Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * bcache setup/teardown code, and some metadata io - read a superblock and
   4 * figure out what to do with it.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "extents.h"
  14#include "request.h"
  15#include "writeback.h"
  16
  17#include <linux/blkdev.h>
  18#include <linux/buffer_head.h>
  19#include <linux/debugfs.h>
  20#include <linux/genhd.h>
  21#include <linux/idr.h>
  22#include <linux/kthread.h>
  23#include <linux/module.h>
  24#include <linux/random.h>
  25#include <linux/reboot.h>
  26#include <linux/sysfs.h>
  27
  28unsigned int bch_cutoff_writeback;
  29unsigned int bch_cutoff_writeback_sync;
  30
  31static const char bcache_magic[] = {
  32	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  33	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  34};
  35
  36static const char invalid_uuid[] = {
  37	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  38	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  39};
  40
  41static struct kobject *bcache_kobj;
  42struct mutex bch_register_lock;
  43bool bcache_is_reboot;
  44LIST_HEAD(bch_cache_sets);
  45static LIST_HEAD(uncached_devices);
  46
  47static int bcache_major;
  48static DEFINE_IDA(bcache_device_idx);
  49static wait_queue_head_t unregister_wait;
  50struct workqueue_struct *bcache_wq;
  51struct workqueue_struct *bch_journal_wq;
  52
  53
  54#define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
  55/* limitation of partitions number on single bcache device */
  56#define BCACHE_MINORS		128
  57/* limitation of bcache devices number on single system */
  58#define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
  59
  60/* Superblock */
  61
  62static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  63			      struct page **res)
  64{
  65	const char *err;
  66	struct cache_sb *s;
  67	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  68	unsigned int i;
  69
  70	if (!bh)
  71		return "IO error";
  72
  73	s = (struct cache_sb *) bh->b_data;
  74
  75	sb->offset		= le64_to_cpu(s->offset);
  76	sb->version		= le64_to_cpu(s->version);
  77
  78	memcpy(sb->magic,	s->magic, 16);
  79	memcpy(sb->uuid,	s->uuid, 16);
  80	memcpy(sb->set_uuid,	s->set_uuid, 16);
  81	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
  82
  83	sb->flags		= le64_to_cpu(s->flags);
  84	sb->seq			= le64_to_cpu(s->seq);
  85	sb->last_mount		= le32_to_cpu(s->last_mount);
  86	sb->first_bucket	= le16_to_cpu(s->first_bucket);
  87	sb->keys		= le16_to_cpu(s->keys);
  88
  89	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  90		sb->d[i] = le64_to_cpu(s->d[i]);
  91
  92	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  93		 sb->version, sb->flags, sb->seq, sb->keys);
  94
  95	err = "Not a bcache superblock";
  96	if (sb->offset != SB_SECTOR)
  97		goto err;
  98
  99	if (memcmp(sb->magic, bcache_magic, 16))
 100		goto err;
 101
 102	err = "Too many journal buckets";
 103	if (sb->keys > SB_JOURNAL_BUCKETS)
 104		goto err;
 105
 106	err = "Bad checksum";
 107	if (s->csum != csum_set(s))
 108		goto err;
 109
 110	err = "Bad UUID";
 111	if (bch_is_zero(sb->uuid, 16))
 112		goto err;
 113
 114	sb->block_size	= le16_to_cpu(s->block_size);
 115
 116	err = "Superblock block size smaller than device block size";
 117	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 118		goto err;
 119
 120	switch (sb->version) {
 121	case BCACHE_SB_VERSION_BDEV:
 122		sb->data_offset	= BDEV_DATA_START_DEFAULT;
 123		break;
 124	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 125		sb->data_offset	= le64_to_cpu(s->data_offset);
 126
 127		err = "Bad data offset";
 128		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 129			goto err;
 130
 131		break;
 132	case BCACHE_SB_VERSION_CDEV:
 133	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 134		sb->nbuckets	= le64_to_cpu(s->nbuckets);
 135		sb->bucket_size	= le16_to_cpu(s->bucket_size);
 136
 137		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
 138		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
 139
 140		err = "Too many buckets";
 141		if (sb->nbuckets > LONG_MAX)
 142			goto err;
 143
 144		err = "Not enough buckets";
 145		if (sb->nbuckets < 1 << 7)
 146			goto err;
 147
 148		err = "Bad block/bucket size";
 149		if (!is_power_of_2(sb->block_size) ||
 150		    sb->block_size > PAGE_SECTORS ||
 151		    !is_power_of_2(sb->bucket_size) ||
 152		    sb->bucket_size < PAGE_SECTORS)
 153			goto err;
 154
 155		err = "Invalid superblock: device too small";
 156		if (get_capacity(bdev->bd_disk) <
 157		    sb->bucket_size * sb->nbuckets)
 158			goto err;
 159
 160		err = "Bad UUID";
 161		if (bch_is_zero(sb->set_uuid, 16))
 162			goto err;
 163
 164		err = "Bad cache device number in set";
 165		if (!sb->nr_in_set ||
 166		    sb->nr_in_set <= sb->nr_this_dev ||
 167		    sb->nr_in_set > MAX_CACHES_PER_SET)
 168			goto err;
 169
 170		err = "Journal buckets not sequential";
 171		for (i = 0; i < sb->keys; i++)
 172			if (sb->d[i] != sb->first_bucket + i)
 173				goto err;
 174
 175		err = "Too many journal buckets";
 176		if (sb->first_bucket + sb->keys > sb->nbuckets)
 177			goto err;
 178
 179		err = "Invalid superblock: first bucket comes before end of super";
 180		if (sb->first_bucket * sb->bucket_size < 16)
 181			goto err;
 182
 183		break;
 184	default:
 185		err = "Unsupported superblock version";
 186		goto err;
 187	}
 188
 189	sb->last_mount = (u32)ktime_get_real_seconds();
 190	err = NULL;
 191
 192	get_page(bh->b_page);
 193	*res = bh->b_page;
 194err:
 195	put_bh(bh);
 196	return err;
 197}
 198
 199static void write_bdev_super_endio(struct bio *bio)
 200{
 201	struct cached_dev *dc = bio->bi_private;
 202
 203	if (bio->bi_status)
 204		bch_count_backing_io_errors(dc, bio);
 205
 206	closure_put(&dc->sb_write);
 207}
 208
 209static void __write_super(struct cache_sb *sb, struct bio *bio)
 210{
 211	struct cache_sb *out = page_address(bio_first_page_all(bio));
 212	unsigned int i;
 213
 214	bio->bi_iter.bi_sector	= SB_SECTOR;
 215	bio->bi_iter.bi_size	= SB_SIZE;
 216	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
 217	bch_bio_map(bio, NULL);
 218
 219	out->offset		= cpu_to_le64(sb->offset);
 220	out->version		= cpu_to_le64(sb->version);
 221
 222	memcpy(out->uuid,	sb->uuid, 16);
 223	memcpy(out->set_uuid,	sb->set_uuid, 16);
 224	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
 225
 226	out->flags		= cpu_to_le64(sb->flags);
 227	out->seq		= cpu_to_le64(sb->seq);
 228
 229	out->last_mount		= cpu_to_le32(sb->last_mount);
 230	out->first_bucket	= cpu_to_le16(sb->first_bucket);
 231	out->keys		= cpu_to_le16(sb->keys);
 232
 233	for (i = 0; i < sb->keys; i++)
 234		out->d[i] = cpu_to_le64(sb->d[i]);
 235
 236	out->csum = csum_set(out);
 237
 238	pr_debug("ver %llu, flags %llu, seq %llu",
 239		 sb->version, sb->flags, sb->seq);
 240
 241	submit_bio(bio);
 242}
 243
 244static void bch_write_bdev_super_unlock(struct closure *cl)
 245{
 246	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 247
 248	up(&dc->sb_write_mutex);
 249}
 250
 251void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 252{
 253	struct closure *cl = &dc->sb_write;
 254	struct bio *bio = &dc->sb_bio;
 255
 256	down(&dc->sb_write_mutex);
 257	closure_init(cl, parent);
 258
 259	bio_reset(bio);
 260	bio_set_dev(bio, dc->bdev);
 261	bio->bi_end_io	= write_bdev_super_endio;
 262	bio->bi_private = dc;
 263
 264	closure_get(cl);
 265	/* I/O request sent to backing device */
 266	__write_super(&dc->sb, bio);
 267
 268	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 269}
 270
 271static void write_super_endio(struct bio *bio)
 272{
 273	struct cache *ca = bio->bi_private;
 274
 275	/* is_read = 0 */
 276	bch_count_io_errors(ca, bio->bi_status, 0,
 277			    "writing superblock");
 278	closure_put(&ca->set->sb_write);
 279}
 280
 281static void bcache_write_super_unlock(struct closure *cl)
 282{
 283	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 284
 285	up(&c->sb_write_mutex);
 286}
 287
 288void bcache_write_super(struct cache_set *c)
 289{
 290	struct closure *cl = &c->sb_write;
 291	struct cache *ca;
 292	unsigned int i;
 293
 294	down(&c->sb_write_mutex);
 295	closure_init(cl, &c->cl);
 296
 297	c->sb.seq++;
 298
 299	for_each_cache(ca, c, i) {
 300		struct bio *bio = &ca->sb_bio;
 301
 302		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
 303		ca->sb.seq		= c->sb.seq;
 304		ca->sb.last_mount	= c->sb.last_mount;
 305
 306		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 307
 308		bio_reset(bio);
 309		bio_set_dev(bio, ca->bdev);
 310		bio->bi_end_io	= write_super_endio;
 311		bio->bi_private = ca;
 312
 313		closure_get(cl);
 314		__write_super(&ca->sb, bio);
 315	}
 316
 317	closure_return_with_destructor(cl, bcache_write_super_unlock);
 318}
 319
 320/* UUID io */
 321
 322static void uuid_endio(struct bio *bio)
 323{
 324	struct closure *cl = bio->bi_private;
 325	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 326
 327	cache_set_err_on(bio->bi_status, c, "accessing uuids");
 328	bch_bbio_free(bio, c);
 329	closure_put(cl);
 330}
 331
 332static void uuid_io_unlock(struct closure *cl)
 333{
 334	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 335
 336	up(&c->uuid_write_mutex);
 337}
 338
 339static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
 340		    struct bkey *k, struct closure *parent)
 341{
 342	struct closure *cl = &c->uuid_write;
 343	struct uuid_entry *u;
 344	unsigned int i;
 345	char buf[80];
 346
 347	BUG_ON(!parent);
 348	down(&c->uuid_write_mutex);
 349	closure_init(cl, parent);
 350
 351	for (i = 0; i < KEY_PTRS(k); i++) {
 352		struct bio *bio = bch_bbio_alloc(c);
 353
 354		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
 355		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 356
 357		bio->bi_end_io	= uuid_endio;
 358		bio->bi_private = cl;
 359		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 360		bch_bio_map(bio, c->uuids);
 361
 362		bch_submit_bbio(bio, c, k, i);
 363
 364		if (op != REQ_OP_WRITE)
 365			break;
 366	}
 367
 368	bch_extent_to_text(buf, sizeof(buf), k);
 369	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
 370
 371	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 372		if (!bch_is_zero(u->uuid, 16))
 373			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 374				 u - c->uuids, u->uuid, u->label,
 375				 u->first_reg, u->last_reg, u->invalidated);
 376
 377	closure_return_with_destructor(cl, uuid_io_unlock);
 378}
 379
 380static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 381{
 382	struct bkey *k = &j->uuid_bucket;
 383
 384	if (__bch_btree_ptr_invalid(c, k))
 385		return "bad uuid pointer";
 386
 387	bkey_copy(&c->uuid_bucket, k);
 388	uuid_io(c, REQ_OP_READ, 0, k, cl);
 389
 390	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 391		struct uuid_entry_v0	*u0 = (void *) c->uuids;
 392		struct uuid_entry	*u1 = (void *) c->uuids;
 393		int i;
 394
 395		closure_sync(cl);
 396
 397		/*
 398		 * Since the new uuid entry is bigger than the old, we have to
 399		 * convert starting at the highest memory address and work down
 400		 * in order to do it in place
 401		 */
 402
 403		for (i = c->nr_uuids - 1;
 404		     i >= 0;
 405		     --i) {
 406			memcpy(u1[i].uuid,	u0[i].uuid, 16);
 407			memcpy(u1[i].label,	u0[i].label, 32);
 408
 409			u1[i].first_reg		= u0[i].first_reg;
 410			u1[i].last_reg		= u0[i].last_reg;
 411			u1[i].invalidated	= u0[i].invalidated;
 412
 413			u1[i].flags	= 0;
 414			u1[i].sectors	= 0;
 415		}
 416	}
 417
 418	return NULL;
 419}
 420
 421static int __uuid_write(struct cache_set *c)
 422{
 423	BKEY_PADDED(key) k;
 424	struct closure cl;
 425	struct cache *ca;
 426
 427	closure_init_stack(&cl);
 428	lockdep_assert_held(&bch_register_lock);
 429
 430	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 431		return 1;
 432
 433	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 434	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
 435	closure_sync(&cl);
 436
 437	/* Only one bucket used for uuid write */
 438	ca = PTR_CACHE(c, &k.key, 0);
 439	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
 440
 441	bkey_copy(&c->uuid_bucket, &k.key);
 442	bkey_put(c, &k.key);
 443	return 0;
 444}
 445
 446int bch_uuid_write(struct cache_set *c)
 447{
 448	int ret = __uuid_write(c);
 449
 450	if (!ret)
 451		bch_journal_meta(c, NULL);
 452
 453	return ret;
 454}
 455
 456static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 457{
 458	struct uuid_entry *u;
 459
 460	for (u = c->uuids;
 461	     u < c->uuids + c->nr_uuids; u++)
 462		if (!memcmp(u->uuid, uuid, 16))
 463			return u;
 464
 465	return NULL;
 466}
 467
 468static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 469{
 470	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 471
 472	return uuid_find(c, zero_uuid);
 473}
 474
 475/*
 476 * Bucket priorities/gens:
 477 *
 478 * For each bucket, we store on disk its
 479 *   8 bit gen
 480 *  16 bit priority
 481 *
 482 * See alloc.c for an explanation of the gen. The priority is used to implement
 483 * lru (and in the future other) cache replacement policies; for most purposes
 484 * it's just an opaque integer.
 485 *
 486 * The gens and the priorities don't have a whole lot to do with each other, and
 487 * it's actually the gens that must be written out at specific times - it's no
 488 * big deal if the priorities don't get written, if we lose them we just reuse
 489 * buckets in suboptimal order.
 490 *
 491 * On disk they're stored in a packed array, and in as many buckets are required
 492 * to fit them all. The buckets we use to store them form a list; the journal
 493 * header points to the first bucket, the first bucket points to the second
 494 * bucket, et cetera.
 495 *
 496 * This code is used by the allocation code; periodically (whenever it runs out
 497 * of buckets to allocate from) the allocation code will invalidate some
 498 * buckets, but it can't use those buckets until their new gens are safely on
 499 * disk.
 500 */
 501
 502static void prio_endio(struct bio *bio)
 503{
 504	struct cache *ca = bio->bi_private;
 505
 506	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
 507	bch_bbio_free(bio, ca->set);
 508	closure_put(&ca->prio);
 509}
 510
 511static void prio_io(struct cache *ca, uint64_t bucket, int op,
 512		    unsigned long op_flags)
 513{
 514	struct closure *cl = &ca->prio;
 515	struct bio *bio = bch_bbio_alloc(ca->set);
 516
 517	closure_init_stack(cl);
 518
 519	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
 520	bio_set_dev(bio, ca->bdev);
 521	bio->bi_iter.bi_size	= bucket_bytes(ca);
 522
 523	bio->bi_end_io	= prio_endio;
 524	bio->bi_private = ca;
 525	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 526	bch_bio_map(bio, ca->disk_buckets);
 527
 528	closure_bio_submit(ca->set, bio, &ca->prio);
 529	closure_sync(cl);
 530}
 531
 532void bch_prio_write(struct cache *ca)
 533{
 534	int i;
 535	struct bucket *b;
 536	struct closure cl;
 537
 538	closure_init_stack(&cl);
 539
 540	lockdep_assert_held(&ca->set->bucket_lock);
 541
 542	ca->disk_buckets->seq++;
 543
 544	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 545			&ca->meta_sectors_written);
 546
 547	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 548	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 549
 550	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 551		long bucket;
 552		struct prio_set *p = ca->disk_buckets;
 553		struct bucket_disk *d = p->data;
 554		struct bucket_disk *end = d + prios_per_bucket(ca);
 555
 556		for (b = ca->buckets + i * prios_per_bucket(ca);
 557		     b < ca->buckets + ca->sb.nbuckets && d < end;
 558		     b++, d++) {
 559			d->prio = cpu_to_le16(b->prio);
 560			d->gen = b->gen;
 561		}
 562
 563		p->next_bucket	= ca->prio_buckets[i + 1];
 564		p->magic	= pset_magic(&ca->sb);
 565		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 566
 567		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 568		BUG_ON(bucket == -1);
 569
 570		mutex_unlock(&ca->set->bucket_lock);
 571		prio_io(ca, bucket, REQ_OP_WRITE, 0);
 572		mutex_lock(&ca->set->bucket_lock);
 573
 574		ca->prio_buckets[i] = bucket;
 575		atomic_dec_bug(&ca->buckets[bucket].pin);
 576	}
 577
 578	mutex_unlock(&ca->set->bucket_lock);
 579
 580	bch_journal_meta(ca->set, &cl);
 581	closure_sync(&cl);
 582
 583	mutex_lock(&ca->set->bucket_lock);
 584
 585	/*
 586	 * Don't want the old priorities to get garbage collected until after we
 587	 * finish writing the new ones, and they're journalled
 588	 */
 589	for (i = 0; i < prio_buckets(ca); i++) {
 590		if (ca->prio_last_buckets[i])
 591			__bch_bucket_free(ca,
 592				&ca->buckets[ca->prio_last_buckets[i]]);
 593
 594		ca->prio_last_buckets[i] = ca->prio_buckets[i];
 595	}
 596}
 597
 598static void prio_read(struct cache *ca, uint64_t bucket)
 599{
 600	struct prio_set *p = ca->disk_buckets;
 601	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 602	struct bucket *b;
 603	unsigned int bucket_nr = 0;
 604
 605	for (b = ca->buckets;
 606	     b < ca->buckets + ca->sb.nbuckets;
 607	     b++, d++) {
 608		if (d == end) {
 609			ca->prio_buckets[bucket_nr] = bucket;
 610			ca->prio_last_buckets[bucket_nr] = bucket;
 611			bucket_nr++;
 612
 613			prio_io(ca, bucket, REQ_OP_READ, 0);
 614
 615			if (p->csum !=
 616			    bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 617				pr_warn("bad csum reading priorities");
 618
 619			if (p->magic != pset_magic(&ca->sb))
 620				pr_warn("bad magic reading priorities");
 621
 622			bucket = p->next_bucket;
 623			d = p->data;
 624		}
 625
 626		b->prio = le16_to_cpu(d->prio);
 627		b->gen = b->last_gc = d->gen;
 628	}
 629}
 630
 631/* Bcache device */
 632
 633static int open_dev(struct block_device *b, fmode_t mode)
 634{
 635	struct bcache_device *d = b->bd_disk->private_data;
 636
 637	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 638		return -ENXIO;
 639
 640	closure_get(&d->cl);
 641	return 0;
 642}
 643
 644static void release_dev(struct gendisk *b, fmode_t mode)
 645{
 646	struct bcache_device *d = b->private_data;
 647
 648	closure_put(&d->cl);
 649}
 650
 651static int ioctl_dev(struct block_device *b, fmode_t mode,
 652		     unsigned int cmd, unsigned long arg)
 653{
 654	struct bcache_device *d = b->bd_disk->private_data;
 655
 656	return d->ioctl(d, mode, cmd, arg);
 657}
 658
 659static const struct block_device_operations bcache_ops = {
 660	.open		= open_dev,
 661	.release	= release_dev,
 662	.ioctl		= ioctl_dev,
 663	.owner		= THIS_MODULE,
 664};
 665
 666void bcache_device_stop(struct bcache_device *d)
 667{
 668	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 669		/*
 670		 * closure_fn set to
 671		 * - cached device: cached_dev_flush()
 672		 * - flash dev: flash_dev_flush()
 673		 */
 674		closure_queue(&d->cl);
 675}
 676
 677static void bcache_device_unlink(struct bcache_device *d)
 678{
 679	lockdep_assert_held(&bch_register_lock);
 680
 681	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 682		unsigned int i;
 683		struct cache *ca;
 684
 685		sysfs_remove_link(&d->c->kobj, d->name);
 686		sysfs_remove_link(&d->kobj, "cache");
 687
 688		for_each_cache(ca, d->c, i)
 689			bd_unlink_disk_holder(ca->bdev, d->disk);
 690	}
 691}
 692
 693static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 694			       const char *name)
 695{
 696	unsigned int i;
 697	struct cache *ca;
 698	int ret;
 699
 700	for_each_cache(ca, d->c, i)
 701		bd_link_disk_holder(ca->bdev, d->disk);
 702
 703	snprintf(d->name, BCACHEDEVNAME_SIZE,
 704		 "%s%u", name, d->id);
 705
 706	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
 707	if (ret < 0)
 708		pr_err("Couldn't create device -> cache set symlink");
 709
 710	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
 711	if (ret < 0)
 712		pr_err("Couldn't create cache set -> device symlink");
 713
 714	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 715}
 716
 717static void bcache_device_detach(struct bcache_device *d)
 718{
 719	lockdep_assert_held(&bch_register_lock);
 720
 721	atomic_dec(&d->c->attached_dev_nr);
 722
 723	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 724		struct uuid_entry *u = d->c->uuids + d->id;
 725
 726		SET_UUID_FLASH_ONLY(u, 0);
 727		memcpy(u->uuid, invalid_uuid, 16);
 728		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
 729		bch_uuid_write(d->c);
 730	}
 731
 732	bcache_device_unlink(d);
 733
 734	d->c->devices[d->id] = NULL;
 735	closure_put(&d->c->caching);
 736	d->c = NULL;
 737}
 738
 739static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 740				 unsigned int id)
 741{
 742	d->id = id;
 743	d->c = c;
 744	c->devices[id] = d;
 745
 746	if (id >= c->devices_max_used)
 747		c->devices_max_used = id + 1;
 748
 749	closure_get(&c->caching);
 750}
 751
 752static inline int first_minor_to_idx(int first_minor)
 753{
 754	return (first_minor/BCACHE_MINORS);
 755}
 756
 757static inline int idx_to_first_minor(int idx)
 758{
 759	return (idx * BCACHE_MINORS);
 760}
 761
 762static void bcache_device_free(struct bcache_device *d)
 763{
 764	lockdep_assert_held(&bch_register_lock);
 765
 766	pr_info("%s stopped", d->disk->disk_name);
 767
 768	if (d->c)
 769		bcache_device_detach(d);
 770	if (d->disk && d->disk->flags & GENHD_FL_UP)
 771		del_gendisk(d->disk);
 772	if (d->disk && d->disk->queue)
 773		blk_cleanup_queue(d->disk->queue);
 774	if (d->disk) {
 775		ida_simple_remove(&bcache_device_idx,
 776				  first_minor_to_idx(d->disk->first_minor));
 777		put_disk(d->disk);
 778	}
 779
 780	bioset_exit(&d->bio_split);
 781	kvfree(d->full_dirty_stripes);
 782	kvfree(d->stripe_sectors_dirty);
 783
 784	closure_debug_destroy(&d->cl);
 785}
 786
 787static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
 788			      sector_t sectors)
 789{
 790	struct request_queue *q;
 791	const size_t max_stripes = min_t(size_t, INT_MAX,
 792					 SIZE_MAX / sizeof(atomic_t));
 793	size_t n;
 794	int idx;
 795
 796	if (!d->stripe_size)
 797		d->stripe_size = 1 << 31;
 798
 799	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 800
 801	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
 802		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
 803			(unsigned int)d->nr_stripes);
 804		return -ENOMEM;
 805	}
 806
 807	n = d->nr_stripes * sizeof(atomic_t);
 808	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
 809	if (!d->stripe_sectors_dirty)
 810		return -ENOMEM;
 811
 812	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 813	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
 814	if (!d->full_dirty_stripes)
 815		return -ENOMEM;
 816
 817	idx = ida_simple_get(&bcache_device_idx, 0,
 818				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
 819	if (idx < 0)
 820		return idx;
 821
 822	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
 823			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
 824		goto err;
 825
 826	d->disk = alloc_disk(BCACHE_MINORS);
 827	if (!d->disk)
 828		goto err;
 829
 830	set_capacity(d->disk, sectors);
 831	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
 832
 833	d->disk->major		= bcache_major;
 834	d->disk->first_minor	= idx_to_first_minor(idx);
 835	d->disk->fops		= &bcache_ops;
 836	d->disk->private_data	= d;
 837
 838	q = blk_alloc_queue(GFP_KERNEL);
 839	if (!q)
 840		return -ENOMEM;
 841
 842	blk_queue_make_request(q, NULL);
 843	d->disk->queue			= q;
 844	q->queuedata			= d;
 845	q->backing_dev_info->congested_data = d;
 846	q->limits.max_hw_sectors	= UINT_MAX;
 847	q->limits.max_sectors		= UINT_MAX;
 848	q->limits.max_segment_size	= UINT_MAX;
 849	q->limits.max_segments		= BIO_MAX_PAGES;
 850	blk_queue_max_discard_sectors(q, UINT_MAX);
 851	q->limits.discard_granularity	= 512;
 852	q->limits.io_min		= block_size;
 853	q->limits.logical_block_size	= block_size;
 854	q->limits.physical_block_size	= block_size;
 855	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
 856	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
 857	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
 858
 859	blk_queue_write_cache(q, true, true);
 860
 861	return 0;
 862
 863err:
 864	ida_simple_remove(&bcache_device_idx, idx);
 865	return -ENOMEM;
 866
 867}
 868
 869/* Cached device */
 870
 871static void calc_cached_dev_sectors(struct cache_set *c)
 872{
 873	uint64_t sectors = 0;
 874	struct cached_dev *dc;
 875
 876	list_for_each_entry(dc, &c->cached_devs, list)
 877		sectors += bdev_sectors(dc->bdev);
 878
 879	c->cached_dev_sectors = sectors;
 880}
 881
 882#define BACKING_DEV_OFFLINE_TIMEOUT 5
 883static int cached_dev_status_update(void *arg)
 884{
 885	struct cached_dev *dc = arg;
 886	struct request_queue *q;
 887
 888	/*
 889	 * If this delayed worker is stopping outside, directly quit here.
 890	 * dc->io_disable might be set via sysfs interface, so check it
 891	 * here too.
 892	 */
 893	while (!kthread_should_stop() && !dc->io_disable) {
 894		q = bdev_get_queue(dc->bdev);
 895		if (blk_queue_dying(q))
 896			dc->offline_seconds++;
 897		else
 898			dc->offline_seconds = 0;
 899
 900		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
 901			pr_err("%s: device offline for %d seconds",
 902			       dc->backing_dev_name,
 903			       BACKING_DEV_OFFLINE_TIMEOUT);
 904			pr_err("%s: disable I/O request due to backing "
 905			       "device offline", dc->disk.name);
 906			dc->io_disable = true;
 907			/* let others know earlier that io_disable is true */
 908			smp_mb();
 909			bcache_device_stop(&dc->disk);
 910			break;
 911		}
 912		schedule_timeout_interruptible(HZ);
 913	}
 914
 915	wait_for_kthread_stop();
 916	return 0;
 917}
 918
 919
 920int bch_cached_dev_run(struct cached_dev *dc)
 921{
 922	struct bcache_device *d = &dc->disk;
 923	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
 924	char *env[] = {
 925		"DRIVER=bcache",
 926		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 927		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
 928		NULL,
 929	};
 930
 931	if (dc->io_disable) {
 932		pr_err("I/O disabled on cached dev %s",
 933		       dc->backing_dev_name);
 934		kfree(env[1]);
 935		kfree(env[2]);
 936		kfree(buf);
 937		return -EIO;
 938	}
 939
 940	if (atomic_xchg(&dc->running, 1)) {
 941		kfree(env[1]);
 942		kfree(env[2]);
 943		kfree(buf);
 944		pr_info("cached dev %s is running already",
 945		       dc->backing_dev_name);
 946		return -EBUSY;
 947	}
 948
 949	if (!d->c &&
 950	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 951		struct closure cl;
 952
 953		closure_init_stack(&cl);
 954
 955		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 956		bch_write_bdev_super(dc, &cl);
 957		closure_sync(&cl);
 958	}
 959
 960	add_disk(d->disk);
 961	bd_link_disk_holder(dc->bdev, dc->disk.disk);
 962	/*
 963	 * won't show up in the uevent file, use udevadm monitor -e instead
 964	 * only class / kset properties are persistent
 965	 */
 966	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 967	kfree(env[1]);
 968	kfree(env[2]);
 969	kfree(buf);
 970
 971	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 972	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
 973			      &d->kobj, "bcache")) {
 974		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks");
 975		return -ENOMEM;
 976	}
 977
 978	dc->status_update_thread = kthread_run(cached_dev_status_update,
 979					       dc, "bcache_status_update");
 980	if (IS_ERR(dc->status_update_thread)) {
 981		pr_warn("failed to create bcache_status_update kthread, "
 982			"continue to run without monitoring backing "
 983			"device status");
 984	}
 985
 986	return 0;
 987}
 988
 989/*
 990 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
 991 * work dc->writeback_rate_update is running. Wait until the routine
 992 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
 993 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
 994 * seconds, give up waiting here and continue to cancel it too.
 995 */
 996static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
 997{
 998	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
 999
1000	do {
1001		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1002			      &dc->disk.flags))
1003			break;
1004		time_out--;
1005		schedule_timeout_interruptible(1);
1006	} while (time_out > 0);
1007
1008	if (time_out == 0)
1009		pr_warn("give up waiting for dc->writeback_write_update to quit");
1010
1011	cancel_delayed_work_sync(&dc->writeback_rate_update);
1012}
1013
1014static void cached_dev_detach_finish(struct work_struct *w)
1015{
1016	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1017	struct closure cl;
1018
1019	closure_init_stack(&cl);
1020
1021	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1022	BUG_ON(refcount_read(&dc->count));
1023
1024
1025	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1026		cancel_writeback_rate_update_dwork(dc);
1027
1028	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1029		kthread_stop(dc->writeback_thread);
1030		dc->writeback_thread = NULL;
1031	}
1032
1033	memset(&dc->sb.set_uuid, 0, 16);
1034	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1035
1036	bch_write_bdev_super(dc, &cl);
1037	closure_sync(&cl);
1038
1039	mutex_lock(&bch_register_lock);
1040
1041	calc_cached_dev_sectors(dc->disk.c);
1042	bcache_device_detach(&dc->disk);
1043	list_move(&dc->list, &uncached_devices);
1044
1045	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1046	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1047
1048	mutex_unlock(&bch_register_lock);
1049
1050	pr_info("Caching disabled for %s", dc->backing_dev_name);
1051
1052	/* Drop ref we took in cached_dev_detach() */
1053	closure_put(&dc->disk.cl);
1054}
1055
1056void bch_cached_dev_detach(struct cached_dev *dc)
1057{
1058	lockdep_assert_held(&bch_register_lock);
1059
1060	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1061		return;
1062
1063	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1064		return;
1065
1066	/*
1067	 * Block the device from being closed and freed until we're finished
1068	 * detaching
1069	 */
1070	closure_get(&dc->disk.cl);
1071
1072	bch_writeback_queue(dc);
1073
1074	cached_dev_put(dc);
1075}
1076
1077int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1078			  uint8_t *set_uuid)
1079{
1080	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1081	struct uuid_entry *u;
1082	struct cached_dev *exist_dc, *t;
1083	int ret = 0;
1084
1085	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1086	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1087		return -ENOENT;
1088
1089	if (dc->disk.c) {
1090		pr_err("Can't attach %s: already attached",
1091		       dc->backing_dev_name);
1092		return -EINVAL;
1093	}
1094
1095	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1096		pr_err("Can't attach %s: shutting down",
1097		       dc->backing_dev_name);
1098		return -EINVAL;
1099	}
1100
1101	if (dc->sb.block_size < c->sb.block_size) {
1102		/* Will die */
1103		pr_err("Couldn't attach %s: block size less than set's block size",
1104		       dc->backing_dev_name);
1105		return -EINVAL;
1106	}
1107
1108	/* Check whether already attached */
1109	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1110		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1111			pr_err("Tried to attach %s but duplicate UUID already attached",
1112				dc->backing_dev_name);
1113
1114			return -EINVAL;
1115		}
1116	}
1117
1118	u = uuid_find(c, dc->sb.uuid);
1119
1120	if (u &&
1121	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1122	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1123		memcpy(u->uuid, invalid_uuid, 16);
1124		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1125		u = NULL;
1126	}
1127
1128	if (!u) {
1129		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1130			pr_err("Couldn't find uuid for %s in set",
1131			       dc->backing_dev_name);
1132			return -ENOENT;
1133		}
1134
1135		u = uuid_find_empty(c);
1136		if (!u) {
1137			pr_err("Not caching %s, no room for UUID",
1138			       dc->backing_dev_name);
1139			return -EINVAL;
1140		}
1141	}
1142
1143	/*
1144	 * Deadlocks since we're called via sysfs...
1145	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1146	 */
1147
1148	if (bch_is_zero(u->uuid, 16)) {
1149		struct closure cl;
1150
1151		closure_init_stack(&cl);
1152
1153		memcpy(u->uuid, dc->sb.uuid, 16);
1154		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1155		u->first_reg = u->last_reg = rtime;
1156		bch_uuid_write(c);
1157
1158		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1159		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1160
1161		bch_write_bdev_super(dc, &cl);
1162		closure_sync(&cl);
1163	} else {
1164		u->last_reg = rtime;
1165		bch_uuid_write(c);
1166	}
1167
1168	bcache_device_attach(&dc->disk, c, u - c->uuids);
1169	list_move(&dc->list, &c->cached_devs);
1170	calc_cached_dev_sectors(c);
1171
1172	/*
1173	 * dc->c must be set before dc->count != 0 - paired with the mb in
1174	 * cached_dev_get()
1175	 */
1176	smp_wmb();
1177	refcount_set(&dc->count, 1);
1178
1179	/* Block writeback thread, but spawn it */
1180	down_write(&dc->writeback_lock);
1181	if (bch_cached_dev_writeback_start(dc)) {
1182		up_write(&dc->writeback_lock);
1183		pr_err("Couldn't start writeback facilities for %s",
1184		       dc->disk.disk->disk_name);
1185		return -ENOMEM;
1186	}
1187
1188	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1189		atomic_set(&dc->has_dirty, 1);
1190		bch_writeback_queue(dc);
1191	}
1192
1193	bch_sectors_dirty_init(&dc->disk);
1194
1195	ret = bch_cached_dev_run(dc);
1196	if (ret && (ret != -EBUSY)) {
1197		up_write(&dc->writeback_lock);
1198		/*
1199		 * bch_register_lock is held, bcache_device_stop() is not
1200		 * able to be directly called. The kthread and kworker
1201		 * created previously in bch_cached_dev_writeback_start()
1202		 * have to be stopped manually here.
1203		 */
1204		kthread_stop(dc->writeback_thread);
1205		cancel_writeback_rate_update_dwork(dc);
1206		pr_err("Couldn't run cached device %s",
1207		       dc->backing_dev_name);
1208		return ret;
1209	}
1210
1211	bcache_device_link(&dc->disk, c, "bdev");
1212	atomic_inc(&c->attached_dev_nr);
1213
1214	/* Allow the writeback thread to proceed */
1215	up_write(&dc->writeback_lock);
1216
1217	pr_info("Caching %s as %s on set %pU",
1218		dc->backing_dev_name,
1219		dc->disk.disk->disk_name,
1220		dc->disk.c->sb.set_uuid);
1221	return 0;
1222}
1223
1224/* when dc->disk.kobj released */
1225void bch_cached_dev_release(struct kobject *kobj)
1226{
1227	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1228					     disk.kobj);
1229	kfree(dc);
1230	module_put(THIS_MODULE);
1231}
1232
1233static void cached_dev_free(struct closure *cl)
1234{
1235	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1236
1237	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1238		cancel_writeback_rate_update_dwork(dc);
1239
1240	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1241		kthread_stop(dc->writeback_thread);
1242	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1243		kthread_stop(dc->status_update_thread);
1244
1245	mutex_lock(&bch_register_lock);
1246
1247	if (atomic_read(&dc->running))
1248		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1249	bcache_device_free(&dc->disk);
1250	list_del(&dc->list);
1251
1252	mutex_unlock(&bch_register_lock);
1253
1254	if (!IS_ERR_OR_NULL(dc->bdev))
1255		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1256
1257	wake_up(&unregister_wait);
1258
1259	kobject_put(&dc->disk.kobj);
1260}
1261
1262static void cached_dev_flush(struct closure *cl)
1263{
1264	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1265	struct bcache_device *d = &dc->disk;
1266
1267	mutex_lock(&bch_register_lock);
1268	bcache_device_unlink(d);
1269	mutex_unlock(&bch_register_lock);
1270
1271	bch_cache_accounting_destroy(&dc->accounting);
1272	kobject_del(&d->kobj);
1273
1274	continue_at(cl, cached_dev_free, system_wq);
1275}
1276
1277static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1278{
1279	int ret;
1280	struct io *io;
1281	struct request_queue *q = bdev_get_queue(dc->bdev);
1282
1283	__module_get(THIS_MODULE);
1284	INIT_LIST_HEAD(&dc->list);
1285	closure_init(&dc->disk.cl, NULL);
1286	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1287	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1288	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1289	sema_init(&dc->sb_write_mutex, 1);
1290	INIT_LIST_HEAD(&dc->io_lru);
1291	spin_lock_init(&dc->io_lock);
1292	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1293
1294	dc->sequential_cutoff		= 4 << 20;
1295
1296	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1297		list_add(&io->lru, &dc->io_lru);
1298		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1299	}
1300
1301	dc->disk.stripe_size = q->limits.io_opt >> 9;
1302
1303	if (dc->disk.stripe_size)
1304		dc->partial_stripes_expensive =
1305			q->limits.raid_partial_stripes_expensive;
1306
1307	ret = bcache_device_init(&dc->disk, block_size,
1308			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1309	if (ret)
1310		return ret;
1311
1312	dc->disk.disk->queue->backing_dev_info->ra_pages =
1313		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1314		    q->backing_dev_info->ra_pages);
1315
1316	atomic_set(&dc->io_errors, 0);
1317	dc->io_disable = false;
1318	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1319	/* default to auto */
1320	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1321
1322	bch_cached_dev_request_init(dc);
1323	bch_cached_dev_writeback_init(dc);
1324	return 0;
1325}
1326
1327/* Cached device - bcache superblock */
1328
1329static int register_bdev(struct cache_sb *sb, struct page *sb_page,
1330				 struct block_device *bdev,
1331				 struct cached_dev *dc)
1332{
1333	const char *err = "cannot allocate memory";
1334	struct cache_set *c;
1335	int ret = -ENOMEM;
1336
1337	bdevname(bdev, dc->backing_dev_name);
1338	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1339	dc->bdev = bdev;
1340	dc->bdev->bd_holder = dc;
1341
1342	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1343	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1344	get_page(sb_page);
1345
1346
1347	if (cached_dev_init(dc, sb->block_size << 9))
1348		goto err;
1349
1350	err = "error creating kobject";
1351	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1352			"bcache"))
1353		goto err;
1354	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1355		goto err;
1356
1357	pr_info("registered backing device %s", dc->backing_dev_name);
1358
1359	list_add(&dc->list, &uncached_devices);
1360	/* attach to a matched cache set if it exists */
1361	list_for_each_entry(c, &bch_cache_sets, list)
1362		bch_cached_dev_attach(dc, c, NULL);
1363
1364	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1365	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1366		err = "failed to run cached device";
1367		ret = bch_cached_dev_run(dc);
1368		if (ret)
1369			goto err;
1370	}
1371
1372	return 0;
1373err:
1374	pr_notice("error %s: %s", dc->backing_dev_name, err);
1375	bcache_device_stop(&dc->disk);
1376	return ret;
1377}
1378
1379/* Flash only volumes */
1380
1381/* When d->kobj released */
1382void bch_flash_dev_release(struct kobject *kobj)
1383{
1384	struct bcache_device *d = container_of(kobj, struct bcache_device,
1385					       kobj);
1386	kfree(d);
1387}
1388
1389static void flash_dev_free(struct closure *cl)
1390{
1391	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1392
1393	mutex_lock(&bch_register_lock);
1394	atomic_long_sub(bcache_dev_sectors_dirty(d),
1395			&d->c->flash_dev_dirty_sectors);
1396	bcache_device_free(d);
1397	mutex_unlock(&bch_register_lock);
1398	kobject_put(&d->kobj);
1399}
1400
1401static void flash_dev_flush(struct closure *cl)
1402{
1403	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1404
1405	mutex_lock(&bch_register_lock);
1406	bcache_device_unlink(d);
1407	mutex_unlock(&bch_register_lock);
1408	kobject_del(&d->kobj);
1409	continue_at(cl, flash_dev_free, system_wq);
1410}
1411
1412static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1413{
1414	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1415					  GFP_KERNEL);
1416	if (!d)
1417		return -ENOMEM;
1418
1419	closure_init(&d->cl, NULL);
1420	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1421
1422	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1423
1424	if (bcache_device_init(d, block_bytes(c), u->sectors))
1425		goto err;
1426
1427	bcache_device_attach(d, c, u - c->uuids);
1428	bch_sectors_dirty_init(d);
1429	bch_flash_dev_request_init(d);
1430	add_disk(d->disk);
1431
1432	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1433		goto err;
1434
1435	bcache_device_link(d, c, "volume");
1436
1437	return 0;
1438err:
1439	kobject_put(&d->kobj);
1440	return -ENOMEM;
1441}
1442
1443static int flash_devs_run(struct cache_set *c)
1444{
1445	int ret = 0;
1446	struct uuid_entry *u;
1447
1448	for (u = c->uuids;
1449	     u < c->uuids + c->nr_uuids && !ret;
1450	     u++)
1451		if (UUID_FLASH_ONLY(u))
1452			ret = flash_dev_run(c, u);
1453
1454	return ret;
1455}
1456
1457int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1458{
1459	struct uuid_entry *u;
1460
1461	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1462		return -EINTR;
1463
1464	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1465		return -EPERM;
1466
1467	u = uuid_find_empty(c);
1468	if (!u) {
1469		pr_err("Can't create volume, no room for UUID");
1470		return -EINVAL;
1471	}
1472
1473	get_random_bytes(u->uuid, 16);
1474	memset(u->label, 0, 32);
1475	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1476
1477	SET_UUID_FLASH_ONLY(u, 1);
1478	u->sectors = size >> 9;
1479
1480	bch_uuid_write(c);
1481
1482	return flash_dev_run(c, u);
1483}
1484
1485bool bch_cached_dev_error(struct cached_dev *dc)
1486{
1487	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1488		return false;
1489
1490	dc->io_disable = true;
1491	/* make others know io_disable is true earlier */
1492	smp_mb();
1493
1494	pr_err("stop %s: too many IO errors on backing device %s\n",
1495		dc->disk.disk->disk_name, dc->backing_dev_name);
1496
1497	bcache_device_stop(&dc->disk);
1498	return true;
1499}
1500
1501/* Cache set */
1502
1503__printf(2, 3)
1504bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1505{
1506	va_list args;
1507
1508	if (c->on_error != ON_ERROR_PANIC &&
1509	    test_bit(CACHE_SET_STOPPING, &c->flags))
1510		return false;
1511
1512	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1513		pr_info("CACHE_SET_IO_DISABLE already set");
1514
1515	/*
1516	 * XXX: we can be called from atomic context
1517	 * acquire_console_sem();
1518	 */
1519
1520	pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1521
1522	va_start(args, fmt);
1523	vprintk(fmt, args);
1524	va_end(args);
1525
1526	pr_err(", disabling caching\n");
1527
1528	if (c->on_error == ON_ERROR_PANIC)
1529		panic("panic forced after error\n");
1530
1531	bch_cache_set_unregister(c);
1532	return true;
1533}
1534
1535/* When c->kobj released */
1536void bch_cache_set_release(struct kobject *kobj)
1537{
1538	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1539
1540	kfree(c);
1541	module_put(THIS_MODULE);
1542}
1543
1544static void cache_set_free(struct closure *cl)
1545{
1546	struct cache_set *c = container_of(cl, struct cache_set, cl);
1547	struct cache *ca;
1548	unsigned int i;
1549
1550	debugfs_remove(c->debug);
1551
1552	bch_open_buckets_free(c);
1553	bch_btree_cache_free(c);
1554	bch_journal_free(c);
1555
1556	mutex_lock(&bch_register_lock);
1557	for_each_cache(ca, c, i)
1558		if (ca) {
1559			ca->set = NULL;
1560			c->cache[ca->sb.nr_this_dev] = NULL;
1561			kobject_put(&ca->kobj);
1562		}
1563
1564	bch_bset_sort_state_free(&c->sort);
1565	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1566
1567	if (c->moving_gc_wq)
1568		destroy_workqueue(c->moving_gc_wq);
1569	bioset_exit(&c->bio_split);
1570	mempool_exit(&c->fill_iter);
1571	mempool_exit(&c->bio_meta);
1572	mempool_exit(&c->search);
1573	kfree(c->devices);
1574
1575	list_del(&c->list);
1576	mutex_unlock(&bch_register_lock);
1577
1578	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1579	wake_up(&unregister_wait);
1580
1581	closure_debug_destroy(&c->cl);
1582	kobject_put(&c->kobj);
1583}
1584
1585static void cache_set_flush(struct closure *cl)
1586{
1587	struct cache_set *c = container_of(cl, struct cache_set, caching);
1588	struct cache *ca;
1589	struct btree *b;
1590	unsigned int i;
1591
1592	bch_cache_accounting_destroy(&c->accounting);
1593
1594	kobject_put(&c->internal);
1595	kobject_del(&c->kobj);
1596
1597	if (!IS_ERR_OR_NULL(c->gc_thread))
1598		kthread_stop(c->gc_thread);
1599
1600	if (!IS_ERR_OR_NULL(c->root))
1601		list_add(&c->root->list, &c->btree_cache);
1602
1603	/*
1604	 * Avoid flushing cached nodes if cache set is retiring
1605	 * due to too many I/O errors detected.
1606	 */
1607	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1608		list_for_each_entry(b, &c->btree_cache, list) {
1609			mutex_lock(&b->write_lock);
1610			if (btree_node_dirty(b))
1611				__bch_btree_node_write(b, NULL);
1612			mutex_unlock(&b->write_lock);
1613		}
1614
1615	for_each_cache(ca, c, i)
1616		if (ca->alloc_thread)
1617			kthread_stop(ca->alloc_thread);
1618
1619	if (c->journal.cur) {
1620		cancel_delayed_work_sync(&c->journal.work);
1621		/* flush last journal entry if needed */
1622		c->journal.work.work.func(&c->journal.work.work);
1623	}
1624
1625	closure_return(cl);
1626}
1627
1628/*
1629 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1630 * cache set is unregistering due to too many I/O errors. In this condition,
1631 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1632 * value and whether the broken cache has dirty data:
1633 *
1634 * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1635 *  BCH_CACHED_STOP_AUTO               0               NO
1636 *  BCH_CACHED_STOP_AUTO               1               YES
1637 *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1638 *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1639 *
1640 * The expected behavior is, if stop_when_cache_set_failed is configured to
1641 * "auto" via sysfs interface, the bcache device will not be stopped if the
1642 * backing device is clean on the broken cache device.
1643 */
1644static void conditional_stop_bcache_device(struct cache_set *c,
1645					   struct bcache_device *d,
1646					   struct cached_dev *dc)
1647{
1648	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1649		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1650			d->disk->disk_name, c->sb.set_uuid);
1651		bcache_device_stop(d);
1652	} else if (atomic_read(&dc->has_dirty)) {
1653		/*
1654		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1655		 * and dc->has_dirty == 1
1656		 */
1657		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1658			d->disk->disk_name);
1659		/*
1660		 * There might be a small time gap that cache set is
1661		 * released but bcache device is not. Inside this time
1662		 * gap, regular I/O requests will directly go into
1663		 * backing device as no cache set attached to. This
1664		 * behavior may also introduce potential inconsistence
1665		 * data in writeback mode while cache is dirty.
1666		 * Therefore before calling bcache_device_stop() due
1667		 * to a broken cache device, dc->io_disable should be
1668		 * explicitly set to true.
1669		 */
1670		dc->io_disable = true;
1671		/* make others know io_disable is true earlier */
1672		smp_mb();
1673		bcache_device_stop(d);
1674	} else {
1675		/*
1676		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1677		 * and dc->has_dirty == 0
1678		 */
1679		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1680			d->disk->disk_name);
1681	}
1682}
1683
1684static void __cache_set_unregister(struct closure *cl)
1685{
1686	struct cache_set *c = container_of(cl, struct cache_set, caching);
1687	struct cached_dev *dc;
1688	struct bcache_device *d;
1689	size_t i;
1690
1691	mutex_lock(&bch_register_lock);
1692
1693	for (i = 0; i < c->devices_max_used; i++) {
1694		d = c->devices[i];
1695		if (!d)
1696			continue;
1697
1698		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1699		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1700			dc = container_of(d, struct cached_dev, disk);
1701			bch_cached_dev_detach(dc);
1702			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1703				conditional_stop_bcache_device(c, d, dc);
1704		} else {
1705			bcache_device_stop(d);
1706		}
1707	}
1708
1709	mutex_unlock(&bch_register_lock);
1710
1711	continue_at(cl, cache_set_flush, system_wq);
1712}
1713
1714void bch_cache_set_stop(struct cache_set *c)
1715{
1716	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1717		/* closure_fn set to __cache_set_unregister() */
1718		closure_queue(&c->caching);
1719}
1720
1721void bch_cache_set_unregister(struct cache_set *c)
1722{
1723	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1724	bch_cache_set_stop(c);
1725}
1726
1727#define alloc_bucket_pages(gfp, c)			\
1728	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1729
1730struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1731{
1732	int iter_size;
1733	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1734
1735	if (!c)
1736		return NULL;
1737
1738	__module_get(THIS_MODULE);
1739	closure_init(&c->cl, NULL);
1740	set_closure_fn(&c->cl, cache_set_free, system_wq);
1741
1742	closure_init(&c->caching, &c->cl);
1743	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1744
1745	/* Maybe create continue_at_noreturn() and use it here? */
1746	closure_set_stopped(&c->cl);
1747	closure_put(&c->cl);
1748
1749	kobject_init(&c->kobj, &bch_cache_set_ktype);
1750	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1751
1752	bch_cache_accounting_init(&c->accounting, &c->cl);
1753
1754	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1755	c->sb.block_size	= sb->block_size;
1756	c->sb.bucket_size	= sb->bucket_size;
1757	c->sb.nr_in_set		= sb->nr_in_set;
1758	c->sb.last_mount	= sb->last_mount;
1759	c->bucket_bits		= ilog2(sb->bucket_size);
1760	c->block_bits		= ilog2(sb->block_size);
1761	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1762	c->devices_max_used	= 0;
1763	atomic_set(&c->attached_dev_nr, 0);
1764	c->btree_pages		= bucket_pages(c);
1765	if (c->btree_pages > BTREE_MAX_PAGES)
1766		c->btree_pages = max_t(int, c->btree_pages / 4,
1767				       BTREE_MAX_PAGES);
1768
1769	sema_init(&c->sb_write_mutex, 1);
1770	mutex_init(&c->bucket_lock);
1771	init_waitqueue_head(&c->btree_cache_wait);
1772	init_waitqueue_head(&c->bucket_wait);
1773	init_waitqueue_head(&c->gc_wait);
1774	sema_init(&c->uuid_write_mutex, 1);
1775
1776	spin_lock_init(&c->btree_gc_time.lock);
1777	spin_lock_init(&c->btree_split_time.lock);
1778	spin_lock_init(&c->btree_read_time.lock);
1779
1780	bch_moving_init_cache_set(c);
1781
1782	INIT_LIST_HEAD(&c->list);
1783	INIT_LIST_HEAD(&c->cached_devs);
1784	INIT_LIST_HEAD(&c->btree_cache);
1785	INIT_LIST_HEAD(&c->btree_cache_freeable);
1786	INIT_LIST_HEAD(&c->btree_cache_freed);
1787	INIT_LIST_HEAD(&c->data_buckets);
1788
1789	iter_size = (sb->bucket_size / sb->block_size + 1) *
1790		sizeof(struct btree_iter_set);
1791
1792	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1793	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1794	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1795				sizeof(struct bbio) + sizeof(struct bio_vec) *
1796				bucket_pages(c)) ||
1797	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1798	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1799			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1800	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1801	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1802						WQ_MEM_RECLAIM, 0)) ||
1803	    bch_journal_alloc(c) ||
1804	    bch_btree_cache_alloc(c) ||
1805	    bch_open_buckets_alloc(c) ||
1806	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1807		goto err;
1808
1809	c->congested_read_threshold_us	= 2000;
1810	c->congested_write_threshold_us	= 20000;
1811	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1812	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1813
1814	return c;
1815err:
1816	bch_cache_set_unregister(c);
1817	return NULL;
1818}
1819
1820static int run_cache_set(struct cache_set *c)
1821{
1822	const char *err = "cannot allocate memory";
1823	struct cached_dev *dc, *t;
1824	struct cache *ca;
1825	struct closure cl;
1826	unsigned int i;
1827	LIST_HEAD(journal);
1828	struct journal_replay *l;
1829
1830	closure_init_stack(&cl);
1831
1832	for_each_cache(ca, c, i)
1833		c->nbuckets += ca->sb.nbuckets;
1834	set_gc_sectors(c);
1835
1836	if (CACHE_SYNC(&c->sb)) {
1837		struct bkey *k;
1838		struct jset *j;
1839
1840		err = "cannot allocate memory for journal";
1841		if (bch_journal_read(c, &journal))
1842			goto err;
1843
1844		pr_debug("btree_journal_read() done");
1845
1846		err = "no journal entries found";
1847		if (list_empty(&journal))
1848			goto err;
1849
1850		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1851
1852		err = "IO error reading priorities";
1853		for_each_cache(ca, c, i)
1854			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1855
1856		/*
1857		 * If prio_read() fails it'll call cache_set_error and we'll
1858		 * tear everything down right away, but if we perhaps checked
1859		 * sooner we could avoid journal replay.
1860		 */
1861
1862		k = &j->btree_root;
1863
1864		err = "bad btree root";
1865		if (__bch_btree_ptr_invalid(c, k))
1866			goto err;
1867
1868		err = "error reading btree root";
1869		c->root = bch_btree_node_get(c, NULL, k,
1870					     j->btree_level,
1871					     true, NULL);
1872		if (IS_ERR_OR_NULL(c->root))
1873			goto err;
1874
1875		list_del_init(&c->root->list);
1876		rw_unlock(true, c->root);
1877
1878		err = uuid_read(c, j, &cl);
1879		if (err)
1880			goto err;
1881
1882		err = "error in recovery";
1883		if (bch_btree_check(c))
1884			goto err;
1885
1886		/*
1887		 * bch_btree_check() may occupy too much system memory which
1888		 * has negative effects to user space application (e.g. data
1889		 * base) performance. Shrink the mca cache memory proactively
1890		 * here to avoid competing memory with user space workloads..
1891		 */
1892		if (!c->shrinker_disabled) {
1893			struct shrink_control sc;
1894
1895			sc.gfp_mask = GFP_KERNEL;
1896			sc.nr_to_scan = c->btree_cache_used * c->btree_pages;
1897			/* first run to clear b->accessed tag */
1898			c->shrink.scan_objects(&c->shrink, &sc);
1899			/* second run to reap non-accessed nodes */
1900			c->shrink.scan_objects(&c->shrink, &sc);
1901		}
1902
1903		bch_journal_mark(c, &journal);
1904		bch_initial_gc_finish(c);
1905		pr_debug("btree_check() done");
1906
1907		/*
1908		 * bcache_journal_next() can't happen sooner, or
1909		 * btree_gc_finish() will give spurious errors about last_gc >
1910		 * gc_gen - this is a hack but oh well.
1911		 */
1912		bch_journal_next(&c->journal);
1913
1914		err = "error starting allocator thread";
1915		for_each_cache(ca, c, i)
1916			if (bch_cache_allocator_start(ca))
1917				goto err;
1918
1919		/*
1920		 * First place it's safe to allocate: btree_check() and
1921		 * btree_gc_finish() have to run before we have buckets to
1922		 * allocate, and bch_bucket_alloc_set() might cause a journal
1923		 * entry to be written so bcache_journal_next() has to be called
1924		 * first.
1925		 *
1926		 * If the uuids were in the old format we have to rewrite them
1927		 * before the next journal entry is written:
1928		 */
1929		if (j->version < BCACHE_JSET_VERSION_UUID)
1930			__uuid_write(c);
1931
1932		err = "bcache: replay journal failed";
1933		if (bch_journal_replay(c, &journal))
1934			goto err;
1935	} else {
1936		pr_notice("invalidating existing data");
1937
1938		for_each_cache(ca, c, i) {
1939			unsigned int j;
1940
1941			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1942					      2, SB_JOURNAL_BUCKETS);
1943
1944			for (j = 0; j < ca->sb.keys; j++)
1945				ca->sb.d[j] = ca->sb.first_bucket + j;
1946		}
1947
1948		bch_initial_gc_finish(c);
1949
1950		err = "error starting allocator thread";
1951		for_each_cache(ca, c, i)
1952			if (bch_cache_allocator_start(ca))
1953				goto err;
1954
1955		mutex_lock(&c->bucket_lock);
1956		for_each_cache(ca, c, i)
1957			bch_prio_write(ca);
1958		mutex_unlock(&c->bucket_lock);
1959
1960		err = "cannot allocate new UUID bucket";
1961		if (__uuid_write(c))
1962			goto err;
1963
1964		err = "cannot allocate new btree root";
1965		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1966		if (IS_ERR_OR_NULL(c->root))
1967			goto err;
1968
1969		mutex_lock(&c->root->write_lock);
1970		bkey_copy_key(&c->root->key, &MAX_KEY);
1971		bch_btree_node_write(c->root, &cl);
1972		mutex_unlock(&c->root->write_lock);
1973
1974		bch_btree_set_root(c->root);
1975		rw_unlock(true, c->root);
1976
1977		/*
1978		 * We don't want to write the first journal entry until
1979		 * everything is set up - fortunately journal entries won't be
1980		 * written until the SET_CACHE_SYNC() here:
1981		 */
1982		SET_CACHE_SYNC(&c->sb, true);
1983
1984		bch_journal_next(&c->journal);
1985		bch_journal_meta(c, &cl);
1986	}
1987
1988	err = "error starting gc thread";
1989	if (bch_gc_thread_start(c))
1990		goto err;
1991
1992	closure_sync(&cl);
1993	c->sb.last_mount = (u32)ktime_get_real_seconds();
1994	bcache_write_super(c);
1995
1996	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1997		bch_cached_dev_attach(dc, c, NULL);
1998
1999	flash_devs_run(c);
2000
2001	set_bit(CACHE_SET_RUNNING, &c->flags);
2002	return 0;
2003err:
2004	while (!list_empty(&journal)) {
2005		l = list_first_entry(&journal, struct journal_replay, list);
2006		list_del(&l->list);
2007		kfree(l);
2008	}
2009
2010	closure_sync(&cl);
2011
2012	bch_cache_set_error(c, "%s", err);
2013
2014	return -EIO;
2015}
2016
2017static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2018{
2019	return ca->sb.block_size	== c->sb.block_size &&
2020		ca->sb.bucket_size	== c->sb.bucket_size &&
2021		ca->sb.nr_in_set	== c->sb.nr_in_set;
2022}
2023
2024static const char *register_cache_set(struct cache *ca)
2025{
2026	char buf[12];
2027	const char *err = "cannot allocate memory";
2028	struct cache_set *c;
2029
2030	list_for_each_entry(c, &bch_cache_sets, list)
2031		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2032			if (c->cache[ca->sb.nr_this_dev])
2033				return "duplicate cache set member";
2034
2035			if (!can_attach_cache(ca, c))
2036				return "cache sb does not match set";
2037
2038			if (!CACHE_SYNC(&ca->sb))
2039				SET_CACHE_SYNC(&c->sb, false);
2040
2041			goto found;
2042		}
2043
2044	c = bch_cache_set_alloc(&ca->sb);
2045	if (!c)
2046		return err;
2047
2048	err = "error creating kobject";
2049	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2050	    kobject_add(&c->internal, &c->kobj, "internal"))
2051		goto err;
2052
2053	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2054		goto err;
2055
2056	bch_debug_init_cache_set(c);
2057
2058	list_add(&c->list, &bch_cache_sets);
2059found:
2060	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2061	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2062	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2063		goto err;
2064
2065	if (ca->sb.seq > c->sb.seq) {
2066		c->sb.version		= ca->sb.version;
2067		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2068		c->sb.flags             = ca->sb.flags;
2069		c->sb.seq		= ca->sb.seq;
2070		pr_debug("set version = %llu", c->sb.version);
2071	}
2072
2073	kobject_get(&ca->kobj);
2074	ca->set = c;
2075	ca->set->cache[ca->sb.nr_this_dev] = ca;
2076	c->cache_by_alloc[c->caches_loaded++] = ca;
2077
2078	if (c->caches_loaded == c->sb.nr_in_set) {
2079		err = "failed to run cache set";
2080		if (run_cache_set(c) < 0)
2081			goto err;
2082	}
2083
2084	return NULL;
2085err:
2086	bch_cache_set_unregister(c);
2087	return err;
2088}
2089
2090/* Cache device */
2091
2092/* When ca->kobj released */
2093void bch_cache_release(struct kobject *kobj)
2094{
2095	struct cache *ca = container_of(kobj, struct cache, kobj);
2096	unsigned int i;
2097
2098	if (ca->set) {
2099		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2100		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2101	}
2102
2103	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2104	kfree(ca->prio_buckets);
2105	vfree(ca->buckets);
2106
2107	free_heap(&ca->heap);
2108	free_fifo(&ca->free_inc);
2109
2110	for (i = 0; i < RESERVE_NR; i++)
2111		free_fifo(&ca->free[i]);
2112
2113	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2114		put_page(bio_first_page_all(&ca->sb_bio));
2115
2116	if (!IS_ERR_OR_NULL(ca->bdev))
2117		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2118
2119	kfree(ca);
2120	module_put(THIS_MODULE);
2121}
2122
2123static int cache_alloc(struct cache *ca)
2124{
2125	size_t free;
2126	size_t btree_buckets;
2127	struct bucket *b;
2128	int ret = -ENOMEM;
2129	const char *err = NULL;
2130
2131	__module_get(THIS_MODULE);
2132	kobject_init(&ca->kobj, &bch_cache_ktype);
2133
2134	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2135
2136	/*
2137	 * when ca->sb.njournal_buckets is not zero, journal exists,
2138	 * and in bch_journal_replay(), tree node may split,
2139	 * so bucket of RESERVE_BTREE type is needed,
2140	 * the worst situation is all journal buckets are valid journal,
2141	 * and all the keys need to replay,
2142	 * so the number of  RESERVE_BTREE type buckets should be as much
2143	 * as journal buckets
2144	 */
2145	btree_buckets = ca->sb.njournal_buckets ?: 8;
2146	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2147	if (!free) {
2148		ret = -EPERM;
2149		err = "ca->sb.nbuckets is too small";
2150		goto err_free;
2151	}
2152
2153	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2154						GFP_KERNEL)) {
2155		err = "ca->free[RESERVE_BTREE] alloc failed";
2156		goto err_btree_alloc;
2157	}
2158
2159	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2160							GFP_KERNEL)) {
2161		err = "ca->free[RESERVE_PRIO] alloc failed";
2162		goto err_prio_alloc;
2163	}
2164
2165	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2166		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2167		goto err_movinggc_alloc;
2168	}
2169
2170	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2171		err = "ca->free[RESERVE_NONE] alloc failed";
2172		goto err_none_alloc;
2173	}
2174
2175	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2176		err = "ca->free_inc alloc failed";
2177		goto err_free_inc_alloc;
2178	}
2179
2180	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2181		err = "ca->heap alloc failed";
2182		goto err_heap_alloc;
2183	}
2184
2185	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2186			      ca->sb.nbuckets));
2187	if (!ca->buckets) {
2188		err = "ca->buckets alloc failed";
2189		goto err_buckets_alloc;
2190	}
2191
2192	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2193				   prio_buckets(ca), 2),
2194				   GFP_KERNEL);
2195	if (!ca->prio_buckets) {
2196		err = "ca->prio_buckets alloc failed";
2197		goto err_prio_buckets_alloc;
2198	}
2199
2200	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2201	if (!ca->disk_buckets) {
2202		err = "ca->disk_buckets alloc failed";
2203		goto err_disk_buckets_alloc;
2204	}
2205
2206	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2207
2208	for_each_bucket(b, ca)
2209		atomic_set(&b->pin, 0);
2210	return 0;
2211
2212err_disk_buckets_alloc:
2213	kfree(ca->prio_buckets);
2214err_prio_buckets_alloc:
2215	vfree(ca->buckets);
2216err_buckets_alloc:
2217	free_heap(&ca->heap);
2218err_heap_alloc:
2219	free_fifo(&ca->free_inc);
2220err_free_inc_alloc:
2221	free_fifo(&ca->free[RESERVE_NONE]);
2222err_none_alloc:
2223	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2224err_movinggc_alloc:
2225	free_fifo(&ca->free[RESERVE_PRIO]);
2226err_prio_alloc:
2227	free_fifo(&ca->free[RESERVE_BTREE]);
2228err_btree_alloc:
2229err_free:
2230	module_put(THIS_MODULE);
2231	if (err)
2232		pr_notice("error %s: %s", ca->cache_dev_name, err);
2233	return ret;
2234}
2235
2236static int register_cache(struct cache_sb *sb, struct page *sb_page,
2237				struct block_device *bdev, struct cache *ca)
2238{
2239	const char *err = NULL; /* must be set for any error case */
2240	int ret = 0;
2241
2242	bdevname(bdev, ca->cache_dev_name);
2243	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2244	ca->bdev = bdev;
2245	ca->bdev->bd_holder = ca;
2246
2247	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2248	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2249	get_page(sb_page);
2250
2251	if (blk_queue_discard(bdev_get_queue(bdev)))
2252		ca->discard = CACHE_DISCARD(&ca->sb);
2253
2254	ret = cache_alloc(ca);
2255	if (ret != 0) {
2256		/*
2257		 * If we failed here, it means ca->kobj is not initialized yet,
2258		 * kobject_put() won't be called and there is no chance to
2259		 * call blkdev_put() to bdev in bch_cache_release(). So we
2260		 * explicitly call blkdev_put() here.
2261		 */
2262		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2263		if (ret == -ENOMEM)
2264			err = "cache_alloc(): -ENOMEM";
2265		else if (ret == -EPERM)
2266			err = "cache_alloc(): cache device is too small";
2267		else
2268			err = "cache_alloc(): unknown error";
2269		goto err;
2270	}
2271
2272	if (kobject_add(&ca->kobj,
2273			&part_to_dev(bdev->bd_part)->kobj,
2274			"bcache")) {
2275		err = "error calling kobject_add";
2276		ret = -ENOMEM;
2277		goto out;
2278	}
2279
2280	mutex_lock(&bch_register_lock);
2281	err = register_cache_set(ca);
2282	mutex_unlock(&bch_register_lock);
2283
2284	if (err) {
2285		ret = -ENODEV;
2286		goto out;
2287	}
2288
2289	pr_info("registered cache device %s", ca->cache_dev_name);
2290
2291out:
2292	kobject_put(&ca->kobj);
2293
2294err:
2295	if (err)
2296		pr_notice("error %s: %s", ca->cache_dev_name, err);
2297
2298	return ret;
2299}
2300
2301/* Global interfaces/init */
2302
2303static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2304			       const char *buffer, size_t size);
2305static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2306					 struct kobj_attribute *attr,
2307					 const char *buffer, size_t size);
2308
2309kobj_attribute_write(register,		register_bcache);
2310kobj_attribute_write(register_quiet,	register_bcache);
2311kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2312
2313static bool bch_is_open_backing(struct block_device *bdev)
2314{
2315	struct cache_set *c, *tc;
2316	struct cached_dev *dc, *t;
2317
2318	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2319		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2320			if (dc->bdev == bdev)
2321				return true;
2322	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2323		if (dc->bdev == bdev)
2324			return true;
2325	return false;
2326}
2327
2328static bool bch_is_open_cache(struct block_device *bdev)
2329{
2330	struct cache_set *c, *tc;
2331	struct cache *ca;
2332	unsigned int i;
2333
2334	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2335		for_each_cache(ca, c, i)
2336			if (ca->bdev == bdev)
2337				return true;
2338	return false;
2339}
2340
2341static bool bch_is_open(struct block_device *bdev)
2342{
2343	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2344}
2345
2346static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2347			       const char *buffer, size_t size)
2348{
2349	ssize_t ret = -EINVAL;
2350	const char *err = "cannot allocate memory";
2351	char *path = NULL;
2352	struct cache_sb *sb = NULL;
2353	struct block_device *bdev = NULL;
2354	struct page *sb_page = NULL;
2355
2356	if (!try_module_get(THIS_MODULE))
2357		return -EBUSY;
2358
2359	/* For latest state of bcache_is_reboot */
2360	smp_mb();
2361	if (bcache_is_reboot)
2362		return -EBUSY;
2363
2364	path = kstrndup(buffer, size, GFP_KERNEL);
2365	if (!path)
2366		goto err;
2367
2368	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2369	if (!sb)
2370		goto err;
2371
2372	err = "failed to open device";
2373	bdev = blkdev_get_by_path(strim(path),
2374				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2375				  sb);
2376	if (IS_ERR(bdev)) {
2377		if (bdev == ERR_PTR(-EBUSY)) {
2378			bdev = lookup_bdev(strim(path));
2379			mutex_lock(&bch_register_lock);
2380			if (!IS_ERR(bdev) && bch_is_open(bdev))
2381				err = "device already registered";
2382			else
2383				err = "device busy";
2384			mutex_unlock(&bch_register_lock);
2385			if (!IS_ERR(bdev))
2386				bdput(bdev);
2387			if (attr == &ksysfs_register_quiet)
2388				goto quiet_out;
2389		}
2390		goto err;
2391	}
2392
2393	err = "failed to set blocksize";
2394	if (set_blocksize(bdev, 4096))
2395		goto err_close;
2396
2397	err = read_super(sb, bdev, &sb_page);
2398	if (err)
2399		goto err_close;
2400
2401	err = "failed to register device";
2402	if (SB_IS_BDEV(sb)) {
2403		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2404
2405		if (!dc)
2406			goto err_close;
2407
2408		mutex_lock(&bch_register_lock);
2409		ret = register_bdev(sb, sb_page, bdev, dc);
2410		mutex_unlock(&bch_register_lock);
2411		/* blkdev_put() will be called in cached_dev_free() */
2412		if (ret < 0)
2413			goto err;
2414	} else {
2415		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2416
2417		if (!ca)
2418			goto err_close;
2419
2420		/* blkdev_put() will be called in bch_cache_release() */
2421		if (register_cache(sb, sb_page, bdev, ca) != 0)
2422			goto err;
2423	}
2424quiet_out:
2425	ret = size;
2426out:
2427	if (sb_page)
2428		put_page(sb_page);
2429	kfree(sb);
2430	kfree(path);
2431	module_put(THIS_MODULE);
2432	return ret;
2433
2434err_close:
2435	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2436err:
2437	pr_info("error %s: %s", path, err);
2438	goto out;
2439}
2440
2441
2442struct pdev {
2443	struct list_head list;
2444	struct cached_dev *dc;
2445};
2446
2447static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2448					 struct kobj_attribute *attr,
2449					 const char *buffer,
2450					 size_t size)
2451{
2452	LIST_HEAD(pending_devs);
2453	ssize_t ret = size;
2454	struct cached_dev *dc, *tdc;
2455	struct pdev *pdev, *tpdev;
2456	struct cache_set *c, *tc;
2457
2458	mutex_lock(&bch_register_lock);
2459	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2460		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2461		if (!pdev)
2462			break;
2463		pdev->dc = dc;
2464		list_add(&pdev->list, &pending_devs);
2465	}
2466
2467	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2468		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2469			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2470			char *set_uuid = c->sb.uuid;
2471
2472			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2473				list_del(&pdev->list);
2474				kfree(pdev);
2475				break;
2476			}
2477		}
2478	}
2479	mutex_unlock(&bch_register_lock);
2480
2481	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2482		pr_info("delete pdev %p", pdev);
2483		list_del(&pdev->list);
2484		bcache_device_stop(&pdev->dc->disk);
2485		kfree(pdev);
2486	}
2487
2488	return ret;
2489}
2490
2491static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2492{
2493	if (bcache_is_reboot)
2494		return NOTIFY_DONE;
2495
2496	if (code == SYS_DOWN ||
2497	    code == SYS_HALT ||
2498	    code == SYS_POWER_OFF) {
2499		DEFINE_WAIT(wait);
2500		unsigned long start = jiffies;
2501		bool stopped = false;
2502
2503		struct cache_set *c, *tc;
2504		struct cached_dev *dc, *tdc;
2505
2506		mutex_lock(&bch_register_lock);
2507
2508		if (bcache_is_reboot)
2509			goto out;
2510
2511		/* New registration is rejected since now */
2512		bcache_is_reboot = true;
2513		/*
2514		 * Make registering caller (if there is) on other CPU
2515		 * core know bcache_is_reboot set to true earlier
2516		 */
2517		smp_mb();
2518
2519		if (list_empty(&bch_cache_sets) &&
2520		    list_empty(&uncached_devices))
2521			goto out;
2522
2523		mutex_unlock(&bch_register_lock);
2524
2525		pr_info("Stopping all devices:");
2526
2527		/*
2528		 * The reason bch_register_lock is not held to call
2529		 * bch_cache_set_stop() and bcache_device_stop() is to
2530		 * avoid potential deadlock during reboot, because cache
2531		 * set or bcache device stopping process will acqurie
2532		 * bch_register_lock too.
2533		 *
2534		 * We are safe here because bcache_is_reboot sets to
2535		 * true already, register_bcache() will reject new
2536		 * registration now. bcache_is_reboot also makes sure
2537		 * bcache_reboot() won't be re-entered on by other thread,
2538		 * so there is no race in following list iteration by
2539		 * list_for_each_entry_safe().
2540		 */
2541		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2542			bch_cache_set_stop(c);
2543
2544		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2545			bcache_device_stop(&dc->disk);
2546
2547
2548		/*
2549		 * Give an early chance for other kthreads and
2550		 * kworkers to stop themselves
2551		 */
2552		schedule();
2553
2554		/* What's a condition variable? */
2555		while (1) {
2556			long timeout = start + 10 * HZ - jiffies;
2557
2558			mutex_lock(&bch_register_lock);
2559			stopped = list_empty(&bch_cache_sets) &&
2560				list_empty(&uncached_devices);
2561
2562			if (timeout < 0 || stopped)
2563				break;
2564
2565			prepare_to_wait(&unregister_wait, &wait,
2566					TASK_UNINTERRUPTIBLE);
2567
2568			mutex_unlock(&bch_register_lock);
2569			schedule_timeout(timeout);
2570		}
2571
2572		finish_wait(&unregister_wait, &wait);
2573
2574		if (stopped)
2575			pr_info("All devices stopped");
2576		else
2577			pr_notice("Timeout waiting for devices to be closed");
2578out:
2579		mutex_unlock(&bch_register_lock);
2580	}
2581
2582	return NOTIFY_DONE;
2583}
2584
2585static struct notifier_block reboot = {
2586	.notifier_call	= bcache_reboot,
2587	.priority	= INT_MAX, /* before any real devices */
2588};
2589
2590static void bcache_exit(void)
2591{
2592	bch_debug_exit();
2593	bch_request_exit();
2594	if (bcache_kobj)
2595		kobject_put(bcache_kobj);
2596	if (bcache_wq)
2597		destroy_workqueue(bcache_wq);
2598	if (bch_journal_wq)
2599		destroy_workqueue(bch_journal_wq);
2600
2601	if (bcache_major)
2602		unregister_blkdev(bcache_major, "bcache");
2603	unregister_reboot_notifier(&reboot);
2604	mutex_destroy(&bch_register_lock);
2605}
2606
2607/* Check and fixup module parameters */
2608static void check_module_parameters(void)
2609{
2610	if (bch_cutoff_writeback_sync == 0)
2611		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2612	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2613		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2614			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2615		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2616	}
2617
2618	if (bch_cutoff_writeback == 0)
2619		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2620	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2621		pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2622			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2623		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2624	}
2625
2626	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2627		pr_warn("set bch_cutoff_writeback (%u) to %u",
2628			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2629		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2630	}
2631}
2632
2633static int __init bcache_init(void)
2634{
2635	static const struct attribute *files[] = {
2636		&ksysfs_register.attr,
2637		&ksysfs_register_quiet.attr,
2638		&ksysfs_pendings_cleanup.attr,
2639		NULL
2640	};
2641
2642	check_module_parameters();
2643
2644	mutex_init(&bch_register_lock);
2645	init_waitqueue_head(&unregister_wait);
2646	register_reboot_notifier(&reboot);
2647
2648	bcache_major = register_blkdev(0, "bcache");
2649	if (bcache_major < 0) {
2650		unregister_reboot_notifier(&reboot);
2651		mutex_destroy(&bch_register_lock);
2652		return bcache_major;
2653	}
2654
2655	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2656	if (!bcache_wq)
2657		goto err;
2658
2659	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2660	if (!bch_journal_wq)
2661		goto err;
2662
2663	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2664	if (!bcache_kobj)
2665		goto err;
2666
2667	if (bch_request_init() ||
2668	    sysfs_create_files(bcache_kobj, files))
2669		goto err;
2670
2671	bch_debug_init();
2672	closure_debug_init();
2673
2674	bcache_is_reboot = false;
2675
2676	return 0;
2677err:
2678	bcache_exit();
2679	return -ENOMEM;
2680}
2681
2682/*
2683 * Module hooks
2684 */
2685module_exit(bcache_exit);
2686module_init(bcache_init);
2687
2688module_param(bch_cutoff_writeback, uint, 0);
2689MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2690
2691module_param(bch_cutoff_writeback_sync, uint, 0);
2692MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2693
2694MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2695MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2696MODULE_LICENSE("GPL");