_release(&event->owner, NULL);
11630 }
11631 mutex_unlock(&child->perf_event_mutex);
11632
11633 for_each_task_context_nr(ctxn)
11634 perf_event_exit_task_context(child, ctxn);
11635
11636 /*
11637 * The perf_event_exit_task_context calls perf_event_task
11638 * with child's task_ctx, which generates EXIT events for
11639 * child contexts and sets child->perf_event_ctxp[] to NULL.
11640 * At this point we need to send EXIT events to cpu contexts.
11641 */
11642 perf_event_task(child, NULL, 0);
11643}
11644
11645static void perf_free_event(struct perf_event *event,
11646 struct perf_event_context *ctx)
11647{
11648 struct perf_event *parent = event->parent;
11649
11650 if (WARN_ON_ONCE(!parent))
11651 return;
11652
11653 mutex_lock(&parent->child_mutex);
11654 list_del_init(&event->child_list);
11655 mutex_unlock(&parent->child_mutex);
11656
11657 put_event(parent);
11658
11659 raw_spin_lock_irq(&ctx->lock);
11660 perf_group_detach(event);
11661 list_del_event(event, ctx);
11662 raw_spin_unlock_irq(&ctx->lock);
11663 free_event(event);
11664}
11665
11666/*
11667 * Free a context as created by inheritance by perf_event_init_task() below,
11668 * used by fork() in case of fail.
11669 *
11670 * Even though the task has never lived, the context and events have been
11671 * exposed through the child_list, so we must take care tearing it all down.
11672 */
11673void perf_event_free_task(struct task_struct *task)
11674{
11675 struct perf_event_context *ctx;
11676 struct perf_event *event, *tmp;
11677 int ctxn;
11678
11679 for_each_task_context_nr(ctxn) {
11680 ctx = task->perf_event_ctxp[ctxn];
11681 if (!ctx)
11682 continue;
11683
11684 mutex_lock(&ctx->mutex);
11685 raw_spin_lock_irq(&ctx->lock);
11686 /*
11687 * Destroy the task <-> ctx relation and mark the context dead.
11688 *
11689 * This is important because even though the task hasn't been
11690 * exposed yet the context has been (through child_list).
11691 */
11692 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11693 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11694 put_task_struct(task); /* cannot be last */
11695 raw_spin_unlock_irq(&ctx->lock);
11696
11697 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11698 perf_free_event(event, ctx);
11699
11700 mutex_unlock(&ctx->mutex);
11701
11702 /*
11703 * perf_event_release_kernel() could've stolen some of our
11704 * child events and still have them on its free_list. In that
11705 * case we must wait for these events to have been freed (in
11706 * particular all their references to this task must've been
11707 * dropped).
11708 *
11709 * Without this copy_process() will unconditionally free this
11710 * task (irrespective of its reference count) and
11711 * _free_event()'s put_task_struct(event->hw.target) will be a
11712 * use-after-free.
11713 *
11714 * Wait for all events to drop their context reference.
11715 */
11716 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11717 put_ctx(ctx); /* must be last */
11718 }
11719}
11720
11721void perf_event_delayed_put(struct task_struct *task)
11722{
11723 int ctxn;
11724
11725 for_each_task_context_nr(ctxn)
11726 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11727}
11728
11729struct file *perf_event_get(unsigned int fd)
11730{
11731 struct file *file = fget(fd);
11732 if (!file)
11733 return ERR_PTR(-EBADF);
11734
11735 if (file->f_op != &perf_fops) {
11736 fput(file);
11737 return ERR_PTR(-EBADF);
11738 }
11739
11740 return file;
11741}
11742
11743const struct perf_event *perf_get_event(struct file *file)
11744{
11745 if (file->f_op != &perf_fops)
11746 return ERR_PTR(-EINVAL);
11747
11748 return file->private_data;
11749}
11750
11751const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11752{
11753 if (!event)
11754 return ERR_PTR(-EINVAL);
11755
11756 return &event->attr;
11757}
11758
11759/*
11760 * Inherit an event from parent task to child task.
11761 *
11762 * Returns:
11763 * - valid pointer on success
11764 * - NULL for orphaned events
11765 * - IS_ERR() on error
11766 */
11767static struct perf_event *
11768inherit_event(struct perf_event *parent_event,
11769 struct task_struct *parent,
11770 struct perf_event_context *parent_ctx,
11771 struct task_struct *child,
11772 struct perf_event *group_leader,
11773 struct perf_event_context *child_ctx)
11774{
11775 enum perf_event_state parent_state = parent_event->state;
11776 struct perf_event *child_event;
11777 unsigned long flags;
11778
11779 /*
11780 * Instead of creating recursive hierarchies of events,
11781 * we link inherited events back to the original parent,
11782 * which has a filp for sure, which we use as the reference
11783 * count:
11784 */
11785 if (parent_event->parent)
11786 parent_event = parent_event->parent;
11787
11788 child_event = perf_event_alloc(&parent_event->attr,
11789 parent_event->cpu,
11790 child,
11791 group_leader, parent_event,
11792 NULL, NULL, -1);
11793 if (IS_ERR(child_event))
11794 return child_event;
11795
11796
11797 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11798 !child_ctx->task_ctx_data) {
11799 struct pmu *pmu = child_event->pmu;
11800
11801 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11802 GFP_KERNEL);
11803 if (!child_ctx->task_ctx_data) {
11804 free_event(child_event);
11805 return ERR_PTR(-ENOMEM);
11806 }
11807 }
11808
11809 /*
11810 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11811 * must be under the same lock in order to serialize against
11812 * perf_event_release_kernel(), such that either we must observe
11813 * is_orphaned_event() or they will observe us on the child_list.
11814 */
11815 mutex_lock(&parent_event->child_mutex);
11816 if (is_orphaned_event(parent_event) ||
11817 !atomic_long_inc_not_zero(&parent_event->refcount)) {
11818 mutex_unlock(&parent_event->child_mutex);
11819 /* task_ctx_data is freed with child_ctx */
11820 free_event(child_event);
11821 return NULL;
11822 }
11823
11824 get_ctx(child_ctx);
11825
11826 /*
11827 * Make the child state follow the state of the parent event,
11828 * not its attr.disabled bit. We hold the parent's mutex,
11829 * so we won't race with perf_event_{en, dis}able_family.
11830 */
11831 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11832 child_event->state = PERF_EVENT_STATE_INACTIVE;
11833 else
11834 child_event->state = PERF_EVENT_STATE_OFF;
11835
11836 if (parent_event->attr.freq) {
11837 u64 sample_period = parent_event->hw.sample_period;
11838 struct hw_perf_event *hwc = &child_event->hw;
11839
11840 hwc->sample_period = sample_period;
11841 hwc->last_period = sample_period;
11842
11843 local64_set(&hwc->period_left, sample_period);
11844 }
11845
11846 child_event->ctx = child_ctx;
11847 child_event->overflow_handler = parent_event->overflow_handler;
11848 child_event->overflow_handler_context
11849 = parent_event->overflow_handler_context;
11850
11851 /*
11852 * Precalculate sample_data sizes
11853 */
11854 perf_event__header_size(child_event);
11855 perf_event__id_header_size(child_event);
11856
11857 /*
11858 * Link it up in the child's context:
11859 */
11860 raw_spin_lock_irqsave(&child_ctx->lock, flags);
11861 add_event_to_ctx(child_event, child_ctx);
11862 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11863
11864 /*
11865 * Link this into the parent event's child list
11866 */
11867 list_add_tail(&child_event->child_list, &parent_event->child_list);
11868 mutex_unlock(&parent_event->child_mutex);
11869
11870 return child_event;
11871}
11872
11873/*
11874 * Inherits an event group.
11875 *
11876 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11877 * This matches with perf_event_release_kernel() removing all child events.
11878 *
11879 * Returns:
11880 * - 0 on success
11881 * - <0 on error
11882 */
11883static int inherit_group(struct perf_event *parent_event,
11884 struct task_struct *parent,
11885 struct perf_event_context *parent_ctx,
11886 struct task_struct *child,
11887 struct perf_event_context *child_ctx)
11888{
11889 struct perf_event *leader;
11890 struct perf_event *sub;
11891 struct perf_event *child_ctr;
11892
11893 leader = inherit_event(parent_event, parent, parent_ctx,
11894 child, NULL, child_ctx);
11895 if (IS_ERR(leader))
11896 return PTR_ERR(leader);
11897 /*
11898 * @leader can be NULL here because of is_orphaned_event(). In this
11899 * case inherit_event() will create individual events, similar to what
11900 * perf_group_detach() would do anyway.
11901 */
11902 for_each_sibling_event(sub, parent_event) {
11903 child_ctr = inherit_event(sub, parent, parent_ctx,
11904 child, leader, child_ctx);
11905 if (IS_ERR(child_ctr))
11906 return PTR_ERR(child_ctr);
11907
11908 if (sub->aux_event == parent_event && child_ctr &&
11909 !perf_get_aux_event(child_ctr, leader))
11910 return -EINVAL;
11911 }
11912 return 0;
11913}
11914
11915/*
11916 * Creates the child task context and tries to inherit the event-group.
11917 *
11918 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11919 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11920 * consistent with perf_event_release_kernel() removing all child events.
11921 *
11922 * Returns:
11923 * - 0 on success
11924 * - <0 on error
11925 */
11926static int
11927inherit_task_group(struct perf_event *event, struct task_struct *parent,
11928 struct perf_event_context *parent_ctx,
11929 struct task_struct *child, int ctxn,
11930 int *inherited_all)
11931{
11932 int ret;
11933 struct perf_event_context *child_ctx;
11934
11935 if (!event->attr.inherit) {
11936 *inherited_all = 0;
11937 return 0;
11938 }
11939
11940 child_ctx = child->perf_event_ctxp[ctxn];
11941 if (!child_ctx) {
11942 /*
11943 * This is executed from the parent task context, so
11944 * inherit events that have been marked for cloning.
11945 * First allocate and initialize a context for the
11946 * child.
11947 */
11948 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11949 if (!child_ctx)
11950 return -ENOMEM;
11951
11952 child->perf_event_ctxp[ctxn] = child_ctx;
11953 }
11954
11955 ret = inherit_group(event, parent, parent_ctx,
11956 child, child_ctx);
11957
11958 if (ret)
11959 *inherited_all = 0;
11960
11961 return ret;
11962}
11963
11964/*
11965 * Initialize the perf_event context in task_struct
11966 */
11967static int perf_event_init_context(struct task_struct *child, int ctxn)
11968{
11969 struct perf_event_context *child_ctx, *parent_ctx;
11970 struct perf_event_context *cloned_ctx;
11971 struct perf_event *event;
11972 struct task_struct *parent = current;
11973 int inherited_all = 1;
11974 unsigned long flags;
11975 int ret = 0;
11976
11977 if (likely(!parent->perf_event_ctxp[ctxn]))
11978 return 0;
11979
11980 /*
11981 * If the parent's context is a clone, pin it so it won't get
11982 * swapped under us.
11983 */
11984 parent_ctx = perf_pin_task_context(parent, ctxn);
11985 if (!parent_ctx)
11986 return 0;
11987
11988 /*
11989 * No need to check if parent_ctx != NULL here; since we saw
11990 * it non-NULL earlier, the only reason for it to become NULL
11991 * is if we exit, and since we're currently in the middle of
11992 * a fork we can't be exiting at the same time.
11993 */
11994
11995 /*
11996 * Lock the parent list. No need to lock the child - not PID
11997 * hashed yet and not running, so nobody can access it.
11998 */
11999 mutex_lock(&parent_ctx->mutex);
12000
12001 /*
12002 * We dont have to disable NMIs - we are only looking at
12003 * the list, not manipulating it:
12004 */
12005 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12006 ret = inherit_task_group(event, parent, parent_ctx,
12007 child, ctxn, &inherited_all);
12008 if (ret)
12009 goto out_unlock;
12010 }
12011
12012 /*
12013 * We can't hold ctx->lock when iterating the ->flexible_group list due
12014 * to allocations, but we need to prevent rotation because
12015 * rotate_ctx() will change the list from interrupt context.
12016 */
12017 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12018 parent_ctx->rotate_disable = 1;
12019 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12020
12021 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12022 ret = inherit_task_group(event, parent, parent_ctx,
12023 child, ctxn, &inherited_all);
12024 if (ret)
12025 goto out_unlock;
12026 }
12027
12028 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12029 parent_ctx->rotate_disable = 0;
12030
12031 child_ctx = child->perf_event_ctxp[ctxn];
12032
12033 if (child_ctx && inherited_all) {
12034 /*
12035 * Mark the child context as a clone of the parent
12036 * context, or of whatever the parent is a clone of.
12037 *
12038 * Note that if the parent is a clone, the holding of
12039 * parent_ctx->lock avoids it from being uncloned.
12040 */
12041 cloned_ctx = parent_ctx->parent_ctx;
12042 if (cloned_ctx) {
12043 child_ctx->parent_ctx = cloned_ctx;
12044 child_ctx->parent_gen = parent_ctx->parent_gen;
12045 } else {
12046 child_ctx->parent_ctx = parent_ctx;
12047 child_ctx->parent_gen = parent_ctx->generation;
12048 }
12049 get_ctx(child_ctx->parent_ctx);
12050 }
12051
12052 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12053out_unlock:
12054 mutex_unlock(&parent_ctx->mutex);
12055
12056 perf_unpin_context(parent_ctx);
12057 put_ctx(parent_ctx);
12058
12059 return ret;
12060}
12061
12062/*
12063 * Initialize the perf_event context in task_struct
12064 */
12065int perf_event_init_task(struct task_struct *child)
12066{
12067 int ctxn, ret;
12068
12069 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12070 mutex_init(&child->perf_event_mutex);
12071 INIT_LIST_HEAD(&child->perf_event_list);
12072
12073 for_each_task_context_nr(ctxn) {
12074 ret = perf_event_init_context(child, ctxn);
12075 if (ret) {
12076 perf_event_free_task(child);
12077 return ret;
12078 }
12079 }
12080
12081 return 0;
12082}
12083
12084static void __init perf_event_init_all_cpus(void)
12085{
12086 struct swevent_htable *swhash;
12087 int cpu;
12088
12089 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12090
12091 for_each_possible_cpu(cpu) {
12092 swhash = &per_cpu(swevent_htable, cpu);
12093 mutex_init(&swhash->hlist_mutex);
12094 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12095
12096 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12097 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12098
12099#ifdef CONFIG_CGROUP_PERF
12100 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12101#endif
12102 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12103 }
12104}
12105
12106static void perf_swevent_init_cpu(unsigned int cpu)
12107{
12108 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12109
12110 mutex_lock(&swhash->hlist_mutex);
12111 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12112 struct swevent_hlist *hlist;
12113
12114 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12115 WARN_ON(!hlist);
12116 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12117 }
12118 mutex_unlock(&swhash->hlist_mutex);
12119}
12120
12121#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12122static void __perf_event_exit_context(void *__info)
12123{
12124 struct perf_event_context *ctx = __info;
12125 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12126 struct perf_event *event;
12127
12128 raw_spin_lock(&ctx->lock);
12129 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12130 list_for_each_entry(event, &ctx->event_list, event_entry)
12131 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12132 raw_spin_unlock(&ctx->lock);
12133}
12134
12135static void perf_event_exit_cpu_context(int cpu)
12136{
12137 struct perf_cpu_context *cpuctx;
12138 struct perf_event_context *ctx;
12139 struct pmu *pmu;
12140
12141 mutex_lock(&pmus_lock);
12142 list_for_each_entry(pmu, &pmus, entry) {
12143 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12144 ctx = &cpuctx->ctx;
12145
12146 mutex_lock(&ctx->mutex);
12147 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12148 cpuctx->online = 0;
12149 mutex_unlock(&ctx->mutex);
12150 }
12151 cpumask_clear_cpu(cpu, perf_online_mask);
12152 mutex_unlock(&pmus_lock);
12153}
12154#else
12155
12156static void perf_event_exit_cpu_context(int cpu) { }
12157
12158#endif
12159
12160int perf_event_init_cpu(unsigned int cpu)
12161{
12162 struct perf_cpu_context *cpuctx;
12163 struct perf_event_context *ctx;
12164 struct pmu *pmu;
12165
12166 perf_swevent_init_cpu(cpu);
12167
12168 mutex_lock(&pmus_lock);
12169 cpumask_set_cpu(cpu, perf_online_mask);
12170 list_for_each_entry(pmu, &pmus, entry) {
12171 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12172 ctx = &cpuctx->ctx;
12173
12174 mutex_lock(&ctx->mutex);
12175 cpuctx->online = 1;
12176 mutex_unlock(&ctx->mutex);
12177 }
12178 mutex_unlock(&pmus_lock);
12179
12180 return 0;
12181}
12182
12183int perf_event_exit_cpu(unsigned int cpu)
12184{
12185 perf_event_exit_cpu_context(cpu);
12186 return 0;
12187}
12188
12189static int
12190perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12191{
12192 int cpu;
12193
12194 for_each_online_cpu(cpu)
12195 perf_event_exit_cpu(cpu);
12196
12197 return NOTIFY_OK;
12198}
12199
12200/*
12201 * Run the perf reboot notifier at the very last possible moment so that
12202 * the generic watchdog code runs as long as possible.
12203 */
12204static struct notifier_block perf_reboot_notifier = {
12205 .notifier_call = perf_reboot,
12206 .priority = INT_MIN,
12207};
12208
12209void __init perf_event_init(void)
12210{
12211 int ret;
12212
12213 idr_init(&pmu_idr);
12214
12215 perf_event_init_all_cpus();
12216 init_srcu_struct(&pmus_srcu);
12217 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12218 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12219 perf_pmu_register(&perf_task_clock, NULL, -1);
12220 perf_tp_register();
12221 perf_event_init_cpu(smp_processor_id());
12222 register_reboot_notifier(&perf_reboot_notifier);
12223
12224 ret = init_hw_breakpoint();
12225 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12226
12227 /*
12228 * Build time assertion that we keep the data_head at the intended
12229 * location. IOW, validation we got the __reserved[] size right.
12230 */
12231 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12232 != 1024);
12233}
12234
12235ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12236 char *page)
12237{
12238 struct perf_pmu_events_attr *pmu_attr =
12239 container_of(attr, struct perf_pmu_events_attr, attr);
12240
12241 if (pmu_attr->event_str)
12242 return sprintf(page, "%s\n", pmu_attr->event_str);
12243
12244 return 0;
12245}
12246EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12247
12248static int __init perf_event_sysfs_init(void)
12249{
12250 struct pmu *pmu;
12251 int ret;
12252
12253 mutex_lock(&pmus_lock);
12254
12255 ret = bus_register(&pmu_bus);
12256 if (ret)
12257 goto unlock;
12258
12259 list_for_each_entry(pmu, &pmus, entry) {
12260 if (!pmu->name || pmu->type < 0)
12261 continue;
12262
12263 ret = pmu_dev_alloc(pmu);
12264 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12265 }
12266 pmu_bus_running = 1;
12267 ret = 0;
12268
12269unlock:
12270 mutex_unlock(&pmus_lock);
12271
12272 return ret;
12273}
12274device_initcall(perf_event_sysfs_init);
12275
12276#ifdef CONFIG_CGROUP_PERF
12277static struct cgroup_subsys_state *
12278perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12279{
12280 struct perf_cgroup *jc;
12281
12282 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12283 if (!jc)
12284 return ERR_PTR(-ENOMEM);
12285
12286 jc->info = alloc_percpu(struct perf_cgroup_info);
12287 if (!jc->info) {
12288 kfree(jc);
12289 return ERR_PTR(-ENOMEM);
12290 }
12291
12292 return &jc->css;
12293}
12294
12295static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12296{
12297 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12298
12299 free_percpu(jc->info);
12300 kfree(jc);
12301}
12302
12303static int __perf_cgroup_move(void *info)
12304{
12305 struct task_struct *task = info;
12306 rcu_read_lock();
12307 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12308 rcu_read_unlock();
12309 return 0;
12310}
12311
12312static void perf_cgroup_attach(struct cgroup_taskset *tset)
12313{
12314 struct task_struct *task;
12315 struct cgroup_subsys_state *css;
12316
12317 cgroup_taskset_for_each(task, css, tset)
12318 task_function_call(task, __perf_cgroup_move, task);
12319}
12320
12321struct cgroup_subsys perf_event_cgrp_subsys = {
12322 .css_alloc = perf_cgroup_css_alloc,
12323 .css_free = perf_cgroup_css_free,
12324 .attach = perf_cgroup_attach,
12325 /*
12326 * Implicitly enable on dfl hierarchy so that perf events can
12327 * always be filtered by cgroup2 path as long as perf_event
12328 * controller is not mounted on a legacy hierarchy.
12329 */
12330 .implicit_on_dfl = true,
12331 .threaded = true,
12332};
12333#endif /* CONFIG_CGROUP_PERF */