Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
  4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_trans_resv.h"
 11#include "xfs_mount.h"
 12#include "xfs_btree.h"
 13#include "scrub/bitmap.h"
 14
 15/*
 16 * Set a range of this bitmap.  Caller must ensure the range is not set.
 17 *
 18 * This is the logical equivalent of bitmap |= mask(start, len).
 19 */
 20int
 21xfs_bitmap_set(
 22	struct xfs_bitmap	*bitmap,
 23	uint64_t		start,
 24	uint64_t		len)
 25{
 26	struct xfs_bitmap_range	*bmr;
 27
 28	bmr = kmem_alloc(sizeof(struct xfs_bitmap_range), KM_MAYFAIL);
 29	if (!bmr)
 30		return -ENOMEM;
 31
 32	INIT_LIST_HEAD(&bmr->list);
 33	bmr->start = start;
 34	bmr->len = len;
 35	list_add_tail(&bmr->list, &bitmap->list);
 36
 37	return 0;
 38}
 39
 40/* Free everything related to this bitmap. */
 41void
 42xfs_bitmap_destroy(
 43	struct xfs_bitmap	*bitmap)
 44{
 45	struct xfs_bitmap_range	*bmr;
 46	struct xfs_bitmap_range	*n;
 47
 48	for_each_xfs_bitmap_extent(bmr, n, bitmap) {
 49		list_del(&bmr->list);
 50		kmem_free(bmr);
 51	}
 52}
 53
 54/* Set up a per-AG block bitmap. */
 55void
 56xfs_bitmap_init(
 57	struct xfs_bitmap	*bitmap)
 58{
 59	INIT_LIST_HEAD(&bitmap->list);
 60}
 61
 62/* Compare two btree extents. */
 63static int
 64xfs_bitmap_range_cmp(
 65	void			*priv,
 66	struct list_head	*a,
 67	struct list_head	*b)
 68{
 69	struct xfs_bitmap_range	*ap;
 70	struct xfs_bitmap_range	*bp;
 71
 72	ap = container_of(a, struct xfs_bitmap_range, list);
 73	bp = container_of(b, struct xfs_bitmap_range, list);
 74
 75	if (ap->start > bp->start)
 76		return 1;
 77	if (ap->start < bp->start)
 78		return -1;
 79	return 0;
 80}
 81
 82/*
 83 * Remove all the blocks mentioned in @sub from the extents in @bitmap.
 84 *
 85 * The intent is that callers will iterate the rmapbt for all of its records
 86 * for a given owner to generate @bitmap; and iterate all the blocks of the
 87 * metadata structures that are not being rebuilt and have the same rmapbt
 88 * owner to generate @sub.  This routine subtracts all the extents
 89 * mentioned in sub from all the extents linked in @bitmap, which leaves
 90 * @bitmap as the list of blocks that are not accounted for, which we assume
 91 * are the dead blocks of the old metadata structure.  The blocks mentioned in
 92 * @bitmap can be reaped.
 93 *
 94 * This is the logical equivalent of bitmap &= ~sub.
 95 */
 96#define LEFT_ALIGNED	(1 << 0)
 97#define RIGHT_ALIGNED	(1 << 1)
 98int
 99xfs_bitmap_disunion(
100	struct xfs_bitmap	*bitmap,
101	struct xfs_bitmap	*sub)
102{
103	struct list_head	*lp;
104	struct xfs_bitmap_range	*br;
105	struct xfs_bitmap_range	*new_br;
106	struct xfs_bitmap_range	*sub_br;
107	uint64_t		sub_start;
108	uint64_t		sub_len;
109	int			state;
110	int			error = 0;
111
112	if (list_empty(&bitmap->list) || list_empty(&sub->list))
113		return 0;
114	ASSERT(!list_empty(&sub->list));
115
116	list_sort(NULL, &bitmap->list, xfs_bitmap_range_cmp);
117	list_sort(NULL, &sub->list, xfs_bitmap_range_cmp);
118
119	/*
120	 * Now that we've sorted both lists, we iterate bitmap once, rolling
121	 * forward through sub and/or bitmap as necessary until we find an
122	 * overlap or reach the end of either list.  We do not reset lp to the
123	 * head of bitmap nor do we reset sub_br to the head of sub.  The
124	 * list traversal is similar to merge sort, but we're deleting
125	 * instead.  In this manner we avoid O(n^2) operations.
126	 */
127	sub_br = list_first_entry(&sub->list, struct xfs_bitmap_range,
128			list);
129	lp = bitmap->list.next;
130	while (lp != &bitmap->list) {
131		br = list_entry(lp, struct xfs_bitmap_range, list);
132
133		/*
134		 * Advance sub_br and/or br until we find a pair that
135		 * intersect or we run out of extents.
136		 */
137		while (sub_br->start + sub_br->len <= br->start) {
138			if (list_is_last(&sub_br->list, &sub->list))
139				goto out;
140			sub_br = list_next_entry(sub_br, list);
141		}
142		if (sub_br->start >= br->start + br->len) {
143			lp = lp->next;
144			continue;
145		}
146
147		/* trim sub_br to fit the extent we have */
148		sub_start = sub_br->start;
149		sub_len = sub_br->len;
150		if (sub_br->start < br->start) {
151			sub_len -= br->start - sub_br->start;
152			sub_start = br->start;
153		}
154		if (sub_len > br->len)
155			sub_len = br->len;
156
157		state = 0;
158		if (sub_start == br->start)
159			state |= LEFT_ALIGNED;
160		if (sub_start + sub_len == br->start + br->len)
161			state |= RIGHT_ALIGNED;
162		switch (state) {
163		case LEFT_ALIGNED:
164			/* Coincides with only the left. */
165			br->start += sub_len;
166			br->len -= sub_len;
167			break;
168		case RIGHT_ALIGNED:
169			/* Coincides with only the right. */
170			br->len -= sub_len;
171			lp = lp->next;
172			break;
173		case LEFT_ALIGNED | RIGHT_ALIGNED:
174			/* Total overlap, just delete ex. */
175			lp = lp->next;
176			list_del(&br->list);
177			kmem_free(br);
178			break;
179		case 0:
180			/*
181			 * Deleting from the middle: add the new right extent
182			 * and then shrink the left extent.
183			 */
184			new_br = kmem_alloc(sizeof(struct xfs_bitmap_range),
185					KM_MAYFAIL);
186			if (!new_br) {
187				error = -ENOMEM;
188				goto out;
189			}
190			INIT_LIST_HEAD(&new_br->list);
191			new_br->start = sub_start + sub_len;
192			new_br->len = br->start + br->len - new_br->start;
193			list_add(&new_br->list, &br->list);
194			br->len = sub_start - br->start;
195			lp = lp->next;
196			break;
197		default:
198			ASSERT(0);
199			break;
200		}
201	}
202
203out:
204	return error;
205}
206#undef LEFT_ALIGNED
207#undef RIGHT_ALIGNED
208
209/*
210 * Record all btree blocks seen while iterating all records of a btree.
211 *
212 * We know that the btree query_all function starts at the left edge and walks
213 * towards the right edge of the tree.  Therefore, we know that we can walk up
214 * the btree cursor towards the root; if the pointer for a given level points
215 * to the first record/key in that block, we haven't seen this block before;
216 * and therefore we need to remember that we saw this block in the btree.
217 *
218 * So if our btree is:
219 *
220 *    4
221 *  / | \
222 * 1  2  3
223 *
224 * Pretend for this example that each leaf block has 100 btree records.  For
225 * the first btree record, we'll observe that bc_ptrs[0] == 1, so we record
226 * that we saw block 1.  Then we observe that bc_ptrs[1] == 1, so we record
227 * block 4.  The list is [1, 4].
228 *
229 * For the second btree record, we see that bc_ptrs[0] == 2, so we exit the
230 * loop.  The list remains [1, 4].
231 *
232 * For the 101st btree record, we've moved onto leaf block 2.  Now
233 * bc_ptrs[0] == 1 again, so we record that we saw block 2.  We see that
234 * bc_ptrs[1] == 2, so we exit the loop.  The list is now [1, 4, 2].
235 *
236 * For the 102nd record, bc_ptrs[0] == 2, so we continue.
237 *
238 * For the 201st record, we've moved on to leaf block 3.  bc_ptrs[0] == 1, so
239 * we add 3 to the list.  Now it is [1, 4, 2, 3].
240 *
241 * For the 300th record we just exit, with the list being [1, 4, 2, 3].
242 */
243
244/*
245 * Record all the buffers pointed to by the btree cursor.  Callers already
246 * engaged in a btree walk should call this function to capture the list of
247 * blocks going from the leaf towards the root.
248 */
249int
250xfs_bitmap_set_btcur_path(
251	struct xfs_bitmap	*bitmap,
252	struct xfs_btree_cur	*cur)
253{
254	struct xfs_buf		*bp;
255	xfs_fsblock_t		fsb;
256	int			i;
257	int			error;
258
259	for (i = 0; i < cur->bc_nlevels && cur->bc_ptrs[i] == 1; i++) {
260		xfs_btree_get_block(cur, i, &bp);
261		if (!bp)
262			continue;
263		fsb = XFS_DADDR_TO_FSB(cur->bc_mp, bp->b_bn);
264		error = xfs_bitmap_set(bitmap, fsb, 1);
265		if (error)
266			return error;
267	}
268
269	return 0;
270}
271
272/* Collect a btree's block in the bitmap. */
273STATIC int
274xfs_bitmap_collect_btblock(
275	struct xfs_btree_cur	*cur,
276	int			level,
277	void			*priv)
278{
279	struct xfs_bitmap	*bitmap = priv;
280	struct xfs_buf		*bp;
281	xfs_fsblock_t		fsbno;
282
283	xfs_btree_get_block(cur, level, &bp);
284	if (!bp)
285		return 0;
286
287	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, bp->b_bn);
288	return xfs_bitmap_set(bitmap, fsbno, 1);
289}
290
291/* Walk the btree and mark the bitmap wherever a btree block is found. */
292int
293xfs_bitmap_set_btblocks(
294	struct xfs_bitmap	*bitmap,
295	struct xfs_btree_cur	*cur)
296{
297	return xfs_btree_visit_blocks(cur, xfs_bitmap_collect_btblock, bitmap);
298}