Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright (C) 2007-2009 NEC Corporation.  All Rights Reserved.
  3 *
  4 * Module Author: Kiyoshi Ueda
  5 *
  6 * This file is released under the GPL.
  7 *
  8 * Throughput oriented path selector.
  9 */
 10
 11#include "dm.h"
 12#include "dm-path-selector.h"
 13
 14#include <linux/slab.h>
 15#include <linux/module.h>
 16
 17#define DM_MSG_PREFIX	"multipath service-time"
 18#define ST_MIN_IO	1
 19#define ST_MAX_RELATIVE_THROUGHPUT	100
 20#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT	7
 21#define ST_MAX_INFLIGHT_SIZE	((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
 22#define ST_VERSION	"0.2.0"
 23
 24struct selector {
 25	struct list_head valid_paths;
 26	struct list_head failed_paths;
 
 27};
 28
 29struct path_info {
 30	struct list_head list;
 31	struct dm_path *path;
 32	unsigned repeat_count;
 33	unsigned relative_throughput;
 34	atomic_t in_flight_size;	/* Total size of in-flight I/Os */
 35};
 36
 37static struct selector *alloc_selector(void)
 38{
 39	struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
 40
 41	if (s) {
 42		INIT_LIST_HEAD(&s->valid_paths);
 43		INIT_LIST_HEAD(&s->failed_paths);
 
 44	}
 45
 46	return s;
 47}
 48
 49static int st_create(struct path_selector *ps, unsigned argc, char **argv)
 50{
 51	struct selector *s = alloc_selector();
 52
 53	if (!s)
 54		return -ENOMEM;
 55
 56	ps->context = s;
 57	return 0;
 58}
 59
 60static void free_paths(struct list_head *paths)
 61{
 62	struct path_info *pi, *next;
 63
 64	list_for_each_entry_safe(pi, next, paths, list) {
 65		list_del(&pi->list);
 66		kfree(pi);
 67	}
 68}
 69
 70static void st_destroy(struct path_selector *ps)
 71{
 72	struct selector *s = ps->context;
 73
 74	free_paths(&s->valid_paths);
 75	free_paths(&s->failed_paths);
 76	kfree(s);
 77	ps->context = NULL;
 78}
 79
 80static int st_status(struct path_selector *ps, struct dm_path *path,
 81		     status_type_t type, char *result, unsigned maxlen)
 82{
 83	unsigned sz = 0;
 84	struct path_info *pi;
 85
 86	if (!path)
 87		DMEMIT("0 ");
 88	else {
 89		pi = path->pscontext;
 90
 91		switch (type) {
 92		case STATUSTYPE_INFO:
 93			DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
 94			       pi->relative_throughput);
 95			break;
 96		case STATUSTYPE_TABLE:
 97			DMEMIT("%u %u ", pi->repeat_count,
 98			       pi->relative_throughput);
 99			break;
100		}
101	}
102
103	return sz;
104}
105
106static int st_add_path(struct path_selector *ps, struct dm_path *path,
107		       int argc, char **argv, char **error)
108{
109	struct selector *s = ps->context;
110	struct path_info *pi;
111	unsigned repeat_count = ST_MIN_IO;
112	unsigned relative_throughput = 1;
113	char dummy;
 
114
115	/*
116	 * Arguments: [<repeat_count> [<relative_throughput>]]
117	 * 	<repeat_count>: The number of I/Os before switching path.
118	 * 			If not given, default (ST_MIN_IO) is used.
119	 * 	<relative_throughput>: The relative throughput value of
120	 *			the path among all paths in the path-group.
121	 * 			The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
122	 *			If not given, minimum value '1' is used.
123	 *			If '0' is given, the path isn't selected while
124	 * 			other paths having a positive value are
125	 * 			available.
126	 */
127	if (argc > 2) {
128		*error = "service-time ps: incorrect number of arguments";
129		return -EINVAL;
130	}
131
132	if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
133		*error = "service-time ps: invalid repeat count";
134		return -EINVAL;
135	}
136
 
 
 
 
 
137	if ((argc == 2) &&
138	    (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
139	     relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
140		*error = "service-time ps: invalid relative_throughput value";
141		return -EINVAL;
142	}
143
144	/* allocate the path */
145	pi = kmalloc(sizeof(*pi), GFP_KERNEL);
146	if (!pi) {
147		*error = "service-time ps: Error allocating path context";
148		return -ENOMEM;
149	}
150
151	pi->path = path;
152	pi->repeat_count = repeat_count;
153	pi->relative_throughput = relative_throughput;
154	atomic_set(&pi->in_flight_size, 0);
155
156	path->pscontext = pi;
157
 
158	list_add_tail(&pi->list, &s->valid_paths);
 
159
160	return 0;
161}
162
163static void st_fail_path(struct path_selector *ps, struct dm_path *path)
164{
165	struct selector *s = ps->context;
166	struct path_info *pi = path->pscontext;
 
167
 
168	list_move(&pi->list, &s->failed_paths);
 
169}
170
171static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
172{
173	struct selector *s = ps->context;
174	struct path_info *pi = path->pscontext;
 
175
 
176	list_move_tail(&pi->list, &s->valid_paths);
 
177
178	return 0;
179}
180
181/*
182 * Compare the estimated service time of 2 paths, pi1 and pi2,
183 * for the incoming I/O.
184 *
185 * Returns:
186 * < 0 : pi1 is better
187 * 0   : no difference between pi1 and pi2
188 * > 0 : pi2 is better
189 *
190 * Description:
191 * Basically, the service time is estimated by:
192 *     ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
193 * To reduce the calculation, some optimizations are made.
194 * (See comments inline)
195 */
196static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
197			   size_t incoming)
198{
199	size_t sz1, sz2, st1, st2;
200
201	sz1 = atomic_read(&pi1->in_flight_size);
202	sz2 = atomic_read(&pi2->in_flight_size);
203
204	/*
205	 * Case 1: Both have same throughput value. Choose less loaded path.
206	 */
207	if (pi1->relative_throughput == pi2->relative_throughput)
208		return sz1 - sz2;
209
210	/*
211	 * Case 2a: Both have same load. Choose higher throughput path.
212	 * Case 2b: One path has no throughput value. Choose the other one.
213	 */
214	if (sz1 == sz2 ||
215	    !pi1->relative_throughput || !pi2->relative_throughput)
216		return pi2->relative_throughput - pi1->relative_throughput;
217
218	/*
219	 * Case 3: Calculate service time. Choose faster path.
220	 *         Service time using pi1:
221	 *             st1 = (sz1 + incoming) / pi1->relative_throughput
222	 *         Service time using pi2:
223	 *             st2 = (sz2 + incoming) / pi2->relative_throughput
224	 *
225	 *         To avoid the division, transform the expression to use
226	 *         multiplication.
227	 *         Because ->relative_throughput > 0 here, if st1 < st2,
228	 *         the expressions below are the same meaning:
229	 *             (sz1 + incoming) / pi1->relative_throughput <
230	 *                 (sz2 + incoming) / pi2->relative_throughput
231	 *             (sz1 + incoming) * pi2->relative_throughput <
232	 *                 (sz2 + incoming) * pi1->relative_throughput
233	 *         So use the later one.
234	 */
235	sz1 += incoming;
236	sz2 += incoming;
237	if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
238		     sz2 >= ST_MAX_INFLIGHT_SIZE)) {
239		/*
240		 * Size may be too big for multiplying pi->relative_throughput
241		 * and overflow.
242		 * To avoid the overflow and mis-selection, shift down both.
243		 */
244		sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
245		sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
246	}
247	st1 = sz1 * pi2->relative_throughput;
248	st2 = sz2 * pi1->relative_throughput;
249	if (st1 != st2)
250		return st1 - st2;
251
252	/*
253	 * Case 4: Service time is equal. Choose higher throughput path.
254	 */
255	return pi2->relative_throughput - pi1->relative_throughput;
256}
257
258static struct dm_path *st_select_path(struct path_selector *ps,
259				      unsigned *repeat_count, size_t nr_bytes)
260{
261	struct selector *s = ps->context;
262	struct path_info *pi = NULL, *best = NULL;
 
 
263
 
264	if (list_empty(&s->valid_paths))
265		return NULL;
266
267	/* Change preferred (first in list) path to evenly balance. */
268	list_move_tail(s->valid_paths.next, &s->valid_paths);
269
270	list_for_each_entry(pi, &s->valid_paths, list)
271		if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
272			best = pi;
273
274	if (!best)
275		return NULL;
276
277	*repeat_count = best->repeat_count;
 
278
279	return best->path;
 
 
 
280}
281
282static int st_start_io(struct path_selector *ps, struct dm_path *path,
283		       size_t nr_bytes)
284{
285	struct path_info *pi = path->pscontext;
286
287	atomic_add(nr_bytes, &pi->in_flight_size);
288
289	return 0;
290}
291
292static int st_end_io(struct path_selector *ps, struct dm_path *path,
293		     size_t nr_bytes)
294{
295	struct path_info *pi = path->pscontext;
296
297	atomic_sub(nr_bytes, &pi->in_flight_size);
298
299	return 0;
300}
301
302static struct path_selector_type st_ps = {
303	.name		= "service-time",
304	.module		= THIS_MODULE,
305	.table_args	= 2,
306	.info_args	= 2,
307	.create		= st_create,
308	.destroy	= st_destroy,
309	.status		= st_status,
310	.add_path	= st_add_path,
311	.fail_path	= st_fail_path,
312	.reinstate_path	= st_reinstate_path,
313	.select_path	= st_select_path,
314	.start_io	= st_start_io,
315	.end_io		= st_end_io,
316};
317
318static int __init dm_st_init(void)
319{
320	int r = dm_register_path_selector(&st_ps);
321
322	if (r < 0)
323		DMERR("register failed %d", r);
324
325	DMINFO("version " ST_VERSION " loaded");
326
327	return r;
328}
329
330static void __exit dm_st_exit(void)
331{
332	int r = dm_unregister_path_selector(&st_ps);
333
334	if (r < 0)
335		DMERR("unregister failed %d", r);
336}
337
338module_init(dm_st_init);
339module_exit(dm_st_exit);
340
341MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
342MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
343MODULE_LICENSE("GPL");
v5.4
  1/*
  2 * Copyright (C) 2007-2009 NEC Corporation.  All Rights Reserved.
  3 *
  4 * Module Author: Kiyoshi Ueda
  5 *
  6 * This file is released under the GPL.
  7 *
  8 * Throughput oriented path selector.
  9 */
 10
 11#include "dm.h"
 12#include "dm-path-selector.h"
 13
 14#include <linux/slab.h>
 15#include <linux/module.h>
 16
 17#define DM_MSG_PREFIX	"multipath service-time"
 18#define ST_MIN_IO	1
 19#define ST_MAX_RELATIVE_THROUGHPUT	100
 20#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT	7
 21#define ST_MAX_INFLIGHT_SIZE	((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
 22#define ST_VERSION	"0.3.0"
 23
 24struct selector {
 25	struct list_head valid_paths;
 26	struct list_head failed_paths;
 27	spinlock_t lock;
 28};
 29
 30struct path_info {
 31	struct list_head list;
 32	struct dm_path *path;
 33	unsigned repeat_count;
 34	unsigned relative_throughput;
 35	atomic_t in_flight_size;	/* Total size of in-flight I/Os */
 36};
 37
 38static struct selector *alloc_selector(void)
 39{
 40	struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
 41
 42	if (s) {
 43		INIT_LIST_HEAD(&s->valid_paths);
 44		INIT_LIST_HEAD(&s->failed_paths);
 45		spin_lock_init(&s->lock);
 46	}
 47
 48	return s;
 49}
 50
 51static int st_create(struct path_selector *ps, unsigned argc, char **argv)
 52{
 53	struct selector *s = alloc_selector();
 54
 55	if (!s)
 56		return -ENOMEM;
 57
 58	ps->context = s;
 59	return 0;
 60}
 61
 62static void free_paths(struct list_head *paths)
 63{
 64	struct path_info *pi, *next;
 65
 66	list_for_each_entry_safe(pi, next, paths, list) {
 67		list_del(&pi->list);
 68		kfree(pi);
 69	}
 70}
 71
 72static void st_destroy(struct path_selector *ps)
 73{
 74	struct selector *s = ps->context;
 75
 76	free_paths(&s->valid_paths);
 77	free_paths(&s->failed_paths);
 78	kfree(s);
 79	ps->context = NULL;
 80}
 81
 82static int st_status(struct path_selector *ps, struct dm_path *path,
 83		     status_type_t type, char *result, unsigned maxlen)
 84{
 85	unsigned sz = 0;
 86	struct path_info *pi;
 87
 88	if (!path)
 89		DMEMIT("0 ");
 90	else {
 91		pi = path->pscontext;
 92
 93		switch (type) {
 94		case STATUSTYPE_INFO:
 95			DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
 96			       pi->relative_throughput);
 97			break;
 98		case STATUSTYPE_TABLE:
 99			DMEMIT("%u %u ", pi->repeat_count,
100			       pi->relative_throughput);
101			break;
102		}
103	}
104
105	return sz;
106}
107
108static int st_add_path(struct path_selector *ps, struct dm_path *path,
109		       int argc, char **argv, char **error)
110{
111	struct selector *s = ps->context;
112	struct path_info *pi;
113	unsigned repeat_count = ST_MIN_IO;
114	unsigned relative_throughput = 1;
115	char dummy;
116	unsigned long flags;
117
118	/*
119	 * Arguments: [<repeat_count> [<relative_throughput>]]
120	 * 	<repeat_count>: The number of I/Os before switching path.
121	 * 			If not given, default (ST_MIN_IO) is used.
122	 * 	<relative_throughput>: The relative throughput value of
123	 *			the path among all paths in the path-group.
124	 * 			The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
125	 *			If not given, minimum value '1' is used.
126	 *			If '0' is given, the path isn't selected while
127	 * 			other paths having a positive value are
128	 * 			available.
129	 */
130	if (argc > 2) {
131		*error = "service-time ps: incorrect number of arguments";
132		return -EINVAL;
133	}
134
135	if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
136		*error = "service-time ps: invalid repeat count";
137		return -EINVAL;
138	}
139
140	if (repeat_count > 1) {
141		DMWARN_LIMIT("repeat_count > 1 is deprecated, using 1 instead");
142		repeat_count = 1;
143	}
144
145	if ((argc == 2) &&
146	    (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
147	     relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
148		*error = "service-time ps: invalid relative_throughput value";
149		return -EINVAL;
150	}
151
152	/* allocate the path */
153	pi = kmalloc(sizeof(*pi), GFP_KERNEL);
154	if (!pi) {
155		*error = "service-time ps: Error allocating path context";
156		return -ENOMEM;
157	}
158
159	pi->path = path;
160	pi->repeat_count = repeat_count;
161	pi->relative_throughput = relative_throughput;
162	atomic_set(&pi->in_flight_size, 0);
163
164	path->pscontext = pi;
165
166	spin_lock_irqsave(&s->lock, flags);
167	list_add_tail(&pi->list, &s->valid_paths);
168	spin_unlock_irqrestore(&s->lock, flags);
169
170	return 0;
171}
172
173static void st_fail_path(struct path_selector *ps, struct dm_path *path)
174{
175	struct selector *s = ps->context;
176	struct path_info *pi = path->pscontext;
177	unsigned long flags;
178
179	spin_lock_irqsave(&s->lock, flags);
180	list_move(&pi->list, &s->failed_paths);
181	spin_unlock_irqrestore(&s->lock, flags);
182}
183
184static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
185{
186	struct selector *s = ps->context;
187	struct path_info *pi = path->pscontext;
188	unsigned long flags;
189
190	spin_lock_irqsave(&s->lock, flags);
191	list_move_tail(&pi->list, &s->valid_paths);
192	spin_unlock_irqrestore(&s->lock, flags);
193
194	return 0;
195}
196
197/*
198 * Compare the estimated service time of 2 paths, pi1 and pi2,
199 * for the incoming I/O.
200 *
201 * Returns:
202 * < 0 : pi1 is better
203 * 0   : no difference between pi1 and pi2
204 * > 0 : pi2 is better
205 *
206 * Description:
207 * Basically, the service time is estimated by:
208 *     ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
209 * To reduce the calculation, some optimizations are made.
210 * (See comments inline)
211 */
212static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
213			   size_t incoming)
214{
215	size_t sz1, sz2, st1, st2;
216
217	sz1 = atomic_read(&pi1->in_flight_size);
218	sz2 = atomic_read(&pi2->in_flight_size);
219
220	/*
221	 * Case 1: Both have same throughput value. Choose less loaded path.
222	 */
223	if (pi1->relative_throughput == pi2->relative_throughput)
224		return sz1 - sz2;
225
226	/*
227	 * Case 2a: Both have same load. Choose higher throughput path.
228	 * Case 2b: One path has no throughput value. Choose the other one.
229	 */
230	if (sz1 == sz2 ||
231	    !pi1->relative_throughput || !pi2->relative_throughput)
232		return pi2->relative_throughput - pi1->relative_throughput;
233
234	/*
235	 * Case 3: Calculate service time. Choose faster path.
236	 *         Service time using pi1:
237	 *             st1 = (sz1 + incoming) / pi1->relative_throughput
238	 *         Service time using pi2:
239	 *             st2 = (sz2 + incoming) / pi2->relative_throughput
240	 *
241	 *         To avoid the division, transform the expression to use
242	 *         multiplication.
243	 *         Because ->relative_throughput > 0 here, if st1 < st2,
244	 *         the expressions below are the same meaning:
245	 *             (sz1 + incoming) / pi1->relative_throughput <
246	 *                 (sz2 + incoming) / pi2->relative_throughput
247	 *             (sz1 + incoming) * pi2->relative_throughput <
248	 *                 (sz2 + incoming) * pi1->relative_throughput
249	 *         So use the later one.
250	 */
251	sz1 += incoming;
252	sz2 += incoming;
253	if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
254		     sz2 >= ST_MAX_INFLIGHT_SIZE)) {
255		/*
256		 * Size may be too big for multiplying pi->relative_throughput
257		 * and overflow.
258		 * To avoid the overflow and mis-selection, shift down both.
259		 */
260		sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
261		sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
262	}
263	st1 = sz1 * pi2->relative_throughput;
264	st2 = sz2 * pi1->relative_throughput;
265	if (st1 != st2)
266		return st1 - st2;
267
268	/*
269	 * Case 4: Service time is equal. Choose higher throughput path.
270	 */
271	return pi2->relative_throughput - pi1->relative_throughput;
272}
273
274static struct dm_path *st_select_path(struct path_selector *ps, size_t nr_bytes)
 
275{
276	struct selector *s = ps->context;
277	struct path_info *pi = NULL, *best = NULL;
278	struct dm_path *ret = NULL;
279	unsigned long flags;
280
281	spin_lock_irqsave(&s->lock, flags);
282	if (list_empty(&s->valid_paths))
283		goto out;
 
 
 
284
285	list_for_each_entry(pi, &s->valid_paths, list)
286		if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
287			best = pi;
288
289	if (!best)
290		goto out;
291
292	/* Move most recently used to least preferred to evenly balance. */
293	list_move_tail(&best->list, &s->valid_paths);
294
295	ret = best->path;
296out:
297	spin_unlock_irqrestore(&s->lock, flags);
298	return ret;
299}
300
301static int st_start_io(struct path_selector *ps, struct dm_path *path,
302		       size_t nr_bytes)
303{
304	struct path_info *pi = path->pscontext;
305
306	atomic_add(nr_bytes, &pi->in_flight_size);
307
308	return 0;
309}
310
311static int st_end_io(struct path_selector *ps, struct dm_path *path,
312		     size_t nr_bytes)
313{
314	struct path_info *pi = path->pscontext;
315
316	atomic_sub(nr_bytes, &pi->in_flight_size);
317
318	return 0;
319}
320
321static struct path_selector_type st_ps = {
322	.name		= "service-time",
323	.module		= THIS_MODULE,
324	.table_args	= 2,
325	.info_args	= 2,
326	.create		= st_create,
327	.destroy	= st_destroy,
328	.status		= st_status,
329	.add_path	= st_add_path,
330	.fail_path	= st_fail_path,
331	.reinstate_path	= st_reinstate_path,
332	.select_path	= st_select_path,
333	.start_io	= st_start_io,
334	.end_io		= st_end_io,
335};
336
337static int __init dm_st_init(void)
338{
339	int r = dm_register_path_selector(&st_ps);
340
341	if (r < 0)
342		DMERR("register failed %d", r);
343
344	DMINFO("version " ST_VERSION " loaded");
345
346	return r;
347}
348
349static void __exit dm_st_exit(void)
350{
351	int r = dm_unregister_path_selector(&st_ps);
352
353	if (r < 0)
354		DMERR("unregister failed %d", r);
355}
356
357module_init(dm_st_init);
358module_exit(dm_st_exit);
359
360MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
361MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
362MODULE_LICENSE("GPL");