Loading...
1/**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#define pr_fmt(fmt) "[TTM] " fmt
32
33#include "ttm/ttm_module.h"
34#include "ttm/ttm_bo_driver.h"
35#include "ttm/ttm_placement.h"
36#include <linux/jiffies.h>
37#include <linux/slab.h>
38#include <linux/sched.h>
39#include <linux/mm.h>
40#include <linux/file.h>
41#include <linux/module.h>
42#include <linux/atomic.h>
43
44#define TTM_ASSERT_LOCKED(param)
45#define TTM_DEBUG(fmt, arg...)
46#define TTM_BO_HASH_ORDER 13
47
48static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55};
56
57static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58{
59 int i;
60
61 for (i = 0; i <= TTM_PL_PRIV5; i++)
62 if (flags & (1 << i)) {
63 *mem_type = i;
64 return 0;
65 }
66 return -EINVAL;
67}
68
69static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70{
71 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73 pr_err(" has_type: %d\n", man->has_type);
74 pr_err(" use_type: %d\n", man->use_type);
75 pr_err(" flags: 0x%08X\n", man->flags);
76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset);
77 pr_err(" size: %llu\n", man->size);
78 pr_err(" available_caching: 0x%08X\n", man->available_caching);
79 pr_err(" default_caching: 0x%08X\n", man->default_caching);
80 if (mem_type != TTM_PL_SYSTEM)
81 (*man->func->debug)(man, TTM_PFX);
82}
83
84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 struct ttm_placement *placement)
86{
87 int i, ret, mem_type;
88
89 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 bo, bo->mem.num_pages, bo->mem.size >> 10,
91 bo->mem.size >> 20);
92 for (i = 0; i < placement->num_placement; i++) {
93 ret = ttm_mem_type_from_flags(placement->placement[i],
94 &mem_type);
95 if (ret)
96 return;
97 pr_err(" placement[%d]=0x%08X (%d)\n",
98 i, placement->placement[i], mem_type);
99 ttm_mem_type_debug(bo->bdev, mem_type);
100 }
101}
102
103static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 struct attribute *attr,
105 char *buffer)
106{
107 struct ttm_bo_global *glob =
108 container_of(kobj, struct ttm_bo_global, kobj);
109
110 return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 (unsigned long) atomic_read(&glob->bo_count));
112}
113
114static struct attribute *ttm_bo_global_attrs[] = {
115 &ttm_bo_count,
116 NULL
117};
118
119static const struct sysfs_ops ttm_bo_global_ops = {
120 .show = &ttm_bo_global_show
121};
122
123static struct kobj_type ttm_bo_glob_kobj_type = {
124 .release = &ttm_bo_global_kobj_release,
125 .sysfs_ops = &ttm_bo_global_ops,
126 .default_attrs = ttm_bo_global_attrs
127};
128
129
130static inline uint32_t ttm_bo_type_flags(unsigned type)
131{
132 return 1 << (type);
133}
134
135static void ttm_bo_release_list(struct kref *list_kref)
136{
137 struct ttm_buffer_object *bo =
138 container_of(list_kref, struct ttm_buffer_object, list_kref);
139 struct ttm_bo_device *bdev = bo->bdev;
140 size_t acc_size = bo->acc_size;
141
142 BUG_ON(atomic_read(&bo->list_kref.refcount));
143 BUG_ON(atomic_read(&bo->kref.refcount));
144 BUG_ON(atomic_read(&bo->cpu_writers));
145 BUG_ON(bo->sync_obj != NULL);
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149
150 if (bo->ttm)
151 ttm_tt_destroy(bo->ttm);
152 atomic_dec(&bo->glob->bo_count);
153 if (bo->destroy)
154 bo->destroy(bo);
155 else {
156 kfree(bo);
157 }
158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159}
160
161int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162{
163 if (interruptible) {
164 return wait_event_interruptible(bo->event_queue,
165 atomic_read(&bo->reserved) == 0);
166 } else {
167 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 return 0;
169 }
170}
171EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
173void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174{
175 struct ttm_bo_device *bdev = bo->bdev;
176 struct ttm_mem_type_manager *man;
177
178 BUG_ON(!atomic_read(&bo->reserved));
179
180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182 BUG_ON(!list_empty(&bo->lru));
183
184 man = &bdev->man[bo->mem.mem_type];
185 list_add_tail(&bo->lru, &man->lru);
186 kref_get(&bo->list_kref);
187
188 if (bo->ttm != NULL) {
189 list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 kref_get(&bo->list_kref);
191 }
192 }
193}
194
195int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196{
197 int put_count = 0;
198
199 if (!list_empty(&bo->swap)) {
200 list_del_init(&bo->swap);
201 ++put_count;
202 }
203 if (!list_empty(&bo->lru)) {
204 list_del_init(&bo->lru);
205 ++put_count;
206 }
207
208 /*
209 * TODO: Add a driver hook to delete from
210 * driver-specific LRU's here.
211 */
212
213 return put_count;
214}
215
216int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 bool interruptible,
218 bool no_wait, bool use_sequence, uint32_t sequence)
219{
220 struct ttm_bo_global *glob = bo->glob;
221 int ret;
222
223 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 /**
225 * Deadlock avoidance for multi-bo reserving.
226 */
227 if (use_sequence && bo->seq_valid) {
228 /**
229 * We've already reserved this one.
230 */
231 if (unlikely(sequence == bo->val_seq))
232 return -EDEADLK;
233 /**
234 * Already reserved by a thread that will not back
235 * off for us. We need to back off.
236 */
237 if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 return -EAGAIN;
239 }
240
241 if (no_wait)
242 return -EBUSY;
243
244 spin_unlock(&glob->lru_lock);
245 ret = ttm_bo_wait_unreserved(bo, interruptible);
246 spin_lock(&glob->lru_lock);
247
248 if (unlikely(ret))
249 return ret;
250 }
251
252 if (use_sequence) {
253 /**
254 * Wake up waiters that may need to recheck for deadlock,
255 * if we decreased the sequence number.
256 */
257 if (unlikely((bo->val_seq - sequence < (1 << 31))
258 || !bo->seq_valid))
259 wake_up_all(&bo->event_queue);
260
261 bo->val_seq = sequence;
262 bo->seq_valid = true;
263 } else {
264 bo->seq_valid = false;
265 }
266
267 return 0;
268}
269EXPORT_SYMBOL(ttm_bo_reserve);
270
271static void ttm_bo_ref_bug(struct kref *list_kref)
272{
273 BUG();
274}
275
276void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 bool never_free)
278{
279 kref_sub(&bo->list_kref, count,
280 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281}
282
283int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 bool interruptible,
285 bool no_wait, bool use_sequence, uint32_t sequence)
286{
287 struct ttm_bo_global *glob = bo->glob;
288 int put_count = 0;
289 int ret;
290
291 spin_lock(&glob->lru_lock);
292 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 sequence);
294 if (likely(ret == 0))
295 put_count = ttm_bo_del_from_lru(bo);
296 spin_unlock(&glob->lru_lock);
297
298 ttm_bo_list_ref_sub(bo, put_count, true);
299
300 return ret;
301}
302
303void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304{
305 ttm_bo_add_to_lru(bo);
306 atomic_set(&bo->reserved, 0);
307 wake_up_all(&bo->event_queue);
308}
309
310void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311{
312 struct ttm_bo_global *glob = bo->glob;
313
314 spin_lock(&glob->lru_lock);
315 ttm_bo_unreserve_locked(bo);
316 spin_unlock(&glob->lru_lock);
317}
318EXPORT_SYMBOL(ttm_bo_unreserve);
319
320/*
321 * Call bo->mutex locked.
322 */
323static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324{
325 struct ttm_bo_device *bdev = bo->bdev;
326 struct ttm_bo_global *glob = bo->glob;
327 int ret = 0;
328 uint32_t page_flags = 0;
329
330 TTM_ASSERT_LOCKED(&bo->mutex);
331 bo->ttm = NULL;
332
333 if (bdev->need_dma32)
334 page_flags |= TTM_PAGE_FLAG_DMA32;
335
336 switch (bo->type) {
337 case ttm_bo_type_device:
338 if (zero_alloc)
339 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 case ttm_bo_type_kernel:
341 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 page_flags, glob->dummy_read_page);
343 if (unlikely(bo->ttm == NULL))
344 ret = -ENOMEM;
345 break;
346 case ttm_bo_type_sg:
347 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
348 page_flags | TTM_PAGE_FLAG_SG,
349 glob->dummy_read_page);
350 if (unlikely(bo->ttm == NULL)) {
351 ret = -ENOMEM;
352 break;
353 }
354 bo->ttm->sg = bo->sg;
355 break;
356 default:
357 pr_err("Illegal buffer object type\n");
358 ret = -EINVAL;
359 break;
360 }
361
362 return ret;
363}
364
365static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
366 struct ttm_mem_reg *mem,
367 bool evict, bool interruptible,
368 bool no_wait_reserve, bool no_wait_gpu)
369{
370 struct ttm_bo_device *bdev = bo->bdev;
371 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
372 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
373 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
374 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
375 int ret = 0;
376
377 if (old_is_pci || new_is_pci ||
378 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
379 ret = ttm_mem_io_lock(old_man, true);
380 if (unlikely(ret != 0))
381 goto out_err;
382 ttm_bo_unmap_virtual_locked(bo);
383 ttm_mem_io_unlock(old_man);
384 }
385
386 /*
387 * Create and bind a ttm if required.
388 */
389
390 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
391 if (bo->ttm == NULL) {
392 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
393 ret = ttm_bo_add_ttm(bo, zero);
394 if (ret)
395 goto out_err;
396 }
397
398 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399 if (ret)
400 goto out_err;
401
402 if (mem->mem_type != TTM_PL_SYSTEM) {
403 ret = ttm_tt_bind(bo->ttm, mem);
404 if (ret)
405 goto out_err;
406 }
407
408 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409 if (bdev->driver->move_notify)
410 bdev->driver->move_notify(bo, mem);
411 bo->mem = *mem;
412 mem->mm_node = NULL;
413 goto moved;
414 }
415 }
416
417 if (bdev->driver->move_notify)
418 bdev->driver->move_notify(bo, mem);
419
420 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
421 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
422 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
423 else if (bdev->driver->move)
424 ret = bdev->driver->move(bo, evict, interruptible,
425 no_wait_reserve, no_wait_gpu, mem);
426 else
427 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428
429 if (ret) {
430 if (bdev->driver->move_notify) {
431 struct ttm_mem_reg tmp_mem = *mem;
432 *mem = bo->mem;
433 bo->mem = tmp_mem;
434 bdev->driver->move_notify(bo, mem);
435 bo->mem = *mem;
436 }
437
438 goto out_err;
439 }
440
441moved:
442 if (bo->evicted) {
443 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
444 if (ret)
445 pr_err("Can not flush read caches\n");
446 bo->evicted = false;
447 }
448
449 if (bo->mem.mm_node) {
450 bo->offset = (bo->mem.start << PAGE_SHIFT) +
451 bdev->man[bo->mem.mem_type].gpu_offset;
452 bo->cur_placement = bo->mem.placement;
453 } else
454 bo->offset = 0;
455
456 return 0;
457
458out_err:
459 new_man = &bdev->man[bo->mem.mem_type];
460 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
461 ttm_tt_unbind(bo->ttm);
462 ttm_tt_destroy(bo->ttm);
463 bo->ttm = NULL;
464 }
465
466 return ret;
467}
468
469/**
470 * Call bo::reserved.
471 * Will release GPU memory type usage on destruction.
472 * This is the place to put in driver specific hooks to release
473 * driver private resources.
474 * Will release the bo::reserved lock.
475 */
476
477static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
478{
479 if (bo->bdev->driver->move_notify)
480 bo->bdev->driver->move_notify(bo, NULL);
481
482 if (bo->ttm) {
483 ttm_tt_unbind(bo->ttm);
484 ttm_tt_destroy(bo->ttm);
485 bo->ttm = NULL;
486 }
487 ttm_bo_mem_put(bo, &bo->mem);
488
489 atomic_set(&bo->reserved, 0);
490
491 /*
492 * Make processes trying to reserve really pick it up.
493 */
494 smp_mb__after_atomic_dec();
495 wake_up_all(&bo->event_queue);
496}
497
498static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
499{
500 struct ttm_bo_device *bdev = bo->bdev;
501 struct ttm_bo_global *glob = bo->glob;
502 struct ttm_bo_driver *driver;
503 void *sync_obj = NULL;
504 void *sync_obj_arg;
505 int put_count;
506 int ret;
507
508 spin_lock(&bdev->fence_lock);
509 (void) ttm_bo_wait(bo, false, false, true);
510 if (!bo->sync_obj) {
511
512 spin_lock(&glob->lru_lock);
513
514 /**
515 * Lock inversion between bo:reserve and bdev::fence_lock here,
516 * but that's OK, since we're only trylocking.
517 */
518
519 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
520
521 if (unlikely(ret == -EBUSY))
522 goto queue;
523
524 spin_unlock(&bdev->fence_lock);
525 put_count = ttm_bo_del_from_lru(bo);
526
527 spin_unlock(&glob->lru_lock);
528 ttm_bo_cleanup_memtype_use(bo);
529
530 ttm_bo_list_ref_sub(bo, put_count, true);
531
532 return;
533 } else {
534 spin_lock(&glob->lru_lock);
535 }
536queue:
537 driver = bdev->driver;
538 if (bo->sync_obj)
539 sync_obj = driver->sync_obj_ref(bo->sync_obj);
540 sync_obj_arg = bo->sync_obj_arg;
541
542 kref_get(&bo->list_kref);
543 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
544 spin_unlock(&glob->lru_lock);
545 spin_unlock(&bdev->fence_lock);
546
547 if (sync_obj) {
548 driver->sync_obj_flush(sync_obj, sync_obj_arg);
549 driver->sync_obj_unref(&sync_obj);
550 }
551 schedule_delayed_work(&bdev->wq,
552 ((HZ / 100) < 1) ? 1 : HZ / 100);
553}
554
555/**
556 * function ttm_bo_cleanup_refs
557 * If bo idle, remove from delayed- and lru lists, and unref.
558 * If not idle, do nothing.
559 *
560 * @interruptible Any sleeps should occur interruptibly.
561 * @no_wait_reserve Never wait for reserve. Return -EBUSY instead.
562 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
563 */
564
565static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
566 bool interruptible,
567 bool no_wait_reserve,
568 bool no_wait_gpu)
569{
570 struct ttm_bo_device *bdev = bo->bdev;
571 struct ttm_bo_global *glob = bo->glob;
572 int put_count;
573 int ret = 0;
574
575retry:
576 spin_lock(&bdev->fence_lock);
577 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
578 spin_unlock(&bdev->fence_lock);
579
580 if (unlikely(ret != 0))
581 return ret;
582
583 spin_lock(&glob->lru_lock);
584
585 if (unlikely(list_empty(&bo->ddestroy))) {
586 spin_unlock(&glob->lru_lock);
587 return 0;
588 }
589
590 ret = ttm_bo_reserve_locked(bo, interruptible,
591 no_wait_reserve, false, 0);
592
593 if (unlikely(ret != 0)) {
594 spin_unlock(&glob->lru_lock);
595 return ret;
596 }
597
598 /**
599 * We can re-check for sync object without taking
600 * the bo::lock since setting the sync object requires
601 * also bo::reserved. A busy object at this point may
602 * be caused by another thread recently starting an accelerated
603 * eviction.
604 */
605
606 if (unlikely(bo->sync_obj)) {
607 atomic_set(&bo->reserved, 0);
608 wake_up_all(&bo->event_queue);
609 spin_unlock(&glob->lru_lock);
610 goto retry;
611 }
612
613 put_count = ttm_bo_del_from_lru(bo);
614 list_del_init(&bo->ddestroy);
615 ++put_count;
616
617 spin_unlock(&glob->lru_lock);
618 ttm_bo_cleanup_memtype_use(bo);
619
620 ttm_bo_list_ref_sub(bo, put_count, true);
621
622 return 0;
623}
624
625/**
626 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
627 * encountered buffers.
628 */
629
630static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
631{
632 struct ttm_bo_global *glob = bdev->glob;
633 struct ttm_buffer_object *entry = NULL;
634 int ret = 0;
635
636 spin_lock(&glob->lru_lock);
637 if (list_empty(&bdev->ddestroy))
638 goto out_unlock;
639
640 entry = list_first_entry(&bdev->ddestroy,
641 struct ttm_buffer_object, ddestroy);
642 kref_get(&entry->list_kref);
643
644 for (;;) {
645 struct ttm_buffer_object *nentry = NULL;
646
647 if (entry->ddestroy.next != &bdev->ddestroy) {
648 nentry = list_first_entry(&entry->ddestroy,
649 struct ttm_buffer_object, ddestroy);
650 kref_get(&nentry->list_kref);
651 }
652
653 spin_unlock(&glob->lru_lock);
654 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
655 !remove_all);
656 kref_put(&entry->list_kref, ttm_bo_release_list);
657 entry = nentry;
658
659 if (ret || !entry)
660 goto out;
661
662 spin_lock(&glob->lru_lock);
663 if (list_empty(&entry->ddestroy))
664 break;
665 }
666
667out_unlock:
668 spin_unlock(&glob->lru_lock);
669out:
670 if (entry)
671 kref_put(&entry->list_kref, ttm_bo_release_list);
672 return ret;
673}
674
675static void ttm_bo_delayed_workqueue(struct work_struct *work)
676{
677 struct ttm_bo_device *bdev =
678 container_of(work, struct ttm_bo_device, wq.work);
679
680 if (ttm_bo_delayed_delete(bdev, false)) {
681 schedule_delayed_work(&bdev->wq,
682 ((HZ / 100) < 1) ? 1 : HZ / 100);
683 }
684}
685
686static void ttm_bo_release(struct kref *kref)
687{
688 struct ttm_buffer_object *bo =
689 container_of(kref, struct ttm_buffer_object, kref);
690 struct ttm_bo_device *bdev = bo->bdev;
691 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
692
693 if (likely(bo->vm_node != NULL)) {
694 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
695 drm_mm_put_block(bo->vm_node);
696 bo->vm_node = NULL;
697 }
698 write_unlock(&bdev->vm_lock);
699 ttm_mem_io_lock(man, false);
700 ttm_mem_io_free_vm(bo);
701 ttm_mem_io_unlock(man);
702 ttm_bo_cleanup_refs_or_queue(bo);
703 kref_put(&bo->list_kref, ttm_bo_release_list);
704 write_lock(&bdev->vm_lock);
705}
706
707void ttm_bo_unref(struct ttm_buffer_object **p_bo)
708{
709 struct ttm_buffer_object *bo = *p_bo;
710 struct ttm_bo_device *bdev = bo->bdev;
711
712 *p_bo = NULL;
713 write_lock(&bdev->vm_lock);
714 kref_put(&bo->kref, ttm_bo_release);
715 write_unlock(&bdev->vm_lock);
716}
717EXPORT_SYMBOL(ttm_bo_unref);
718
719int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
720{
721 return cancel_delayed_work_sync(&bdev->wq);
722}
723EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
724
725void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
726{
727 if (resched)
728 schedule_delayed_work(&bdev->wq,
729 ((HZ / 100) < 1) ? 1 : HZ / 100);
730}
731EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
732
733static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
734 bool no_wait_reserve, bool no_wait_gpu)
735{
736 struct ttm_bo_device *bdev = bo->bdev;
737 struct ttm_mem_reg evict_mem;
738 struct ttm_placement placement;
739 int ret = 0;
740
741 spin_lock(&bdev->fence_lock);
742 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
743 spin_unlock(&bdev->fence_lock);
744
745 if (unlikely(ret != 0)) {
746 if (ret != -ERESTARTSYS) {
747 pr_err("Failed to expire sync object before buffer eviction\n");
748 }
749 goto out;
750 }
751
752 BUG_ON(!atomic_read(&bo->reserved));
753
754 evict_mem = bo->mem;
755 evict_mem.mm_node = NULL;
756 evict_mem.bus.io_reserved_vm = false;
757 evict_mem.bus.io_reserved_count = 0;
758
759 placement.fpfn = 0;
760 placement.lpfn = 0;
761 placement.num_placement = 0;
762 placement.num_busy_placement = 0;
763 bdev->driver->evict_flags(bo, &placement);
764 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
765 no_wait_reserve, no_wait_gpu);
766 if (ret) {
767 if (ret != -ERESTARTSYS) {
768 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
769 bo);
770 ttm_bo_mem_space_debug(bo, &placement);
771 }
772 goto out;
773 }
774
775 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
776 no_wait_reserve, no_wait_gpu);
777 if (ret) {
778 if (ret != -ERESTARTSYS)
779 pr_err("Buffer eviction failed\n");
780 ttm_bo_mem_put(bo, &evict_mem);
781 goto out;
782 }
783 bo->evicted = true;
784out:
785 return ret;
786}
787
788static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
789 uint32_t mem_type,
790 bool interruptible, bool no_wait_reserve,
791 bool no_wait_gpu)
792{
793 struct ttm_bo_global *glob = bdev->glob;
794 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
795 struct ttm_buffer_object *bo;
796 int ret, put_count = 0;
797
798retry:
799 spin_lock(&glob->lru_lock);
800 if (list_empty(&man->lru)) {
801 spin_unlock(&glob->lru_lock);
802 return -EBUSY;
803 }
804
805 bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
806 kref_get(&bo->list_kref);
807
808 if (!list_empty(&bo->ddestroy)) {
809 spin_unlock(&glob->lru_lock);
810 ret = ttm_bo_cleanup_refs(bo, interruptible,
811 no_wait_reserve, no_wait_gpu);
812 kref_put(&bo->list_kref, ttm_bo_release_list);
813
814 if (likely(ret == 0 || ret == -ERESTARTSYS))
815 return ret;
816
817 goto retry;
818 }
819
820 ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
821
822 if (unlikely(ret == -EBUSY)) {
823 spin_unlock(&glob->lru_lock);
824 if (likely(!no_wait_gpu))
825 ret = ttm_bo_wait_unreserved(bo, interruptible);
826
827 kref_put(&bo->list_kref, ttm_bo_release_list);
828
829 /**
830 * We *need* to retry after releasing the lru lock.
831 */
832
833 if (unlikely(ret != 0))
834 return ret;
835 goto retry;
836 }
837
838 put_count = ttm_bo_del_from_lru(bo);
839 spin_unlock(&glob->lru_lock);
840
841 BUG_ON(ret != 0);
842
843 ttm_bo_list_ref_sub(bo, put_count, true);
844
845 ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
846 ttm_bo_unreserve(bo);
847
848 kref_put(&bo->list_kref, ttm_bo_release_list);
849 return ret;
850}
851
852void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
853{
854 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
855
856 if (mem->mm_node)
857 (*man->func->put_node)(man, mem);
858}
859EXPORT_SYMBOL(ttm_bo_mem_put);
860
861/**
862 * Repeatedly evict memory from the LRU for @mem_type until we create enough
863 * space, or we've evicted everything and there isn't enough space.
864 */
865static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
866 uint32_t mem_type,
867 struct ttm_placement *placement,
868 struct ttm_mem_reg *mem,
869 bool interruptible,
870 bool no_wait_reserve,
871 bool no_wait_gpu)
872{
873 struct ttm_bo_device *bdev = bo->bdev;
874 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
875 int ret;
876
877 do {
878 ret = (*man->func->get_node)(man, bo, placement, mem);
879 if (unlikely(ret != 0))
880 return ret;
881 if (mem->mm_node)
882 break;
883 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
884 no_wait_reserve, no_wait_gpu);
885 if (unlikely(ret != 0))
886 return ret;
887 } while (1);
888 if (mem->mm_node == NULL)
889 return -ENOMEM;
890 mem->mem_type = mem_type;
891 return 0;
892}
893
894static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
895 uint32_t cur_placement,
896 uint32_t proposed_placement)
897{
898 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
899 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
900
901 /**
902 * Keep current caching if possible.
903 */
904
905 if ((cur_placement & caching) != 0)
906 result |= (cur_placement & caching);
907 else if ((man->default_caching & caching) != 0)
908 result |= man->default_caching;
909 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
910 result |= TTM_PL_FLAG_CACHED;
911 else if ((TTM_PL_FLAG_WC & caching) != 0)
912 result |= TTM_PL_FLAG_WC;
913 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
914 result |= TTM_PL_FLAG_UNCACHED;
915
916 return result;
917}
918
919static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
920 uint32_t mem_type,
921 uint32_t proposed_placement,
922 uint32_t *masked_placement)
923{
924 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
925
926 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
927 return false;
928
929 if ((proposed_placement & man->available_caching) == 0)
930 return false;
931
932 cur_flags |= (proposed_placement & man->available_caching);
933
934 *masked_placement = cur_flags;
935 return true;
936}
937
938/**
939 * Creates space for memory region @mem according to its type.
940 *
941 * This function first searches for free space in compatible memory types in
942 * the priority order defined by the driver. If free space isn't found, then
943 * ttm_bo_mem_force_space is attempted in priority order to evict and find
944 * space.
945 */
946int ttm_bo_mem_space(struct ttm_buffer_object *bo,
947 struct ttm_placement *placement,
948 struct ttm_mem_reg *mem,
949 bool interruptible, bool no_wait_reserve,
950 bool no_wait_gpu)
951{
952 struct ttm_bo_device *bdev = bo->bdev;
953 struct ttm_mem_type_manager *man;
954 uint32_t mem_type = TTM_PL_SYSTEM;
955 uint32_t cur_flags = 0;
956 bool type_found = false;
957 bool type_ok = false;
958 bool has_erestartsys = false;
959 int i, ret;
960
961 mem->mm_node = NULL;
962 for (i = 0; i < placement->num_placement; ++i) {
963 ret = ttm_mem_type_from_flags(placement->placement[i],
964 &mem_type);
965 if (ret)
966 return ret;
967 man = &bdev->man[mem_type];
968
969 type_ok = ttm_bo_mt_compatible(man,
970 mem_type,
971 placement->placement[i],
972 &cur_flags);
973
974 if (!type_ok)
975 continue;
976
977 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
978 cur_flags);
979 /*
980 * Use the access and other non-mapping-related flag bits from
981 * the memory placement flags to the current flags
982 */
983 ttm_flag_masked(&cur_flags, placement->placement[i],
984 ~TTM_PL_MASK_MEMTYPE);
985
986 if (mem_type == TTM_PL_SYSTEM)
987 break;
988
989 if (man->has_type && man->use_type) {
990 type_found = true;
991 ret = (*man->func->get_node)(man, bo, placement, mem);
992 if (unlikely(ret))
993 return ret;
994 }
995 if (mem->mm_node)
996 break;
997 }
998
999 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1000 mem->mem_type = mem_type;
1001 mem->placement = cur_flags;
1002 return 0;
1003 }
1004
1005 if (!type_found)
1006 return -EINVAL;
1007
1008 for (i = 0; i < placement->num_busy_placement; ++i) {
1009 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1010 &mem_type);
1011 if (ret)
1012 return ret;
1013 man = &bdev->man[mem_type];
1014 if (!man->has_type)
1015 continue;
1016 if (!ttm_bo_mt_compatible(man,
1017 mem_type,
1018 placement->busy_placement[i],
1019 &cur_flags))
1020 continue;
1021
1022 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1023 cur_flags);
1024 /*
1025 * Use the access and other non-mapping-related flag bits from
1026 * the memory placement flags to the current flags
1027 */
1028 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1029 ~TTM_PL_MASK_MEMTYPE);
1030
1031
1032 if (mem_type == TTM_PL_SYSTEM) {
1033 mem->mem_type = mem_type;
1034 mem->placement = cur_flags;
1035 mem->mm_node = NULL;
1036 return 0;
1037 }
1038
1039 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1040 interruptible, no_wait_reserve, no_wait_gpu);
1041 if (ret == 0 && mem->mm_node) {
1042 mem->placement = cur_flags;
1043 return 0;
1044 }
1045 if (ret == -ERESTARTSYS)
1046 has_erestartsys = true;
1047 }
1048 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1049 return ret;
1050}
1051EXPORT_SYMBOL(ttm_bo_mem_space);
1052
1053int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1054{
1055 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1056 return -EBUSY;
1057
1058 return wait_event_interruptible(bo->event_queue,
1059 atomic_read(&bo->cpu_writers) == 0);
1060}
1061EXPORT_SYMBOL(ttm_bo_wait_cpu);
1062
1063int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1064 struct ttm_placement *placement,
1065 bool interruptible, bool no_wait_reserve,
1066 bool no_wait_gpu)
1067{
1068 int ret = 0;
1069 struct ttm_mem_reg mem;
1070 struct ttm_bo_device *bdev = bo->bdev;
1071
1072 BUG_ON(!atomic_read(&bo->reserved));
1073
1074 /*
1075 * FIXME: It's possible to pipeline buffer moves.
1076 * Have the driver move function wait for idle when necessary,
1077 * instead of doing it here.
1078 */
1079 spin_lock(&bdev->fence_lock);
1080 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1081 spin_unlock(&bdev->fence_lock);
1082 if (ret)
1083 return ret;
1084 mem.num_pages = bo->num_pages;
1085 mem.size = mem.num_pages << PAGE_SHIFT;
1086 mem.page_alignment = bo->mem.page_alignment;
1087 mem.bus.io_reserved_vm = false;
1088 mem.bus.io_reserved_count = 0;
1089 /*
1090 * Determine where to move the buffer.
1091 */
1092 ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1093 if (ret)
1094 goto out_unlock;
1095 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1096out_unlock:
1097 if (ret && mem.mm_node)
1098 ttm_bo_mem_put(bo, &mem);
1099 return ret;
1100}
1101
1102static int ttm_bo_mem_compat(struct ttm_placement *placement,
1103 struct ttm_mem_reg *mem)
1104{
1105 int i;
1106
1107 if (mem->mm_node && placement->lpfn != 0 &&
1108 (mem->start < placement->fpfn ||
1109 mem->start + mem->num_pages > placement->lpfn))
1110 return -1;
1111
1112 for (i = 0; i < placement->num_placement; i++) {
1113 if ((placement->placement[i] & mem->placement &
1114 TTM_PL_MASK_CACHING) &&
1115 (placement->placement[i] & mem->placement &
1116 TTM_PL_MASK_MEM))
1117 return i;
1118 }
1119 return -1;
1120}
1121
1122int ttm_bo_validate(struct ttm_buffer_object *bo,
1123 struct ttm_placement *placement,
1124 bool interruptible, bool no_wait_reserve,
1125 bool no_wait_gpu)
1126{
1127 int ret;
1128
1129 BUG_ON(!atomic_read(&bo->reserved));
1130 /* Check that range is valid */
1131 if (placement->lpfn || placement->fpfn)
1132 if (placement->fpfn > placement->lpfn ||
1133 (placement->lpfn - placement->fpfn) < bo->num_pages)
1134 return -EINVAL;
1135 /*
1136 * Check whether we need to move buffer.
1137 */
1138 ret = ttm_bo_mem_compat(placement, &bo->mem);
1139 if (ret < 0) {
1140 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1141 if (ret)
1142 return ret;
1143 } else {
1144 /*
1145 * Use the access and other non-mapping-related flag bits from
1146 * the compatible memory placement flags to the active flags
1147 */
1148 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1149 ~TTM_PL_MASK_MEMTYPE);
1150 }
1151 /*
1152 * We might need to add a TTM.
1153 */
1154 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1155 ret = ttm_bo_add_ttm(bo, true);
1156 if (ret)
1157 return ret;
1158 }
1159 return 0;
1160}
1161EXPORT_SYMBOL(ttm_bo_validate);
1162
1163int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1164 struct ttm_placement *placement)
1165{
1166 BUG_ON((placement->fpfn || placement->lpfn) &&
1167 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1168
1169 return 0;
1170}
1171
1172int ttm_bo_init(struct ttm_bo_device *bdev,
1173 struct ttm_buffer_object *bo,
1174 unsigned long size,
1175 enum ttm_bo_type type,
1176 struct ttm_placement *placement,
1177 uint32_t page_alignment,
1178 unsigned long buffer_start,
1179 bool interruptible,
1180 struct file *persistent_swap_storage,
1181 size_t acc_size,
1182 struct sg_table *sg,
1183 void (*destroy) (struct ttm_buffer_object *))
1184{
1185 int ret = 0;
1186 unsigned long num_pages;
1187 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1188
1189 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1190 if (ret) {
1191 pr_err("Out of kernel memory\n");
1192 if (destroy)
1193 (*destroy)(bo);
1194 else
1195 kfree(bo);
1196 return -ENOMEM;
1197 }
1198
1199 size += buffer_start & ~PAGE_MASK;
1200 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1201 if (num_pages == 0) {
1202 pr_err("Illegal buffer object size\n");
1203 if (destroy)
1204 (*destroy)(bo);
1205 else
1206 kfree(bo);
1207 ttm_mem_global_free(mem_glob, acc_size);
1208 return -EINVAL;
1209 }
1210 bo->destroy = destroy;
1211
1212 kref_init(&bo->kref);
1213 kref_init(&bo->list_kref);
1214 atomic_set(&bo->cpu_writers, 0);
1215 atomic_set(&bo->reserved, 1);
1216 init_waitqueue_head(&bo->event_queue);
1217 INIT_LIST_HEAD(&bo->lru);
1218 INIT_LIST_HEAD(&bo->ddestroy);
1219 INIT_LIST_HEAD(&bo->swap);
1220 INIT_LIST_HEAD(&bo->io_reserve_lru);
1221 bo->bdev = bdev;
1222 bo->glob = bdev->glob;
1223 bo->type = type;
1224 bo->num_pages = num_pages;
1225 bo->mem.size = num_pages << PAGE_SHIFT;
1226 bo->mem.mem_type = TTM_PL_SYSTEM;
1227 bo->mem.num_pages = bo->num_pages;
1228 bo->mem.mm_node = NULL;
1229 bo->mem.page_alignment = page_alignment;
1230 bo->mem.bus.io_reserved_vm = false;
1231 bo->mem.bus.io_reserved_count = 0;
1232 bo->buffer_start = buffer_start & PAGE_MASK;
1233 bo->priv_flags = 0;
1234 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1235 bo->seq_valid = false;
1236 bo->persistent_swap_storage = persistent_swap_storage;
1237 bo->acc_size = acc_size;
1238 bo->sg = sg;
1239 atomic_inc(&bo->glob->bo_count);
1240
1241 ret = ttm_bo_check_placement(bo, placement);
1242 if (unlikely(ret != 0))
1243 goto out_err;
1244
1245 /*
1246 * For ttm_bo_type_device buffers, allocate
1247 * address space from the device.
1248 */
1249 if (bo->type == ttm_bo_type_device ||
1250 bo->type == ttm_bo_type_sg) {
1251 ret = ttm_bo_setup_vm(bo);
1252 if (ret)
1253 goto out_err;
1254 }
1255
1256 ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1257 if (ret)
1258 goto out_err;
1259
1260 ttm_bo_unreserve(bo);
1261 return 0;
1262
1263out_err:
1264 ttm_bo_unreserve(bo);
1265 ttm_bo_unref(&bo);
1266
1267 return ret;
1268}
1269EXPORT_SYMBOL(ttm_bo_init);
1270
1271size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1272 unsigned long bo_size,
1273 unsigned struct_size)
1274{
1275 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1276 size_t size = 0;
1277
1278 size += ttm_round_pot(struct_size);
1279 size += PAGE_ALIGN(npages * sizeof(void *));
1280 size += ttm_round_pot(sizeof(struct ttm_tt));
1281 return size;
1282}
1283EXPORT_SYMBOL(ttm_bo_acc_size);
1284
1285size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1286 unsigned long bo_size,
1287 unsigned struct_size)
1288{
1289 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1290 size_t size = 0;
1291
1292 size += ttm_round_pot(struct_size);
1293 size += PAGE_ALIGN(npages * sizeof(void *));
1294 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1295 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1296 return size;
1297}
1298EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1299
1300int ttm_bo_create(struct ttm_bo_device *bdev,
1301 unsigned long size,
1302 enum ttm_bo_type type,
1303 struct ttm_placement *placement,
1304 uint32_t page_alignment,
1305 unsigned long buffer_start,
1306 bool interruptible,
1307 struct file *persistent_swap_storage,
1308 struct ttm_buffer_object **p_bo)
1309{
1310 struct ttm_buffer_object *bo;
1311 size_t acc_size;
1312 int ret;
1313
1314 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1315 if (unlikely(bo == NULL))
1316 return -ENOMEM;
1317
1318 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1319 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1320 buffer_start, interruptible,
1321 persistent_swap_storage, acc_size, NULL, NULL);
1322 if (likely(ret == 0))
1323 *p_bo = bo;
1324
1325 return ret;
1326}
1327EXPORT_SYMBOL(ttm_bo_create);
1328
1329static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1330 unsigned mem_type, bool allow_errors)
1331{
1332 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1333 struct ttm_bo_global *glob = bdev->glob;
1334 int ret;
1335
1336 /*
1337 * Can't use standard list traversal since we're unlocking.
1338 */
1339
1340 spin_lock(&glob->lru_lock);
1341 while (!list_empty(&man->lru)) {
1342 spin_unlock(&glob->lru_lock);
1343 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1344 if (ret) {
1345 if (allow_errors) {
1346 return ret;
1347 } else {
1348 pr_err("Cleanup eviction failed\n");
1349 }
1350 }
1351 spin_lock(&glob->lru_lock);
1352 }
1353 spin_unlock(&glob->lru_lock);
1354 return 0;
1355}
1356
1357int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359 struct ttm_mem_type_manager *man;
1360 int ret = -EINVAL;
1361
1362 if (mem_type >= TTM_NUM_MEM_TYPES) {
1363 pr_err("Illegal memory type %d\n", mem_type);
1364 return ret;
1365 }
1366 man = &bdev->man[mem_type];
1367
1368 if (!man->has_type) {
1369 pr_err("Trying to take down uninitialized memory manager type %u\n",
1370 mem_type);
1371 return ret;
1372 }
1373
1374 man->use_type = false;
1375 man->has_type = false;
1376
1377 ret = 0;
1378 if (mem_type > 0) {
1379 ttm_bo_force_list_clean(bdev, mem_type, false);
1380
1381 ret = (*man->func->takedown)(man);
1382 }
1383
1384 return ret;
1385}
1386EXPORT_SYMBOL(ttm_bo_clean_mm);
1387
1388int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389{
1390 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1391
1392 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1393 pr_err("Illegal memory manager memory type %u\n", mem_type);
1394 return -EINVAL;
1395 }
1396
1397 if (!man->has_type) {
1398 pr_err("Memory type %u has not been initialized\n", mem_type);
1399 return 0;
1400 }
1401
1402 return ttm_bo_force_list_clean(bdev, mem_type, true);
1403}
1404EXPORT_SYMBOL(ttm_bo_evict_mm);
1405
1406int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1407 unsigned long p_size)
1408{
1409 int ret = -EINVAL;
1410 struct ttm_mem_type_manager *man;
1411
1412 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1413 man = &bdev->man[type];
1414 BUG_ON(man->has_type);
1415 man->io_reserve_fastpath = true;
1416 man->use_io_reserve_lru = false;
1417 mutex_init(&man->io_reserve_mutex);
1418 INIT_LIST_HEAD(&man->io_reserve_lru);
1419
1420 ret = bdev->driver->init_mem_type(bdev, type, man);
1421 if (ret)
1422 return ret;
1423 man->bdev = bdev;
1424
1425 ret = 0;
1426 if (type != TTM_PL_SYSTEM) {
1427 ret = (*man->func->init)(man, p_size);
1428 if (ret)
1429 return ret;
1430 }
1431 man->has_type = true;
1432 man->use_type = true;
1433 man->size = p_size;
1434
1435 INIT_LIST_HEAD(&man->lru);
1436
1437 return 0;
1438}
1439EXPORT_SYMBOL(ttm_bo_init_mm);
1440
1441static void ttm_bo_global_kobj_release(struct kobject *kobj)
1442{
1443 struct ttm_bo_global *glob =
1444 container_of(kobj, struct ttm_bo_global, kobj);
1445
1446 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1447 __free_page(glob->dummy_read_page);
1448 kfree(glob);
1449}
1450
1451void ttm_bo_global_release(struct drm_global_reference *ref)
1452{
1453 struct ttm_bo_global *glob = ref->object;
1454
1455 kobject_del(&glob->kobj);
1456 kobject_put(&glob->kobj);
1457}
1458EXPORT_SYMBOL(ttm_bo_global_release);
1459
1460int ttm_bo_global_init(struct drm_global_reference *ref)
1461{
1462 struct ttm_bo_global_ref *bo_ref =
1463 container_of(ref, struct ttm_bo_global_ref, ref);
1464 struct ttm_bo_global *glob = ref->object;
1465 int ret;
1466
1467 mutex_init(&glob->device_list_mutex);
1468 spin_lock_init(&glob->lru_lock);
1469 glob->mem_glob = bo_ref->mem_glob;
1470 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1471
1472 if (unlikely(glob->dummy_read_page == NULL)) {
1473 ret = -ENOMEM;
1474 goto out_no_drp;
1475 }
1476
1477 INIT_LIST_HEAD(&glob->swap_lru);
1478 INIT_LIST_HEAD(&glob->device_list);
1479
1480 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1481 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1482 if (unlikely(ret != 0)) {
1483 pr_err("Could not register buffer object swapout\n");
1484 goto out_no_shrink;
1485 }
1486
1487 atomic_set(&glob->bo_count, 0);
1488
1489 ret = kobject_init_and_add(
1490 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1491 if (unlikely(ret != 0))
1492 kobject_put(&glob->kobj);
1493 return ret;
1494out_no_shrink:
1495 __free_page(glob->dummy_read_page);
1496out_no_drp:
1497 kfree(glob);
1498 return ret;
1499}
1500EXPORT_SYMBOL(ttm_bo_global_init);
1501
1502
1503int ttm_bo_device_release(struct ttm_bo_device *bdev)
1504{
1505 int ret = 0;
1506 unsigned i = TTM_NUM_MEM_TYPES;
1507 struct ttm_mem_type_manager *man;
1508 struct ttm_bo_global *glob = bdev->glob;
1509
1510 while (i--) {
1511 man = &bdev->man[i];
1512 if (man->has_type) {
1513 man->use_type = false;
1514 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1515 ret = -EBUSY;
1516 pr_err("DRM memory manager type %d is not clean\n",
1517 i);
1518 }
1519 man->has_type = false;
1520 }
1521 }
1522
1523 mutex_lock(&glob->device_list_mutex);
1524 list_del(&bdev->device_list);
1525 mutex_unlock(&glob->device_list_mutex);
1526
1527 cancel_delayed_work_sync(&bdev->wq);
1528
1529 while (ttm_bo_delayed_delete(bdev, true))
1530 ;
1531
1532 spin_lock(&glob->lru_lock);
1533 if (list_empty(&bdev->ddestroy))
1534 TTM_DEBUG("Delayed destroy list was clean\n");
1535
1536 if (list_empty(&bdev->man[0].lru))
1537 TTM_DEBUG("Swap list was clean\n");
1538 spin_unlock(&glob->lru_lock);
1539
1540 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1541 write_lock(&bdev->vm_lock);
1542 drm_mm_takedown(&bdev->addr_space_mm);
1543 write_unlock(&bdev->vm_lock);
1544
1545 return ret;
1546}
1547EXPORT_SYMBOL(ttm_bo_device_release);
1548
1549int ttm_bo_device_init(struct ttm_bo_device *bdev,
1550 struct ttm_bo_global *glob,
1551 struct ttm_bo_driver *driver,
1552 uint64_t file_page_offset,
1553 bool need_dma32)
1554{
1555 int ret = -EINVAL;
1556
1557 rwlock_init(&bdev->vm_lock);
1558 bdev->driver = driver;
1559
1560 memset(bdev->man, 0, sizeof(bdev->man));
1561
1562 /*
1563 * Initialize the system memory buffer type.
1564 * Other types need to be driver / IOCTL initialized.
1565 */
1566 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1567 if (unlikely(ret != 0))
1568 goto out_no_sys;
1569
1570 bdev->addr_space_rb = RB_ROOT;
1571 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1572 if (unlikely(ret != 0))
1573 goto out_no_addr_mm;
1574
1575 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1576 bdev->nice_mode = true;
1577 INIT_LIST_HEAD(&bdev->ddestroy);
1578 bdev->dev_mapping = NULL;
1579 bdev->glob = glob;
1580 bdev->need_dma32 = need_dma32;
1581 bdev->val_seq = 0;
1582 spin_lock_init(&bdev->fence_lock);
1583 mutex_lock(&glob->device_list_mutex);
1584 list_add_tail(&bdev->device_list, &glob->device_list);
1585 mutex_unlock(&glob->device_list_mutex);
1586
1587 return 0;
1588out_no_addr_mm:
1589 ttm_bo_clean_mm(bdev, 0);
1590out_no_sys:
1591 return ret;
1592}
1593EXPORT_SYMBOL(ttm_bo_device_init);
1594
1595/*
1596 * buffer object vm functions.
1597 */
1598
1599bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1600{
1601 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1602
1603 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1604 if (mem->mem_type == TTM_PL_SYSTEM)
1605 return false;
1606
1607 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1608 return false;
1609
1610 if (mem->placement & TTM_PL_FLAG_CACHED)
1611 return false;
1612 }
1613 return true;
1614}
1615
1616void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1617{
1618 struct ttm_bo_device *bdev = bo->bdev;
1619 loff_t offset = (loff_t) bo->addr_space_offset;
1620 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1621
1622 if (!bdev->dev_mapping)
1623 return;
1624 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1625 ttm_mem_io_free_vm(bo);
1626}
1627
1628void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1629{
1630 struct ttm_bo_device *bdev = bo->bdev;
1631 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1632
1633 ttm_mem_io_lock(man, false);
1634 ttm_bo_unmap_virtual_locked(bo);
1635 ttm_mem_io_unlock(man);
1636}
1637
1638
1639EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1640
1641static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1642{
1643 struct ttm_bo_device *bdev = bo->bdev;
1644 struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1645 struct rb_node *parent = NULL;
1646 struct ttm_buffer_object *cur_bo;
1647 unsigned long offset = bo->vm_node->start;
1648 unsigned long cur_offset;
1649
1650 while (*cur) {
1651 parent = *cur;
1652 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1653 cur_offset = cur_bo->vm_node->start;
1654 if (offset < cur_offset)
1655 cur = &parent->rb_left;
1656 else if (offset > cur_offset)
1657 cur = &parent->rb_right;
1658 else
1659 BUG();
1660 }
1661
1662 rb_link_node(&bo->vm_rb, parent, cur);
1663 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1664}
1665
1666/**
1667 * ttm_bo_setup_vm:
1668 *
1669 * @bo: the buffer to allocate address space for
1670 *
1671 * Allocate address space in the drm device so that applications
1672 * can mmap the buffer and access the contents. This only
1673 * applies to ttm_bo_type_device objects as others are not
1674 * placed in the drm device address space.
1675 */
1676
1677static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1678{
1679 struct ttm_bo_device *bdev = bo->bdev;
1680 int ret;
1681
1682retry_pre_get:
1683 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1684 if (unlikely(ret != 0))
1685 return ret;
1686
1687 write_lock(&bdev->vm_lock);
1688 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1689 bo->mem.num_pages, 0, 0);
1690
1691 if (unlikely(bo->vm_node == NULL)) {
1692 ret = -ENOMEM;
1693 goto out_unlock;
1694 }
1695
1696 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1697 bo->mem.num_pages, 0);
1698
1699 if (unlikely(bo->vm_node == NULL)) {
1700 write_unlock(&bdev->vm_lock);
1701 goto retry_pre_get;
1702 }
1703
1704 ttm_bo_vm_insert_rb(bo);
1705 write_unlock(&bdev->vm_lock);
1706 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1707
1708 return 0;
1709out_unlock:
1710 write_unlock(&bdev->vm_lock);
1711 return ret;
1712}
1713
1714int ttm_bo_wait(struct ttm_buffer_object *bo,
1715 bool lazy, bool interruptible, bool no_wait)
1716{
1717 struct ttm_bo_driver *driver = bo->bdev->driver;
1718 struct ttm_bo_device *bdev = bo->bdev;
1719 void *sync_obj;
1720 void *sync_obj_arg;
1721 int ret = 0;
1722
1723 if (likely(bo->sync_obj == NULL))
1724 return 0;
1725
1726 while (bo->sync_obj) {
1727
1728 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1729 void *tmp_obj = bo->sync_obj;
1730 bo->sync_obj = NULL;
1731 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1732 spin_unlock(&bdev->fence_lock);
1733 driver->sync_obj_unref(&tmp_obj);
1734 spin_lock(&bdev->fence_lock);
1735 continue;
1736 }
1737
1738 if (no_wait)
1739 return -EBUSY;
1740
1741 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1742 sync_obj_arg = bo->sync_obj_arg;
1743 spin_unlock(&bdev->fence_lock);
1744 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1745 lazy, interruptible);
1746 if (unlikely(ret != 0)) {
1747 driver->sync_obj_unref(&sync_obj);
1748 spin_lock(&bdev->fence_lock);
1749 return ret;
1750 }
1751 spin_lock(&bdev->fence_lock);
1752 if (likely(bo->sync_obj == sync_obj &&
1753 bo->sync_obj_arg == sync_obj_arg)) {
1754 void *tmp_obj = bo->sync_obj;
1755 bo->sync_obj = NULL;
1756 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1757 &bo->priv_flags);
1758 spin_unlock(&bdev->fence_lock);
1759 driver->sync_obj_unref(&sync_obj);
1760 driver->sync_obj_unref(&tmp_obj);
1761 spin_lock(&bdev->fence_lock);
1762 } else {
1763 spin_unlock(&bdev->fence_lock);
1764 driver->sync_obj_unref(&sync_obj);
1765 spin_lock(&bdev->fence_lock);
1766 }
1767 }
1768 return 0;
1769}
1770EXPORT_SYMBOL(ttm_bo_wait);
1771
1772int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1773{
1774 struct ttm_bo_device *bdev = bo->bdev;
1775 int ret = 0;
1776
1777 /*
1778 * Using ttm_bo_reserve makes sure the lru lists are updated.
1779 */
1780
1781 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1782 if (unlikely(ret != 0))
1783 return ret;
1784 spin_lock(&bdev->fence_lock);
1785 ret = ttm_bo_wait(bo, false, true, no_wait);
1786 spin_unlock(&bdev->fence_lock);
1787 if (likely(ret == 0))
1788 atomic_inc(&bo->cpu_writers);
1789 ttm_bo_unreserve(bo);
1790 return ret;
1791}
1792EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1793
1794void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1795{
1796 if (atomic_dec_and_test(&bo->cpu_writers))
1797 wake_up_all(&bo->event_queue);
1798}
1799EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1800
1801/**
1802 * A buffer object shrink method that tries to swap out the first
1803 * buffer object on the bo_global::swap_lru list.
1804 */
1805
1806static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1807{
1808 struct ttm_bo_global *glob =
1809 container_of(shrink, struct ttm_bo_global, shrink);
1810 struct ttm_buffer_object *bo;
1811 int ret = -EBUSY;
1812 int put_count;
1813 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1814
1815 spin_lock(&glob->lru_lock);
1816 while (ret == -EBUSY) {
1817 if (unlikely(list_empty(&glob->swap_lru))) {
1818 spin_unlock(&glob->lru_lock);
1819 return -EBUSY;
1820 }
1821
1822 bo = list_first_entry(&glob->swap_lru,
1823 struct ttm_buffer_object, swap);
1824 kref_get(&bo->list_kref);
1825
1826 if (!list_empty(&bo->ddestroy)) {
1827 spin_unlock(&glob->lru_lock);
1828 (void) ttm_bo_cleanup_refs(bo, false, false, false);
1829 kref_put(&bo->list_kref, ttm_bo_release_list);
1830 spin_lock(&glob->lru_lock);
1831 continue;
1832 }
1833
1834 /**
1835 * Reserve buffer. Since we unlock while sleeping, we need
1836 * to re-check that nobody removed us from the swap-list while
1837 * we slept.
1838 */
1839
1840 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1841 if (unlikely(ret == -EBUSY)) {
1842 spin_unlock(&glob->lru_lock);
1843 ttm_bo_wait_unreserved(bo, false);
1844 kref_put(&bo->list_kref, ttm_bo_release_list);
1845 spin_lock(&glob->lru_lock);
1846 }
1847 }
1848
1849 BUG_ON(ret != 0);
1850 put_count = ttm_bo_del_from_lru(bo);
1851 spin_unlock(&glob->lru_lock);
1852
1853 ttm_bo_list_ref_sub(bo, put_count, true);
1854
1855 /**
1856 * Wait for GPU, then move to system cached.
1857 */
1858
1859 spin_lock(&bo->bdev->fence_lock);
1860 ret = ttm_bo_wait(bo, false, false, false);
1861 spin_unlock(&bo->bdev->fence_lock);
1862
1863 if (unlikely(ret != 0))
1864 goto out;
1865
1866 if ((bo->mem.placement & swap_placement) != swap_placement) {
1867 struct ttm_mem_reg evict_mem;
1868
1869 evict_mem = bo->mem;
1870 evict_mem.mm_node = NULL;
1871 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1872 evict_mem.mem_type = TTM_PL_SYSTEM;
1873
1874 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1875 false, false, false);
1876 if (unlikely(ret != 0))
1877 goto out;
1878 }
1879
1880 ttm_bo_unmap_virtual(bo);
1881
1882 /**
1883 * Swap out. Buffer will be swapped in again as soon as
1884 * anyone tries to access a ttm page.
1885 */
1886
1887 if (bo->bdev->driver->swap_notify)
1888 bo->bdev->driver->swap_notify(bo);
1889
1890 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1891out:
1892
1893 /**
1894 *
1895 * Unreserve without putting on LRU to avoid swapping out an
1896 * already swapped buffer.
1897 */
1898
1899 atomic_set(&bo->reserved, 0);
1900 wake_up_all(&bo->event_queue);
1901 kref_put(&bo->list_kref, ttm_bo_release_list);
1902 return ret;
1903}
1904
1905void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1906{
1907 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1908 ;
1909}
1910EXPORT_SYMBOL(ttm_bo_swapout_all);
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#define pr_fmt(fmt) "[TTM] " fmt
33
34#include <drm/ttm/ttm_module.h>
35#include <drm/ttm/ttm_bo_driver.h>
36#include <drm/ttm/ttm_placement.h>
37#include <linux/jiffies.h>
38#include <linux/slab.h>
39#include <linux/sched.h>
40#include <linux/mm.h>
41#include <linux/file.h>
42#include <linux/module.h>
43#include <linux/atomic.h>
44#include <linux/dma-resv.h>
45
46static void ttm_bo_global_kobj_release(struct kobject *kobj);
47
48/**
49 * ttm_global_mutex - protecting the global BO state
50 */
51DEFINE_MUTEX(ttm_global_mutex);
52unsigned ttm_bo_glob_use_count;
53struct ttm_bo_global ttm_bo_glob;
54
55static struct attribute ttm_bo_count = {
56 .name = "bo_count",
57 .mode = S_IRUGO
58};
59
60/* default destructor */
61static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
62{
63 kfree(bo);
64}
65
66static inline int ttm_mem_type_from_place(const struct ttm_place *place,
67 uint32_t *mem_type)
68{
69 int pos;
70
71 pos = ffs(place->flags & TTM_PL_MASK_MEM);
72 if (unlikely(!pos))
73 return -EINVAL;
74
75 *mem_type = pos - 1;
76 return 0;
77}
78
79static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
80 int mem_type)
81{
82 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
83
84 drm_printf(p, " has_type: %d\n", man->has_type);
85 drm_printf(p, " use_type: %d\n", man->use_type);
86 drm_printf(p, " flags: 0x%08X\n", man->flags);
87 drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset);
88 drm_printf(p, " size: %llu\n", man->size);
89 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching);
90 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching);
91 if (mem_type != TTM_PL_SYSTEM)
92 (*man->func->debug)(man, p);
93}
94
95static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
96 struct ttm_placement *placement)
97{
98 struct drm_printer p = drm_debug_printer(TTM_PFX);
99 int i, ret, mem_type;
100
101 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
102 bo, bo->mem.num_pages, bo->mem.size >> 10,
103 bo->mem.size >> 20);
104 for (i = 0; i < placement->num_placement; i++) {
105 ret = ttm_mem_type_from_place(&placement->placement[i],
106 &mem_type);
107 if (ret)
108 return;
109 drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
110 i, placement->placement[i].flags, mem_type);
111 ttm_mem_type_debug(bo->bdev, &p, mem_type);
112 }
113}
114
115static ssize_t ttm_bo_global_show(struct kobject *kobj,
116 struct attribute *attr,
117 char *buffer)
118{
119 struct ttm_bo_global *glob =
120 container_of(kobj, struct ttm_bo_global, kobj);
121
122 return snprintf(buffer, PAGE_SIZE, "%d\n",
123 atomic_read(&glob->bo_count));
124}
125
126static struct attribute *ttm_bo_global_attrs[] = {
127 &ttm_bo_count,
128 NULL
129};
130
131static const struct sysfs_ops ttm_bo_global_ops = {
132 .show = &ttm_bo_global_show
133};
134
135static struct kobj_type ttm_bo_glob_kobj_type = {
136 .release = &ttm_bo_global_kobj_release,
137 .sysfs_ops = &ttm_bo_global_ops,
138 .default_attrs = ttm_bo_global_attrs
139};
140
141
142static inline uint32_t ttm_bo_type_flags(unsigned type)
143{
144 return 1 << (type);
145}
146
147static void ttm_bo_release_list(struct kref *list_kref)
148{
149 struct ttm_buffer_object *bo =
150 container_of(list_kref, struct ttm_buffer_object, list_kref);
151 struct ttm_bo_device *bdev = bo->bdev;
152 size_t acc_size = bo->acc_size;
153
154 BUG_ON(kref_read(&bo->list_kref));
155 BUG_ON(kref_read(&bo->kref));
156 BUG_ON(atomic_read(&bo->cpu_writers));
157 BUG_ON(bo->mem.mm_node != NULL);
158 BUG_ON(!list_empty(&bo->lru));
159 BUG_ON(!list_empty(&bo->ddestroy));
160 ttm_tt_destroy(bo->ttm);
161 atomic_dec(&bo->bdev->glob->bo_count);
162 dma_fence_put(bo->moving);
163 if (!ttm_bo_uses_embedded_gem_object(bo))
164 dma_resv_fini(&bo->base._resv);
165 mutex_destroy(&bo->wu_mutex);
166 bo->destroy(bo);
167 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
168}
169
170static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
171 struct ttm_mem_reg *mem)
172{
173 struct ttm_bo_device *bdev = bo->bdev;
174 struct ttm_mem_type_manager *man;
175
176 dma_resv_assert_held(bo->base.resv);
177
178 if (!list_empty(&bo->lru))
179 return;
180
181 if (mem->placement & TTM_PL_FLAG_NO_EVICT)
182 return;
183
184 man = &bdev->man[mem->mem_type];
185 list_add_tail(&bo->lru, &man->lru[bo->priority]);
186 kref_get(&bo->list_kref);
187
188 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
189 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
190 TTM_PAGE_FLAG_SWAPPED))) {
191 list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
192 kref_get(&bo->list_kref);
193 }
194}
195
196void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
197{
198 ttm_bo_add_mem_to_lru(bo, &bo->mem);
199}
200EXPORT_SYMBOL(ttm_bo_add_to_lru);
201
202static void ttm_bo_ref_bug(struct kref *list_kref)
203{
204 BUG();
205}
206
207void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
208{
209 struct ttm_bo_device *bdev = bo->bdev;
210 bool notify = false;
211
212 if (!list_empty(&bo->swap)) {
213 list_del_init(&bo->swap);
214 kref_put(&bo->list_kref, ttm_bo_ref_bug);
215 notify = true;
216 }
217 if (!list_empty(&bo->lru)) {
218 list_del_init(&bo->lru);
219 kref_put(&bo->list_kref, ttm_bo_ref_bug);
220 notify = true;
221 }
222
223 if (notify && bdev->driver->del_from_lru_notify)
224 bdev->driver->del_from_lru_notify(bo);
225}
226
227void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
228{
229 struct ttm_bo_global *glob = bo->bdev->glob;
230
231 spin_lock(&glob->lru_lock);
232 ttm_bo_del_from_lru(bo);
233 spin_unlock(&glob->lru_lock);
234}
235EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
236
237static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
238 struct ttm_buffer_object *bo)
239{
240 if (!pos->first)
241 pos->first = bo;
242 pos->last = bo;
243}
244
245void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
246 struct ttm_lru_bulk_move *bulk)
247{
248 dma_resv_assert_held(bo->base.resv);
249
250 ttm_bo_del_from_lru(bo);
251 ttm_bo_add_to_lru(bo);
252
253 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
254 switch (bo->mem.mem_type) {
255 case TTM_PL_TT:
256 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
257 break;
258
259 case TTM_PL_VRAM:
260 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
261 break;
262 }
263 if (bo->ttm && !(bo->ttm->page_flags &
264 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
265 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
266 }
267}
268EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
269
270void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
271{
272 unsigned i;
273
274 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
275 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
276 struct ttm_mem_type_manager *man;
277
278 if (!pos->first)
279 continue;
280
281 dma_resv_assert_held(pos->first->base.resv);
282 dma_resv_assert_held(pos->last->base.resv);
283
284 man = &pos->first->bdev->man[TTM_PL_TT];
285 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
286 &pos->last->lru);
287 }
288
289 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
290 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
291 struct ttm_mem_type_manager *man;
292
293 if (!pos->first)
294 continue;
295
296 dma_resv_assert_held(pos->first->base.resv);
297 dma_resv_assert_held(pos->last->base.resv);
298
299 man = &pos->first->bdev->man[TTM_PL_VRAM];
300 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
301 &pos->last->lru);
302 }
303
304 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
305 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
306 struct list_head *lru;
307
308 if (!pos->first)
309 continue;
310
311 dma_resv_assert_held(pos->first->base.resv);
312 dma_resv_assert_held(pos->last->base.resv);
313
314 lru = &pos->first->bdev->glob->swap_lru[i];
315 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
316 }
317}
318EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
319
320static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
321 struct ttm_mem_reg *mem, bool evict,
322 struct ttm_operation_ctx *ctx)
323{
324 struct ttm_bo_device *bdev = bo->bdev;
325 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
326 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
327 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
328 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
329 int ret = 0;
330
331 if (old_is_pci || new_is_pci ||
332 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
333 ret = ttm_mem_io_lock(old_man, true);
334 if (unlikely(ret != 0))
335 goto out_err;
336 ttm_bo_unmap_virtual_locked(bo);
337 ttm_mem_io_unlock(old_man);
338 }
339
340 /*
341 * Create and bind a ttm if required.
342 */
343
344 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
345 if (bo->ttm == NULL) {
346 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
347 ret = ttm_tt_create(bo, zero);
348 if (ret)
349 goto out_err;
350 }
351
352 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
353 if (ret)
354 goto out_err;
355
356 if (mem->mem_type != TTM_PL_SYSTEM) {
357 ret = ttm_tt_bind(bo->ttm, mem, ctx);
358 if (ret)
359 goto out_err;
360 }
361
362 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
363 if (bdev->driver->move_notify)
364 bdev->driver->move_notify(bo, evict, mem);
365 bo->mem = *mem;
366 mem->mm_node = NULL;
367 goto moved;
368 }
369 }
370
371 if (bdev->driver->move_notify)
372 bdev->driver->move_notify(bo, evict, mem);
373
374 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
375 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
376 ret = ttm_bo_move_ttm(bo, ctx, mem);
377 else if (bdev->driver->move)
378 ret = bdev->driver->move(bo, evict, ctx, mem);
379 else
380 ret = ttm_bo_move_memcpy(bo, ctx, mem);
381
382 if (ret) {
383 if (bdev->driver->move_notify) {
384 swap(*mem, bo->mem);
385 bdev->driver->move_notify(bo, false, mem);
386 swap(*mem, bo->mem);
387 }
388
389 goto out_err;
390 }
391
392moved:
393 if (bo->evicted) {
394 if (bdev->driver->invalidate_caches) {
395 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
396 if (ret)
397 pr_err("Can not flush read caches\n");
398 }
399 bo->evicted = false;
400 }
401
402 if (bo->mem.mm_node)
403 bo->offset = (bo->mem.start << PAGE_SHIFT) +
404 bdev->man[bo->mem.mem_type].gpu_offset;
405 else
406 bo->offset = 0;
407
408 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
409 return 0;
410
411out_err:
412 new_man = &bdev->man[bo->mem.mem_type];
413 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
414 ttm_tt_destroy(bo->ttm);
415 bo->ttm = NULL;
416 }
417
418 return ret;
419}
420
421/**
422 * Call bo::reserved.
423 * Will release GPU memory type usage on destruction.
424 * This is the place to put in driver specific hooks to release
425 * driver private resources.
426 * Will release the bo::reserved lock.
427 */
428
429static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
430{
431 if (bo->bdev->driver->move_notify)
432 bo->bdev->driver->move_notify(bo, false, NULL);
433
434 ttm_tt_destroy(bo->ttm);
435 bo->ttm = NULL;
436 ttm_bo_mem_put(bo, &bo->mem);
437}
438
439static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
440{
441 int r;
442
443 if (bo->base.resv == &bo->base._resv)
444 return 0;
445
446 BUG_ON(!dma_resv_trylock(&bo->base._resv));
447
448 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
449 if (r)
450 dma_resv_unlock(&bo->base._resv);
451
452 return r;
453}
454
455static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
456{
457 struct dma_resv_list *fobj;
458 struct dma_fence *fence;
459 int i;
460
461 fobj = dma_resv_get_list(&bo->base._resv);
462 fence = dma_resv_get_excl(&bo->base._resv);
463 if (fence && !fence->ops->signaled)
464 dma_fence_enable_sw_signaling(fence);
465
466 for (i = 0; fobj && i < fobj->shared_count; ++i) {
467 fence = rcu_dereference_protected(fobj->shared[i],
468 dma_resv_held(bo->base.resv));
469
470 if (!fence->ops->signaled)
471 dma_fence_enable_sw_signaling(fence);
472 }
473}
474
475static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
476{
477 struct ttm_bo_device *bdev = bo->bdev;
478 struct ttm_bo_global *glob = bdev->glob;
479 int ret;
480
481 ret = ttm_bo_individualize_resv(bo);
482 if (ret) {
483 /* Last resort, if we fail to allocate memory for the
484 * fences block for the BO to become idle
485 */
486 dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
487 30 * HZ);
488 spin_lock(&glob->lru_lock);
489 goto error;
490 }
491
492 spin_lock(&glob->lru_lock);
493 ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
494 if (!ret) {
495 if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
496 ttm_bo_del_from_lru(bo);
497 spin_unlock(&glob->lru_lock);
498 if (bo->base.resv != &bo->base._resv)
499 dma_resv_unlock(&bo->base._resv);
500
501 ttm_bo_cleanup_memtype_use(bo);
502 dma_resv_unlock(bo->base.resv);
503 return;
504 }
505
506 ttm_bo_flush_all_fences(bo);
507
508 /*
509 * Make NO_EVICT bos immediately available to
510 * shrinkers, now that they are queued for
511 * destruction.
512 */
513 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
514 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
515 ttm_bo_add_to_lru(bo);
516 }
517
518 dma_resv_unlock(bo->base.resv);
519 }
520 if (bo->base.resv != &bo->base._resv)
521 dma_resv_unlock(&bo->base._resv);
522
523error:
524 kref_get(&bo->list_kref);
525 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
526 spin_unlock(&glob->lru_lock);
527
528 schedule_delayed_work(&bdev->wq,
529 ((HZ / 100) < 1) ? 1 : HZ / 100);
530}
531
532/**
533 * function ttm_bo_cleanup_refs
534 * If bo idle, remove from delayed- and lru lists, and unref.
535 * If not idle, do nothing.
536 *
537 * Must be called with lru_lock and reservation held, this function
538 * will drop the lru lock and optionally the reservation lock before returning.
539 *
540 * @interruptible Any sleeps should occur interruptibly.
541 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
542 * @unlock_resv Unlock the reservation lock as well.
543 */
544
545static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
546 bool interruptible, bool no_wait_gpu,
547 bool unlock_resv)
548{
549 struct ttm_bo_global *glob = bo->bdev->glob;
550 struct dma_resv *resv;
551 int ret;
552
553 if (unlikely(list_empty(&bo->ddestroy)))
554 resv = bo->base.resv;
555 else
556 resv = &bo->base._resv;
557
558 if (dma_resv_test_signaled_rcu(resv, true))
559 ret = 0;
560 else
561 ret = -EBUSY;
562
563 if (ret && !no_wait_gpu) {
564 long lret;
565
566 if (unlock_resv)
567 dma_resv_unlock(bo->base.resv);
568 spin_unlock(&glob->lru_lock);
569
570 lret = dma_resv_wait_timeout_rcu(resv, true,
571 interruptible,
572 30 * HZ);
573
574 if (lret < 0)
575 return lret;
576 else if (lret == 0)
577 return -EBUSY;
578
579 spin_lock(&glob->lru_lock);
580 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
581 /*
582 * We raced, and lost, someone else holds the reservation now,
583 * and is probably busy in ttm_bo_cleanup_memtype_use.
584 *
585 * Even if it's not the case, because we finished waiting any
586 * delayed destruction would succeed, so just return success
587 * here.
588 */
589 spin_unlock(&glob->lru_lock);
590 return 0;
591 }
592 ret = 0;
593 }
594
595 if (ret || unlikely(list_empty(&bo->ddestroy))) {
596 if (unlock_resv)
597 dma_resv_unlock(bo->base.resv);
598 spin_unlock(&glob->lru_lock);
599 return ret;
600 }
601
602 ttm_bo_del_from_lru(bo);
603 list_del_init(&bo->ddestroy);
604 kref_put(&bo->list_kref, ttm_bo_ref_bug);
605
606 spin_unlock(&glob->lru_lock);
607 ttm_bo_cleanup_memtype_use(bo);
608
609 if (unlock_resv)
610 dma_resv_unlock(bo->base.resv);
611
612 return 0;
613}
614
615/**
616 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617 * encountered buffers.
618 */
619static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
620{
621 struct ttm_bo_global *glob = bdev->glob;
622 struct list_head removed;
623 bool empty;
624
625 INIT_LIST_HEAD(&removed);
626
627 spin_lock(&glob->lru_lock);
628 while (!list_empty(&bdev->ddestroy)) {
629 struct ttm_buffer_object *bo;
630
631 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
632 ddestroy);
633 kref_get(&bo->list_kref);
634 list_move_tail(&bo->ddestroy, &removed);
635
636 if (remove_all || bo->base.resv != &bo->base._resv) {
637 spin_unlock(&glob->lru_lock);
638 dma_resv_lock(bo->base.resv, NULL);
639
640 spin_lock(&glob->lru_lock);
641 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
642
643 } else if (dma_resv_trylock(bo->base.resv)) {
644 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
645 } else {
646 spin_unlock(&glob->lru_lock);
647 }
648
649 kref_put(&bo->list_kref, ttm_bo_release_list);
650 spin_lock(&glob->lru_lock);
651 }
652 list_splice_tail(&removed, &bdev->ddestroy);
653 empty = list_empty(&bdev->ddestroy);
654 spin_unlock(&glob->lru_lock);
655
656 return empty;
657}
658
659static void ttm_bo_delayed_workqueue(struct work_struct *work)
660{
661 struct ttm_bo_device *bdev =
662 container_of(work, struct ttm_bo_device, wq.work);
663
664 if (!ttm_bo_delayed_delete(bdev, false))
665 schedule_delayed_work(&bdev->wq,
666 ((HZ / 100) < 1) ? 1 : HZ / 100);
667}
668
669static void ttm_bo_release(struct kref *kref)
670{
671 struct ttm_buffer_object *bo =
672 container_of(kref, struct ttm_buffer_object, kref);
673 struct ttm_bo_device *bdev = bo->bdev;
674 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
675
676 if (bo->bdev->driver->release_notify)
677 bo->bdev->driver->release_notify(bo);
678
679 drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node);
680 ttm_mem_io_lock(man, false);
681 ttm_mem_io_free_vm(bo);
682 ttm_mem_io_unlock(man);
683 ttm_bo_cleanup_refs_or_queue(bo);
684 kref_put(&bo->list_kref, ttm_bo_release_list);
685}
686
687void ttm_bo_put(struct ttm_buffer_object *bo)
688{
689 kref_put(&bo->kref, ttm_bo_release);
690}
691EXPORT_SYMBOL(ttm_bo_put);
692
693int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
694{
695 return cancel_delayed_work_sync(&bdev->wq);
696}
697EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
698
699void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
700{
701 if (resched)
702 schedule_delayed_work(&bdev->wq,
703 ((HZ / 100) < 1) ? 1 : HZ / 100);
704}
705EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
706
707static int ttm_bo_evict(struct ttm_buffer_object *bo,
708 struct ttm_operation_ctx *ctx)
709{
710 struct ttm_bo_device *bdev = bo->bdev;
711 struct ttm_mem_reg evict_mem;
712 struct ttm_placement placement;
713 int ret = 0;
714
715 dma_resv_assert_held(bo->base.resv);
716
717 placement.num_placement = 0;
718 placement.num_busy_placement = 0;
719 bdev->driver->evict_flags(bo, &placement);
720
721 if (!placement.num_placement && !placement.num_busy_placement) {
722 ret = ttm_bo_pipeline_gutting(bo);
723 if (ret)
724 return ret;
725
726 return ttm_tt_create(bo, false);
727 }
728
729 evict_mem = bo->mem;
730 evict_mem.mm_node = NULL;
731 evict_mem.bus.io_reserved_vm = false;
732 evict_mem.bus.io_reserved_count = 0;
733
734 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
735 if (ret) {
736 if (ret != -ERESTARTSYS) {
737 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
738 bo);
739 ttm_bo_mem_space_debug(bo, &placement);
740 }
741 goto out;
742 }
743
744 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
745 if (unlikely(ret)) {
746 if (ret != -ERESTARTSYS)
747 pr_err("Buffer eviction failed\n");
748 ttm_bo_mem_put(bo, &evict_mem);
749 goto out;
750 }
751 bo->evicted = true;
752out:
753 return ret;
754}
755
756bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
757 const struct ttm_place *place)
758{
759 /* Don't evict this BO if it's outside of the
760 * requested placement range
761 */
762 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
763 (place->lpfn && place->lpfn <= bo->mem.start))
764 return false;
765
766 return true;
767}
768EXPORT_SYMBOL(ttm_bo_eviction_valuable);
769
770/**
771 * Check the target bo is allowable to be evicted or swapout, including cases:
772 *
773 * a. if share same reservation object with ctx->resv, have assumption
774 * reservation objects should already be locked, so not lock again and
775 * return true directly when either the opreation allow_reserved_eviction
776 * or the target bo already is in delayed free list;
777 *
778 * b. Otherwise, trylock it.
779 */
780static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
781 struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
782{
783 bool ret = false;
784
785 if (bo->base.resv == ctx->resv) {
786 dma_resv_assert_held(bo->base.resv);
787 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
788 || !list_empty(&bo->ddestroy))
789 ret = true;
790 *locked = false;
791 if (busy)
792 *busy = false;
793 } else {
794 ret = dma_resv_trylock(bo->base.resv);
795 *locked = ret;
796 if (busy)
797 *busy = !ret;
798 }
799
800 return ret;
801}
802
803/**
804 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
805 *
806 * @busy_bo: BO which couldn't be locked with trylock
807 * @ctx: operation context
808 * @ticket: acquire ticket
809 *
810 * Try to lock a busy buffer object to avoid failing eviction.
811 */
812static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
813 struct ttm_operation_ctx *ctx,
814 struct ww_acquire_ctx *ticket)
815{
816 int r;
817
818 if (!busy_bo || !ticket)
819 return -EBUSY;
820
821 if (ctx->interruptible)
822 r = dma_resv_lock_interruptible(busy_bo->base.resv,
823 ticket);
824 else
825 r = dma_resv_lock(busy_bo->base.resv, ticket);
826
827 /*
828 * TODO: It would be better to keep the BO locked until allocation is at
829 * least tried one more time, but that would mean a much larger rework
830 * of TTM.
831 */
832 if (!r)
833 dma_resv_unlock(busy_bo->base.resv);
834
835 return r == -EDEADLK ? -EBUSY : r;
836}
837
838static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
839 uint32_t mem_type,
840 const struct ttm_place *place,
841 struct ttm_operation_ctx *ctx,
842 struct ww_acquire_ctx *ticket)
843{
844 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
845 struct ttm_bo_global *glob = bdev->glob;
846 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
847 bool locked = false;
848 unsigned i;
849 int ret;
850
851 spin_lock(&glob->lru_lock);
852 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
853 list_for_each_entry(bo, &man->lru[i], lru) {
854 bool busy;
855
856 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
857 &busy)) {
858 if (busy && !busy_bo && ticket !=
859 dma_resv_locking_ctx(bo->base.resv))
860 busy_bo = bo;
861 continue;
862 }
863
864 if (place && !bdev->driver->eviction_valuable(bo,
865 place)) {
866 if (locked)
867 dma_resv_unlock(bo->base.resv);
868 continue;
869 }
870 break;
871 }
872
873 /* If the inner loop terminated early, we have our candidate */
874 if (&bo->lru != &man->lru[i])
875 break;
876
877 bo = NULL;
878 }
879
880 if (!bo) {
881 if (busy_bo)
882 kref_get(&busy_bo->list_kref);
883 spin_unlock(&glob->lru_lock);
884 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
885 if (busy_bo)
886 kref_put(&busy_bo->list_kref, ttm_bo_release_list);
887 return ret;
888 }
889
890 kref_get(&bo->list_kref);
891
892 if (!list_empty(&bo->ddestroy)) {
893 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
894 ctx->no_wait_gpu, locked);
895 kref_put(&bo->list_kref, ttm_bo_release_list);
896 return ret;
897 }
898
899 ttm_bo_del_from_lru(bo);
900 spin_unlock(&glob->lru_lock);
901
902 ret = ttm_bo_evict(bo, ctx);
903 if (locked) {
904 ttm_bo_unreserve(bo);
905 } else {
906 spin_lock(&glob->lru_lock);
907 ttm_bo_add_to_lru(bo);
908 spin_unlock(&glob->lru_lock);
909 }
910
911 kref_put(&bo->list_kref, ttm_bo_release_list);
912 return ret;
913}
914
915void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
916{
917 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
918
919 if (mem->mm_node)
920 (*man->func->put_node)(man, mem);
921}
922EXPORT_SYMBOL(ttm_bo_mem_put);
923
924/**
925 * Add the last move fence to the BO and reserve a new shared slot.
926 */
927static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
928 struct ttm_mem_type_manager *man,
929 struct ttm_mem_reg *mem)
930{
931 struct dma_fence *fence;
932 int ret;
933
934 spin_lock(&man->move_lock);
935 fence = dma_fence_get(man->move);
936 spin_unlock(&man->move_lock);
937
938 if (fence) {
939 dma_resv_add_shared_fence(bo->base.resv, fence);
940
941 ret = dma_resv_reserve_shared(bo->base.resv, 1);
942 if (unlikely(ret)) {
943 dma_fence_put(fence);
944 return ret;
945 }
946
947 dma_fence_put(bo->moving);
948 bo->moving = fence;
949 }
950
951 return 0;
952}
953
954/**
955 * Repeatedly evict memory from the LRU for @mem_type until we create enough
956 * space, or we've evicted everything and there isn't enough space.
957 */
958static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
959 const struct ttm_place *place,
960 struct ttm_mem_reg *mem,
961 struct ttm_operation_ctx *ctx)
962{
963 struct ttm_bo_device *bdev = bo->bdev;
964 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
965 struct ww_acquire_ctx *ticket;
966 int ret;
967
968 ticket = dma_resv_locking_ctx(bo->base.resv);
969 do {
970 ret = (*man->func->get_node)(man, bo, place, mem);
971 if (unlikely(ret != 0))
972 return ret;
973 if (mem->mm_node)
974 break;
975 ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
976 ticket);
977 if (unlikely(ret != 0))
978 return ret;
979 } while (1);
980
981 return ttm_bo_add_move_fence(bo, man, mem);
982}
983
984static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
985 uint32_t cur_placement,
986 uint32_t proposed_placement)
987{
988 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
989 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
990
991 /**
992 * Keep current caching if possible.
993 */
994
995 if ((cur_placement & caching) != 0)
996 result |= (cur_placement & caching);
997 else if ((man->default_caching & caching) != 0)
998 result |= man->default_caching;
999 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
1000 result |= TTM_PL_FLAG_CACHED;
1001 else if ((TTM_PL_FLAG_WC & caching) != 0)
1002 result |= TTM_PL_FLAG_WC;
1003 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1004 result |= TTM_PL_FLAG_UNCACHED;
1005
1006 return result;
1007}
1008
1009static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1010 uint32_t mem_type,
1011 const struct ttm_place *place,
1012 uint32_t *masked_placement)
1013{
1014 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
1015
1016 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1017 return false;
1018
1019 if ((place->flags & man->available_caching) == 0)
1020 return false;
1021
1022 cur_flags |= (place->flags & man->available_caching);
1023
1024 *masked_placement = cur_flags;
1025 return true;
1026}
1027
1028/**
1029 * ttm_bo_mem_placement - check if placement is compatible
1030 * @bo: BO to find memory for
1031 * @place: where to search
1032 * @mem: the memory object to fill in
1033 * @ctx: operation context
1034 *
1035 * Check if placement is compatible and fill in mem structure.
1036 * Returns -EBUSY if placement won't work or negative error code.
1037 * 0 when placement can be used.
1038 */
1039static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1040 const struct ttm_place *place,
1041 struct ttm_mem_reg *mem,
1042 struct ttm_operation_ctx *ctx)
1043{
1044 struct ttm_bo_device *bdev = bo->bdev;
1045 uint32_t mem_type = TTM_PL_SYSTEM;
1046 struct ttm_mem_type_manager *man;
1047 uint32_t cur_flags = 0;
1048 int ret;
1049
1050 ret = ttm_mem_type_from_place(place, &mem_type);
1051 if (ret)
1052 return ret;
1053
1054 man = &bdev->man[mem_type];
1055 if (!man->has_type || !man->use_type)
1056 return -EBUSY;
1057
1058 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1059 return -EBUSY;
1060
1061 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1062 /*
1063 * Use the access and other non-mapping-related flag bits from
1064 * the memory placement flags to the current flags
1065 */
1066 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1067
1068 mem->mem_type = mem_type;
1069 mem->placement = cur_flags;
1070
1071 if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
1072 spin_lock(&bo->bdev->glob->lru_lock);
1073 ttm_bo_del_from_lru(bo);
1074 ttm_bo_add_mem_to_lru(bo, mem);
1075 spin_unlock(&bo->bdev->glob->lru_lock);
1076 }
1077
1078 return 0;
1079}
1080
1081/**
1082 * Creates space for memory region @mem according to its type.
1083 *
1084 * This function first searches for free space in compatible memory types in
1085 * the priority order defined by the driver. If free space isn't found, then
1086 * ttm_bo_mem_force_space is attempted in priority order to evict and find
1087 * space.
1088 */
1089int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1090 struct ttm_placement *placement,
1091 struct ttm_mem_reg *mem,
1092 struct ttm_operation_ctx *ctx)
1093{
1094 struct ttm_bo_device *bdev = bo->bdev;
1095 bool type_found = false;
1096 int i, ret;
1097
1098 ret = dma_resv_reserve_shared(bo->base.resv, 1);
1099 if (unlikely(ret))
1100 return ret;
1101
1102 mem->mm_node = NULL;
1103 for (i = 0; i < placement->num_placement; ++i) {
1104 const struct ttm_place *place = &placement->placement[i];
1105 struct ttm_mem_type_manager *man;
1106
1107 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1108 if (ret == -EBUSY)
1109 continue;
1110 if (ret)
1111 goto error;
1112
1113 type_found = true;
1114 mem->mm_node = NULL;
1115 if (mem->mem_type == TTM_PL_SYSTEM)
1116 return 0;
1117
1118 man = &bdev->man[mem->mem_type];
1119 ret = (*man->func->get_node)(man, bo, place, mem);
1120 if (unlikely(ret))
1121 goto error;
1122
1123 if (mem->mm_node) {
1124 ret = ttm_bo_add_move_fence(bo, man, mem);
1125 if (unlikely(ret)) {
1126 (*man->func->put_node)(man, mem);
1127 goto error;
1128 }
1129 return 0;
1130 }
1131 }
1132
1133 for (i = 0; i < placement->num_busy_placement; ++i) {
1134 const struct ttm_place *place = &placement->busy_placement[i];
1135
1136 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1137 if (ret == -EBUSY)
1138 continue;
1139 if (ret)
1140 goto error;
1141
1142 type_found = true;
1143 mem->mm_node = NULL;
1144 if (mem->mem_type == TTM_PL_SYSTEM)
1145 return 0;
1146
1147 ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1148 if (ret == 0 && mem->mm_node)
1149 return 0;
1150
1151 if (ret && ret != -EBUSY)
1152 goto error;
1153 }
1154
1155 ret = -ENOMEM;
1156 if (!type_found) {
1157 pr_err(TTM_PFX "No compatible memory type found\n");
1158 ret = -EINVAL;
1159 }
1160
1161error:
1162 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1163 spin_lock(&bo->bdev->glob->lru_lock);
1164 ttm_bo_move_to_lru_tail(bo, NULL);
1165 spin_unlock(&bo->bdev->glob->lru_lock);
1166 }
1167
1168 return ret;
1169}
1170EXPORT_SYMBOL(ttm_bo_mem_space);
1171
1172static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1173 struct ttm_placement *placement,
1174 struct ttm_operation_ctx *ctx)
1175{
1176 int ret = 0;
1177 struct ttm_mem_reg mem;
1178
1179 dma_resv_assert_held(bo->base.resv);
1180
1181 mem.num_pages = bo->num_pages;
1182 mem.size = mem.num_pages << PAGE_SHIFT;
1183 mem.page_alignment = bo->mem.page_alignment;
1184 mem.bus.io_reserved_vm = false;
1185 mem.bus.io_reserved_count = 0;
1186 /*
1187 * Determine where to move the buffer.
1188 */
1189 ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1190 if (ret)
1191 goto out_unlock;
1192 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1193out_unlock:
1194 if (ret && mem.mm_node)
1195 ttm_bo_mem_put(bo, &mem);
1196 return ret;
1197}
1198
1199static bool ttm_bo_places_compat(const struct ttm_place *places,
1200 unsigned num_placement,
1201 struct ttm_mem_reg *mem,
1202 uint32_t *new_flags)
1203{
1204 unsigned i;
1205
1206 for (i = 0; i < num_placement; i++) {
1207 const struct ttm_place *heap = &places[i];
1208
1209 if (mem->mm_node && (mem->start < heap->fpfn ||
1210 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1211 continue;
1212
1213 *new_flags = heap->flags;
1214 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1215 (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1216 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1217 (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1218 return true;
1219 }
1220 return false;
1221}
1222
1223bool ttm_bo_mem_compat(struct ttm_placement *placement,
1224 struct ttm_mem_reg *mem,
1225 uint32_t *new_flags)
1226{
1227 if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1228 mem, new_flags))
1229 return true;
1230
1231 if ((placement->busy_placement != placement->placement ||
1232 placement->num_busy_placement > placement->num_placement) &&
1233 ttm_bo_places_compat(placement->busy_placement,
1234 placement->num_busy_placement,
1235 mem, new_flags))
1236 return true;
1237
1238 return false;
1239}
1240EXPORT_SYMBOL(ttm_bo_mem_compat);
1241
1242int ttm_bo_validate(struct ttm_buffer_object *bo,
1243 struct ttm_placement *placement,
1244 struct ttm_operation_ctx *ctx)
1245{
1246 int ret;
1247 uint32_t new_flags;
1248
1249 dma_resv_assert_held(bo->base.resv);
1250 /*
1251 * Check whether we need to move buffer.
1252 */
1253 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1254 ret = ttm_bo_move_buffer(bo, placement, ctx);
1255 if (ret)
1256 return ret;
1257 } else {
1258 /*
1259 * Use the access and other non-mapping-related flag bits from
1260 * the compatible memory placement flags to the active flags
1261 */
1262 ttm_flag_masked(&bo->mem.placement, new_flags,
1263 ~TTM_PL_MASK_MEMTYPE);
1264 }
1265 /*
1266 * We might need to add a TTM.
1267 */
1268 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1269 ret = ttm_tt_create(bo, true);
1270 if (ret)
1271 return ret;
1272 }
1273 return 0;
1274}
1275EXPORT_SYMBOL(ttm_bo_validate);
1276
1277int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1278 struct ttm_buffer_object *bo,
1279 unsigned long size,
1280 enum ttm_bo_type type,
1281 struct ttm_placement *placement,
1282 uint32_t page_alignment,
1283 struct ttm_operation_ctx *ctx,
1284 size_t acc_size,
1285 struct sg_table *sg,
1286 struct dma_resv *resv,
1287 void (*destroy) (struct ttm_buffer_object *))
1288{
1289 int ret = 0;
1290 unsigned long num_pages;
1291 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1292 bool locked;
1293
1294 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1295 if (ret) {
1296 pr_err("Out of kernel memory\n");
1297 if (destroy)
1298 (*destroy)(bo);
1299 else
1300 kfree(bo);
1301 return -ENOMEM;
1302 }
1303
1304 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305 if (num_pages == 0) {
1306 pr_err("Illegal buffer object size\n");
1307 if (destroy)
1308 (*destroy)(bo);
1309 else
1310 kfree(bo);
1311 ttm_mem_global_free(mem_glob, acc_size);
1312 return -EINVAL;
1313 }
1314 bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1315
1316 kref_init(&bo->kref);
1317 kref_init(&bo->list_kref);
1318 atomic_set(&bo->cpu_writers, 0);
1319 INIT_LIST_HEAD(&bo->lru);
1320 INIT_LIST_HEAD(&bo->ddestroy);
1321 INIT_LIST_HEAD(&bo->swap);
1322 INIT_LIST_HEAD(&bo->io_reserve_lru);
1323 mutex_init(&bo->wu_mutex);
1324 bo->bdev = bdev;
1325 bo->type = type;
1326 bo->num_pages = num_pages;
1327 bo->mem.size = num_pages << PAGE_SHIFT;
1328 bo->mem.mem_type = TTM_PL_SYSTEM;
1329 bo->mem.num_pages = bo->num_pages;
1330 bo->mem.mm_node = NULL;
1331 bo->mem.page_alignment = page_alignment;
1332 bo->mem.bus.io_reserved_vm = false;
1333 bo->mem.bus.io_reserved_count = 0;
1334 bo->moving = NULL;
1335 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1336 bo->acc_size = acc_size;
1337 bo->sg = sg;
1338 if (resv) {
1339 bo->base.resv = resv;
1340 dma_resv_assert_held(bo->base.resv);
1341 } else {
1342 bo->base.resv = &bo->base._resv;
1343 }
1344 if (!ttm_bo_uses_embedded_gem_object(bo)) {
1345 /*
1346 * bo.gem is not initialized, so we have to setup the
1347 * struct elements we want use regardless.
1348 */
1349 dma_resv_init(&bo->base._resv);
1350 drm_vma_node_reset(&bo->base.vma_node);
1351 }
1352 atomic_inc(&bo->bdev->glob->bo_count);
1353
1354 /*
1355 * For ttm_bo_type_device buffers, allocate
1356 * address space from the device.
1357 */
1358 if (bo->type == ttm_bo_type_device ||
1359 bo->type == ttm_bo_type_sg)
1360 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node,
1361 bo->mem.num_pages);
1362
1363 /* passed reservation objects should already be locked,
1364 * since otherwise lockdep will be angered in radeon.
1365 */
1366 if (!resv) {
1367 locked = dma_resv_trylock(bo->base.resv);
1368 WARN_ON(!locked);
1369 }
1370
1371 if (likely(!ret))
1372 ret = ttm_bo_validate(bo, placement, ctx);
1373
1374 if (unlikely(ret)) {
1375 if (!resv)
1376 ttm_bo_unreserve(bo);
1377
1378 ttm_bo_put(bo);
1379 return ret;
1380 }
1381
1382 if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1383 spin_lock(&bdev->glob->lru_lock);
1384 ttm_bo_add_to_lru(bo);
1385 spin_unlock(&bdev->glob->lru_lock);
1386 }
1387
1388 return ret;
1389}
1390EXPORT_SYMBOL(ttm_bo_init_reserved);
1391
1392int ttm_bo_init(struct ttm_bo_device *bdev,
1393 struct ttm_buffer_object *bo,
1394 unsigned long size,
1395 enum ttm_bo_type type,
1396 struct ttm_placement *placement,
1397 uint32_t page_alignment,
1398 bool interruptible,
1399 size_t acc_size,
1400 struct sg_table *sg,
1401 struct dma_resv *resv,
1402 void (*destroy) (struct ttm_buffer_object *))
1403{
1404 struct ttm_operation_ctx ctx = { interruptible, false };
1405 int ret;
1406
1407 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1408 page_alignment, &ctx, acc_size,
1409 sg, resv, destroy);
1410 if (ret)
1411 return ret;
1412
1413 if (!resv)
1414 ttm_bo_unreserve(bo);
1415
1416 return 0;
1417}
1418EXPORT_SYMBOL(ttm_bo_init);
1419
1420size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1421 unsigned long bo_size,
1422 unsigned struct_size)
1423{
1424 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1425 size_t size = 0;
1426
1427 size += ttm_round_pot(struct_size);
1428 size += ttm_round_pot(npages * sizeof(void *));
1429 size += ttm_round_pot(sizeof(struct ttm_tt));
1430 return size;
1431}
1432EXPORT_SYMBOL(ttm_bo_acc_size);
1433
1434size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1435 unsigned long bo_size,
1436 unsigned struct_size)
1437{
1438 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1439 size_t size = 0;
1440
1441 size += ttm_round_pot(struct_size);
1442 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1443 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1444 return size;
1445}
1446EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1447
1448int ttm_bo_create(struct ttm_bo_device *bdev,
1449 unsigned long size,
1450 enum ttm_bo_type type,
1451 struct ttm_placement *placement,
1452 uint32_t page_alignment,
1453 bool interruptible,
1454 struct ttm_buffer_object **p_bo)
1455{
1456 struct ttm_buffer_object *bo;
1457 size_t acc_size;
1458 int ret;
1459
1460 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1461 if (unlikely(bo == NULL))
1462 return -ENOMEM;
1463
1464 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1465 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1466 interruptible, acc_size,
1467 NULL, NULL, NULL);
1468 if (likely(ret == 0))
1469 *p_bo = bo;
1470
1471 return ret;
1472}
1473EXPORT_SYMBOL(ttm_bo_create);
1474
1475static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1476 unsigned mem_type)
1477{
1478 struct ttm_operation_ctx ctx = {
1479 .interruptible = false,
1480 .no_wait_gpu = false,
1481 .flags = TTM_OPT_FLAG_FORCE_ALLOC
1482 };
1483 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1484 struct ttm_bo_global *glob = bdev->glob;
1485 struct dma_fence *fence;
1486 int ret;
1487 unsigned i;
1488
1489 /*
1490 * Can't use standard list traversal since we're unlocking.
1491 */
1492
1493 spin_lock(&glob->lru_lock);
1494 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1495 while (!list_empty(&man->lru[i])) {
1496 spin_unlock(&glob->lru_lock);
1497 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1498 NULL);
1499 if (ret)
1500 return ret;
1501 spin_lock(&glob->lru_lock);
1502 }
1503 }
1504 spin_unlock(&glob->lru_lock);
1505
1506 spin_lock(&man->move_lock);
1507 fence = dma_fence_get(man->move);
1508 spin_unlock(&man->move_lock);
1509
1510 if (fence) {
1511 ret = dma_fence_wait(fence, false);
1512 dma_fence_put(fence);
1513 if (ret)
1514 return ret;
1515 }
1516
1517 return 0;
1518}
1519
1520int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1521{
1522 struct ttm_mem_type_manager *man;
1523 int ret = -EINVAL;
1524
1525 if (mem_type >= TTM_NUM_MEM_TYPES) {
1526 pr_err("Illegal memory type %d\n", mem_type);
1527 return ret;
1528 }
1529 man = &bdev->man[mem_type];
1530
1531 if (!man->has_type) {
1532 pr_err("Trying to take down uninitialized memory manager type %u\n",
1533 mem_type);
1534 return ret;
1535 }
1536
1537 man->use_type = false;
1538 man->has_type = false;
1539
1540 ret = 0;
1541 if (mem_type > 0) {
1542 ret = ttm_bo_force_list_clean(bdev, mem_type);
1543 if (ret) {
1544 pr_err("Cleanup eviction failed\n");
1545 return ret;
1546 }
1547
1548 ret = (*man->func->takedown)(man);
1549 }
1550
1551 dma_fence_put(man->move);
1552 man->move = NULL;
1553
1554 return ret;
1555}
1556EXPORT_SYMBOL(ttm_bo_clean_mm);
1557
1558int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1559{
1560 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1561
1562 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1563 pr_err("Illegal memory manager memory type %u\n", mem_type);
1564 return -EINVAL;
1565 }
1566
1567 if (!man->has_type) {
1568 pr_err("Memory type %u has not been initialized\n", mem_type);
1569 return 0;
1570 }
1571
1572 return ttm_bo_force_list_clean(bdev, mem_type);
1573}
1574EXPORT_SYMBOL(ttm_bo_evict_mm);
1575
1576int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1577 unsigned long p_size)
1578{
1579 int ret;
1580 struct ttm_mem_type_manager *man;
1581 unsigned i;
1582
1583 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1584 man = &bdev->man[type];
1585 BUG_ON(man->has_type);
1586 man->io_reserve_fastpath = true;
1587 man->use_io_reserve_lru = false;
1588 mutex_init(&man->io_reserve_mutex);
1589 spin_lock_init(&man->move_lock);
1590 INIT_LIST_HEAD(&man->io_reserve_lru);
1591
1592 ret = bdev->driver->init_mem_type(bdev, type, man);
1593 if (ret)
1594 return ret;
1595 man->bdev = bdev;
1596
1597 if (type != TTM_PL_SYSTEM) {
1598 ret = (*man->func->init)(man, p_size);
1599 if (ret)
1600 return ret;
1601 }
1602 man->has_type = true;
1603 man->use_type = true;
1604 man->size = p_size;
1605
1606 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1607 INIT_LIST_HEAD(&man->lru[i]);
1608 man->move = NULL;
1609
1610 return 0;
1611}
1612EXPORT_SYMBOL(ttm_bo_init_mm);
1613
1614static void ttm_bo_global_kobj_release(struct kobject *kobj)
1615{
1616 struct ttm_bo_global *glob =
1617 container_of(kobj, struct ttm_bo_global, kobj);
1618
1619 __free_page(glob->dummy_read_page);
1620}
1621
1622static void ttm_bo_global_release(void)
1623{
1624 struct ttm_bo_global *glob = &ttm_bo_glob;
1625
1626 mutex_lock(&ttm_global_mutex);
1627 if (--ttm_bo_glob_use_count > 0)
1628 goto out;
1629
1630 kobject_del(&glob->kobj);
1631 kobject_put(&glob->kobj);
1632 ttm_mem_global_release(&ttm_mem_glob);
1633 memset(glob, 0, sizeof(*glob));
1634out:
1635 mutex_unlock(&ttm_global_mutex);
1636}
1637
1638static int ttm_bo_global_init(void)
1639{
1640 struct ttm_bo_global *glob = &ttm_bo_glob;
1641 int ret = 0;
1642 unsigned i;
1643
1644 mutex_lock(&ttm_global_mutex);
1645 if (++ttm_bo_glob_use_count > 1)
1646 goto out;
1647
1648 ret = ttm_mem_global_init(&ttm_mem_glob);
1649 if (ret)
1650 goto out;
1651
1652 spin_lock_init(&glob->lru_lock);
1653 glob->mem_glob = &ttm_mem_glob;
1654 glob->mem_glob->bo_glob = glob;
1655 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1656
1657 if (unlikely(glob->dummy_read_page == NULL)) {
1658 ret = -ENOMEM;
1659 goto out;
1660 }
1661
1662 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1663 INIT_LIST_HEAD(&glob->swap_lru[i]);
1664 INIT_LIST_HEAD(&glob->device_list);
1665 atomic_set(&glob->bo_count, 0);
1666
1667 ret = kobject_init_and_add(
1668 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1669 if (unlikely(ret != 0))
1670 kobject_put(&glob->kobj);
1671out:
1672 mutex_unlock(&ttm_global_mutex);
1673 return ret;
1674}
1675
1676int ttm_bo_device_release(struct ttm_bo_device *bdev)
1677{
1678 int ret = 0;
1679 unsigned i = TTM_NUM_MEM_TYPES;
1680 struct ttm_mem_type_manager *man;
1681 struct ttm_bo_global *glob = bdev->glob;
1682
1683 while (i--) {
1684 man = &bdev->man[i];
1685 if (man->has_type) {
1686 man->use_type = false;
1687 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1688 ret = -EBUSY;
1689 pr_err("DRM memory manager type %d is not clean\n",
1690 i);
1691 }
1692 man->has_type = false;
1693 }
1694 }
1695
1696 mutex_lock(&ttm_global_mutex);
1697 list_del(&bdev->device_list);
1698 mutex_unlock(&ttm_global_mutex);
1699
1700 cancel_delayed_work_sync(&bdev->wq);
1701
1702 if (ttm_bo_delayed_delete(bdev, true))
1703 pr_debug("Delayed destroy list was clean\n");
1704
1705 spin_lock(&glob->lru_lock);
1706 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1707 if (list_empty(&bdev->man[0].lru[0]))
1708 pr_debug("Swap list %d was clean\n", i);
1709 spin_unlock(&glob->lru_lock);
1710
1711 drm_vma_offset_manager_destroy(&bdev->vma_manager);
1712
1713 if (!ret)
1714 ttm_bo_global_release();
1715
1716 return ret;
1717}
1718EXPORT_SYMBOL(ttm_bo_device_release);
1719
1720int ttm_bo_device_init(struct ttm_bo_device *bdev,
1721 struct ttm_bo_driver *driver,
1722 struct address_space *mapping,
1723 bool need_dma32)
1724{
1725 struct ttm_bo_global *glob = &ttm_bo_glob;
1726 int ret;
1727
1728 ret = ttm_bo_global_init();
1729 if (ret)
1730 return ret;
1731
1732 bdev->driver = driver;
1733
1734 memset(bdev->man, 0, sizeof(bdev->man));
1735
1736 /*
1737 * Initialize the system memory buffer type.
1738 * Other types need to be driver / IOCTL initialized.
1739 */
1740 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1741 if (unlikely(ret != 0))
1742 goto out_no_sys;
1743
1744 drm_vma_offset_manager_init(&bdev->vma_manager,
1745 DRM_FILE_PAGE_OFFSET_START,
1746 DRM_FILE_PAGE_OFFSET_SIZE);
1747 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1748 INIT_LIST_HEAD(&bdev->ddestroy);
1749 bdev->dev_mapping = mapping;
1750 bdev->glob = glob;
1751 bdev->need_dma32 = need_dma32;
1752 mutex_lock(&ttm_global_mutex);
1753 list_add_tail(&bdev->device_list, &glob->device_list);
1754 mutex_unlock(&ttm_global_mutex);
1755
1756 return 0;
1757out_no_sys:
1758 ttm_bo_global_release();
1759 return ret;
1760}
1761EXPORT_SYMBOL(ttm_bo_device_init);
1762
1763/*
1764 * buffer object vm functions.
1765 */
1766
1767bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1768{
1769 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1770
1771 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1772 if (mem->mem_type == TTM_PL_SYSTEM)
1773 return false;
1774
1775 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1776 return false;
1777
1778 if (mem->placement & TTM_PL_FLAG_CACHED)
1779 return false;
1780 }
1781 return true;
1782}
1783
1784void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1785{
1786 struct ttm_bo_device *bdev = bo->bdev;
1787
1788 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1789 ttm_mem_io_free_vm(bo);
1790}
1791
1792void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1793{
1794 struct ttm_bo_device *bdev = bo->bdev;
1795 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1796
1797 ttm_mem_io_lock(man, false);
1798 ttm_bo_unmap_virtual_locked(bo);
1799 ttm_mem_io_unlock(man);
1800}
1801
1802
1803EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1804
1805int ttm_bo_wait(struct ttm_buffer_object *bo,
1806 bool interruptible, bool no_wait)
1807{
1808 long timeout = 15 * HZ;
1809
1810 if (no_wait) {
1811 if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1812 return 0;
1813 else
1814 return -EBUSY;
1815 }
1816
1817 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1818 interruptible, timeout);
1819 if (timeout < 0)
1820 return timeout;
1821
1822 if (timeout == 0)
1823 return -EBUSY;
1824
1825 dma_resv_add_excl_fence(bo->base.resv, NULL);
1826 return 0;
1827}
1828EXPORT_SYMBOL(ttm_bo_wait);
1829
1830int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1831{
1832 int ret = 0;
1833
1834 /*
1835 * Using ttm_bo_reserve makes sure the lru lists are updated.
1836 */
1837
1838 ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1839 if (unlikely(ret != 0))
1840 return ret;
1841 ret = ttm_bo_wait(bo, true, no_wait);
1842 if (likely(ret == 0))
1843 atomic_inc(&bo->cpu_writers);
1844 ttm_bo_unreserve(bo);
1845 return ret;
1846}
1847EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1848
1849void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1850{
1851 atomic_dec(&bo->cpu_writers);
1852}
1853EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1854
1855/**
1856 * A buffer object shrink method that tries to swap out the first
1857 * buffer object on the bo_global::swap_lru list.
1858 */
1859int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1860{
1861 struct ttm_buffer_object *bo;
1862 int ret = -EBUSY;
1863 bool locked;
1864 unsigned i;
1865
1866 spin_lock(&glob->lru_lock);
1867 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1868 list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1869 if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1870 NULL)) {
1871 ret = 0;
1872 break;
1873 }
1874 }
1875 if (!ret)
1876 break;
1877 }
1878
1879 if (ret) {
1880 spin_unlock(&glob->lru_lock);
1881 return ret;
1882 }
1883
1884 kref_get(&bo->list_kref);
1885
1886 if (!list_empty(&bo->ddestroy)) {
1887 ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1888 kref_put(&bo->list_kref, ttm_bo_release_list);
1889 return ret;
1890 }
1891
1892 ttm_bo_del_from_lru(bo);
1893 spin_unlock(&glob->lru_lock);
1894
1895 /**
1896 * Move to system cached
1897 */
1898
1899 if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1900 bo->ttm->caching_state != tt_cached) {
1901 struct ttm_operation_ctx ctx = { false, false };
1902 struct ttm_mem_reg evict_mem;
1903
1904 evict_mem = bo->mem;
1905 evict_mem.mm_node = NULL;
1906 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1907 evict_mem.mem_type = TTM_PL_SYSTEM;
1908
1909 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1910 if (unlikely(ret != 0))
1911 goto out;
1912 }
1913
1914 /**
1915 * Make sure BO is idle.
1916 */
1917
1918 ret = ttm_bo_wait(bo, false, false);
1919 if (unlikely(ret != 0))
1920 goto out;
1921
1922 ttm_bo_unmap_virtual(bo);
1923
1924 /**
1925 * Swap out. Buffer will be swapped in again as soon as
1926 * anyone tries to access a ttm page.
1927 */
1928
1929 if (bo->bdev->driver->swap_notify)
1930 bo->bdev->driver->swap_notify(bo);
1931
1932 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1933out:
1934
1935 /**
1936 *
1937 * Unreserve without putting on LRU to avoid swapping out an
1938 * already swapped buffer.
1939 */
1940 if (locked)
1941 dma_resv_unlock(bo->base.resv);
1942 kref_put(&bo->list_kref, ttm_bo_release_list);
1943 return ret;
1944}
1945EXPORT_SYMBOL(ttm_bo_swapout);
1946
1947void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1948{
1949 struct ttm_operation_ctx ctx = {
1950 .interruptible = false,
1951 .no_wait_gpu = false
1952 };
1953
1954 while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1955 ;
1956}
1957EXPORT_SYMBOL(ttm_bo_swapout_all);
1958
1959/**
1960 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1961 * unreserved
1962 *
1963 * @bo: Pointer to buffer
1964 */
1965int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1966{
1967 int ret;
1968
1969 /*
1970 * In the absense of a wait_unlocked API,
1971 * Use the bo::wu_mutex to avoid triggering livelocks due to
1972 * concurrent use of this function. Note that this use of
1973 * bo::wu_mutex can go away if we change locking order to
1974 * mmap_sem -> bo::reserve.
1975 */
1976 ret = mutex_lock_interruptible(&bo->wu_mutex);
1977 if (unlikely(ret != 0))
1978 return -ERESTARTSYS;
1979 if (!dma_resv_is_locked(bo->base.resv))
1980 goto out_unlock;
1981 ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
1982 if (ret == -EINTR)
1983 ret = -ERESTARTSYS;
1984 if (unlikely(ret != 0))
1985 goto out_unlock;
1986 dma_resv_unlock(bo->base.resv);
1987
1988out_unlock:
1989 mutex_unlock(&bo->wu_mutex);
1990 return ret;
1991}