Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Functions related to setting various queue properties from drivers
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/init.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
 10#include <linux/gcd.h>
 11#include <linux/lcm.h>
 12#include <linux/jiffies.h>
 13#include <linux/gfp.h>
 
 14
 15#include "blk.h"
 
 16
 17unsigned long blk_max_low_pfn;
 18EXPORT_SYMBOL(blk_max_low_pfn);
 19
 20unsigned long blk_max_pfn;
 21
 22/**
 23 * blk_queue_prep_rq - set a prepare_request function for queue
 24 * @q:		queue
 25 * @pfn:	prepare_request function
 26 *
 27 * It's possible for a queue to register a prepare_request callback which
 28 * is invoked before the request is handed to the request_fn. The goal of
 29 * the function is to prepare a request for I/O, it can be used to build a
 30 * cdb from the request data for instance.
 31 *
 32 */
 33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
 34{
 35	q->prep_rq_fn = pfn;
 36}
 37EXPORT_SYMBOL(blk_queue_prep_rq);
 38
 39/**
 40 * blk_queue_unprep_rq - set an unprepare_request function for queue
 41 * @q:		queue
 42 * @ufn:	unprepare_request function
 43 *
 44 * It's possible for a queue to register an unprepare_request callback
 45 * which is invoked before the request is finally completed. The goal
 46 * of the function is to deallocate any data that was allocated in the
 47 * prepare_request callback.
 48 *
 49 */
 50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
 51{
 52	q->unprep_rq_fn = ufn;
 53}
 54EXPORT_SYMBOL(blk_queue_unprep_rq);
 55
 56/**
 57 * blk_queue_merge_bvec - set a merge_bvec function for queue
 58 * @q:		queue
 59 * @mbfn:	merge_bvec_fn
 60 *
 61 * Usually queues have static limitations on the max sectors or segments that
 62 * we can put in a request. Stacking drivers may have some settings that
 63 * are dynamic, and thus we have to query the queue whether it is ok to
 64 * add a new bio_vec to a bio at a given offset or not. If the block device
 65 * has such limitations, it needs to register a merge_bvec_fn to control
 66 * the size of bio's sent to it. Note that a block device *must* allow a
 67 * single page to be added to an empty bio. The block device driver may want
 68 * to use the bio_split() function to deal with these bio's. By default
 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 70 * honored.
 71 */
 72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
 73{
 74	q->merge_bvec_fn = mbfn;
 75}
 76EXPORT_SYMBOL(blk_queue_merge_bvec);
 77
 78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
 79{
 80	q->softirq_done_fn = fn;
 81}
 82EXPORT_SYMBOL(blk_queue_softirq_done);
 83
 84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 85{
 86	q->rq_timeout = timeout;
 87}
 88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 89
 90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
 91{
 92	q->rq_timed_out_fn = fn;
 93}
 94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
 95
 96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
 97{
 98	q->lld_busy_fn = fn;
 99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102/**
103 * blk_set_default_limits - reset limits to default values
104 * @lim:  the queue_limits structure to reset
105 *
106 * Description:
107 *   Returns a queue_limit struct to its default state.
108 */
109void blk_set_default_limits(struct queue_limits *lim)
110{
111	lim->max_segments = BLK_MAX_SEGMENTS;
 
112	lim->max_integrity_segments = 0;
113	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 
114	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 
 
 
 
116	lim->max_discard_sectors = 0;
 
117	lim->discard_granularity = 0;
118	lim->discard_alignment = 0;
119	lim->discard_misaligned = 0;
120	lim->discard_zeroes_data = 0;
121	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
122	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
123	lim->alignment_offset = 0;
124	lim->io_opt = 0;
125	lim->misaligned = 0;
126	lim->cluster = 1;
127}
128EXPORT_SYMBOL(blk_set_default_limits);
129
130/**
131 * blk_set_stacking_limits - set default limits for stacking devices
132 * @lim:  the queue_limits structure to reset
133 *
134 * Description:
135 *   Returns a queue_limit struct to its default state. Should be used
136 *   by stacking drivers like DM that have no internal limits.
137 */
138void blk_set_stacking_limits(struct queue_limits *lim)
139{
140	blk_set_default_limits(lim);
141
142	/* Inherit limits from component devices */
143	lim->discard_zeroes_data = 1;
144	lim->max_segments = USHRT_MAX;
 
145	lim->max_hw_sectors = UINT_MAX;
146
147	lim->max_sectors = BLK_DEF_MAX_SECTORS;
 
 
 
148}
149EXPORT_SYMBOL(blk_set_stacking_limits);
150
151/**
152 * blk_queue_make_request - define an alternate make_request function for a device
153 * @q:  the request queue for the device to be affected
154 * @mfn: the alternate make_request function
155 *
156 * Description:
157 *    The normal way for &struct bios to be passed to a device
158 *    driver is for them to be collected into requests on a request
159 *    queue, and then to allow the device driver to select requests
160 *    off that queue when it is ready.  This works well for many block
161 *    devices. However some block devices (typically virtual devices
162 *    such as md or lvm) do not benefit from the processing on the
163 *    request queue, and are served best by having the requests passed
164 *    directly to them.  This can be achieved by providing a function
165 *    to blk_queue_make_request().
166 *
167 * Caveat:
168 *    The driver that does this *must* be able to deal appropriately
169 *    with buffers in "highmemory". This can be accomplished by either calling
170 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
171 *    blk_queue_bounce() to create a buffer in normal memory.
172 **/
173void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
174{
175	/*
176	 * set defaults
177	 */
178	q->nr_requests = BLKDEV_MAX_RQ;
179
180	q->make_request_fn = mfn;
181	blk_queue_dma_alignment(q, 511);
182	blk_queue_congestion_threshold(q);
183	q->nr_batching = BLK_BATCH_REQ;
184
185	blk_set_default_limits(&q->limits);
186
187	/*
188	 * by default assume old behaviour and bounce for any highmem page
189	 */
190	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
191}
192EXPORT_SYMBOL(blk_queue_make_request);
193
194/**
195 * blk_queue_bounce_limit - set bounce buffer limit for queue
196 * @q: the request queue for the device
197 * @dma_mask: the maximum address the device can handle
198 *
199 * Description:
200 *    Different hardware can have different requirements as to what pages
201 *    it can do I/O directly to. A low level driver can call
202 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
203 *    buffers for doing I/O to pages residing above @dma_mask.
204 **/
205void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
206{
207	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
208	int dma = 0;
209
210	q->bounce_gfp = GFP_NOIO;
211#if BITS_PER_LONG == 64
212	/*
213	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
214	 * some IOMMUs can handle everything, but I don't know of a
215	 * way to test this here.
216	 */
217	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
218		dma = 1;
219	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
220#else
221	if (b_pfn < blk_max_low_pfn)
222		dma = 1;
223	q->limits.bounce_pfn = b_pfn;
224#endif
225	if (dma) {
226		init_emergency_isa_pool();
227		q->bounce_gfp = GFP_NOIO | GFP_DMA;
228		q->limits.bounce_pfn = b_pfn;
229	}
230}
231EXPORT_SYMBOL(blk_queue_bounce_limit);
232
233/**
234 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
235 * @limits: the queue limits
236 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
237 *
238 * Description:
239 *    Enables a low level driver to set a hard upper limit,
240 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
241 *    the device driver based upon the combined capabilities of I/O
242 *    controller and storage device.
 
 
 
243 *
244 *    max_sectors is a soft limit imposed by the block layer for
245 *    filesystem type requests.  This value can be overridden on a
246 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
247 *    The soft limit can not exceed max_hw_sectors.
248 **/
249void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
250{
251	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
252		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
 
 
 
253		printk(KERN_INFO "%s: set to minimum %d\n",
254		       __func__, max_hw_sectors);
255	}
256
257	limits->max_hw_sectors = max_hw_sectors;
258	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
259				    BLK_DEF_MAX_SECTORS);
 
 
260}
261EXPORT_SYMBOL(blk_limits_max_hw_sectors);
262
263/**
264 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
265 * @q:  the request queue for the device
266 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
267 *
268 * Description:
269 *    See description for blk_limits_max_hw_sectors().
 
 
 
 
 
270 **/
271void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
272{
273	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
 
274}
275EXPORT_SYMBOL(blk_queue_max_hw_sectors);
276
277/**
278 * blk_queue_max_discard_sectors - set max sectors for a single discard
279 * @q:  the request queue for the device
280 * @max_discard_sectors: maximum number of sectors to discard
281 **/
282void blk_queue_max_discard_sectors(struct request_queue *q,
283		unsigned int max_discard_sectors)
284{
 
285	q->limits.max_discard_sectors = max_discard_sectors;
286}
287EXPORT_SYMBOL(blk_queue_max_discard_sectors);
288
289/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290 * blk_queue_max_segments - set max hw segments for a request for this queue
291 * @q:  the request queue for the device
292 * @max_segments:  max number of segments
293 *
294 * Description:
295 *    Enables a low level driver to set an upper limit on the number of
296 *    hw data segments in a request.
297 **/
298void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
299{
300	if (!max_segments) {
301		max_segments = 1;
302		printk(KERN_INFO "%s: set to minimum %d\n",
303		       __func__, max_segments);
304	}
305
306	q->limits.max_segments = max_segments;
307}
308EXPORT_SYMBOL(blk_queue_max_segments);
309
310/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
312 * @q:  the request queue for the device
313 * @max_size:  max size of segment in bytes
314 *
315 * Description:
316 *    Enables a low level driver to set an upper limit on the size of a
317 *    coalesced segment
318 **/
319void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
320{
321	if (max_size < PAGE_CACHE_SIZE) {
322		max_size = PAGE_CACHE_SIZE;
323		printk(KERN_INFO "%s: set to minimum %d\n",
324		       __func__, max_size);
325	}
326
 
 
 
327	q->limits.max_segment_size = max_size;
328}
329EXPORT_SYMBOL(blk_queue_max_segment_size);
330
331/**
332 * blk_queue_logical_block_size - set logical block size for the queue
333 * @q:  the request queue for the device
334 * @size:  the logical block size, in bytes
335 *
336 * Description:
337 *   This should be set to the lowest possible block size that the
338 *   storage device can address.  The default of 512 covers most
339 *   hardware.
340 **/
341void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
342{
343	q->limits.logical_block_size = size;
344
345	if (q->limits.physical_block_size < size)
346		q->limits.physical_block_size = size;
347
348	if (q->limits.io_min < q->limits.physical_block_size)
349		q->limits.io_min = q->limits.physical_block_size;
350}
351EXPORT_SYMBOL(blk_queue_logical_block_size);
352
353/**
354 * blk_queue_physical_block_size - set physical block size for the queue
355 * @q:  the request queue for the device
356 * @size:  the physical block size, in bytes
357 *
358 * Description:
359 *   This should be set to the lowest possible sector size that the
360 *   hardware can operate on without reverting to read-modify-write
361 *   operations.
362 */
363void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
364{
365	q->limits.physical_block_size = size;
366
367	if (q->limits.physical_block_size < q->limits.logical_block_size)
368		q->limits.physical_block_size = q->limits.logical_block_size;
369
370	if (q->limits.io_min < q->limits.physical_block_size)
371		q->limits.io_min = q->limits.physical_block_size;
372}
373EXPORT_SYMBOL(blk_queue_physical_block_size);
374
375/**
376 * blk_queue_alignment_offset - set physical block alignment offset
377 * @q:	the request queue for the device
378 * @offset: alignment offset in bytes
379 *
380 * Description:
381 *   Some devices are naturally misaligned to compensate for things like
382 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
383 *   should call this function for devices whose first sector is not
384 *   naturally aligned.
385 */
386void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
387{
388	q->limits.alignment_offset =
389		offset & (q->limits.physical_block_size - 1);
390	q->limits.misaligned = 0;
391}
392EXPORT_SYMBOL(blk_queue_alignment_offset);
393
394/**
395 * blk_limits_io_min - set minimum request size for a device
396 * @limits: the queue limits
397 * @min:  smallest I/O size in bytes
398 *
399 * Description:
400 *   Some devices have an internal block size bigger than the reported
401 *   hardware sector size.  This function can be used to signal the
402 *   smallest I/O the device can perform without incurring a performance
403 *   penalty.
404 */
405void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
406{
407	limits->io_min = min;
408
409	if (limits->io_min < limits->logical_block_size)
410		limits->io_min = limits->logical_block_size;
411
412	if (limits->io_min < limits->physical_block_size)
413		limits->io_min = limits->physical_block_size;
414}
415EXPORT_SYMBOL(blk_limits_io_min);
416
417/**
418 * blk_queue_io_min - set minimum request size for the queue
419 * @q:	the request queue for the device
420 * @min:  smallest I/O size in bytes
421 *
422 * Description:
423 *   Storage devices may report a granularity or preferred minimum I/O
424 *   size which is the smallest request the device can perform without
425 *   incurring a performance penalty.  For disk drives this is often the
426 *   physical block size.  For RAID arrays it is often the stripe chunk
427 *   size.  A properly aligned multiple of minimum_io_size is the
428 *   preferred request size for workloads where a high number of I/O
429 *   operations is desired.
430 */
431void blk_queue_io_min(struct request_queue *q, unsigned int min)
432{
433	blk_limits_io_min(&q->limits, min);
434}
435EXPORT_SYMBOL(blk_queue_io_min);
436
437/**
438 * blk_limits_io_opt - set optimal request size for a device
439 * @limits: the queue limits
440 * @opt:  smallest I/O size in bytes
441 *
442 * Description:
443 *   Storage devices may report an optimal I/O size, which is the
444 *   device's preferred unit for sustained I/O.  This is rarely reported
445 *   for disk drives.  For RAID arrays it is usually the stripe width or
446 *   the internal track size.  A properly aligned multiple of
447 *   optimal_io_size is the preferred request size for workloads where
448 *   sustained throughput is desired.
449 */
450void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
451{
452	limits->io_opt = opt;
453}
454EXPORT_SYMBOL(blk_limits_io_opt);
455
456/**
457 * blk_queue_io_opt - set optimal request size for the queue
458 * @q:	the request queue for the device
459 * @opt:  optimal request size in bytes
460 *
461 * Description:
462 *   Storage devices may report an optimal I/O size, which is the
463 *   device's preferred unit for sustained I/O.  This is rarely reported
464 *   for disk drives.  For RAID arrays it is usually the stripe width or
465 *   the internal track size.  A properly aligned multiple of
466 *   optimal_io_size is the preferred request size for workloads where
467 *   sustained throughput is desired.
468 */
469void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
470{
471	blk_limits_io_opt(&q->limits, opt);
472}
473EXPORT_SYMBOL(blk_queue_io_opt);
474
475/**
476 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
477 * @t:	the stacking driver (top)
478 * @b:  the underlying device (bottom)
479 **/
480void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
481{
482	blk_stack_limits(&t->limits, &b->limits, 0);
483}
484EXPORT_SYMBOL(blk_queue_stack_limits);
485
486/**
487 * blk_stack_limits - adjust queue_limits for stacked devices
488 * @t:	the stacking driver limits (top device)
489 * @b:  the underlying queue limits (bottom, component device)
490 * @start:  first data sector within component device
491 *
492 * Description:
493 *    This function is used by stacking drivers like MD and DM to ensure
494 *    that all component devices have compatible block sizes and
495 *    alignments.  The stacking driver must provide a queue_limits
496 *    struct (top) and then iteratively call the stacking function for
497 *    all component (bottom) devices.  The stacking function will
498 *    attempt to combine the values and ensure proper alignment.
499 *
500 *    Returns 0 if the top and bottom queue_limits are compatible.  The
501 *    top device's block sizes and alignment offsets may be adjusted to
502 *    ensure alignment with the bottom device. If no compatible sizes
503 *    and alignments exist, -1 is returned and the resulting top
504 *    queue_limits will have the misaligned flag set to indicate that
505 *    the alignment_offset is undefined.
506 */
507int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
508		     sector_t start)
509{
510	unsigned int top, bottom, alignment, ret = 0;
511
512	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
513	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 
 
 
 
 
514	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
515
516	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
517					    b->seg_boundary_mask);
 
 
518
519	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 
 
520	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
521						 b->max_integrity_segments);
522
523	t->max_segment_size = min_not_zero(t->max_segment_size,
524					   b->max_segment_size);
525
526	t->misaligned |= b->misaligned;
527
528	alignment = queue_limit_alignment_offset(b, start);
529
530	/* Bottom device has different alignment.  Check that it is
531	 * compatible with the current top alignment.
532	 */
533	if (t->alignment_offset != alignment) {
534
535		top = max(t->physical_block_size, t->io_min)
536			+ t->alignment_offset;
537		bottom = max(b->physical_block_size, b->io_min) + alignment;
538
539		/* Verify that top and bottom intervals line up */
540		if (max(top, bottom) & (min(top, bottom) - 1)) {
541			t->misaligned = 1;
542			ret = -1;
543		}
544	}
545
546	t->logical_block_size = max(t->logical_block_size,
547				    b->logical_block_size);
548
549	t->physical_block_size = max(t->physical_block_size,
550				     b->physical_block_size);
551
552	t->io_min = max(t->io_min, b->io_min);
553	t->io_opt = lcm(t->io_opt, b->io_opt);
554
555	t->cluster &= b->cluster;
556	t->discard_zeroes_data &= b->discard_zeroes_data;
557
558	/* Physical block size a multiple of the logical block size? */
559	if (t->physical_block_size & (t->logical_block_size - 1)) {
560		t->physical_block_size = t->logical_block_size;
561		t->misaligned = 1;
562		ret = -1;
563	}
564
565	/* Minimum I/O a multiple of the physical block size? */
566	if (t->io_min & (t->physical_block_size - 1)) {
567		t->io_min = t->physical_block_size;
568		t->misaligned = 1;
569		ret = -1;
570	}
571
572	/* Optimal I/O a multiple of the physical block size? */
573	if (t->io_opt & (t->physical_block_size - 1)) {
574		t->io_opt = 0;
575		t->misaligned = 1;
576		ret = -1;
577	}
578
 
 
 
 
579	/* Find lowest common alignment_offset */
580	t->alignment_offset = lcm(t->alignment_offset, alignment)
581		& (max(t->physical_block_size, t->io_min) - 1);
582
583	/* Verify that new alignment_offset is on a logical block boundary */
584	if (t->alignment_offset & (t->logical_block_size - 1)) {
585		t->misaligned = 1;
586		ret = -1;
587	}
588
589	/* Discard alignment and granularity */
590	if (b->discard_granularity) {
591		alignment = queue_limit_discard_alignment(b, start);
592
593		if (t->discard_granularity != 0 &&
594		    t->discard_alignment != alignment) {
595			top = t->discard_granularity + t->discard_alignment;
596			bottom = b->discard_granularity + alignment;
597
598			/* Verify that top and bottom intervals line up */
599			if (max(top, bottom) & (min(top, bottom) - 1))
600				t->discard_misaligned = 1;
601		}
602
603		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
604						      b->max_discard_sectors);
 
 
605		t->discard_granularity = max(t->discard_granularity,
606					     b->discard_granularity);
607		t->discard_alignment = lcm(t->discard_alignment, alignment) &
608			(t->discard_granularity - 1);
609	}
610
 
 
 
 
611	return ret;
612}
613EXPORT_SYMBOL(blk_stack_limits);
614
615/**
616 * bdev_stack_limits - adjust queue limits for stacked drivers
617 * @t:	the stacking driver limits (top device)
618 * @bdev:  the component block_device (bottom)
619 * @start:  first data sector within component device
620 *
621 * Description:
622 *    Merges queue limits for a top device and a block_device.  Returns
623 *    0 if alignment didn't change.  Returns -1 if adding the bottom
624 *    device caused misalignment.
625 */
626int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
627		      sector_t start)
628{
629	struct request_queue *bq = bdev_get_queue(bdev);
630
631	start += get_start_sect(bdev);
632
633	return blk_stack_limits(t, &bq->limits, start);
634}
635EXPORT_SYMBOL(bdev_stack_limits);
636
637/**
638 * disk_stack_limits - adjust queue limits for stacked drivers
639 * @disk:  MD/DM gendisk (top)
640 * @bdev:  the underlying block device (bottom)
641 * @offset:  offset to beginning of data within component device
642 *
643 * Description:
644 *    Merges the limits for a top level gendisk and a bottom level
645 *    block_device.
646 */
647void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
648		       sector_t offset)
649{
650	struct request_queue *t = disk->queue;
651
652	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
653		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
654
655		disk_name(disk, 0, top);
656		bdevname(bdev, bottom);
657
658		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
659		       top, bottom);
660	}
661}
662EXPORT_SYMBOL(disk_stack_limits);
663
664/**
665 * blk_queue_dma_pad - set pad mask
666 * @q:     the request queue for the device
667 * @mask:  pad mask
668 *
669 * Set dma pad mask.
670 *
671 * Appending pad buffer to a request modifies the last entry of a
672 * scatter list such that it includes the pad buffer.
673 **/
674void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
675{
676	q->dma_pad_mask = mask;
677}
678EXPORT_SYMBOL(blk_queue_dma_pad);
679
680/**
681 * blk_queue_update_dma_pad - update pad mask
682 * @q:     the request queue for the device
683 * @mask:  pad mask
684 *
685 * Update dma pad mask.
686 *
687 * Appending pad buffer to a request modifies the last entry of a
688 * scatter list such that it includes the pad buffer.
689 **/
690void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
691{
692	if (mask > q->dma_pad_mask)
693		q->dma_pad_mask = mask;
694}
695EXPORT_SYMBOL(blk_queue_update_dma_pad);
696
697/**
698 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
699 * @q:  the request queue for the device
700 * @dma_drain_needed: fn which returns non-zero if drain is necessary
701 * @buf:	physically contiguous buffer
702 * @size:	size of the buffer in bytes
703 *
704 * Some devices have excess DMA problems and can't simply discard (or
705 * zero fill) the unwanted piece of the transfer.  They have to have a
706 * real area of memory to transfer it into.  The use case for this is
707 * ATAPI devices in DMA mode.  If the packet command causes a transfer
708 * bigger than the transfer size some HBAs will lock up if there
709 * aren't DMA elements to contain the excess transfer.  What this API
710 * does is adjust the queue so that the buf is always appended
711 * silently to the scatterlist.
712 *
713 * Note: This routine adjusts max_hw_segments to make room for appending
714 * the drain buffer.  If you call blk_queue_max_segments() after calling
715 * this routine, you must set the limit to one fewer than your device
716 * can support otherwise there won't be room for the drain buffer.
717 */
718int blk_queue_dma_drain(struct request_queue *q,
719			       dma_drain_needed_fn *dma_drain_needed,
720			       void *buf, unsigned int size)
721{
722	if (queue_max_segments(q) < 2)
723		return -EINVAL;
724	/* make room for appending the drain */
725	blk_queue_max_segments(q, queue_max_segments(q) - 1);
726	q->dma_drain_needed = dma_drain_needed;
727	q->dma_drain_buffer = buf;
728	q->dma_drain_size = size;
729
730	return 0;
731}
732EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
733
734/**
735 * blk_queue_segment_boundary - set boundary rules for segment merging
736 * @q:  the request queue for the device
737 * @mask:  the memory boundary mask
738 **/
739void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
740{
741	if (mask < PAGE_CACHE_SIZE - 1) {
742		mask = PAGE_CACHE_SIZE - 1;
743		printk(KERN_INFO "%s: set to minimum %lx\n",
744		       __func__, mask);
745	}
746
747	q->limits.seg_boundary_mask = mask;
748}
749EXPORT_SYMBOL(blk_queue_segment_boundary);
750
751/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752 * blk_queue_dma_alignment - set dma length and memory alignment
753 * @q:     the request queue for the device
754 * @mask:  alignment mask
755 *
756 * description:
757 *    set required memory and length alignment for direct dma transactions.
758 *    this is used when building direct io requests for the queue.
759 *
760 **/
761void blk_queue_dma_alignment(struct request_queue *q, int mask)
762{
763	q->dma_alignment = mask;
764}
765EXPORT_SYMBOL(blk_queue_dma_alignment);
766
767/**
768 * blk_queue_update_dma_alignment - update dma length and memory alignment
769 * @q:     the request queue for the device
770 * @mask:  alignment mask
771 *
772 * description:
773 *    update required memory and length alignment for direct dma transactions.
774 *    If the requested alignment is larger than the current alignment, then
775 *    the current queue alignment is updated to the new value, otherwise it
776 *    is left alone.  The design of this is to allow multiple objects
777 *    (driver, device, transport etc) to set their respective
778 *    alignments without having them interfere.
779 *
780 **/
781void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
782{
783	BUG_ON(mask > PAGE_SIZE);
784
785	if (mask > q->dma_alignment)
786		q->dma_alignment = mask;
787}
788EXPORT_SYMBOL(blk_queue_update_dma_alignment);
789
790/**
791 * blk_queue_flush - configure queue's cache flush capability
792 * @q:		the request queue for the device
793 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
794 *
795 * Tell block layer cache flush capability of @q.  If it supports
796 * flushing, REQ_FLUSH should be set.  If it supports bypassing
797 * write cache for individual writes, REQ_FUA should be set.
798 */
799void blk_queue_flush(struct request_queue *q, unsigned int flush)
800{
801	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
 
 
 
802
803	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
804		flush &= ~REQ_FUA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805
806	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
807}
808EXPORT_SYMBOL_GPL(blk_queue_flush);
809
810void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
 
 
 
 
 
 
 
 
 
 
811{
812	q->flush_not_queueable = !queueable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
813}
814EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
815
816static int __init blk_settings_init(void)
817{
818	blk_max_low_pfn = max_low_pfn - 1;
819	blk_max_pfn = max_pfn - 1;
820	return 0;
821}
822subsys_initcall(blk_settings_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
 11#include <linux/gcd.h>
 12#include <linux/lcm.h>
 13#include <linux/jiffies.h>
 14#include <linux/gfp.h>
 15#include <linux/dma-mapping.h>
 16
 17#include "blk.h"
 18#include "blk-wbt.h"
 19
 20unsigned long blk_max_low_pfn;
 21EXPORT_SYMBOL(blk_max_low_pfn);
 22
 23unsigned long blk_max_pfn;
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 26{
 27	q->rq_timeout = timeout;
 28}
 29EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 30
 
 
 
 
 
 
 
 
 
 
 
 
 31/**
 32 * blk_set_default_limits - reset limits to default values
 33 * @lim:  the queue_limits structure to reset
 34 *
 35 * Description:
 36 *   Returns a queue_limit struct to its default state.
 37 */
 38void blk_set_default_limits(struct queue_limits *lim)
 39{
 40	lim->max_segments = BLK_MAX_SEGMENTS;
 41	lim->max_discard_segments = 1;
 42	lim->max_integrity_segments = 0;
 43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 44	lim->virt_boundary_mask = 0;
 45	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 46	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 47	lim->max_dev_sectors = 0;
 48	lim->chunk_sectors = 0;
 49	lim->max_write_same_sectors = 0;
 50	lim->max_write_zeroes_sectors = 0;
 51	lim->max_discard_sectors = 0;
 52	lim->max_hw_discard_sectors = 0;
 53	lim->discard_granularity = 0;
 54	lim->discard_alignment = 0;
 55	lim->discard_misaligned = 0;
 
 56	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 57	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
 58	lim->alignment_offset = 0;
 59	lim->io_opt = 0;
 60	lim->misaligned = 0;
 61	lim->zoned = BLK_ZONED_NONE;
 62}
 63EXPORT_SYMBOL(blk_set_default_limits);
 64
 65/**
 66 * blk_set_stacking_limits - set default limits for stacking devices
 67 * @lim:  the queue_limits structure to reset
 68 *
 69 * Description:
 70 *   Returns a queue_limit struct to its default state. Should be used
 71 *   by stacking drivers like DM that have no internal limits.
 72 */
 73void blk_set_stacking_limits(struct queue_limits *lim)
 74{
 75	blk_set_default_limits(lim);
 76
 77	/* Inherit limits from component devices */
 
 78	lim->max_segments = USHRT_MAX;
 79	lim->max_discard_segments = USHRT_MAX;
 80	lim->max_hw_sectors = UINT_MAX;
 81	lim->max_segment_size = UINT_MAX;
 82	lim->max_sectors = UINT_MAX;
 83	lim->max_dev_sectors = UINT_MAX;
 84	lim->max_write_same_sectors = UINT_MAX;
 85	lim->max_write_zeroes_sectors = UINT_MAX;
 86}
 87EXPORT_SYMBOL(blk_set_stacking_limits);
 88
 89/**
 90 * blk_queue_make_request - define an alternate make_request function for a device
 91 * @q:  the request queue for the device to be affected
 92 * @mfn: the alternate make_request function
 93 *
 94 * Description:
 95 *    The normal way for &struct bios to be passed to a device
 96 *    driver is for them to be collected into requests on a request
 97 *    queue, and then to allow the device driver to select requests
 98 *    off that queue when it is ready.  This works well for many block
 99 *    devices. However some block devices (typically virtual devices
100 *    such as md or lvm) do not benefit from the processing on the
101 *    request queue, and are served best by having the requests passed
102 *    directly to them.  This can be achieved by providing a function
103 *    to blk_queue_make_request().
104 *
105 * Caveat:
106 *    The driver that does this *must* be able to deal appropriately
107 *    with buffers in "highmemory". This can be accomplished by either calling
108 *    kmap_atomic() to get a temporary kernel mapping, or by calling
109 *    blk_queue_bounce() to create a buffer in normal memory.
110 **/
111void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
112{
113	/*
114	 * set defaults
115	 */
116	q->nr_requests = BLKDEV_MAX_RQ;
117
118	q->make_request_fn = mfn;
119	blk_queue_dma_alignment(q, 511);
 
 
120
121	blk_set_default_limits(&q->limits);
 
 
 
 
 
122}
123EXPORT_SYMBOL(blk_queue_make_request);
124
125/**
126 * blk_queue_bounce_limit - set bounce buffer limit for queue
127 * @q: the request queue for the device
128 * @max_addr: the maximum address the device can handle
129 *
130 * Description:
131 *    Different hardware can have different requirements as to what pages
132 *    it can do I/O directly to. A low level driver can call
133 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
134 *    buffers for doing I/O to pages residing above @max_addr.
135 **/
136void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
137{
138	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
139	int dma = 0;
140
141	q->bounce_gfp = GFP_NOIO;
142#if BITS_PER_LONG == 64
143	/*
144	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
145	 * some IOMMUs can handle everything, but I don't know of a
146	 * way to test this here.
147	 */
148	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
149		dma = 1;
150	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
151#else
152	if (b_pfn < blk_max_low_pfn)
153		dma = 1;
154	q->limits.bounce_pfn = b_pfn;
155#endif
156	if (dma) {
157		init_emergency_isa_pool();
158		q->bounce_gfp = GFP_NOIO | GFP_DMA;
159		q->limits.bounce_pfn = b_pfn;
160	}
161}
162EXPORT_SYMBOL(blk_queue_bounce_limit);
163
164/**
165 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
166 * @q:  the request queue for the device
167 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
168 *
169 * Description:
170 *    Enables a low level driver to set a hard upper limit,
171 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
172 *    the device driver based upon the capabilities of the I/O
173 *    controller.
174 *
175 *    max_dev_sectors is a hard limit imposed by the storage device for
176 *    READ/WRITE requests. It is set by the disk driver.
177 *
178 *    max_sectors is a soft limit imposed by the block layer for
179 *    filesystem type requests.  This value can be overridden on a
180 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
181 *    The soft limit can not exceed max_hw_sectors.
182 **/
183void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
184{
185	struct queue_limits *limits = &q->limits;
186	unsigned int max_sectors;
187
188	if ((max_hw_sectors << 9) < PAGE_SIZE) {
189		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
190		printk(KERN_INFO "%s: set to minimum %d\n",
191		       __func__, max_hw_sectors);
192	}
193
194	limits->max_hw_sectors = max_hw_sectors;
195	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
196	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
197	limits->max_sectors = max_sectors;
198	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
199}
200EXPORT_SYMBOL(blk_queue_max_hw_sectors);
201
202/**
203 * blk_queue_chunk_sectors - set size of the chunk for this queue
204 * @q:  the request queue for the device
205 * @chunk_sectors:  chunk sectors in the usual 512b unit
206 *
207 * Description:
208 *    If a driver doesn't want IOs to cross a given chunk size, it can set
209 *    this limit and prevent merging across chunks. Note that the chunk size
210 *    must currently be a power-of-2 in sectors. Also note that the block
211 *    layer must accept a page worth of data at any offset. So if the
212 *    crossing of chunks is a hard limitation in the driver, it must still be
213 *    prepared to split single page bios.
214 **/
215void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
216{
217	BUG_ON(!is_power_of_2(chunk_sectors));
218	q->limits.chunk_sectors = chunk_sectors;
219}
220EXPORT_SYMBOL(blk_queue_chunk_sectors);
221
222/**
223 * blk_queue_max_discard_sectors - set max sectors for a single discard
224 * @q:  the request queue for the device
225 * @max_discard_sectors: maximum number of sectors to discard
226 **/
227void blk_queue_max_discard_sectors(struct request_queue *q,
228		unsigned int max_discard_sectors)
229{
230	q->limits.max_hw_discard_sectors = max_discard_sectors;
231	q->limits.max_discard_sectors = max_discard_sectors;
232}
233EXPORT_SYMBOL(blk_queue_max_discard_sectors);
234
235/**
236 * blk_queue_max_write_same_sectors - set max sectors for a single write same
237 * @q:  the request queue for the device
238 * @max_write_same_sectors: maximum number of sectors to write per command
239 **/
240void blk_queue_max_write_same_sectors(struct request_queue *q,
241				      unsigned int max_write_same_sectors)
242{
243	q->limits.max_write_same_sectors = max_write_same_sectors;
244}
245EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
246
247/**
248 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
249 *                                      write zeroes
250 * @q:  the request queue for the device
251 * @max_write_zeroes_sectors: maximum number of sectors to write per command
252 **/
253void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
254		unsigned int max_write_zeroes_sectors)
255{
256	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
257}
258EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
259
260/**
261 * blk_queue_max_segments - set max hw segments for a request for this queue
262 * @q:  the request queue for the device
263 * @max_segments:  max number of segments
264 *
265 * Description:
266 *    Enables a low level driver to set an upper limit on the number of
267 *    hw data segments in a request.
268 **/
269void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
270{
271	if (!max_segments) {
272		max_segments = 1;
273		printk(KERN_INFO "%s: set to minimum %d\n",
274		       __func__, max_segments);
275	}
276
277	q->limits.max_segments = max_segments;
278}
279EXPORT_SYMBOL(blk_queue_max_segments);
280
281/**
282 * blk_queue_max_discard_segments - set max segments for discard requests
283 * @q:  the request queue for the device
284 * @max_segments:  max number of segments
285 *
286 * Description:
287 *    Enables a low level driver to set an upper limit on the number of
288 *    segments in a discard request.
289 **/
290void blk_queue_max_discard_segments(struct request_queue *q,
291		unsigned short max_segments)
292{
293	q->limits.max_discard_segments = max_segments;
294}
295EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
296
297/**
298 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
299 * @q:  the request queue for the device
300 * @max_size:  max size of segment in bytes
301 *
302 * Description:
303 *    Enables a low level driver to set an upper limit on the size of a
304 *    coalesced segment
305 **/
306void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
307{
308	if (max_size < PAGE_SIZE) {
309		max_size = PAGE_SIZE;
310		printk(KERN_INFO "%s: set to minimum %d\n",
311		       __func__, max_size);
312	}
313
314	/* see blk_queue_virt_boundary() for the explanation */
315	WARN_ON_ONCE(q->limits.virt_boundary_mask);
316
317	q->limits.max_segment_size = max_size;
318}
319EXPORT_SYMBOL(blk_queue_max_segment_size);
320
321/**
322 * blk_queue_logical_block_size - set logical block size for the queue
323 * @q:  the request queue for the device
324 * @size:  the logical block size, in bytes
325 *
326 * Description:
327 *   This should be set to the lowest possible block size that the
328 *   storage device can address.  The default of 512 covers most
329 *   hardware.
330 **/
331void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
332{
333	q->limits.logical_block_size = size;
334
335	if (q->limits.physical_block_size < size)
336		q->limits.physical_block_size = size;
337
338	if (q->limits.io_min < q->limits.physical_block_size)
339		q->limits.io_min = q->limits.physical_block_size;
340}
341EXPORT_SYMBOL(blk_queue_logical_block_size);
342
343/**
344 * blk_queue_physical_block_size - set physical block size for the queue
345 * @q:  the request queue for the device
346 * @size:  the physical block size, in bytes
347 *
348 * Description:
349 *   This should be set to the lowest possible sector size that the
350 *   hardware can operate on without reverting to read-modify-write
351 *   operations.
352 */
353void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
354{
355	q->limits.physical_block_size = size;
356
357	if (q->limits.physical_block_size < q->limits.logical_block_size)
358		q->limits.physical_block_size = q->limits.logical_block_size;
359
360	if (q->limits.io_min < q->limits.physical_block_size)
361		q->limits.io_min = q->limits.physical_block_size;
362}
363EXPORT_SYMBOL(blk_queue_physical_block_size);
364
365/**
366 * blk_queue_alignment_offset - set physical block alignment offset
367 * @q:	the request queue for the device
368 * @offset: alignment offset in bytes
369 *
370 * Description:
371 *   Some devices are naturally misaligned to compensate for things like
372 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
373 *   should call this function for devices whose first sector is not
374 *   naturally aligned.
375 */
376void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
377{
378	q->limits.alignment_offset =
379		offset & (q->limits.physical_block_size - 1);
380	q->limits.misaligned = 0;
381}
382EXPORT_SYMBOL(blk_queue_alignment_offset);
383
384/**
385 * blk_limits_io_min - set minimum request size for a device
386 * @limits: the queue limits
387 * @min:  smallest I/O size in bytes
388 *
389 * Description:
390 *   Some devices have an internal block size bigger than the reported
391 *   hardware sector size.  This function can be used to signal the
392 *   smallest I/O the device can perform without incurring a performance
393 *   penalty.
394 */
395void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
396{
397	limits->io_min = min;
398
399	if (limits->io_min < limits->logical_block_size)
400		limits->io_min = limits->logical_block_size;
401
402	if (limits->io_min < limits->physical_block_size)
403		limits->io_min = limits->physical_block_size;
404}
405EXPORT_SYMBOL(blk_limits_io_min);
406
407/**
408 * blk_queue_io_min - set minimum request size for the queue
409 * @q:	the request queue for the device
410 * @min:  smallest I/O size in bytes
411 *
412 * Description:
413 *   Storage devices may report a granularity or preferred minimum I/O
414 *   size which is the smallest request the device can perform without
415 *   incurring a performance penalty.  For disk drives this is often the
416 *   physical block size.  For RAID arrays it is often the stripe chunk
417 *   size.  A properly aligned multiple of minimum_io_size is the
418 *   preferred request size for workloads where a high number of I/O
419 *   operations is desired.
420 */
421void blk_queue_io_min(struct request_queue *q, unsigned int min)
422{
423	blk_limits_io_min(&q->limits, min);
424}
425EXPORT_SYMBOL(blk_queue_io_min);
426
427/**
428 * blk_limits_io_opt - set optimal request size for a device
429 * @limits: the queue limits
430 * @opt:  smallest I/O size in bytes
431 *
432 * Description:
433 *   Storage devices may report an optimal I/O size, which is the
434 *   device's preferred unit for sustained I/O.  This is rarely reported
435 *   for disk drives.  For RAID arrays it is usually the stripe width or
436 *   the internal track size.  A properly aligned multiple of
437 *   optimal_io_size is the preferred request size for workloads where
438 *   sustained throughput is desired.
439 */
440void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
441{
442	limits->io_opt = opt;
443}
444EXPORT_SYMBOL(blk_limits_io_opt);
445
446/**
447 * blk_queue_io_opt - set optimal request size for the queue
448 * @q:	the request queue for the device
449 * @opt:  optimal request size in bytes
450 *
451 * Description:
452 *   Storage devices may report an optimal I/O size, which is the
453 *   device's preferred unit for sustained I/O.  This is rarely reported
454 *   for disk drives.  For RAID arrays it is usually the stripe width or
455 *   the internal track size.  A properly aligned multiple of
456 *   optimal_io_size is the preferred request size for workloads where
457 *   sustained throughput is desired.
458 */
459void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
460{
461	blk_limits_io_opt(&q->limits, opt);
462}
463EXPORT_SYMBOL(blk_queue_io_opt);
464
465/**
466 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
467 * @t:	the stacking driver (top)
468 * @b:  the underlying device (bottom)
469 **/
470void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
471{
472	blk_stack_limits(&t->limits, &b->limits, 0);
473}
474EXPORT_SYMBOL(blk_queue_stack_limits);
475
476/**
477 * blk_stack_limits - adjust queue_limits for stacked devices
478 * @t:	the stacking driver limits (top device)
479 * @b:  the underlying queue limits (bottom, component device)
480 * @start:  first data sector within component device
481 *
482 * Description:
483 *    This function is used by stacking drivers like MD and DM to ensure
484 *    that all component devices have compatible block sizes and
485 *    alignments.  The stacking driver must provide a queue_limits
486 *    struct (top) and then iteratively call the stacking function for
487 *    all component (bottom) devices.  The stacking function will
488 *    attempt to combine the values and ensure proper alignment.
489 *
490 *    Returns 0 if the top and bottom queue_limits are compatible.  The
491 *    top device's block sizes and alignment offsets may be adjusted to
492 *    ensure alignment with the bottom device. If no compatible sizes
493 *    and alignments exist, -1 is returned and the resulting top
494 *    queue_limits will have the misaligned flag set to indicate that
495 *    the alignment_offset is undefined.
496 */
497int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
498		     sector_t start)
499{
500	unsigned int top, bottom, alignment, ret = 0;
501
502	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
503	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
504	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
505	t->max_write_same_sectors = min(t->max_write_same_sectors,
506					b->max_write_same_sectors);
507	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
508					b->max_write_zeroes_sectors);
509	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
510
511	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
512					    b->seg_boundary_mask);
513	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
514					    b->virt_boundary_mask);
515
516	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
517	t->max_discard_segments = min_not_zero(t->max_discard_segments,
518					       b->max_discard_segments);
519	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
520						 b->max_integrity_segments);
521
522	t->max_segment_size = min_not_zero(t->max_segment_size,
523					   b->max_segment_size);
524
525	t->misaligned |= b->misaligned;
526
527	alignment = queue_limit_alignment_offset(b, start);
528
529	/* Bottom device has different alignment.  Check that it is
530	 * compatible with the current top alignment.
531	 */
532	if (t->alignment_offset != alignment) {
533
534		top = max(t->physical_block_size, t->io_min)
535			+ t->alignment_offset;
536		bottom = max(b->physical_block_size, b->io_min) + alignment;
537
538		/* Verify that top and bottom intervals line up */
539		if (max(top, bottom) % min(top, bottom)) {
540			t->misaligned = 1;
541			ret = -1;
542		}
543	}
544
545	t->logical_block_size = max(t->logical_block_size,
546				    b->logical_block_size);
547
548	t->physical_block_size = max(t->physical_block_size,
549				     b->physical_block_size);
550
551	t->io_min = max(t->io_min, b->io_min);
552	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 
 
 
553
554	/* Physical block size a multiple of the logical block size? */
555	if (t->physical_block_size & (t->logical_block_size - 1)) {
556		t->physical_block_size = t->logical_block_size;
557		t->misaligned = 1;
558		ret = -1;
559	}
560
561	/* Minimum I/O a multiple of the physical block size? */
562	if (t->io_min & (t->physical_block_size - 1)) {
563		t->io_min = t->physical_block_size;
564		t->misaligned = 1;
565		ret = -1;
566	}
567
568	/* Optimal I/O a multiple of the physical block size? */
569	if (t->io_opt & (t->physical_block_size - 1)) {
570		t->io_opt = 0;
571		t->misaligned = 1;
572		ret = -1;
573	}
574
575	t->raid_partial_stripes_expensive =
576		max(t->raid_partial_stripes_expensive,
577		    b->raid_partial_stripes_expensive);
578
579	/* Find lowest common alignment_offset */
580	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
581		% max(t->physical_block_size, t->io_min);
582
583	/* Verify that new alignment_offset is on a logical block boundary */
584	if (t->alignment_offset & (t->logical_block_size - 1)) {
585		t->misaligned = 1;
586		ret = -1;
587	}
588
589	/* Discard alignment and granularity */
590	if (b->discard_granularity) {
591		alignment = queue_limit_discard_alignment(b, start);
592
593		if (t->discard_granularity != 0 &&
594		    t->discard_alignment != alignment) {
595			top = t->discard_granularity + t->discard_alignment;
596			bottom = b->discard_granularity + alignment;
597
598			/* Verify that top and bottom intervals line up */
599			if ((max(top, bottom) % min(top, bottom)) != 0)
600				t->discard_misaligned = 1;
601		}
602
603		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
604						      b->max_discard_sectors);
605		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
606							 b->max_hw_discard_sectors);
607		t->discard_granularity = max(t->discard_granularity,
608					     b->discard_granularity);
609		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
610			t->discard_granularity;
611	}
612
613	if (b->chunk_sectors)
614		t->chunk_sectors = min_not_zero(t->chunk_sectors,
615						b->chunk_sectors);
616
617	return ret;
618}
619EXPORT_SYMBOL(blk_stack_limits);
620
621/**
622 * bdev_stack_limits - adjust queue limits for stacked drivers
623 * @t:	the stacking driver limits (top device)
624 * @bdev:  the component block_device (bottom)
625 * @start:  first data sector within component device
626 *
627 * Description:
628 *    Merges queue limits for a top device and a block_device.  Returns
629 *    0 if alignment didn't change.  Returns -1 if adding the bottom
630 *    device caused misalignment.
631 */
632int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
633		      sector_t start)
634{
635	struct request_queue *bq = bdev_get_queue(bdev);
636
637	start += get_start_sect(bdev);
638
639	return blk_stack_limits(t, &bq->limits, start);
640}
641EXPORT_SYMBOL(bdev_stack_limits);
642
643/**
644 * disk_stack_limits - adjust queue limits for stacked drivers
645 * @disk:  MD/DM gendisk (top)
646 * @bdev:  the underlying block device (bottom)
647 * @offset:  offset to beginning of data within component device
648 *
649 * Description:
650 *    Merges the limits for a top level gendisk and a bottom level
651 *    block_device.
652 */
653void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
654		       sector_t offset)
655{
656	struct request_queue *t = disk->queue;
657
658	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
659		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
660
661		disk_name(disk, 0, top);
662		bdevname(bdev, bottom);
663
664		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
665		       top, bottom);
666	}
667}
668EXPORT_SYMBOL(disk_stack_limits);
669
670/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671 * blk_queue_update_dma_pad - update pad mask
672 * @q:     the request queue for the device
673 * @mask:  pad mask
674 *
675 * Update dma pad mask.
676 *
677 * Appending pad buffer to a request modifies the last entry of a
678 * scatter list such that it includes the pad buffer.
679 **/
680void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
681{
682	if (mask > q->dma_pad_mask)
683		q->dma_pad_mask = mask;
684}
685EXPORT_SYMBOL(blk_queue_update_dma_pad);
686
687/**
688 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
689 * @q:  the request queue for the device
690 * @dma_drain_needed: fn which returns non-zero if drain is necessary
691 * @buf:	physically contiguous buffer
692 * @size:	size of the buffer in bytes
693 *
694 * Some devices have excess DMA problems and can't simply discard (or
695 * zero fill) the unwanted piece of the transfer.  They have to have a
696 * real area of memory to transfer it into.  The use case for this is
697 * ATAPI devices in DMA mode.  If the packet command causes a transfer
698 * bigger than the transfer size some HBAs will lock up if there
699 * aren't DMA elements to contain the excess transfer.  What this API
700 * does is adjust the queue so that the buf is always appended
701 * silently to the scatterlist.
702 *
703 * Note: This routine adjusts max_hw_segments to make room for appending
704 * the drain buffer.  If you call blk_queue_max_segments() after calling
705 * this routine, you must set the limit to one fewer than your device
706 * can support otherwise there won't be room for the drain buffer.
707 */
708int blk_queue_dma_drain(struct request_queue *q,
709			       dma_drain_needed_fn *dma_drain_needed,
710			       void *buf, unsigned int size)
711{
712	if (queue_max_segments(q) < 2)
713		return -EINVAL;
714	/* make room for appending the drain */
715	blk_queue_max_segments(q, queue_max_segments(q) - 1);
716	q->dma_drain_needed = dma_drain_needed;
717	q->dma_drain_buffer = buf;
718	q->dma_drain_size = size;
719
720	return 0;
721}
722EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
723
724/**
725 * blk_queue_segment_boundary - set boundary rules for segment merging
726 * @q:  the request queue for the device
727 * @mask:  the memory boundary mask
728 **/
729void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
730{
731	if (mask < PAGE_SIZE - 1) {
732		mask = PAGE_SIZE - 1;
733		printk(KERN_INFO "%s: set to minimum %lx\n",
734		       __func__, mask);
735	}
736
737	q->limits.seg_boundary_mask = mask;
738}
739EXPORT_SYMBOL(blk_queue_segment_boundary);
740
741/**
742 * blk_queue_virt_boundary - set boundary rules for bio merging
743 * @q:  the request queue for the device
744 * @mask:  the memory boundary mask
745 **/
746void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
747{
748	q->limits.virt_boundary_mask = mask;
749
750	/*
751	 * Devices that require a virtual boundary do not support scatter/gather
752	 * I/O natively, but instead require a descriptor list entry for each
753	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
754	 * of that they are not limited by our notion of "segment size".
755	 */
756	if (mask)
757		q->limits.max_segment_size = UINT_MAX;
758}
759EXPORT_SYMBOL(blk_queue_virt_boundary);
760
761/**
762 * blk_queue_dma_alignment - set dma length and memory alignment
763 * @q:     the request queue for the device
764 * @mask:  alignment mask
765 *
766 * description:
767 *    set required memory and length alignment for direct dma transactions.
768 *    this is used when building direct io requests for the queue.
769 *
770 **/
771void blk_queue_dma_alignment(struct request_queue *q, int mask)
772{
773	q->dma_alignment = mask;
774}
775EXPORT_SYMBOL(blk_queue_dma_alignment);
776
777/**
778 * blk_queue_update_dma_alignment - update dma length and memory alignment
779 * @q:     the request queue for the device
780 * @mask:  alignment mask
781 *
782 * description:
783 *    update required memory and length alignment for direct dma transactions.
784 *    If the requested alignment is larger than the current alignment, then
785 *    the current queue alignment is updated to the new value, otherwise it
786 *    is left alone.  The design of this is to allow multiple objects
787 *    (driver, device, transport etc) to set their respective
788 *    alignments without having them interfere.
789 *
790 **/
791void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
792{
793	BUG_ON(mask > PAGE_SIZE);
794
795	if (mask > q->dma_alignment)
796		q->dma_alignment = mask;
797}
798EXPORT_SYMBOL(blk_queue_update_dma_alignment);
799
800/**
801 * blk_set_queue_depth - tell the block layer about the device queue depth
802 * @q:		the request queue for the device
803 * @depth:		queue depth
804 *
 
 
 
805 */
806void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
807{
808	q->queue_depth = depth;
809	rq_qos_queue_depth_changed(q);
810}
811EXPORT_SYMBOL(blk_set_queue_depth);
812
813/**
814 * blk_queue_write_cache - configure queue's write cache
815 * @q:		the request queue for the device
816 * @wc:		write back cache on or off
817 * @fua:	device supports FUA writes, if true
818 *
819 * Tell the block layer about the write cache of @q.
820 */
821void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
822{
823	if (wc)
824		blk_queue_flag_set(QUEUE_FLAG_WC, q);
825	else
826		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
827	if (fua)
828		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
829	else
830		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
831
832	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
833}
834EXPORT_SYMBOL_GPL(blk_queue_write_cache);
835
836/**
837 * blk_queue_required_elevator_features - Set a queue required elevator features
838 * @q:		the request queue for the target device
839 * @features:	Required elevator features OR'ed together
840 *
841 * Tell the block layer that for the device controlled through @q, only the
842 * only elevators that can be used are those that implement at least the set of
843 * features specified by @features.
844 */
845void blk_queue_required_elevator_features(struct request_queue *q,
846					  unsigned int features)
847{
848	q->required_elevator_features = features;
849}
850EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
851
852/**
853 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
854 * @q:		the request queue for the device
855 * @dev:	the device pointer for dma
856 *
857 * Tell the block layer about merging the segments by dma map of @q.
858 */
859bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
860				       struct device *dev)
861{
862	unsigned long boundary = dma_get_merge_boundary(dev);
863
864	if (!boundary)
865		return false;
866
867	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
868	blk_queue_virt_boundary(q, boundary);
869
870	return true;
871}
872EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
873
874static int __init blk_settings_init(void)
875{
876	blk_max_low_pfn = max_low_pfn - 1;
877	blk_max_pfn = max_pfn - 1;
878	return 0;
879}
880subsys_initcall(blk_settings_init);