Linux Audio

Check our new training course

Loading...
v3.5.6
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
 
  32#include <linux/slab.h>
  33#include "drmP.h"
  34#include "drm.h"
  35#include "i915_drm.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  36#include "i915_drv.h"
 
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/* For display hotplug interrupt */
  41static void
  42ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43{
  44	if ((dev_priv->irq_mask & mask) != 0) {
  45		dev_priv->irq_mask &= ~mask;
  46		I915_WRITE(DEIMR, dev_priv->irq_mask);
  47		POSTING_READ(DEIMR);
  48	}
 
 
 
 
 
 
  49}
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51static inline void
  52ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53{
  54	if ((dev_priv->irq_mask & mask) != mask) {
  55		dev_priv->irq_mask |= mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
  56		I915_WRITE(DEIMR, dev_priv->irq_mask);
  57		POSTING_READ(DEIMR);
  58	}
  59}
  60
  61void
  62i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
  63{
  64	if ((dev_priv->pipestat[pipe] & mask) != mask) {
  65		u32 reg = PIPESTAT(pipe);
  66
  67		dev_priv->pipestat[pipe] |= mask;
  68		/* Enable the interrupt, clear any pending status */
  69		I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
  70		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71	}
 
  72}
  73
  74void
  75i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
  76{
  77	if ((dev_priv->pipestat[pipe] & mask) != 0) {
  78		u32 reg = PIPESTAT(pipe);
  79
  80		dev_priv->pipestat[pipe] &= ~mask;
  81		I915_WRITE(reg, dev_priv->pipestat[pipe]);
  82		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84}
  85
  86/**
  87 * intel_enable_asle - enable ASLE interrupt for OpRegion
 
 
 
  88 */
  89void intel_enable_asle(struct drm_device *dev)
 
 
  90{
  91	drm_i915_private_t *dev_priv = dev->dev_private;
  92	unsigned long irqflags;
  93
  94	/* FIXME: opregion/asle for VLV */
  95	if (IS_VALLEYVIEW(dev))
 
 
 
  96		return;
  97
  98	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  99
 100	if (HAS_PCH_SPLIT(dev))
 101		ironlake_enable_display_irq(dev_priv, DE_GSE);
 102	else {
 103		i915_enable_pipestat(dev_priv, 1,
 104				     PIPE_LEGACY_BLC_EVENT_ENABLE);
 105		if (INTEL_INFO(dev)->gen >= 4)
 106			i915_enable_pipestat(dev_priv, 0,
 107					     PIPE_LEGACY_BLC_EVENT_ENABLE);
 108	}
 
 109
 110	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111}
 112
 113/**
 114 * i915_pipe_enabled - check if a pipe is enabled
 115 * @dev: DRM device
 116 * @pipe: pipe to check
 117 *
 118 * Reading certain registers when the pipe is disabled can hang the chip.
 119 * Use this routine to make sure the PLL is running and the pipe is active
 120 * before reading such registers if unsure.
 121 */
 122static int
 123i915_pipe_enabled(struct drm_device *dev, int pipe)
 
 124{
 125	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 126	return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
 
 
 
 
 
 
 
 
 
 
 
 127}
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129/* Called from drm generic code, passed a 'crtc', which
 130 * we use as a pipe index
 131 */
 132static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
 133{
 134	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 135	unsigned long high_frame;
 136	unsigned long low_frame;
 137	u32 high1, high2, low;
 138
 139	if (!i915_pipe_enabled(dev, pipe)) {
 140		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 141				"pipe %c\n", pipe_name(pipe));
 
 
 
 
 
 
 
 
 
 
 
 
 142		return 0;
 143	}
 
 
 
 
 
 
 
 
 
 
 
 144
 145	high_frame = PIPEFRAME(pipe);
 146	low_frame = PIPEFRAMEPIXEL(pipe);
 147
 
 
 148	/*
 149	 * High & low register fields aren't synchronized, so make sure
 150	 * we get a low value that's stable across two reads of the high
 151	 * register.
 152	 */
 153	do {
 154		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 155		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
 156		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 157	} while (high1 != high2);
 158
 
 
 159	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 
 160	low >>= PIPE_FRAME_LOW_SHIFT;
 161	return (high1 << 8) | low;
 
 
 
 
 
 
 162}
 163
 164static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
 165{
 166	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 167	int reg = PIPE_FRMCOUNT_GM45(pipe);
 168
 169	if (!i915_pipe_enabled(dev, pipe)) {
 170		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 171				 "pipe %c\n", pipe_name(pipe));
 172		return 0;
 173	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174
 175	return I915_READ(reg);
 
 
 
 
 
 176}
 177
 178static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
 179			     int *vpos, int *hpos)
 180{
 181	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 182	u32 vbl = 0, position = 0;
 183	int vbl_start, vbl_end, htotal, vtotal;
 184	bool in_vbl = true;
 185	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186
 187	if (!i915_pipe_enabled(dev, pipe)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 189				 "pipe %c\n", pipe_name(pipe));
 190		return 0;
 191	}
 192
 193	/* Get vtotal. */
 194	vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195
 196	if (INTEL_INFO(dev)->gen >= 4) {
 
 
 
 
 197		/* No obvious pixelcount register. Only query vertical
 198		 * scanout position from Display scan line register.
 199		 */
 200		position = I915_READ(PIPEDSL(pipe));
 201
 202		/* Decode into vertical scanout position. Don't have
 203		 * horizontal scanout position.
 204		 */
 205		*vpos = position & 0x1fff;
 206		*hpos = 0;
 207	} else {
 208		/* Have access to pixelcount since start of frame.
 209		 * We can split this into vertical and horizontal
 210		 * scanout position.
 211		 */
 212		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 
 
 
 
 
 213
 214		htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215		*vpos = position / htotal;
 216		*hpos = position - (*vpos * htotal);
 217	}
 218
 219	/* Query vblank area. */
 220	vbl = I915_READ(VBLANK(pipe));
 221
 222	/* Test position against vblank region. */
 223	vbl_start = vbl & 0x1fff;
 224	vbl_end = (vbl >> 16) & 0x1fff;
 225
 226	if ((*vpos < vbl_start) || (*vpos > vbl_end))
 227		in_vbl = false;
 228
 229	/* Inside "upper part" of vblank area? Apply corrective offset: */
 230	if (in_vbl && (*vpos >= vbl_start))
 231		*vpos = *vpos - vtotal;
 232
 233	/* Readouts valid? */
 234	if (vbl > 0)
 235		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 236
 237	/* In vblank? */
 238	if (in_vbl)
 239		ret |= DRM_SCANOUTPOS_INVBL;
 240
 241	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
 245			      int *max_error,
 246			      struct timeval *vblank_time,
 247			      unsigned flags)
 248{
 249	struct drm_i915_private *dev_priv = dev->dev_private;
 250	struct drm_crtc *crtc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251
 252	if (pipe < 0 || pipe >= dev_priv->num_pipe) {
 253		DRM_ERROR("Invalid crtc %d\n", pipe);
 254		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256
 257	/* Get drm_crtc to timestamp: */
 258	crtc = intel_get_crtc_for_pipe(dev, pipe);
 259	if (crtc == NULL) {
 260		DRM_ERROR("Invalid crtc %d\n", pipe);
 261		return -EINVAL;
 
 
 262	}
 
 263
 264	if (!crtc->enabled) {
 265		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
 266		return -EBUSY;
 
 
 
 
 
 
 
 
 267	}
 
 268
 269	/* Helper routine in DRM core does all the work: */
 270	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 271						     vblank_time, flags,
 272						     crtc);
 
 
 
 
 
 
 
 
 273}
 274
 275/*
 276 * Handle hotplug events outside the interrupt handler proper.
 
 
 
 
 277 */
 278static void i915_hotplug_work_func(struct work_struct *work)
 
 
 
 
 279{
 280	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 281						    hotplug_work);
 282	struct drm_device *dev = dev_priv->dev;
 283	struct drm_mode_config *mode_config = &dev->mode_config;
 284	struct intel_encoder *encoder;
 
 
 285
 286	mutex_lock(&mode_config->mutex);
 287	DRM_DEBUG_KMS("running encoder hotplug functions\n");
 288
 289	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 290		if (encoder->hot_plug)
 291			encoder->hot_plug(encoder);
 292
 293	mutex_unlock(&mode_config->mutex);
 
 294
 295	/* Just fire off a uevent and let userspace tell us what to do */
 296	drm_helper_hpd_irq_event(dev);
 297}
 298
 299static void i915_handle_rps_change(struct drm_device *dev)
 300{
 301	drm_i915_private_t *dev_priv = dev->dev_private;
 302	u32 busy_up, busy_down, max_avg, min_avg;
 303	u8 new_delay = dev_priv->cur_delay;
 304
 305	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 306	busy_up = I915_READ(RCPREVBSYTUPAVG);
 307	busy_down = I915_READ(RCPREVBSYTDNAVG);
 308	max_avg = I915_READ(RCBMAXAVG);
 309	min_avg = I915_READ(RCBMINAVG);
 310
 311	/* Handle RCS change request from hw */
 312	if (busy_up > max_avg) {
 313		if (dev_priv->cur_delay != dev_priv->max_delay)
 314			new_delay = dev_priv->cur_delay - 1;
 315		if (new_delay < dev_priv->max_delay)
 316			new_delay = dev_priv->max_delay;
 317	} else if (busy_down < min_avg) {
 318		if (dev_priv->cur_delay != dev_priv->min_delay)
 319			new_delay = dev_priv->cur_delay + 1;
 320		if (new_delay > dev_priv->min_delay)
 321			new_delay = dev_priv->min_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322	}
 
 323
 324	if (ironlake_set_drps(dev, new_delay))
 325		dev_priv->cur_delay = new_delay;
 
 
 
 
 
 
 
 
 
 
 326
 327	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328}
 329
 330static void notify_ring(struct drm_device *dev,
 331			struct intel_ring_buffer *ring)
 
 
 332{
 333	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 334
 335	if (ring->obj == NULL)
 336		return;
 337
 338	trace_i915_gem_request_complete(ring, ring->get_seqno(ring));
 
 
 339
 340	wake_up_all(&ring->irq_queue);
 341	if (i915_enable_hangcheck) {
 342		dev_priv->hangcheck_count = 0;
 343		mod_timer(&dev_priv->hangcheck_timer,
 344			  jiffies +
 345			  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
 
 
 
 
 
 346	}
 
 
 
 
 
 
 
 
 
 347}
 348
 349static void gen6_pm_rps_work(struct work_struct *work)
 350{
 351	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 352						    rps_work);
 353	u32 pm_iir, pm_imr;
 354	u8 new_delay;
 
 
 355
 356	spin_lock_irq(&dev_priv->rps_lock);
 357	pm_iir = dev_priv->pm_iir;
 358	dev_priv->pm_iir = 0;
 359	pm_imr = I915_READ(GEN6_PMIMR);
 360	I915_WRITE(GEN6_PMIMR, 0);
 361	spin_unlock_irq(&dev_priv->rps_lock);
 
 
 362
 363	if ((pm_iir & GEN6_PM_DEFERRED_EVENTS) == 0)
 
 
 
 364		return;
 
 365
 366	mutex_lock(&dev_priv->dev->struct_mutex);
 
 
 367
 368	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD)
 369		new_delay = dev_priv->cur_delay + 1;
 370	else
 371		new_delay = dev_priv->cur_delay - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373	gen6_set_rps(dev_priv->dev, new_delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374
 375	mutex_unlock(&dev_priv->dev->struct_mutex);
 
 376}
 377
 378static void snb_gt_irq_handler(struct drm_device *dev,
 379			       struct drm_i915_private *dev_priv,
 380			       u32 gt_iir)
 381{
 
 
 382
 383	if (gt_iir & (GEN6_RENDER_USER_INTERRUPT |
 384		      GEN6_RENDER_PIPE_CONTROL_NOTIFY_INTERRUPT))
 385		notify_ring(dev, &dev_priv->ring[RCS]);
 386	if (gt_iir & GEN6_BSD_USER_INTERRUPT)
 387		notify_ring(dev, &dev_priv->ring[VCS]);
 388	if (gt_iir & GEN6_BLITTER_USER_INTERRUPT)
 389		notify_ring(dev, &dev_priv->ring[BCS]);
 390
 391	if (gt_iir & (GT_GEN6_BLT_CS_ERROR_INTERRUPT |
 392		      GT_GEN6_BSD_CS_ERROR_INTERRUPT |
 393		      GT_RENDER_CS_ERROR_INTERRUPT)) {
 394		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
 395		i915_handle_error(dev, false);
 
 
 
 396	}
 
 
 
 
 
 
 397}
 398
 399static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
 400				u32 pm_iir)
 401{
 402	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403
 404	/*
 405	 * IIR bits should never already be set because IMR should
 406	 * prevent an interrupt from being shown in IIR. The warning
 407	 * displays a case where we've unsafely cleared
 408	 * dev_priv->pm_iir. Although missing an interrupt of the same
 409	 * type is not a problem, it displays a problem in the logic.
 410	 *
 411	 * The mask bit in IMR is cleared by rps_work.
 412	 */
 
 
 413
 414	spin_lock_irqsave(&dev_priv->rps_lock, flags);
 415	dev_priv->pm_iir |= pm_iir;
 416	I915_WRITE(GEN6_PMIMR, dev_priv->pm_iir);
 417	POSTING_READ(GEN6_PMIMR);
 418	spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 419
 420	queue_work(dev_priv->wq, &dev_priv->rps_work);
 
 
 
 
 
 
 
 
 421}
 422
 423static irqreturn_t valleyview_irq_handler(DRM_IRQ_ARGS)
 
 424{
 425	struct drm_device *dev = (struct drm_device *) arg;
 426	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 427	u32 iir, gt_iir, pm_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	irqreturn_t ret = IRQ_NONE;
 429	unsigned long irqflags;
 430	int pipe;
 431	u32 pipe_stats[I915_MAX_PIPES];
 432	u32 vblank_status;
 433	int vblank = 0;
 434	bool blc_event;
 435
 436	atomic_inc(&dev_priv->irq_received);
 
 437
 438	vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS |
 439		PIPE_VBLANK_INTERRUPT_STATUS;
 
 
 
 
 
 
 440
 441	while (true) {
 442		iir = I915_READ(VLV_IIR);
 443		gt_iir = I915_READ(GTIIR);
 444		pm_iir = I915_READ(GEN6_PMIIR);
 
 445
 446		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
 447			goto out;
 448
 449		ret = IRQ_HANDLED;
 450
 451		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452
 453		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 454		for_each_pipe(pipe) {
 455			int reg = PIPESTAT(pipe);
 456			pipe_stats[pipe] = I915_READ(reg);
 
 
 457
 458			/*
 459			 * Clear the PIPE*STAT regs before the IIR
 460			 */
 461			if (pipe_stats[pipe] & 0x8000ffff) {
 462				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
 463					DRM_DEBUG_DRIVER("pipe %c underrun\n",
 464							 pipe_name(pipe));
 465				I915_WRITE(reg, pipe_stats[pipe]);
 466			}
 467		}
 468		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 469
 470		/* Consume port.  Then clear IIR or we'll miss events */
 471		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
 472			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
 473
 474			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
 475					 hotplug_status);
 476			if (hotplug_status & dev_priv->hotplug_supported_mask)
 477				queue_work(dev_priv->wq,
 478					   &dev_priv->hotplug_work);
 479
 480			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
 481			I915_READ(PORT_HOTPLUG_STAT);
 482		}
 483
 
 
 484
 485		if (iir & I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT) {
 486			drm_handle_vblank(dev, 0);
 487			vblank++;
 488			intel_finish_page_flip(dev, 0);
 489		}
 490
 491		if (iir & I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT) {
 492			drm_handle_vblank(dev, 1);
 493			vblank++;
 494			intel_finish_page_flip(dev, 0);
 495		}
 496
 497		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
 498			blc_event = true;
 
 
 499
 500		if (pm_iir & GEN6_PM_DEFERRED_EVENTS)
 501			gen6_queue_rps_work(dev_priv, pm_iir);
 502
 503		I915_WRITE(GTIIR, gt_iir);
 504		I915_WRITE(GEN6_PMIIR, pm_iir);
 505		I915_WRITE(VLV_IIR, iir);
 506	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508out:
 509	return ret;
 510}
 511
 512static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513{
 514	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 515	int pipe;
 
 516
 517	if (pch_iir & SDE_AUDIO_POWER_MASK)
 
 
 
 
 518		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 519				 (pch_iir & SDE_AUDIO_POWER_MASK) >>
 520				 SDE_AUDIO_POWER_SHIFT);
 
 
 
 521
 522	if (pch_iir & SDE_GMBUS)
 523		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 524
 525	if (pch_iir & SDE_AUDIO_HDCP_MASK)
 526		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
 527
 528	if (pch_iir & SDE_AUDIO_TRANS_MASK)
 529		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
 530
 531	if (pch_iir & SDE_POISON)
 532		DRM_ERROR("PCH poison interrupt\n");
 533
 534	if (pch_iir & SDE_FDI_MASK)
 535		for_each_pipe(pipe)
 536			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 537					 pipe_name(pipe),
 538					 I915_READ(FDI_RX_IIR(pipe)));
 539
 540	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
 541		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
 542
 543	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
 544		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 545
 546	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
 547		DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
 548	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
 549		DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
 
 
 
 550}
 551
 552static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553{
 554	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 555	int pipe;
 
 556
 557	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT)
 558		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 559				 (pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
 560				 SDE_AUDIO_POWER_SHIFT_CPT);
 
 
 
 
 561
 562	if (pch_iir & SDE_AUX_MASK_CPT)
 563		DRM_DEBUG_DRIVER("AUX channel interrupt\n");
 564
 565	if (pch_iir & SDE_GMBUS_CPT)
 566		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 567
 568	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
 569		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
 570
 571	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
 572		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
 573
 574	if (pch_iir & SDE_FDI_MASK_CPT)
 575		for_each_pipe(pipe)
 576			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 577					 pipe_name(pipe),
 578					 I915_READ(FDI_RX_IIR(pipe)));
 
 
 
 579}
 580
 581static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
 
 582{
 583	struct drm_device *dev = (struct drm_device *) arg;
 584	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 585	u32 de_iir, gt_iir, de_ier, pm_iir;
 586	irqreturn_t ret = IRQ_NONE;
 587	int i;
 
 
 
 
 
 
 588
 589	atomic_inc(&dev_priv->irq_received);
 
 590
 591	/* disable master interrupt before clearing iir  */
 592	de_ier = I915_READ(DEIER);
 593	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 594
 595	gt_iir = I915_READ(GTIIR);
 596	if (gt_iir) {
 597		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 598		I915_WRITE(GTIIR, gt_iir);
 599		ret = IRQ_HANDLED;
 600	}
 601
 602	de_iir = I915_READ(DEIIR);
 603	if (de_iir) {
 604		if (de_iir & DE_GSE_IVB)
 605			intel_opregion_gse_intr(dev);
 606
 607		for (i = 0; i < 3; i++) {
 608			if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
 609				intel_prepare_page_flip(dev, i);
 610				intel_finish_page_flip_plane(dev, i);
 611			}
 612			if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
 613				drm_handle_vblank(dev, i);
 614		}
 615
 616		/* check event from PCH */
 617		if (de_iir & DE_PCH_EVENT_IVB) {
 618			u32 pch_iir = I915_READ(SDEIIR);
 619
 620			if (pch_iir & SDE_HOTPLUG_MASK_CPT)
 621				queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 622			cpt_irq_handler(dev, pch_iir);
 623
 624			/* clear PCH hotplug event before clear CPU irq */
 625			I915_WRITE(SDEIIR, pch_iir);
 626		}
 627
 628		I915_WRITE(DEIIR, de_iir);
 629		ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630	}
 631
 632	pm_iir = I915_READ(GEN6_PMIIR);
 633	if (pm_iir) {
 634		if (pm_iir & GEN6_PM_DEFERRED_EVENTS)
 635			gen6_queue_rps_work(dev_priv, pm_iir);
 636		I915_WRITE(GEN6_PMIIR, pm_iir);
 637		ret = IRQ_HANDLED;
 
 
 
 
 638	}
 639
 640	I915_WRITE(DEIER, de_ier);
 641	POSTING_READ(DEIER);
 642
 643	return ret;
 
 644}
 645
 646static void ilk_gt_irq_handler(struct drm_device *dev,
 647			       struct drm_i915_private *dev_priv,
 648			       u32 gt_iir)
 649{
 650	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 651		notify_ring(dev, &dev_priv->ring[RCS]);
 652	if (gt_iir & GT_BSD_USER_INTERRUPT)
 653		notify_ring(dev, &dev_priv->ring[VCS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
 
 
 657{
 658	struct drm_device *dev = (struct drm_device *) arg;
 659	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 660	int ret = IRQ_NONE;
 661	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 662	u32 hotplug_mask;
 663
 664	atomic_inc(&dev_priv->irq_received);
 
 665
 666	/* disable master interrupt before clearing iir  */
 667	de_ier = I915_READ(DEIER);
 668	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 669	POSTING_READ(DEIER);
 670
 671	de_iir = I915_READ(DEIIR);
 672	gt_iir = I915_READ(GTIIR);
 673	pch_iir = I915_READ(SDEIIR);
 674	pm_iir = I915_READ(GEN6_PMIIR);
 675
 676	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
 677	    (!IS_GEN6(dev) || pm_iir == 0))
 678		goto done;
 679
 680	if (HAS_PCH_CPT(dev))
 681		hotplug_mask = SDE_HOTPLUG_MASK_CPT;
 682	else
 683		hotplug_mask = SDE_HOTPLUG_MASK;
 
 684
 685	ret = IRQ_HANDLED;
 
 686
 687	if (IS_GEN5(dev))
 688		ilk_gt_irq_handler(dev, dev_priv, gt_iir);
 689	else
 690		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 691
 692	if (de_iir & DE_GSE)
 693		intel_opregion_gse_intr(dev);
 694
 695	if (de_iir & DE_PLANEA_FLIP_DONE) {
 696		intel_prepare_page_flip(dev, 0);
 697		intel_finish_page_flip_plane(dev, 0);
 698	}
 699
 700	if (de_iir & DE_PLANEB_FLIP_DONE) {
 701		intel_prepare_page_flip(dev, 1);
 702		intel_finish_page_flip_plane(dev, 1);
 703	}
 704
 705	if (de_iir & DE_PIPEA_VBLANK)
 706		drm_handle_vblank(dev, 0);
 707
 708	if (de_iir & DE_PIPEB_VBLANK)
 709		drm_handle_vblank(dev, 1);
 
 710
 711	/* check event from PCH */
 712	if (de_iir & DE_PCH_EVENT) {
 713		if (pch_iir & hotplug_mask)
 714			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 715		if (HAS_PCH_CPT(dev))
 716			cpt_irq_handler(dev, pch_iir);
 717		else
 718			ibx_irq_handler(dev, pch_iir);
 719	}
 720
 721	if (de_iir & DE_PCU_EVENT) {
 722		I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 723		i915_handle_rps_change(dev);
 724	}
 725
 726	if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS)
 727		gen6_queue_rps_work(dev_priv, pm_iir);
 
 728
 729	/* should clear PCH hotplug event before clear CPU irq */
 730	I915_WRITE(SDEIIR, pch_iir);
 731	I915_WRITE(GTIIR, gt_iir);
 732	I915_WRITE(DEIIR, de_iir);
 733	I915_WRITE(GEN6_PMIIR, pm_iir);
 734
 735done:
 736	I915_WRITE(DEIER, de_ier);
 737	POSTING_READ(DEIER);
 738
 739	return ret;
 740}
 741
 742/**
 743 * i915_error_work_func - do process context error handling work
 744 * @work: work struct
 745 *
 746 * Fire an error uevent so userspace can see that a hang or error
 747 * was detected.
 748 */
 749static void i915_error_work_func(struct work_struct *work)
 750{
 751	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 752						    error_work);
 753	struct drm_device *dev = dev_priv->dev;
 754	char *error_event[] = { "ERROR=1", NULL };
 755	char *reset_event[] = { "RESET=1", NULL };
 756	char *reset_done_event[] = { "ERROR=0", NULL };
 757
 758	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
 759
 760	if (atomic_read(&dev_priv->mm.wedged)) {
 761		DRM_DEBUG_DRIVER("resetting chip\n");
 762		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
 763		if (!i915_reset(dev)) {
 764			atomic_set(&dev_priv->mm.wedged, 0);
 765			kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
 766		}
 767		complete_all(&dev_priv->error_completion);
 768	}
 769}
 770
 771#ifdef CONFIG_DEBUG_FS
 772static struct drm_i915_error_object *
 773i915_error_object_create(struct drm_i915_private *dev_priv,
 774			 struct drm_i915_gem_object *src)
 775{
 776	struct drm_i915_error_object *dst;
 777	int page, page_count;
 778	u32 reloc_offset;
 779
 780	if (src == NULL || src->pages == NULL)
 781		return NULL;
 
 
 
 
 
 782
 783	page_count = src->base.size / PAGE_SIZE;
 
 
 784
 785	dst = kmalloc(sizeof(*dst) + page_count * sizeof(u32 *), GFP_ATOMIC);
 786	if (dst == NULL)
 787		return NULL;
 788
 789	reloc_offset = src->gtt_offset;
 790	for (page = 0; page < page_count; page++) {
 791		unsigned long flags;
 792		void *d;
 793
 794		d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
 795		if (d == NULL)
 796			goto unwind;
 
 
 
 
 
 
 
 
 
 
 797
 798		local_irq_save(flags);
 799		if (reloc_offset < dev_priv->mm.gtt_mappable_end &&
 800		    src->has_global_gtt_mapping) {
 801			void __iomem *s;
 802
 803			/* Simply ignore tiling or any overlapping fence.
 804			 * It's part of the error state, and this hopefully
 805			 * captures what the GPU read.
 806			 */
 807
 808			s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
 809						     reloc_offset);
 810			memcpy_fromio(d, s, PAGE_SIZE);
 811			io_mapping_unmap_atomic(s);
 812		} else {
 813			void *s;
 814
 815			drm_clflush_pages(&src->pages[page], 1);
 
 
 
 
 
 
 
 
 816
 817			s = kmap_atomic(src->pages[page]);
 818			memcpy(d, s, PAGE_SIZE);
 819			kunmap_atomic(s);
 820
 821			drm_clflush_pages(&src->pages[page], 1);
 822		}
 823		local_irq_restore(flags);
 
 
 
 
 
 
 824
 825		dst->pages[page] = d;
 
 
 
 
 
 
 
 
 826
 827		reloc_offset += PAGE_SIZE;
 
 
 
 
 
 
 828	}
 829	dst->page_count = page_count;
 830	dst->gtt_offset = src->gtt_offset;
 831
 832	return dst;
 
 
 
 
 
 833
 834unwind:
 835	while (page--)
 836		kfree(dst->pages[page]);
 837	kfree(dst);
 838	return NULL;
 839}
 840
 841static void
 842i915_error_object_free(struct drm_i915_error_object *obj)
 
 843{
 844	int page;
 845
 846	if (obj == NULL)
 847		return;
 848
 849	for (page = 0; page < obj->page_count; page++)
 850		kfree(obj->pages[page]);
 
 851
 852	kfree(obj);
 853}
 854
 855void
 856i915_error_state_free(struct kref *error_ref)
 857{
 858	struct drm_i915_error_state *error = container_of(error_ref,
 859							  typeof(*error), ref);
 860	int i;
 
 
 861
 862	for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
 863		i915_error_object_free(error->ring[i].batchbuffer);
 864		i915_error_object_free(error->ring[i].ringbuffer);
 865		kfree(error->ring[i].requests);
 866	}
 867
 868	kfree(error->active_bo);
 869	kfree(error->overlay);
 870	kfree(error);
 871}
 872static void capture_bo(struct drm_i915_error_buffer *err,
 873		       struct drm_i915_gem_object *obj)
 874{
 875	err->size = obj->base.size;
 876	err->name = obj->base.name;
 877	err->seqno = obj->last_rendering_seqno;
 878	err->gtt_offset = obj->gtt_offset;
 879	err->read_domains = obj->base.read_domains;
 880	err->write_domain = obj->base.write_domain;
 881	err->fence_reg = obj->fence_reg;
 882	err->pinned = 0;
 883	if (obj->pin_count > 0)
 884		err->pinned = 1;
 885	if (obj->user_pin_count > 0)
 886		err->pinned = -1;
 887	err->tiling = obj->tiling_mode;
 888	err->dirty = obj->dirty;
 889	err->purgeable = obj->madv != I915_MADV_WILLNEED;
 890	err->ring = obj->ring ? obj->ring->id : -1;
 891	err->cache_level = obj->cache_level;
 892}
 893
 894static u32 capture_active_bo(struct drm_i915_error_buffer *err,
 895			     int count, struct list_head *head)
 896{
 897	struct drm_i915_gem_object *obj;
 898	int i = 0;
 899
 900	list_for_each_entry(obj, head, mm_list) {
 901		capture_bo(err++, obj);
 902		if (++i == count)
 903			break;
 904	}
 905
 906	return i;
 907}
 908
 909static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
 910			     int count, struct list_head *head)
 911{
 912	struct drm_i915_gem_object *obj;
 913	int i = 0;
 914
 915	list_for_each_entry(obj, head, gtt_list) {
 916		if (obj->pin_count == 0)
 917			continue;
 918
 919		capture_bo(err++, obj);
 920		if (++i == count)
 921			break;
 
 
 
 
 
 922	}
 923
 924	return i;
 
 
 
 925}
 926
 927static void i915_gem_record_fences(struct drm_device *dev,
 928				   struct drm_i915_error_state *error)
 929{
 930	struct drm_i915_private *dev_priv = dev->dev_private;
 931	int i;
 932
 933	/* Fences */
 934	switch (INTEL_INFO(dev)->gen) {
 935	case 7:
 936	case 6:
 937		for (i = 0; i < 16; i++)
 938			error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
 939		break;
 940	case 5:
 941	case 4:
 942		for (i = 0; i < 16; i++)
 943			error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
 944		break;
 945	case 3:
 946		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 947			for (i = 0; i < 8; i++)
 948				error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
 949	case 2:
 950		for (i = 0; i < 8; i++)
 951			error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
 952		break;
 953
 954	}
 955}
 
 
 
 956
 957static struct drm_i915_error_object *
 958i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
 959			     struct intel_ring_buffer *ring)
 960{
 961	struct drm_i915_gem_object *obj;
 962	u32 seqno;
 963
 964	if (!ring->get_seqno)
 965		return NULL;
 966
 967	seqno = ring->get_seqno(ring);
 968	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
 969		if (obj->ring != ring)
 970			continue;
 971
 972		if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
 973			continue;
 974
 975		if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
 976			continue;
 977
 978		/* We need to copy these to an anonymous buffer as the simplest
 979		 * method to avoid being overwritten by userspace.
 980		 */
 981		return i915_error_object_create(dev_priv, obj);
 982	}
 983
 984	return NULL;
 
 
 
 
 
 985}
 986
 987static void i915_record_ring_state(struct drm_device *dev,
 988				   struct drm_i915_error_state *error,
 989				   struct intel_ring_buffer *ring)
 990{
 991	struct drm_i915_private *dev_priv = dev->dev_private;
 992
 993	if (INTEL_INFO(dev)->gen >= 6) {
 994		error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
 995		error->semaphore_mboxes[ring->id][0]
 996			= I915_READ(RING_SYNC_0(ring->mmio_base));
 997		error->semaphore_mboxes[ring->id][1]
 998			= I915_READ(RING_SYNC_1(ring->mmio_base));
 999	}
1000
1001	if (INTEL_INFO(dev)->gen >= 4) {
1002		error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
1003		error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
1004		error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
1005		error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
1006		error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
1007		if (ring->id == RCS) {
1008			error->instdone1 = I915_READ(INSTDONE1);
1009			error->bbaddr = I915_READ64(BB_ADDR);
1010		}
1011	} else {
1012		error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
1013		error->ipeir[ring->id] = I915_READ(IPEIR);
1014		error->ipehr[ring->id] = I915_READ(IPEHR);
1015		error->instdone[ring->id] = I915_READ(INSTDONE);
1016	}
1017
1018	error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
1019	error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
1020	error->seqno[ring->id] = ring->get_seqno(ring);
1021	error->acthd[ring->id] = intel_ring_get_active_head(ring);
1022	error->head[ring->id] = I915_READ_HEAD(ring);
1023	error->tail[ring->id] = I915_READ_TAIL(ring);
1024
1025	error->cpu_ring_head[ring->id] = ring->head;
1026	error->cpu_ring_tail[ring->id] = ring->tail;
1027}
1028
1029static void i915_gem_record_rings(struct drm_device *dev,
1030				  struct drm_i915_error_state *error)
1031{
1032	struct drm_i915_private *dev_priv = dev->dev_private;
1033	struct intel_ring_buffer *ring;
1034	struct drm_i915_gem_request *request;
1035	int i, count;
1036
1037	for_each_ring(ring, dev_priv, i) {
1038		i915_record_ring_state(dev, error, ring);
1039
1040		error->ring[i].batchbuffer =
1041			i915_error_first_batchbuffer(dev_priv, ring);
1042
1043		error->ring[i].ringbuffer =
1044			i915_error_object_create(dev_priv, ring->obj);
1045
1046		count = 0;
1047		list_for_each_entry(request, &ring->request_list, list)
1048			count++;
1049
1050		error->ring[i].num_requests = count;
1051		error->ring[i].requests =
1052			kmalloc(count*sizeof(struct drm_i915_error_request),
1053				GFP_ATOMIC);
1054		if (error->ring[i].requests == NULL) {
1055			error->ring[i].num_requests = 0;
1056			continue;
1057		}
1058
1059		count = 0;
1060		list_for_each_entry(request, &ring->request_list, list) {
1061			struct drm_i915_error_request *erq;
1062
1063			erq = &error->ring[i].requests[count++];
1064			erq->seqno = request->seqno;
1065			erq->jiffies = request->emitted_jiffies;
1066			erq->tail = request->tail;
1067		}
1068	}
 
 
 
1069}
1070
1071/**
1072 * i915_capture_error_state - capture an error record for later analysis
1073 * @dev: drm device
1074 *
1075 * Should be called when an error is detected (either a hang or an error
1076 * interrupt) to capture error state from the time of the error.  Fills
1077 * out a structure which becomes available in debugfs for user level tools
1078 * to pick up.
1079 */
1080static void i915_capture_error_state(struct drm_device *dev)
1081{
1082	struct drm_i915_private *dev_priv = dev->dev_private;
1083	struct drm_i915_gem_object *obj;
1084	struct drm_i915_error_state *error;
1085	unsigned long flags;
1086	int i, pipe;
1087
1088	spin_lock_irqsave(&dev_priv->error_lock, flags);
1089	error = dev_priv->first_error;
1090	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1091	if (error)
1092		return;
1093
1094	/* Account for pipe specific data like PIPE*STAT */
1095	error = kzalloc(sizeof(*error), GFP_ATOMIC);
1096	if (!error) {
1097		DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
1098		return;
 
 
 
 
1099	}
1100
1101	DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
1102		 dev->primary->index);
 
 
 
 
 
 
 
 
1103
1104	kref_init(&error->ref);
1105	error->eir = I915_READ(EIR);
1106	error->pgtbl_er = I915_READ(PGTBL_ER);
 
 
 
 
 
 
 
 
 
 
1107
1108	if (HAS_PCH_SPLIT(dev))
1109		error->ier = I915_READ(DEIER) | I915_READ(GTIER);
1110	else if (IS_VALLEYVIEW(dev))
1111		error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1112	else if (IS_GEN2(dev))
1113		error->ier = I915_READ16(IER);
1114	else
1115		error->ier = I915_READ(IER);
 
 
 
 
 
 
 
1116
1117	for_each_pipe(pipe)
1118		error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
 
 
1119
1120	if (INTEL_INFO(dev)->gen >= 6) {
1121		error->error = I915_READ(ERROR_GEN6);
1122		error->done_reg = I915_READ(DONE_REG);
 
 
1123	}
1124
1125	i915_gem_record_fences(dev, error);
1126	i915_gem_record_rings(dev, error);
1127
1128	/* Record buffers on the active and pinned lists. */
1129	error->active_bo = NULL;
1130	error->pinned_bo = NULL;
1131
1132	i = 0;
1133	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
1134		i++;
1135	error->active_bo_count = i;
1136	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
1137		if (obj->pin_count)
1138			i++;
1139	error->pinned_bo_count = i - error->active_bo_count;
1140
1141	error->active_bo = NULL;
1142	error->pinned_bo = NULL;
1143	if (i) {
1144		error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
1145					   GFP_ATOMIC);
1146		if (error->active_bo)
1147			error->pinned_bo =
1148				error->active_bo + error->active_bo_count;
1149	}
1150
1151	if (error->active_bo)
1152		error->active_bo_count =
1153			capture_active_bo(error->active_bo,
1154					  error->active_bo_count,
1155					  &dev_priv->mm.active_list);
1156
1157	if (error->pinned_bo)
1158		error->pinned_bo_count =
1159			capture_pinned_bo(error->pinned_bo,
1160					  error->pinned_bo_count,
1161					  &dev_priv->mm.gtt_list);
1162
1163	do_gettimeofday(&error->time);
 
1164
1165	error->overlay = intel_overlay_capture_error_state(dev);
1166	error->display = intel_display_capture_error_state(dev);
 
 
 
 
1167
1168	spin_lock_irqsave(&dev_priv->error_lock, flags);
1169	if (dev_priv->first_error == NULL) {
1170		dev_priv->first_error = error;
1171		error = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172	}
1173	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1174
1175	if (error)
1176		i915_error_state_free(&error->ref);
1177}
1178
1179void i915_destroy_error_state(struct drm_device *dev)
1180{
1181	struct drm_i915_private *dev_priv = dev->dev_private;
1182	struct drm_i915_error_state *error;
1183	unsigned long flags;
1184
1185	spin_lock_irqsave(&dev_priv->error_lock, flags);
1186	error = dev_priv->first_error;
1187	dev_priv->first_error = NULL;
1188	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1189
1190	if (error)
1191		kref_put(&error->ref, i915_error_state_free);
 
 
 
 
 
1192}
1193#else
1194#define i915_capture_error_state(x)
1195#endif
1196
1197static void i915_report_and_clear_eir(struct drm_device *dev)
1198{
1199	struct drm_i915_private *dev_priv = dev->dev_private;
1200	u32 eir = I915_READ(EIR);
1201	int pipe;
1202
1203	if (!eir)
1204		return;
 
 
 
 
1205
1206	pr_err("render error detected, EIR: 0x%08x\n", eir);
 
1207
1208	if (IS_G4X(dev)) {
1209		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1210			u32 ipeir = I915_READ(IPEIR_I965);
1211
1212			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1213			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1214			pr_err("  INSTDONE: 0x%08x\n",
1215			       I915_READ(INSTDONE_I965));
1216			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1217			pr_err("  INSTDONE1: 0x%08x\n", I915_READ(INSTDONE1));
1218			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1219			I915_WRITE(IPEIR_I965, ipeir);
1220			POSTING_READ(IPEIR_I965);
1221		}
1222		if (eir & GM45_ERROR_PAGE_TABLE) {
1223			u32 pgtbl_err = I915_READ(PGTBL_ER);
1224			pr_err("page table error\n");
1225			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1226			I915_WRITE(PGTBL_ER, pgtbl_err);
1227			POSTING_READ(PGTBL_ER);
1228		}
1229	}
1230
1231	if (!IS_GEN2(dev)) {
1232		if (eir & I915_ERROR_PAGE_TABLE) {
1233			u32 pgtbl_err = I915_READ(PGTBL_ER);
1234			pr_err("page table error\n");
1235			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1236			I915_WRITE(PGTBL_ER, pgtbl_err);
1237			POSTING_READ(PGTBL_ER);
1238		}
1239	}
1240
1241	if (eir & I915_ERROR_MEMORY_REFRESH) {
1242		pr_err("memory refresh error:\n");
1243		for_each_pipe(pipe)
1244			pr_err("pipe %c stat: 0x%08x\n",
1245			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1246		/* pipestat has already been acked */
1247	}
1248	if (eir & I915_ERROR_INSTRUCTION) {
1249		pr_err("instruction error\n");
1250		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
1251		if (INTEL_INFO(dev)->gen < 4) {
1252			u32 ipeir = I915_READ(IPEIR);
1253
1254			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
1255			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
1256			pr_err("  INSTDONE: 0x%08x\n", I915_READ(INSTDONE));
1257			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
1258			I915_WRITE(IPEIR, ipeir);
1259			POSTING_READ(IPEIR);
1260		} else {
1261			u32 ipeir = I915_READ(IPEIR_I965);
1262
1263			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1264			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1265			pr_err("  INSTDONE: 0x%08x\n",
1266			       I915_READ(INSTDONE_I965));
1267			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1268			pr_err("  INSTDONE1: 0x%08x\n", I915_READ(INSTDONE1));
1269			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1270			I915_WRITE(IPEIR_I965, ipeir);
1271			POSTING_READ(IPEIR_I965);
1272		}
1273	}
1274
1275	I915_WRITE(EIR, eir);
1276	POSTING_READ(EIR);
1277	eir = I915_READ(EIR);
1278	if (eir) {
1279		/*
1280		 * some errors might have become stuck,
1281		 * mask them.
1282		 */
1283		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1284		I915_WRITE(EMR, I915_READ(EMR) | eir);
1285		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1286	}
1287}
1288
1289/**
1290 * i915_handle_error - handle an error interrupt
1291 * @dev: drm device
1292 *
1293 * Do some basic checking of regsiter state at error interrupt time and
1294 * dump it to the syslog.  Also call i915_capture_error_state() to make
1295 * sure we get a record and make it available in debugfs.  Fire a uevent
1296 * so userspace knows something bad happened (should trigger collection
1297 * of a ring dump etc.).
1298 */
1299void i915_handle_error(struct drm_device *dev, bool wedged)
1300{
1301	struct drm_i915_private *dev_priv = dev->dev_private;
1302	struct intel_ring_buffer *ring;
1303	int i;
1304
1305	i915_capture_error_state(dev);
1306	i915_report_and_clear_eir(dev);
1307
1308	if (wedged) {
1309		INIT_COMPLETION(dev_priv->error_completion);
1310		atomic_set(&dev_priv->mm.wedged, 1);
1311
1312		/*
1313		 * Wakeup waiting processes so they don't hang
1314		 */
1315		for_each_ring(ring, dev_priv, i)
1316			wake_up_all(&ring->irq_queue);
1317	}
1318
1319	queue_work(dev_priv->wq, &dev_priv->error_work);
 
 
 
 
1320}
1321
1322static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1323{
1324	drm_i915_private_t *dev_priv = dev->dev_private;
1325	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1326	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1327	struct drm_i915_gem_object *obj;
1328	struct intel_unpin_work *work;
1329	unsigned long flags;
1330	bool stall_detected;
1331
1332	/* Ignore early vblank irqs */
1333	if (intel_crtc == NULL)
1334		return;
 
 
 
 
 
1335
1336	spin_lock_irqsave(&dev->event_lock, flags);
1337	work = intel_crtc->unpin_work;
 
 
1338
1339	if (work == NULL || work->pending || !work->enable_stall_check) {
1340		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
1341		spin_unlock_irqrestore(&dev->event_lock, flags);
1342		return;
1343	}
 
 
1344
1345	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1346	obj = work->pending_flip_obj;
1347	if (INTEL_INFO(dev)->gen >= 4) {
1348		int dspsurf = DSPSURF(intel_crtc->plane);
1349		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1350					obj->gtt_offset;
1351	} else {
1352		int dspaddr = DSPADDR(intel_crtc->plane);
1353		stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1354							crtc->y * crtc->fb->pitches[0] +
1355							crtc->x * crtc->fb->bits_per_pixel/8);
1356	}
1357
1358	spin_unlock_irqrestore(&dev->event_lock, flags);
 
1359
1360	if (stall_detected) {
1361		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1362		intel_prepare_page_flip(dev, intel_crtc->plane);
 
 
 
 
 
 
 
 
1363	}
 
 
 
 
 
 
 
 
1364}
1365
1366/* Called from drm generic code, passed 'crtc' which
1367 * we use as a pipe index
1368 */
1369static int i915_enable_vblank(struct drm_device *dev, int pipe)
1370{
1371	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1372	unsigned long irqflags;
1373
1374	if (!i915_pipe_enabled(dev, pipe))
1375		return -EINVAL;
1376
1377	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1378	if (INTEL_INFO(dev)->gen >= 4)
1379		i915_enable_pipestat(dev_priv, pipe,
1380				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1381	else
1382		i915_enable_pipestat(dev_priv, pipe,
1383				     PIPE_VBLANK_INTERRUPT_ENABLE);
1384
1385	/* maintain vblank delivery even in deep C-states */
1386	if (dev_priv->info->gen == 3)
1387		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1388	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1389
1390	return 0;
1391}
1392
1393static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1394{
1395	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1396	unsigned long irqflags;
1397
1398	if (!i915_pipe_enabled(dev, pipe))
1399		return -EINVAL;
 
 
 
 
 
 
 
 
 
1400
1401	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1402	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1403				    DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1404	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1405
1406	return 0;
1407}
1408
1409static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1410{
1411	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1412	unsigned long irqflags;
1413
1414	if (!i915_pipe_enabled(dev, pipe))
1415		return -EINVAL;
1416
1417	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1418	ironlake_enable_display_irq(dev_priv,
1419				    DE_PIPEA_VBLANK_IVB << (5 * pipe));
1420	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1421
 
 
 
 
 
 
1422	return 0;
1423}
1424
1425static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1426{
1427	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1428	unsigned long irqflags;
1429	u32 dpfl, imr;
1430
1431	if (!i915_pipe_enabled(dev, pipe))
1432		return -EINVAL;
1433
1434	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1435	dpfl = I915_READ(VLV_DPFLIPSTAT);
1436	imr = I915_READ(VLV_IMR);
1437	if (pipe == 0) {
1438		dpfl |= PIPEA_VBLANK_INT_EN;
1439		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1440	} else {
1441		dpfl |= PIPEA_VBLANK_INT_EN;
1442		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1443	}
1444	I915_WRITE(VLV_DPFLIPSTAT, dpfl);
1445	I915_WRITE(VLV_IMR, imr);
1446	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1447
 
 
 
 
 
 
1448	return 0;
1449}
1450
1451/* Called from drm generic code, passed 'crtc' which
1452 * we use as a pipe index
1453 */
1454static void i915_disable_vblank(struct drm_device *dev, int pipe)
1455{
1456	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1457	unsigned long irqflags;
1458
1459	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1460	if (dev_priv->info->gen == 3)
1461		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1462
1463	i915_disable_pipestat(dev_priv, pipe,
1464			      PIPE_VBLANK_INTERRUPT_ENABLE |
1465			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1466	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1467}
1468
1469static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
 
 
 
 
 
 
 
 
 
 
1470{
1471	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1472	unsigned long irqflags;
1473
1474	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1475	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1476				     DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1477	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1478}
1479
1480static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1481{
1482	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1483	unsigned long irqflags;
 
 
1484
1485	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1486	ironlake_disable_display_irq(dev_priv,
1487				     DE_PIPEA_VBLANK_IVB << (pipe * 5));
1488	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1489}
1490
1491static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1492{
1493	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1494	unsigned long irqflags;
1495	u32 dpfl, imr;
1496
1497	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1498	dpfl = I915_READ(VLV_DPFLIPSTAT);
1499	imr = I915_READ(VLV_IMR);
1500	if (pipe == 0) {
1501		dpfl &= ~PIPEA_VBLANK_INT_EN;
1502		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1503	} else {
1504		dpfl &= ~PIPEB_VBLANK_INT_EN;
1505		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1506	}
1507	I915_WRITE(VLV_IMR, imr);
1508	I915_WRITE(VLV_DPFLIPSTAT, dpfl);
1509	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1510}
1511
1512static u32
1513ring_last_seqno(struct intel_ring_buffer *ring)
1514{
1515	return list_entry(ring->request_list.prev,
1516			  struct drm_i915_gem_request, list)->seqno;
 
 
 
 
 
 
 
 
 
 
1517}
1518
1519static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
1520{
1521	if (list_empty(&ring->request_list) ||
1522	    i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1523		/* Issue a wake-up to catch stuck h/w. */
1524		if (waitqueue_active(&ring->irq_queue)) {
1525			DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1526				  ring->name);
1527			wake_up_all(&ring->irq_queue);
1528			*err = true;
1529		}
1530		return true;
 
 
 
1531	}
1532	return false;
 
1533}
1534
1535static bool kick_ring(struct intel_ring_buffer *ring)
1536{
1537	struct drm_device *dev = ring->dev;
1538	struct drm_i915_private *dev_priv = dev->dev_private;
1539	u32 tmp = I915_READ_CTL(ring);
1540	if (tmp & RING_WAIT) {
1541		DRM_ERROR("Kicking stuck wait on %s\n",
1542			  ring->name);
1543		I915_WRITE_CTL(ring, tmp);
1544		return true;
1545	}
1546	return false;
1547}
1548
1549static bool i915_hangcheck_hung(struct drm_device *dev)
1550{
1551	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
1552
1553	if (dev_priv->hangcheck_count++ > 1) {
1554		bool hung = true;
 
1555
1556		DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1557		i915_handle_error(dev, true);
1558
1559		if (!IS_GEN2(dev)) {
1560			struct intel_ring_buffer *ring;
1561			int i;
1562
1563			/* Is the chip hanging on a WAIT_FOR_EVENT?
1564			 * If so we can simply poke the RB_WAIT bit
1565			 * and break the hang. This should work on
1566			 * all but the second generation chipsets.
1567			 */
1568			for_each_ring(ring, dev_priv, i)
1569				hung &= !kick_ring(ring);
1570		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571
1572		return hung;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573	}
1574
1575	return false;
 
 
1576}
1577
1578/**
1579 * This is called when the chip hasn't reported back with completed
1580 * batchbuffers in a long time. The first time this is called we simply record
1581 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1582 * again, we assume the chip is wedged and try to fix it.
1583 */
1584void i915_hangcheck_elapsed(unsigned long data)
1585{
1586	struct drm_device *dev = (struct drm_device *)data;
1587	drm_i915_private_t *dev_priv = dev->dev_private;
1588	uint32_t acthd[I915_NUM_RINGS], instdone, instdone1;
1589	struct intel_ring_buffer *ring;
1590	bool err = false, idle;
1591	int i;
1592
1593	if (!i915_enable_hangcheck)
1594		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595
1596	memset(acthd, 0, sizeof(acthd));
1597	idle = true;
1598	for_each_ring(ring, dev_priv, i) {
1599	    idle &= i915_hangcheck_ring_idle(ring, &err);
1600	    acthd[i] = intel_ring_get_active_head(ring);
 
 
 
 
 
 
 
 
1601	}
1602
1603	/* If all work is done then ACTHD clearly hasn't advanced. */
1604	if (idle) {
1605		if (err) {
1606			if (i915_hangcheck_hung(dev))
1607				return;
1608
1609			goto repeat;
1610		}
 
 
 
 
 
 
1611
1612		dev_priv->hangcheck_count = 0;
 
 
 
1613		return;
1614	}
1615
1616	if (INTEL_INFO(dev)->gen < 4) {
1617		instdone = I915_READ(INSTDONE);
1618		instdone1 = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619	} else {
1620		instdone = I915_READ(INSTDONE_I965);
1621		instdone1 = I915_READ(INSTDONE1);
1622	}
1623
1624	if (memcmp(dev_priv->last_acthd, acthd, sizeof(acthd)) == 0 &&
1625	    dev_priv->last_instdone == instdone &&
1626	    dev_priv->last_instdone1 == instdone1) {
1627		if (i915_hangcheck_hung(dev))
1628			return;
1629	} else {
1630		dev_priv->hangcheck_count = 0;
1631
1632		memcpy(dev_priv->last_acthd, acthd, sizeof(acthd));
1633		dev_priv->last_instdone = instdone;
1634		dev_priv->last_instdone1 = instdone1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635	}
 
1636
1637repeat:
1638	/* Reset timer case chip hangs without another request being added */
1639	mod_timer(&dev_priv->hangcheck_timer,
1640		  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
 
 
 
 
 
1641}
1642
1643/* drm_dma.h hooks
1644*/
1645static void ironlake_irq_preinstall(struct drm_device *dev)
1646{
1647	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1648
1649	atomic_set(&dev_priv->irq_received, 0);
 
1650
 
1651
1652	I915_WRITE(HWSTAM, 0xeffe);
 
1653
1654	/* XXX hotplug from PCH */
 
 
1655
1656	I915_WRITE(DEIMR, 0xffffffff);
1657	I915_WRITE(DEIER, 0x0);
1658	POSTING_READ(DEIER);
1659
1660	/* and GT */
1661	I915_WRITE(GTIMR, 0xffffffff);
1662	I915_WRITE(GTIER, 0x0);
1663	POSTING_READ(GTIER);
1664
1665	/* south display irq */
1666	I915_WRITE(SDEIMR, 0xffffffff);
1667	I915_WRITE(SDEIER, 0x0);
1668	POSTING_READ(SDEIER);
1669}
1670
1671static void valleyview_irq_preinstall(struct drm_device *dev)
1672{
1673	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1674	int pipe;
1675
1676	atomic_set(&dev_priv->irq_received, 0);
 
 
 
 
 
1677
1678	/* VLV magic */
1679	I915_WRITE(VLV_IMR, 0);
1680	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
1681	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
1682	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
1683
1684	/* and GT */
1685	I915_WRITE(GTIIR, I915_READ(GTIIR));
1686	I915_WRITE(GTIIR, I915_READ(GTIIR));
1687	I915_WRITE(GTIMR, 0xffffffff);
1688	I915_WRITE(GTIER, 0x0);
1689	POSTING_READ(GTIER);
1690
1691	I915_WRITE(DPINVGTT, 0xff);
 
 
 
 
1692
1693	I915_WRITE(PORT_HOTPLUG_EN, 0);
1694	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1695	for_each_pipe(pipe)
1696		I915_WRITE(PIPESTAT(pipe), 0xffff);
1697	I915_WRITE(VLV_IIR, 0xffffffff);
1698	I915_WRITE(VLV_IMR, 0xffffffff);
1699	I915_WRITE(VLV_IER, 0x0);
1700	POSTING_READ(VLV_IER);
 
 
 
 
 
 
 
1701}
1702
1703/*
1704 * Enable digital hotplug on the PCH, and configure the DP short pulse
1705 * duration to 2ms (which is the minimum in the Display Port spec)
1706 *
1707 * This register is the same on all known PCH chips.
1708 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710static void ironlake_enable_pch_hotplug(struct drm_device *dev)
 
 
 
 
 
 
1711{
1712	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1713	u32	hotplug;
1714
1715	hotplug = I915_READ(PCH_PORT_HOTPLUG);
1716	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
1717	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
1718	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
1719	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1720	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
1721}
1722
1723static int ironlake_irq_postinstall(struct drm_device *dev)
1724{
1725	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1726	/* enable kind of interrupts always enabled */
1727	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1728			   DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1729	u32 render_irqs;
1730	u32 hotplug_mask;
1731
1732	dev_priv->irq_mask = ~display_mask;
 
 
 
 
 
 
 
 
 
 
1733
1734	/* should always can generate irq */
1735	I915_WRITE(DEIIR, I915_READ(DEIIR));
1736	I915_WRITE(DEIMR, dev_priv->irq_mask);
1737	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1738	POSTING_READ(DEIER);
1739
1740	dev_priv->gt_irq_mask = ~0;
1741
1742	I915_WRITE(GTIIR, I915_READ(GTIIR));
1743	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1744
1745	if (IS_GEN6(dev))
1746		render_irqs =
1747			GT_USER_INTERRUPT |
1748			GEN6_BSD_USER_INTERRUPT |
1749			GEN6_BLITTER_USER_INTERRUPT;
1750	else
1751		render_irqs =
1752			GT_USER_INTERRUPT |
1753			GT_PIPE_NOTIFY |
1754			GT_BSD_USER_INTERRUPT;
1755	I915_WRITE(GTIER, render_irqs);
1756	POSTING_READ(GTIER);
1757
1758	if (HAS_PCH_CPT(dev)) {
1759		hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1760				SDE_PORTB_HOTPLUG_CPT |
1761				SDE_PORTC_HOTPLUG_CPT |
1762				SDE_PORTD_HOTPLUG_CPT);
 
 
 
 
 
 
 
 
 
 
 
1763	} else {
1764		hotplug_mask = (SDE_CRT_HOTPLUG |
1765				SDE_PORTB_HOTPLUG |
1766				SDE_PORTC_HOTPLUG |
1767				SDE_PORTD_HOTPLUG |
1768				SDE_AUX_MASK);
 
1769	}
1770
1771	dev_priv->pch_irq_mask = ~hotplug_mask;
1772
1773	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1774	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1775	I915_WRITE(SDEIER, hotplug_mask);
1776	POSTING_READ(SDEIER);
 
1777
1778	ironlake_enable_pch_hotplug(dev);
1779
1780	if (IS_IRONLAKE_M(dev)) {
1781		/* Clear & enable PCU event interrupts */
1782		I915_WRITE(DEIIR, DE_PCU_EVENT);
1783		I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1784		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	}
 
1786
1787	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1788}
1789
1790static int ivybridge_irq_postinstall(struct drm_device *dev)
1791{
1792	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1793	/* enable kind of interrupts always enabled */
1794	u32 display_mask =
1795		DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
1796		DE_PLANEC_FLIP_DONE_IVB |
1797		DE_PLANEB_FLIP_DONE_IVB |
1798		DE_PLANEA_FLIP_DONE_IVB;
1799	u32 render_irqs;
1800	u32 hotplug_mask;
1801
1802	dev_priv->irq_mask = ~display_mask;
 
1803
1804	/* should always can generate irq */
1805	I915_WRITE(DEIIR, I915_READ(DEIIR));
1806	I915_WRITE(DEIMR, dev_priv->irq_mask);
1807	I915_WRITE(DEIER,
1808		   display_mask |
1809		   DE_PIPEC_VBLANK_IVB |
1810		   DE_PIPEB_VBLANK_IVB |
1811		   DE_PIPEA_VBLANK_IVB);
1812	POSTING_READ(DEIER);
1813
1814	dev_priv->gt_irq_mask = ~0;
1815
1816	I915_WRITE(GTIIR, I915_READ(GTIIR));
1817	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1818
1819	render_irqs = GT_USER_INTERRUPT | GEN6_BSD_USER_INTERRUPT |
1820		GEN6_BLITTER_USER_INTERRUPT;
1821	I915_WRITE(GTIER, render_irqs);
1822	POSTING_READ(GTIER);
1823
1824	hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1825			SDE_PORTB_HOTPLUG_CPT |
1826			SDE_PORTC_HOTPLUG_CPT |
1827			SDE_PORTD_HOTPLUG_CPT);
1828	dev_priv->pch_irq_mask = ~hotplug_mask;
1829
1830	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1831	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1832	I915_WRITE(SDEIER, hotplug_mask);
1833	POSTING_READ(SDEIER);
1834
1835	ironlake_enable_pch_hotplug(dev);
 
 
1836
1837	return 0;
 
 
 
 
 
 
 
 
 
 
 
1838}
1839
1840static int valleyview_irq_postinstall(struct drm_device *dev)
1841{
1842	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1843	u32 render_irqs;
1844	u32 enable_mask;
1845	u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1846	u16 msid;
1847
1848	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
1849	enable_mask |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
1850		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
 
 
 
1851
1852	dev_priv->irq_mask = ~enable_mask;
 
1853
1854	dev_priv->pipestat[0] = 0;
1855	dev_priv->pipestat[1] = 0;
 
 
 
 
 
 
 
1856
1857	/* Hack for broken MSIs on VLV */
1858	pci_write_config_dword(dev_priv->dev->pdev, 0x94, 0xfee00000);
1859	pci_read_config_word(dev->pdev, 0x98, &msid);
1860	msid &= 0xff; /* mask out delivery bits */
1861	msid |= (1<<14);
1862	pci_write_config_word(dev_priv->dev->pdev, 0x98, msid);
1863
1864	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
1865	I915_WRITE(VLV_IER, enable_mask);
1866	I915_WRITE(VLV_IIR, 0xffffffff);
1867	I915_WRITE(PIPESTAT(0), 0xffff);
1868	I915_WRITE(PIPESTAT(1), 0xffff);
1869	POSTING_READ(VLV_IER);
1870
1871	I915_WRITE(VLV_IIR, 0xffffffff);
1872	I915_WRITE(VLV_IIR, 0xffffffff);
1873
1874	render_irqs = GT_GEN6_BLT_FLUSHDW_NOTIFY_INTERRUPT |
1875		GT_GEN6_BLT_CS_ERROR_INTERRUPT |
1876		GT_GEN6_BLT_USER_INTERRUPT |
1877		GT_GEN6_BSD_USER_INTERRUPT |
1878		GT_GEN6_BSD_CS_ERROR_INTERRUPT |
1879		GT_GEN7_L3_PARITY_ERROR_INTERRUPT |
1880		GT_PIPE_NOTIFY |
1881		GT_RENDER_CS_ERROR_INTERRUPT |
1882		GT_SYNC_STATUS |
1883		GT_USER_INTERRUPT;
1884
1885	dev_priv->gt_irq_mask = ~render_irqs;
1886
1887	I915_WRITE(GTIIR, I915_READ(GTIIR));
1888	I915_WRITE(GTIIR, I915_READ(GTIIR));
1889	I915_WRITE(GTIMR, 0);
1890	I915_WRITE(GTIER, render_irqs);
1891	POSTING_READ(GTIER);
1892
1893	/* ack & enable invalid PTE error interrupts */
1894#if 0 /* FIXME: add support to irq handler for checking these bits */
1895	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
1896	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
1897#endif
1898
1899	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1900#if 0 /* FIXME: check register definitions; some have moved */
1901	/* Note HDMI and DP share bits */
1902	if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1903		hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1904	if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1905		hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1906	if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1907		hotplug_en |= HDMID_HOTPLUG_INT_EN;
1908	if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1909		hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1910	if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1911		hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1912	if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1913		hotplug_en |= CRT_HOTPLUG_INT_EN;
1914		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
 
 
 
 
 
 
 
1915	}
1916#endif
1917
1918	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
 
1919
1920	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1921}
1922
1923static void valleyview_irq_uninstall(struct drm_device *dev)
1924{
1925	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1926	int pipe;
1927
1928	if (!dev_priv)
1929		return;
1930
1931	for_each_pipe(pipe)
1932		I915_WRITE(PIPESTAT(pipe), 0xffff);
1933
1934	I915_WRITE(HWSTAM, 0xffffffff);
1935	I915_WRITE(PORT_HOTPLUG_EN, 0);
1936	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1937	for_each_pipe(pipe)
1938		I915_WRITE(PIPESTAT(pipe), 0xffff);
1939	I915_WRITE(VLV_IIR, 0xffffffff);
1940	I915_WRITE(VLV_IMR, 0xffffffff);
1941	I915_WRITE(VLV_IER, 0x0);
1942	POSTING_READ(VLV_IER);
1943}
1944
1945static void ironlake_irq_uninstall(struct drm_device *dev)
1946{
1947	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1948
1949	if (!dev_priv)
1950		return;
 
1951
1952	I915_WRITE(HWSTAM, 0xffffffff);
 
1953
1954	I915_WRITE(DEIMR, 0xffffffff);
1955	I915_WRITE(DEIER, 0x0);
1956	I915_WRITE(DEIIR, I915_READ(DEIIR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957
1958	I915_WRITE(GTIMR, 0xffffffff);
1959	I915_WRITE(GTIER, 0x0);
1960	I915_WRITE(GTIIR, I915_READ(GTIIR));
1961
1962	I915_WRITE(SDEIMR, 0xffffffff);
1963	I915_WRITE(SDEIER, 0x0);
1964	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
 
1965}
1966
1967static void i8xx_irq_preinstall(struct drm_device * dev)
1968{
1969	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1970	int pipe;
1971
1972	atomic_set(&dev_priv->irq_received, 0);
 
 
 
1973
1974	for_each_pipe(pipe)
1975		I915_WRITE(PIPESTAT(pipe), 0);
1976	I915_WRITE16(IMR, 0xffff);
1977	I915_WRITE16(IER, 0x0);
1978	POSTING_READ16(IER);
1979}
1980
1981static int i8xx_irq_postinstall(struct drm_device *dev)
1982{
1983	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
 
 
 
 
1984
1985	dev_priv->pipestat[0] = 0;
1986	dev_priv->pipestat[1] = 0;
 
 
1987
1988	I915_WRITE16(EMR,
1989		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
 
 
1990
1991	/* Unmask the interrupts that we always want on. */
1992	dev_priv->irq_mask =
1993		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1994		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1995		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
1996		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
1997		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1998	I915_WRITE16(IMR, dev_priv->irq_mask);
1999
2000	I915_WRITE16(IER,
2001		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2002		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2003		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2004		     I915_USER_INTERRUPT);
2005	POSTING_READ16(IER);
2006
2007	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2008}
2009
2010static irqreturn_t i8xx_irq_handler(DRM_IRQ_ARGS)
 
2011{
2012	struct drm_device *dev = (struct drm_device *) arg;
2013	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2014	u16 iir, new_iir;
2015	u32 pipe_stats[2];
2016	unsigned long irqflags;
2017	int irq_received;
2018	int pipe;
2019	u16 flip_mask =
2020		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2021		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2022
2023	atomic_inc(&dev_priv->irq_received);
2024
2025	iir = I915_READ16(IIR);
2026	if (iir == 0)
2027		return IRQ_NONE;
2028
2029	while (iir & ~flip_mask) {
2030		/* Can't rely on pipestat interrupt bit in iir as it might
2031		 * have been cleared after the pipestat interrupt was received.
2032		 * It doesn't set the bit in iir again, but it still produces
2033		 * interrupts (for non-MSI).
2034		 */
2035		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2036		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2037			i915_handle_error(dev, false);
2038
2039		for_each_pipe(pipe) {
2040			int reg = PIPESTAT(pipe);
2041			pipe_stats[pipe] = I915_READ(reg);
2042
2043			/*
2044			 * Clear the PIPE*STAT regs before the IIR
2045			 */
2046			if (pipe_stats[pipe] & 0x8000ffff) {
2047				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2048					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2049							 pipe_name(pipe));
2050				I915_WRITE(reg, pipe_stats[pipe]);
2051				irq_received = 1;
2052			}
2053		}
2054		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
2055
2056		I915_WRITE16(IIR, iir & ~flip_mask);
2057		new_iir = I915_READ16(IIR); /* Flush posted writes */
 
 
2058
2059		i915_update_dri1_breadcrumb(dev);
 
 
2060
2061		if (iir & I915_USER_INTERRUPT)
2062			notify_ring(dev, &dev_priv->ring[RCS]);
 
 
2063
2064		if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2065		    drm_handle_vblank(dev, 0)) {
2066			if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
2067				intel_prepare_page_flip(dev, 0);
2068				intel_finish_page_flip(dev, 0);
2069				flip_mask &= ~I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
2070			}
2071		}
2072
2073		if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2074		    drm_handle_vblank(dev, 1)) {
2075			if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
2076				intel_prepare_page_flip(dev, 1);
2077				intel_finish_page_flip(dev, 1);
2078				flip_mask &= ~I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2079			}
2080		}
2081
2082		iir = new_iir;
2083	}
 
2084
2085	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
2086}
2087
2088static void i8xx_irq_uninstall(struct drm_device * dev)
 
2089{
2090	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2091	int pipe;
2092
2093	for_each_pipe(pipe) {
2094		/* Clear enable bits; then clear status bits */
2095		I915_WRITE(PIPESTAT(pipe), 0);
2096		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2097	}
2098	I915_WRITE16(IMR, 0xffff);
2099	I915_WRITE16(IER, 0x0);
2100	I915_WRITE16(IIR, I915_READ16(IIR));
2101}
2102
2103static void i915_irq_preinstall(struct drm_device * dev)
2104{
2105	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2106	int pipe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107
2108	atomic_set(&dev_priv->irq_received, 0);
 
 
2109
2110	if (I915_HAS_HOTPLUG(dev)) {
2111		I915_WRITE(PORT_HOTPLUG_EN, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2113	}
2114
2115	I915_WRITE16(HWSTAM, 0xeffe);
2116	for_each_pipe(pipe)
2117		I915_WRITE(PIPESTAT(pipe), 0);
2118	I915_WRITE(IMR, 0xffffffff);
2119	I915_WRITE(IER, 0x0);
2120	POSTING_READ(IER);
2121}
2122
2123static int i915_irq_postinstall(struct drm_device *dev)
2124{
2125	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2126	u32 enable_mask;
2127
2128	dev_priv->pipestat[0] = 0;
2129	dev_priv->pipestat[1] = 0;
2130
2131	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2132
2133	/* Unmask the interrupts that we always want on. */
2134	dev_priv->irq_mask =
2135		~(I915_ASLE_INTERRUPT |
2136		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2137		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2138		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2139		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2140		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2141
2142	enable_mask =
2143		I915_ASLE_INTERRUPT |
2144		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2145		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2146		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2147		I915_USER_INTERRUPT;
2148
2149	if (I915_HAS_HOTPLUG(dev)) {
2150		/* Enable in IER... */
2151		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2152		/* and unmask in IMR */
2153		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2154	}
2155
2156	I915_WRITE(IMR, dev_priv->irq_mask);
2157	I915_WRITE(IER, enable_mask);
2158	POSTING_READ(IER);
2159
2160	if (I915_HAS_HOTPLUG(dev)) {
2161		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2162
2163		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
2164			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
2165		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
2166			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
2167		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
2168			hotplug_en |= HDMID_HOTPLUG_INT_EN;
2169		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
2170			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
2171		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
2172			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
2173		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
2174			hotplug_en |= CRT_HOTPLUG_INT_EN;
2175			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2176		}
2177
2178		/* Ignore TV since it's buggy */
2179
2180		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2181	}
 
 
 
 
2182
2183	intel_opregion_enable_asle(dev);
2184
2185	return 0;
2186}
2187
2188static irqreturn_t i915_irq_handler(DRM_IRQ_ARGS)
2189{
2190	struct drm_device *dev = (struct drm_device *) arg;
2191	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2192	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2193	unsigned long irqflags;
2194	u32 flip_mask =
2195		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2196		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2197	u32 flip[2] = {
2198		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT,
2199		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT
2200	};
2201	int pipe, ret = IRQ_NONE;
2202
2203	atomic_inc(&dev_priv->irq_received);
 
2204
2205	iir = I915_READ(IIR);
2206	do {
2207		bool irq_received = (iir & ~flip_mask) != 0;
2208		bool blc_event = false;
2209
2210		/* Can't rely on pipestat interrupt bit in iir as it might
2211		 * have been cleared after the pipestat interrupt was received.
2212		 * It doesn't set the bit in iir again, but it still produces
2213		 * interrupts (for non-MSI).
2214		 */
2215		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2216		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2217			i915_handle_error(dev, false);
2218
2219		for_each_pipe(pipe) {
2220			int reg = PIPESTAT(pipe);
2221			pipe_stats[pipe] = I915_READ(reg);
2222
2223			/* Clear the PIPE*STAT regs before the IIR */
2224			if (pipe_stats[pipe] & 0x8000ffff) {
2225				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2226					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2227							 pipe_name(pipe));
2228				I915_WRITE(reg, pipe_stats[pipe]);
2229				irq_received = true;
2230			}
2231		}
2232		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2233
2234		if (!irq_received)
 
2235			break;
2236
2237		/* Consume port.  Then clear IIR or we'll miss events */
2238		if ((I915_HAS_HOTPLUG(dev)) &&
2239		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2240			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2241
2242			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2243				  hotplug_status);
2244			if (hotplug_status & dev_priv->hotplug_supported_mask)
2245				queue_work(dev_priv->wq,
2246					   &dev_priv->hotplug_work);
2247
2248			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2249			POSTING_READ(PORT_HOTPLUG_STAT);
2250		}
 
 
 
 
2251
2252		I915_WRITE(IIR, iir & ~flip_mask);
2253		new_iir = I915_READ(IIR); /* Flush posted writes */
 
 
2254
2255		if (iir & I915_USER_INTERRUPT)
2256			notify_ring(dev, &dev_priv->ring[RCS]);
2257
2258		for_each_pipe(pipe) {
2259			int plane = pipe;
2260			if (IS_MOBILE(dev))
2261				plane = !plane;
2262			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2263			    drm_handle_vblank(dev, pipe)) {
2264				if (iir & flip[plane]) {
2265					intel_prepare_page_flip(dev, plane);
2266					intel_finish_page_flip(dev, pipe);
2267					flip_mask &= ~flip[plane];
2268				}
2269			}
2270
2271			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2272				blc_event = true;
2273		}
2274
2275		if (blc_event || (iir & I915_ASLE_INTERRUPT))
2276			intel_opregion_asle_intr(dev);
2277
2278		/* With MSI, interrupts are only generated when iir
2279		 * transitions from zero to nonzero.  If another bit got
2280		 * set while we were handling the existing iir bits, then
2281		 * we would never get another interrupt.
2282		 *
2283		 * This is fine on non-MSI as well, as if we hit this path
2284		 * we avoid exiting the interrupt handler only to generate
2285		 * another one.
2286		 *
2287		 * Note that for MSI this could cause a stray interrupt report
2288		 * if an interrupt landed in the time between writing IIR and
2289		 * the posting read.  This should be rare enough to never
2290		 * trigger the 99% of 100,000 interrupts test for disabling
2291		 * stray interrupts.
2292		 */
2293		ret = IRQ_HANDLED;
2294		iir = new_iir;
2295	} while (iir & ~flip_mask);
2296
2297	i915_update_dri1_breadcrumb(dev);
2298
2299	return ret;
2300}
2301
2302static void i915_irq_uninstall(struct drm_device * dev)
2303{
2304	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2305	int pipe;
2306
2307	if (I915_HAS_HOTPLUG(dev)) {
2308		I915_WRITE(PORT_HOTPLUG_EN, 0);
2309		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2310	}
2311
2312	I915_WRITE16(HWSTAM, 0xffff);
2313	for_each_pipe(pipe) {
2314		/* Clear enable bits; then clear status bits */
2315		I915_WRITE(PIPESTAT(pipe), 0);
2316		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2317	}
2318	I915_WRITE(IMR, 0xffffffff);
2319	I915_WRITE(IER, 0x0);
2320
2321	I915_WRITE(IIR, I915_READ(IIR));
2322}
2323
2324static void i965_irq_preinstall(struct drm_device * dev)
2325{
2326	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2327	int pipe;
2328
2329	atomic_set(&dev_priv->irq_received, 0);
2330
2331	if (I915_HAS_HOTPLUG(dev)) {
2332		I915_WRITE(PORT_HOTPLUG_EN, 0);
2333		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2334	}
2335
2336	I915_WRITE(HWSTAM, 0xeffe);
2337	for_each_pipe(pipe)
2338		I915_WRITE(PIPESTAT(pipe), 0);
2339	I915_WRITE(IMR, 0xffffffff);
2340	I915_WRITE(IER, 0x0);
2341	POSTING_READ(IER);
2342}
2343
2344static int i965_irq_postinstall(struct drm_device *dev)
2345{
2346	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2347	u32 enable_mask;
2348	u32 error_mask;
2349
2350	/* Unmask the interrupts that we always want on. */
2351	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2352			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2353			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2354			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2355			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2356			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2357
2358	enable_mask = ~dev_priv->irq_mask;
2359	enable_mask |= I915_USER_INTERRUPT;
2360
2361	if (IS_G4X(dev))
2362		enable_mask |= I915_BSD_USER_INTERRUPT;
2363
2364	dev_priv->pipestat[0] = 0;
2365	dev_priv->pipestat[1] = 0;
2366
2367	if (I915_HAS_HOTPLUG(dev)) {
2368		/* Enable in IER... */
2369		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2370		/* and unmask in IMR */
2371		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2372	}
2373
2374	/*
2375	 * Enable some error detection, note the instruction error mask
2376	 * bit is reserved, so we leave it masked.
2377	 */
2378	if (IS_G4X(dev)) {
2379		error_mask = ~(GM45_ERROR_PAGE_TABLE |
2380			       GM45_ERROR_MEM_PRIV |
2381			       GM45_ERROR_CP_PRIV |
2382			       I915_ERROR_MEMORY_REFRESH);
2383	} else {
2384		error_mask = ~(I915_ERROR_PAGE_TABLE |
2385			       I915_ERROR_MEMORY_REFRESH);
2386	}
2387	I915_WRITE(EMR, error_mask);
2388
2389	I915_WRITE(IMR, dev_priv->irq_mask);
2390	I915_WRITE(IER, enable_mask);
2391	POSTING_READ(IER);
2392
2393	if (I915_HAS_HOTPLUG(dev)) {
2394		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2395
2396		/* Note HDMI and DP share bits */
2397		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
2398			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
2399		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
2400			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
2401		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
2402			hotplug_en |= HDMID_HOTPLUG_INT_EN;
2403		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
2404			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
2405		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
2406			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
2407		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
2408			hotplug_en |= CRT_HOTPLUG_INT_EN;
2409
2410			/* Programming the CRT detection parameters tends
2411			   to generate a spurious hotplug event about three
2412			   seconds later.  So just do it once.
2413			*/
2414			if (IS_G4X(dev))
2415				hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2416			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2417		}
2418
2419		/* Ignore TV since it's buggy */
 
2420
2421		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2422	}
2423
2424	intel_opregion_enable_asle(dev);
 
 
 
 
 
 
2425
2426	return 0;
2427}
2428
2429static irqreturn_t i965_irq_handler(DRM_IRQ_ARGS)
2430{
2431	struct drm_device *dev = (struct drm_device *) arg;
2432	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2433	u32 iir, new_iir;
2434	u32 pipe_stats[I915_MAX_PIPES];
2435	unsigned long irqflags;
2436	int irq_received;
2437	int ret = IRQ_NONE, pipe;
2438
2439	atomic_inc(&dev_priv->irq_received);
2440
2441	iir = I915_READ(IIR);
 
 
 
 
 
 
 
 
 
2442
2443	for (;;) {
2444		bool blc_event = false;
 
 
 
 
 
 
 
 
 
 
2445
2446		irq_received = iir != 0;
 
2447
2448		/* Can't rely on pipestat interrupt bit in iir as it might
2449		 * have been cleared after the pipestat interrupt was received.
2450		 * It doesn't set the bit in iir again, but it still produces
2451		 * interrupts (for non-MSI).
2452		 */
2453		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2454		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2455			i915_handle_error(dev, false);
2456
2457		for_each_pipe(pipe) {
2458			int reg = PIPESTAT(pipe);
2459			pipe_stats[pipe] = I915_READ(reg);
2460
2461			/*
2462			 * Clear the PIPE*STAT regs before the IIR
2463			 */
2464			if (pipe_stats[pipe] & 0x8000ffff) {
2465				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2466					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2467							 pipe_name(pipe));
2468				I915_WRITE(reg, pipe_stats[pipe]);
2469				irq_received = 1;
2470			}
2471		}
2472		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2473
2474		if (!irq_received)
 
2475			break;
2476
2477		ret = IRQ_HANDLED;
2478
2479		/* Consume port.  Then clear IIR or we'll miss events */
2480		if ((I915_HAS_HOTPLUG(dev)) &&
2481		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2482			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2483
2484			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2485				  hotplug_status);
2486			if (hotplug_status & dev_priv->hotplug_supported_mask)
2487				queue_work(dev_priv->wq,
2488					   &dev_priv->hotplug_work);
2489
2490			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2491			I915_READ(PORT_HOTPLUG_STAT);
2492		}
2493
2494		I915_WRITE(IIR, iir);
2495		new_iir = I915_READ(IIR); /* Flush posted writes */
 
 
2496
2497		if (iir & I915_USER_INTERRUPT)
2498			notify_ring(dev, &dev_priv->ring[RCS]);
 
2499		if (iir & I915_BSD_USER_INTERRUPT)
2500			notify_ring(dev, &dev_priv->ring[VCS]);
2501
2502		if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT)
2503			intel_prepare_page_flip(dev, 0);
2504
2505		if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT)
2506			intel_prepare_page_flip(dev, 1);
2507
2508		for_each_pipe(pipe) {
2509			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2510			    drm_handle_vblank(dev, pipe)) {
2511				i915_pageflip_stall_check(dev, pipe);
2512				intel_finish_page_flip(dev, pipe);
2513			}
2514
2515			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2516				blc_event = true;
2517		}
2518
 
 
2519
2520		if (blc_event || (iir & I915_ASLE_INTERRUPT))
2521			intel_opregion_asle_intr(dev);
 
 
 
 
 
 
 
 
 
 
2522
2523		/* With MSI, interrupts are only generated when iir
2524		 * transitions from zero to nonzero.  If another bit got
2525		 * set while we were handling the existing iir bits, then
2526		 * we would never get another interrupt.
2527		 *
2528		 * This is fine on non-MSI as well, as if we hit this path
2529		 * we avoid exiting the interrupt handler only to generate
2530		 * another one.
2531		 *
2532		 * Note that for MSI this could cause a stray interrupt report
2533		 * if an interrupt landed in the time between writing IIR and
2534		 * the posting read.  This should be rare enough to never
2535		 * trigger the 99% of 100,000 interrupts test for disabling
2536		 * stray interrupts.
2537		 */
2538		iir = new_iir;
2539	}
2540
2541	i915_update_dri1_breadcrumb(dev);
2542
2543	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544}
2545
2546static void i965_irq_uninstall(struct drm_device * dev)
 
 
 
 
 
 
2547{
2548	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2549	int pipe;
2550
2551	if (!dev_priv)
2552		return;
2553
2554	if (I915_HAS_HOTPLUG(dev)) {
2555		I915_WRITE(PORT_HOTPLUG_EN, 0);
2556		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557	}
 
2558
2559	I915_WRITE(HWSTAM, 0xffffffff);
2560	for_each_pipe(pipe)
2561		I915_WRITE(PIPESTAT(pipe), 0);
2562	I915_WRITE(IMR, 0xffffffff);
2563	I915_WRITE(IER, 0x0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2564
2565	for_each_pipe(pipe)
2566		I915_WRITE(PIPESTAT(pipe),
2567			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2568	I915_WRITE(IIR, I915_READ(IIR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569}
2570
2571void intel_irq_init(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
2572{
2573	struct drm_i915_private *dev_priv = dev->dev_private;
 
2574
2575	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
2576	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
2577	INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
 
 
 
2578
2579	dev->driver->get_vblank_counter = i915_get_vblank_counter;
2580	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2581	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
2582		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2583		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
2584	}
2585
2586	if (drm_core_check_feature(dev, DRIVER_MODESET))
2587		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2588	else
2589		dev->driver->get_vblank_timestamp = NULL;
2590	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
2591
2592	if (IS_VALLEYVIEW(dev)) {
2593		dev->driver->irq_handler = valleyview_irq_handler;
2594		dev->driver->irq_preinstall = valleyview_irq_preinstall;
2595		dev->driver->irq_postinstall = valleyview_irq_postinstall;
2596		dev->driver->irq_uninstall = valleyview_irq_uninstall;
2597		dev->driver->enable_vblank = valleyview_enable_vblank;
2598		dev->driver->disable_vblank = valleyview_disable_vblank;
2599	} else if (IS_IVYBRIDGE(dev)) {
2600		/* Share pre & uninstall handlers with ILK/SNB */
2601		dev->driver->irq_handler = ivybridge_irq_handler;
2602		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2603		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2604		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2605		dev->driver->enable_vblank = ivybridge_enable_vblank;
2606		dev->driver->disable_vblank = ivybridge_disable_vblank;
2607	} else if (IS_HASWELL(dev)) {
2608		/* Share interrupts handling with IVB */
2609		dev->driver->irq_handler = ivybridge_irq_handler;
2610		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2611		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2612		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2613		dev->driver->enable_vblank = ivybridge_enable_vblank;
2614		dev->driver->disable_vblank = ivybridge_disable_vblank;
2615	} else if (HAS_PCH_SPLIT(dev)) {
2616		dev->driver->irq_handler = ironlake_irq_handler;
2617		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2618		dev->driver->irq_postinstall = ironlake_irq_postinstall;
2619		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2620		dev->driver->enable_vblank = ironlake_enable_vblank;
2621		dev->driver->disable_vblank = ironlake_disable_vblank;
2622	} else {
2623		if (INTEL_INFO(dev)->gen == 2) {
2624			dev->driver->irq_preinstall = i8xx_irq_preinstall;
2625			dev->driver->irq_postinstall = i8xx_irq_postinstall;
2626			dev->driver->irq_handler = i8xx_irq_handler;
2627			dev->driver->irq_uninstall = i8xx_irq_uninstall;
2628		} else if (INTEL_INFO(dev)->gen == 3) {
2629			dev->driver->irq_preinstall = i915_irq_preinstall;
2630			dev->driver->irq_postinstall = i915_irq_postinstall;
2631			dev->driver->irq_uninstall = i915_irq_uninstall;
2632			dev->driver->irq_handler = i915_irq_handler;
2633		} else {
2634			dev->driver->irq_preinstall = i965_irq_preinstall;
2635			dev->driver->irq_postinstall = i965_irq_postinstall;
2636			dev->driver->irq_uninstall = i965_irq_uninstall;
2637			dev->driver->irq_handler = i965_irq_handler;
2638		}
2639		dev->driver->enable_vblank = i915_enable_vblank;
2640		dev->driver->disable_vblank = i915_disable_vblank;
2641	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}
v5.4
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_display_types.h"
  41#include "display/intel_fifo_underrun.h"
  42#include "display/intel_hotplug.h"
  43#include "display/intel_lpe_audio.h"
  44#include "display/intel_psr.h"
  45
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  64
  65static const u32 hpd_ilk[HPD_NUM_PINS] = {
  66	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  67};
  68
  69static const u32 hpd_ivb[HPD_NUM_PINS] = {
  70	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  71};
  72
  73static const u32 hpd_bdw[HPD_NUM_PINS] = {
  74	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  75};
  76
  77static const u32 hpd_ibx[HPD_NUM_PINS] = {
  78	[HPD_CRT] = SDE_CRT_HOTPLUG,
  79	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  80	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  81	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  82	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  83};
  84
  85static const u32 hpd_cpt[HPD_NUM_PINS] = {
  86	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  87	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  88	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  89	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  90	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  91};
  92
  93static const u32 hpd_spt[HPD_NUM_PINS] = {
  94	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  95	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  96	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  97	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  98	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  99};
 100
 101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 102	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 103	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 104	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 105	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 106	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 107	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 108};
 109
 110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 111	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 112	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 114	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 116	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 117};
 118
 119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 120	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 121	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 122	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 123	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 125	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 126};
 127
 128/* BXT hpd list */
 129static const u32 hpd_bxt[HPD_NUM_PINS] = {
 130	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 131	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 132	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 133};
 134
 135static const u32 hpd_gen11[HPD_NUM_PINS] = {
 136	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 137	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 138	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 139	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 140};
 141
 142static const u32 hpd_gen12[HPD_NUM_PINS] = {
 143	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 144	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 145	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 146	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 147	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 148	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
 149};
 150
 151static const u32 hpd_icp[HPD_NUM_PINS] = {
 152	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 153	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 154	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 155	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 156	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 157	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 158};
 159
 160static const u32 hpd_mcc[HPD_NUM_PINS] = {
 161	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 162	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 163	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 164};
 165
 166static const u32 hpd_tgp[HPD_NUM_PINS] = {
 167	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 168	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 169	[HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
 170	[HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
 171	[HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
 172	[HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
 173	[HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
 174	[HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
 175	[HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
 176};
 177
 178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 179		    i915_reg_t iir, i915_reg_t ier)
 180{
 181	intel_uncore_write(uncore, imr, 0xffffffff);
 182	intel_uncore_posting_read(uncore, imr);
 183
 184	intel_uncore_write(uncore, ier, 0);
 185
 186	/* IIR can theoretically queue up two events. Be paranoid. */
 187	intel_uncore_write(uncore, iir, 0xffffffff);
 188	intel_uncore_posting_read(uncore, iir);
 189	intel_uncore_write(uncore, iir, 0xffffffff);
 190	intel_uncore_posting_read(uncore, iir);
 191}
 192
 193void gen2_irq_reset(struct intel_uncore *uncore)
 194{
 195	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 196	intel_uncore_posting_read16(uncore, GEN2_IMR);
 197
 198	intel_uncore_write16(uncore, GEN2_IER, 0);
 199
 200	/* IIR can theoretically queue up two events. Be paranoid. */
 201	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 202	intel_uncore_posting_read16(uncore, GEN2_IIR);
 203	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 204	intel_uncore_posting_read16(uncore, GEN2_IIR);
 205}
 206
 207/*
 208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 209 */
 210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 211{
 212	u32 val = intel_uncore_read(uncore, reg);
 213
 214	if (val == 0)
 215		return;
 216
 217	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 218	     i915_mmio_reg_offset(reg), val);
 219	intel_uncore_write(uncore, reg, 0xffffffff);
 220	intel_uncore_posting_read(uncore, reg);
 221	intel_uncore_write(uncore, reg, 0xffffffff);
 222	intel_uncore_posting_read(uncore, reg);
 223}
 224
 225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 226{
 227	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 228
 229	if (val == 0)
 230		return;
 231
 232	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 233	     i915_mmio_reg_offset(GEN2_IIR), val);
 234	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 235	intel_uncore_posting_read16(uncore, GEN2_IIR);
 236	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 237	intel_uncore_posting_read16(uncore, GEN2_IIR);
 238}
 239
 240void gen3_irq_init(struct intel_uncore *uncore,
 241		   i915_reg_t imr, u32 imr_val,
 242		   i915_reg_t ier, u32 ier_val,
 243		   i915_reg_t iir)
 244{
 245	gen3_assert_iir_is_zero(uncore, iir);
 246
 247	intel_uncore_write(uncore, ier, ier_val);
 248	intel_uncore_write(uncore, imr, imr_val);
 249	intel_uncore_posting_read(uncore, imr);
 250}
 251
 252void gen2_irq_init(struct intel_uncore *uncore,
 253		   u32 imr_val, u32 ier_val)
 254{
 255	gen2_assert_iir_is_zero(uncore);
 256
 257	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 258	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 259	intel_uncore_posting_read16(uncore, GEN2_IMR);
 260}
 261
 262/* For display hotplug interrupt */
 263static inline void
 264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 265				     u32 mask,
 266				     u32 bits)
 267{
 268	u32 val;
 269
 270	lockdep_assert_held(&dev_priv->irq_lock);
 271	WARN_ON(bits & ~mask);
 272
 273	val = I915_READ(PORT_HOTPLUG_EN);
 274	val &= ~mask;
 275	val |= bits;
 276	I915_WRITE(PORT_HOTPLUG_EN, val);
 277}
 278
 279/**
 280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 281 * @dev_priv: driver private
 282 * @mask: bits to update
 283 * @bits: bits to enable
 284 * NOTE: the HPD enable bits are modified both inside and outside
 285 * of an interrupt context. To avoid that read-modify-write cycles
 286 * interfer, these bits are protected by a spinlock. Since this
 287 * function is usually not called from a context where the lock is
 288 * held already, this function acquires the lock itself. A non-locking
 289 * version is also available.
 290 */
 291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 292				   u32 mask,
 293				   u32 bits)
 294{
 295	spin_lock_irq(&dev_priv->irq_lock);
 296	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 297	spin_unlock_irq(&dev_priv->irq_lock);
 298}
 299
 300/**
 301 * ilk_update_display_irq - update DEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 307			    u32 interrupt_mask,
 308			    u32 enabled_irq_mask)
 309{
 310	u32 new_val;
 311
 312	lockdep_assert_held(&dev_priv->irq_lock);
 313
 314	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 315
 316	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 317		return;
 318
 319	new_val = dev_priv->irq_mask;
 320	new_val &= ~interrupt_mask;
 321	new_val |= (~enabled_irq_mask & interrupt_mask);
 322
 323	if (new_val != dev_priv->irq_mask) {
 324		dev_priv->irq_mask = new_val;
 325		I915_WRITE(DEIMR, dev_priv->irq_mask);
 326		POSTING_READ(DEIMR);
 327	}
 328}
 329
 330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 
 331{
 332	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 
 333
 334	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 335}
 336
 337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 338{
 339	struct intel_gt *gt = &dev_priv->gt;
 340
 341	spin_lock_irq(&gt->irq_lock);
 342
 343	while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
 344		;
 345
 346	dev_priv->gt_pm.rps.pm_iir = 0;
 347
 348	spin_unlock_irq(&gt->irq_lock);
 349}
 350
 351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 352{
 353	struct intel_gt *gt = &dev_priv->gt;
 354
 355	spin_lock_irq(&gt->irq_lock);
 356	gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
 357	dev_priv->gt_pm.rps.pm_iir = 0;
 358	spin_unlock_irq(&gt->irq_lock);
 359}
 360
 361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 362{
 363	struct intel_gt *gt = &dev_priv->gt;
 364	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 365
 366	if (READ_ONCE(rps->interrupts_enabled))
 367		return;
 368
 369	spin_lock_irq(&gt->irq_lock);
 370	WARN_ON_ONCE(rps->pm_iir);
 371
 372	if (INTEL_GEN(dev_priv) >= 11)
 373		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
 374	else
 375		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 376
 377	rps->interrupts_enabled = true;
 378	gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
 379
 380	spin_unlock_irq(&gt->irq_lock);
 381}
 382
 383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
 384{
 385	return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
 386}
 387
 388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 389{
 390	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 391	struct intel_gt *gt = &dev_priv->gt;
 392
 393	if (!READ_ONCE(rps->interrupts_enabled))
 394		return;
 395
 396	spin_lock_irq(&gt->irq_lock);
 397	rps->interrupts_enabled = false;
 398
 399	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 400
 401	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 402
 403	spin_unlock_irq(&gt->irq_lock);
 404	intel_synchronize_irq(dev_priv);
 405
 406	/* Now that we will not be generating any more work, flush any
 407	 * outstanding tasks. As we are called on the RPS idle path,
 408	 * we will reset the GPU to minimum frequencies, so the current
 409	 * state of the worker can be discarded.
 410	 */
 411	cancel_work_sync(&rps->work);
 412	if (INTEL_GEN(dev_priv) >= 11)
 413		gen11_reset_rps_interrupts(dev_priv);
 414	else
 415		gen6_reset_rps_interrupts(dev_priv);
 416}
 417
 418void gen9_reset_guc_interrupts(struct intel_guc *guc)
 419{
 420	struct intel_gt *gt = guc_to_gt(guc);
 421
 422	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 423
 424	spin_lock_irq(&gt->irq_lock);
 425	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 426	spin_unlock_irq(&gt->irq_lock);
 427}
 428
 429void gen9_enable_guc_interrupts(struct intel_guc *guc)
 430{
 431	struct intel_gt *gt = guc_to_gt(guc);
 432
 433	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 434
 435	spin_lock_irq(&gt->irq_lock);
 436	if (!guc->interrupts.enabled) {
 437		WARN_ON_ONCE(intel_uncore_read(gt->uncore,
 438					       gen6_pm_iir(gt->i915)) &
 439			     gt->pm_guc_events);
 440		guc->interrupts.enabled = true;
 441		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
 442	}
 443	spin_unlock_irq(&gt->irq_lock);
 444}
 445
 446void gen9_disable_guc_interrupts(struct intel_guc *guc)
 
 447{
 448	struct intel_gt *gt = guc_to_gt(guc);
 
 449
 450	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 451
 452	spin_lock_irq(&gt->irq_lock);
 453	guc->interrupts.enabled = false;
 454
 455	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 456
 457	spin_unlock_irq(&gt->irq_lock);
 458	intel_synchronize_irq(gt->i915);
 459
 460	gen9_reset_guc_interrupts(guc);
 461}
 462
 463void gen11_reset_guc_interrupts(struct intel_guc *guc)
 464{
 465	struct intel_gt *gt = guc_to_gt(guc);
 466
 467	spin_lock_irq(&gt->irq_lock);
 468	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 469	spin_unlock_irq(&gt->irq_lock);
 470}
 471
 472void gen11_enable_guc_interrupts(struct intel_guc *guc)
 473{
 474	struct intel_gt *gt = guc_to_gt(guc);
 475
 476	spin_lock_irq(&gt->irq_lock);
 477	if (!guc->interrupts.enabled) {
 478		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 479
 480		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 481		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
 482		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
 483		guc->interrupts.enabled = true;
 484	}
 485	spin_unlock_irq(&gt->irq_lock);
 486}
 487
 488void gen11_disable_guc_interrupts(struct intel_guc *guc)
 489{
 490	struct intel_gt *gt = guc_to_gt(guc);
 491
 492	spin_lock_irq(&gt->irq_lock);
 493	guc->interrupts.enabled = false;
 494
 495	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 496	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 497
 498	spin_unlock_irq(&gt->irq_lock);
 499	intel_synchronize_irq(gt->i915);
 500
 501	gen11_reset_guc_interrupts(guc);
 502}
 503
 504/**
 505 * bdw_update_port_irq - update DE port interrupt
 506 * @dev_priv: driver private
 507 * @interrupt_mask: mask of interrupt bits to update
 508 * @enabled_irq_mask: mask of interrupt bits to enable
 509 */
 510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 511				u32 interrupt_mask,
 512				u32 enabled_irq_mask)
 513{
 514	u32 new_val;
 515	u32 old_val;
 516
 517	lockdep_assert_held(&dev_priv->irq_lock);
 518
 519	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 520
 521	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 522		return;
 523
 524	old_val = I915_READ(GEN8_DE_PORT_IMR);
 525
 526	new_val = old_val;
 527	new_val &= ~interrupt_mask;
 528	new_val |= (~enabled_irq_mask & interrupt_mask);
 529
 530	if (new_val != old_val) {
 531		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 532		POSTING_READ(GEN8_DE_PORT_IMR);
 
 533	}
 534}
 535
 536/**
 537 * bdw_update_pipe_irq - update DE pipe interrupt
 538 * @dev_priv: driver private
 539 * @pipe: pipe whose interrupt to update
 540 * @interrupt_mask: mask of interrupt bits to update
 541 * @enabled_irq_mask: mask of interrupt bits to enable
 542 */
 543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 544			 enum pipe pipe,
 545			 u32 interrupt_mask,
 546			 u32 enabled_irq_mask)
 547{
 548	u32 new_val;
 549
 550	lockdep_assert_held(&dev_priv->irq_lock);
 551
 552	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 553
 554	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 555		return;
 556
 557	new_val = dev_priv->de_irq_mask[pipe];
 558	new_val &= ~interrupt_mask;
 559	new_val |= (~enabled_irq_mask & interrupt_mask);
 560
 561	if (new_val != dev_priv->de_irq_mask[pipe]) {
 562		dev_priv->de_irq_mask[pipe] = new_val;
 563		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 564		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 565	}
 566}
 567
 568/**
 569 * ibx_display_interrupt_update - update SDEIMR
 570 * @dev_priv: driver private
 571 * @interrupt_mask: mask of interrupt bits to update
 572 * @enabled_irq_mask: mask of interrupt bits to enable
 
 
 
 573 */
 574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 575				  u32 interrupt_mask,
 576				  u32 enabled_irq_mask)
 577{
 578	u32 sdeimr = I915_READ(SDEIMR);
 579	sdeimr &= ~interrupt_mask;
 580	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 581
 582	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 583
 584	lockdep_assert_held(&dev_priv->irq_lock);
 585
 586	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 587		return;
 588
 589	I915_WRITE(SDEIMR, sdeimr);
 590	POSTING_READ(SDEIMR);
 591}
 592
 593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 594			      enum pipe pipe)
 595{
 596	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 597	u32 enable_mask = status_mask << 16;
 598
 599	lockdep_assert_held(&dev_priv->irq_lock);
 600
 601	if (INTEL_GEN(dev_priv) < 5)
 602		goto out;
 603
 604	/*
 605	 * On pipe A we don't support the PSR interrupt yet,
 606	 * on pipe B and C the same bit MBZ.
 607	 */
 608	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 609		return 0;
 610	/*
 611	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 612	 * A the same bit is for perf counters which we don't use either.
 613	 */
 614	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 615		return 0;
 616
 617	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 618			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 619			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 620	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 621		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 622	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 623		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 624
 625out:
 626	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 627		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 628		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 629		  pipe_name(pipe), enable_mask, status_mask);
 630
 631	return enable_mask;
 632}
 633
 634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 635			  enum pipe pipe, u32 status_mask)
 636{
 637	i915_reg_t reg = PIPESTAT(pipe);
 638	u32 enable_mask;
 639
 640	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 641		  "pipe %c: status_mask=0x%x\n",
 642		  pipe_name(pipe), status_mask);
 643
 644	lockdep_assert_held(&dev_priv->irq_lock);
 645	WARN_ON(!intel_irqs_enabled(dev_priv));
 646
 647	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 648		return;
 649
 650	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 651	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 652
 653	I915_WRITE(reg, enable_mask | status_mask);
 654	POSTING_READ(reg);
 655}
 656
 657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 658			   enum pipe pipe, u32 status_mask)
 659{
 660	i915_reg_t reg = PIPESTAT(pipe);
 661	u32 enable_mask;
 662
 663	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 664		  "pipe %c: status_mask=0x%x\n",
 665		  pipe_name(pipe), status_mask);
 666
 667	lockdep_assert_held(&dev_priv->irq_lock);
 668	WARN_ON(!intel_irqs_enabled(dev_priv));
 669
 670	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 671		return;
 672
 673	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 674	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 675
 676	I915_WRITE(reg, enable_mask | status_mask);
 677	POSTING_READ(reg);
 678}
 679
 680static bool i915_has_asle(struct drm_i915_private *dev_priv)
 681{
 682	if (!dev_priv->opregion.asle)
 683		return false;
 684
 685	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 686}
 687
 688/**
 689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 690 * @dev_priv: i915 device private
 691 */
 692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 693{
 694	if (!i915_has_asle(dev_priv))
 695		return;
 696
 697	spin_lock_irq(&dev_priv->irq_lock);
 698
 699	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 700	if (INTEL_GEN(dev_priv) >= 4)
 701		i915_enable_pipestat(dev_priv, PIPE_A,
 702				     PIPE_LEGACY_BLC_EVENT_STATUS);
 703
 704	spin_unlock_irq(&dev_priv->irq_lock);
 705}
 706
 707/*
 708 * This timing diagram depicts the video signal in and
 709 * around the vertical blanking period.
 710 *
 711 * Assumptions about the fictitious mode used in this example:
 712 *  vblank_start >= 3
 713 *  vsync_start = vblank_start + 1
 714 *  vsync_end = vblank_start + 2
 715 *  vtotal = vblank_start + 3
 716 *
 717 *           start of vblank:
 718 *           latch double buffered registers
 719 *           increment frame counter (ctg+)
 720 *           generate start of vblank interrupt (gen4+)
 721 *           |
 722 *           |          frame start:
 723 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 724 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 725 *           |          |
 726 *           |          |  start of vsync:
 727 *           |          |  generate vsync interrupt
 728 *           |          |  |
 729 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 730 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 731 * ----va---> <-----------------vb--------------------> <--------va-------------
 732 *       |          |       <----vs----->                     |
 733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 736 *       |          |                                         |
 737 *       last visible pixel                                   first visible pixel
 738 *                  |                                         increment frame counter (gen3/4)
 739 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 740 *
 741 * x  = horizontal active
 742 * _  = horizontal blanking
 743 * hs = horizontal sync
 744 * va = vertical active
 745 * vb = vertical blanking
 746 * vs = vertical sync
 747 * vbs = vblank_start (number)
 748 *
 749 * Summary:
 750 * - most events happen at the start of horizontal sync
 751 * - frame start happens at the start of horizontal blank, 1-4 lines
 752 *   (depending on PIPECONF settings) after the start of vblank
 753 * - gen3/4 pixel and frame counter are synchronized with the start
 754 *   of horizontal active on the first line of vertical active
 755 */
 756
 757/* Called from drm generic code, passed a 'crtc', which
 758 * we use as a pipe index
 759 */
 760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 761{
 762	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 763	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 764	const struct drm_display_mode *mode = &vblank->hwmode;
 765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 766	i915_reg_t high_frame, low_frame;
 767	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 768	unsigned long irqflags;
 769
 770	/*
 771	 * On i965gm TV output the frame counter only works up to
 772	 * the point when we enable the TV encoder. After that the
 773	 * frame counter ceases to work and reads zero. We need a
 774	 * vblank wait before enabling the TV encoder and so we
 775	 * have to enable vblank interrupts while the frame counter
 776	 * is still in a working state. However the core vblank code
 777	 * does not like us returning non-zero frame counter values
 778	 * when we've told it that we don't have a working frame
 779	 * counter. Thus we must stop non-zero values leaking out.
 780	 */
 781	if (!vblank->max_vblank_count)
 782		return 0;
 783
 784	htotal = mode->crtc_htotal;
 785	hsync_start = mode->crtc_hsync_start;
 786	vbl_start = mode->crtc_vblank_start;
 787	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 788		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 789
 790	/* Convert to pixel count */
 791	vbl_start *= htotal;
 792
 793	/* Start of vblank event occurs at start of hsync */
 794	vbl_start -= htotal - hsync_start;
 795
 796	high_frame = PIPEFRAME(pipe);
 797	low_frame = PIPEFRAMEPIXEL(pipe);
 798
 799	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 800
 801	/*
 802	 * High & low register fields aren't synchronized, so make sure
 803	 * we get a low value that's stable across two reads of the high
 804	 * register.
 805	 */
 806	do {
 807		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 808		low   = I915_READ_FW(low_frame);
 809		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 810	} while (high1 != high2);
 811
 812	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 813
 814	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 815	pixel = low & PIPE_PIXEL_MASK;
 816	low >>= PIPE_FRAME_LOW_SHIFT;
 817
 818	/*
 819	 * The frame counter increments at beginning of active.
 820	 * Cook up a vblank counter by also checking the pixel
 821	 * counter against vblank start.
 822	 */
 823	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 824}
 825
 826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 827{
 828	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 829	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 830
 831	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 832}
 833
 834/*
 835 * On certain encoders on certain platforms, pipe
 836 * scanline register will not work to get the scanline,
 837 * since the timings are driven from the PORT or issues
 838 * with scanline register updates.
 839 * This function will use Framestamp and current
 840 * timestamp registers to calculate the scanline.
 841 */
 842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 843{
 844	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 845	struct drm_vblank_crtc *vblank =
 846		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 847	const struct drm_display_mode *mode = &vblank->hwmode;
 848	u32 vblank_start = mode->crtc_vblank_start;
 849	u32 vtotal = mode->crtc_vtotal;
 850	u32 htotal = mode->crtc_htotal;
 851	u32 clock = mode->crtc_clock;
 852	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 853
 854	/*
 855	 * To avoid the race condition where we might cross into the
 856	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 857	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 858	 * during the same frame.
 859	 */
 860	do {
 861		/*
 862		 * This field provides read back of the display
 863		 * pipe frame time stamp. The time stamp value
 864		 * is sampled at every start of vertical blank.
 865		 */
 866		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 867
 868		/*
 869		 * The TIMESTAMP_CTR register has the current
 870		 * time stamp value.
 871		 */
 872		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 873
 874		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 875	} while (scan_post_time != scan_prev_time);
 876
 877	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 878					clock), 1000 * htotal);
 879	scanline = min(scanline, vtotal - 1);
 880	scanline = (scanline + vblank_start) % vtotal;
 881
 882	return scanline;
 883}
 884
 885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 887{
 888	struct drm_device *dev = crtc->base.dev;
 889	struct drm_i915_private *dev_priv = to_i915(dev);
 890	const struct drm_display_mode *mode;
 891	struct drm_vblank_crtc *vblank;
 892	enum pipe pipe = crtc->pipe;
 893	int position, vtotal;
 894
 895	if (!crtc->active)
 896		return -1;
 897
 898	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 899	mode = &vblank->hwmode;
 900
 901	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 902		return __intel_get_crtc_scanline_from_timestamp(crtc);
 903
 904	vtotal = mode->crtc_vtotal;
 905	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 906		vtotal /= 2;
 907
 908	if (IS_GEN(dev_priv, 2))
 909		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 910	else
 911		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 912
 913	/*
 914	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 915	 * read it just before the start of vblank.  So try it again
 916	 * so we don't accidentally end up spanning a vblank frame
 917	 * increment, causing the pipe_update_end() code to squak at us.
 918	 *
 919	 * The nature of this problem means we can't simply check the ISR
 920	 * bit and return the vblank start value; nor can we use the scanline
 921	 * debug register in the transcoder as it appears to have the same
 922	 * problem.  We may need to extend this to include other platforms,
 923	 * but so far testing only shows the problem on HSW.
 924	 */
 925	if (HAS_DDI(dev_priv) && !position) {
 926		int i, temp;
 927
 928		for (i = 0; i < 100; i++) {
 929			udelay(1);
 930			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 931			if (temp != position) {
 932				position = temp;
 933				break;
 934			}
 935		}
 936	}
 937
 938	/*
 939	 * See update_scanline_offset() for the details on the
 940	 * scanline_offset adjustment.
 941	 */
 942	return (position + crtc->scanline_offset) % vtotal;
 943}
 944
 945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 946			      bool in_vblank_irq, int *vpos, int *hpos,
 947			      ktime_t *stime, ktime_t *etime,
 948			      const struct drm_display_mode *mode)
 949{
 950	struct drm_i915_private *dev_priv = to_i915(dev);
 951	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 952								pipe);
 953	int position;
 954	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 955	unsigned long irqflags;
 956	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 957		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 958		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 959
 960	if (WARN_ON(!mode->crtc_clock)) {
 961		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 962				 "pipe %c\n", pipe_name(pipe));
 963		return false;
 964	}
 965
 966	htotal = mode->crtc_htotal;
 967	hsync_start = mode->crtc_hsync_start;
 968	vtotal = mode->crtc_vtotal;
 969	vbl_start = mode->crtc_vblank_start;
 970	vbl_end = mode->crtc_vblank_end;
 971
 972	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 973		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 974		vbl_end /= 2;
 975		vtotal /= 2;
 976	}
 977
 978	/*
 979	 * Lock uncore.lock, as we will do multiple timing critical raw
 980	 * register reads, potentially with preemption disabled, so the
 981	 * following code must not block on uncore.lock.
 982	 */
 983	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 984
 985	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 986
 987	/* Get optional system timestamp before query. */
 988	if (stime)
 989		*stime = ktime_get();
 990
 991	if (use_scanline_counter) {
 992		/* No obvious pixelcount register. Only query vertical
 993		 * scanout position from Display scan line register.
 994		 */
 995		position = __intel_get_crtc_scanline(intel_crtc);
 
 
 
 
 
 
 996	} else {
 997		/* Have access to pixelcount since start of frame.
 998		 * We can split this into vertical and horizontal
 999		 * scanout position.
1000		 */
1001		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003		/* convert to pixel counts */
1004		vbl_start *= htotal;
1005		vbl_end *= htotal;
1006		vtotal *= htotal;
1007
1008		/*
1009		 * In interlaced modes, the pixel counter counts all pixels,
1010		 * so one field will have htotal more pixels. In order to avoid
1011		 * the reported position from jumping backwards when the pixel
1012		 * counter is beyond the length of the shorter field, just
1013		 * clamp the position the length of the shorter field. This
1014		 * matches how the scanline counter based position works since
1015		 * the scanline counter doesn't count the two half lines.
1016		 */
1017		if (position >= vtotal)
1018			position = vtotal - 1;
1019
1020		/*
1021		 * Start of vblank interrupt is triggered at start of hsync,
1022		 * just prior to the first active line of vblank. However we
1023		 * consider lines to start at the leading edge of horizontal
1024		 * active. So, should we get here before we've crossed into
1025		 * the horizontal active of the first line in vblank, we would
1026		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027		 * always add htotal-hsync_start to the current pixel position.
1028		 */
1029		position = (position + htotal - hsync_start) % vtotal;
1030	}
1031
1032	/* Get optional system timestamp after query. */
1033	if (etime)
1034		*etime = ktime_get();
1035
1036	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040	/*
1041	 * While in vblank, position will be negative
1042	 * counting up towards 0 at vbl_end. And outside
1043	 * vblank, position will be positive counting
1044	 * up since vbl_end.
1045	 */
1046	if (position >= vbl_start)
1047		position -= vbl_end;
1048	else
1049		position += vtotal - vbl_end;
1050
1051	if (use_scanline_counter) {
1052		*vpos = position;
1053		*hpos = 0;
1054	} else {
1055		*vpos = position / htotal;
1056		*hpos = position - (*vpos * htotal);
1057	}
1058
1059	return true;
1060}
1061
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063{
1064	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065	unsigned long irqflags;
1066	int position;
 
 
 
 
 
 
 
 
 
 
 
 
 
1067
1068	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069	position = __intel_get_crtc_scanline(crtc);
1070	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072	return position;
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076{
1077	struct intel_uncore *uncore = &dev_priv->uncore;
1078	u32 busy_up, busy_down, max_avg, min_avg;
1079	u8 new_delay;
1080
1081	spin_lock(&mchdev_lock);
1082
1083	intel_uncore_write16(uncore,
1084			     MEMINTRSTS,
1085			     intel_uncore_read(uncore, MEMINTRSTS));
1086
1087	new_delay = dev_priv->ips.cur_delay;
1088
1089	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095	/* Handle RCS change request from hw */
1096	if (busy_up > max_avg) {
1097		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098			new_delay = dev_priv->ips.cur_delay - 1;
1099		if (new_delay < dev_priv->ips.max_delay)
1100			new_delay = dev_priv->ips.max_delay;
1101	} else if (busy_down < min_avg) {
1102		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103			new_delay = dev_priv->ips.cur_delay + 1;
1104		if (new_delay > dev_priv->ips.min_delay)
1105			new_delay = dev_priv->ips.min_delay;
1106	}
1107
1108	if (ironlake_set_drps(dev_priv, new_delay))
1109		dev_priv->ips.cur_delay = new_delay;
1110
1111	spin_unlock(&mchdev_lock);
1112
1113	return;
1114}
1115
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117			struct intel_rps_ei *ei)
1118{
1119	ei->ktime = ktime_get_raw();
1120	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132	const struct intel_rps_ei *prev = &rps->ei;
1133	struct intel_rps_ei now;
1134	u32 events = 0;
1135
1136	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137		return 0;
1138
1139	vlv_c0_read(dev_priv, &now);
1140
1141	if (prev->ktime) {
1142		u64 time, c0;
1143		u32 render, media;
1144
1145		time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147		time *= dev_priv->czclk_freq;
1148
1149		/* Workload can be split between render + media,
1150		 * e.g. SwapBuffers being blitted in X after being rendered in
1151		 * mesa. To account for this we need to combine both engines
1152		 * into our activity counter.
1153		 */
1154		render = now.render_c0 - prev->render_c0;
1155		media = now.media_c0 - prev->media_c0;
1156		c0 = max(render, media);
1157		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159		if (c0 > time * rps->power.up_threshold)
1160			events = GEN6_PM_RP_UP_THRESHOLD;
1161		else if (c0 < time * rps->power.down_threshold)
1162			events = GEN6_PM_RP_DOWN_THRESHOLD;
1163	}
1164
1165	rps->ei = now;
1166	return events;
1167}
1168
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171	struct drm_i915_private *dev_priv =
1172		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173	struct intel_gt *gt = &dev_priv->gt;
1174	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175	bool client_boost = false;
1176	int new_delay, adj, min, max;
1177	u32 pm_iir = 0;
1178
1179	spin_lock_irq(&gt->irq_lock);
1180	if (rps->interrupts_enabled) {
1181		pm_iir = fetch_and_zero(&rps->pm_iir);
1182		client_boost = atomic_read(&rps->num_waiters);
1183	}
1184	spin_unlock_irq(&gt->irq_lock);
1185
1186	/* Make sure we didn't queue anything we're not going to process. */
1187	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189		goto out;
1190
1191	mutex_lock(&rps->lock);
1192
1193	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195	adj = rps->last_adj;
1196	new_delay = rps->cur_freq;
1197	min = rps->min_freq_softlimit;
1198	max = rps->max_freq_softlimit;
1199	if (client_boost)
1200		max = rps->max_freq;
1201	if (client_boost && new_delay < rps->boost_freq) {
1202		new_delay = rps->boost_freq;
1203		adj = 0;
1204	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205		if (adj > 0)
1206			adj *= 2;
1207		else /* CHV needs even encode values */
1208			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210		if (new_delay >= rps->max_freq_softlimit)
1211			adj = 0;
1212	} else if (client_boost) {
1213		adj = 0;
1214	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215		if (rps->cur_freq > rps->efficient_freq)
1216			new_delay = rps->efficient_freq;
1217		else if (rps->cur_freq > rps->min_freq_softlimit)
1218			new_delay = rps->min_freq_softlimit;
1219		adj = 0;
1220	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221		if (adj < 0)
1222			adj *= 2;
1223		else /* CHV needs even encode values */
1224			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226		if (new_delay <= rps->min_freq_softlimit)
1227			adj = 0;
1228	} else { /* unknown event */
1229		adj = 0;
1230	}
1231
1232	rps->last_adj = adj;
1233
1234	/*
1235	 * Limit deboosting and boosting to keep ourselves at the extremes
1236	 * when in the respective power modes (i.e. slowly decrease frequencies
1237	 * while in the HIGH_POWER zone and slowly increase frequencies while
1238	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239	 * to the next level quickly, and conversely if busy we expect to
1240	 * hit a waitboost and rapidly switch into max power.
1241	 */
1242	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243	    (adj > 0 && rps->power.mode == LOW_POWER))
1244		rps->last_adj = 0;
1245
1246	/* sysfs frequency interfaces may have snuck in while servicing the
1247	 * interrupt
1248	 */
1249	new_delay += adj;
1250	new_delay = clamp_t(int, new_delay, min, max);
1251
1252	if (intel_set_rps(dev_priv, new_delay)) {
1253		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254		rps->last_adj = 0;
1255	}
1256
1257	mutex_unlock(&rps->lock);
1258
1259out:
1260	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261	spin_lock_irq(&gt->irq_lock);
1262	if (rps->interrupts_enabled)
1263		gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264	spin_unlock_irq(&gt->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279	struct drm_i915_private *dev_priv =
1280		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281	struct intel_gt *gt = &dev_priv->gt;
1282	u32 error_status, row, bank, subbank;
1283	char *parity_event[6];
1284	u32 misccpctl;
1285	u8 slice = 0;
1286
1287	/* We must turn off DOP level clock gating to access the L3 registers.
1288	 * In order to prevent a get/put style interface, acquire struct mutex
1289	 * any time we access those registers.
1290	 */
1291	mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293	/* If we've screwed up tracking, just let the interrupt fire again */
1294	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295		goto out;
1296
1297	misccpctl = I915_READ(GEN7_MISCCPCTL);
1298	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299	POSTING_READ(GEN7_MISCCPCTL);
1300
1301	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302		i915_reg_t reg;
1303
1304		slice--;
1305		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306			break;
1307
1308		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310		reg = GEN7_L3CDERRST1(slice);
1311
1312		error_status = I915_READ(reg);
1313		row = GEN7_PARITY_ERROR_ROW(error_status);
1314		bank = GEN7_PARITY_ERROR_BANK(error_status);
1315		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318		POSTING_READ(reg);
1319
1320		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325		parity_event[5] = NULL;
1326
1327		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328				   KOBJ_CHANGE, parity_event);
1329
1330		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331			  slice, row, bank, subbank);
1332
1333		kfree(parity_event[4]);
1334		kfree(parity_event[3]);
1335		kfree(parity_event[2]);
1336		kfree(parity_event[1]);
1337	}
1338
1339	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342	WARN_ON(dev_priv->l3_parity.which_slice);
1343	spin_lock_irq(&gt->irq_lock);
1344	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345	spin_unlock_irq(&gt->irq_lock);
1346
1347	mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
 
1351{
1352	switch (pin) {
1353	case HPD_PORT_C:
1354		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355	case HPD_PORT_D:
1356		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357	case HPD_PORT_E:
1358		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359	case HPD_PORT_F:
1360		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361	default:
1362		return false;
1363	}
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368	switch (pin) {
1369	case HPD_PORT_D:
1370		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371	case HPD_PORT_E:
1372		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373	case HPD_PORT_F:
1374		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375	case HPD_PORT_G:
1376		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377	case HPD_PORT_H:
1378		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379	case HPD_PORT_I:
1380		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381	default:
1382		return false;
1383	}
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387{
1388	switch (pin) {
1389	case HPD_PORT_A:
1390		return val & PORTA_HOTPLUG_LONG_DETECT;
1391	case HPD_PORT_B:
1392		return val & PORTB_HOTPLUG_LONG_DETECT;
1393	case HPD_PORT_C:
1394		return val & PORTC_HOTPLUG_LONG_DETECT;
1395	default:
1396		return false;
1397	}
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401{
1402	switch (pin) {
1403	case HPD_PORT_A:
1404		return val & ICP_DDIA_HPD_LONG_DETECT;
1405	case HPD_PORT_B:
1406		return val & ICP_DDIB_HPD_LONG_DETECT;
1407	case HPD_PORT_C:
1408		return val & TGP_DDIC_HPD_LONG_DETECT;
1409	default:
1410		return false;
1411	}
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415{
1416	switch (pin) {
1417	case HPD_PORT_C:
1418		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419	case HPD_PORT_D:
1420		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421	case HPD_PORT_E:
1422		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423	case HPD_PORT_F:
1424		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425	default:
1426		return false;
1427	}
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431{
1432	switch (pin) {
1433	case HPD_PORT_A:
1434		return val & ICP_DDIA_HPD_LONG_DETECT;
1435	case HPD_PORT_B:
1436		return val & ICP_DDIB_HPD_LONG_DETECT;
1437	case HPD_PORT_C:
1438		return val & TGP_DDIC_HPD_LONG_DETECT;
1439	default:
1440		return false;
1441	}
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446	switch (pin) {
1447	case HPD_PORT_D:
1448		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449	case HPD_PORT_E:
1450		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451	case HPD_PORT_F:
1452		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453	case HPD_PORT_G:
1454		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455	case HPD_PORT_H:
1456		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457	case HPD_PORT_I:
1458		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459	default:
1460		return false;
1461	}
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465{
1466	switch (pin) {
1467	case HPD_PORT_E:
1468		return val & PORTE_HOTPLUG_LONG_DETECT;
1469	default:
1470		return false;
1471	}
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475{
1476	switch (pin) {
1477	case HPD_PORT_A:
1478		return val & PORTA_HOTPLUG_LONG_DETECT;
1479	case HPD_PORT_B:
1480		return val & PORTB_HOTPLUG_LONG_DETECT;
1481	case HPD_PORT_C:
1482		return val & PORTC_HOTPLUG_LONG_DETECT;
1483	case HPD_PORT_D:
1484		return val & PORTD_HOTPLUG_LONG_DETECT;
1485	default:
1486		return false;
1487	}
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491{
1492	switch (pin) {
1493	case HPD_PORT_A:
1494		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495	default:
1496		return false;
1497	}
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502	switch (pin) {
1503	case HPD_PORT_B:
1504		return val & PORTB_HOTPLUG_LONG_DETECT;
1505	case HPD_PORT_C:
1506		return val & PORTC_HOTPLUG_LONG_DETECT;
1507	case HPD_PORT_D:
1508		return val & PORTD_HOTPLUG_LONG_DETECT;
1509	default:
1510		return false;
1511	}
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516	switch (pin) {
1517	case HPD_PORT_B:
1518		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519	case HPD_PORT_C:
1520		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521	case HPD_PORT_D:
1522		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523	default:
1524		return false;
1525	}
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536			       u32 *pin_mask, u32 *long_mask,
1537			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1538			       const u32 hpd[HPD_NUM_PINS],
1539			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541	enum hpd_pin pin;
1542
1543	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545	for_each_hpd_pin(pin) {
1546		if ((hpd[pin] & hotplug_trigger) == 0)
1547			continue;
1548
1549		*pin_mask |= BIT(pin);
 
1550
1551		if (long_pulse_detect(pin, dig_hotplug_reg))
1552			*long_mask |= BIT(pin);
1553	}
1554
1555	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
 
 
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
1562	wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
 
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
1567	wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
 
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572					 enum pipe pipe,
1573					 u32 crc0, u32 crc1,
1574					 u32 crc2, u32 crc3,
1575					 u32 crc4)
1576{
1577	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581	trace_intel_pipe_crc(crtc, crcs);
1582
1583	spin_lock(&pipe_crc->lock);
1584	/*
1585	 * For some not yet identified reason, the first CRC is
1586	 * bonkers. So let's just wait for the next vblank and read
1587	 * out the buggy result.
1588	 *
1589	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590	 * don't trust that one either.
1591	 */
1592	if (pipe_crc->skipped <= 0 ||
1593	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594		pipe_crc->skipped++;
1595		spin_unlock(&pipe_crc->lock);
1596		return;
1597	}
1598	spin_unlock(&pipe_crc->lock);
1599
1600	drm_crtc_add_crc_entry(&crtc->base, true,
1601				drm_crtc_accurate_vblank_count(&crtc->base),
1602				crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607			     enum pipe pipe,
1608			     u32 crc0, u32 crc1,
1609			     u32 crc2, u32 crc3,
1610			     u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615				     enum pipe pipe)
1616{
1617	display_pipe_crc_irq_handler(dev_priv, pipe,
1618				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619				     0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623				     enum pipe pipe)
1624{
1625	display_pipe_crc_irq_handler(dev_priv, pipe,
1626				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634				      enum pipe pipe)
1635{
1636	u32 res1, res2;
1637
1638	if (INTEL_GEN(dev_priv) >= 3)
1639		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640	else
1641		res1 = 0;
1642
1643	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645	else
1646		res2 = 0;
1647
1648	display_pipe_crc_irq_handler(dev_priv, pipe,
1649				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1650				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652				     res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660	struct drm_i915_private *i915 = gt->i915;
1661	struct intel_rps *rps = &i915->gt_pm.rps;
1662	const u32 events = i915->pm_rps_events & pm_iir;
1663
1664	lockdep_assert_held(&gt->irq_lock);
1665
1666	if (unlikely(!events))
1667		return;
1668
1669	gen6_gt_pm_mask_irq(gt, events);
1670
1671	if (!rps->interrupts_enabled)
1672		return;
1673
1674	rps->pm_iir |= events;
1675	schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681	struct intel_gt *gt = &dev_priv->gt;
1682
1683	if (pm_iir & dev_priv->pm_rps_events) {
1684		spin_lock(&gt->irq_lock);
1685		gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686		if (rps->interrupts_enabled) {
1687			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688			schedule_work(&rps->work);
1689		}
1690		spin_unlock(&gt->irq_lock);
1691	}
1692
1693	if (INTEL_GEN(dev_priv) >= 8)
1694		return;
1695
1696	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697		intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705	enum pipe pipe;
1706
1707	for_each_pipe(dev_priv, pipe) {
1708		I915_WRITE(PIPESTAT(pipe),
1709			   PIPESTAT_INT_STATUS_MASK |
1710			   PIPE_FIFO_UNDERRUN_STATUS);
1711
1712		dev_priv->pipestat_irq_mask[pipe] = 0;
1713	}
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
1719	int pipe;
1720
1721	spin_lock(&dev_priv->irq_lock);
1722
1723	if (!dev_priv->display_irqs_enabled) {
1724		spin_unlock(&dev_priv->irq_lock);
1725		return;
1726	}
1727
1728	for_each_pipe(dev_priv, pipe) {
1729		i915_reg_t reg;
1730		u32 status_mask, enable_mask, iir_bit = 0;
1731
1732		/*
1733		 * PIPESTAT bits get signalled even when the interrupt is
1734		 * disabled with the mask bits, and some of the status bits do
1735		 * not generate interrupts at all (like the underrun bit). Hence
1736		 * we need to be careful that we only handle what we want to
1737		 * handle.
1738		 */
1739
1740		/* fifo underruns are filterered in the underrun handler. */
1741		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743		switch (pipe) {
1744		case PIPE_A:
1745			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746			break;
1747		case PIPE_B:
1748			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749			break;
1750		case PIPE_C:
1751			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752			break;
1753		}
1754		if (iir & iir_bit)
1755			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757		if (!status_mask)
1758			continue;
1759
1760		reg = PIPESTAT(pipe);
1761		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764		/*
1765		 * Clear the PIPE*STAT regs before the IIR
1766		 *
1767		 * Toggle the enable bits to make sure we get an
1768		 * edge in the ISR pipe event bit if we don't clear
1769		 * all the enabled status bits. Otherwise the edge
1770		 * triggered IIR on i965/g4x wouldn't notice that
1771		 * an interrupt is still pending.
1772		 */
1773		if (pipe_stats[pipe]) {
1774			I915_WRITE(reg, pipe_stats[pipe]);
1775			I915_WRITE(reg, enable_mask);
1776		}
1777	}
1778	spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784	enum pipe pipe;
1785
1786	for_each_pipe(dev_priv, pipe) {
1787		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788			drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795	}
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801	bool blc_event = false;
1802	enum pipe pipe;
1803
1804	for_each_pipe(dev_priv, pipe) {
1805		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806			drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809			blc_event = true;
1810
1811		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816	}
1817
1818	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819		intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
 
1824{
1825	bool blc_event = false;
1826	enum pipe pipe;
1827
1828	for_each_pipe(dev_priv, pipe) {
1829		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830			drm_handle_vblank(&dev_priv->drm, pipe);
 
 
 
 
1831
1832		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833			blc_event = true;
1834
1835		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840	}
1841
1842	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843		intel_opregion_asle_intr(dev_priv);
1844
1845	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846		gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850					    u32 pipe_stats[I915_MAX_PIPES])
1851{
1852	enum pipe pipe;
1853
1854	for_each_pipe(dev_priv, pipe) {
1855		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856			drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863	}
1864
1865	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866		gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871	u32 hotplug_status = 0, hotplug_status_mask;
1872	int i;
1873
1874	if (IS_G4X(dev_priv) ||
1875	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878	else
1879		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881	/*
1882	 * We absolutely have to clear all the pending interrupt
1883	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884	 * interrupt bit won't have an edge, and the i965/g4x
1885	 * edge triggered IIR will not notice that an interrupt
1886	 * is still pending. We can't use PORT_HOTPLUG_EN to
1887	 * guarantee the edge as the act of toggling the enable
1888	 * bits can itself generate a new hotplug interrupt :(
1889	 */
1890	for (i = 0; i < 10; i++) {
1891		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893		if (tmp == 0)
1894			return hotplug_status;
 
 
 
1895
1896		hotplug_status |= tmp;
1897		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898	}
1899
1900	WARN_ONCE(1,
1901		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902		  I915_READ(PORT_HOTPLUG_STAT));
1903
1904	return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908				 u32 hotplug_status)
1909{
1910	u32 pin_mask = 0, long_mask = 0;
1911
1912	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913	    IS_CHERRYVIEW(dev_priv)) {
1914		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916		if (hotplug_trigger) {
1917			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918					   hotplug_trigger, hotplug_trigger,
1919					   hpd_status_g4x,
1920					   i9xx_port_hotplug_long_detect);
1921
1922			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923		}
1924
1925		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926			dp_aux_irq_handler(dev_priv);
1927	} else {
1928		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930		if (hotplug_trigger) {
1931			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932					   hotplug_trigger, hotplug_trigger,
1933					   hpd_status_i915,
1934					   i9xx_port_hotplug_long_detect);
1935			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936		}
1937	}
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942	struct drm_i915_private *dev_priv = arg;
1943	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
1944
1945	if (!intel_irqs_enabled(dev_priv))
1946		return IRQ_NONE;
1947
1948	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951	do {
1952		u32 iir, gt_iir, pm_iir;
1953		u32 pipe_stats[I915_MAX_PIPES] = {};
1954		u32 hotplug_status = 0;
1955		u32 ier = 0;
1956
 
 
1957		gt_iir = I915_READ(GTIIR);
1958		pm_iir = I915_READ(GEN6_PMIIR);
1959		iir = I915_READ(VLV_IIR);
1960
1961		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962			break;
1963
1964		ret = IRQ_HANDLED;
1965
1966		/*
1967		 * Theory on interrupt generation, based on empirical evidence:
1968		 *
1969		 * x = ((VLV_IIR & VLV_IER) ||
1970		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972		 *
1973		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975		 * guarantee the CPU interrupt will be raised again even if we
1976		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977		 * bits this time around.
1978		 */
1979		I915_WRITE(VLV_MASTER_IER, 0);
1980		ier = I915_READ(VLV_IER);
1981		I915_WRITE(VLV_IER, 0);
1982
1983		if (gt_iir)
1984			I915_WRITE(GTIIR, gt_iir);
1985		if (pm_iir)
1986			I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991		/* Call regardless, as some status bits might not be
1992		 * signalled in iir */
1993		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996			   I915_LPE_PIPE_B_INTERRUPT))
1997			intel_lpe_audio_irq_handler(dev_priv);
1998
1999		/*
2000		 * VLV_IIR is single buffered, and reflects the level
2001		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002		 */
2003		if (iir)
2004			I915_WRITE(VLV_IIR, iir);
2005
2006		I915_WRITE(VLV_IER, ier);
2007		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 
 
 
 
 
 
 
 
 
2008
2009		if (gt_iir)
2010			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011		if (pm_iir)
2012			gen6_rps_irq_handler(dev_priv, pm_iir);
 
 
 
 
 
2013
2014		if (hotplug_status)
2015			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 
2016
2017		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018	} while (0);
2019
2020	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
2021
2022	return ret;
2023}
 
 
 
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027	struct drm_i915_private *dev_priv = arg;
2028	irqreturn_t ret = IRQ_NONE;
2029
2030	if (!intel_irqs_enabled(dev_priv))
2031		return IRQ_NONE;
2032
2033	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036	do {
2037		u32 master_ctl, iir;
2038		u32 pipe_stats[I915_MAX_PIPES] = {};
2039		u32 hotplug_status = 0;
2040		u32 gt_iir[4];
2041		u32 ier = 0;
2042
2043		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044		iir = I915_READ(VLV_IIR);
2045
2046		if (master_ctl == 0 && iir == 0)
2047			break;
2048
2049		ret = IRQ_HANDLED;
2050
2051		/*
2052		 * Theory on interrupt generation, based on empirical evidence:
2053		 *
2054		 * x = ((VLV_IIR & VLV_IER) ||
2055		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057		 *
2058		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060		 * guarantee the CPU interrupt will be raised again even if we
2061		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062		 * bits this time around.
2063		 */
2064		I915_WRITE(GEN8_MASTER_IRQ, 0);
2065		ier = I915_READ(VLV_IER);
2066		I915_WRITE(VLV_IER, 0);
2067
2068		gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073		/* Call regardless, as some status bits might not be
2074		 * signalled in iir */
2075		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078			   I915_LPE_PIPE_B_INTERRUPT |
2079			   I915_LPE_PIPE_C_INTERRUPT))
2080			intel_lpe_audio_irq_handler(dev_priv);
2081
2082		/*
2083		 * VLV_IIR is single buffered, and reflects the level
2084		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085		 */
2086		if (iir)
2087			I915_WRITE(VLV_IIR, iir);
2088
2089		I915_WRITE(VLV_IER, ier);
2090		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092		gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094		if (hotplug_status)
2095			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098	} while (0);
2099
2100	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
 
2102	return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106				u32 hotplug_trigger,
2107				const u32 hpd[HPD_NUM_PINS])
2108{
2109	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111	/*
2112	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113	 * unless we touch the hotplug register, even if hotplug_trigger is
2114	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115	 * errors.
2116	 */
2117	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118	if (!hotplug_trigger) {
2119		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120			PORTD_HOTPLUG_STATUS_MASK |
2121			PORTC_HOTPLUG_STATUS_MASK |
2122			PORTB_HOTPLUG_STATUS_MASK;
2123		dig_hotplug_reg &= ~mask;
2124	}
2125
2126	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127	if (!hotplug_trigger)
2128		return;
2129
2130	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131			   dig_hotplug_reg, hpd,
2132			   pch_port_hotplug_long_detect);
2133
2134	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
 
2139	int pipe;
2140	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146			       SDE_AUDIO_POWER_SHIFT);
2147		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148				 port_name(port));
2149	}
2150
2151	if (pch_iir & SDE_AUX_MASK)
2152		dp_aux_irq_handler(dev_priv);
2153
2154	if (pch_iir & SDE_GMBUS)
2155		gmbus_irq_handler(dev_priv);
2156
2157	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163	if (pch_iir & SDE_POISON)
2164		DRM_ERROR("PCH poison interrupt\n");
2165
2166	if (pch_iir & SDE_FDI_MASK)
2167		for_each_pipe(dev_priv, pipe)
2168			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169					 pipe_name(pipe),
2170					 I915_READ(FDI_RX_IIR(pipe)));
2171
2172	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
 
 
2178	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
2187	u32 err_int = I915_READ(GEN7_ERR_INT);
2188	enum pipe pipe;
2189
2190	if (err_int & ERR_INT_POISON)
2191		DRM_ERROR("Poison interrupt\n");
2192
2193	for_each_pipe(dev_priv, pipe) {
2194		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198			if (IS_IVYBRIDGE(dev_priv))
2199				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200			else
2201				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202		}
2203	}
2204
2205	I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
2210	u32 serr_int = I915_READ(SERR_INT);
2211	enum pipe pipe;
2212
2213	if (serr_int & SERR_INT_POISON)
2214		DRM_ERROR("PCH poison interrupt\n");
2215
2216	for_each_pipe(dev_priv, pipe)
2217		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2219
2220	I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
 
2225	int pipe;
2226	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232			       SDE_AUDIO_POWER_SHIFT_CPT);
2233		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234				 port_name(port));
2235	}
2236
2237	if (pch_iir & SDE_AUX_MASK_CPT)
2238		dp_aux_irq_handler(dev_priv);
2239
2240	if (pch_iir & SDE_GMBUS_CPT)
2241		gmbus_irq_handler(dev_priv);
2242
2243	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249	if (pch_iir & SDE_FDI_MASK_CPT)
2250		for_each_pipe(dev_priv, pipe)
2251			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252					 pipe_name(pipe),
2253					 I915_READ(FDI_RX_IIR(pipe)));
2254
2255	if (pch_iir & SDE_ERROR_CPT)
2256		cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260			    const u32 *pins)
2261{
2262	u32 ddi_hotplug_trigger;
2263	u32 tc_hotplug_trigger;
2264	u32 pin_mask = 0, long_mask = 0;
2265
2266	if (HAS_PCH_MCC(dev_priv)) {
2267		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268		tc_hotplug_trigger = 0;
2269	} else {
2270		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272	}
2273
2274	if (ddi_hotplug_trigger) {
2275		u32 dig_hotplug_reg;
2276
2277		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
 
2279
2280		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281				   ddi_hotplug_trigger,
2282				   dig_hotplug_reg, pins,
2283				   icp_ddi_port_hotplug_long_detect);
 
2284	}
2285
2286	if (tc_hotplug_trigger) {
2287		u32 dig_hotplug_reg;
 
 
2288
2289		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
 
 
 
 
 
 
2291
2292		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293				   tc_hotplug_trigger,
2294				   dig_hotplug_reg, pins,
2295				   icp_tc_port_hotplug_long_detect);
2296	}
 
 
2297
2298	if (pin_mask)
2299		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
 
2300
2301	if (pch_iir & SDE_GMBUS_ICP)
2302		gmbus_irq_handler(dev_priv);
2303}
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309	u32 pin_mask = 0, long_mask = 0;
2310
2311	if (ddi_hotplug_trigger) {
2312		u32 dig_hotplug_reg;
2313
2314		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318				   ddi_hotplug_trigger,
2319				   dig_hotplug_reg, hpd_tgp,
2320				   tgp_ddi_port_hotplug_long_detect);
2321	}
2322
2323	if (tc_hotplug_trigger) {
2324		u32 dig_hotplug_reg;
2325
2326		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330				   tc_hotplug_trigger,
2331				   dig_hotplug_reg, hpd_tgp,
2332				   tgp_tc_port_hotplug_long_detect);
2333	}
2334
2335	if (pin_mask)
2336		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338	if (pch_iir & SDE_GMBUS_ICP)
2339		gmbus_irq_handler(dev_priv);
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
 
2343{
2344	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345		~SDE_PORTE_HOTPLUG_SPT;
2346	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347	u32 pin_mask = 0, long_mask = 0;
2348
2349	if (hotplug_trigger) {
2350		u32 dig_hotplug_reg;
2351
2352		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357				   spt_port_hotplug_long_detect);
2358	}
2359
2360	if (hotplug2_trigger) {
2361		u32 dig_hotplug_reg;
2362
2363		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368				   spt_port_hotplug2_long_detect);
2369	}
2370
2371	if (pin_mask)
2372		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374	if (pch_iir & SDE_GMBUS_CPT)
2375		gmbus_irq_handler(dev_priv);
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379				u32 hotplug_trigger,
2380				const u32 hpd[HPD_NUM_PINS])
2381{
2382	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
 
 
 
 
2383
2384	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388			   dig_hotplug_reg, hpd,
2389			   ilk_port_hotplug_long_detect);
 
2390
2391	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
 
 
 
 
 
 
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395				    u32 de_iir)
2396{
2397	enum pipe pipe;
2398	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400	if (hotplug_trigger)
2401		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403	if (de_iir & DE_AUX_CHANNEL_A)
2404		dp_aux_irq_handler(dev_priv);
 
 
2405
2406	if (de_iir & DE_GSE)
2407		intel_opregion_asle_intr(dev_priv);
2408
2409	if (de_iir & DE_POISON)
2410		DRM_ERROR("Poison interrupt\n");
 
 
2411
2412	for_each_pipe(dev_priv, pipe) {
2413		if (de_iir & DE_PIPE_VBLANK(pipe))
2414			drm_handle_vblank(&dev_priv->drm, pipe);
 
2415
2416		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421	}
2422
2423	/* check event from PCH */
2424	if (de_iir & DE_PCH_EVENT) {
2425		u32 pch_iir = I915_READ(SDEIIR);
2426
2427		if (HAS_PCH_CPT(dev_priv))
2428			cpt_irq_handler(dev_priv, pch_iir);
2429		else
2430			ibx_irq_handler(dev_priv, pch_iir);
 
2431
2432		/* should clear PCH hotplug event before clear CPU irq */
2433		I915_WRITE(SDEIIR, pch_iir);
 
2434	}
2435
2436	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437		ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441				    u32 de_iir)
2442{
2443	enum pipe pipe;
2444	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446	if (hotplug_trigger)
2447		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
 
2448
2449	if (de_iir & DE_ERR_INT_IVB)
2450		ivb_err_int_handler(dev_priv);
2451
2452	if (de_iir & DE_EDP_PSR_INT_HSW) {
2453		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455		intel_psr_irq_handler(dev_priv, psr_iir);
2456		I915_WRITE(EDP_PSR_IIR, psr_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457	}
 
2458
2459	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460		dp_aux_irq_handler(dev_priv);
 
 
 
 
 
 
2461
2462	if (de_iir & DE_GSE_IVB)
2463		intel_opregion_asle_intr(dev_priv);
2464
2465	for_each_pipe(dev_priv, pipe) {
2466		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467			drm_handle_vblank(&dev_priv->drm, pipe);
2468	}
2469
2470	/* check event from PCH */
2471	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472		u32 pch_iir = I915_READ(SDEIIR);
2473
2474		cpt_irq_handler(dev_priv, pch_iir);
 
 
2475
2476		/* clear PCH hotplug event before clear CPU irq */
2477		I915_WRITE(SDEIIR, pch_iir);
2478	}
2479}
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491	struct drm_i915_private *dev_priv = arg;
2492	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493	irqreturn_t ret = IRQ_NONE;
2494
2495	if (!intel_irqs_enabled(dev_priv))
2496		return IRQ_NONE;
 
 
2497
2498	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
2500
2501	/* disable master interrupt before clearing iir  */
2502	de_ier = I915_READ(DEIER);
2503	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
 
 
2504
2505	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2506	 * interrupts will will be stored on its back queue, and then we'll be
2507	 * able to process them after we restore SDEIER (as soon as we restore
2508	 * it, we'll get an interrupt if SDEIIR still has something to process
2509	 * due to its back queue). */
2510	if (!HAS_PCH_NOP(dev_priv)) {
2511		sde_ier = I915_READ(SDEIER);
2512		I915_WRITE(SDEIER, 0);
2513	}
2514
2515	/* Find, clear, then process each source of interrupt */
 
 
2516
2517	gt_iir = I915_READ(GTIIR);
2518	if (gt_iir) {
2519		I915_WRITE(GTIIR, gt_iir);
2520		ret = IRQ_HANDLED;
2521		if (INTEL_GEN(dev_priv) >= 6)
2522			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523		else
2524			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525	}
2526
2527	de_iir = I915_READ(DEIIR);
2528	if (de_iir) {
2529		I915_WRITE(DEIIR, de_iir);
2530		ret = IRQ_HANDLED;
2531		if (INTEL_GEN(dev_priv) >= 7)
2532			ivb_display_irq_handler(dev_priv, de_iir);
2533		else
2534			ilk_display_irq_handler(dev_priv, de_iir);
2535	}
2536
2537	if (INTEL_GEN(dev_priv) >= 6) {
2538		u32 pm_iir = I915_READ(GEN6_PMIIR);
2539		if (pm_iir) {
2540			I915_WRITE(GEN6_PMIIR, pm_iir);
2541			ret = IRQ_HANDLED;
2542			gen6_rps_irq_handler(dev_priv, pm_iir);
2543		}
2544	}
 
 
2545
2546	I915_WRITE(DEIER, de_ier);
2547	if (!HAS_PCH_NOP(dev_priv))
2548		I915_WRITE(SDEIER, sde_ier);
2549
2550	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553	return ret;
 
 
 
 
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557				u32 hotplug_trigger,
2558				const u32 hpd[HPD_NUM_PINS])
2559{
2560	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566			   dig_hotplug_reg, hpd,
2567			   bxt_port_hotplug_long_detect);
2568
2569	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
 
2573{
2574	u32 pin_mask = 0, long_mask = 0;
2575	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577	long_pulse_detect_func long_pulse_detect;
2578	const u32 *hpd;
2579
2580	if (INTEL_GEN(dev_priv) >= 12) {
2581		long_pulse_detect = gen12_port_hotplug_long_detect;
2582		hpd = hpd_gen12;
2583	} else {
2584		long_pulse_detect = gen11_port_hotplug_long_detect;
2585		hpd = hpd_gen11;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586	}
2587
2588	if (trigger_tc) {
2589		u32 dig_hotplug_reg;
2590
2591		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
 
 
 
2593
2594		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595				   dig_hotplug_reg, hpd, long_pulse_detect);
2596	}
2597
2598	if (trigger_tbt) {
2599		u32 dig_hotplug_reg;
2600
2601		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605				   dig_hotplug_reg, hpd, long_pulse_detect);
2606	}
2607
2608	if (pin_mask)
2609		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610	else
2611		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
 
2615{
2616	u32 mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618	if (INTEL_GEN(dev_priv) >= 12)
2619		/* TODO: Add AUX entries for USBC */
2620		return TGL_DE_PORT_AUX_DDIA |
2621			TGL_DE_PORT_AUX_DDIB |
2622			TGL_DE_PORT_AUX_DDIC;
2623
2624	mask = GEN8_AUX_CHANNEL_A;
2625	if (INTEL_GEN(dev_priv) >= 9)
2626		mask |= GEN9_AUX_CHANNEL_B |
2627			GEN9_AUX_CHANNEL_C |
2628			GEN9_AUX_CHANNEL_D;
 
 
 
 
 
 
 
 
 
2629
2630	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631		mask |= CNL_AUX_CHANNEL_F;
2632
2633	if (IS_GEN(dev_priv, 11))
2634		mask |= ICL_AUX_CHANNEL_E;
2635
2636	return mask;
2637}
 
 
 
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641	if (INTEL_GEN(dev_priv) >= 9)
2642		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643	else
2644		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
 
2649{
2650	bool found = false;
2651
2652	if (iir & GEN8_DE_MISC_GSE) {
2653		intel_opregion_asle_intr(dev_priv);
2654		found = true;
 
 
 
2655	}
2656
2657	if (iir & GEN8_DE_EDP_PSR) {
2658		u32 psr_iir = I915_READ(EDP_PSR_IIR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660		intel_psr_irq_handler(dev_priv, psr_iir);
2661		I915_WRITE(EDP_PSR_IIR, psr_iir);
2662		found = true;
 
 
 
 
 
 
2663	}
2664
2665	if (!found)
2666		DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
 
 
 
 
 
 
 
 
2671{
2672	irqreturn_t ret = IRQ_NONE;
2673	u32 iir;
2674	enum pipe pipe;
 
 
 
 
 
 
 
 
2675
2676	if (master_ctl & GEN8_DE_MISC_IRQ) {
2677		iir = I915_READ(GEN8_DE_MISC_IIR);
2678		if (iir) {
2679			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680			ret = IRQ_HANDLED;
2681			gen8_de_misc_irq_handler(dev_priv, iir);
2682		} else {
2683			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684		}
2685	}
2686
2687	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688		iir = I915_READ(GEN11_DE_HPD_IIR);
2689		if (iir) {
2690			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691			ret = IRQ_HANDLED;
2692			gen11_hpd_irq_handler(dev_priv, iir);
2693		} else {
2694			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695		}
2696	}
2697
2698	if (master_ctl & GEN8_DE_PORT_IRQ) {
2699		iir = I915_READ(GEN8_DE_PORT_IIR);
2700		if (iir) {
2701			u32 tmp_mask;
2702			bool found = false;
2703
2704			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705			ret = IRQ_HANDLED;
2706
2707			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708				dp_aux_irq_handler(dev_priv);
2709				found = true;
2710			}
2711
2712			if (IS_GEN9_LP(dev_priv)) {
2713				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714				if (tmp_mask) {
2715					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716							    hpd_bxt);
2717					found = true;
2718				}
2719			} else if (IS_BROADWELL(dev_priv)) {
2720				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721				if (tmp_mask) {
2722					ilk_hpd_irq_handler(dev_priv,
2723							    tmp_mask, hpd_bdw);
2724					found = true;
2725				}
2726			}
2727
2728			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729				gmbus_irq_handler(dev_priv);
2730				found = true;
2731			}
2732
2733			if (!found)
2734				DRM_ERROR("Unexpected DE Port interrupt\n");
2735		}
2736		else
2737			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738	}
2739
2740	for_each_pipe(dev_priv, pipe) {
2741		u32 fault_errors;
2742
2743		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744			continue;
 
2745
2746		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747		if (!iir) {
2748			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749			continue;
2750		}
 
 
 
2751
2752		ret = IRQ_HANDLED;
2753		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
 
 
 
 
 
 
 
2754
2755		if (iir & GEN8_PIPE_VBLANK)
2756			drm_handle_vblank(&dev_priv->drm, pipe);
 
 
 
2757
2758		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759			hsw_pipe_crc_irq_handler(dev_priv, pipe);
 
 
 
2760
2761		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765		if (fault_errors)
2766			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767				  pipe_name(pipe),
2768				  fault_errors);
2769	}
2770
2771	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772	    master_ctl & GEN8_DE_PCH_IRQ) {
2773		/*
2774		 * FIXME(BDW): Assume for now that the new interrupt handling
2775		 * scheme also closed the SDE interrupt handling race we've seen
2776		 * on older pch-split platforms. But this needs testing.
2777		 */
2778		iir = I915_READ(SDEIIR);
2779		if (iir) {
2780			I915_WRITE(SDEIIR, iir);
2781			ret = IRQ_HANDLED;
2782
2783			if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784				tgp_irq_handler(dev_priv, iir);
2785			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786				icp_irq_handler(dev_priv, iir, hpd_mcc);
2787			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788				icp_irq_handler(dev_priv, iir, hpd_icp);
2789			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790				spt_irq_handler(dev_priv, iir);
2791			else
2792				cpt_irq_handler(dev_priv, iir);
2793		} else {
2794			/*
2795			 * Like on previous PCH there seems to be something
2796			 * fishy going on with forwarding PCH interrupts.
2797			 */
2798			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799		}
2800	}
 
2801
2802	return ret;
 
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806{
2807	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
 
 
 
 
 
 
 
2808
2809	/*
2810	 * Now with master disabled, get a sample of level indications
2811	 * for this interrupt. Indications will be cleared on related acks.
2812	 * New indications can and will light up during processing,
2813	 * and will generate new interrupt after enabling master.
2814	 */
2815	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
 
 
 
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821}
 
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824{
2825	struct drm_i915_private *dev_priv = arg;
2826	void __iomem * const regs = dev_priv->uncore.regs;
2827	u32 master_ctl;
2828	u32 gt_iir[4];
2829
2830	if (!intel_irqs_enabled(dev_priv))
2831		return IRQ_NONE;
2832
2833	master_ctl = gen8_master_intr_disable(regs);
2834	if (!master_ctl) {
2835		gen8_master_intr_enable(regs);
2836		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837	}
2838
2839	/* Find, clear, then process each source of interrupt */
2840	gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843	if (master_ctl & ~GEN8_GT_IRQS) {
2844		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845		gen8_de_irq_handler(dev_priv, master_ctl);
2846		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847	}
2848
2849	gen8_master_intr_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2850
2851	gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
 
 
 
 
 
 
 
 
 
 
2852
2853	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
 
 
 
 
 
 
 
 
 
2858{
2859	void __iomem * const regs = gt->uncore->regs;
2860	u32 iir;
 
2861
2862	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863		return 0;
2864
2865	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866	if (likely(iir))
2867		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869	return iir;
2870}
 
 
 
 
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874{
2875	if (iir & GEN11_GU_MISC_GSE)
2876		intel_opregion_asle_intr(gt->i915);
2877}
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880{
2881	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
 
 
 
 
2882
2883	/*
2884	 * Now with master disabled, get a sample of level indications
2885	 * for this interrupt. Indications will be cleared on related acks.
2886	 * New indications can and will light up during processing,
2887	 * and will generate new interrupt after enabling master.
2888	 */
2889	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898{
2899	struct drm_i915_private * const i915 = arg;
2900	void __iomem * const regs = i915->uncore.regs;
2901	struct intel_gt *gt = &i915->gt;
2902	u32 master_ctl;
2903	u32 gu_misc_iir;
2904
2905	if (!intel_irqs_enabled(i915))
2906		return IRQ_NONE;
2907
2908	master_ctl = gen11_master_intr_disable(regs);
2909	if (!master_ctl) {
2910		gen11_master_intr_enable(regs);
2911		return IRQ_NONE;
 
 
 
 
2912	}
2913
2914	/* Find, clear, then process each source of interrupt. */
2915	gen11_gt_irq_handler(gt, master_ctl);
2916
2917	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918	if (master_ctl & GEN11_DISPLAY_IRQ) {
2919		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921		disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922		/*
2923		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924		 * for the display related bits.
2925		 */
2926		gen8_de_irq_handler(i915, disp_ctl);
2927		enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928	}
2929
2930	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932	gen11_master_intr_enable(regs);
2933
2934	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936	return IRQ_HANDLED;
2937}
2938
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946	unsigned long irqflags;
2947
 
 
 
2948	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
 
 
 
 
2950	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952	return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 
2958
2959	if (dev_priv->i945gm_vblank.enabled++ == 0)
2960		schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962	return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969	unsigned long irqflags;
2970
2971	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972	i915_enable_pipestat(dev_priv, pipe,
2973			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2974	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976	return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983	unsigned long irqflags;
2984	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
 
2986
2987	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988	ilk_enable_display_irq(dev_priv, bit);
 
2989	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991	/* Even though there is no DMC, frame counter can get stuck when
2992	 * PSR is active as no frames are generated.
2993	 */
2994	if (HAS_PSR(dev_priv))
2995		drm_crtc_vblank_restore(crtc);
2996
2997	return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004	unsigned long irqflags;
 
 
 
 
3005
3006	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
 
 
 
 
 
 
 
 
 
3008	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010	/* Even if there is no DMC, frame counter can get stuck when
3011	 * PSR is active as no frames are generated, so check only for PSR.
3012	 */
3013	if (HAS_PSR(dev_priv))
3014		drm_crtc_vblank_restore(crtc);
3015
3016	return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026	unsigned long irqflags;
3027
3028	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
3030	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037	i8xx_disable_vblank(crtc);
3038
3039	if (--dev_priv->i945gm_vblank.enabled == 0)
3040		schedule_work(&dev_priv->i945gm_vblank.work);
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047	unsigned long irqflags;
3048
3049	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050	i915_disable_pipestat(dev_priv, pipe,
3051			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3052	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059	unsigned long irqflags;
3060	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064	ilk_disable_display_irq(dev_priv, bit);
 
3065	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
3069{
3070	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072	unsigned long irqflags;
 
3073
3074	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
 
 
 
 
 
 
 
 
 
3076	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
 
3080{
3081	struct drm_i915_private *dev_priv =
3082		container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084	/*
3085	 * Vblank interrupts fail to wake up the device from C3,
3086	 * hence we want to prevent C3 usage while vblank interrupts
3087	 * are enabled.
3088	 */
3089	pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090			      READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091			      dev_priv->i945gm_vblank.c3_disable_latency :
3092			      PM_QOS_DEFAULT_VALUE);
3093}
3094
3095static int cstate_disable_latency(const char *name)
3096{
3097	const struct cpuidle_driver *drv;
3098	int i;
3099
3100	drv = cpuidle_get_driver();
3101	if (!drv)
3102		return 0;
3103
3104	for (i = 0; i < drv->state_count; i++) {
3105		const struct cpuidle_state *state = &drv->states[i];
3106
3107		if (!strcmp(state->name, name))
3108			return state->exit_latency ?
3109				state->exit_latency - 1 : 0;
3110	}
3111
3112	return 0;
3113}
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116{
3117	INIT_WORK(&dev_priv->i945gm_vblank.work,
3118		  i945gm_vblank_work_func);
3119
3120	dev_priv->i945gm_vblank.c3_disable_latency =
3121		cstate_disable_latency("C3");
3122	pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123			   PM_QOS_CPU_DMA_LATENCY,
3124			   PM_QOS_DEFAULT_VALUE);
 
 
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129	cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130	pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134{
3135	struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137	if (HAS_PCH_NOP(dev_priv))
3138		return;
3139
3140	GEN3_IRQ_RESET(uncore, SDE);
 
 
3141
3142	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143		I915_WRITE(SERR_INT, 0xffffffff);
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155{
3156	if (HAS_PCH_NOP(dev_priv))
3157		return;
3158
3159	WARN_ON(I915_READ(SDEIER) != 0);
3160	I915_WRITE(SDEIER, 0xffffffff);
3161	POSTING_READ(SDEIER);
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165{
3166	struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168	if (IS_CHERRYVIEW(dev_priv))
3169		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170	else
3171		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176	i9xx_pipestat_irq_reset(dev_priv);
3177
3178	GEN3_IRQ_RESET(uncore, VLV_);
3179	dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183{
3184	struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186	u32 pipestat_mask;
3187	u32 enable_mask;
3188	enum pipe pipe;
3189
3190	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193	for_each_pipe(dev_priv, pipe)
3194		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199		I915_LPE_PIPE_A_INTERRUPT |
3200		I915_LPE_PIPE_B_INTERRUPT;
3201
3202	if (IS_CHERRYVIEW(dev_priv))
3203		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204			I915_LPE_PIPE_C_INTERRUPT;
3205
3206	WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208	dev_priv->irq_mask = ~enable_mask;
3209
3210	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211}
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217	struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219	GEN3_IRQ_RESET(uncore, DE);
3220	if (IS_GEN(dev_priv, 7))
3221		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223	if (IS_HASWELL(dev_priv)) {
3224		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226	}
3227
3228	gen5_gt_irq_reset(&dev_priv->gt);
3229
3230	ibx_irq_reset(dev_priv);
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234{
3235	I915_WRITE(VLV_MASTER_IER, 0);
3236	POSTING_READ(VLV_MASTER_IER);
 
 
 
 
 
 
 
 
 
 
3237
3238	gen5_gt_irq_reset(&dev_priv->gt);
3239
3240	spin_lock_irq(&dev_priv->irq_lock);
3241	if (dev_priv->display_irqs_enabled)
3242		vlv_display_irq_reset(dev_priv);
3243	spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248	struct intel_uncore *uncore = &dev_priv->uncore;
3249	int pipe;
3250
3251	gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253	gen8_gt_irq_reset(&dev_priv->gt);
3254
3255	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258	for_each_pipe(dev_priv, pipe)
3259		if (intel_display_power_is_enabled(dev_priv,
3260						   POWER_DOMAIN_PIPE(pipe)))
3261			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267	if (HAS_PCH_SPLIT(dev_priv))
3268		ibx_irq_reset(dev_priv);
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273	struct intel_uncore *uncore = &dev_priv->uncore;
3274	int pipe;
3275
3276	gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278	gen11_gt_irq_reset(&dev_priv->gt);
3279
3280	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285	for_each_pipe(dev_priv, pipe)
3286		if (intel_display_power_is_enabled(dev_priv,
3287						   POWER_DOMAIN_PIPE(pipe)))
3288			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297		GEN3_IRQ_RESET(uncore, SDE);
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301				     u8 pipe_mask)
3302{
3303	struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306	enum pipe pipe;
3307
3308	spin_lock_irq(&dev_priv->irq_lock);
3309
3310	if (!intel_irqs_enabled(dev_priv)) {
3311		spin_unlock_irq(&dev_priv->irq_lock);
3312		return;
3313	}
3314
3315	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317				  dev_priv->de_irq_mask[pipe],
3318				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
 
3319
3320	spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324				     u8 pipe_mask)
3325{
3326	struct intel_uncore *uncore = &dev_priv->uncore;
3327	enum pipe pipe;
3328
3329	spin_lock_irq(&dev_priv->irq_lock);
3330
3331	if (!intel_irqs_enabled(dev_priv)) {
3332		spin_unlock_irq(&dev_priv->irq_lock);
3333		return;
3334	}
3335
3336	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339	spin_unlock_irq(&dev_priv->irq_lock);
3340
3341	/* make sure we're done processing display irqs */
3342	intel_synchronize_irq(dev_priv);
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347	struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349	I915_WRITE(GEN8_MASTER_IRQ, 0);
3350	POSTING_READ(GEN8_MASTER_IRQ);
3351
3352	gen8_gt_irq_reset(&dev_priv->gt);
3353
3354	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356	spin_lock_irq(&dev_priv->irq_lock);
3357	if (dev_priv->display_irqs_enabled)
3358		vlv_display_irq_reset(dev_priv);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363				  const u32 hpd[HPD_NUM_PINS])
3364{
3365	struct intel_encoder *encoder;
3366	u32 enabled_irqs = 0;
3367
3368	for_each_intel_encoder(&dev_priv->drm, encoder)
3369		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370			enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372	return enabled_irqs;
3373}
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377	u32 hotplug;
3378
3379	/*
3380	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381	 * duration to 2ms (which is the minimum in the Display Port spec).
3382	 * The pulse duration bits are reserved on LPT+.
3383	 */
3384	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386		     PORTC_PULSE_DURATION_MASK |
3387		     PORTD_PULSE_DURATION_MASK);
3388	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391	/*
3392	 * When CPU and PCH are on the same package, port A
3393	 * HPD must be enabled in both north and south.
3394	 */
3395	if (HAS_PCH_LPT_LP(dev_priv))
3396		hotplug |= PORTA_HOTPLUG_ENABLE;
3397	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402	u32 hotplug_irqs, enabled_irqs;
3403
3404	if (HAS_PCH_IBX(dev_priv)) {
3405		hotplug_irqs = SDE_HOTPLUG_MASK;
3406		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407	} else {
3408		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410	}
3411
3412	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
 
 
 
3413
3414	ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418				    u32 ddi_hotplug_enable_mask,
3419				    u32 tc_hotplug_enable_mask)
3420{
3421	u32 hotplug;
3422
3423	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424	hotplug |= ddi_hotplug_enable_mask;
3425	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427	if (tc_hotplug_enable_mask) {
3428		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429		hotplug |= tc_hotplug_enable_mask;
3430		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431	}
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435{
3436	u32 hotplug_irqs, enabled_irqs;
3437
3438	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443	icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444				ICP_TC_HPD_ENABLE_MASK);
3445}
3446
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
 
 
3448{
3449	u32 hotplug_irqs, enabled_irqs;
3450
3451	hotplug_irqs = SDE_DDI_MASK_TGP;
3452	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460{
3461	u32 hotplug_irqs, enabled_irqs;
3462
3463	hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
 
3465
3466	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
3467
3468	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469				TGP_TC_HPD_ENABLE_MASK);
 
 
3470}
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474	u32 hotplug;
 
3475
3476	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
 
 
 
 
 
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493	u32 hotplug_irqs, enabled_irqs;
3494	const u32 *hpd;
3495	u32 val;
3496
3497	hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501	val = I915_READ(GEN11_DE_HPD_IMR);
3502	val &= ~hotplug_irqs;
3503	I915_WRITE(GEN11_DE_HPD_IMR, val);
3504	POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506	gen11_hpd_detection_setup(dev_priv);
3507
3508	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509		tgp_hpd_irq_setup(dev_priv);
3510	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511		icp_hpd_irq_setup(dev_priv);
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516	u32 val, hotplug;
3517
3518	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3519	if (HAS_PCH_CNP(dev_priv)) {
3520		val = I915_READ(SOUTH_CHICKEN1);
3521		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523		I915_WRITE(SOUTH_CHICKEN1, val);
3524	}
3525
3526	/* Enable digital hotplug on the PCH */
3527	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528	hotplug |= PORTA_HOTPLUG_ENABLE |
3529		   PORTB_HOTPLUG_ENABLE |
3530		   PORTC_HOTPLUG_ENABLE |
3531		   PORTD_HOTPLUG_ENABLE;
3532	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535	hotplug |= PORTE_HOTPLUG_ENABLE;
3536	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541	u32 hotplug_irqs, enabled_irqs;
3542
3543	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548	spt_hpd_detection_setup(dev_priv);
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553	u32 hotplug;
3554
3555	/*
3556	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557	 * duration to 2ms (which is the minimum in the Display Port spec)
3558	 * The pulse duration bits are reserved on HSW+.
3559	 */
3560	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3564	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569	u32 hotplug_irqs, enabled_irqs;
3570
3571	if (INTEL_GEN(dev_priv) >= 8) {
3572		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576	} else if (INTEL_GEN(dev_priv) >= 7) {
3577		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581	} else {
3582		hotplug_irqs = DE_DP_A_HOTPLUG;
3583		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586	}
3587
3588	ilk_hpd_detection_setup(dev_priv);
3589
3590	ibx_hpd_irq_setup(dev_priv);
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594				      u32 enabled_irqs)
3595{
3596	u32 hotplug;
 
3597
3598	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599	hotplug |= PORTA_HOTPLUG_ENABLE |
3600		   PORTB_HOTPLUG_ENABLE |
3601		   PORTC_HOTPLUG_ENABLE;
3602
3603	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604		      hotplug, enabled_irqs);
3605	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607	/*
3608	 * For BXT invert bit has to be set based on AOB design
3609	 * for HPD detection logic, update it based on VBT fields.
3610	 */
3611	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613		hotplug |= BXT_DDIA_HPD_INVERT;
3614	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616		hotplug |= BXT_DDIB_HPD_INVERT;
3617	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619		hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627}
 
 
 
 
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631	u32 hotplug_irqs, enabled_irqs;
3632
3633	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
3643	u32 mask;
3644
3645	if (HAS_PCH_NOP(dev_priv))
3646		return;
3647
3648	if (HAS_PCH_IBX(dev_priv))
3649		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
 
 
 
 
 
3652	else
3653		mask = SDE_GMBUS_CPT;
3654
3655	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656	I915_WRITE(SDEIMR, ~mask);
3657
3658	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659	    HAS_PCH_LPT(dev_priv))
3660		ibx_hpd_detection_setup(dev_priv);
3661	else
3662		spt_hpd_detection_setup(dev_priv);
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667	struct intel_uncore *uncore = &dev_priv->uncore;
3668	u32 display_mask, extra_mask;
3669
3670	if (INTEL_GEN(dev_priv) >= 7) {
3671		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675			      DE_DP_A_HOTPLUG_IVB);
3676	} else {
3677		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679				DE_PIPEA_CRC_DONE | DE_POISON);
3680		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682			      DE_DP_A_HOTPLUG);
3683	}
3684
3685	if (IS_HASWELL(dev_priv)) {
3686		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688		display_mask |= DE_EDP_PSR_INT_HSW;
3689	}
3690
3691	dev_priv->irq_mask = ~display_mask;
3692
3693	ibx_irq_pre_postinstall(dev_priv);
3694
3695	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696		      display_mask | extra_mask);
3697
3698	gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700	ilk_hpd_detection_setup(dev_priv);
3701
3702	ibx_irq_postinstall(dev_priv);
3703
3704	if (IS_IRONLAKE_M(dev_priv)) {
3705		/* Enable PCU event interrupts
3706		 *
3707		 * spinlocking not required here for correctness since interrupt
3708		 * setup is guaranteed to run in single-threaded context. But we
3709		 * need it to make the assert_spin_locked happy. */
3710		spin_lock_irq(&dev_priv->irq_lock);
3711		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712		spin_unlock_irq(&dev_priv->irq_lock);
3713	}
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718	lockdep_assert_held(&dev_priv->irq_lock);
3719
3720	if (dev_priv->display_irqs_enabled)
3721		return;
3722
3723	dev_priv->display_irqs_enabled = true;
3724
3725	if (intel_irqs_enabled(dev_priv)) {
3726		vlv_display_irq_reset(dev_priv);
3727		vlv_display_irq_postinstall(dev_priv);
3728	}
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733	lockdep_assert_held(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
3734
3735	if (!dev_priv->display_irqs_enabled)
3736		return;
3737
3738	dev_priv->display_irqs_enabled = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739
3740	if (intel_irqs_enabled(dev_priv))
3741		vlv_display_irq_reset(dev_priv);
3742}
3743
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747	gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749	spin_lock_irq(&dev_priv->irq_lock);
3750	if (dev_priv->display_irqs_enabled)
3751		vlv_display_irq_postinstall(dev_priv);
3752	spin_unlock_irq(&dev_priv->irq_lock);
3753
3754	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755	POSTING_READ(VLV_MASTER_IER);
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
3761
3762	u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763	u32 de_pipe_enables;
3764	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765	u32 de_port_enables;
3766	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767	enum pipe pipe;
3768
3769	if (INTEL_GEN(dev_priv) <= 10)
3770		de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772	if (INTEL_GEN(dev_priv) >= 9) {
3773		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775				  GEN9_AUX_CHANNEL_D;
3776		if (IS_GEN9_LP(dev_priv))
3777			de_port_masked |= BXT_DE_PORT_GMBUS;
3778	} else {
3779		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780	}
3781
3782	if (INTEL_GEN(dev_priv) >= 11)
3783		de_port_masked |= ICL_AUX_CHANNEL_E;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3784
3785	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786		de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789					   GEN8_PIPE_FIFO_UNDERRUN;
3790
3791	de_port_enables = de_port_masked;
3792	if (IS_GEN9_LP(dev_priv))
3793		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794	else if (IS_BROADWELL(dev_priv))
3795		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797	gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800	for_each_pipe(dev_priv, pipe) {
3801		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803		if (intel_display_power_is_enabled(dev_priv,
3804				POWER_DOMAIN_PIPE(pipe)))
3805			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806					  dev_priv->de_irq_mask[pipe],
3807					  de_pipe_enables);
3808	}
 
3809
3810	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813	if (INTEL_GEN(dev_priv) >= 11) {
3814		u32 de_hpd_masked = 0;
3815		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816				     GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819			      de_hpd_enables);
3820		gen11_hpd_detection_setup(dev_priv);
3821	} else if (IS_GEN9_LP(dev_priv)) {
3822		bxt_hpd_detection_setup(dev_priv);
3823	} else if (IS_BROADWELL(dev_priv)) {
3824		ilk_hpd_detection_setup(dev_priv);
3825	}
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830	if (HAS_PCH_SPLIT(dev_priv))
3831		ibx_irq_pre_postinstall(dev_priv);
3832
3833	gen8_gt_irq_postinstall(&dev_priv->gt);
3834	gen8_de_irq_postinstall(dev_priv);
3835
3836	if (HAS_PCH_SPLIT(dev_priv))
3837		ibx_irq_postinstall(dev_priv);
3838
3839	gen8_master_intr_enable(dev_priv->uncore.regs);
 
 
 
 
 
 
 
 
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844	u32 mask = SDE_GMBUS_ICP;
3845
3846	WARN_ON(I915_READ(SDEIER) != 0);
3847	I915_WRITE(SDEIER, 0xffffffff);
3848	POSTING_READ(SDEIER);
3849
3850	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851	I915_WRITE(SDEIMR, ~mask);
3852
3853	if (HAS_PCH_TGP(dev_priv))
3854		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855					TGP_TC_HPD_ENABLE_MASK);
3856	else if (HAS_PCH_MCC(dev_priv))
3857		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858	else
3859		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860					ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865	struct intel_uncore *uncore = &dev_priv->uncore;
3866	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869		icp_irq_postinstall(dev_priv);
3870
3871	gen11_gt_irq_postinstall(&dev_priv->gt);
3872	gen8_de_irq_postinstall(dev_priv);
3873
3874	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
 
 
3875
3876	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878	gen11_master_intr_enable(uncore->regs);
3879	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880}
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884	gen8_gt_irq_postinstall(&dev_priv->gt);
 
3885
3886	spin_lock_irq(&dev_priv->irq_lock);
3887	if (dev_priv->display_irqs_enabled)
3888		vlv_display_irq_postinstall(dev_priv);
3889	spin_unlock_irq(&dev_priv->irq_lock);
3890
3891	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892	POSTING_READ(GEN8_MASTER_IRQ);
 
 
 
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897	struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899	i9xx_pipestat_irq_reset(dev_priv);
3900
3901	GEN2_IRQ_RESET(uncore);
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906	struct intel_uncore *uncore = &dev_priv->uncore;
3907	u16 enable_mask;
3908
3909	intel_uncore_write16(uncore,
3910			     EMR,
3911			     ~(I915_ERROR_PAGE_TABLE |
3912			       I915_ERROR_MEMORY_REFRESH));
3913
3914	/* Unmask the interrupts that we always want on. */
3915	dev_priv->irq_mask =
3916		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918		  I915_MASTER_ERROR_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
3919
3920	enable_mask =
3921		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923		I915_MASTER_ERROR_INTERRUPT |
3924		I915_USER_INTERRUPT;
3925
3926	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928	/* Interrupt setup is already guaranteed to be single-threaded, this is
3929	 * just to make the assert_spin_locked check happy. */
3930	spin_lock_irq(&dev_priv->irq_lock);
3931	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933	spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937			       u16 *eir, u16 *eir_stuck)
3938{
3939	struct intel_uncore *uncore = &i915->uncore;
3940	u16 emr;
 
 
 
 
 
 
 
 
3941
3942	*eir = intel_uncore_read16(uncore, EIR);
3943
3944	if (*eir)
3945		intel_uncore_write16(uncore, EIR, *eir);
 
3946
3947	*eir_stuck = intel_uncore_read16(uncore, EIR);
3948	if (*eir_stuck == 0)
3949		return;
 
 
 
 
 
 
 
 
 
 
3950
3951	/*
3952	 * Toggle all EMR bits to make sure we get an edge
3953	 * in the ISR master error bit if we don't clear
3954	 * all the EIR bits. Otherwise the edge triggered
3955	 * IIR on i965/g4x wouldn't notice that an interrupt
3956	 * is still pending. Also some EIR bits can't be
3957	 * cleared except by handling the underlying error
3958	 * (or by a GPU reset) so we mask any bit that
3959	 * remains set.
3960	 */
3961	emr = intel_uncore_read16(uncore, EMR);
3962	intel_uncore_write16(uncore, EMR, 0xffff);
3963	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967				   u16 eir, u16 eir_stuck)
3968{
3969	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971	if (eir_stuck)
3972		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976			       u32 *eir, u32 *eir_stuck)
3977{
3978	u32 emr;
3979
3980	*eir = I915_READ(EIR);
 
 
 
 
 
 
 
3981
3982	I915_WRITE(EIR, *eir);
 
 
 
 
 
 
 
3983
3984	*eir_stuck = I915_READ(EIR);
3985	if (*eir_stuck == 0)
3986		return;
3987
3988	/*
3989	 * Toggle all EMR bits to make sure we get an edge
3990	 * in the ISR master error bit if we don't clear
3991	 * all the EIR bits. Otherwise the edge triggered
3992	 * IIR on i965/g4x wouldn't notice that an interrupt
3993	 * is still pending. Also some EIR bits can't be
3994	 * cleared except by handling the underlying error
3995	 * (or by a GPU reset) so we mask any bit that
3996	 * remains set.
3997	 */
3998	emr = I915_READ(EMR);
3999	I915_WRITE(EMR, 0xffffffff);
4000	I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004				   u32 eir, u32 eir_stuck)
4005{
4006	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
 
4007
4008	if (eir_stuck)
4009		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
 
 
 
 
 
 
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014	struct drm_i915_private *dev_priv = arg;
4015	irqreturn_t ret = IRQ_NONE;
4016
4017	if (!intel_irqs_enabled(dev_priv))
4018		return IRQ_NONE;
4019
4020	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023	do {
4024		u32 pipe_stats[I915_MAX_PIPES] = {};
4025		u16 eir = 0, eir_stuck = 0;
4026		u16 iir;
4027
4028		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029		if (iir == 0)
4030			break;
4031
4032		ret = IRQ_HANDLED;
4033
4034		/* Call regardless, as some status bits might not be
4035		 * signalled in iir */
4036		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038		if (iir & I915_MASTER_ERROR_INTERRUPT)
4039			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043		if (iir & I915_USER_INTERRUPT)
4044			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046		if (iir & I915_MASTER_ERROR_INTERRUPT)
4047			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050	} while (0);
4051
4052	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054	return ret;
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059	struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061	if (I915_HAS_HOTPLUG(dev_priv)) {
4062		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064	}
4065
4066	i9xx_pipestat_irq_reset(dev_priv);
4067
4068	GEN3_IRQ_RESET(uncore, GEN2_);
 
 
 
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072{
4073	struct intel_uncore *uncore = &dev_priv->uncore;
4074	u32 enable_mask;
4075
4076	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077			  I915_ERROR_MEMORY_REFRESH));
 
 
4078
4079	/* Unmask the interrupts that we always want on. */
4080	dev_priv->irq_mask =
4081		~(I915_ASLE_INTERRUPT |
4082		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084		  I915_MASTER_ERROR_INTERRUPT);
 
 
4085
4086	enable_mask =
4087		I915_ASLE_INTERRUPT |
4088		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090		I915_MASTER_ERROR_INTERRUPT |
4091		I915_USER_INTERRUPT;
4092
4093	if (I915_HAS_HOTPLUG(dev_priv)) {
4094		/* Enable in IER... */
4095		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096		/* and unmask in IMR */
4097		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098	}
4099
4100	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4101
4102	/* Interrupt setup is already guaranteed to be single-threaded, this is
4103	 * just to make the assert_spin_locked check happy. */
4104	spin_lock_irq(&dev_priv->irq_lock);
4105	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107	spin_unlock_irq(&dev_priv->irq_lock);
4108
4109	i915_enable_asle_pipestat(dev_priv);
 
 
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
4113{
4114	struct drm_i915_private *dev_priv = arg;
4115	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
4116
4117	if (!intel_irqs_enabled(dev_priv))
4118		return IRQ_NONE;
4119
4120	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
4122
4123	do {
4124		u32 pipe_stats[I915_MAX_PIPES] = {};
4125		u32 eir = 0, eir_stuck = 0;
4126		u32 hotplug_status = 0;
4127		u32 iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4128
4129		iir = I915_READ(GEN2_IIR);
4130		if (iir == 0)
4131			break;
4132
4133		ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
4134
4135		if (I915_HAS_HOTPLUG(dev_priv) &&
4136		    iir & I915_DISPLAY_PORT_INTERRUPT)
4137			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139		/* Call regardless, as some status bits might not be
4140		 * signalled in iir */
4141		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143		if (iir & I915_MASTER_ERROR_INTERRUPT)
4144			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146		I915_WRITE(GEN2_IIR, iir);
4147
4148		if (iir & I915_USER_INTERRUPT)
4149			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151		if (iir & I915_MASTER_ERROR_INTERRUPT)
4152			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
4153
4154		if (hotplug_status)
4155			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 
4156
4157		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158	} while (0);
4159
4160	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161
4162	return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167	struct intel_uncore *uncore = &dev_priv->uncore;
 
4168
4169	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
4171
4172	i9xx_pipestat_irq_reset(dev_priv);
 
 
 
 
 
 
 
4173
4174	GEN3_IRQ_RESET(uncore, GEN2_);
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4180	u32 enable_mask;
4181	u32 error_mask;
4182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4183	/*
4184	 * Enable some error detection, note the instruction error mask
4185	 * bit is reserved, so we leave it masked.
4186	 */
4187	if (IS_G4X(dev_priv)) {
4188		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189			       GM45_ERROR_MEM_PRIV |
4190			       GM45_ERROR_CP_PRIV |
4191			       I915_ERROR_MEMORY_REFRESH);
4192	} else {
4193		error_mask = ~(I915_ERROR_PAGE_TABLE |
4194			       I915_ERROR_MEMORY_REFRESH);
4195	}
4196	I915_WRITE(EMR, error_mask);
4197
4198	/* Unmask the interrupts that we always want on. */
4199	dev_priv->irq_mask =
4200		~(I915_ASLE_INTERRUPT |
4201		  I915_DISPLAY_PORT_INTERRUPT |
4202		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204		  I915_MASTER_ERROR_INTERRUPT);
4205
4206	enable_mask =
4207		I915_ASLE_INTERRUPT |
4208		I915_DISPLAY_PORT_INTERRUPT |
4209		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211		I915_MASTER_ERROR_INTERRUPT |
4212		I915_USER_INTERRUPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4213
4214	if (IS_G4X(dev_priv))
4215		enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
 
4218
4219	/* Interrupt setup is already guaranteed to be single-threaded, this is
4220	 * just to make the assert_spin_locked check happy. */
4221	spin_lock_irq(&dev_priv->irq_lock);
4222	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225	spin_unlock_irq(&dev_priv->irq_lock);
4226
4227	i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
4232	u32 hotplug_en;
 
 
 
 
 
 
4233
4234	lockdep_assert_held(&dev_priv->irq_lock);
4235
4236	/* Note HDMI and DP share hotplug bits */
4237	/* enable bits are the same for all generations */
4238	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239	/* Programming the CRT detection parameters tends
4240	   to generate a spurious hotplug event about three
4241	   seconds later.  So just do it once.
4242	*/
4243	if (IS_G4X(dev_priv))
4244		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247	/* Ignore TV since it's buggy */
4248	i915_hotplug_interrupt_update_locked(dev_priv,
4249					     HOTPLUG_INT_EN_MASK |
4250					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252					     hotplug_en);
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257	struct drm_i915_private *dev_priv = arg;
4258	irqreturn_t ret = IRQ_NONE;
4259
4260	if (!intel_irqs_enabled(dev_priv))
4261		return IRQ_NONE;
4262
4263	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
 
 
 
4265
4266	do {
4267		u32 pipe_stats[I915_MAX_PIPES] = {};
4268		u32 eir = 0, eir_stuck = 0;
4269		u32 hotplug_status = 0;
4270		u32 iir;
 
 
 
 
 
 
 
4271
4272		iir = I915_READ(GEN2_IIR);
4273		if (iir == 0)
4274			break;
4275
4276		ret = IRQ_HANDLED;
4277
4278		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 
 
 
 
 
 
 
 
4280
4281		/* Call regardless, as some status bits might not be
4282		 * signalled in iir */
4283		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285		if (iir & I915_MASTER_ERROR_INTERRUPT)
4286			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288		I915_WRITE(GEN2_IIR, iir);
4289
4290		if (iir & I915_USER_INTERRUPT)
4291			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293		if (iir & I915_BSD_USER_INTERRUPT)
4294			intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296		if (iir & I915_MASTER_ERROR_INTERRUPT)
4297			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299		if (hotplug_status)
4300			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303	} while (0);
 
 
 
 
4304
4305	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
4306
4307	return ret;
4308}
4309
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319	struct drm_device *dev = &dev_priv->drm;
4320	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321	int i;
4322
4323	if (IS_I945GM(dev_priv))
4324		i945gm_vblank_work_init(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325
4326	intel_hpd_init_work(dev_priv);
4327
4328	INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331	for (i = 0; i < MAX_L3_SLICES; ++i)
4332		dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338	/* Let's track the enabled rps events */
4339	if (IS_VALLEYVIEW(dev_priv))
4340		/* WaGsvRC0ResidencyMethod:vlv */
4341		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342	else
4343		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344					   GEN6_PM_RP_DOWN_THRESHOLD |
4345					   GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347	/* We share the register with other engine */
4348	if (INTEL_GEN(dev_priv) > 9)
4349		GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351	rps->pm_intrmsk_mbz = 0;
4352
4353	/*
4354	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356	 *
4357	 * TODO: verify if this can be reproduced on VLV,CHV.
4358	 */
4359	if (INTEL_GEN(dev_priv) <= 7)
4360		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362	if (INTEL_GEN(dev_priv) >= 8)
4363		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365	dev->vblank_disable_immediate = true;
4366
4367	/* Most platforms treat the display irq block as an always-on
4368	 * power domain. vlv/chv can disable it at runtime and need
4369	 * special care to avoid writing any of the display block registers
4370	 * outside of the power domain. We defer setting up the display irqs
4371	 * in this case to the runtime pm.
4372	 */
4373	dev_priv->display_irqs_enabled = true;
4374	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375		dev_priv->display_irqs_enabled = false;
4376
4377	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4379	 * detection, as short HPD storms will occur as a natural part of
4380	 * sideband messaging with MST.
4381	 * On older platforms however, IRQ storms can occur with both long and
4382	 * short pulses, as seen on some G4x systems.
4383	 */
4384	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386	if (HAS_GMCH(dev_priv)) {
4387		if (I915_HAS_HOTPLUG(dev_priv))
4388			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389	} else {
4390		if (HAS_PCH_MCC(dev_priv))
4391			/* EHL doesn't need most of gen11_hpd_irq_setup */
4392			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393		else if (INTEL_GEN(dev_priv) >= 11)
4394			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395		else if (IS_GEN9_LP(dev_priv))
4396			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399		else
4400			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401	}
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412	int i;
 
4413
4414	if (IS_I945GM(i915))
4415		i945gm_vblank_work_fini(i915);
4416
4417	for (i = 0; i < MAX_L3_SLICES; ++i)
4418		kfree(i915->l3_parity.remap_info[i]);
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423	if (HAS_GMCH(dev_priv)) {
4424		if (IS_CHERRYVIEW(dev_priv))
4425			return cherryview_irq_handler;
4426		else if (IS_VALLEYVIEW(dev_priv))
4427			return valleyview_irq_handler;
4428		else if (IS_GEN(dev_priv, 4))
4429			return i965_irq_handler;
4430		else if (IS_GEN(dev_priv, 3))
4431			return i915_irq_handler;
4432		else
4433			return i8xx_irq_handler;
4434	} else {
4435		if (INTEL_GEN(dev_priv) >= 11)
4436			return gen11_irq_handler;
4437		else if (INTEL_GEN(dev_priv) >= 8)
4438			return gen8_irq_handler;
4439		else
4440			return ironlake_irq_handler;
4441	}
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446	if (HAS_GMCH(dev_priv)) {
4447		if (IS_CHERRYVIEW(dev_priv))
4448			cherryview_irq_reset(dev_priv);
4449		else if (IS_VALLEYVIEW(dev_priv))
4450			valleyview_irq_reset(dev_priv);
4451		else if (IS_GEN(dev_priv, 4))
4452			i965_irq_reset(dev_priv);
4453		else if (IS_GEN(dev_priv, 3))
4454			i915_irq_reset(dev_priv);
4455		else
4456			i8xx_irq_reset(dev_priv);
4457	} else {
4458		if (INTEL_GEN(dev_priv) >= 11)
4459			gen11_irq_reset(dev_priv);
4460		else if (INTEL_GEN(dev_priv) >= 8)
4461			gen8_irq_reset(dev_priv);
4462		else
4463			ironlake_irq_reset(dev_priv);
4464	}
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469	if (HAS_GMCH(dev_priv)) {
4470		if (IS_CHERRYVIEW(dev_priv))
4471			cherryview_irq_postinstall(dev_priv);
4472		else if (IS_VALLEYVIEW(dev_priv))
4473			valleyview_irq_postinstall(dev_priv);
4474		else if (IS_GEN(dev_priv, 4))
4475			i965_irq_postinstall(dev_priv);
4476		else if (IS_GEN(dev_priv, 3))
4477			i915_irq_postinstall(dev_priv);
4478		else
4479			i8xx_irq_postinstall(dev_priv);
4480	} else {
4481		if (INTEL_GEN(dev_priv) >= 11)
4482			gen11_irq_postinstall(dev_priv);
4483		else if (INTEL_GEN(dev_priv) >= 8)
4484			gen8_irq_postinstall(dev_priv);
4485		else
4486			ironlake_irq_postinstall(dev_priv);
4487	}
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503	int irq = dev_priv->drm.pdev->irq;
4504	int ret;
4505
4506	/*
4507	 * We enable some interrupt sources in our postinstall hooks, so mark
4508	 * interrupts as enabled _before_ actually enabling them to avoid
4509	 * special cases in our ordering checks.
4510	 */
4511	dev_priv->runtime_pm.irqs_enabled = true;
4512
4513	dev_priv->drm.irq_enabled = true;
 
 
 
 
 
4514
4515	intel_irq_reset(dev_priv);
 
 
 
 
4516
4517	ret = request_irq(irq, intel_irq_handler(dev_priv),
4518			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4519	if (ret < 0) {
4520		dev_priv->drm.irq_enabled = false;
4521		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522	}
4523
4524	intel_irq_postinstall(dev_priv);
4525
4526	return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538	int irq = dev_priv->drm.pdev->irq;
4539
4540	/*
4541	 * FIXME we can get called twice during driver load
4542	 * error handling due to intel_modeset_cleanup()
4543	 * calling us out of sequence. Would be nice if
4544	 * it didn't do that...
4545	 */
4546	if (!dev_priv->drm.irq_enabled)
4547		return;
4548
4549	dev_priv->drm.irq_enabled = false;
4550
4551	intel_irq_reset(dev_priv);
4552
4553	free_irq(irq, dev_priv);
4554
4555	intel_hpd_cancel_work(dev_priv);
4556	dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568	intel_irq_reset(dev_priv);
4569	dev_priv->runtime_pm.irqs_enabled = false;
4570	intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582	dev_priv->runtime_pm.irqs_enabled = true;
4583	intel_irq_reset(dev_priv);
4584	intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589	/*
4590	 * We only use drm_irq_uninstall() at unload and VT switch, so
4591	 * this is the only thing we need to check.
4592	 */
4593	return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598	synchronize_irq(i915->drm.pdev->irq);
4599}