Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * MMCIF eMMC driver.
   3 *
   4 * Copyright (C) 2010 Renesas Solutions Corp.
   5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License.
  10 *
  11 *
  12 * TODO
  13 *  1. DMA
  14 *  2. Power management
  15 *  3. Handle MMC errors better
  16 *
  17 */
  18
  19/*
  20 * The MMCIF driver is now processing MMC requests asynchronously, according
  21 * to the Linux MMC API requirement.
  22 *
  23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  24 * data, and optional stop. To achieve asynchronous processing each of these
  25 * stages is split into two halves: a top and a bottom half. The top half
  26 * initialises the hardware, installs a timeout handler to handle completion
  27 * timeouts, and returns. In case of the command stage this immediately returns
  28 * control to the caller, leaving all further processing to run asynchronously.
  29 * All further request processing is performed by the bottom halves.
  30 *
  31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  33 * request- and stage-specific handler methods.
  34 *
  35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  36 * invocation, or a timeout work run. In case of an error or a successful
  37 * processing completion, the MMC core is informed and the request processing is
  38 * finished. In case processing has to continue, i.e., if data has to be read
  39 * from or written to the card, or if a stop command has to be sent, the next
  40 * top half is called, which performs the necessary hardware handling and
  41 * reschedules the timeout work. This returns the driver state machine into the
  42 * bottom half waiting state.
  43 */
  44
  45#include <linux/bitops.h>
  46#include <linux/clk.h>
  47#include <linux/completion.h>
  48#include <linux/delay.h>
  49#include <linux/dma-mapping.h>
  50#include <linux/dmaengine.h>
  51#include <linux/mmc/card.h>
  52#include <linux/mmc/core.h>
  53#include <linux/mmc/host.h>
  54#include <linux/mmc/mmc.h>
  55#include <linux/mmc/sdio.h>
  56#include <linux/mmc/sh_mmcif.h>
 
 
 
 
  57#include <linux/pagemap.h>
  58#include <linux/platform_device.h>
  59#include <linux/pm_qos.h>
  60#include <linux/pm_runtime.h>
 
  61#include <linux/spinlock.h>
  62#include <linux/module.h>
  63
  64#define DRIVER_NAME	"sh_mmcif"
  65#define DRIVER_VERSION	"2010-04-28"
  66
  67/* CE_CMD_SET */
  68#define CMD_MASK		0x3f000000
  69#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  70#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  71#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  72#define CMD_SET_RBSY		(1 << 21) /* R1b */
  73#define CMD_SET_CCSEN		(1 << 20)
  74#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  75#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  76#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  77#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  78#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  79#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  80#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  81#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  82#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  83#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  84#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  85#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  86#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  87#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  88#define CMD_SET_CCSH		(1 << 5)
 
  89#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  90#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  91#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  92
  93/* CE_CMD_CTRL */
  94#define CMD_CTRL_BREAK		(1 << 0)
  95
  96/* CE_BLOCK_SET */
  97#define BLOCK_SIZE_MASK		0x0000ffff
  98
  99/* CE_INT */
 100#define INT_CCSDE		(1 << 29)
 101#define INT_CMD12DRE		(1 << 26)
 102#define INT_CMD12RBE		(1 << 25)
 103#define INT_CMD12CRE		(1 << 24)
 104#define INT_DTRANE		(1 << 23)
 105#define INT_BUFRE		(1 << 22)
 106#define INT_BUFWEN		(1 << 21)
 107#define INT_BUFREN		(1 << 20)
 108#define INT_CCSRCV		(1 << 19)
 109#define INT_RBSYE		(1 << 17)
 110#define INT_CRSPE		(1 << 16)
 111#define INT_CMDVIO		(1 << 15)
 112#define INT_BUFVIO		(1 << 14)
 113#define INT_WDATERR		(1 << 11)
 114#define INT_RDATERR		(1 << 10)
 115#define INT_RIDXERR		(1 << 9)
 116#define INT_RSPERR		(1 << 8)
 117#define INT_CCSTO		(1 << 5)
 118#define INT_CRCSTO		(1 << 4)
 119#define INT_WDATTO		(1 << 3)
 120#define INT_RDATTO		(1 << 2)
 121#define INT_RBSYTO		(1 << 1)
 122#define INT_RSPTO		(1 << 0)
 123#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 124				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 125				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 126				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 127
 
 
 
 
 
 
 128/* CE_INT_MASK */
 129#define MASK_ALL		0x00000000
 130#define MASK_MCCSDE		(1 << 29)
 131#define MASK_MCMD12DRE		(1 << 26)
 132#define MASK_MCMD12RBE		(1 << 25)
 133#define MASK_MCMD12CRE		(1 << 24)
 134#define MASK_MDTRANE		(1 << 23)
 135#define MASK_MBUFRE		(1 << 22)
 136#define MASK_MBUFWEN		(1 << 21)
 137#define MASK_MBUFREN		(1 << 20)
 138#define MASK_MCCSRCV		(1 << 19)
 139#define MASK_MRBSYE		(1 << 17)
 140#define MASK_MCRSPE		(1 << 16)
 141#define MASK_MCMDVIO		(1 << 15)
 142#define MASK_MBUFVIO		(1 << 14)
 143#define MASK_MWDATERR		(1 << 11)
 144#define MASK_MRDATERR		(1 << 10)
 145#define MASK_MRIDXERR		(1 << 9)
 146#define MASK_MRSPERR		(1 << 8)
 147#define MASK_MCCSTO		(1 << 5)
 148#define MASK_MCRCSTO		(1 << 4)
 149#define MASK_MWDATTO		(1 << 3)
 150#define MASK_MRDATTO		(1 << 2)
 151#define MASK_MRBSYTO		(1 << 1)
 152#define MASK_MRSPTO		(1 << 0)
 153
 154#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 155				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 156				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
 157				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 158
 
 
 
 
 
 159/* CE_HOST_STS1 */
 160#define STS1_CMDSEQ		(1 << 31)
 161
 162/* CE_HOST_STS2 */
 163#define STS2_CRCSTE		(1 << 31)
 164#define STS2_CRC16E		(1 << 30)
 165#define STS2_AC12CRCE		(1 << 29)
 166#define STS2_RSPCRC7E		(1 << 28)
 167#define STS2_CRCSTEBE		(1 << 27)
 168#define STS2_RDATEBE		(1 << 26)
 169#define STS2_AC12REBE		(1 << 25)
 170#define STS2_RSPEBE		(1 << 24)
 171#define STS2_AC12IDXE		(1 << 23)
 172#define STS2_RSPIDXE		(1 << 22)
 173#define STS2_CCSTO		(1 << 15)
 174#define STS2_RDATTO		(1 << 14)
 175#define STS2_DATBSYTO		(1 << 13)
 176#define STS2_CRCSTTO		(1 << 12)
 177#define STS2_AC12BSYTO		(1 << 11)
 178#define STS2_RSPBSYTO		(1 << 10)
 179#define STS2_AC12RSPTO		(1 << 9)
 180#define STS2_RSPTO		(1 << 8)
 181#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 182				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 183#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 184				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 185				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 186				 STS2_AC12RSPTO | STS2_RSPTO)
 187
 188#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 189#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 190#define CLKDEV_INIT		400000   /* 400 KHz */
 191
 192enum mmcif_state {
 193	STATE_IDLE,
 194	STATE_REQUEST,
 195	STATE_IOS,
 
 196};
 197
 198enum mmcif_wait_for {
 199	MMCIF_WAIT_FOR_REQUEST,
 200	MMCIF_WAIT_FOR_CMD,
 201	MMCIF_WAIT_FOR_MREAD,
 202	MMCIF_WAIT_FOR_MWRITE,
 203	MMCIF_WAIT_FOR_READ,
 204	MMCIF_WAIT_FOR_WRITE,
 205	MMCIF_WAIT_FOR_READ_END,
 206	MMCIF_WAIT_FOR_WRITE_END,
 207	MMCIF_WAIT_FOR_STOP,
 208};
 209
 
 
 
 210struct sh_mmcif_host {
 211	struct mmc_host *mmc;
 212	struct mmc_request *mrq;
 213	struct platform_device *pd;
 214	struct sh_dmae_slave dma_slave_tx;
 215	struct sh_dmae_slave dma_slave_rx;
 216	struct clk *hclk;
 217	unsigned int clk;
 218	int bus_width;
 
 219	bool sd_error;
 220	bool dying;
 221	long timeout;
 222	void __iomem *addr;
 223	u32 *pio_ptr;
 224	spinlock_t lock;		/* protect sh_mmcif_host::state */
 225	enum mmcif_state state;
 226	enum mmcif_wait_for wait_for;
 227	struct delayed_work timeout_work;
 228	size_t blocksize;
 229	int sg_idx;
 230	int sg_blkidx;
 231	bool power;
 232	bool card_present;
 
 
 
 233
 234	/* DMA support */
 235	struct dma_chan		*chan_rx;
 236	struct dma_chan		*chan_tx;
 237	struct completion	dma_complete;
 238	bool			dma_active;
 239};
 240
 
 
 
 
 
 
 
 
 241static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 242					unsigned int reg, u32 val)
 243{
 244	writel(val | readl(host->addr + reg), host->addr + reg);
 245}
 246
 247static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 248					unsigned int reg, u32 val)
 249{
 250	writel(~val & readl(host->addr + reg), host->addr + reg);
 251}
 252
 253static void mmcif_dma_complete(void *arg)
 254{
 255	struct sh_mmcif_host *host = arg;
 256	struct mmc_data *data = host->mrq->data;
 
 257
 258	dev_dbg(&host->pd->dev, "Command completed\n");
 259
 260	if (WARN(!data, "%s: NULL data in DMA completion!\n",
 261		 dev_name(&host->pd->dev)))
 262		return;
 263
 264	if (data->flags & MMC_DATA_READ)
 265		dma_unmap_sg(host->chan_rx->device->dev,
 266			     data->sg, data->sg_len,
 267			     DMA_FROM_DEVICE);
 268	else
 269		dma_unmap_sg(host->chan_tx->device->dev,
 270			     data->sg, data->sg_len,
 271			     DMA_TO_DEVICE);
 272
 273	complete(&host->dma_complete);
 274}
 275
 276static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 277{
 278	struct mmc_data *data = host->mrq->data;
 279	struct scatterlist *sg = data->sg;
 280	struct dma_async_tx_descriptor *desc = NULL;
 281	struct dma_chan *chan = host->chan_rx;
 
 282	dma_cookie_t cookie = -EINVAL;
 283	int ret;
 284
 285	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 286			 DMA_FROM_DEVICE);
 287	if (ret > 0) {
 288		host->dma_active = true;
 289		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 290			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 291	}
 292
 293	if (desc) {
 294		desc->callback = mmcif_dma_complete;
 295		desc->callback_param = host;
 296		cookie = dmaengine_submit(desc);
 297		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 298		dma_async_issue_pending(chan);
 299	}
 300	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 301		__func__, data->sg_len, ret, cookie);
 302
 303	if (!desc) {
 304		/* DMA failed, fall back to PIO */
 305		if (ret >= 0)
 306			ret = -EIO;
 307		host->chan_rx = NULL;
 308		host->dma_active = false;
 309		dma_release_channel(chan);
 310		/* Free the Tx channel too */
 311		chan = host->chan_tx;
 312		if (chan) {
 313			host->chan_tx = NULL;
 314			dma_release_channel(chan);
 315		}
 316		dev_warn(&host->pd->dev,
 317			 "DMA failed: %d, falling back to PIO\n", ret);
 318		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 319	}
 320
 321	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 322		desc, cookie, data->sg_len);
 323}
 324
 325static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 326{
 327	struct mmc_data *data = host->mrq->data;
 328	struct scatterlist *sg = data->sg;
 329	struct dma_async_tx_descriptor *desc = NULL;
 330	struct dma_chan *chan = host->chan_tx;
 
 331	dma_cookie_t cookie = -EINVAL;
 332	int ret;
 333
 334	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 335			 DMA_TO_DEVICE);
 336	if (ret > 0) {
 337		host->dma_active = true;
 338		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 339			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 340	}
 341
 342	if (desc) {
 343		desc->callback = mmcif_dma_complete;
 344		desc->callback_param = host;
 345		cookie = dmaengine_submit(desc);
 346		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 347		dma_async_issue_pending(chan);
 348	}
 349	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 350		__func__, data->sg_len, ret, cookie);
 351
 352	if (!desc) {
 353		/* DMA failed, fall back to PIO */
 354		if (ret >= 0)
 355			ret = -EIO;
 356		host->chan_tx = NULL;
 357		host->dma_active = false;
 358		dma_release_channel(chan);
 359		/* Free the Rx channel too */
 360		chan = host->chan_rx;
 361		if (chan) {
 362			host->chan_rx = NULL;
 363			dma_release_channel(chan);
 364		}
 365		dev_warn(&host->pd->dev,
 366			 "DMA failed: %d, falling back to PIO\n", ret);
 367		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 368	}
 369
 370	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
 371		desc, cookie);
 372}
 373
 374static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
 
 375{
 376	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
 377	chan->private = arg;
 378	return true;
 
 
 
 
 
 379}
 380
 381static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
 382				 struct sh_mmcif_plat_data *pdata)
 
 383{
 384	struct sh_dmae_slave *tx, *rx;
 385	host->dma_active = false;
 386
 387	/* We can only either use DMA for both Tx and Rx or not use it at all */
 388	if (pdata->dma) {
 389		dev_warn(&host->pd->dev,
 390			 "Update your platform to use embedded DMA slave IDs\n");
 391		tx = &pdata->dma->chan_priv_tx;
 392		rx = &pdata->dma->chan_priv_rx;
 393	} else {
 394		tx = &host->dma_slave_tx;
 395		tx->slave_id = pdata->slave_id_tx;
 396		rx = &host->dma_slave_rx;
 397		rx->slave_id = pdata->slave_id_rx;
 398	}
 399	if (tx->slave_id > 0 && rx->slave_id > 0) {
 400		dma_cap_mask_t mask;
 401
 402		dma_cap_zero(mask);
 403		dma_cap_set(DMA_SLAVE, mask);
 404
 405		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
 406		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
 407			host->chan_tx);
 408
 409		if (!host->chan_tx)
 410			return;
 411
 412		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
 413		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
 414			host->chan_rx);
 415
 416		if (!host->chan_rx) {
 417			dma_release_channel(host->chan_tx);
 418			host->chan_tx = NULL;
 419			return;
 420		}
 
 
 421
 422		init_completion(&host->dma_complete);
 
 
 
 
 
 
 
 
 
 
 423	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424}
 425
 426static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 427{
 428	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 429	/* Descriptors are freed automatically */
 430	if (host->chan_tx) {
 431		struct dma_chan *chan = host->chan_tx;
 432		host->chan_tx = NULL;
 433		dma_release_channel(chan);
 434	}
 435	if (host->chan_rx) {
 436		struct dma_chan *chan = host->chan_rx;
 437		host->chan_rx = NULL;
 438		dma_release_channel(chan);
 439	}
 440
 441	host->dma_active = false;
 442}
 443
 444static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 445{
 446	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 
 
 
 
 447
 448	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 449	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 450
 451	if (!clk)
 452		return;
 453	if (p->sup_pclk && clk == host->clk)
 454		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
 455	else
 456		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
 457				((fls(DIV_ROUND_UP(host->clk,
 458						   clk) - 1) - 1) << 16));
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 461}
 462
 463static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 464{
 465	u32 tmp;
 466
 467	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 468
 469	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 470	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 
 
 
 
 471	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 472		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
 473	/* byte swap on */
 474	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 475}
 476
 477static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 478{
 
 479	u32 state1, state2;
 480	int ret, timeout;
 481
 482	host->sd_error = false;
 483
 484	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 485	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 486	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
 487	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
 488
 489	if (state1 & STS1_CMDSEQ) {
 490		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 491		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 492		for (timeout = 10000000; timeout; timeout--) {
 493			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 494			      & STS1_CMDSEQ))
 495				break;
 496			mdelay(1);
 497		}
 498		if (!timeout) {
 499			dev_err(&host->pd->dev,
 500				"Forced end of command sequence timeout err\n");
 501			return -EIO;
 502		}
 503		sh_mmcif_sync_reset(host);
 504		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
 505		return -EIO;
 506	}
 507
 508	if (state2 & STS2_CRC_ERR) {
 509		dev_dbg(&host->pd->dev, ": CRC error\n");
 
 510		ret = -EIO;
 511	} else if (state2 & STS2_TIMEOUT_ERR) {
 512		dev_dbg(&host->pd->dev, ": Timeout\n");
 
 513		ret = -ETIMEDOUT;
 514	} else {
 515		dev_dbg(&host->pd->dev, ": End/Index error\n");
 
 516		ret = -EIO;
 517	}
 518	return ret;
 519}
 520
 521static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 522{
 523	struct mmc_data *data = host->mrq->data;
 524
 525	host->sg_blkidx += host->blocksize;
 526
 527	/* data->sg->length must be a multiple of host->blocksize? */
 528	BUG_ON(host->sg_blkidx > data->sg->length);
 529
 530	if (host->sg_blkidx == data->sg->length) {
 531		host->sg_blkidx = 0;
 532		if (++host->sg_idx < data->sg_len)
 533			host->pio_ptr = sg_virt(++data->sg);
 534	} else {
 535		host->pio_ptr = p;
 536	}
 537
 538	if (host->sg_idx == data->sg_len)
 539		return false;
 540
 541	return true;
 542}
 543
 544static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 545				 struct mmc_request *mrq)
 546{
 547	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 548			   BLOCK_SIZE_MASK) + 3;
 549
 550	host->wait_for = MMCIF_WAIT_FOR_READ;
 551	schedule_delayed_work(&host->timeout_work, host->timeout);
 552
 553	/* buf read enable */
 554	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 555}
 556
 557static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 558{
 
 559	struct mmc_data *data = host->mrq->data;
 560	u32 *p = sg_virt(data->sg);
 561	int i;
 562
 563	if (host->sd_error) {
 564		data->error = sh_mmcif_error_manage(host);
 
 565		return false;
 566	}
 567
 568	for (i = 0; i < host->blocksize / 4; i++)
 569		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 570
 571	/* buffer read end */
 572	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 573	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 574
 575	return true;
 576}
 577
 578static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 579				struct mmc_request *mrq)
 580{
 581	struct mmc_data *data = mrq->data;
 582
 583	if (!data->sg_len || !data->sg->length)
 584		return;
 585
 586	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 587		BLOCK_SIZE_MASK;
 588
 589	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 590	host->sg_idx = 0;
 591	host->sg_blkidx = 0;
 592	host->pio_ptr = sg_virt(data->sg);
 593	schedule_delayed_work(&host->timeout_work, host->timeout);
 594	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 595}
 596
 597static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 598{
 
 599	struct mmc_data *data = host->mrq->data;
 600	u32 *p = host->pio_ptr;
 601	int i;
 602
 603	if (host->sd_error) {
 604		data->error = sh_mmcif_error_manage(host);
 
 605		return false;
 606	}
 607
 608	BUG_ON(!data->sg->length);
 609
 610	for (i = 0; i < host->blocksize / 4; i++)
 611		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 612
 613	if (!sh_mmcif_next_block(host, p))
 614		return false;
 615
 616	schedule_delayed_work(&host->timeout_work, host->timeout);
 617	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 618
 619	return true;
 620}
 621
 622static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 623					struct mmc_request *mrq)
 624{
 625	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 626			   BLOCK_SIZE_MASK) + 3;
 627
 628	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 629	schedule_delayed_work(&host->timeout_work, host->timeout);
 630
 631	/* buf write enable */
 632	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 633}
 634
 635static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 636{
 
 637	struct mmc_data *data = host->mrq->data;
 638	u32 *p = sg_virt(data->sg);
 639	int i;
 640
 641	if (host->sd_error) {
 642		data->error = sh_mmcif_error_manage(host);
 
 643		return false;
 644	}
 645
 646	for (i = 0; i < host->blocksize / 4; i++)
 647		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 648
 649	/* buffer write end */
 650	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 651	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 652
 653	return true;
 654}
 655
 656static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 657				struct mmc_request *mrq)
 658{
 659	struct mmc_data *data = mrq->data;
 660
 661	if (!data->sg_len || !data->sg->length)
 662		return;
 663
 664	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 665		BLOCK_SIZE_MASK;
 666
 667	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 668	host->sg_idx = 0;
 669	host->sg_blkidx = 0;
 670	host->pio_ptr = sg_virt(data->sg);
 671	schedule_delayed_work(&host->timeout_work, host->timeout);
 672	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 673}
 674
 675static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 676{
 
 677	struct mmc_data *data = host->mrq->data;
 678	u32 *p = host->pio_ptr;
 679	int i;
 680
 681	if (host->sd_error) {
 682		data->error = sh_mmcif_error_manage(host);
 
 683		return false;
 684	}
 685
 686	BUG_ON(!data->sg->length);
 687
 688	for (i = 0; i < host->blocksize / 4; i++)
 689		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 690
 691	if (!sh_mmcif_next_block(host, p))
 692		return false;
 693
 694	schedule_delayed_work(&host->timeout_work, host->timeout);
 695	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 696
 697	return true;
 698}
 699
 700static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 701						struct mmc_command *cmd)
 702{
 703	if (cmd->flags & MMC_RSP_136) {
 704		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 705		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 706		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 707		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 708	} else
 709		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 710}
 711
 712static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 713						struct mmc_command *cmd)
 714{
 715	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 716}
 717
 718static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 719			    struct mmc_request *mrq)
 720{
 
 721	struct mmc_data *data = mrq->data;
 722	struct mmc_command *cmd = mrq->cmd;
 723	u32 opc = cmd->opcode;
 724	u32 tmp = 0;
 725
 726	/* Response Type check */
 727	switch (mmc_resp_type(cmd)) {
 728	case MMC_RSP_NONE:
 729		tmp |= CMD_SET_RTYP_NO;
 730		break;
 731	case MMC_RSP_R1:
 732	case MMC_RSP_R1B:
 733	case MMC_RSP_R3:
 734		tmp |= CMD_SET_RTYP_6B;
 735		break;
 
 
 
 736	case MMC_RSP_R2:
 737		tmp |= CMD_SET_RTYP_17B;
 738		break;
 739	default:
 740		dev_err(&host->pd->dev, "Unsupported response type.\n");
 741		break;
 742	}
 743	switch (opc) {
 744	/* RBSY */
 745	case MMC_SWITCH:
 746	case MMC_STOP_TRANSMISSION:
 747	case MMC_SET_WRITE_PROT:
 748	case MMC_CLR_WRITE_PROT:
 749	case MMC_ERASE:
 750		tmp |= CMD_SET_RBSY;
 751		break;
 752	}
 
 753	/* WDAT / DATW */
 754	if (data) {
 755		tmp |= CMD_SET_WDAT;
 756		switch (host->bus_width) {
 757		case MMC_BUS_WIDTH_1:
 758			tmp |= CMD_SET_DATW_1;
 759			break;
 760		case MMC_BUS_WIDTH_4:
 761			tmp |= CMD_SET_DATW_4;
 762			break;
 763		case MMC_BUS_WIDTH_8:
 764			tmp |= CMD_SET_DATW_8;
 765			break;
 766		default:
 767			dev_err(&host->pd->dev, "Unsupported bus width.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 768			break;
 769		}
 770	}
 771	/* DWEN */
 772	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 773		tmp |= CMD_SET_DWEN;
 774	/* CMLTE/CMD12EN */
 775	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 776		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 777		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 778				data->blocks << 16);
 779	}
 780	/* RIDXC[1:0] check bits */
 781	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 782	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 783		tmp |= CMD_SET_RIDXC_BITS;
 784	/* RCRC7C[1:0] check bits */
 785	if (opc == MMC_SEND_OP_COND)
 786		tmp |= CMD_SET_CRC7C_BITS;
 787	/* RCRC7C[1:0] internal CRC7 */
 788	if (opc == MMC_ALL_SEND_CID ||
 789		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 790		tmp |= CMD_SET_CRC7C_INTERNAL;
 791
 792	return (opc << 24) | tmp;
 793}
 794
 795static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 796			       struct mmc_request *mrq, u32 opc)
 797{
 
 
 798	switch (opc) {
 799	case MMC_READ_MULTIPLE_BLOCK:
 800		sh_mmcif_multi_read(host, mrq);
 801		return 0;
 802	case MMC_WRITE_MULTIPLE_BLOCK:
 803		sh_mmcif_multi_write(host, mrq);
 804		return 0;
 805	case MMC_WRITE_BLOCK:
 806		sh_mmcif_single_write(host, mrq);
 807		return 0;
 808	case MMC_READ_SINGLE_BLOCK:
 809	case MMC_SEND_EXT_CSD:
 810		sh_mmcif_single_read(host, mrq);
 811		return 0;
 812	default:
 813		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
 814		return -EINVAL;
 815	}
 816}
 817
 818static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 819			       struct mmc_request *mrq)
 820{
 821	struct mmc_command *cmd = mrq->cmd;
 822	u32 opc = cmd->opcode;
 823	u32 mask;
 
 824
 825	switch (opc) {
 826	/* response busy check */
 827	case MMC_SWITCH:
 828	case MMC_STOP_TRANSMISSION:
 829	case MMC_SET_WRITE_PROT:
 830	case MMC_CLR_WRITE_PROT:
 831	case MMC_ERASE:
 832		mask = MASK_START_CMD | MASK_MRBSYE;
 833		break;
 834	default:
 835		mask = MASK_START_CMD | MASK_MCRSPE;
 836		break;
 837	}
 
 838
 839	if (mrq->data) {
 840		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 841		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 842				mrq->data->blksz);
 843	}
 844	opc = sh_mmcif_set_cmd(host, mrq);
 845
 846	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 
 
 
 847	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 848	/* set arg */
 849	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 850	/* set cmd */
 
 851	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 852
 853	host->wait_for = MMCIF_WAIT_FOR_CMD;
 854	schedule_delayed_work(&host->timeout_work, host->timeout);
 
 855}
 856
 857static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 858			      struct mmc_request *mrq)
 859{
 
 
 860	switch (mrq->cmd->opcode) {
 861	case MMC_READ_MULTIPLE_BLOCK:
 862		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 863		break;
 864	case MMC_WRITE_MULTIPLE_BLOCK:
 865		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 866		break;
 867	default:
 868		dev_err(&host->pd->dev, "unsupported stop cmd\n");
 869		mrq->stop->error = sh_mmcif_error_manage(host);
 870		return;
 871	}
 872
 873	host->wait_for = MMCIF_WAIT_FOR_STOP;
 874	schedule_delayed_work(&host->timeout_work, host->timeout);
 875}
 876
 877static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 878{
 879	struct sh_mmcif_host *host = mmc_priv(mmc);
 
 880	unsigned long flags;
 881
 882	spin_lock_irqsave(&host->lock, flags);
 883	if (host->state != STATE_IDLE) {
 
 
 884		spin_unlock_irqrestore(&host->lock, flags);
 885		mrq->cmd->error = -EAGAIN;
 886		mmc_request_done(mmc, mrq);
 887		return;
 888	}
 889
 890	host->state = STATE_REQUEST;
 891	spin_unlock_irqrestore(&host->lock, flags);
 892
 893	switch (mrq->cmd->opcode) {
 894	/* MMCIF does not support SD/SDIO command */
 895	case SD_IO_SEND_OP_COND:
 896	case MMC_APP_CMD:
 897		host->state = STATE_IDLE;
 898		mrq->cmd->error = -ETIMEDOUT;
 899		mmc_request_done(mmc, mrq);
 900		return;
 901	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
 902		if (!mrq->data) {
 903			/* send_if_cond cmd (not support) */
 904			host->state = STATE_IDLE;
 905			mrq->cmd->error = -ETIMEDOUT;
 906			mmc_request_done(mmc, mrq);
 907			return;
 908		}
 909		break;
 910	default:
 911		break;
 912	}
 913
 914	host->mrq = mrq;
 915
 916	sh_mmcif_start_cmd(host, mrq);
 917}
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 920{
 921	struct sh_mmcif_host *host = mmc_priv(mmc);
 922	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 923	unsigned long flags;
 924
 925	spin_lock_irqsave(&host->lock, flags);
 926	if (host->state != STATE_IDLE) {
 
 
 927		spin_unlock_irqrestore(&host->lock, flags);
 928		return;
 929	}
 930
 931	host->state = STATE_IOS;
 932	spin_unlock_irqrestore(&host->lock, flags);
 933
 934	if (ios->power_mode == MMC_POWER_UP) {
 935		if (!host->card_present) {
 936			/* See if we also get DMA */
 937			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
 938			host->card_present = true;
 939		}
 940	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
 941		/* clock stop */
 942		sh_mmcif_clock_control(host, 0);
 943		if (ios->power_mode == MMC_POWER_OFF) {
 944			if (host->card_present) {
 945				sh_mmcif_release_dma(host);
 946				host->card_present = false;
 947			}
 948		}
 
 
 
 
 949		if (host->power) {
 950			pm_runtime_put(&host->pd->dev);
 
 
 
 951			host->power = false;
 952			if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
 953				p->down_pwr(host->pd);
 954		}
 955		host->state = STATE_IDLE;
 956		return;
 957	}
 958
 959	if (ios->clock) {
 960		if (!host->power) {
 961			if (p->set_pwr)
 962				p->set_pwr(host->pd, ios->power_mode);
 963			pm_runtime_get_sync(&host->pd->dev);
 964			host->power = true;
 965			sh_mmcif_sync_reset(host);
 966		}
 
 
 967		sh_mmcif_clock_control(host, ios->clock);
 
 968	}
 969
 
 970	host->bus_width = ios->bus_width;
 971	host->state = STATE_IDLE;
 972}
 973
 974static int sh_mmcif_get_cd(struct mmc_host *mmc)
 975{
 976	struct sh_mmcif_host *host = mmc_priv(mmc);
 977	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 978
 979	if (!p->get_cd)
 980		return -ENOSYS;
 981	else
 982		return p->get_cd(host->pd);
 983}
 984
 985static struct mmc_host_ops sh_mmcif_ops = {
 986	.request	= sh_mmcif_request,
 987	.set_ios	= sh_mmcif_set_ios,
 988	.get_cd		= sh_mmcif_get_cd,
 989};
 990
 991static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
 992{
 993	struct mmc_command *cmd = host->mrq->cmd;
 994	struct mmc_data *data = host->mrq->data;
 
 995	long time;
 996
 997	if (host->sd_error) {
 998		switch (cmd->opcode) {
 999		case MMC_ALL_SEND_CID:
1000		case MMC_SELECT_CARD:
1001		case MMC_APP_CMD:
1002			cmd->error = -ETIMEDOUT;
1003			host->sd_error = false;
1004			break;
1005		default:
1006			cmd->error = sh_mmcif_error_manage(host);
1007			dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1008				cmd->opcode, cmd->error);
1009			break;
1010		}
 
 
 
1011		return false;
1012	}
1013	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1014		cmd->error = 0;
1015		return false;
1016	}
1017
1018	sh_mmcif_get_response(host, cmd);
1019
1020	if (!data)
1021		return false;
1022
 
 
 
 
 
 
1023	if (data->flags & MMC_DATA_READ) {
1024		if (host->chan_rx)
1025			sh_mmcif_start_dma_rx(host);
1026	} else {
1027		if (host->chan_tx)
1028			sh_mmcif_start_dma_tx(host);
1029	}
1030
1031	if (!host->dma_active) {
1032		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1033		if (!data->error)
1034			return true;
1035		return false;
1036	}
1037
1038	/* Running in the IRQ thread, can sleep */
1039	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1040							 host->timeout);
 
 
 
 
 
 
 
 
 
 
1041	if (host->sd_error) {
1042		dev_err(host->mmc->parent,
1043			"Error IRQ while waiting for DMA completion!\n");
1044		/* Woken up by an error IRQ: abort DMA */
1045		if (data->flags & MMC_DATA_READ)
1046			dmaengine_terminate_all(host->chan_rx);
1047		else
1048			dmaengine_terminate_all(host->chan_tx);
1049		data->error = sh_mmcif_error_manage(host);
1050	} else if (!time) {
 
1051		data->error = -ETIMEDOUT;
1052	} else if (time < 0) {
 
 
1053		data->error = time;
1054	}
1055	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1056			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1057	host->dma_active = false;
1058
1059	if (data->error)
1060		data->bytes_xfered = 0;
 
 
 
 
 
 
1061
1062	return false;
1063}
1064
1065static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1066{
1067	struct sh_mmcif_host *host = dev_id;
1068	struct mmc_request *mrq = host->mrq;
1069	struct mmc_data *data = mrq->data;
 
 
 
 
 
 
 
1070
1071	cancel_delayed_work_sync(&host->timeout_work);
1072
 
 
 
 
 
 
 
 
 
 
1073	/*
1074	 * All handlers return true, if processing continues, and false, if the
1075	 * request has to be completed - successfully or not
1076	 */
1077	switch (host->wait_for) {
1078	case MMCIF_WAIT_FOR_REQUEST:
1079		/* We're too late, the timeout has already kicked in */
 
1080		return IRQ_HANDLED;
1081	case MMCIF_WAIT_FOR_CMD:
1082		if (sh_mmcif_end_cmd(host))
1083			/* Wait for data */
1084			return IRQ_HANDLED;
1085		break;
1086	case MMCIF_WAIT_FOR_MREAD:
1087		if (sh_mmcif_mread_block(host))
1088			/* Wait for more data */
1089			return IRQ_HANDLED;
1090		break;
1091	case MMCIF_WAIT_FOR_READ:
1092		if (sh_mmcif_read_block(host))
1093			/* Wait for data end */
1094			return IRQ_HANDLED;
1095		break;
1096	case MMCIF_WAIT_FOR_MWRITE:
1097		if (sh_mmcif_mwrite_block(host))
1098			/* Wait data to write */
1099			return IRQ_HANDLED;
1100		break;
1101	case MMCIF_WAIT_FOR_WRITE:
1102		if (sh_mmcif_write_block(host))
1103			/* Wait for data end */
1104			return IRQ_HANDLED;
1105		break;
1106	case MMCIF_WAIT_FOR_STOP:
1107		if (host->sd_error) {
1108			mrq->stop->error = sh_mmcif_error_manage(host);
 
1109			break;
1110		}
1111		sh_mmcif_get_cmd12response(host, mrq->stop);
1112		mrq->stop->error = 0;
1113		break;
1114	case MMCIF_WAIT_FOR_READ_END:
1115	case MMCIF_WAIT_FOR_WRITE_END:
1116		if (host->sd_error)
1117			data->error = sh_mmcif_error_manage(host);
 
 
1118		break;
1119	default:
1120		BUG();
1121	}
1122
 
 
 
 
 
 
 
1123	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
 
1124		if (!mrq->cmd->error && data && !data->error)
1125			data->bytes_xfered =
1126				data->blocks * data->blksz;
1127
1128		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1129			sh_mmcif_stop_cmd(host, mrq);
1130			if (!mrq->stop->error)
 
 
1131				return IRQ_HANDLED;
 
1132		}
1133	}
1134
1135	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1136	host->state = STATE_IDLE;
1137	host->mrq = NULL;
1138	mmc_request_done(host->mmc, mrq);
1139
 
 
1140	return IRQ_HANDLED;
1141}
1142
1143static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1144{
1145	struct sh_mmcif_host *host = dev_id;
1146	u32 state;
1147	int err = 0;
1148
1149	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
 
 
 
 
 
 
1150
1151	if (state & INT_ERR_STS) {
1152		/* error interrupts - process first */
1153		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1154		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1155		err = 1;
1156	} else if (state & INT_RBSYE) {
1157		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1158				~(INT_RBSYE | INT_CRSPE));
1159		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1160	} else if (state & INT_CRSPE) {
1161		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1162		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1163	} else if (state & INT_BUFREN) {
1164		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1165		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1166	} else if (state & INT_BUFWEN) {
1167		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1168		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1169	} else if (state & INT_CMD12DRE) {
1170		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1171			~(INT_CMD12DRE | INT_CMD12RBE |
1172			  INT_CMD12CRE | INT_BUFRE));
1173		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1174	} else if (state & INT_BUFRE) {
1175		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1176		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1177	} else if (state & INT_DTRANE) {
1178		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1179		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1180	} else if (state & INT_CMD12RBE) {
1181		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1182				~(INT_CMD12RBE | INT_CMD12CRE));
1183		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1184	} else {
1185		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1186		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1187		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1188		err = 1;
1189	}
1190	if (err) {
1191		host->sd_error = true;
1192		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1193	}
1194	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
 
 
1195		if (!host->dma_active)
1196			return IRQ_WAKE_THREAD;
1197		else if (host->sd_error)
1198			mmcif_dma_complete(host);
1199	} else {
1200		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1201	}
1202
1203	return IRQ_HANDLED;
1204}
1205
1206static void mmcif_timeout_work(struct work_struct *work)
1207{
1208	struct delayed_work *d = container_of(work, struct delayed_work, work);
1209	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1210	struct mmc_request *mrq = host->mrq;
 
 
1211
1212	if (host->dying)
1213		/* Don't run after mmc_remove_host() */
1214		return;
1215
 
 
 
 
 
 
 
 
 
 
 
 
1216	/*
1217	 * Handle races with cancel_delayed_work(), unless
1218	 * cancel_delayed_work_sync() is used
1219	 */
1220	switch (host->wait_for) {
1221	case MMCIF_WAIT_FOR_CMD:
1222		mrq->cmd->error = sh_mmcif_error_manage(host);
1223		break;
1224	case MMCIF_WAIT_FOR_STOP:
1225		mrq->stop->error = sh_mmcif_error_manage(host);
1226		break;
1227	case MMCIF_WAIT_FOR_MREAD:
1228	case MMCIF_WAIT_FOR_MWRITE:
1229	case MMCIF_WAIT_FOR_READ:
1230	case MMCIF_WAIT_FOR_WRITE:
1231	case MMCIF_WAIT_FOR_READ_END:
1232	case MMCIF_WAIT_FOR_WRITE_END:
1233		mrq->data->error = sh_mmcif_error_manage(host);
1234		break;
1235	default:
1236		BUG();
1237	}
1238
1239	host->state = STATE_IDLE;
1240	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1241	host->mrq = NULL;
1242	mmc_request_done(host->mmc, mrq);
1243}
1244
1245static int __devinit sh_mmcif_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246{
1247	int ret = 0, irq[2];
1248	struct mmc_host *mmc;
1249	struct sh_mmcif_host *host;
1250	struct sh_mmcif_plat_data *pd;
 
1251	struct resource *res;
1252	void __iomem *reg;
1253	char clk_name[8];
1254
1255	irq[0] = platform_get_irq(pdev, 0);
1256	irq[1] = platform_get_irq(pdev, 1);
1257	if (irq[0] < 0 || irq[1] < 0) {
1258		dev_err(&pdev->dev, "Get irq error\n");
1259		return -ENXIO;
1260	}
1261	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1262	if (!res) {
1263		dev_err(&pdev->dev, "platform_get_resource error.\n");
1264		return -ENXIO;
1265	}
1266	reg = ioremap(res->start, resource_size(res));
1267	if (!reg) {
1268		dev_err(&pdev->dev, "ioremap error.\n");
1269		return -ENOMEM;
1270	}
1271	pd = pdev->dev.platform_data;
1272	if (!pd) {
1273		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1274		ret = -ENXIO;
1275		goto clean_up;
1276	}
1277	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1278	if (!mmc) {
1279		ret = -ENOMEM;
1280		goto clean_up;
1281	}
1282	host		= mmc_priv(mmc);
1283	host->mmc	= mmc;
1284	host->addr	= reg;
1285	host->timeout	= 1000;
 
 
1286
1287	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1288	host->hclk = clk_get(&pdev->dev, clk_name);
1289	if (IS_ERR(host->hclk)) {
1290		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1291		ret = PTR_ERR(host->hclk);
1292		goto clean_up1;
1293	}
1294	clk_enable(host->hclk);
1295	host->clk = clk_get_rate(host->hclk);
1296	host->pd = pdev;
1297
1298	spin_lock_init(&host->lock);
1299
1300	mmc->ops = &sh_mmcif_ops;
1301	mmc->f_max = host->clk / 2;
1302	mmc->f_min = host->clk / 512;
1303	if (pd->ocr)
1304		mmc->ocr_avail = pd->ocr;
1305	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1306	if (pd->caps)
 
1307		mmc->caps |= pd->caps;
1308	mmc->max_segs = 32;
1309	mmc->max_blk_size = 512;
1310	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1311	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1312	mmc->max_seg_size = mmc->max_req_size;
1313
1314	sh_mmcif_sync_reset(host);
1315	platform_set_drvdata(pdev, host);
1316
1317	pm_runtime_enable(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
1318	host->power = false;
1319
1320	ret = pm_runtime_resume(&pdev->dev);
1321	if (ret < 0)
1322		goto clean_up2;
1323
1324	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1325
 
1326	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1327
1328	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
 
 
1329	if (ret) {
1330		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1331		goto clean_up3;
1332	}
1333	ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1334	if (ret) {
1335		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1336		goto clean_up4;
 
 
 
 
1337	}
1338
 
 
1339	ret = mmc_add_host(mmc);
1340	if (ret < 0)
1341		goto clean_up5;
 
 
1342
1343	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
 
 
1344
1345	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1346	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1347		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1348	return ret;
1349
1350clean_up5:
1351	free_irq(irq[1], host);
1352clean_up4:
1353	free_irq(irq[0], host);
1354clean_up3:
1355	pm_runtime_suspend(&pdev->dev);
1356clean_up2:
1357	pm_runtime_disable(&pdev->dev);
1358	clk_disable(host->hclk);
1359clean_up1:
1360	mmc_free_host(mmc);
1361clean_up:
1362	if (reg)
1363		iounmap(reg);
1364	return ret;
1365}
1366
1367static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1368{
1369	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1370	int irq[2];
1371
1372	host->dying = true;
 
1373	pm_runtime_get_sync(&pdev->dev);
1374
1375	dev_pm_qos_hide_latency_limit(&pdev->dev);
1376
1377	mmc_remove_host(host->mmc);
1378	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1379
1380	/*
1381	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1382	 * mmc_remove_host() call above. But swapping order doesn't help either
1383	 * (a query on the linux-mmc mailing list didn't bring any replies).
1384	 */
1385	cancel_delayed_work_sync(&host->timeout_work);
1386
1387	if (host->addr)
1388		iounmap(host->addr);
1389
1390	irq[0] = platform_get_irq(pdev, 0);
1391	irq[1] = platform_get_irq(pdev, 1);
1392
1393	free_irq(irq[0], host);
1394	free_irq(irq[1], host);
1395
1396	platform_set_drvdata(pdev, NULL);
1397
1398	clk_disable(host->hclk);
1399	mmc_free_host(host->mmc);
1400	pm_runtime_put_sync(&pdev->dev);
1401	pm_runtime_disable(&pdev->dev);
1402
1403	return 0;
1404}
1405
1406#ifdef CONFIG_PM
1407static int sh_mmcif_suspend(struct device *dev)
1408{
1409	struct platform_device *pdev = to_platform_device(dev);
1410	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1411	int ret = mmc_suspend_host(host->mmc);
1412
1413	if (!ret) {
1414		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1415		clk_disable(host->hclk);
1416	}
1417
1418	return ret;
1419}
1420
1421static int sh_mmcif_resume(struct device *dev)
1422{
1423	struct platform_device *pdev = to_platform_device(dev);
1424	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1425
1426	clk_enable(host->hclk);
1427
1428	return mmc_resume_host(host->mmc);
1429}
1430#else
1431#define sh_mmcif_suspend	NULL
1432#define sh_mmcif_resume		NULL
1433#endif	/* CONFIG_PM */
1434
1435static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1436	.suspend = sh_mmcif_suspend,
1437	.resume = sh_mmcif_resume,
1438};
1439
1440static struct platform_driver sh_mmcif_driver = {
1441	.probe		= sh_mmcif_probe,
1442	.remove		= sh_mmcif_remove,
1443	.driver		= {
1444		.name	= DRIVER_NAME,
1445		.pm	= &sh_mmcif_dev_pm_ops,
 
1446	},
1447};
1448
1449module_platform_driver(sh_mmcif_driver);
1450
1451MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1452MODULE_LICENSE("GPL");
1453MODULE_ALIAS("platform:" DRIVER_NAME);
1454MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/sh_mmcif.h>
  47#include <linux/mmc/slot-gpio.h>
  48#include <linux/mod_devicetable.h>
  49#include <linux/mutex.h>
  50#include <linux/of_device.h>
  51#include <linux/pagemap.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
 
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 196#define CLKDEV_INIT		400000   /* 400 KHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 
 
 
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 
 
 
 
 
 
 
 
 
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408	cfg.direction = direction;
 409
 410	if (direction == DMA_DEV_TO_MEM) {
 411		cfg.src_addr = res->start + MMCIF_CE_DATA;
 412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413	} else {
 414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423	struct device *dev = sh_mmcif_host_to_dev(host);
 424	host->dma_active = false;
 425
 426	/* We can only either use DMA for both Tx and Rx or not use it at all */
 427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431							pdata->slave_id_tx);
 432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433							pdata->slave_id_rx);
 434	} else {
 435		host->chan_tx = dma_request_slave_channel(dev, "tx");
 436		host->chan_rx = dma_request_slave_channel(dev, "rx");
 437	}
 438	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 439		host->chan_rx);
 440
 441	if (!host->chan_tx || !host->chan_rx ||
 442	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 443	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 444		goto error;
 445
 446	return;
 447
 448error:
 449	if (host->chan_tx)
 450		dma_release_channel(host->chan_tx);
 451	if (host->chan_rx)
 452		dma_release_channel(host->chan_rx);
 453	host->chan_tx = host->chan_rx = NULL;
 454}
 455
 456static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 457{
 458	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 459	/* Descriptors are freed automatically */
 460	if (host->chan_tx) {
 461		struct dma_chan *chan = host->chan_tx;
 462		host->chan_tx = NULL;
 463		dma_release_channel(chan);
 464	}
 465	if (host->chan_rx) {
 466		struct dma_chan *chan = host->chan_rx;
 467		host->chan_rx = NULL;
 468		dma_release_channel(chan);
 469	}
 470
 471	host->dma_active = false;
 472}
 473
 474static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 475{
 476	struct device *dev = sh_mmcif_host_to_dev(host);
 477	struct sh_mmcif_plat_data *p = dev->platform_data;
 478	bool sup_pclk = p ? p->sup_pclk : false;
 479	unsigned int current_clk = clk_get_rate(host->clk);
 480	unsigned int clkdiv;
 481
 482	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 483	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 484
 485	if (!clk)
 486		return;
 
 
 
 
 
 
 487
 488	if (host->clkdiv_map) {
 489		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 490		int i;
 491
 492		clkdiv = 0;
 493		diff_min = ~0;
 494		best_freq = 0;
 495		for (i = 31; i >= 0; i--) {
 496			if (!((1 << i) & host->clkdiv_map))
 497				continue;
 498
 499			/*
 500			 * clk = parent_freq / div
 501			 * -> parent_freq = clk x div
 502			 */
 503
 504			div = 1 << (i + 1);
 505			freq = clk_round_rate(host->clk, clk * div);
 506			myclk = freq / div;
 507			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 508
 509			if (diff <= diff_min) {
 510				best_freq = freq;
 511				clkdiv = i;
 512				diff_min = diff;
 513			}
 514		}
 515
 516		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 517			(best_freq / (1 << (clkdiv + 1))), clk,
 518			best_freq, clkdiv);
 519
 520		clk_set_rate(host->clk, best_freq);
 521		clkdiv = clkdiv << 16;
 522	} else if (sup_pclk && clk == current_clk) {
 523		clkdiv = CLK_SUP_PCLK;
 524	} else {
 525		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 526	}
 527
 528	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 529	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 530}
 531
 532static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 533{
 534	u32 tmp;
 535
 536	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 537
 538	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 539	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 540	if (host->ccs_enable)
 541		tmp |= SCCSTO_29;
 542	if (host->clk_ctrl2_enable)
 543		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 544	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 545		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 546	/* byte swap on */
 547	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 548}
 549
 550static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 551{
 552	struct device *dev = sh_mmcif_host_to_dev(host);
 553	u32 state1, state2;
 554	int ret, timeout;
 555
 556	host->sd_error = false;
 557
 558	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 559	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 560	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 561	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 562
 563	if (state1 & STS1_CMDSEQ) {
 564		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 565		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 566		for (timeout = 10000; timeout; timeout--) {
 567			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 568			      & STS1_CMDSEQ))
 569				break;
 570			mdelay(1);
 571		}
 572		if (!timeout) {
 573			dev_err(dev,
 574				"Forced end of command sequence timeout err\n");
 575			return -EIO;
 576		}
 577		sh_mmcif_sync_reset(host);
 578		dev_dbg(dev, "Forced end of command sequence\n");
 579		return -EIO;
 580	}
 581
 582	if (state2 & STS2_CRC_ERR) {
 583		dev_err(dev, " CRC error: state %u, wait %u\n",
 584			host->state, host->wait_for);
 585		ret = -EIO;
 586	} else if (state2 & STS2_TIMEOUT_ERR) {
 587		dev_err(dev, " Timeout: state %u, wait %u\n",
 588			host->state, host->wait_for);
 589		ret = -ETIMEDOUT;
 590	} else {
 591		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 592			host->state, host->wait_for);
 593		ret = -EIO;
 594	}
 595	return ret;
 596}
 597
 598static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 599{
 600	struct mmc_data *data = host->mrq->data;
 601
 602	host->sg_blkidx += host->blocksize;
 603
 604	/* data->sg->length must be a multiple of host->blocksize? */
 605	BUG_ON(host->sg_blkidx > data->sg->length);
 606
 607	if (host->sg_blkidx == data->sg->length) {
 608		host->sg_blkidx = 0;
 609		if (++host->sg_idx < data->sg_len)
 610			host->pio_ptr = sg_virt(++data->sg);
 611	} else {
 612		host->pio_ptr = p;
 613	}
 614
 615	return host->sg_idx != data->sg_len;
 
 
 
 616}
 617
 618static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 619				 struct mmc_request *mrq)
 620{
 621	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 622			   BLOCK_SIZE_MASK) + 3;
 623
 624	host->wait_for = MMCIF_WAIT_FOR_READ;
 
 625
 626	/* buf read enable */
 627	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 628}
 629
 630static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 631{
 632	struct device *dev = sh_mmcif_host_to_dev(host);
 633	struct mmc_data *data = host->mrq->data;
 634	u32 *p = sg_virt(data->sg);
 635	int i;
 636
 637	if (host->sd_error) {
 638		data->error = sh_mmcif_error_manage(host);
 639		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 640		return false;
 641	}
 642
 643	for (i = 0; i < host->blocksize / 4; i++)
 644		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 645
 646	/* buffer read end */
 647	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 648	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 649
 650	return true;
 651}
 652
 653static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 654				struct mmc_request *mrq)
 655{
 656	struct mmc_data *data = mrq->data;
 657
 658	if (!data->sg_len || !data->sg->length)
 659		return;
 660
 661	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 662		BLOCK_SIZE_MASK;
 663
 664	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 665	host->sg_idx = 0;
 666	host->sg_blkidx = 0;
 667	host->pio_ptr = sg_virt(data->sg);
 668
 669	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 670}
 671
 672static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 673{
 674	struct device *dev = sh_mmcif_host_to_dev(host);
 675	struct mmc_data *data = host->mrq->data;
 676	u32 *p = host->pio_ptr;
 677	int i;
 678
 679	if (host->sd_error) {
 680		data->error = sh_mmcif_error_manage(host);
 681		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 682		return false;
 683	}
 684
 685	BUG_ON(!data->sg->length);
 686
 687	for (i = 0; i < host->blocksize / 4; i++)
 688		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 689
 690	if (!sh_mmcif_next_block(host, p))
 691		return false;
 692
 
 693	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 694
 695	return true;
 696}
 697
 698static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 699					struct mmc_request *mrq)
 700{
 701	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 702			   BLOCK_SIZE_MASK) + 3;
 703
 704	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 
 705
 706	/* buf write enable */
 707	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 708}
 709
 710static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 711{
 712	struct device *dev = sh_mmcif_host_to_dev(host);
 713	struct mmc_data *data = host->mrq->data;
 714	u32 *p = sg_virt(data->sg);
 715	int i;
 716
 717	if (host->sd_error) {
 718		data->error = sh_mmcif_error_manage(host);
 719		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 720		return false;
 721	}
 722
 723	for (i = 0; i < host->blocksize / 4; i++)
 724		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 725
 726	/* buffer write end */
 727	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 728	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 729
 730	return true;
 731}
 732
 733static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 734				struct mmc_request *mrq)
 735{
 736	struct mmc_data *data = mrq->data;
 737
 738	if (!data->sg_len || !data->sg->length)
 739		return;
 740
 741	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 742		BLOCK_SIZE_MASK;
 743
 744	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 745	host->sg_idx = 0;
 746	host->sg_blkidx = 0;
 747	host->pio_ptr = sg_virt(data->sg);
 748
 749	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 750}
 751
 752static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 753{
 754	struct device *dev = sh_mmcif_host_to_dev(host);
 755	struct mmc_data *data = host->mrq->data;
 756	u32 *p = host->pio_ptr;
 757	int i;
 758
 759	if (host->sd_error) {
 760		data->error = sh_mmcif_error_manage(host);
 761		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 762		return false;
 763	}
 764
 765	BUG_ON(!data->sg->length);
 766
 767	for (i = 0; i < host->blocksize / 4; i++)
 768		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 769
 770	if (!sh_mmcif_next_block(host, p))
 771		return false;
 772
 
 773	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 774
 775	return true;
 776}
 777
 778static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 779						struct mmc_command *cmd)
 780{
 781	if (cmd->flags & MMC_RSP_136) {
 782		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 783		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 784		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 785		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 786	} else
 787		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 788}
 789
 790static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 791						struct mmc_command *cmd)
 792{
 793	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 794}
 795
 796static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 797			    struct mmc_request *mrq)
 798{
 799	struct device *dev = sh_mmcif_host_to_dev(host);
 800	struct mmc_data *data = mrq->data;
 801	struct mmc_command *cmd = mrq->cmd;
 802	u32 opc = cmd->opcode;
 803	u32 tmp = 0;
 804
 805	/* Response Type check */
 806	switch (mmc_resp_type(cmd)) {
 807	case MMC_RSP_NONE:
 808		tmp |= CMD_SET_RTYP_NO;
 809		break;
 810	case MMC_RSP_R1:
 
 811	case MMC_RSP_R3:
 812		tmp |= CMD_SET_RTYP_6B;
 813		break;
 814	case MMC_RSP_R1B:
 815		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 816		break;
 817	case MMC_RSP_R2:
 818		tmp |= CMD_SET_RTYP_17B;
 819		break;
 820	default:
 821		dev_err(dev, "Unsupported response type.\n");
 
 
 
 
 
 
 
 
 
 
 822		break;
 823	}
 824
 825	/* WDAT / DATW */
 826	if (data) {
 827		tmp |= CMD_SET_WDAT;
 828		switch (host->bus_width) {
 829		case MMC_BUS_WIDTH_1:
 830			tmp |= CMD_SET_DATW_1;
 831			break;
 832		case MMC_BUS_WIDTH_4:
 833			tmp |= CMD_SET_DATW_4;
 834			break;
 835		case MMC_BUS_WIDTH_8:
 836			tmp |= CMD_SET_DATW_8;
 837			break;
 838		default:
 839			dev_err(dev, "Unsupported bus width.\n");
 840			break;
 841		}
 842		switch (host->timing) {
 843		case MMC_TIMING_MMC_DDR52:
 844			/*
 845			 * MMC core will only set this timing, if the host
 846			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 847			 * capability. MMCIF implementations with this
 848			 * capability, e.g. sh73a0, will have to set it
 849			 * in their platform data.
 850			 */
 851			tmp |= CMD_SET_DARS;
 852			break;
 853		}
 854	}
 855	/* DWEN */
 856	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 857		tmp |= CMD_SET_DWEN;
 858	/* CMLTE/CMD12EN */
 859	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 860		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 861		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 862				data->blocks << 16);
 863	}
 864	/* RIDXC[1:0] check bits */
 865	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 866	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 867		tmp |= CMD_SET_RIDXC_BITS;
 868	/* RCRC7C[1:0] check bits */
 869	if (opc == MMC_SEND_OP_COND)
 870		tmp |= CMD_SET_CRC7C_BITS;
 871	/* RCRC7C[1:0] internal CRC7 */
 872	if (opc == MMC_ALL_SEND_CID ||
 873		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 874		tmp |= CMD_SET_CRC7C_INTERNAL;
 875
 876	return (opc << 24) | tmp;
 877}
 878
 879static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 880			       struct mmc_request *mrq, u32 opc)
 881{
 882	struct device *dev = sh_mmcif_host_to_dev(host);
 883
 884	switch (opc) {
 885	case MMC_READ_MULTIPLE_BLOCK:
 886		sh_mmcif_multi_read(host, mrq);
 887		return 0;
 888	case MMC_WRITE_MULTIPLE_BLOCK:
 889		sh_mmcif_multi_write(host, mrq);
 890		return 0;
 891	case MMC_WRITE_BLOCK:
 892		sh_mmcif_single_write(host, mrq);
 893		return 0;
 894	case MMC_READ_SINGLE_BLOCK:
 895	case MMC_SEND_EXT_CSD:
 896		sh_mmcif_single_read(host, mrq);
 897		return 0;
 898	default:
 899		dev_err(dev, "Unsupported CMD%d\n", opc);
 900		return -EINVAL;
 901	}
 902}
 903
 904static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 905			       struct mmc_request *mrq)
 906{
 907	struct mmc_command *cmd = mrq->cmd;
 908	u32 opc;
 909	u32 mask = 0;
 910	unsigned long flags;
 911
 912	if (cmd->flags & MMC_RSP_BUSY)
 
 
 
 
 
 
 913		mask = MASK_START_CMD | MASK_MRBSYE;
 914	else
 
 915		mask = MASK_START_CMD | MASK_MCRSPE;
 916
 917	if (host->ccs_enable)
 918		mask |= MASK_MCCSTO;
 919
 920	if (mrq->data) {
 921		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 922		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 923				mrq->data->blksz);
 924	}
 925	opc = sh_mmcif_set_cmd(host, mrq);
 926
 927	if (host->ccs_enable)
 928		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 929	else
 930		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 931	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 932	/* set arg */
 933	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 934	/* set cmd */
 935	spin_lock_irqsave(&host->lock, flags);
 936	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 937
 938	host->wait_for = MMCIF_WAIT_FOR_CMD;
 939	schedule_delayed_work(&host->timeout_work, host->timeout);
 940	spin_unlock_irqrestore(&host->lock, flags);
 941}
 942
 943static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 944			      struct mmc_request *mrq)
 945{
 946	struct device *dev = sh_mmcif_host_to_dev(host);
 947
 948	switch (mrq->cmd->opcode) {
 949	case MMC_READ_MULTIPLE_BLOCK:
 950		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 951		break;
 952	case MMC_WRITE_MULTIPLE_BLOCK:
 953		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 954		break;
 955	default:
 956		dev_err(dev, "unsupported stop cmd\n");
 957		mrq->stop->error = sh_mmcif_error_manage(host);
 958		return;
 959	}
 960
 961	host->wait_for = MMCIF_WAIT_FOR_STOP;
 
 962}
 963
 964static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 965{
 966	struct sh_mmcif_host *host = mmc_priv(mmc);
 967	struct device *dev = sh_mmcif_host_to_dev(host);
 968	unsigned long flags;
 969
 970	spin_lock_irqsave(&host->lock, flags);
 971	if (host->state != STATE_IDLE) {
 972		dev_dbg(dev, "%s() rejected, state %u\n",
 973			__func__, host->state);
 974		spin_unlock_irqrestore(&host->lock, flags);
 975		mrq->cmd->error = -EAGAIN;
 976		mmc_request_done(mmc, mrq);
 977		return;
 978	}
 979
 980	host->state = STATE_REQUEST;
 981	spin_unlock_irqrestore(&host->lock, flags);
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	host->mrq = mrq;
 984
 985	sh_mmcif_start_cmd(host, mrq);
 986}
 987
 988static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 989{
 990	struct device *dev = sh_mmcif_host_to_dev(host);
 991
 992	if (host->mmc->f_max) {
 993		unsigned int f_max, f_min = 0, f_min_old;
 994
 995		f_max = host->mmc->f_max;
 996		for (f_min_old = f_max; f_min_old > 2;) {
 997			f_min = clk_round_rate(host->clk, f_min_old / 2);
 998			if (f_min == f_min_old)
 999				break;
1000			f_min_old = f_min;
1001		}
1002
1003		/*
1004		 * This driver assumes this SoC is R-Car Gen2 or later
1005		 */
1006		host->clkdiv_map = 0x3ff;
1007
1008		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010	} else {
1011		unsigned int clk = clk_get_rate(host->clk);
1012
1013		host->mmc->f_max = clk / 2;
1014		host->mmc->f_min = clk / 512;
1015	}
1016
1017	dev_dbg(dev, "clk max/min = %d/%d\n",
1018		host->mmc->f_max, host->mmc->f_min);
1019}
1020
1021static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022{
1023	struct sh_mmcif_host *host = mmc_priv(mmc);
1024	struct device *dev = sh_mmcif_host_to_dev(host);
1025	unsigned long flags;
1026
1027	spin_lock_irqsave(&host->lock, flags);
1028	if (host->state != STATE_IDLE) {
1029		dev_dbg(dev, "%s() rejected, state %u\n",
1030			__func__, host->state);
1031		spin_unlock_irqrestore(&host->lock, flags);
1032		return;
1033	}
1034
1035	host->state = STATE_IOS;
1036	spin_unlock_irqrestore(&host->lock, flags);
1037
1038	switch (ios->power_mode) {
1039	case MMC_POWER_UP:
1040		if (!IS_ERR(mmc->supply.vmmc))
1041			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042		if (!host->power) {
1043			clk_prepare_enable(host->clk);
1044			pm_runtime_get_sync(dev);
1045			sh_mmcif_sync_reset(host);
1046			sh_mmcif_request_dma(host);
1047			host->power = true;
 
 
 
 
1048		}
1049		break;
1050	case MMC_POWER_OFF:
1051		if (!IS_ERR(mmc->supply.vmmc))
1052			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053		if (host->power) {
1054			sh_mmcif_clock_control(host, 0);
1055			sh_mmcif_release_dma(host);
1056			pm_runtime_put(dev);
1057			clk_disable_unprepare(host->clk);
1058			host->power = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059		}
1060		break;
1061	case MMC_POWER_ON:
1062		sh_mmcif_clock_control(host, ios->clock);
1063		break;
1064	}
1065
1066	host->timing = ios->timing;
1067	host->bus_width = ios->bus_width;
1068	host->state = STATE_IDLE;
1069}
1070
1071static const struct mmc_host_ops sh_mmcif_ops = {
 
 
 
 
 
 
 
 
 
 
 
1072	.request	= sh_mmcif_request,
1073	.set_ios	= sh_mmcif_set_ios,
1074	.get_cd		= mmc_gpio_get_cd,
1075};
1076
1077static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078{
1079	struct mmc_command *cmd = host->mrq->cmd;
1080	struct mmc_data *data = host->mrq->data;
1081	struct device *dev = sh_mmcif_host_to_dev(host);
1082	long time;
1083
1084	if (host->sd_error) {
1085		switch (cmd->opcode) {
1086		case MMC_ALL_SEND_CID:
1087		case MMC_SELECT_CARD:
1088		case MMC_APP_CMD:
1089			cmd->error = -ETIMEDOUT;
 
1090			break;
1091		default:
1092			cmd->error = sh_mmcif_error_manage(host);
 
 
1093			break;
1094		}
1095		dev_dbg(dev, "CMD%d error %d\n",
1096			cmd->opcode, cmd->error);
1097		host->sd_error = false;
1098		return false;
1099	}
1100	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101		cmd->error = 0;
1102		return false;
1103	}
1104
1105	sh_mmcif_get_response(host, cmd);
1106
1107	if (!data)
1108		return false;
1109
1110	/*
1111	 * Completion can be signalled from DMA callback and error, so, have to
1112	 * reset here, before setting .dma_active
1113	 */
1114	init_completion(&host->dma_complete);
1115
1116	if (data->flags & MMC_DATA_READ) {
1117		if (host->chan_rx)
1118			sh_mmcif_start_dma_rx(host);
1119	} else {
1120		if (host->chan_tx)
1121			sh_mmcif_start_dma_tx(host);
1122	}
1123
1124	if (!host->dma_active) {
1125		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126		return !data->error;
 
 
1127	}
1128
1129	/* Running in the IRQ thread, can sleep */
1130	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131							 host->timeout);
1132
1133	if (data->flags & MMC_DATA_READ)
1134		dma_unmap_sg(host->chan_rx->device->dev,
1135			     data->sg, data->sg_len,
1136			     DMA_FROM_DEVICE);
1137	else
1138		dma_unmap_sg(host->chan_tx->device->dev,
1139			     data->sg, data->sg_len,
1140			     DMA_TO_DEVICE);
1141
1142	if (host->sd_error) {
1143		dev_err(host->mmc->parent,
1144			"Error IRQ while waiting for DMA completion!\n");
1145		/* Woken up by an error IRQ: abort DMA */
 
 
 
 
1146		data->error = sh_mmcif_error_manage(host);
1147	} else if (!time) {
1148		dev_err(host->mmc->parent, "DMA timeout!\n");
1149		data->error = -ETIMEDOUT;
1150	} else if (time < 0) {
1151		dev_err(host->mmc->parent,
1152			"wait_for_completion_...() error %ld!\n", time);
1153		data->error = time;
1154	}
1155	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157	host->dma_active = false;
1158
1159	if (data->error) {
1160		data->bytes_xfered = 0;
1161		/* Abort DMA */
1162		if (data->flags & MMC_DATA_READ)
1163			dmaengine_terminate_all(host->chan_rx);
1164		else
1165			dmaengine_terminate_all(host->chan_tx);
1166	}
1167
1168	return false;
1169}
1170
1171static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172{
1173	struct sh_mmcif_host *host = dev_id;
1174	struct mmc_request *mrq;
1175	struct device *dev = sh_mmcif_host_to_dev(host);
1176	bool wait = false;
1177	unsigned long flags;
1178	int wait_work;
1179
1180	spin_lock_irqsave(&host->lock, flags);
1181	wait_work = host->wait_for;
1182	spin_unlock_irqrestore(&host->lock, flags);
1183
1184	cancel_delayed_work_sync(&host->timeout_work);
1185
1186	mutex_lock(&host->thread_lock);
1187
1188	mrq = host->mrq;
1189	if (!mrq) {
1190		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191			host->state, host->wait_for);
1192		mutex_unlock(&host->thread_lock);
1193		return IRQ_HANDLED;
1194	}
1195
1196	/*
1197	 * All handlers return true, if processing continues, and false, if the
1198	 * request has to be completed - successfully or not
1199	 */
1200	switch (wait_work) {
1201	case MMCIF_WAIT_FOR_REQUEST:
1202		/* We're too late, the timeout has already kicked in */
1203		mutex_unlock(&host->thread_lock);
1204		return IRQ_HANDLED;
1205	case MMCIF_WAIT_FOR_CMD:
1206		/* Wait for data? */
1207		wait = sh_mmcif_end_cmd(host);
 
1208		break;
1209	case MMCIF_WAIT_FOR_MREAD:
1210		/* Wait for more data? */
1211		wait = sh_mmcif_mread_block(host);
 
1212		break;
1213	case MMCIF_WAIT_FOR_READ:
1214		/* Wait for data end? */
1215		wait = sh_mmcif_read_block(host);
 
1216		break;
1217	case MMCIF_WAIT_FOR_MWRITE:
1218		/* Wait data to write? */
1219		wait = sh_mmcif_mwrite_block(host);
 
1220		break;
1221	case MMCIF_WAIT_FOR_WRITE:
1222		/* Wait for data end? */
1223		wait = sh_mmcif_write_block(host);
 
1224		break;
1225	case MMCIF_WAIT_FOR_STOP:
1226		if (host->sd_error) {
1227			mrq->stop->error = sh_mmcif_error_manage(host);
1228			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229			break;
1230		}
1231		sh_mmcif_get_cmd12response(host, mrq->stop);
1232		mrq->stop->error = 0;
1233		break;
1234	case MMCIF_WAIT_FOR_READ_END:
1235	case MMCIF_WAIT_FOR_WRITE_END:
1236		if (host->sd_error) {
1237			mrq->data->error = sh_mmcif_error_manage(host);
1238			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239		}
1240		break;
1241	default:
1242		BUG();
1243	}
1244
1245	if (wait) {
1246		schedule_delayed_work(&host->timeout_work, host->timeout);
1247		/* Wait for more data */
1248		mutex_unlock(&host->thread_lock);
1249		return IRQ_HANDLED;
1250	}
1251
1252	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253		struct mmc_data *data = mrq->data;
1254		if (!mrq->cmd->error && data && !data->error)
1255			data->bytes_xfered =
1256				data->blocks * data->blksz;
1257
1258		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259			sh_mmcif_stop_cmd(host, mrq);
1260			if (!mrq->stop->error) {
1261				schedule_delayed_work(&host->timeout_work, host->timeout);
1262				mutex_unlock(&host->thread_lock);
1263				return IRQ_HANDLED;
1264			}
1265		}
1266	}
1267
1268	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269	host->state = STATE_IDLE;
1270	host->mrq = NULL;
1271	mmc_request_done(host->mmc, mrq);
1272
1273	mutex_unlock(&host->thread_lock);
1274
1275	return IRQ_HANDLED;
1276}
1277
1278static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279{
1280	struct sh_mmcif_host *host = dev_id;
1281	struct device *dev = sh_mmcif_host_to_dev(host);
1282	u32 state, mask;
1283
1284	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286	if (host->ccs_enable)
1287		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288	else
1289		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291
1292	if (state & ~MASK_CLEAN)
1293		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294			state);
1295
1296	if (state & INT_ERR_STS || state & ~INT_ALL) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297		host->sd_error = true;
1298		dev_dbg(dev, "int err state = 0x%08x\n", state);
1299	}
1300	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301		if (!host->mrq)
1302			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303		if (!host->dma_active)
1304			return IRQ_WAKE_THREAD;
1305		else if (host->sd_error)
1306			sh_mmcif_dma_complete(host);
1307	} else {
1308		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309	}
1310
1311	return IRQ_HANDLED;
1312}
1313
1314static void sh_mmcif_timeout_work(struct work_struct *work)
1315{
1316	struct delayed_work *d = to_delayed_work(work);
1317	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318	struct mmc_request *mrq = host->mrq;
1319	struct device *dev = sh_mmcif_host_to_dev(host);
1320	unsigned long flags;
1321
1322	if (host->dying)
1323		/* Don't run after mmc_remove_host() */
1324		return;
1325
1326	spin_lock_irqsave(&host->lock, flags);
1327	if (host->state == STATE_IDLE) {
1328		spin_unlock_irqrestore(&host->lock, flags);
1329		return;
1330	}
1331
1332	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333		host->wait_for, mrq->cmd->opcode);
1334
1335	host->state = STATE_TIMEOUT;
1336	spin_unlock_irqrestore(&host->lock, flags);
1337
1338	/*
1339	 * Handle races with cancel_delayed_work(), unless
1340	 * cancel_delayed_work_sync() is used
1341	 */
1342	switch (host->wait_for) {
1343	case MMCIF_WAIT_FOR_CMD:
1344		mrq->cmd->error = sh_mmcif_error_manage(host);
1345		break;
1346	case MMCIF_WAIT_FOR_STOP:
1347		mrq->stop->error = sh_mmcif_error_manage(host);
1348		break;
1349	case MMCIF_WAIT_FOR_MREAD:
1350	case MMCIF_WAIT_FOR_MWRITE:
1351	case MMCIF_WAIT_FOR_READ:
1352	case MMCIF_WAIT_FOR_WRITE:
1353	case MMCIF_WAIT_FOR_READ_END:
1354	case MMCIF_WAIT_FOR_WRITE_END:
1355		mrq->data->error = sh_mmcif_error_manage(host);
1356		break;
1357	default:
1358		BUG();
1359	}
1360
1361	host->state = STATE_IDLE;
1362	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363	host->mrq = NULL;
1364	mmc_request_done(host->mmc, mrq);
1365}
1366
1367static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368{
1369	struct device *dev = sh_mmcif_host_to_dev(host);
1370	struct sh_mmcif_plat_data *pd = dev->platform_data;
1371	struct mmc_host *mmc = host->mmc;
1372
1373	mmc_regulator_get_supply(mmc);
1374
1375	if (!pd)
1376		return;
1377
1378	if (!mmc->ocr_avail)
1379		mmc->ocr_avail = pd->ocr;
1380	else if (pd->ocr)
1381		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382}
1383
1384static int sh_mmcif_probe(struct platform_device *pdev)
1385{
1386	int ret = 0, irq[2];
1387	struct mmc_host *mmc;
1388	struct sh_mmcif_host *host;
1389	struct device *dev = &pdev->dev;
1390	struct sh_mmcif_plat_data *pd = dev->platform_data;
1391	struct resource *res;
1392	void __iomem *reg;
1393	const char *name;
1394
1395	irq[0] = platform_get_irq(pdev, 0);
1396	irq[1] = platform_get_irq_optional(pdev, 1);
1397	if (irq[0] < 0)
 
1398		return -ENXIO;
1399
1400	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401	reg = devm_ioremap_resource(dev, res);
1402	if (IS_ERR(reg))
1403		return PTR_ERR(reg);
1404
1405	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1406	if (!mmc)
 
1407		return -ENOMEM;
1408
1409	ret = mmc_of_parse(mmc);
1410	if (ret < 0)
1411		goto err_host;
1412
 
 
 
 
 
 
 
1413	host		= mmc_priv(mmc);
1414	host->mmc	= mmc;
1415	host->addr	= reg;
1416	host->timeout	= msecs_to_jiffies(10000);
1417	host->ccs_enable = true;
1418	host->clk_ctrl2_enable = false;
1419
 
 
 
 
 
 
 
 
 
1420	host->pd = pdev;
1421
1422	spin_lock_init(&host->lock);
1423
1424	mmc->ops = &sh_mmcif_ops;
1425	sh_mmcif_init_ocr(host);
1426
1427	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1428	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1429	mmc->max_busy_timeout = 10000;
1430
1431	if (pd && pd->caps)
1432		mmc->caps |= pd->caps;
1433	mmc->max_segs = 32;
1434	mmc->max_blk_size = 512;
1435	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1436	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1437	mmc->max_seg_size = mmc->max_req_size;
1438
 
1439	platform_set_drvdata(pdev, host);
1440
1441	host->clk = devm_clk_get(dev, NULL);
1442	if (IS_ERR(host->clk)) {
1443		ret = PTR_ERR(host->clk);
1444		dev_err(dev, "cannot get clock: %d\n", ret);
1445		goto err_host;
1446	}
1447
1448	ret = clk_prepare_enable(host->clk);
1449	if (ret < 0)
1450		goto err_host;
1451
1452	sh_mmcif_clk_setup(host);
1453
1454	pm_runtime_enable(dev);
1455	host->power = false;
1456
1457	ret = pm_runtime_get_sync(dev);
1458	if (ret < 0)
1459		goto err_clk;
1460
1461	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1462
1463	sh_mmcif_sync_reset(host);
1464	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1465
1466	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1467	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1468					sh_mmcif_irqt, 0, name, host);
1469	if (ret) {
1470		dev_err(dev, "request_irq error (%s)\n", name);
1471		goto err_clk;
1472	}
1473	if (irq[1] >= 0) {
1474		ret = devm_request_threaded_irq(dev, irq[1],
1475						sh_mmcif_intr, sh_mmcif_irqt,
1476						0, "sh_mmc:int", host);
1477		if (ret) {
1478			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1479			goto err_clk;
1480		}
1481	}
1482
1483	mutex_init(&host->thread_lock);
1484
1485	ret = mmc_add_host(mmc);
1486	if (ret < 0)
1487		goto err_clk;
1488
1489	dev_pm_qos_expose_latency_limit(dev, 100);
1490
1491	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1492		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1493		 clk_get_rate(host->clk) / 1000000UL);
1494
1495	pm_runtime_put(dev);
1496	clk_disable_unprepare(host->clk);
 
1497	return ret;
1498
1499err_clk:
1500	clk_disable_unprepare(host->clk);
1501	pm_runtime_put_sync(dev);
1502	pm_runtime_disable(dev);
1503err_host:
 
 
 
 
 
1504	mmc_free_host(mmc);
 
 
 
1505	return ret;
1506}
1507
1508static int sh_mmcif_remove(struct platform_device *pdev)
1509{
1510	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
 
1511
1512	host->dying = true;
1513	clk_prepare_enable(host->clk);
1514	pm_runtime_get_sync(&pdev->dev);
1515
1516	dev_pm_qos_hide_latency_limit(&pdev->dev);
1517
1518	mmc_remove_host(host->mmc);
1519	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1520
1521	/*
1522	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1523	 * mmc_remove_host() call above. But swapping order doesn't help either
1524	 * (a query on the linux-mmc mailing list didn't bring any replies).
1525	 */
1526	cancel_delayed_work_sync(&host->timeout_work);
1527
1528	clk_disable_unprepare(host->clk);
 
 
 
 
 
 
 
 
 
 
 
1529	mmc_free_host(host->mmc);
1530	pm_runtime_put_sync(&pdev->dev);
1531	pm_runtime_disable(&pdev->dev);
1532
1533	return 0;
1534}
1535
1536#ifdef CONFIG_PM_SLEEP
1537static int sh_mmcif_suspend(struct device *dev)
1538{
1539	struct sh_mmcif_host *host = dev_get_drvdata(dev);
 
 
1540
1541	pm_runtime_get_sync(dev);
1542	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543	pm_runtime_put(dev);
 
1544
1545	return 0;
1546}
1547
1548static int sh_mmcif_resume(struct device *dev)
1549{
1550	return 0;
 
 
 
 
 
1551}
1552#endif
 
 
 
1553
1554static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1555	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
 
1556};
1557
1558static struct platform_driver sh_mmcif_driver = {
1559	.probe		= sh_mmcif_probe,
1560	.remove		= sh_mmcif_remove,
1561	.driver		= {
1562		.name	= DRIVER_NAME,
1563		.pm	= &sh_mmcif_dev_pm_ops,
1564		.of_match_table = sh_mmcif_of_match,
1565	},
1566};
1567
1568module_platform_driver(sh_mmcif_driver);
1569
1570MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1571MODULE_LICENSE("GPL v2");
1572MODULE_ALIAS("platform:" DRIVER_NAME);
1573MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");